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ABSTRACT

Nelson, Barry Lee. Ph.D., Purdue University, December 1983. Variance
Reduction in Simulation Experiments: A Mathematical - Statistical
Framework. Major Professor: Dr. Bruce W. Schmeiser.

With the expanding use of computer simulation to model and solve

industrial engineering problems, there has been increasing interest in

the development of efficient simulation techniques. When the concern is

for statistical efficiency of results that are random variables, such

approaches are usually called variance reduction techniques (VRTs).

Many of the fundamental ideas in simulation, and particularly

techniques for efficient simulation, had their origins in the Monte

Carlo estimation literature. The theory of sampling is another closely

related field that predates the development of simulation. Although

there has been significant research interest in variance reduction,

there have been few attempts to structure and define the discipline.

VRTs are transformations. They transform simulation experiments

into related experiments that yield better estimates of some parameters

of interest, where better usually means more precise. This research

identifies and defines the components from which all variance reduction

techniques are built. Given a general mathematical-statistical

definition of simulation experiments, these components or classes of

transformations are shown to be useful, to be mutually exclusive, and to

• .:,- : : :o, :/ ."- .- , -- ':,-.. '''-. " . ' . -. :. ,. '.-. L '--.- ..--. . " - - - . ." - . ." , , . .



x

generate all possible VRTs via composition. Benefits of the research

include: 1) the facility to unambiguously define new or existing VRTs,

eliminating confusion that currently exists in the literature, 2) the

facility to decompose VRTa into combinations of transformations, making

the relationships between VRTs clear, 3) the development of a

theoretical foundation for analytical treatment of VRTs, and 4) the

derelopment of a setting for proposing new VRTs and research questions..

In addition, increased understanding of the area should.promote more and

better application of variance reduction in practice.



INTRODUCTION

With the expanding use of computer simulation to model and solve

industrial engineering problems, there has been increasing interest in

the development of efficient simulation techniques. By efficient

techniques is meant approaches that produce accurate answers with

reasonable computing cost and analyst effort. When the concern is for

statistical efficiency of results that are random variables, such

approaches are usually called variance reduction techniques (VRTs).

Definitions

In this research, simulation will refer to digital computer models

of stochastic systems. Often these models are characterized by explicit

accounting of the passage of time, although this is not a requirement.

"By simulation is meant the technique of setting up a stochastic model

of a real situation, and then performing sampling experiments upon the

model." (Harling, 1958) The experiment is done to obtain performance

measures for the system, but since the models are driven by stochastic

inputs, the measures are only estimates of the true performance of the

system.

Many of the fundamental ideas in simulation, and particularly

techniques for efficient simulation, had their origins in the Monte
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events." (Carter and Ignall, 1975, p. 608)

"The idea [of virtual measures for a particular inventory problem] is

surely suggestive of the splitting and enrichment techniques." (Carter

and Ignall, 1975, p. 614)

"In the slab problem considered above, the process. of splitting,

accompanied by Russian Roulette, may be thought of as an example of

importance sampling where the transport kernel is modified." (Carter

and Cashwell, 1975, p. 17)

"Latin Hypercube Sampling is a variant of stratification especially

appropriate for multivariate problems with restricted sampling budgets."

(Swain, 1981, p. 40)

"It [Latin Hypercube Sampling] is an extension of quota sampling, and it

is a first cousin to the 'random balance' design...and to the highly

fractionalized factorial designs... and to lattice sampling." (McKay,

Beckman aad Conover, 1979, p. 243)

"It is interesting to note that the exponential transform is a form of

quota sampling." (Kahn, 1950b, p. 62)

" " ' -, " - - ": ........ ;" . : ."L . ' ' :, _ -%. '"- _/ 'r " " " " . . . ' -. .. . , . j
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"Another instance of control variate sampling is the use of the same

sequence of random numbers in two different phases of the simulation.

The idea is to introduce a positive correlation for quantities that are

to be subtracted." (Gentle, 1975, p. 7)

"The idea behind stratified sampling is essentially the same as that of

importance sampling." (Gentle, 1975, p. 7)

"This last technique [stratified sampling] is sort of a combination of

Importance Sampling and Systematic Sampling." (Kahn, 1956, p. 155)

"Indeed the family of [antithetic variate] sampling plans...is the

family of systematic sampling plans." (Roach and Wright, 1974, p. 8)

"Systematic sampling plans form a computationally feasible subset of the

family of antithetic sampling plans originally described by Hammersley,

Handscomb, and Mauldin." (Roach and Wright, 1974, p. 32)

"The method of stratified sampling is closely related to that of using

'control variables.'" (Hartley, 1977, p. 23)

"It is possible to view virtual measures as, in the words of a referee,

'a re-packaging of conditional Monte Carlo for the estimation of rare

-:..~i< -- -~;. - . . - - . *.--A ..
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Biased Estimators ,Rubinstein, 1981)
Veighted Uniform Sampling (Powell and Swam, 1966)

Random Quadrature Method (Rubinstein, 1981)
Use of Orthonormal Functions (Hammersley and Handscomb, 1964)

Many researchers have conjectured that relationships exist between

various VRTs. Most of these conjectures are in fact true, but can seem

contradictory without a unifying theory that makes relationships and

differences apparent. Below are several examples of statements that have

appeared in the variance reduction literature.

"The antithetic variate technique is a particular case of this situation

(regression method)" (Hamaersley and Handscomb, "1964, p. 66)

.

"..*so the antithetic variate method is equivalent to using the control

variate t'-1/2t - 1/2t", whose expectation is zero." (Hammersley and

Morton, 1956, p. 449)

Control variates can be "a special form of the use of the same [common]

random numbers..." (Kleijnen, 1974, .p. 205)

Common random numbers is a special case of control variates

(paraphrased). (Gentle, 1975, p. 8)

............. *.m

.'- - - . ,
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Selective Sampling (Brenner, 1963)
Fixed Sequence Principle (Ehrenfeld and Ben-Tuvia, 1962)

Sequential Sampling (McGrath and Irving, 1973a)

Poststratified Sampling (Wilson, 1979b)
Stratification after Sampling (Kleijnxen, 1974)

Importance Sampling
Partition of Region (Rubinstein, 1981)
Correction Sampling (Hartley, 1977)
Multi-Stage Sampling (Marshall, 1956)
Method of the Essential Sample (Kohlas, 1982)
Sampling with Probability Proportional to Size (Moy, 1965)

Transformations (McGrath and Irving, 1973a)

Expected Values (McGrath and Irving, 1973a)
Conditional Expectations (Law and Kelton, 1982)
Conditioned Sampling (Garman, 1972)
Statistical Estimation (McGrath and Irving, 1973a)
Virtual Measures (Carter and Ignall, 1975)
Prior Information (Pritsker and Pegden, 1979)
Reducing the Dimensionality (Rubinstein, 1981)
Strict Conditional Monte Carlo (Fox, 1983)
Extended Conditional Monte Carlo (Fox, 1983)

Indirect Estimation (Law and Kelton, 1982)

Adjoint Formulations (McGrath and Irving, 1973a)
Mathematical Analog (Kahn, 1950)

Conditional Monte Carlo (Hammersley and Handscomb, 1964)
Conditional Sampling (Hartley, 1977)
Classic Conditional Monte Carlo (Fox, 1983)

. . .. . n. * . lo I a , U . ." 
°

•
°
-" •" " . ° . ' '" .
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Correlation Induction Strategies (Schruben, 1979)

Control Variables .,

Control Variates
Control Variate Sampling (Swain, 1981)
Concomitant Control Variables (Lavenberg and Welch, 1981)

Internal Controls (Iglehart, 1979)
Concomitant Information (Ehrenfeld and Ben-Tuvia, 1962)
Regression Sampling (Kleijnen, '1974)
Extraction of the Regular Part (Shreider, 1966)
Comparison Method (Kohlas, 1982)

Regression Methods (Hammersley and Handecomb, 1964)
Regression on Concomitant Variables (Gentle, 1975)

Common Random Numbers
Correlated Sampling (Law and Kelton, 1982)
Using the same random numbers
Correlation of Samples (Kahn and Marshall, 1953)

History Reanalysis"(McGrath and Irving, 1973a)

Systematic Sampling
Simple Stratified Sampling
Dagger Sampling (Kumamoto, Tanaka and Inoue, 1980a)
Sequential Destruction Method (Easton and Wong, 1980)
Systematic Source Sampling (Carter and Cashwell, 1975)

Quasi-random Numbers (Hammersley and Handscomb, 1964)
Latin Hypercube Sampling (McKay, Beckman and Conover, 1979)

Stratified Sampling
Stratification of Random Numbers
Quota Sampling (Kahn, 1954)
Adaptive Stratified Sampling
Critical Value Stratified Sampling (Surkis, Gordon and Hynes, 1975)
Representative Sampling (Delanius, 1950)
Bowley-sapling (Delanius, 1950)
Neyman-sampling (Delanius, 1950)
Proportional Sampling (Ehrenfeld and Ben-Tuvia, 1962)
Group Sampling (Shreider, 1966)
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any knowledge, either known with certainty or suspected, beyond what is

needed to draw samples from the experiment. A transformation is a

modification of a problem situation so that a variance reduction might

be achieved. Combined with the necessary prior knowledge,

transformations produce VRTs. In a real application, VRTs are

implemented as algorithms. The theoretical framework developed here

defines six classes of transformations and shows how they are composed

into VRTs. The format used to define VRTs should be illustrative for

developing algorithms.

