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ABSTRACT

Nelson, Barry Lee. Ph.D., Purdue University, December 1983. Variance
Reduction in Simulation Experiments: A Mathematical -~ Statistical
Framework. Major Professor: Dr. Bruce W. Schmeiser.

With the expanding use of computer simulation to model - and aolve
industrial engineering problems, there has been increasing interest in
the development of efficient simulation techniques. When the concern is
for statistical efficiency of results that are random variables, such
approaches are usually called variance reduction techniques (VRTs).

~ Many of the fundamental ideas in . simulation, and particularly
techniques for efficient simulation, had their origins in the Monte
Carlo estimation literature. The theory of sampling is another closely
related field that predates the development of simulation. Although
there has been significant research interest in variance reduction,
there have been few attempts to structure and define the discipline.

VRTs are transformations. They transform simulation experiments
into related experiments that yield better estimates of some parameters
of interest, where better usually means more precise. This research
identifies and defines the components from which all variance reduction
techniques are built. Given a general mathematical-statistical
definition of aimulation experiments, these components or classes of

transformations are shown to be useful, to be mutually exclusive, and to
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generate all possible VRTs via composition. Benefits of the research
include: 1) the facility to unambiguously define new or existing VRTs,
eliminating confusion that currently exists in the literature, 2) the
facility to decompose VRTa into combinations of tranaformations, making
the relationships between VRTs clear, 3) the development of a
theoretical foundation for analytical treatment of VRTs, and 4) the
development of a setting for proposing new VRTs and research questions..
In addition, increased understanding of the area should.promote more and

better application of variance reduction in practice.
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With the expanding use of computer simulation to model and solve
industrial engineering problems, there has been increasing interest in
the development of efficient simulation techniques. By efficient
techniques is meant approaches that produce accurate answers with
reasonable computing cost and analyst effort. When the concern is for

statistical efficiency of results that are random variables, such ]

approaches are usually called variance reduction techniques (VRTs).

Definitions

In this research, simulation will refer to digital computer models
of stochastic systems. Often these models are characterized by explicit
accounting of the passage of time, although this is not a requirement.

"By simulation is meant the technique of setting up a stochastic model

of a real situation, and then performing sampling experiments wupon the
model.” (Harling, 1958) The experiment is done to obtain performance
measures for the system, but since the models are driven by stochastic
inputs, the measures are only estimates of the true performance of the

system.

alarm sl &

Many of the fundamental ideas in simulation, and particularly

techniques for efficient simulation, had their origins in the Monte
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events.'” (Carter and Ignall, 1975, p. 608)

"The idea [of virtual measures for a particular inventory problem] is

surely suggestive of the splitting and enrichment techniques.” (Carter

and Ignall, 1975, p. 614)

“In the alab problem considered above, the process. of splitting,
accompanied by Russian Roulette, may be thought of as an example of
importance sampling where the transport kernel is modified." (carter

and Cashwell, 1975, p. 17)

"Latin Hypercube Sampling is a variant of stratification especially
appropriate for multivariate problems with restricted sampling budgets.”

(Swain, 1981, p. 40)

"It [Latin Hypercube Sampling] is an extension of quota sampling, and it
is a first cousin to the 'random balance' design...and to the highly
fractionalized factorial designs... and to lattice sampling.” (McKay,

Beckman aud Conover, 1979, p. 243)

"It is interesting to note that the exponential transform is a form of

quota sampling.” (Kahn, 1950b, p. 62)
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“Another instance of control variate sampling is the use of the same
sequence of random numbers in two different phases of the simulation.
The idea is to introduce a positive correlation for quantities that are

to be subtracted."” (Gentle, 1975, p. 7)

"The idea behind stratified sampling is essentially the same as that of

importance sampling.” (Gentle, 1975, p. 7)

"This last technique [stratified sampling] is sort of a combination of

Importance Sampling and Syatematic Sampling.” (Kahn, 1956, p. 155)

"Indeed the family of [antithetic variate| sampling plans...is the

family of systematic sampling plans." (Roach and Wright, 1974, p. 8)

@ v I T R L
PR AT I

"Systematic sampling plans form a computationally feasible subset of the

r

family of antithetic sampling plans originally described by Hammersley,

s Ay

Handscomb, and Mauldin.” (Roach and Wright, 1974, p. 32)

“The method of stratified sampling is closely related to that of wusing

‘control variables.'" (Hartley, 1977, p. 23)

"It is possible to view virtual measures as, in the words of a referee,

‘'a re-packaging of conditional Monte Carlo for the estimation of rare

. te e Ml nL L e sl el - .
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Biased Estimators (Rubinstein, 1981) N

Weighted Uniform Sampling (Powell and Swann, 1966) j

, 5

Random Quadrature Method (Rubinstein, 1981) 'Ef

Use of Orthonormal Functions (Hammersley and Handscomb, 1964) iy

.

Many researchers have conjectured that relationships exist between g
various VRTs. Most of these conjectures are in fact true, but can seem
contradictory without a unifying theory that makes relationships and

differences apparent. Below are several examples of stafements that have :r

"4

appeared in the variance reduction literature. :

"The antithetic variate technique is a particular case of this situation

(regression method)" (Hammersley and Handscomb, 1964, p. 66)

"...80 the antithetic variate method is equivalent to using the control

variate t'=1/2t - 1/2¢'', whose expectation is zero." (Hammersley and

Morton, 1956, p. 449)

Control variates can be "a special form of the use of the same [common]

random numbers...” (Kleijnen, 1974, .p. 205)

Common random numbers is a special case of —control variates

(paraphrased). (Gentle, 1975, p. 8)
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Selective Sampling (Bremner, 1963)
Fixed Sequence Principle (Ehrenfeld and Ben-Tuvia, 1962)

* Sequential Sampling (McGrath and Irving, 1973a)

Poststratified Sampling (Wilson, 1979b)
Stratification after Sampling (Kleijnen, 1974)

Importance Sampling

Partition of Region (Rubinstein, 1981)

Correction Sampling (Hartley, 1977)

Multi-Stage Sampling (Marshall, 1956)

Method of the Essential Sample (Kohlas, 1982)

Sampling with Probability Proportional to Size (Moy, 1965)

Transformations (McGrath and Irving, 1973a)

Expected Values (McGrath and Irving, 1973a)
Conditional Expectations (Law and Kelton, 1982)
Conditioned Sampling (Garman, 1972)

Statistical Estimation (McGrath and Irving, 1973a)
Virtual Measures (Carter and Ignall, 1975)

Prior Information (Pritsker and Pegden, 1979)
Reducing the Dimensionality (Rubinstein, 1981)
Strict Conditional Monte Carlo (Fox, 1983)
Extended Conditional Monte Carlo (Fox, 1983)

Indirect Estimation (Law and Kelton, 1982)

Adjoint Formulations (McGrath and Irving, 1973a)
Mathematical Analog (Kahn, 1950)

Conditional Monte Carlo (Hammersley and Handscomb, 1964)

Conditional Sampling (Hartley, 1977) ,
Classic Conditional Monte Carlo (Fox, 1983) ‘

b ol o2
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Correlation Induction Strategies (Schruben, 1979)

Control Variables

- Control Variates
Control Variate Sampling (Swain, 1981)
Concomitant Control Variables (Lavenberg and Welch, 1981)
Internal Controls (Iglehart, 1979)
Concomitant Information (Ehrenfeld and Ben-Tuvia, 1962)
Regression Sampling (Kleijnen,'1974)
Extraction of the Regular Part (Shreider, 1966)
Comparison Method (Kohlas, 1982)
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Regression Methods (Hammersley and Handscombd, 1964)
Regression on Concomitant Variables (Gentle, 1975)

Common Random Numbers

Correlated Sampling (Law and Keltom, 1982)

Using the same random numbers

Correlation of Samples (Kahn and Marshall, 1953)

History Reanalysis-(McGrath and Irving, 1973a)

Systematic Sampling

Simple Stratified Sampling

Dagger Sampling (Kumamoto, Tanaka and Inoue, 1980a)
Sequential Destruction Method (Easton and Wong, 1980)
Systematic Source Sampling (Carter and Cashwell, 1975)

Quasi-random Numbers (Hammersley and Handscomb, 1964)
Latin Hypercube Sampling (McKay, Beckman and Conover, 1979)

Stratified Sampling

Stratification of Random Numbers

Quota Sampling (Kahn, 1954)

Adaptive Stratified Sampling

Critical Value Stratified Sampling (Surkis, Gordon and Hynes, 1975)
Representative Sampling (Delanius, 1950)

Bowley-sampling (Delanius, 1950)

Neyman-sampling (Delanius, 1950)

Proportional Sampling (Ehrenfeld and Ben-Tuvia, 1962)

Group Sampling (Shreider, 1966)
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any knowledge, either known with certainty or suspected, beyond what is

e v e
PRI PR

needed to draw samples from the experiment. A transformation is a

.

modification of a problem situation so that a variance reduction might
be achieved. Combined with the necessary prior knowledge,
transformations produce VRTs. In a real application, VRTs are
implemented as algorithms. The theoretical framework developed here

defines six classes of transformations and shows how they are composed

e e e . .
.« . L L * v v
ot atatats LA‘L’_]'_! Pt PR VY

into VRTs. The format used to define VRTs should be ;llustrative for

L |

developing algorithms.

Existing Variance Reduction Techniques

The number of VRTs and their variations is staggering. The

Lt d N .
RN SRR

following is a 1list of VRTs found in the simulation, Monte Carlo, and

sampling literature. Multiple names for the same or very similar

techniques are grouped together, and references are given for names not

f .
P :'1" I',‘.‘

in common use.

AN -

Antithetic Sampling

Antithetic Transformation (Halton, 1979)

Antithetic Variate Sampling Plans (Roach and Wright, 1977) .
Supplemental Variables (Mize and Cox, 1968) »
Antithetic Control Variables ECheng, 1981)

Complementary Random Numbers (Hiller and Lieberman, 1974)
Complementary Antithetic Variates (George, 1977)
Correlation Selection (Ermakov and Zolotukhin, 1960)

Use of Dependent Variables (Shreider, 1966)
Symmetrization of the Integral (Shreider, 1966)

Basic Antithetic Variates (Roach and Wright, 1977)
Antithetical Variables (Kohlas, 1982)

Compensation Methods (Kohlas, 1982)

Randomization Sampling (Deutsch and Schmeiser, 1980)

Antithetic Variates 4
5

...................
.........

3
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it is 'possible (conceptually) to represent simulation experiments
similarly by thinking of the simulation as some input distributions and
output transformations from which one can sanmple. It may not be
possible to write an explicit expression for the integral in all cases.

The terms crude Monte Carlo or crude sampling are used to describe

A bodbdk BB b P L o ot e s kR e tm e % Wil . s

the following technique for estimating (2.1)

0. Pormulate (2.1) as in (2.2)

1. Sample n values of X, (x1.x2,...,xn)
2. Estimate ¢ by E
!

z =L g g,(X,)

LR 21

Z is an unbiased estimator of 9 with variance

2
-3
var{z) =
where

o? - E[ez(x)-elz

Clearly the variance of Z can be reduced by increasing n.

VRTs usually attempt to attain an estimator with smaller variance

for n observationa, or the same variance with fewer observations. It is
generally agreed that prior knowledge is required to achieve a variance

reduction. Por the purposes of this research prior knowledge will mean

almlas( AR AL RIS . arasesaaar




LITERATURE REVIEW

This chapter reviews the names of and relationships between VRTs as

well as several key survey papers. The intention is not to explain

individual VRTs in detail here; see Chapter 5.

Definitions

Simulation, Monte Carlo estimation, and sampling are defined as in

Chapter 1. Recall that the value of any integral can be expressed as
the expected value of a random variable. For example, consider the

simple scalar integral

0= { 31(x)dx (2.1)

vwhere 31(1) is a real valued function of elements in A, a subset of the

real line. Now if f£(x) is a probability density function on A, and

£f(x) = 0 only if 31(1) = 0, then

i J.81(x)f [
) 4 OB (x)dx = d gz(x)f(x)dx _ (2.2)

E
h
"
.
[
9
~

and E[gz(x)] = 8, where X is a random variable with density function

f(x). Monte Carlo estimation problems are formulated as integrals, and

BRI e St AT R
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concerning the definitions and reiationships between VRTs is presented.
Chapter 3 develops a general mathematical-statistical definition of
simulation experiments, which is necessary to define the claases of
transformations and establish their properties (Chapter 4). Chapter 5 :
reviews five well-known VRTs in light of the results Jjust presented.

The final chapter contains concluding comments and directions for future

research. .
i
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The current research identifies and defines +the components <from
which all variance reduction techniques are built. Given a general
mathematical-statistical definition of simulation experiments, these

components or classes of transformations are shown to be useful, to be

mutually exclusive, and to generate all possible VRTs via composition.

The scope of the results is not limited to simulation since Monte Carlo

and sampling theory problema are special cases of the general simulation
experiment.

Benefits of the research include: 1) the facility to unambiguously
define new or existing VRTs, eliminating the confusion that currently
exists in the 1literature, 2) the facility to decompose VRTs into
combinations of transformations, making the relationships between VRTs
clear, 3) the development of a theoretical foundation for analytical
treatment of VRTs, and 4) the development of.a setting for proposing
new VRTs and research questions. In addition, increased understanding
of the area should promote more and better application of variance
reduction in practice.