Existing Variance Reduction Techniques

The number of VRTs and their variations is staggering. The

following is a list of YRTs found in the simulation, Monte Carlo, and

sampling literature. Multiple names for the same or very similar

techniques are grouped together, and references are given for names not

in common use.

Antithetic Variates
Antithetic Sampling
Antithetic Transformation (Halton, 1979)
Antithetic Variate Sampling Plans (Roach and Wright, 1977)
Supplemental Variables (Mize and Cox, 1968)
Antithetic Control Variables (Cheng, 1981)
Complementary Random Numbers (Hiller and Lieberman, 1974)
Complementary Antithetic Variates (George, 1977)
Correlation Selection (Ermakov and Zolotukhin, 1960)
Use of Dependent Variables (Shreider, 1966)
Symmetrization of the Integral (Shreider, 1966)
Basic Antithetic Variates (Roach and Wright, 1977)
Antithetical Variables (Kohlas, 1982)
Compensation Methods (Kohlas, 1982)
Randomization Sampling (Deutsch and Schmeiser, 1980)
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it iS possible (conceptually) to represent simulation experiments

similarly by thinking of the simulation as some input distributions and

output transformations from which one can sample. It may not be

possible to write an explicit expression for the integral in all cases.

The terms crude Monte Carlo or crude sampling are used to describe

the following technique for estimating (2.1)

0. Formulate (2.1) as in (2.2)

1. Sample n values of X, (X iX 2 , *e.. Xn)

2. Estimate e by

, n

z i

Z is an unbiased estimator of 0 with variance

I2

Var[Z] 2n

where

a2  E[ g2(X)_8]2

Clearly the variance of Z can be reduced by increasing n.

VRTs usually attempt to attain an estimator with smaller variance

for n observations, or the same variance with fewer observations. It is

generally agreed that prior knowledge is required to achieve a variance

reduction. For the purposes of this research prior knowledge will mean

r . " . - - - - ' - . . . . . . . .

p.. - ' .. . .- ........ . .•. -; Q '... " . . . . . . - .. . .'....... .. . .. . . ..-.-. . .. , .- -. ... -. . - . .

- .m m w -~~~~~ , . . " '
" " ' ' ' '

- ' ' ' - " " " " ,," ,", - % - " - % '' - % '°
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LITERATURE REVIEW

This chapter reviews the names of and relationships between VRTs as

well as several key survey papers. The intention is not to explain

individual VRTs in detail here; see Chapter 5.

Definitions

Simulation, Monte Carlo estimation, and sampling are defined as in

Chapter 1. Recall that the value of any integral can be expressed as

the expected value of a random variable. For example, consider the

simple scalar integral

6 - g1(x)dx (2.1)
A

where g,(x) is a real valued function of elements in A, a subset of the

real line. Now if f(x) is a probability density function on A, and

f(x) -0 only if g1(x) - 0, then

91 (x )
- -f(x)dx - f g2(x)f(x)dx (2.2)

A f x A

and E[g 2(X)] 0 0, where X is a random variable with density function

f(x). Monte Carlo estimation problems are formulated as integrals, and

p Sq



concerning the definitions and relationships between VRTs is presented.

Chapter 3 develops a general mathematical-statistical definition of

simulation experiments, which is necessary to define the classes of

transformations and establish their properties (Chapter 4). Chapter 5

reviews five well-known VRTs in light of the results just presented.

The final chapter contains concluding comments and directions for future

research.

ii

.. 1
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The current research identifies and defines the components from

which all variance reduction techniques are built. Given a general

mathomatical-statistical definition of simulation experiments, these

components or classes of transformations are shown to be useful, to be

mutually exclusive, and to generate all possible VRTs via composition.

The scope of the results is not limited to simulation since Monte Carlo

and sampling theory problems are special cases of the general simulation

experiment.

Benefits of the research include: 1) the facility to unambiguously

define new or existing VRTs, eliminating the confusion that currently

exists in the literature, 2) the facility to decompose VRTs into

combinations of transformations, making the relationships between VRTs

clear, 3) the development of a theoretical foundation for analytical

treatment of VRTs, and 4) the development of a setting for proposing

new VRTs and research questions. In addition, increased understanding

of the area should promote more and better application of variance

reduction in practice.

Additional results of the research are a graphical scheme for

describing VRTs (which is applied to five of the most common

techniques), and an extensive bibliography of variance reduction

literature.

Organization of the Dissertation

Chapter 2 of the dissertation contains a literature review

emphasizing previous attempts to develop a unifying framework. In

addition, a brief examination of the confusion that presently exists

-- . . *oo.-. - Q-*4 p ,. . .. ., . .. . .o ... . .. . . .
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the sun of the variance and the square of the bias. However, other

measures could be proposed. For the purposes of this research, the term

variance reduction will mean the following more general goal:

minimize E i I(Z, e)]

where

1(0, e) - 0

and

l(Z, 0) > l(Z', e) iff 1z - 01 > 1z' - 81

where 1 a is a metric. This general loss function includes both

variance and I4E, as well as others. The particular loss function is

application dependent.

Research

Although there has been significant research interest in variance

reduction, there have been few attempts to structure and define the

discipline. The primary exception is KcGrath and Irving (1973a). They

classify variance reduction techniques according to whether they modify

the sampling process, make use of analytic equivalences, or are simply

specialised techniques. This classification fails to show which

techniques are related to or are particular cases of others, or provide

insight into the underlying theory of variance reduction. In addition,

the catchall category of "specialized techniques" is not satisfying.

.......*..*.'m**** -. * .. *

-. *h'S.~. ~ *
* * * * ** % %*****
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considered over repeated realizations; i.e. its expected squared

deviation from its own expectation. To account for the greater effort

usually involved with achieving greater precision, measures that

incorporate "effort" have been proposed. Most take the following form

(Hameruley and Handscomb, 1964):

2

2
e2°2

where 012 and a22 are the variances of estimators 1 and 2, respectively,

and e, and e2  are some measures of the effort involved in using

estimators 1 and 2 (computer or analyst time, for instance).

Contrast the idea of increased precision (reduced variance) with

increased accuracy. Accuracy refers to the absolute deviation of the

value of the estimator from the quantity to be estimated. In some

situations this quantity can be bounded. A similar measure is the

expected value of the difference between the estimator and the

parameter, called the bias. It is clear that any arbitrary constant has

optimal precision, but it will probably be biased (unless one is so

lucky as to select the value to be estimated). It is also clear that

variance reduction in the context of numerical or quasi-Monte Carlo

integration procedures has little meaning, while accuracy does. If

unbiased estimators are employed, then precision is the only quantity to

worry about. However, some VRTs trade variance of the estimator for

bias, and this may be quite acceptable.

There are many possible solutions to this problem of definition.

One could talk about mean squared error (MSE) reduction, since KSE is
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potential error, and is often employed to construct confidence intervals

for the unknown quantity being estimated. The smaller the variance of

the estimator, the more certain one is that the estimate is not

misleading. VRTs are usually considered to be methods for achieving a

given level of precision at reduced cost, or greater precision at the

same estimation cost. Precision is a quantity inversely proportional to

the variance.

VRTs, sometimes called Monte Carlo swindles, have long been applied

to Monte Carlo and sampling problems. It is possible to represent an

integral as the expected value of a random variable, to sample from the

* random variable, and to use the sample average as an estimator of the

integral. Increasing the number of observations will decrease the

variance of the estimator, but an excessive number of observations may

be required to achieve acceptable precision in the absence of variance

reduction techniques. Similarly, to obtain an estimate with acceptable

precision from a simple random sample of a large and diverse population

.an unreasonably large sample may be required.

More recently variance reduction techniques--many direct analogues

of Monte Carlo and sampling methods--have been applied to computer

simulation experiments. Increasing the length or number of simulation

runs will improve the precision of the estimators, but not without cost.

*Sometimes a variance reduction technique, properly applied, can make

the difference between an impossibly expensive simulation and a frugal,

useful one" (Law and Kelton, 1982).

In the simulation and Monte Carlo literature, variance reduction

refers to any attempt to decrease the variance of an estimator

I

%- .. $Y.- *',,.. .....-.. .: -... -*.. -.. -.. .* . •.... . .., *. . . . . . . .

,, .. ,r~a ,€. r. , ,,,,,,,,, , . . * * ,_-,. ,, . . .- -. .-.. . . . . ,. .. . .. . . , .-.- . .
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Carlo estimation literature. Monte Carlo estimation refers to the use

of probabilistic models to evaluate mathematically intractable

integrals. These problems may not be inherently stochastic. The

difference between Monte Carlo and standard statistical estimation

problems is that

In the standard statistical-estimation problem both the
probability distribution and the parameter to be estimated are
assumed to be fixed; typically, given a sample of n values
from the distribution, the best (or minimum variance) estimate
of the parameter is to be found. In Monte Carlo calculations
only C, the answer, is really fixed and the problem is to
sample from that distribution which produces the minimum (or a
substantially smaller) variance estimate of this number, for
fixed cost. (Kahn and Marshall, 1953)

The theory of sampling is another closely related field that

predates' the development of simulation. Sampling refers to selecting a

subset of the members of some population to dispover or estimate some

characteristic of the whole population. The measures derived from a

sample are in general subject to random variation. "The purpose of

sampling theory is to make sampling more efficient. It attempts to

develop methods of sample selection and of estimation that provide, at

the lowest possible cost, estimates that are precise enough for our

purpose." (Cochran, 1977)

Variance Reduction

In sampling, Monte Carlo estimation, and computer simulation

problems, one is often as interested in how far from the actual value

the estimate of a quantity may be as in the value of the ostimate

r
itself. The variance of the estimator is a common measure of the

7 %
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"These involve importance sampling, including the special case of the

exponential transform, splitting, and Russian Roulette." (Steinberg,

1963, p. 142)

"...indeed the CV [control variate] technique is sometimes called

regression sampling." (Law and Kelton, 1982, p. 360)

"The idea of this technique [stratified sampling] is similar to the idea

of importance sampling..." (Rubinstein, 198,, p. 131)

Control Variates is a form of correlated sampling (paraphrased). (Kahn

and Marshall, 1953, p. 269)

"Use of quasi-random numbers is essentially an instance of systematic

sampling." (Gentle, 1975, p. 8)

"A special case of the regression method is the use of antithetic

sampling." (Gentle, 1975, p. 4)

"The antithetic-variate method is a variation of the regression sampling

method introduced earlier." (Moy, 1965, p. 18)

"...in general, quota sampling may be described as stratified sampling
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with a more or less nonrandom selection of units within strata."

(Cochran, 1963, p. 137)

Surveys and Frameworks

A number of survey papers and book chapters on variance reduction

have appeared in the literature. Most have concentrated on developing

formulation, theory, and application of a particular VRT, and

occasionally they have advanced ideas about the relationships between

techniques or their taxonomy. In this section some of these works are

reviewed, with particular emphasis on those that propose a

- classification scheme.

An important early survey paper is Kahn (1956), which appeared in

the classic collection of papers from a symposium on Monte Carlo methods

held at the University of Florida in 1954. Kahn uses the simple problem

of repeatedly tossing two dice to estimate the probability that the sum

is three to illustrate six VLTs that he feels are useful in Monte Carlo

and simulation studies. Although the problem is easily solved

analytically, the example makes the idea behind each approach clear.

He continues the exposition using an integral formulation of the Monte

Carlo estimation problem to describe each VRT from a mathematical point

of view. He uses the integral problem because "it is the application in

which the ideas are most clearly defined (p.147)." The development is

. sophisticated, considering a general multidimensional integral and

deriving expressions for the variance of each modified estimator. When

possible, potential applications of each VRT are given and optimal

implementation strategies derived. Kahn does not attempt to define a

i

'I % * .*o~~. ~ * 4 .



18

set of underlying concepts or develop a framework. However, in an

earlier paper (Kahn, 1950) he does identify four general techniques for

reducing variance in the context of neutron transport problems; they

are: integration by random sampling, using a mathematical analog, quota

sampling, and statistical estimation. There is considerable overlap

between the categories, and many existing VRTs are not covered.

Steinberg (1963) proposes two principle classes of VRTs, those

designed to reduce the theoretical variance of each sample "history",

* and those that reduce the variance of a set of sample "histories." A

"history" is essentially an observation. This breakdown differentiates

between techniques that change the individual observations and those

that reduce variance through a cumulative effect. It ignores VRTs that

change the statistic (function of the observations) used.

Probably the most cited reference in all the variance reduction

literature is Hammersley and Handscomb (1964). Although many

researchers consider Monte Carlo Methods to be concerned only with Monte

Carlo problems, the authors are also interested in simulation and devote

a chapter (Chapter 4) to the subject. In fact, their definition of

Monte Carlo methods is quite general:

Monte Carlo methods comprise that branch of experimental
mathematics which is concerned with experiments on random
numbers. (p. 2)

The text presents a brief history and overview of Monte Carlo methods

and problems, develop, the basic techniques (Chapter 5), and

demonstrates their application to problems in areas such as solution of.

linear operator equations, radiation shielding and nuclear reaction

criticality.

• ~~~~. •°-. ... •.............. . . .. . ..... . .. *. . . . . . *.****.. . -....-. ** ..
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Like Kahn, Hammersley and Handscomb develop variance reduction

techniques from an integral representation of the problem. They propose

no general framework, but stress that two basic concepts underlying

several VRTs are: 1) sampling from an advantageous distribution, not

necessarily the one that naturally appears in the problem, and 2)

replacing an estimate by an exact value when possible. VRTs are

described, then illustrated using a simple integral for which an

analytic solution is known. A major feature of the book is a list of

original or early variance reduction and Monte Carlo references.

Another extensive list of variance reduction references is found in

Kleijnen (1974). Kleijnen is particularly interested in VRTs that can

be used in a wide range of simulation studies. As a result, he does not

discuss some VRTs that appear in the Monte Carlo literature and includes

one (Selective Sampling) that is unique to simulation. A description and

"critical appraisal" of six VRTs is given, with extensions, limitations,

and corrections presented. Also, the combined use of two well known

VRTs (antithetic variates and common random numbers), and the resulting

dangers, are discussed.

While Kleijnen does not propose a specific variance reduction

framework, he opens his chapter with the following comments:

Some VRT's change the original sampling process completely....Other VRT's use the same sampling process as in crude

sampling, but after the sampling has ended, they do not use
the sample average x but a more sophisticated estimator....
Some YRT's modify the sampling process in a very subtle
way....

While this is clearly true, it fails to completely describe all the

possibilities. However, a slight modification of Kleijnen's ideas is
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exhaustive: A VRT can change the inputs to the simulation, it can change

the simulation model, or it can change the simulation outputs. This

framework has merit, but it groups techniques that exploit different

knowledge or problem characteristics. These concepts deal more with

when than what a VRT does.