Additional results of the research are a graphical scheme for
describing VRTs (which is applied to five of the most common
techniques), and an extensive bibliography of variance reduction

literature.

Organization of the Dissertation

Chapter 2 of ¢the dissertation contains a literature review
emphasizing previous attempts to develop a unifying framework. In

addition, a brief examination of the confusion that presently exists

..........
------------

AR A AR A SR -~ S T N e T T N LT T
LA C IR IS SN AN W P85 10 TS TR O Rl S T g WAL TL!.Z.LL.;'_:L‘:_A.':A“.';.'L:-'L;.';-..__'L';"'.',u'.-"r e s ORI




...................

the sum of the variance and the square of the bias. However, other
measures could be proposed. For the purposes of this research, the term

variance reduction will mean the following more general goal:

ninimize Ez[l(z, 8)]

(e, ¢) = O

1(2, ) > 1(2', o) iff |2 -9} > |Z' - 0|

vhere | | is a metric. This general loss function includes both
variance and MSE, as well as others. The particular loss function is

application dependent.

Research

Although there has been significant research interest in variance
reduction, there have been few attempts to structure and define the
discipline. The primary exception is McGrath and Irving (1973a). They
classify variance reduction techniques according to whether they modify
the sampling process, make use of analytic equivalences, or are simply
specialized techniques. This classification fails to show which
techniques are related to or are particular cases of others, or provide
insight 1into the underlying theory of variance reduction. In addition,.

the catchall category of "specialized techniques" is not satisfying.
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considered over repeated realizations; i.e. its expected squared

deviation from its own expectation. To account for the greater effort
usually involved with achieving greater precision, measures that
incorporate "effort" have been proposed. Most take the following form

(Hammersley and Handscomb, 1964):

where 612 and 022 are the variances of estimators 1 and 2, respectively,

é and e{ and e, are some measures of the effort involved in using

! . estimators 1 and 2 (computer or analyst time, for instance).

; . Contrast the idea of increased precision (reduced variance) with

E increased accuracy. Accuracy refers to the absolute deviation of the
value of the estimator from the quantity to ge estimated. In some

- situations this quantity can be bounded. A similar measure is the

expected value of the difference between the estimator and the
parameter, called the bias. It is clear that any arbitrary constant has
optimal precision, but it will probably be biased (unless one is 80
lucky as to select the value to be estimated). It is also clear that

variance reduction in the context of numerical or quasi-Monte Carlo

integration procedures has 1little meaning, while accuracy does. If
unbiased estimators are employed, tﬁen precision is the only quantity to
worry about. However, some VRTs trade variance of the estimator for
bias, and this may be quite acceptabdle. .

There are many possible solutions to this problem of definition.

.
"
E
g
'
’
E

One could talk about mean squared error (MSE) reduction, since MSE is
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-
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potential error, and is often empioyed to construct confidence intervals
for the unknown quantity being estimated. The smaller the variance of
the estimator, the more certain one is that the estimate is not
misleading. VRTs are usually considered to be methods for achieving a
given level of precision at reduced cost, or greater precision at the
same estimation cost. Precision is a quantity inversely proportional to
the variance.

VRTs, sometimes called Monte Carlo swindles, have long been applied'
to Monte Carlo and sampling problems. It is possible to represent an
integral as the expected value of a random variable, to sample from the
random variable, and to use the sample average as an estimator of the
integral. Increasing the number of observations will decrease the
variance of the estimator, but an excessive number of observations may
be required to achieve acceptable precision in the absence of variance
reduction techniques. Similarly, to obtain an estimate with acceptable
precision from a simple random sample of a large and diverse population

. an unreasonably large sample may be required.
More recently variance reduction techniques--many direct analogues

of Monte Carlo and sampling methods--have been applied to computer

simulation experiments. Increasing the length or number of simulation
runs will improve the precision of the estimators, but not without cost.
"Sometimes a variance reduction technique, properly applied, can make

the difference between an impossibly expensive simulation and a frugal,

N
-
»
»
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useful one” (Law and Kelton, 1982).

In the simulation and Monte Carlo 1literature, variance reduction

CERET T e

refers to any attempt to decrease the variance of an estimator
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Carlo estimation literature. ggégg.gggig estimation refers to the use
of probabilistic models to evaluate mathematically intractable
integrals. These problems may not be inherently stochastic. The
difference between Monte Carlo and standard statistical estimation
problems is that

In the standard statistical-estimation problem both  the

probability distribution and the parameter to be estimated are
assumed to be fixed; typically, given a sample of n values
from the distribution, the best (or minimum variance) estimate
of the parameter is to be found. In Monte Carlo calculations

only £, the answer, is really fixed and the problem is to

sample from that distribution which produces the minimum (or a

substantially smaller) variance estimate of this number, for

fixed cost. (Kabn and Marshall, 1953)

The theory of sampling is another closely related field that
bredatas‘ the development of simulation. Sampling refers to selecting a
subset of the members of some population to disgover or estimate some
characteristic of the whole population. The measures derived from a
sample are in general subject to random variation. “The purpose of
sampling theory is <to make sampling more efficient. It atteapts to
develop methods of sample selection and of estimation that provide, at
the 1lowest poasible cost, estimates that are precise enough fcr our

purpose.” (Cochran, 1977)

Variance Reduction

In sampling, Monte Carlo estimation, and computer simulation
problems, one 1is often as interested in how far from the actual value
the estimate of a quantity may ‘'be as in the value of the oestimate

itself. The variance of the estimator is a common measure of the

-------
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“These involve importance sampling, including the special case of the

exponential tranaform, splitting, and Russian Roulette.” (Steinberg,

1963, p. 142)

"...indeed the CV [control variate] technique is sometimes called

regression sampling."” (Law and Kelton, 1982, p. 360)

"The idea of this technique [stratified sampling] is similar to the idea

of importance sampling...” (Rubinstein, 198., p. 131)

Control Variates is a form of correlated sampling (paraphrased). (Kahn

and Marshall, 1953, p. 269)

"Use of quasi-random numbers is essentially an instance of systematic

sampling." (Gentle, 1975, p. 8)

"A special case of the regression method is the use of antithetic

sampling.” (Gentle, 1975, p. 4)

"The antithetic-variate method is a variation of the regression sampling

method introduced earlier.” (Moy, 1965, p. 18) .

"...in general, quota sampling may be described as stratified sampling

.................................
......

FAAE AR



LY. w7
«

TR Y R F T N T

!

TERT . TN T

17

with a more or 1less nonrandom selection of units within strata.”

(Cochran, 1963, p. 137)

Surveys and Frameworks

A number of survey papers and book chapters on variance reduction
have appeared in the literature. Most have.concentrated on developing
formulation, theory, and application of a particular VRT, and
occasionally they have advanced ideas about the relationships between
techniques or their taxonomy. In this section some of these worﬁé are
reviewed, with particular emphasis on those that propose a
classification scheme.

| An important early survey paper is Kahn (1956), which appeared in
the classic collection of papers from a symposium on Monte Carlo methods
held at the University of Florida in 1954. Kahn uses the simple problem
of repeatedly tossing two dice to estimate the probability that the sum
is three to illustrate six ViTs that he feels are useful in Monte Carlo
and simulation studies. Although the problem is easily solved
analytically, the example makes the idea behind each approach clear.
He continues the exposition using an integral formulation of the Monte
Carlo estimation problem to describe each VRT from a mathematical point
of view. He uses the integral problem because "it is the application in
vhich the ideas are most clearly defined (p.147)." The development is
sophisticated, considering a general multidimensional integral and
deriving expressions for the variance of each modified estimator. Hhon'

possible, potential applications of each VRT are given and optimal

implementation strategies derived. Kahn does not attempt to define a
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set of underlying concepts or develop a framework. However, in an
earlier paper (Kahn, 1950) he does identify four general techniques for
reducing variance in the context of neutron transport problems; they

are: integration by random sampling, using a mathematical analog, quota

KEa’s’a #°20"a"a d _up

sampling, and statistical estimation. There is considerable overlap
between the categories, and many existing VRTs are not covered.

Steinberg (1963) proposes two principle classes of VRTs, those
designed to reduce the theoretical variance of each sgmple "history”,
and those that reduce the variance of a set of sample "historiqg." A
"history" is essentially an observation. This breakdown differentiates
between techniques that change the individual obsérvations and those
that reduce variance through a cumulative effect. It ignores VRTs that
change the statistic (function of the observations) used.

Probably the most cited reference in all éhe variance reduction
literature is Hammersley and Handscomb (1964). Although many

researchers consider Monte Carlo Methods to be concerned only with Monte

Carlo problems, the authors are also interested in simulation and devote

a chapter (Chapter 4) to the subject. In fact, their definition of

Monte Carlo methods is quite general:

Monte Carlo methods comprise that branch of experimental
mathematics which is concerned with experiments on random
numbers. (p. 2)

The text presents a brief history and overview of Monte Carlo methods
and problems, develops the Ybasic techniques (Chapter 5), and
demonatrates their application to problems in areas such as solution of,

linear operator equations, radiation shielding and nuclear reaction
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Like Kahn, Hammersley and Handscomb develop variance reduction ‘

techniques from an integral representation of the problem. They propose

Y izt t. .

no generai framework, but stress that two basic concepts underlying

several VRTs are: 1) sampling from an advantageous distribution, not

:
d
[|
K|
d

necessarily the one that naturally appears in the problem, and 2)
replacing an estimate by an exact value when possible. VRTs are
described, then illustrated using a simple integral for which an
analytic solution is known. A major feature of the book is a list of
original or early variance reduction and Monte Carlo references.
Another extensive list of variance reduction references is found in

Kleijnen (1974). Kleijnen is particularly interested in VRTs that can

f he used in a wide range of simulation studies. As a result, he does not

discuss some VRTs that appear in the Monte Carlo literature and includes

3
i' one (Selective Sampling) that is unique to simulation. A description and

N "ecritical appraisal” of six VRTs is given, with extensions, limitationms, K

and corrections presented. Also, the combined use of two well known
VRTs (antithetic variates and common random numbers), and the resulting !

dangers, are discussed.

While Kleijnen does not propose a specific variance reduction
framework, he opens his chapter with the following comments:

Some VRT's change the original sampling process completely....
OQther VRT's use the same sampling process as in crude
sampling, but after the sampling has ended, they do not wuse
the sample average x but a more sophisticated estimator....
Some VRT's modify the sampling process in a very subtle
WaYeeo.

While this is clearly true, it fails to completely describe all the

possibilities. However, a slight modification of Kleijnen's ideas is

..........
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exhaustive: A VRT can change the inputs to the simulation, it can change

the simulation model, or i% can change the simulation outputs. This

LA Ly

} &y

framework has merit, but it groups techniques that exploit different

3

P

knowledge or problem characteriastics. These concepts deal more with

when than what a VRT does.

Another survey paper is Gentle (1975). Gentle is interested 1in
E VRTs that are robust ¢to deviations of the simulation or Monte Carlo
- model assumptions from reality, and deviations of the distributions
produced by the random variate generators from the desired

t distributions. He describes nine distinct techniques and combinations

of some of them. Like Kleijnen he warns that "simultaneous use of
variance-reducing techniques may not be effective when different methods
acuieve reduction in conflicting ways...." (p. 9)

McGrath and Irving (1973a) is the first reai attempt to define the j
concepts underlying variarce reduction methods and develop a framework
based on them. The overall purpose of the paper is to provide analysts
with some understanding of veriance reduction techniques and a useful

guide for selecting a VRT for a particular problem (p. 5). In this

PUREURE % /AR

context they identify the fcllowing concepts that variance reduction

techniques employ to increase the efficiency of simulation: 1) Modify

ad

l-)'

the simulation  procedurs, 2) Utilize approximate or analytic

information, and 3) Study the system within a different context or

l_ud 'JL"'

abstract representation. Based on these concepts the authors propose the

following categories:
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1. Modification of the Sampling Process
2. Use of Analytical Equivalence

3. Specialized Techniques

The techniques which modify the sampling process effectively
alter the probability distributions of random variables so
that the more significant events are observed more often. The
use of analytical equivalence exploits analytical expressions
and expected values to explain or approximate the majority of
the phenomena, thus leaving only the most interesting portions
of the process to be simulated. Specialized ‘approaches
encompass the more sophisticated techniques for achieving
variance reduction [including the combination of two or more
techniques in the other categories]. (p. 27)

McGrath and Irving are able to classify sixteen VRTs using the
above scheme, but they comment that many of these techniques are related
and it is quite difficult to arrive at a. completely distinct
clasgsification structure. This is indeed the case. PFor instance, the
authors place systematic sampling and antithetic variates in categories
1 and 2, respectively, yet it was noted above that Roach and Wright
(1974) claim one is a subset of the other. Also, there are several

problems with the "Specialized Techniques” category. Since combinations

of other VRTs are contained here, it means that techniques related only
by being combinations of others are grouped together. Alaso, there is an
implicit assumption that all of the VRTs classified in categories | and
2 are fundamental, or else they would be in group 3. However, it can be
shown that some of these VRTs are built up from still more fundamental
concepts (see Chapter 5). Finally, the category is a catchall for any

VRT that does not fall in either 1 or 2, which - not desirabdle.