Another survey paper is Gentle (1975). Gentle is interested in

VRTs that are robust to deviations of the simulation or Monte Carlo

model assumptions from reality, and deviations of the distributions

produced by the random variate generators from the desired

distributions. He describes nine distinct techniques and combinations

of some of them. Like Kleijnen he warns that "simultaneous use of

variance-reducing techniques may not be effective when different methods

aciieve reduction in conflicting ways...." (p. 9)

McGrath and Irving (1973a) is the first real attempt to define the

concepts underlying variance reduction methods and develop a framework

based on them. The overall purpose of the pRDer is to provide analysts

with some understanding of variance reduction techniques and a useful

guide for selecting a VRT for a particular problem (p. 5). In this

context they identify the following concepts that variance reduction

techniques employ to increase the efficiency of simulation: 1) Modify

the simulation procedure, 2) Utilize approximate or analytic

information, and 3) Study the system within a different context or

abstract representation. Based on these concepts the authors propose the

following categories:
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I. Modification of the Sampling Process

2. Use of Analytical Equivalence

3. Specialized Techniques

The techniques which modify the sampling process effectively
alter the probability distributions of random variables so
that the more significant events are observed more often. The
use of analytical equivalence exploits analytical expressions
and expected values to explain or approximate the majority of
the phenomena, thus leaving only the most interesting portions
of the process to be simulated. Specialized 'approaches
encompass the more sophisticated techniques for achieving
variance reduction [including the combination of two or more
techniques in the other categories]. (p. 27)

McGrath and Irving are able to classify sixteen VRTs using the

above scheme, but they comment that many of these techniques are related

and it is quite difficult to arrive at a completely distinct

classification structure. This is indeed the case. For instance, the

authors place systematic sampling and antithetic variates in categories

1 and 2, respectively, yet it was noted above that Roach and Wright

(1974) claim one is a subset of the other. Also, there are several

problems with the "Specialized Techniques" category. Since combinations

of other VRTs are contained here, it means that techniques related only

by being combinations of others are grouped together. Also, there is an

implicit assumption that all of the VRTs classified in categories I and

2 are fundamental, or else they would be in group 3. However, it can be

shown that some of these VRTs are built up from still more fundamental

concepts (see Chapter 5). Finally, the category is a catchall for any

VRT that does not fall in either 1 or 2, which " not desirable.

-.-. .. .. • ,..-.:.....-............-.......-... -.... -.....--............... ..... ...... . ..
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Like many of the other authors, McGrath and Irving stress an

integral formulation of the general Monte Carlo or simulation problem,

claiming that it is completely general. To demonstrate the generality

they formulate a network queuing problem in this way. For most VRTs

covered in the paper, a theoretical development, comparison with crude

sampling, and example application are given. Also, a concluding section

of the report provides a systematic procedure for selecting and applying

i several of the more important VRTs.

Kohlas (1978) claims that the most widely known VRTs can be divided

into two groups: correlation methods and the methods of essential

sample. Correlation methods are further divided into comparison and

compensation methods; both involve manipulating or taking advantage of

correlation between observations to increase statistical efficiency.

Essential sample methods attempt to concentrate sampling in regions that

will make "significant contributions" to the estimate.

Chapter 4 of Rubinstein (1981) is essentially an updated version of

Hammersley and Handscomb's Chapter 5. Rubinstein reviews most of the

same techniques the previous authors did, occasionally adding theorems

concerning conditions that insure a variance reduction, an expression

for the theoretical variance of an estimator, or an implementation

algorithm. Also, several less well-known VRTs, some developed since the

publication of Monte Carlo Methods, are explained. No general concepts

or framework is presented, but a significant list of references is

included.

A recent paper by Wilson (1983a) proposes another framework for

classifying VRTs. He has two categories:

i3
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1. Importance Methods

2. Correlation Methods

The importance methods achieve improved efficiency by concentrating the

sampling in regions of the input domain that make the greatest

contribution to the integral. The correlation methods are further

divided into those that induce favorable correlation between blocks of

simulation runs, and those that exploit "inherent" correlation between

output variables within each run (p. I). The author does not claim that

this categorization includes all existing VRTs, but he is able to fit

eight well-known methods into the scheme. The primary purpose of the

paper is to survey recent research in variance reduction and comment on

its potential benefit in simulation studies.

Although this chapter did not review any sampling literature, the

interested reader is referred to Cochran (1977).

I

i.

I"
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SIMULATION

To provide a context for the discussion of variance reduction and

the results presented in the next chapter, a rigorous and detailed

definition of simulation experiments is developed in this chapter. As a

preliminary, some notation is established and the concept of statistical

"information" is discussed.

Notation

Descriptions will generally be in terms of matrices, columns of

matrices, and elements of matrices. Letters, Greek or English, without

subscripts will denote matrices, letters with single subscripts will

denote columns, and doubly subscripted letters are elements, using the
.th

usual row-column convention. For instance, Xik is the i element of

column vector Xk, which is the k th column in the matrix X.

A letter with subscripts in parentheses indicates a set of

variables with indices in a fixed set. X would be used to designate
(ab)

all the elements X in X with subscripts in index set (ab), a set that
ik

would have to be defined. The ( ) is a mapping from a single index to a

set of indices.

Random variables will be denoted by capital English letters, and

realizations of these random variables by lower case letters. For

- .. .. ..



25

example, yi is a realization of random variable Yi,. Any notation that

is counter to the above conventions will be specifically defined when
.-4

used.

Information

The information about an unknown parameter contained in a random

variable refers to the extent to which uncertainty about the value of

the parameter is reduced by observing the random variable. The term

information will always be used in this statistical sense. It should

not be confused with knowledge of the system to be modeled, or knowledge

of certain mathematical or statistical relationships. Knowledge relates

to what is understood or recognized by the experimenter, while

information is an abstract statistical quantity; A specific measure of

information is not needed, but any measure that is used or proposed must

satisfy the requirements given below.

Consider a statistical space S - (0, A, Pe, 0 E e), where a is a

sample space, A a a-algebra of subsets of a (the events), and P is a

family of probability measures on 2 indexed by a parameter 6. Although

this development is quite general, 9 and e can be restricted to subsets

of some finite dimensional Euclidean spaces without loss of generality.

Define a random variable Z to be a measurable mapping from (2, A) to a

measurable space (0, B) that does not depend on 0. Then Z induces a

statistical space Sz 
= (0, B, P ); Z may be a statistic used to estimate

z

0, the identity mapping, or in general any arbitrary measurable

function. Consider the amount of information available to estimate 0,

and call I(0) a measure of this information only if it satisfies the

. .1
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following properties.

(1) The amount of information available with respect to an unknown

parameter 0 is defined for a statistical space S independently of any

estimation procedure used or inference desired.

(2) The amount of information contained in Z equals the amount of

information contained in the statistical space S induced by Z.

(3) The amount of information contained in Z is less than or equal

to the amount of information contained in the statistical space S on

which Z is defined.

(4) A sufficient statistic2 Z contains all of the information

included in the statistical space on which Z is defined. If there is a

unique value of Z (a.s.) corresponding to each possible value of the

parameter 0, then Z contains the maximum possible information; if Z has

the same distribution for all values of the parameter (a.s.) then it

provides no information.

(5) The information given by two statistically independent

functions defined on the statistical space S is the sum of the

information given by each of them. If the two functions are not

independent, then there may be a cumulative effect resulting in the

total information being greater or smaller than the sum of the

individual informations.

(6) The efficiency (as measured by the variance of the estimator)

with which 0 can be estimated is nondecreasing in the amount of

information contained in the statistical space on which the estimator is

1. Barra, J.R. (1981), Mathematical Basis of Statistics, (L. Her-
bach, translation ed.), Academic Press, N.Y.
2. Bickel, P.J. and K.A. Doksum (1977), Mathematical Statistics:
Basic Ideas and Selected Topics, Holden-Day, San Francisco.
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based; greater information implies the potential for more efficient

estimation.

A well-known measure of the information in a real valued vector or

general multidimensional random variable, X, about a real valued
34

parameter 0, is the Fisher information number ; if 8 is a scalar then

1(6) =E [[aogLOJl)] 2]
deI

where L is the likelihood function of 0 given X. Under certain

regularity conditions4 the minimum variance attainable when estimating 0

from X is a function of 1(0). The Fisher information measure extends in

a straightforward way to a vector 0. This measure also satisfies the

six properties stated above. Clearly the value of 1(0) is independent

of any function of X since it depends only on the probability

distribution of X. The logarithmic form of the'measure implies that (4)

and (5) will hold because of the product form of the distribution of

independent random variables and the factorization result for sufficient

statistics. That (3) holds is well-known, and the Cramer-Rao lower

bound5 relates the variance of an estimator to I(0).

As an illustration of some of these properties consider the

following example: Let the sample space be R2 , the two dimensional

Euclidean space, with the probability measure being the bivariate normal

2 2distribution with identical marginals denoted by N(u,u,a ,a p) A

random sample (X1 ,X2 ) has Fisher information measure

3. Fisher, R.A. (1925), "Theory of Statistical Estimation," Proc.
Camb. Phil. Soc., 22, 700-725.
4. Rao, C.R. (1973), Linear Statistical Inference and Its
Applications, Wiley, N.Y.
5. Bickel, P.J. and K.A. Doksum (1977), Mathematical Statistics:
Basic Ideas and Selected Topics, Holden-Day, San Francisco.

-d
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relative to 0. Note that in this example I() does not depend on 4,

which is not true in general. There are two cases to examine: If

P 0, so that XI and X are independent N( ,o2) random variables, then

2 1 1

2 2 2

The total information is the sum of the information contained in the

independent sources. Note that the amount of information is increased -,

if a2 is decreased. If, on the other hand, p 0 there is a cumulative

effect leading to more (p < 0) or less (p > 0) information than in the

independent case. For this example the conditions of the Cramer-Rao

lower bound are satisfied, implying that the minimum variance attainable
1-

for an unbiased estimate of P from (X1,x2) is

Measures of information other than the kind considered here have

appeared in the literature. Kullback6 discusses a measure of the amount

of information available for discriminating between two hypotheses about

the probability measure on the statistical space S. If one considers

the information for discriminating between e and 0 + A0, then the

Kullback and Fisher measures are closely related . Shannon's measure of

7
information is used in communication theory to quantify the amount of

uncertainty or entropy present in a message source. The more

uncertainty (freedom of choice) there is in composing a message, the

6. Kullback, S. (1959), Information Theory and Statistics, Wiley,
N.Y.
7. Shannon, C.E. and W. Weaver (1963), The Mathematical Theory of
Communication, The Univ. of Illinois Press, Urbana.
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more information the message itself contains. This measure is quite

different from those of Fisher and Kullback, although some parallels can

be drawn.8

The concept of statistical information is important in the

discussion of variance reduction since, as will be shown, variance '

reduction techniques achieve their results by increasing the amount of

information available and/or making more efficient use of the available

information.

Simulation Experiments

In this section a definition of simulation experiments is given.

Later, Monte Carlo and sampling problems are shown to be special cases

of this definition. The definition proves useful for discussion of

variance reduction by showing how the random variables in a simulation

are defined, where statistical information about the parameters of

interest is, and where information may be increased or lost. As will be

shown, VRTs transform the random variables in a simulation experiment to

increase and/or make better use of information, so this perspective

captures the essential features of variance reduction. The development

below is rather abstract. Later in the chapter examples are given that

show how some of the constructs usually encountered in simulations (such

as time and initial conditions) are contained in this definition.

Before beginning, a concept is introduced that will be useful

later. Consider three sets of random variables U, V, and W. Let V

8. Schutzenberger, M.P. (1956) "On Some Measures of Information
Used In Statistics," in Information Theory, (C. Cherry, ed.),
Academic Press, N.Y.

S" . ..• . . . . ... .
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variables. For instance, in the Monte Carlo problem (2.2) the outputs

are ordered YI,..., Y corresponding to when the observations are

generated. Trying to relate successive rows in X and Y to the passage of

time is tempting, but is a limited viewpoint true only in the simplest

experiments. However, the order within columns does correspond to the

order in which realizations within that column will be generated. Since

time is such a common construct in simulation, it is worthwhile to

consider briefly how it is incorporated into the definition given above.

There are two cases: time advanced in fixed increments and at .random

event times.

When time is advanced in known, fixed increments, At, the time

increment is part of the definition of an output transformation. The

clock time after i increments is a transformation of the previous clock

time t i 1 , namely,

ti - g(ti 1 ,&t) - ti_1 + At

Thus, the clock time is an output, and would occupy a column in Y (if it

is essential).

In "discrete event simulation" (see for instance, Fishman, 1978,

Pritsker and Pegden, 1979, Law and Kelton, 1982, Banks and Carson, 1983,

or Bratley, Fox, and Schrage, 1983) clock time advances in discrete,

random steps between the occurrence of events. Usually the probability

distribution of the interval is not explicitly known and advances are

generated by a complicated transformation of other random variables.-

For example, in a large queuing network with many servers, service

centers, and customer types, the interaction of various service times,

. . ..'.



42

and e [0s] is the parameter of interest. Replacing A, S, Q, 0, W, W

with appropriately subscripted elements of X, Y and Z is

straightforward, and g is given by equation (3.4), which is written in a

form like (3.2). The feasible region for I = [I ,I ] is
w q

R - 1(n,n): n 1,2,...1

since generation of a realization of W requires a corresponding Q. If

the experiment requires a sample of 500 waiting times, then

aR 1500, 5001.

As a second example, consider the general Monte Carlo estimation

problem of Chapter 2, specifically equation (2.2). In that example, 8,

f, g, X, and Z correspond to the similar terms defined above. Now let

- n
h(Y) Y.

n.,.

where Y- g2 (Xi). The function h is defined by its functional form (a

summation of terms divided by the number of terms in the sum) and the

particular argument, Yi" Note that I - n can be any arbitrary positive

integer, and the arguments of h all form a single Y column.

Time

Many simulation experiments explicitly account for the passage of

time, and all simulations have some underlying ordering of their random

-i
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the system be denoted by A, a random variable distributed exponentially j
with some known, fixed rate. Let the service time be S, distributed

exponentially with parameter 0, where 0 is a function of Q, the number

of customers in the queue at the beginning of service. Time in the

queue for the i th customer, W., is given by the well-known relation:

W. max(O, W + S A (3.4)

An estimator of 8 is

W I n
-1 w

L i W.
n. 2i

where n is the number of customers. Based on the definitions above, the

input, output, and statistic matrices are:

A S1 1

A S
n ! .

W1 Q1

Y

W Q
n a
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Definition: E and E' are everywhere equivalent (E e E') if and only

if

x dx

g(x) c(g'(x)) R R'-

and

h(y) h'(y') V realizations y, y' generated from common x

Clearly, everywhere equivalence implies strong equivalence.

Considering all experiments based on some given a and 8, the

definitions of equivalence partition the simulation experiments into

equivalence classes. A VRT transforms an experiment into another

experiment with the same context, but hopefully one that is not d-

equivalent and in fact has statistics with better estimation properties.

Usually d and s-equivalence are conditions that cannot be verified.

However, a VRT should yield an experiment that is not e-equivalent to

the original one. Since e-equivalence is the finest partition, %

characterizing the ways in which simulation experiments are transformed

into other, non e-equivalent experiments characterizes the ways to

transform them into non s and d-equivalent experiments as well.

Examples and Common Constructs

Consider a simulation model of a single server, first-come-first-

served queuing system that is used to estimate 6 , the expected time a

customer spends waiting for service. Let the time between arrivals to

... *
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realizations.

Beyond this trivial distinction, definitions of three types of

equivalences between experiments will be given. To be equivalent in any

sense used here, experiments must be based on the same sample space -

and have the same parameters of interest, 8. Let E and E' be two

simulation experiments with common context (9,0).

Definition: E and E' are equivalent in distribution (E d E') if and

only if

Z d

Since the ultimate goal is to estimate 0 via the statistics Z, if

two experiments are equivalent in distribution they have the same

statistical properties. However, the distribution of Z is not generally

known, while the following may be:

Definition: E and E' are strongly equivalent (E E') if and only

if

and

h(g(x)) = h'(g'(x)) R. R'e  V realizations x of X

Clearly, strong equivalence implies equivalence in distribution.

Definition: g and g' are equivalent except for coding (g c g,) if

there exists a one-to-one mapping c such that g(x) = c(g'(x)). .

The next definition of equivalence is at the level on which random

variables in the experiment are actually defined.

I%,
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The preceding definitions imply that f (g;R*) and h are

unambiguously defined (up to equivalent essential sets) for a given

simulation experiment.

-'4

Equivalence of Experiments

In the preceding section a definition of simulation experiments was

presented with the idea that, given a particular experiment, it is

possible to partition the random variables into matrices'X, Y and Z, and

to (at least implicitly) identify f, (g;R*), and h. It has already

been noted that the identification is not unique, since for a given

experiment it is possible to reorder the column indices of the variables

and to have different values of L and k without changing the

experiment. Distinguishing between experiments that are identical

except for the order of their subscripts or values of L and k is not

necessary. Specifically, consider an arbitrary sequence a. I

i W 1,2,...,I a - Also consider two subsequences lb I and Ic with the

property that

Ib I n Icil .

and

fbi} U {cil Jail

for all values of Ia. Then for the purposes of this research the two

representations of the sequence are equivalent. Identify sequences such

as Ifik and Igi, with (ai1. Order in the sequence and subsequences is

only constrained by the correspondence to order of generation of

-'-" ' :' --. -.. - -~~~~.-......................'......'-...., -' --.. "".-...,."
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transformations of elements in X, the relative lengths of the different

sequences being subject to some restrictions. The vector Z is defined

by functions of the columns of Y that contain information about 0.