!
)
S
.
A
\
.I
\
.
IU
]
5
4
;
i

e vt L .

LRSI L G T R S,

P P P R T i e R S ] P I I R
oot AR A SR S AL AP A A A o LB RS Tt - -~

et te e - R Tl P I A T AT R . -t - Cow i e e .‘N- AR PR -
LT P N e SR I B AL NP L P SRR St et R S S N R S LS T ST

.......................




L Y e T VR A TN T L R R RNpp—m——»w

..... DAt S i S S YA A S L S g

22

Like many of the other authors, McGrath and Irving stress an
integral formulation of the general Monte Carlo or simulation problem,
claiming that it is completely general. To demonstrate the generality
they formulate a network queuing problem in this way. For most VRTs
covered in the paper, a theoretical development, comparison with crude
sampling, and example application are given. Also, a concluding section
of the report provides a systematic procedure for selecting and applying
several of the more important VRTs.

Kohlas (1978) claims that the most widely known VRTs can be divided
into two groups: correlation methods and the methods of essential
sample. Correlation methods are further divided into comparison and
compensation methods; both involve manipulating or taking advantage of
correlation between observations to increase statistical efficiency.
Essential sample methods attempt to concentrate sampling in regions that
will make "significant contributions” to the estimate.

Chapter 4 of Rubinstein (1981) is essentially an updated version of
Hammersley and Handscomb's Chapter 5. Rubinstein reviews most of the
same techniques the previous authors did, occasionally adding theorems
concerning conditions that insure a variance reduction, an expression

for the theoretical variance of an estimator, or an implementation

algorithm. Also, several less well-known VRTs, some developed since the

publication of Monte Carlo Methods, are explained. No general concepts

or framework is presented, but a significant list of references is

AT TR T T TN T

included.
i A recent paper by Wilson (1983a) proposes another framework for

classifying VRTs. He has two categories:
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1. Importance Methods

' 2. Correlation Methods

The importance methods achieve improved efficiency by concentrating the
sampling in regions of the input domain that make the greatest
contribution to the integral. The correlation methods are further

divided into those that induce favorable correlation between blocks of

simulation runs, and those that exploit “inherent” correiation between
output variables within each run (p. 1). The author does not claim that
i this categorization includes all existing VRTs, but he is able to fit . a
eight well-knowr. methods into the scheme. The primary purpose of the ’
paper is to survey recent research in variance reduction and comment on

its potential benefit in simulation studies.

Although this chapter did not review any sampling literature, the
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. interested reader is referred to Cochran (1977). ;
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SIMULATION

To provide a context for the discussion of variance reduction and

|
|

the results presented in the next chapter, a rigorous and detailed

definition of simulation experiments is developed in this chapter., As a

preliminary, some notation is established and the concept of statistical

"information" is discussed.

Notation

Descriptions will generally be in terms of matrices, columns of
matrices, and elements of matrices. Letters, Greek or English, without
subscripts will denote matrices, letters with single subscripts will
denote columns, and doubly subscripted letters are elements, using the
usual row-column convention. For instance, xik is the ith element of
column vector Xk, which is the kth column in the matrix X.

A letter with subscripts in parentheses indicates a set of
variables with indices in a fixed set. x(ab) would be used to designate
all the elements Xik in X with subscripts in index set (ab), a set that
would have to be defined. The ( ) is a mapping from a single index to a
set of indices.

Random variables will be denoted by capital English 1letters, and

realizations of these random variables by lower case letters. For
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example, Vi is a realization of random variable Yil' Any notation that

| SRR

is counter to the above conventions will be specifically defined when

o’
PRI\ PRI SO

used. f
Information

The information about an unknown parameter contained in a random
variable refers to the extent to which uncertainty about the value of
the parameter is reduced by observing the random variaﬁle. The term
information will always be used in this statistical sense. It Qhould
not be confused with knowledge of the system to be modeled, or knowledge
of certain mathematical or statistical relationships. Knowledge relates
to what is wunderstood or recognized by the experimenter, while
information is an abstract statistical quantity. A specific measure of
information is not needed, but any measure that is used or proposed must
satisfy the requirements given below.

Consider a statistical space S = (Q, A, P, @ € 9), where o is a
sample space, A a o-algebra of subsets of Q (the events), and Pe is a
family of probability measures on f indexed by a parameter 6. Although
this development is quite general, Q and @ can be restricted to subsets
of some finite dimensional Euclidean spaces without loss of generality.
Define a random variable Z to be a measurable mapping from (8, A) to a

measurable space (e, B) that does not depend on 6. Then 2Z induces a

statistical space Sz = (e, B, Pz); Z may be a statistic used to estimate

8, the identity mapping, or in general any arbitrary measurable a

function. Consider the amount of information available to estimate 6,

and call I(9) a measure of this information only if it satisfies the
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following prOperties.1

(1) The amount of information available with respect to an unknown
parameter 0 is defined for a statistical space S independently of any
estimation procedure used or inference desired.

(2) The amount of information contained in 2 equals the amount of

S PRELPRN

information contained in the statistical space Sz induced by 2.

(3) The amount of information contained in Z is less than or equal
to the amount of information contained in the statistical space S on
which Z is defined. |

(4) A sufficient statistic2 Z contains all of the information
included in the statistical space on which Z is defined. If there is a
unique value of Z (a.s.) corresponding to each possible value of the
parameter 8, then Z contains the maximum possible information; if Z has
the same distribution for gll values of the pafﬁmeter (a.s.) then it
provides no information.

(5) The information given by two statistically independent
functions defined on the statistical space S is the sum of the
information given by each of them. If the two functions are not
independent, then +there may be a cumulative effect resulting in the
total information being greater or smaller than the sum of the
individual informations.

(6) The efficiency (as measured by the variance of the estimator)
with which 0 can be estimated is nondecreasing in the amount of

information contained in the statistical space on which the estimator is

1. Barra, J.R. (1981), Mathematical Basis of Statistics, (L. Her-
bach, translation ed.), Academic Press, N.Y.

2. Bickel, P.J. and K.A. Doksum (1977), Mathematical Statistics:
Basic Ideas and Selected Topics, Holden-Day, San Francisco.
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based; greater information implies the potential for more efficient

estimation.

v o
. ad

A well-known measure of the information in a real valued vector or
general multidimensional random variable, X, about a real valued

b

parameter 8, is the Fisher information number”; if 6 is a scalar then

dlogL(6,X) | 2
oo o]

where L is the 1likelihood function of © given X. Under certain

S S WAL A A

regularity conditions4 the minimum variance attainable when estimating @
from X is a function of I(6). The Fisher information measure extends in

a straightforward way to a vector 8. This measure also satisfies the

six properties stated above. Clearly the value of I(6) is independent
of any function of X since it depends only on <the probability
distribution of X. The logarithmic form of the measure implies that (4) j
and (5) will hold because of the product form of the distribution of E

independent random variables and the factorization result for sufficient

statistics. That (3) holds is well-known, and the Cramer-Rao lower

2 relates the variance of an estimator to I(#).

bound
As an 1illustration of some of these properties consider the

following example: Let the sample space be R2, the two dimensional

Euclidean space, with the probability measure being the bivariate normal N
distribution with identical marginals denoted by N(u,u,oz,oz,p). A N
random sample (x1,x2) has Fisher information measure >
3. Fisher, R.K. (1925), "Theory of Statistical Estimation,” Proc. R
Camb- Philo SOC., 22, 700"725. ) :—
4. Rao, C.R. (1973), Linear Statistical Inference and Its :
Applications, Wiley, N.Y. .

5. Bickel, P.J. and K.A. Doksum (1977), Mathematical Statistics:
Basic Ideas and Selected Topics, Holden-Day, San Francisco.
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I(w) = —2—
(1+0)a

relative to u. Note that in this example I(M) does not depend on u,
which is not +true in general. There are two cases to examine: If

p = 0, so that X1 and X2 are independent N(u,az) random variables, then

R

o g g
The total information is the sum of the information cdntained in the
independent sources. Note that the amount of information is inﬁreased
if 02 is decreased. If, on the other hand, p # O there is a cumulative
effect leading to more (p < O) or less (p > O) information than in the

independent case. For this example the conditions of the Cramer-Rao

lower bound are satisfied, implying that the minimum variance attainable

. . . 1
for an unbiased estimate of u from (x1,x2) is 17

Measures of information other than the kind considered here have
appeared in the literature. Kullback6 discusses a measure of the amount
of information available for discriminating between two hypotheses about
the probability measure on the statistical space S. If one considers
the information for discriminating between 6 and 6 + 46, then the
Kullback and Fisher measures are closely related . Shannon's measure of
information7 is used in communication theory to quantify the amount of
uncertainty or entropy present in a message source. The more

uncertainty (freedom of choice) there is in composing a message, the

6. Kullback, S. (1959), Information Theory and Statistics, Wiley,
N.Y.

7. Shannon, C.E. and W. Weaver (1963), The Mathematical Theory of
Communication, The Univ. of Illinois Press, Urbana.

..............

..........
.....

P 4

I SRV

[ ] 1 .
) .
ala'ala o oan. L. e

»

'..‘\;_5 N

A

st I

oo o -

i




29

more information the message itself contains. This measure 1is quite

different from those of Fisher and Kullback, although some parallels can

8
be drawn.
The concept of statistical information 1is important in  the
discussion of variance reduction since, as will be shown, variance

reduction techniques achieve their results by increasing the amount of
information available and/or making more efficient use of the available

information.

Simulation Experiments

In this section a definition of simulation experiments is given.
Later, Monte Carlo and sampling problems are shown to be aspecial cases
of this definition. The definition proves useful for discussion of
variance reduction by showing how the random variables in a simulation
are defined, where statistical information about the parameters of
interest is, and where information may be increased or lost. As will be
shown, VRTs transform the random variables in a simulation experiment to
increase and/or make better use of information, so this perspective
captures the essential features of variance reduction. The development
below 1is rather abstract. Later in the chapter examples are given that
show how some of the constructs usually encountered in simulations (such
as time and initial conditions) are contained in this definition.

Before beginning, a concept is introduced that will be wuseful

later. Consider three sets of random variables U, V, and W. Let V =

8. Schutzenberger, M.P. (1956) "On Some Measures of Information
Used In Statistics,” in Information Theory, (C. Cherry, ed.),

Academic Press, N.Y.
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variables. For instance, in the Monte Carlo problem (2.2) the outputs
are ordered Yl""’Yn corresponding to when the observations are
generated. Trying to relate successive rows in X and Y to the passage of
time is tempting, but is a limited viewpoint true only in the simplest
experiments. However, the order within columns does correspond to the
order in which realizations within that column will be generated. Since
time is such a common construct in simulation, it is worthwhile to
consider briefly how it is incorporated into the definition given above.
There are two cases: time advanced in fixed increments and at .random
event times.

When time is advanced in known, fixed increments, At, <the time
increment is part of the definition of an output transformation. The
clock time after i increments is a transformation of the previous clock

time ti-1' namely,

bo=a(t,_y 8t) =t o+ 8t

Thus, the clock time is an output, and would occupy a column in Y (if it
is essential).

In "discrete event simulation” (see for instance, Fishman, 1978,
Pritsker and Pegden, 1979, Law and Kelton, 1982, Banks and Carson, 1983,
or Bratley, Fox, and Schrage, 1983) clock time advances in discrete,
random steps between the occurrence of events. Usually the probability
distribution of the interval is not explicitly known and advances are
generated by a complicated <transformation of other random variables.-
For example, in a large queuing network with many servers, service

centers, and customer types, the interaction of various service times,
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and & = [ew} is the parameter of interest. Replacing A, S, Q, B8, W, W
with  appropriately subscripted elements of X, Y and Z 1is
straightforward, and g is given by equation (3.4), which is written in a

form like (3.2). The feasible region for I = [Iw ,Iq] is
R={(n,n): n=1,2,...}

since generation of a realization of W requires a corresponding d. If
the experiment requires a sample of 500 waiting times, then
Ry = {500, 500}.

As a second example, consider the general Monte Carlo estimation
problem of Chapter 2, specifically equation (2:2). In that example, 8,
f, g, X, and Z correspond to the similar terms defined above. Now let

n

1
h(Y) Py r ¥

j=1

where Y. = gz(xi). The function h is defined by its functional form (a
summation of terms divided by the number of terms in the sum) and the
particular argument, Yi. Note that I = n can be any arbitrary positive

integer, and the arguments of h all form a single Y column.

Time

Many simulation experiments explicitly account for the passage of

time, and all simulations have some underlying ordering of their random
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41 "
the system be denoted by A, a random variable distributed exponentially ,i
=

with some known, fixed rate. Let the service time be S, distributed
exponentially with parameter B, where B is a function of Q, the number j%
of customers in the queue at the beginning of service. Time in the ﬁ

queue for the ith customer, Wi, is given by the well-known relation:

. “. ) #t..