Axioms of Simulation

A simulation experiment is composed of the sets of random variables

X, Y, and Z, which are defined by f , (g;R*), and h, respectively.
W1

However, the existence of such definitions does not in itself constitute

a simulation. There are two necessary axioms that must be acknowledged

before X, Y, and Z represent a simulation experiment:

Axiom I (Existence of Information): The random variables X, Y, and Z
have probability distributions that depend on 0.-

Axiom 2 (Existence of Realizations): Given a source of randomness,
realizations of X, Y, and Z can be (perhaps iteratively) generated.

Axiom I guarantees that estimation of 0 from realizations of X, Y, and Z

is not fruitless. Axiom 2 is more subtle; it establishes that the

dependencies between and within X and Y are such that R is not empty.

This restriction limits the potential transformations of an experiment.

Definition: A simulation experiment, denoted by E(f ,(g;R.),h;Q,0),

is specified by a context (0,S), a probability distribution f on 9,

output transformation and sampling plan (g;R*), and statistics function. J
h, subject to Axioms I and 2. Where there will be no confusion, the

shortened notation E will be used.

.. . . . . . . . .
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Z h(Y) t lh(Y())} m 1,2,...,m (3.3)

For each m, hm is a transformation from a set of output sequences Y(m)

to Z . These functions do not depend on 8 or I m The dimension m is

known, finite, and equals the dimension of e.

The statistical space induced by h is Sz  (r,z,fh), where again fh

is usually not known, or if known is not used to generate realizations *1

of Z.

Notation.ally, let:

h [h . . hm*]

and

The mth element in Z is defined by the function h and its argument

Y(m) Thus, the functional forms of hm and h' might both involve a(m) m m

summation of squared terms even though (m) ( (m)'. Each h is defined

for arbitrary length of the sequences Y
(in),

The statistics aggregate output random variables. Note that each

element 8 in 0 has a corresponding estimator Z in Z. Often h can be
m m m

thought of as being computed in stages, defining certain intermediate

random variableL from Y and then combining them into a final estimator.

To summarize, X is the matrix of all random variables in the

experiment whose probability distributions are known, in the sense

stated above. Elements of Y are obtained by application of sequences of

................
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defined on X may not be unique. A useful restriction that can be

imposed without loss of generality is: A column Yt c Y will represent 1)

an argument, considered as a whole, for one or more statistics, Z (see

below), and/or 2) a sequence BiL that parameterizes fi for one or more

k, and/or 3) an output needed to specify the sampling plan, R.. Thus,

columns are delimited by the purpose they serve. Note that 1) - 3)

define the essential random variables; random variables that are either

arguments for the statistics, necessary for generation of realizations

of X, or determine when the desired sample has been obtained.

Information about 8 may be lost, but not gained, in the transformation

from S to S (see properties of information above). The matrix Y is a
X y

- minimal set containing all the useful information about 0.

An alternative representation of (3.1) is

Y git([xiY](i )) (3.2)
it

where [XjY] is the matrix obtained by including all columns of X and Y.

This notation may seem more natural in the simulation context, since

realizations of outputs are often generated iteratively from

transformations of Xe and previous Ys. However, since all elements of Y

are ultimately functions of X, (3.1) is completely general and has the

advantage that, given a particular experiment, X(iL) is unique.

Definition: Z, the row vector of statistics, has real valued,

scalar random variables as elements that are estimators of 0. The

statistics are specified by h, where

4,.
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from a set of elements X(i) to Yi'. These transformations do not

depend on e. The region R is an I dimensional feasible region that

accounts for the interrelationship between the individual gi s; R is

determined by all possible realizations of X. The sampling plan R* is

specified so that I E R. with probability one when realizations are

generated. The column dimension t is finite and does not depend on I.

The statistical space induced by g is S y (,,f ). TheSyg

probability distribution f is usually not known, or if known is not
g

used to generate realizations of Y. It is, however, naturally

parameterized by 8 so that estimation of e is possible from realizations

of Y.

Notationally, let:

g 19i, 
g " it

and

11l " • " Y *11.

Y21 . . .

2t

The row index i corresponds to the order in which realizations are

generated in an output sequence. The number of sequences, A , is not

uniquely determined since some sequences could be divided or merged and

still satisfy the definition just given. Also, the essential set

-. . . . . . . . . . .



.~~ .. . .-

33

all that is required is that some joint or marginal distribution

including Xik be known. f is the vector of all marginal distributions
pik

of f • A special case of an element of X is a constant selected by the

experimenter from a distribution known to him (implicitly or

explicitly). -J

The lengths of the sequences Ix I are infinite, but the number of
ik

realizations is determined by the frequency of sampling from {fikf * The

index i corresponds to the order of sampling. The number of input
*!

sequences, k , is finite and known. However, k is not uniquely

determined since some sequences could be divided or merged and still

satisfy the definition just given.

In later discussions it will be necessary to work with conditional

" distributions of fw" The distribution of X X given X(jL) CX is

denoted

f(ik),1(jt)(x(ik)'xj)

where the parameter 0 has been suppressed. A shorthand version is

f(ik) I (jt)" *

Definition: Y, the matrix of outputs, has real valued, scalar

random variables as elements and is an essential set of all random

variables defined on X. The outputs are specified by (g;R,), where

Y- g(X) - Igi,(X(i I i - 1,2,..., L  I -1,2,...,L (3.1)

- [I 12 ... I . C R
A

For each 1, igiL } is a potentially infinite sequence of transformations

• ,-r i' --. .- ''' '- .-.-.- -"- ."- . ---.•.. -.. -..--..-
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multivariate) random variable with unknown distribution (see below).

The associated statistical space is S - (D,X,f ), where a is the

sample space for X, * is a a-algebra of subsets of 0, and f is the

*' probability distribution on Q.

All of the information in the simulation experiment for estimation

* of 6 is contained in the statistical space Sx. However, the probability

distribution fW is not "naturally parameterized" by 0, which means that

0 is some unknown or complicated function of parameters of f making
W

estimation of 0 directly from realizations of X difficult. Thus,

transformation of S x into a space whose induced probability distribution

is conveniently parameterized by 0 is desirable. Notationally, let:

.

and

X11  X12  X

21 22 . .
2k

X . . . . . .'9

X*

The If ikI -fik(XikI'(ik))I are k sequences of scalar marginal

distributions of fw" For fixed k, they are identical for all i expect

possibly for the value of ( Each has marginal(ik) C. Eac element Xik hsmria

distribution fk' but statistical dependencies can exist within or

between column elements. Note that f may only be knowu implicitly;
ik

-. -0" " "" "'' . -.- ". -' ' "- - " ' ° " " k " " . .
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I.

carried out on a computer, these assumptions are not restrictive.

Context of the Experiment

Definition: 0, the row vector of parameters of interest, has

unknown, but fixed, real scalar constants as elements, and has dimension

*
m . The purpose of performing a simulation experiment is to estimate 0.

Note that 0 is fixed, but other elements of the simulation

experiment are not (see below). Although 8 is just a vector of

constants, it has a context given by 2, a sample space sampled from to

estimate 0.
..

Definition: 0, the sample space of the inputs, is a subset of some

infinite dimensional Euclidean space; 0 is the intersection of the set

of all sample spaces that can be sampled from according to known

probability distributions (see below), and the set of all sample spaces

whose sampling distributions contain information about 0.

Note that 0 is a fixed space that will be sampled from according to

a known distribution. It is possible that some subsets of 0 have

probability zero. There will be other sample spaces in the simulation

experiment induced by transformations of 0.

Definition of the Experiment

Definition: X, the matrix of inputs, has real valued, scalar random

variables as elements and known multivariate probability distribution.

X f (x!O). Here, known distribution means that f is specified by an

analytic or tabular expression with parameter 8, a real (possibly
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V(u) and W - W(v), where u and v are realizations of U and V,

respectively.

Definition: A subset V' Q V is an essential set defined on U if I)

for each element 10 of V there exists a known transformation from

elements in V' to VO, and the transformation does not depend on the

probability distribution of V, and 2) for any element V0 E V', no such

set of transformations exists for V' - V0 '

Thus, W can be defined as a transformation of V' alone, but

deletion of any element of V' means W may not be defined. Note that the

essential subset may not be unique. For example, suppose U is a scalar,
and V1  U, while V2 - U. Let W = V1 

+ V2" Then V' I 1 , unless

it is known that U > 0, in which case V' could be either IV I or IV

As a second example, let U- {U,U 2 1, and V IV 2 } where

2 2

V1  U2 and V2 U 2
U1

V 2
Then if W T -, V' V.