Wi = max(0, Wi_1 + Si_1 - Ai) (3.4)

An estimator of ew is : ‘

=]
"
=] B

where n is the number of customers. Based on the definitions above, the

input, output, and statistic matrices are: N

A, S,
x = L] L]
A S
n n
L -
- -
1Y
Y = ) .
wn Qn
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Definition: E and B' are everywhere equivalent (E f E') if and only

if

g(x) = c(g'(x)) Ry =R',
and

h(y) = h'(y') V¥ realizations y, y' generated from common x

Clearly, everywhere equivalence implies strong equivalence.

Considering all experiments based on some given Q@ and 0, the
definitions of equivalence partition the simulation experiments into
equivalence classes. A VRT +{ransforms an experiment into another
experiment with <the same context, but hopefully one that is not d-
equivalent and in fact has statistics with better estimation properties.
Usually d and s-equivalence are conditions that cannot be verified.
However, a VRT should yield an experiment that is not e-equivalent to
the original one. Since e-equivalence is the finest partition,
characterizing the ways in which simulation experiments are transformed
into other, non e-equivalent experiments characterizes the ways to

transform them into non 8 and d-equivalent experiments as well.

Examples and Common Constructs

Consider a simulation model of a single server, first-come-first-

served queuing system that is used to estimate Ow » the expected time a

customer spends waiting for service. Let the time between arrivals to
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realizations.

Beyond this trivial distinction, definitions of three types of
equivalences between experiments will be given. To be equivalent in any
sense used here, experiments must be based on the same sample space Q -
and have the same parameters of interest, ©. Let E and E' be two
simulation experiments with common context (%,6).

Definition: E and E' are equivalent in distribution (E S E') if and

only if - N

Z d z'

Since the ultimate goal is to estimate & via the statistics Z, if
two experiments are equivalent in distribution they have the same
statistical properties. However, the distribution of Z is not generally
known, while the following may be:

Definition: E and E' are strongly equivalent (E : E') if and only

if
xdx -
and N
~4
n(g(x)) = h'(g'(x)) Ry =R'y VY realizations x of X .
¥
Clearly, strong equivalence implies equivalence in distribution. :}
Definition: g and g' are equivalent except for coding (g S g') if ;Q
there exists a one-to-one mapping ¢ such that g(x) = c(g'(x)). i;
The next definition of equivalence is at the level on which random ::

variables in the experiment are actually defined.

................................
.................................
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The preceding definitions imply that f , (g;Rg) and h are s
unambiguously defined (up to equivalent essential sets) for a given

simulation experiment.

Equivalence of Experiments

In the preceding section a definition of simulation experiments was
presented with the idea that, given a particular experiment, it is
possible to partition the random variables into matricesxx, Y and Z, and
to (at 1least implicitly) identify fm, (g;R,), and h. It has already
been noted that the identification is not wunique, since for a given
experiment it is possible to reorder the column indices of the variables
and to have different values of L* and k* without changing the
experiment. Distinguishing between experiments that are identical
except for the order of their subscripts or values of z* and k* is not
necessary. Specifically, consider an arbitrary sequence iai}
i = 1,2,...,18. Also consider two subsequences ibi} and ici} with the

property that

(o} 0 ey} =
and

(o} U feg} = {ay]

for all values of Ia' Then for the purposes of this research the two
representations of the sequence are equivalent. Identify sequences such
as [fik} and i81£} with lai}. Order in the sequence and subsequences is

only constrained by the correspondence to order of generation of

- d » - - - - - .
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transformations of elements in X, the relative lengths of the different
sequences being subject to some restrictions. The vector Z is defined

by functions of the columns of Y that contain information about 6.

Axioms of Simulation

A simulation experiment is composed of the sets of random variables
X, Y, and 2, which are defined by £, (g;Ry), and h, respectively.
However, the existence of such definitions does not in ifself constitute
a simulation. There are two necessary axioms that must be acknoéledged

before X, Y, and Z represent a simulation experiment:

Axiom 1 (Existence of Information): The random variables X, Y, and 2
have probability distributions that depend on 6.

Axiom 2 (Existence of Realizations): Given a source of randomness,
realizations of X, Y, and Z can be (perhaps iteratively) generated.

Axiom 1 guarantees that estimation of 8 from realizations of X, Y, and Z
is not fruitless. Axiom 2 is more subtle; it establishes that the
Jependencies between and within X and Y are such that R is not empty.
This restriction limits the potential transformations of an experiment.

Definition: A simulation experiment, denoted by E(fw,(g;R.),h;a,e),

is specified by a context (R,8), a probability distribution fm on R,
output transformation and sampling plan (g;R.), and statistics function.
h, subject to Axioms 1 and 2. Where there will be no confusion, the

shortened notation E will be used.
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Zz = h(Y) = ihm(y(m))} m = 1.2,...,m’ (3.3)

For each m, hm is a transformation from a set of output sequences Y(m)
*
to Zm' These functions do not depend on 6 or Im. The dimension m is

known, finite, and equals the dimension of 6.

LY

The statistical space induced by h is Sz = (r,z,fh), where again fh

»

is usually not known, or if known is not used to generate realizations

of Z.

. e e e e e -
. P T
A-A-LL.__LAA__ LR

Notationally, let:

.

=2
| |
I 22 I
8 =3
*

and O

The mth element in Z is defined by the function hm and its argument
Y(m). Thus, the functional forms of hm and h'm might both involve a
summation of squared terms even though (m) # (m)'. Each h s defined
for arbitrary length of the sequences Y(m)‘

The statistics aggregate output random variables. Note that each
element Om in @ has a corresponding estimator Zm in 2. Often hm can be
thought of as being computed in stages, defining certain intermediate
random variable: from Y and then combining them into a final estimator.

To summarize, X is the matrix of all random variables in the

experiment whose probability distributions are known, in the sense

stated above. Elements of Y are obtained by application of sequences of
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defined on X may not be unique. A useful restriction that can be E
i imposed without loss of generality is: A column Yz<: Y will represent 1) .
: an argument, considered as a whole, for one or more statistics, Z (see E
i below), and/or 2) a sequence 8;, that parameterizes f, for one or more ;
I k, and/or 3) an output needed to specify the sampling plan, Ry Thus, ?
l columns are delimited by the purpose they serve. Note that 1) - 3) ?

define the essential random variables; random variables that are either .i
I arguments for the statistics, necessary for generatioq of realizations 1
: of X, or determine when the desired sample has been obtained. E

Information about © may be lost, but not gained, in the transformation .3
i from Sx to Sy (see properties of information above). The matrix Y is a ?

- minimal set containing all the useful information about 8.

« o+ =
PVl LR

An alternative representation of (3.1) is

-
J %

]
it a

g where [X{Y] is the matrix obtained by including all columns of X and Y.

This notation may seem more natural in the simulation context, since
realizations of outputs are often generated iteratively from

transformations of Xs and previous Ys. However, since all elements of Y

i are ultimately functions of X, (3.1) is completely general and has the

i advantage that, given a particular experiment x( L) is unique.

; Definition: 2, the row vector of statistics, has real valued,

: scalar random variables as elements that are estimators of 6. The

: atatistics are specified by h, where .

F
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from a set of elements X(iz) to Yiz' These transformations do not

»
depend on 6. The region R is an & dimensional feasible region that z
accounts for the interrelationship between the individual 8118; R is j
determined by all possible realizations of X. The sampling plan R, is d

specified so that I € R, with probability one when realizations are

generated. The column dimension t* is finite and does not depend on I.
The statistical space induced by g is Sy = (o,¥,fg). The

probability distribution fg is wusually not known, or if known is not i

used to generate realizations of Y. It is, however, naturally

parameterized by 6 so that estimation of 6 is possible from realizations

s. 8. . . L g »
» i1 il:]

of Y.

Notationally, let:

and ]
.J
[ ]
M
Y L . . Y *
11 11 oy
Y, « . .1 y
v, *
- 21 -

)

"

L 2

*
KNG VW

b 3
" 4
. The row index i corresponds to0 the order in which realizations are 3
"~ » . {
. generated in an output sequence. The number of sequences, L , is not h

I.‘
3 uniquely determined since some sequences could be divided or merged and J
N 8till satisfy <the definition just given. Also, the essential set
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all that is required is that some joint or marginal distribution
including xik be known. f is the vector of all marginal distributions Z
of fm. A special case of an element of X is a constant selected by the
experimenter from a distribution known to him (implicitly or
explicitly). ﬁ
The lengths of the sequences {Xik} are infinite, but the number of
realizations is determined by the frequency of sampling from {fik}. The
index i corresponds to the order of sampling. The number of input ;
sequences, k*, is finite and known. However, k* is not uniquely
determined since some sequences could be divided or merged and still j
satisfy the definition just given.
In later discussions it will be necessary to work with conditional
distributions of f . The distribution of X(ik) C X given X(jz) cXis

denoted

i) (30) F(ax) 1 E(50)’

NN K R

where the parameter 8 has been suppressed. A shorthand version is
f s - o
(ik)i(j0)
Definition: Y, the matrix of outputs, has real valued, scalar K
random variables as elements and is an essential set of all random i*
o variables defined on X. The outputs are specified by (g;R,), where R

Y g(X) = gy (R )} 1= 1201, 1 1,2,000,0 (3.1)

. e -
N STt B
e N . '
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I= [I1 I

5 e Il,] € R, < R

et

For each &, {gil} is a potentially infinite sequence of tranaformations
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multivariate) random variable with unknown distribution (see below).

The associated statistical space is Sx = (9’*'fw)' where  1is the
sample space for X, % is a o-algebra of subsets of @, and fu is the
probability distribution on Q.

All of the information in the simulation experiment for estimation
of 8 is contained in the statistical space Sx. However, the probability
distribution f is not "naturally parameterized" by 6, which means that
© is some unknown or complicated function of parameters of fm, making
estimation of O directly from realizations of X difficult. Thus,
transformation of Sx into a space whose induced probability distribution

is conveniently parameterized by 6 is desirable. Notationally, let:

£l £, £, « « o £ 4

i1 i2 ik
and
x X . ] . X »
11 12 1K
X, Koo « « « X
21 22 oK
x = [ [ ] L] L] L] L]
. -
*
' .
The {f, it ifik(xik‘a(ik))} are k sequences of scalar marginal

distributions of fu' For fixed k, they are identical for all i expect
poasibly for the value of a(ik) < B. Each element xik has marginai

distribution fik' but statistical dependencies can exist within or

between column elements. Note that fik may only be kuowu implicitly;
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carried out on a computer, these assumptions are not restrictive.

Context of the Experiment
Definition: 6, the row vector of parameters of interest, has
unknown, but fixed, real scalar constants as elements, and has dimension
m'. The purpose of performing a simulation experiment is to estimate 8.
Note that 6 1is fixed, but other elements of the simulation
experiment are not (see below). Although 0 is jﬂst a vector of

constants, it has a context given by 0, a sample space sampled from to

estimate 6.

Definition: @, the sample space of the inputs, is a subset of some
infinite dimensional Euclidean space; 2 is the intersection of the set
of all sample spaces that can be sampled from according to known
probability distributions (see below), and the set of all sample spaces
whose sampling distributions contain information about 6.

Note that Q is a fixed space that will be sampled from according to
a known distribution. It is possible that some subsets of @ have
probability zero. There will 58 other sample spaces in the simulation

experiment induced by transformations of 4.

Definition of the Experiment

Definition: X, the matrix of inputs, has real valued, scalar random

variables as elementa and known multivariate probability distribution.

X fw(xla). Here, known distribution means that f is specified by an

analytic or tabular expression with parameter 8, a real (possibly
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V(u) and W = W(v), where u and v are realizations of U and V,

respectively.

Definition: A subset V' & V is an essential set defined on U if 1)

for each element 70 of V there exists a known transformation from

elements in V' to V., and the transformation does not depend on the

O’

probability distribution of V, and 2) for any element V. € V', no such

0
set of transformations exists for V' - Voe

Thus, W can be defined as a transformation of V' alone, but
deletion of any element of V' means W may not be defined; Note tyat the
essential subset may not be unique. For example, suppose U is a scalar,
and V1 = U, while V2
it is known that U > O, in which case V' could be either {V1} or {Vz}.

= °. Let W = V,+V,. ThenV' = [V.], unless

As a second example, let U = iU1,Ué}, and V = {V1,V2} where

U
2 2
V1 U1 and VZ -—2—
U
1
v2
Then if W = ==, V' = V.

As a less abstract example, consider the simulation of a service

system and three random variables associated with each customer: waiting

time, service time, and total delay. As essential subset is any two of

the three, since given two the third can be derived by simple

»
"
.
-
.
.

arithmetic.

In the development that follows, all sample spaces are subsets of
- Euclidean spaces of some dimension, and all random variables defined on_
L them are real valued. Also, all transformations are Lebesgue measurable

and integrable. Since the concern is for experiments that can be
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interarrival times, and queuing disciplines determine when +the next
event will occur. Clearly, the time step is a member of Y. The clock

time may be in Y if it is essential.

Initial Conditions
Two long standing issues in the simulation of gystems in steady

state are the specification of initial "startup" conditions and the

estimation of steady state parameters from outputé" that may be
contaminated by the chosen conditions.9 The estimation problem‘ is a
question of what statistic to choose. Initial conditions are often “
constants, chosen for convenience (“"empty and idle") or because they are

expected to be consistent with the steady state distribution. They may =

also be selected randomly from a known distribution. In either case

731 DR

they would be classified aé inputs in the simulation experiment. .

As an example, consider a simulation that generates outputs %

described by | 2

;

T m o0 R “

an autoregressive process of order one, where xiZ i=1,2,.s. are é

identically distributed with some known distribution. If the outputs ?
are to begin with Y11, then an initial value for YO1 must be given. Let

that value be X11, either a constant or a random variable with a known ;

distribution.. Then the matrices of inputs and outputs look like: ;

s

9. Wilson, J.R. and A.A.B. Pritsker (1978), "A Survey of Research ~

on the Simulation Startup Problem,” Simulation, 31, 55-58. -

2
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r_"11 y2
X2
x = [ ]
- _ .
BY g
= 4
Yo
Y =| . R
L] .F“
. . _~:
-4
:__'4
and

"‘ - u .".'

Yi1 = S(LXH](“)) - 5i>1(ﬁYi_1,1) 1_1(GX ) + xi2

M

e

where §, is an indicator function that equals 1 or O if condition c¢ is N
true or false, respectively. .-:;‘
Aside: This case should not be confused with using a time series ]

A& L

algorithm to generate random variables with a known distribution; if the
distribution is known then the random variables are inputs, no matter
what method we use to generate realizations. For example, if
have a known multivariate normal distribution and are

ni .
X X

) P ¢ Y

f1r°210°° 0

generated as such, then they become X

e Qo

21'000, n1.

11’
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Stopping Rules i

In the examples given earlier, the sampling plan R, was specified :;

by a number, say n, of observations of a particular output. This was SS

easily denoted by a single element of R. Two other cases are possible. 55

It may be that R, is a region, rather than a point, in which case i;
sampling stops when I is first contained in R,. For instance, suppose

that in a network queuing simulation the run is terminated when station “E

1 has serviced 50, and/or station 2 has serviced 60 cpstomers. If I = fi

(1, ,1,], then

]

Ry = {11 »I,0 I, 250 or I,>60 and Ig R} {

-3

The second, more interesting case is stopping rules based on ;ﬁ

satisfying a condition other than a count. A simulation run that ;?

terminates when the clock time is 480 minutes, ;r one that stops when a Ej
resource is depleted are examples. Situations such as these can always
be represented by an output variable whose realization indicates that

the stopping condition has been met. For convenience denote this output fj

by Y ,, and write ;f

) .

)

Ry = {It I ,=1 and I € R} Q

£

.
v

.
),
S
»

Sequential Procedures

In simulation experiments, as well as in general statisticsgl

experiments, sequential procedures may be employed to estimate a

parameter of interest. Such procedures are characterized by the

P Y

0 5 1WB
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selection of an initial sample, analysis of the results, and a decision
to continue sampling or stop based on the results of the analysis. -

Considering such procedures in light of the definition of -
simulation experiments, modelling sequential sampling might at first o
appear to require some sort of "feedback"” or control structure from the

statistica (h(Y)) to the output transformations (g(X)). However, it is

our conscious intention to make a distinction between the "design" and ;i
the "analysis" aspects of simulation experiments. Sequential procedures ;i
affect the sampling plan, R,, and thus are a part of the design .aspect 5%
(as are the inputs). In fact, sequential procedures are simply a kind E;

g

of atopping rule, as discussed earlier. The statistics are the analysis .
part of the experiment, and will always be functions of a fixed pool of

data. While this is not the only possible perspective, it aseems TH

justified since restrictions on sampling are embodied in fw and g.

Joint Distributions of the Inputs

As stated earlier, the elements in X can have any feasible Jjoint

TN Y YT

distribution. Often the elements in a column are independent,

- TEmv

identically distributed random variables indexed by the order im which

realizations are sampled. When encountering statistical dependencies,
however, two types are common: Identically distributed multivariate
. vectors where each element in the vector has a different marginal ;#
distribution, and identically distributed scalar random variables that 1

are pairwise (or in general m-tuplewise) correlated. The firat type

would be represented by columns of scalars where corresponding (same row

index) elements have known Jjoint distribution. The second case is
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-4

denoted by a single column where the row indices indicate the
—d

correlation structure. Remember, also, that if the distribution is not
4
: N
completely specified, then the unknown parameters for marginal )
distributions fik are given by one or more columns in Y. ;:
Y
b
Confidence Intervals ;f
In this research the assumed goal of the simulation experiment is i%
to derive point estimates of unknown, real parameters. However, outputs i?
from simulation experiments are often used to construct confidence N
R
intervals on these parameters. Variance reduction and confidence -
v ]
interval construction are related because the properties of the interval j;
are generally a function of the properties of the point estimator(s). :ﬁ
e
Thus, while attention is restricted to point estimates and their "
variance the research is relevant to confidence interval construction. ;?
._3
N
K

Types of Statistics

The statistics defined by a simulation experiment can be separated
into two types based cn the outputs that are their arguments.
Qbservational statistics are based on indiviadual, discrete outputs
without relation to when the output was generated. Time-persiatent
outputs have values defined over timé, and require not only the value
but also the time period over which it persisted ("time" can be any
index). In the definition of simulation the distinction is irrelevant,:*
since both types of outputs are represented by scalar random variables.

Also, it does not matter whether the outputs came from replication
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"runs” (usually implying independent replications) or a single steady
state "run"; columns in Y can represent either kind of output. Of

course, the particular estimators used will depend on both these

A e . .
Tt

factors.

[ O3
{

Extension to Realizations

The definition of simulation experiments given above can be easily

R R

extended to describe how realizations of the experiment are generated.

A basic source of randomness--usually scalar, independent, identically

=
i
-y
.'i
gl
o

distributed v(0,1) random  variables-~-is transformed into random
variables X distributed according to fm. The transformations g and h
are employed to yield a realization of Y and Z from a realization of X.

0f course, simulations are usually implemented 4s computer algorithms.

Note again that, when considering variance reduction, the interest is in
how random variables are defined and not how realizations are actually

generated, although the method of generation will often affect what can

N o

be achieved in practice.

LRy

Monte Carlo and Sampling Experiments

e r

A g tple s a e

The general Monte Carle integration problem fits easily into the
simulation characterization. Sincé the problem is that of evaluating a
known integral, and since the problem can be made stochastic by =
introducing a probability distribution into the integral, the defining { fﬁ

distributions, g transformations, and h functions are easily identified

RN N )

and can be expressed in closed form (see the earlier cxample). However,

S

P g
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even the solution of problems like (2.1) by numerical or quasi-Monte
Carlo methods (Hammersley and Handscomb, 1964) is covered by the
definition. In those situations, the points at which the integrand is
evaluated (the inputs) are known constants. Thus, there is zero
variance; independent realizations of the experiment will all yield the
same estimate. However, the accuracy of the method (difference between
the estimate and the true answer) will not be zero in general.

That survey sampling problems can be characterized as above is less
obvious. However, in the usual case of probability sampling (Cochran,

1977) the relationship can be demonstrated. In probability sampling a

set of distinct samples from a (usually finite) population that the
sampling procedure is capable of selecting is defined, and each posaible
sample is assigned a probability of selection. One of the samples is
selected with likelihood given by this probability, and an estimate of
whatever quantity is of interest is made from the responses given by the
elements in the sample. In terms of statistical spaces, the triple (@,
%, fw) corresponds to the possible samples, the events, and the
probabilities assigned to each possible sample. The most common
sampling distribution is simple random sampling, where each possible
sample is equally likely to be selected. Sampling with or without
replacement are two procedures for generating such samples, depending on
whether the same element can appear.in a sample more than once. The g
transformations that induce the space (¢, ¥, fg) are more implicit,
representing how responses from +the sample are obtained and the

allocation of sampling effort. The space Sz is as before, representing

the estimators employed.
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Consider, for example, an experiment to determine the expected

lifetime of a type of 1light bulb. The procedure might be to take a

sample of size n from a lot of bulbs in such a way that each possible f
size n sample is equally likely, burn the bulbs, record the time until %
burnout, and estimate the expected life by the average of these values. p
=
X

The population of light bulbs and the sampling procedure define X, the

0
I

sample size n and the method of establishing lifetimes defines Y, and 2

ST
a_a

is defined by the estimation rule (simple average) and the outputs, Y.

y N

Analytic Solutions

Consider a given simulation experiment, E. Given sufficient
insight, it may be that the value of 8 can be deduced analytically.
Such a solution procedure is not outside the scope of this research.
Think of a continuum between the original stochastic experment and an
analytic determination of @, specified by the precision of the
statistics Z in the experiment. Then VRTs transform a given experiment

into another one in this continuum. An analytic solution, of course, is

the limiting case having infinite precision.
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CLASSES OF TRANSFORMATIONS

Given the definition of simulation experiments in the previous
chapter, this chapter develops a framework for V..Ts based on six classes

of transformations of simulation experiments. The six classes are

defined in the next section. After defining the classes it will be
shown that they generate all possible VRTs via composition, that they
are disjoint classes, and that they are useful for achieving a variance
reduction. Uniqueness of the particular partitioning of the
transformations is not claimed. Trying to relate each class of
transformations directly to a well-known VRT is tempting, but misses the
point. A transformation redefines an experiment in a way that may be
favorable; it is not neceassarily a VRT nor does its use imply a variance
reduction. The last two sections discuss subclasses of transformations
within the original six and explain the relationship between the six

clagses of transformations and informatien for estimation of 6.

Definitions_gg the Transformations

Recall that VRTs attempt to increase information and/or make better
use of information for estimation of 6 in a simulation experiment.

Three of the classes affect the amount of information, while the
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remaining three concern the use of information. The six classes of

transformations, along with some additional refinements that will Dbe

discussed later, are:

Amount of Information
Distribution Replacement (DR)
Dependence Induction (DI)
(independent case)
(dependent case)
Sample Allocation (SA)
(series)
(replication)
Use of Information
Equivalent Allocation (EA)
Equivalent Information (EI)
Auxiliary Information (AI)

(about )
(about 2)

Definition: The experiment set, E°(®,0), is

B%(9,8) = U E(£,,(g5R,),h;0,0)

where the union is over all (fw,(g;R,),h) for a fixed context (g,8) such
that Axioms 1 and 2 are satisfied.

The definitions below establish classes of transformations with
domain and range Es(a,e) for fixed (Q,8). These transformations map a
simulation experiment into another non e-equivalent (but possibly s or
d-equivalent) experiment in the same experiment set. A transformatiod
will be denoted by T, possibly with subscripts. If a transformation is

defined as altering <the definition of fw’ 8, or h alone, then the

.~ -,
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remaining components are unchanged. Note that any experiment set has
six classes of transformations associated with it.

In this chapter, if two distributions are not equal then they are

not equal on a region of positive probability.

Transformation of the Inputs

Distribution Replacement (DR): T, € DR if and only if

T, : fm(x) -> f'w(x)

such that
L
f m(x) # fm(x) for some x
and
fl
. ik
£ ... = f, | £ Vik
ik{(e) iki(e) £
where fik{(c) is the probability distribution of X, given X - Xy

Dependence Induction (DI): T, € DI if and only if

T :

o £ (x) > £ (x)

such that

Q. e .
S e S Y 8

f'w(x) F fw(x) for some x

"y

.« s
LIPS

and

...................
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[] - .-~
f ik fik Y ik

a

[N

Transformation of the Outputs

Equivalent Allocation (EA): T3 € EA if and only if

T L I
IRy V0

Ty g(x) -> g'(x)

-

such that . $

g'(x) : g(x) for some x

4:‘
and ) ’1
-

R'y = Ry
Sample Allocation (SA): T, € SA if and only if ii
\ 1
T4: g(x) => g'(x) )
such that
R'y £ By
and
" (o] :.
{8 il(x)¥ - {gil(x)} V il' X ”

(Recall that : means equal except for coding; see Chapter 3) .
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ansformation of the Statistics

Bquivalent Information (EI): T_ € EI if and only if

5
T5: h(y) -> b'(y)
ch that
h'(y) # h(y) for some y
d

(m)*' =(m) Vm

Auxiliary Information (AI): T6 € AI if and only if

T6: h(y) -> n'(y)
ch that

(m)' ¥ (m) for some m

h' (y) =h(y) Yy

Notice that the transformations for each set X, Y, and Z are
rallel, and each one changes the definition of scalar random variables

the sets.
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)rerties

Before proceeding to the main results in the next section, three
1as establishing properties of the classes DR and DI are proved. In
je proofs and those in the remainder of the chapter, all probability
tributions are assumed to be integrable, and all integrals are over
entire domain of the variable of integration. If +the distribution
discrete, then the integral would be replaced by a summation over all
sible values in the domain and the proof would proceed as given. In
e of the proofs there are ratios of distributionsvthat could have
0 denominators for some values of the function arguments. For all
h values of the arguments the ratio is also multiplied by zero.
se situations will be left undefined and attention restricted +to

ues of the arguments where the denominators are nonzero.

al: For all T € DR, Tt f -> f'
- w w

f
' ik .
fiki(e) * Fakl(e) T, VI

4

0f: by the definition of the class DR and simple algebra.