As a less abstract example, consider the simulation of a service

system and three random variables associated with each customer: waiting
~time, service time, and total delay. As essential subset is any two of

the three, since given two the third can be derived by simple

." arithmetic.

In the development that follows, all sample spaces are subsets of

Euclidean spaces of some dimension, and all random variables defined on

them are real valued. Also, all transformations are Lebesgue measurable

and integrable. Since the concern is for experiments that can be
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interarrival times, and queuing disciplines determine when the next

event will occur. Clearly, the time step is a member of Y. The clock -

time may be in Y if it is essential.

Initial Conditions

Two long standing issues in the simulation of systems in steady

state are the specification of initial "startup" conditions and the

estimation of steady state parameters from outputs that may be

9
contaminated by the chosen conditions. The estimation problem is a

question of what statistic to choose. Initial conditions are often

constants, chosen for convenience ("empty and idle") or because they are

expected to be consistent with the steady state distribution. They may
7

also be selected randomly from a known distribution. In either case

they would be classified as inputs in the simulation experiment.

As an example, consider a simulation that generates outputs

described by

Yil "ai-1,1 + i2""

an autoregressive process of order one, where X i 1,2,... are
i2

identically distributed with some known distribution. If the outputs

are to begin with Y,1' then an initial value for Y.t must be given. Let

that value be X, either a constant or a random variable with a known

distribution. Then the matrices of inputs and outputs look like:

9. Wilson, J.R. and A.A.B. Pritsker (1978), "A Survey of Research .
on the Simulation Startup Problem," Simulation, 31, 55-58.

. -. *..*.*..~~** *. . . .



45

X11 X12

~X
X22

X .

-J"

Y

21

YB

L •

and

Y "([xIY](Im)) 6 ( MY- 1 ( 6 1 ) +Xi 2

where 6 is an indicator function that equals 1 or 0 if condition c is
c

true or false, respectively.

Aside: This case should not be confused with using a time series

* algorithm to generate random variables with a known distribution; if the

distribution is known then the random variables are inputs, no matter

what method we use to generate realizations. For example, if -

Y 11'Y21 ""'Yn have a known multivariate normal distribution and are

generated as such, then they become X1 1...,X

•..... . ,.............--..-.--...- ... ............. ..................... . -.... .-.... -... ...-
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Stopping Rules

In the examples given earlier, the sampling plan R. was specified

by a number, say n, of observations of a particular output. This was

easily denoted by a single element of R. Two other cases are possible.

It may be that R. is a region, rather than a point, in which case

sampling stops when I is first contained in R.. For instance, suppose

that in a network queuing simulation the run is terminated when station

I has serviced 50, and/or station 2 has serviced 60 customers. If I -

[II ,I21, then

Re -II ,12 I > 50 or 12 60 and I E R1

The second, more interesting case is stopping rules based on

satisfying a condition other than a count. A simulation run that

terminates when the clock time is 480 minutes, or one that stops when a

resource is depleted are examples. Situations such as these can always

be represented by an output variable whose realization indicates that

the stopping condition has been met. For convenience denote this output

by Y., and write
I,

RI 1 I: I 1 " 1 and I E R1

Sequential Procedures

In simulation experiments, as well as in general statistical

experiments, sequential procedures may be employed to estimate a

parameter of interest. Such procedures are characterized by the

I

', ¢ ., -< , ) : Xk ,",--".,,... ,- ," -",-.-. ,.-. .-..- ," .'. -. ' .-. ,.''..'.'..'-....,,..-.- ., . . .
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selection of an initial sample, analysis of the results, and a decision

to continue sampling or stop based on the results of the analysis.

Considering such procedures in light of the definition of

simulation experiments, modelling sequential sampling might at first

appear to require some sort of "feedback" or control structure from the

statistics (h(Y)) to the output transformations (g(X)). However, it is

our conscious intention to make a distinction between the "design" and

the "analysis" aspects of simulation experiments. Sequential procedures

affect the sampling plan, R*, and thus are a part of the design .aspect

(as are the inputs). In fact, sequential procedures are simply a kind

of stopping rule, as discussed earlier. The statistics are the analysis

part of the experiment, and will always be functions of a fixed pool of

data. While this is not the only possible perspective, it seems

justified since restrictions on sampling are embodied in f and g.

Joint Distributions of the Inputs

As stated earlier, the elements in X can have any feasible joint

distribution. Often the elements in a column are independent,

identically distributed random variables indexed by the order in which

realizations are sampled. When encountering statistical dependencies,

however, two types are common: Identically distributed multivariate

vectors where each element in the vector has a different marginal

distribution, and identically distributed scalar random variables that

are pairwise (or in general m-tuplewise) correlated. The first type

would be represented by columns of scalars where corresponding (same row

index) elements have known joint distribution. The second case is

.............................................................
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denoted by a single column where the row indices indicate the

correlation structure. Remember, also, that if the distribution is not

completely specified, then the unknown parameters for marginal

distributions f are given by one or more columns in Y.
ik

Confidence Intervals

In this research the assumed goal of the simulation experiment is

to derive point estimates of unknown, real parameters. However, outputs

from simulation experiments are often used to construct confidence

intervals on these parameters. Variance reduction and confidence

interval construction are related because the properties of the interval

are generally a function of the properties of the point estimator(s).

Thus, while attention is restricted to point estimates and their

variance the research is relevant to confidence interval construction.

Types of Statistics

The statistics defined by a simulation experiment can be separated

into two types based cn the outputs that are their arguments.

Obv;ervational statistics axe based on individual, discrete outputs

without relation to when the output was generated. Time-persistent

outputs have values defined over time, and require not only the value

but also the time period over which it persisted ("time" can be any

index). In the definition of simulation the distinction is irrelevant,-

since both types of outputs are represented by scalar random variables.

Also, it does not matter whether the outputs came from replication

, o oo . .. . . . • . .- •. ... .o..... . . .. . .. . .•. . . . • . . . ............
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"runs" (usually implying independent replications) or a single steady

state "run"; columns in Y can represent either kind of output. Of

course, the particular estimators used will depend on both these

factors.

Extension to Realizations

The definition of simulation experiments given above can be easily

extended to describe how realizations of the experiment are generated.

A basic source of randomness--usually scalar, independent, identically

distributed U(0,1) random variables--is transformed into random

variables X distributed according to f . The transformations g and hW
are employed to yield a realization of Y and Z from a realization of X.

Of course, simulations are usually implemented ds computer algorithms.

Note again that, when considering variance reduction, the interest is in

how random variables are defined and not how realizations are actually

generated, although the method of generation will often affect what can

be achieved in practice.

I.-

Monte Carlo and Sampling Experiments

The general Monte Carlm integration problem fits easily into the

simulation characterization. Since the problem is that of evaluating a

known integral, and since the problem can be made stochastic by

introducing a probability distribution into the integral, the defining r

distributions, g transformations, and h functions are easily identified

and can be expressed in closed form (see the earlier example). However,



50

even the solution of problems like (2.1) by numerical or quasi-Monte

Carlo methods (Hammersley and Handscomb, 1964) is covered by the

definition. In those situations, the points at which the integrand is

evaluated (the inputs) are known constants. Thus, there is zero

variance; independent realizations of the experiment will all yield the

same estimate. However, the accuracy of the method (difference between

the estimate and the true answer) will not be zero in general.

That survey sampling problems can be characterized as above is less

obvious. However, in the usual case of probability sampling (Cochran,

1977) the relationship can be demonstrated. In probability sampling a

set of distinct samples from a (usually finite) population that the

sampling procedure is capable of selecting is defined, and each possible

sample is assigned a probability of selection. One of the samples is

selected with likelihood given by this probability, and an estimate of

whatever quantity is of interest is made from the responses given by the

elements in the sample. In terms of statistical spaces, the triple (0,

*, f) corresponds to the possible samples, the events, and the

probabilities assigned to each possible sample. The most common

sampling distribution is simple random sampling, where each possible

sample is equally likely to be selected. Sampling with or without

replacement are two procedures for generating such samples, depending on

whether the same element can appear in a sample more than once. The g

transformations that induce the space (#, Y, f ) are more implicit,

representing how responses from the sample are obtained and the

allocation of sampling effort. The space S is as before, representing

Z

the estimators employed.
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Consider, for example, an experiment to determine the expected

lifetime of a type of light bulb. The procedure might be to take a

sample of size n from a lot of bulbs in such a way that each possible

size n sample is equally likely, burn the bulbs, record the time until

burnout, and estimate the expected life by the average of these values.