ged

a2: T €DR, T: £, - f'm if and only if

o ~_.‘;_. T U T -
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:3 =1_'= -
W 5 Y o 1 2,3,¢44,n-1

it is believed the dice "warm up.") In this case the estimator

‘ater variance

052 . 130
Var[Zei] *n2 n2

¢, going from Zei back to 2 is an example of an effective wuse of

qed

sses of Transformations

his section briefly discusses some interesting subclasses within

ix classes of transformations. These refinements are useful in

ce, and could be the subject of future research.

hen a transformation from the class DI is applied to a simulation
ment, it is most often to induce statistical dependence between
that were originally independent. See Chapter 5 for two examples,
dependence is wusually induced within columns of identically
buted input sequences in X, but may also be across columns.

n the class SA it is often of practical importance to distinguish

n those transformations that yield a different number of (usually

ndent) replications, and those that alter the length of an output

ce in a single "run.” Stated another way, some change the largest

of an output sequence, while others result in additional or fewer

ations of a sequence.
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zould be justified if the fact that P, = p4 is known. Again using

llocation m = n

.022 .031

n 2
n

Var[zea] =

iary Information (AI)

Continuing to work with the (original) Zsa estimator, notice that

all the available information is utilized. Since P, = p,, use the
bservations in Y%, and vice versa. Thus, both Yé and Ys are based
observations, and
Var(Z .] = =012 a
ai n -
urse Zai is biased because Yé and YS are dependent. However, it is :A
-
consistent.
alent Information (EI) ks
Recall the original estimator, Z. A statistic wusing equivalent k:
N
mation is :3
n =
Zg; = I WY, N
i=1 -
Iw, = 1, For example, suppose ;%
1 =
o
'
-
{::j
A
R e N N T NN R e L
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Y., = 1, if the ith single toss is 1

0, otherwise i=1,2,00e,m . B

Y .= 1, if the ith single toss is 2 "

R T .
e h e
Aat TS e

e,

0, otherwise i=m+t,...,20

*

let the statistic be

zsa = 2Y2Y3

OIS B R
lala'a 25 ha ka7

cey point here is that the variance of Zsa depends on how the 2n

s are allocated. In this case, the optimum- allocation is to let m

A S5

and

-031 , 077

Var[zsa] *"n n2

valent Allocation (EA)
Use the same approach as in illustrating SA, but now score -

( <
Yi} - , if the ith single toss is 2 -

|-

, 1f the ith single toss is 4

N —
{-

rs

T30 ) AR,

Py

0, otherwise i=m+1,...,2n

]

!
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r the altered probabilities (using EI) let

Z =

dr z

~)—

ich is an unbiased estimator of p, having variance

011
dr] * n

Var[Z

pendence Induction (DI)

On any particular pair of tosses, the outcome (firét, second) 1is
8t as likely as the outcome (7 ~ first, 7 -~ second). For instance,
\@ events (2,1) and (5,6) have the same probability of occurrence.
ws, if (first, second) is rolled omn toss 2i - 1, use (7-first,

.aecond) for toss 2i. This causes
2
Covl ¥y 1 49Ypq,4d = =P
ad results in

. 2049
Var[zdi] o

ample Allocation (SA)

Now approach the original problem a bit differently. Since p =

PyP, use the 2n single die tosses to estimate py and p,. Let

LY TR
- .4‘.- -

RN
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Y.y = | 1, if the sum of the ith toss is 3 - (4.4)
0, otherwise i=1,2,es.,n

'‘hus p = Pr(ri1 = 1). As the statistic take

Z = Y

1
n =1 i1

for which
E[Z] = p and Var[Z] = ;%22
For convenience later define

Py - Pr(toss of a single die = j)

The experiment is defined by the probabilities pj that define the
working of the dice (inputs), the transformation (4.4) that gives the

score (outputs), the sampling plan R, = {Zn}, and the statistic Z.

Distribution Replacement (DR)

Suppose that the working of the dice is redefined in the following

way. Let

and
- - = = 1—-
Ps " Py " P5 ® Pg * 17

Thus the total 3 occurs four times as often, on average. To compensate
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the inputs. Thus, {DR, DI} are necessary to generate those

transformations that redefine the inputs. Similarly, the classes {EA, ad
i

SA} and {EI, AI} are necessary. The result is then an immediate ;
g

consequence of Theorem 2, which shows that these pairs of classes are .5
all disjoint. .::J
qed g

Theorem 3: Under the loss function
1z,0) = (2 - 8)°

where 6 is a scalar, there exists for each of the six classes a
simulation experiment E that can be transformed by a transformation

whose composition includes a member of that class into some E' such that
E[1(z',0)] < E[1(z,0)]

where Z and Z' are both consistent estimators of 6.

Proof: The proof is by example. The example used was originally
suggested by Kahn (1956) to explain some basic VRTs. Consider the
problem of estimating the probability, p, that the sum of two fair dice
is 3. Clearly p = 1/18, but suppose that this is not known and p will
be estimated by tossing dice. Toss n pairs of dice (2n single dice), or

have a computer program simulate these tosses, and let
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£ (e) # figi(c) for some ik by lemma 3.

Lo ons b

which implies that f'ik F f,, for some ik by the definition of DR.

L A T (U S
a'a s u ty

Thus, T, £ DI by the definition of DI.

Next consider T, € DI. Then T.: f ~> f' such that
2 2 w w

Co .
NP AN

fu;‘fm and f.lk-f. Y ik

ik -

Suppose that :E
uppos ;
:

£ ik : ]

Pixl(e) ™ fikl(e) T fikl(e) YiK (4.3) X

.

14'4

This implies that -;

by lemma 3, which is a contradiction. Thuas, there exists some ik such

that (4.3) does not hold. This in turn implies that T, £ DR.

qed

corollary 2.1: Theorem 1 does not hold if any class is eliminated from

the six classes.

proof: All six classes of transformations are needed to prove Theorem 1,
unless some classes contain elements that have the same effect as
members of other classes. However, by definition {EA, SA} and {EI, AI}

do not transform the inputs, so no composition of them will transform
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T-T: hm(Y(m)o) -2 h'm(Y(m)l) V m

« v v
.

7
Finally, let

Thus, T, € EI by definition of EI.

A
PR
2t e’ - .
PN
e a’e

=TO0OTO0OPOT OTOT OT_O
T TO T1 T2 T3 T4 T5 T6 T7

03

.
(] .l .l e
A 4.2 D i

Then, by construction

- ..
PR A
« " 1
Al

T: E -> E'

and T is a composition of transformations in the six classes DR, DI, EA,

3 e e ey

ooy e
et T

SA, EI, and AI.

adtd,

TN e I

qed

oy
N
-
+.Y

Theorem 2: The six classes of transformations are disjoint.

Proof: For any given experiment set, the classes EA, SA, EI, and Al are

mutually disjoint by their definition and the definition of simulation EZ
experiments. Also, they are clearly disjoint from DR and DI. What ﬁ:
remains to be shown is that DR and DI do not overlap. e

—

Consider T1 € DR. Then T1: fu -> f'w such that

- » e .
L U

] .
PRy Rt AR

f ik

ikl (e) = Fik!l(e) £ v ik

fw#fw and f

e d bl

Now since f' # f , then
w w
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and

*
{g'il} i=1,2,000 2% 1,2,000,2

Let '1‘4 be the transformation such that

Tt 185yl = cle'y,}

*
i- 1,2,... L”,z,...l '

Thus, T, € EA by definition of EA and the fact that Q0 is always

4
achievable. Now let '1‘5 be the transformation such that

T5= g-> R"

Thus, T5 € SA by definition of SA under the representation g'.

Next consider h(Y) and h'(Y'), where Y f Y'. Since different

coding is irrelevant, without loss of generality let
h' <= h'0Oc¢

where O denotes composition. Thus, h(Y) and h'(Y) are being compared.

Let T6 be the transformation such that

Tg (m) ->‘(m)' Yn

Thus, Tg € AI by definition of AI. Now let T, be the transformation

such that
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Proof: The proof is by construction of T. Assume a definition of E and
E' given by (fm,(g;R,),h) and (f'w,(g';R'*),h'), respectively. Let TO

be the transformation such that
R, -> 0

where O is a vector of all zeroes of the same dimension as R,. Thus, TOE
SA since O is always an achievable sample allocation.
Next consider fu(x) and f'w(x). Both have the same support, Q.

Let

[}
i fik and 0 f ik

be the product of all scalar marginal distributicas of fm and f'u,

respectively. Let T1 be the transformation such that

T1: fu =>1 fik

Thus, '1‘1 € DI by definition of DI. Now let T2 be the transformation
such that

T2: 1 fik ->0nf ik

Thus, T2 € DR by definition of DR. Now let '1‘3 be the transformation

such that

T3: nf ik ->f "

Thus, T, € DI by definition of DI.

3
Next consider (g(x);0) and (g'(x);R',) defined on the same x.

Consider 'he representations

T o S ==
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f1,2=3,4,050'n‘i+1 = f1 :2,3,.-.,n-i"’1 f2:3,4,ooo,n"i+1 .

= f f

211,3,4,000,0+i=1 "1]3,4,...,0-i+1

The proof proceeds exactly as above to show that the (n-i-1)st order
scalar conditionals are determined. By induction, this shows that all
scalar conditionals (including the first order scalar marginal

distributions) are determined. And since

f =f £,

1,2,.0.,0 1 211 "311,2 ni1,2,e00,n=1

then f is determined.

1,2,000,0

ged

Main Results

In this section the main results of this research are proved;
namely that for a given experiment set Es(n,e) the associated six
classes of transformations generate all possible VRTs via composition,
they are disjoint classes, and they are useful. Remember that these
transformations are from any e-equivalent class of experiments to any
other e-equivalent class in E®(Q,8). In the results that follow, E and

E' are both elements of EB(Q,O).

Theorem 1: Given E : E', there exists a transformation T: E -> E', and T

is a composition of members of the six classes of transformationms.
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fai3atpeeein, f211300eem |  (4.2)

f1:3,4,....n f1:2,3,...,n

for all x = (x1,...,xn). It is easy to show that if the denominator of
(4.2) 1is zero for some x, then the numerator is as well; in fact so is

f Such values of x are not of interest and the value of r(x)

1,2,000,on°
will be left undefined there, restricting attention to values of x where
this is not the case.

Now for any fixed value of (13,14....,xn) equation (4.2) gives

R T I E R oL

which implies that

1

f13,4,.0.0 " THx ax,

By the argument above, r(x) > 0 in the regions of interest, so the

density exists. Since r(x) is given, f1=3 4 n is determined. Using
sFgecey

a similar argument, it can be shown that all (n-2)nd order scalar

conditionals

fj{1,...,3-1,3+1,..,,n = 1,2,00.,n

are determined by the (n-1)st order scalar conditionals.

The remainder of the proof proceeds by induction. Assume that the
(n-i)th order scalar conditionals are determined for some i = 2,353,000,
and f

For example, Then write

f1 :2,3,00- 'n-i+1

R ARAMMA T S et M S B R N A N AU = -1 VU S S S Soal aua g S aren S son g

211,3,4,000,0-141" .
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The condition is not necessary if, for instance, f(c){ik is constant
over those regions where f., and f' differ.
ik ik

The next result characterizes multivariate distributions in terms

of conditional distributions. The notation

f1 ,2,ooo'n = f1 ’2,...'n(x1""lxn)

will be used for the n variate density and/or mass function, and the

usual notation for conditional distributions will also be used. For

example

- [
112 = Ty1a(xixy)

lemma 3: The distribution f
- 1,2,...,!1

is determined (up to a set of

Lebesgue measure zero) by

peeey f ]

4
1:2,3,...,11 ! f2}1'3’4'-n|'n n|1,2,oo-'n-1

the (n-1)st order scalar conditional distributions.

proof: From elementary properties of conditional distributions

= f

f,213,4,000,m " T112,3,000,0 £213,4,00001

= f

211,3,00.,0 113,4,.000n

After some rearrangement
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£ = f (o) Y ik © (4.1)
(e) ik (e)iik T .
(e)
proof: Let T € DR. For any fixed ik

f'm f'ik

" f ikl(e) ™ fik:(C) A (since T € DR)
(e) ik

fo Tk ik

To) foe | ()ik Ty

flm f' c
-2 - = f | s
A (c) ik f(c)

fl
- f' i = f V. T—(—Q
(e)iik (e)iik (c)
A parallel argument shows that (4.1) implies the definition of DR.

qed
Lemmas 1 and 2 are alternative definitions of the c¢lass DR. A
sufficient condition for there to exist a transformation in DR that

transforms f, into f' # £, is that X 80d X - X, are independent.

fe>s7

BRI
a'a’a

-
P

Al

| SOLWEIR TN KA

»

. v
PPN RS

. <
‘a !L‘.A._‘_AL

",-Q",-'."- N ",‘.2;.1';"15’_!‘)‘"1'1 m"-‘,-.,.‘ e ' e e

. .
L
Py

CAIEEIIN § SV




D A SNt Al SRl It Snadil Snaiih S-S dit B e o v L 20 -v
SN o Nt il A R e T T vy o R Ty N W Tw W rre———

72

Transformations in the AI class are characterized by altering the

argument set of the function h. In practice, members of AI most often
recruit additional outputs, thus providing more information for i;
estimation of 6. Restricting attention to those transformations in AI
that augment the original argument set, it is possible to identify two ;}
important subclasses: those that yield more information about 6 (AI.®), :
and those that recruit outputs containing information about Z (AI.Z).

In Chapter 3 the concept of information about a pargmeter contained -
in a random variable was discussed. The idea can bé extended quite 4
naturally to information contained in one random variable about
realizations of another. In particular, if the two random variables are .-

independent, then looking at the realization of one reveals nothing

about the other. However, if the two are statistically dependent, then 0
the realization of one may reveal something about the likelihood of the ‘
particular realization of the other. Thus, uncertainty about the
likelihood of the realization of a statistic may be reduced, and the
estimate may Ve modified based on this knowledge. In Chapter 5 & VRT
(control variates) that makes use of this type of information is
discussed. Note that AI.8 and AI.Z need not be disjoint, but that

members of AI - AI.8 - AI.Z will never be effective for reducing

variance.

T
Dbk aa

-4

The Transformations and Information :?
P.‘

Throughout the development of this research, the concept of’ f:
statistical information and its usefulness in the discussion of variance ;5

reduction has been stressed. The six classes of transformations are a
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particularly useful breakdown of the possible transformations because of S;

the close association of each class with either the idea of increasing ;;

: the available information or making better use of information. As noted EE
E briefly above, DR, DI, and SA transformations can increase information ES
"

! in the simulation experiment. This 1is Dbecause fw determines the =
E information content of the initial sample (X) and R, controls how the ;E
F sampling effort is allocated. On the other hand, g and h determine the ;i
! information loss via  transformation of  the -;ntial sample. %?
? Transformations in the EA, EI, and AI classes can reduce the loss, ;;
, -
: It should be noted that effective members of the EI class of ;ﬁ
! transformations have been extensively studied in the classical i:
E statistical literature on optimality of estimators. Concepts such as éi
sufficiency and minimum variance estimators are results of this work. :gi

1F:

LR
B &

F Estimators using auxiliary information have also been studied in the

’

5 same manner.
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FIVE WELL-KNOWN VRTS

In this chapter five of the more well-known VRTs are reviewed 1in
light of the framework developed in Chapters 3 and 4. The VRTs
considered are antithetic variates, common random numbers, control
variates, stratified sampling, and use of conditional expectations. For
each a brief review of the 1literature is presented, along with a
description of the VRT and graphical display of how the VRT is composed
of members of the six classes of transformations. The purpose is not to
propose a precise definition of these five VRfs, since the same names
are used for several variations. Rather, an attempt is made to present

the most widely accepted version of each technique. First, a symbol set

is given to be used for graphical presentation.

Symbol Set

Only three basic symbols are needed (see Figure 5.1). A rectangle
will enclose a definition of an input, output, or statistic in the
simulation experiment. A circle denotes a class of transformations, and
a trapezoid some prior knowledge used to make the application of the

transformation reasonable. The progression is from 1left to right,

proceeding from a definition of some input, output, or statistic to a

new definition via a transformation.
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Figure 5.1 Symbol Set for VRTs
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Recall that VRTs are composed of members of the six classes of
transformations combined with prior knowledge; given a specific problem

they can be implemented as algorithms. The presentation in this chapter

is on the VRT level.

Antithetic Variates (AV)

Antithetic Variates is a VRT that has been extensively studied in
the context of Monte Carlo estimation. The techniqué was invented by
Hammersley and Morton (1956), with further developments by Hammersley
and Mauldon (1956), Morton (1956), Halton and Handscomb (1957), and
Handscomb (1958). 1In its broadest sense, "we use the term antithetic
variates to describe any set of estimators which mutually compensate
each other's variations.” (Hammersley and Handscomb, 1964, p. 61)

Statistical results such as
Var(Yigj) = Var(y,) + Var(YJ.) + ZCov(Yi,Yj) (5.1)

make clear the advantage of random variables being correlated.
Correlation may be inherent in the outputs of a simulation experiment.
However, AV attempts ¢to force a correlation structure onto the
observations while preserving their marginal distributions. The
correlation is wusually accomplished by making them analytically
dependent, When an estimator consists of a sum of n random

observations, the antithetic-variates theorem (Hammersley and Mauldon,

1956, Handscomb, 1958, Wilsom, 1979, 1982a, 1983c) shows that under
fairly general conditions the greatest lower bound of the variance of

the estimator can be approached arbitrarily closely by generating all n
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observations from a deterministic transformation of one random ?
observation. Texts that discuss AV in both the Monte Carlo and

simulation contexts include: Tocher (1963), Hammersley and Handscomb ;
(1964), Shreider (1964, 1966), Mize and Cox (1968), Meier, Newell and
Pazer (1969), Fishman (1973, 1978), Gaver and Thompson (1973), Hillier
and Lieberman (1974), Kleijnen (1974), Carter and Cashwell(1975),
Yakowitz (1977), Pritsker and Pegden (1979), Rubinstein (1981), Kohlas
(1982), Law and Kelton (1982), and Payne (1982). Research into the
application of AV in the simulation of stochastic networks has been done 7
by Burt, Gaver, and Perlas (1970), Burt and Garman (1971a, 1971b),
Sullivan, Hayya, and Schual (1982), Carson (1983), Grant (1983, 1980),
and Grant and Solberg (1983); Kumamoto, Tanaka, Inoue and Henley (1980a)
investigate Monte Carlo evaluation of fault trees. Moy (1965, 1971), 3
Page (1965), Gaver (1969), and Mitchell (1973) use AV for simulating -
queuing systems. George (1977) looks at simulating replacement processes "
with AV, while Fishman (1981, 1982a, 1982b, 19€Za) deals with simulation
of Markov chains and processes., Issues relatirg to the generation of
antithetic observations in various contexts are discussed in Fishman .
(1972, 1974), Franta (1975), and Cherg (1981, 1982, 1983a, 1983b).
Combining AV and other VRTs is examined in Fishman (1974), Gentle
(1975), Kleijnen (1974, 1975); Schruben (1978, 1979), Schruben and
Margolin (1978), and Cooley and Houck (1982) incorporate AV and CRN (see El
below) into the design of simulation experiments. Roach and Wright

(1977) correctly state that systematic sampling (SYS) plans are a subset, b
of general AV sampling plans; see Madow and Madow (1944) for a reference :5

on SYS. Other papers of interest are Deutsch and Schmeiser (1980),

---------------
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Fishman (1979, 1968), McGrath and Irving (1973a, 1974), Simon (1976),
Lavenberg and Welch (1978), Halton (1979), Rubinstein and Samordnitsky
(1982), Rubinstein, Samordnitsky, and Shaked (1982), and Wilson (1982,
1983a, 1983b, 1983d).

Consider estimating @, using a simulation experiment defining

1

Yi1 = gi1(X(i1)) i= 1,2,...,11 = 2n

where E(Yi1) = 61, with statistic

Further, suppose that
x(i1)' i.i.d. f(1)(x(i1)). (5.2)
The usual AV transformation is to redefine the joint distribution of

(x i*1,2,...,n0

(2i-1,1, * X2i,1))

such that they still have the marginals given in (5.2), but the pairs
are negatively correlated in some way. When X(i1) is a scalar, or if AV
is only used on a scalar component of X(i1), the correlation 1is most
often induced by generating realizations via the inverse cumulative

distribution function (cdf) of X(i1) in the following manner:

-1
X(21-1,1) = F (1)(vy)

. R SR
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-1
x(2i,1) = F (1)(1-Ui)

where Ui~ u(0,1) i=1,2,...,n. When X(iy) is multivariate, there are
a variety of approaches and objectives. The reason for redefining the

inputs to be dependent is to cause

Y ) <O

Covl¥yy 4 4 v Yoy 4

reducing the variance of Z, via (5.1). Figure 5.2 shows how AV employs :j
1

the DI class of transformations.

Common Random Numbers (CRN)

Common random numbers is often called "correlated sampling” (CS). o

There is some confusion because CRN is both a method for generating
correlated samples and a VRT that exploits indu;ed correlation. “The
name of the technique stems from the possibility in some situations of
using the same stream of basic U(0,1) random variables to drive each of
the alternative models through time..." (Law and Kelton, 1982, p.350).
Here, the term CRN is used in the sense of CS, meaning that correlation
is induced (by whatever means) between certain inputs to obtain
positively correlated outputs, and the interest is in estimating a
parameter that can be exprezsed as a difference.

CRN has the distinction of being "...the only VRT that is as a rule
used by practitioners of simulation" (Kleijnen, 1974, p. 206). Papers
and books discussing various aspects of CRN include Kahn and Marshall
(1953), Jessop (1956), Conway (1963), Fishman (1968, 1974), Ignall

(1972), McGrath and Irving (1973a, 1974), Becker (1974), Kleijnen (1974,

e {.'n':c'..."'c." .l'\c N
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..........
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X(p1-1,1)"%(21,1)) "
fonf

L= 1,2,...

1itputs

fi1 = 81(¥(41))
i =1,2,...,I

-1
Fa)

(X(p3-1,1)°%(21,1)) ™

fi1)(1)

tatistics

Figure 5.2 Antithetic Variates (AV)
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75), Lavenberg and Welch (1978), Heidelberger and Iglehart (1978),
itsker and Pegden (1979), Rubinstein (1981), Gal, Rubinstein, and Ziv
981), Wilson (1982a, 1982b, 1983a, 1983b), Law and Kelton (1982),
hlas (1982), Banks and Carson (1983), and Bratley, Fox and Schrage
983). Gentle (1975) calls the technique control variates. Mihram
974), Heikes, Montgomery, and Rardin (1976), Schruben (1978, 1979),
‘hruben and Margolin (1978), and Cooley and Houck (1982) investigate
icorporating CRN into the design of the simulation experiment as a
indom block effect. The last three papers consider incorpora?ing AV
.th CRN, as do Fishman (1974) and Kleijnen (1974, 1975). Wright and
msey (1979) give a simple example of an inveatory simulation where
sing CRN gives counterintuitive results.

Consider estimating
91 = q, - 03
sing a simulation experiment defining
Yip = 85,(K(4y)) 1= 1,20000T, 2223

here E(Yil) = a,, with statistic

7z =1 K 1 '3
® —  Y..~-— I Y.
1 Ly i= i2 I3 juq 15
= Y2 - Y3
or convenience assume that I2 = 13. The basis for CRN is the well-
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| relation
Var(Y2 - YB) = Var(Yz) + Var(YB) - 2Cov(12,Y3)

\defining the joint distribution of (X(iZ) , x(i3)) i=1,2,...,1
that they are positively correlated--without redefining their
.nal distributions~-it is hoped that Cov(Yé,Yé) > 0, reducing the
ince of Z1. Several of the references cited discuss conditions and
>ds that insure a favorable covariance term. See Figure 5.3 for a

nical presentation of this VRT.

rol Variates (CV)

The term control variates has a variety of meanings. Here, it will

used to describe a class of statistics that attempt to correct the
e of an estimator based on the discrepancy between the value of a
nd estimator and the known value of its expectation. For example,
Y(1) and Y(Z) be sets of output random variables in a simulation

riment, and 8, and 85 be scalar valued functions such that
E[s1(Y(1))] - 8, E[sz(Y(z))] = a

e 01 and o are real scalars; 61 is the parameter of inte:est and a

nown. The two most common CV estimators are the linear control
ZC = 81(Y(’)) - b(sz(Y(Z)) - G) (503)

e b is a constant, and the ratio estimator
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Figure 5.3 Common Random Numbers (CRN)
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_ 81(Y 1))
Zc = ;;rffgyy a (5.4)

ction s, is the control variate. Both (5.3) and (5.4) extend
ly to multiple control variates, but that extension will not be
red here. Also not discussed is the determination of the
er b, except to cite several references. In the simulation
ure, a distinction is made between "internal” control variates
variables that are part of the same real or conceptual system)
ternal” control variates (random variables that are part. of a
real or conceptual system). This distinction is not relevant
iince both types are simply functions of outputs in the simulation
lent., However, external control variates employ a transformation
le class DI, while internal CV does not.
1xtbooks providing general descriptions of CV for Monte Carlo
;ion are Hammersley and Handscomb (1964), Shreider (1964, 1966),
;z (1977), and Rubinstein (1981). Concentrating more specifically
wlation are Tocher (1963), Fishman (197}, 1978), Gaver and
m (1973), Kleijnen (1974), Pritsker and Pegden (1979), Law and
(1982), and Bratley, Fox, and Schrage (1983); see Cochran (1977)
icussion of CV in survey sampling. Use of CV in the simulation of
itic networks is investigated in Burt, Gaver and Perlas (1970),
id Garman (1971), Grant (1980) and Grant and Solberg (1983), while
0, Tanaka, and Inoue (1977) apply CV to fault tree analysis.
yrg, Moeller, and Welch (1977a, 1977b, 1978, 1982), Taaffe and
1983), Wilson (1979b, 1983e, 1983f), Wilson and Pritsker (1982)

»th CV in the simulation of queuing .Jys*tems. The selection or

................
...............
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n of the CV multipliers under various assumptions for linear
like (5.3) has received considerable attention; see for
Cheng (1978), Hopmans and Kleijnen (1980) and Koehler (1981).
ind Beale (1983) discuss verification of the hypothesis that the
thip with the CV is indeed linear. Olkin (1958), Matern (1962),
977), and Isaki (1983) treat CV in the survey sampling context,
(1956), Swain (1981, 1982), and Swain and Schmeiser (1983)
ite on Monte Carlo problems. Iglehart and Lewis (1979) consider
the general context of regenerative simulations. Initial
ions of CV in simulations used a single, linear control. In an
: survey paper, Lavenberg and Welch (1981) summarize results on
iltiple 1linear control variates. Rubinstein and Markus (1982)
r1ese results to estimation of multiple parameters with multiple
, and Nozari, Arnold, and Pegden k1983) extend them to
alation simulation experiments. Other papers of interest are:
i and Ben Tuvia (1962), Moy (1965, 1971), Gaver (1969), Gaver
ler (1971), McGrath and Irving (1973a, 1974), Gentle (1975),
g and Welch (1978), Cheng and Feast (1980) and Wilson (1982b,
383b) .
ore describing the gemeral characterization of CV an expression
variance of a function of two random variables will be derived.

nd 02 be two real, scalar valued random variables with finite

Let
E[oi] =y, i=1,2

a function h(Q,,Qz) that is analytic at (Y1,Y?) for all values
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86 N
of Q, and Q,. Then to two terms, the Taylor series expansion of h about i'
this point is
n(Qy,Q) = Blyy,vy) + = ——o=5-(Q, - v;) + B, (5.5)
i=1 i
where R2 is a remainder term given by the next term in the Taylor
expansion with h evaluated at an unknown point between Y and Qi i=1,2
for Q1 and Q2, respectively. Ignore this term for the  moment. Using
E[Qi] i P (5.5) implies that
Eln(Q,Q,)] = n(y,,v,)
and
2 2 .
E[0°(Q,,,)] = 1%y, ,v,) #
2 2 aa(y,,y,) an(y,,v,)
L I aé £ aé 2 C°v[Qi'°j]
i=1 =1 i J
Combining these two gives
2 2 an(y,,v,) an(y,,v,) .
var(n(q,,))] » 11—t — 2 covla;,e ] (5.6)
i=1 j=1 i i J
Interestingly, to make (5.6) an equality only requires adding the term .
.
v
Var(Rz) to the right hand side. 3
o
Now, returning to the description given at the beginning of this ?:
¥
section, the CV estimator will be of the form o
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oS

Z, = n(s,(Y(1)),8{Y(5))) s

with the restriction that h(91,u) = 9 Assume that h is analytic. It

1‘
is clear that (5.3) and (5.4) are of this general form. Several authors
have noted that these two estimators are in the same general class,

including Kleijnen (1974) and Olkin (1983).

b Result: R
» _ )
3n |2 3h |2 3h  3h =

Var(Zc) ] EE;J Var(s1) + (E%J Var(s,) *+ 2 3;;-3;; Cov[s1,52] =

where all the partial derivatives are evaluated at (91,u).

NN BV Y B
)

Y
Y

« e
ARG
PRSP

Proof: In (5.6), identify s, with Q., o with y,, and a with v,.

1
qed
Note that for the linear control, R, = O. The result shows that

2
nonzero covariance between the estimator of the parameter of interest

and the control variate is usually necessary for CV to be effective. :%:

The estimator s contains information about s in the sense that

2 1’
uncertainty about the expected value of s, is reduced by knowledge of

8 The covariance term represents this information. See Figure 5.4

2.

for a description of how CV combines transformations from the EI and AI

i classes. e
: Stratified Sampling (STRAT) 3
v . o
4 Books discussing stratified sampling in Monte Carlo problems A

"
y NN
I include Hammersley and Handscomb (1964), Shreider (1964, 1966) and Eﬁ
" Rubinstein (1981). In the context of survey sampling, see Cochran o
I‘
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(1977). Some books or chapters dealing with stratified sampling
specifically in systems simulation are Moy (1971), Kleijnen (1974),
Hillier and Lieberman (1974), Pritsker and Pegden (1979), Payne (1982),
and Bratley, Pox and Schrage (1983). Methods for setting stata
boundaries are examined in Delanius (1950), Delanius and Gurney (1951),
Sethi (1963), and Singh (1975a, 1975b, 1977). Papers of general
interest in simulation, Monte Carlo, and survey sampling contexts
include Ehrenfeld and Ben-Tuvia (1962), Moy (1965), Sardnal (1968), Burt
and Garman (1971a), Bayes (1972), McGrath and Irving ‘(1973a, ‘1974),
Gentle (1975), Hartley (1977), and Wilson (1979b, 1982b, 1983a, 19831).
Kahn (1950a, 1950b) and Steinberg (1963) discuss it under the name
"quota sampling."” Por interesting application papers see Surkis, Gordon,
and Hynes (1975), Gordon and Hynes (1978), and Diegert and Diegert
(1981). DeGroot and Starr (1969) look at the problem from a Bayesian
viewpoint; the stratum means and proportion of the population in each
stratum have prior distributions.

Consider estimating 6, when it is possible to  sample I1

1

observations of Y ,, where E(Yi1) =9, 1i=1,2,...,I,. Thus, the crude

estimator of e, might be

2, = h1(Y(1))

b
= I Y.
Iy gar

Now suppose Y.,. can be expressed as a transformation of (X, ., ,, X. ) for
il (11)' “ik
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some fixed column index k of X. For convenience write %ﬁ
;2

Yip = 83Xy (5.7) .

suppressing the X ;,). Assume that X;, are i.i.d. random variables for §§
all i, and that the range of xik can be divided into n nonoverlapping, i%
exhaustive intervals (strata). Denote these strata by fj
Ly, 3= 2,...,0+1. An equivalent way to view (5.7) is i?ﬁ
2]

Yog=gg(X) 3= 2,001 121,01 A%

. . th .
such that Yij is the i observation of Y1 when ka € Lj’ and

Now, if Py = P(xmk € Lj) is known for all j, and if the values of

Ij y J = 2,.0.,0+1 can be fixed arbitrarily, then the STRAT estimator

n+1 1 Ij
= Ip. =—r I Y,.
je2 9 L3 =g 1

may have smaller variance that 2 depending om the allocation I'j.

1’

Allocation strategies will not be discussed here (see for instance,

Cochran, 1977), but if proportional allocation (Ij = I1pj) is used then’

-i
3
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Var(z',) < Var(z,)

(Rubinstein, 1981). Note that if I, is not altered then the VRT is .
known as poststratified sampling. See Figure 5.5. Ei
Conditional Expectations (CE) {
Conditional expectations is often called “conditional Monte Carlo" :
(CMC). However, CMC is a sampling technique originally developed by L%
Trotter and Tukey (1956) to "use a family of transformations to convert 35
given samples into samples conditioned on a given characteristic (p. Ef
64)." The original CMC was not inherently a variance reduction ;i

technique, although when used as one it is most closely akin to

..
-

importance sampling (Dubi and Horowitz, 1979). Here, the term o
conditional Monte Carlo is reserved for the oriéinal sampling technique. .
Other references include Arnold, Bucher, Trotter, and Tukey (1956),
Hammersley (1956), Wendel (1957), Hammersley and Handscomb (1964),

Granovsky (1981), Rubinstein (1981), and Wilson (1983b).

Cr o

(AT A

The use of conditional expectations (CE) will be described as the

term is used by Law and Kelton (1982). Fishman (1973) and Pritsker and 533
Pegden (1979) refer to it as use of ‘“prior information"; Carter and 5;
Ignall (1970, 1975) use the term "virtual measures.” Brown, Solomon, and Qg

<
Stephens (1979) use CE for estimatiﬁg the expected number of renewals in Ei
{O,tJ for a renewal process, while Andrews, Bickel, Hampel, Huber, ‘Q

Rogers and Tukey (1972) employ conditioning in Monte Carlo estimation of

location parameters. Lavenberg and Welch (1979) surveys applications of

CE. Other papers of interest are Kahn (1950, 1956), Kahn and Marshall
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(1953), McGrath and Irving (1973a, 1974), Gross (1973), Simon (1976),
Lavenberg and Welch (1978), and Wilson (1982, 1983a, 1933b). The latter
paper by Wilson compares CMC and CE. Fox (1983) establishes conditions
that guarantee effectiveness of CE when based on correlated outputs; see
also Bratley, Fox and Schrage (1983).

Consider estimating 01 using a simulation experiment defining
= { 7 =
Yi1 gi1\X(l1)) 1 1,2,...,11

where E(Yi1) = 9., with statistic

1

I1
1
2y = (X)) =g LYy, (5.8)

1 i=1
However, suppose there is another output random variable :.Z::
. e
Yiz i= 1,2,...,12 and :-J
Yy =]
By, 1Yy, = vp) N

can be calculated for all realizations Yio of Yi2' Here Y1 is generic

for any of Y“. Based on the well-known relation

var(E[Y,iY,,]] = var(y,] - E(var(Y,iv,,]] 2;

use the estimator &
;:_"1

A ]

by () Tk B(Y, 1Y, ] (5.9) -

The estimator (5.9) is unbiased for 01 , and if the Yiz are independent

then it has no greater variance than (5.8) if I, = I,. See Fox (1983)
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for more general conditions. However, CE 1is often employed when :i
I,>I,, such as when Y., are results of “rare events." Clearly the =

estimator (5.9) may be based on a vector of outputs, not just a scalar

ROV
ORI

YiZ' Note that Yi1 has not been redefined, but rather other outputs in

B

the simulation experiment are used. CE is shown in Figure 5.6.
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CONCLUSIONS

Although the research presented here may seem remote from actual
problenms, it should  Thave ramifications on practical simulation
experiments. Conversations with practitioners indicate &hat, with the
exception of the most simple applications of AV and CRN, variance
reduction techniques are seldom employed. This is due partly to a lack
of knowledge and understanding; to the casual student of simulation,
variance reduction appears to be a collection of special purpose
techniques that need to be rederived for -each application. The
existence of an underlying theory and a small number of elemental
transformations provides structure not previously available. This
structure should facilitate coherent instruction in variance reduction
and also provide common ground for reporting applications that take
place. The distinction between transformations, VRTs, and algorithms is
central: 1) The six classes generate all of variance reduction, in a
sense providing a checklist of possible approaches to take based on what
prior knowledge is available. 2) Graphical presentation of VRTs
(Chapter 5) provides a clear description of general VRTs, what knowledge

is commonly needed to "make them go," and yet does not relate them to &

particular application. 3) Algorithms, the problem specific part, do not

seem as ad hoc when they are just examples of general methods and even
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more basic transformations. The definition of simulation experiments
(Chapter 3) not only provides the structure needed to prove the results
of Chapter 4, but also structures the thinking of the experimenter,
helping him to recognize prior knowledge that can be exploited.

The research presented here depends heavily on the usefulness and
validity of the iefinition of simulation experiments; this definition is
consistent with the general idea of an experiment in probability and
statistics, and appears to be broad enough to encompass Monte Carlo
experiments and survey sampling. We suspect that the character%zation
covers any "sampling experiment," but do not know how to prove such a
conjecture. The terms and definitions used are well-known statistical
objects: sample spaces, events, probability distributions, and
transformations. The formal definition permits investigation of issues
such as experimental design, restrictions én sampling, efficient
estimation techniques, and the trade off between variance and bias. An
unexpected bonus is that numerical techniques and analytic solutions are
special cases. Finally, the axioms are few and reasonable: the
experiment is relevant to the estimation problem, and the experiment can
be performed.

Other approaches could have been taken. The definition ignores
issues of model validity, implementation of computer algorithms, and
numerical limitations of the computer. It is often useful (as a

modelling perspective) to view a computer simulation as a stochastic

process, but our definition does not do so. In variance reduction we

are concerned with statistical properties of estimators in a sampling

experiment, and we capture that aspect.
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useful, for instance. The implications of the various equivalence

relations for simulation experiments also appears to be an interesting

area for future research.
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Recent research in the area of variance reduction has emphasized
the application of VRTs in specific, but hopefully "road classes of
problems. Attempts have been made to specify rather weak conditions

under which a variance reduction is guaranteed. We hope that our

research will accelerate the effort, making it possible to derive even
more general conditions for even broader classes of problems. The

ultimate achievement, which is probably not possible, would be necessary
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and sufficient conditions wunder which application .of each class of
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transformations would achieve a variance reduction.
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As mentioned above, the definition of simulation is quite broad in

scope. Certainly the inclusion of survey sampling should be studied

e
3
Jl,

" 4

more thoroughly. By having such a general model of sampling
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LA,

experiments, defining the differences between particular cases such as
"systems simulation,” Monte Carlo,‘and survey sa;pling is possible. For
instance, McGrath and Irving (1973a) stated that simulation experiments
can be viewed as Monte Carlo estimation problems 1like (2.2). The
definition reveals why this is sometimes difficult. In systeams
simulation the integral might be of the form:

o = [ g(x)f(xip)ax
A

where g is a function of g(x).

To attack the problem of determining necessary and sufficient :g
conditions for a transformation %o be effective, the theory of ::j
statistical information might be a key tool. An investigation of the :j

types and value of different kinds of auxiliary information is in order.

The result in Chapter 5 demonstrates that 1linear correlation can be
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