The population of light bulbs and the sampling procedure define X, the

sample size n and the method of establishing lifetimes defines Y, and Z

is defined by the estimation rule (simple average) and the outputs, Y.

Analytic Solutions

Consider a given simulation experiment, E. Given sufficient

insight, it may be that the value of e can be deduced analytically.

Such a solution procedure is not outside the scope of this research.

Think of a continuum between the original stochastic experment and an

analytic determination of 0, specified by the precision of the

statistics Z in the experiment. Then VRTs transform a given experiment

into another one in this continuum. An analytic solution, of course, is

the limiting case having infinite precision.

,°p

. . . . ..

S-.- -, .-.-- - *-',*-*--,~a-- -



52

CLASSES OF TRANSFORMATIONS

Given the definition of simulation experiments in the previous

chapter, this chapter develops a framework for VXTs based on six classes

of transformations of simulation experiments. The six classes are

defined in the next section. After defining the classes it will be

shown that they generate all possible VRTs via composition, that they

are disjoint classes, and that they are useful for achieving a variance

reduction. Uniqueness of the particular partitioning of the

transformations is not claimed. Trying to relate each class of

transformations directly to a well-known VRT is tempting, but misses the

point. A transformation redefines an experiment in a way that may be

favorable; it is not necessarily a VRT nor does its use imply a variance

reduction. The last two sections discuss subclasses of transformations

within the original six and explain the relationship between the six

classes of transformations and information for estimation of 0.

Definitions of the Transformations

Recall that VRTs attempt to increase information and/or make better

use of information for estimation of 0 in a simulation experiment.

Three of the classes affect the amount of information, while the

......... ...... ... ..........................
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remaining three concern the use of information. The six classes of

transformations, along with some additional refinements that will be

discussed later, are:

Amount of Information

Distribution Replacement (DR)

Dependence Induction (DI)
(independent case)

(dependent case)

Sample Allocation (SA)
(series) "
(replication)

Use of Information

Equivalent Allocation (EA)

Equivalent Information (EI)

Auxiliary Information (AI)
(about e)
(about Z)

Definition: The experiment set, E8(2,8), is

E5( ,e) - U E(f ,(g;R*),h;ne)

where the union is over all (f ,(g;R*),h) for a fixed context (n,e) such

that Axioms 1 and 2 are satisfied.

The definitions below establish classes of transformations with

domain and range Es(1,O) for fixed (2,0). These transformations map a

simulation experiment into another non e-equivalent (but possibly s or

d-equivalent) experiment in the same experiment set. A transformation

will be denoted by T, possibly with subscripts. If a transformation is

defined as altering the definition of f O g, or h alone, then the

.9 * .'... .. .
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remaining components are unchanged. Note that any experiment set has

six classes of transformations associated with it.

In this chapter, if two distributions are not equal then they are

not equal on a region of positive probability.

Transformation of the Inputs

Distribution Replacement (DR): T1 E DR if and only if

Ti: f (x) -> f' W(x)

such that

f' (x) f (x) for some x

and

f ,

f___A ikifik',(c) = ikl(c) f ik

where f. c is the probability distribution of X given X - X.
ikg,(c) ik k

Dependence Induction (DI): T E DI if and only if
2

T2: f (x) -> f' (x)

such that

f' (x) f (x) for some x

and

...........................-



ijk - ik V

Transformation of the Outputs

Equivalent Allocation (ZA): T 3E EA if and only if

T3 g(x) >g,(X)

such that

g'(x) cg(,) for some x

and

R Ii.

Sample Allocation (SA): T4E SA if and only if

T 4 g(x) ->g'(z)

such that

R% R

and

(Recall that *means equal except for coding; see Chapter 3)
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&nsformation of the Statistics .
Equivalent Information (El): T5E El if and only if

T: h(y) -> h'(y)

Dh that

h'(y) h(y) for some y

(a)'- (a Vm

Auxiliary Information (AI): T6 E Al if and only if

T: h(y) ->h'(y)

ch that

(m)' ,I(m) for some m

d

Notice that the transformations for each set X, Y, and Z are

rallel, and each one changes the definition of scalar random variables

the sets.
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)erties

Before proceeding to the main results in the next section, three

ias establishing properties of the classes DR and DI are proved. In

se proofs and those in the remainder of the chapter, all probability

tributions are assumed to be integrable, and all integrals are over

entire domain of the variable Qf integration. If the distribution

iiscrete, then the integral would be replaced by a summation over all

sible values in the domain and the proof would proceed as given. In

e of the proofs there are ratios of distributions that could have

o denominators for some values of the function arguments. For all

h values of the arguments the ratio is also multiplied by zero.

,se situations will be left undefined and attention restricted to

ues of the arguments where the denominators are nonzero.

ima : For all T E DR, T: f -> f'

fik
fikl(c) f'ikj(c) Vik

"C

iof: by the definition of the class DR and simple algebra.

qed

ma 2: T E DR, T: f -> W if and only if

£. .. . ..-.. .. .. ,...... . .. . •.. - . -.: - .- - -... , .. -- - . . . . . . .. . . .
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l. w= w I = .• - i = 2 ,3 , ...,n -1 ,
2n 2n wi n

it is believed the dice "warm up.") In this case the estimator

-ater variance

VarZ I .+.130ea. n-2 2n -

, going from Zei back to Z is an example of an effective use of?,l

4

qed

sses of Transformations

his section briefly discusses some interesting subclasses within

ix classes of transformations. These refinements are useful in

ce, and could be the subject of future research.

hen a transformation from the class DI is applied to a simulation

Aent, it is most often to induce statistical dependence between

that were originally independent. See Chapter 5 for two examples.

dependence is usually induced within columns of identically

buted input sequences in X, but may also be across columns.

a the class SA it is often of practical importance to distinguish

a those transformations that yield a different number of (usually

adent) replications, and those that alter the length of an output

ce in a single "run." Stated another way, some change the largest

of an output sequence, while others result in additional or fewer

ations of a sequence.

,. -" ' -' -, ,.......-.......-
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.ould be justified if the fact that P2  P4 is known. Again using

Ilocation m - n

Var[Z .022 . 0'31 
,2 

-
ea n n2

n

iary Information (AI)

Continuing to work with the (original) Zsa estimator, notice that

all the available information is utilized. Since p1  p2, use the1

bservations in Y3 and vice versa. Thus, both Y and Y are based
39 2 3

observations, and

.012 ..

Var[Z - .0-2
ai n

urse Zai is biased because Y2 and Y-3 are dependent. However, it is

consistent.

alent Information (El)

Recall the original estimator, Z. A statistic using equivalent

mation is

n
Zei = Y wY.

ei. •

w 1. For example, supposei2._

.~~~~o . ....
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yi2 1, if the ith single toss is I

O, otherwise i 1,2,...,m

Y 1, if the ith single toss is 2

O, otherwise i - m+,...,2n

Let the statistic be

Z sa 2Y 2y3sa 2

cey point here is that the variance of Zsa depends on how the 2n

as are allocated. In this case, the optimum- allocation is to let m,

and

Var[Z .031 .077
sa n"

walent Allocation (EA)

Use the same approach as in illustrating SA, but now score

1 '
y2' if the ith single toss is 2

2- if the ith single toss is 4
N'

0, otherwise i - m+1,...,2n

...... *.-..-,.~..-...
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r the altered probabilities (using El) let

-2 -zZdr 4

ich is an unbiased estimator of p, having variance

Var[zdI - .o I-

pendence Induction (DI) .'

On any particular pair of tosses, the outcome (first, second) is

Lst as likely as the outcome (7 - first, 7 - second). For instance,

ie events (2,1) and (5,6) have the same probability of occurrence.

lus, if (first, second) is rolled on toss 2i - I, use (7-first,

-second) for toss 21. This causes

Cov[Y2i-11 '2i,Y1] -p2

2d results in

Var[Z .-

ni°

imple Allocation (SA)

Now approach the original problem a bit differently. Since p

plp 2 use the 2n single die tosses to estimate p, and P2. Let

= ~ ~. . .....--- - - - -- - .- . - ,,.-. . . , . .- ; . ., . . .,,, ..- ,,, - .
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Y 1, if the sum of the ith toss is 3 (4.4)

0, otherwise i 1,2,...,n

!hus p - Pr(Yi1 - 1). As the statistic take

ai
Ii 11

i-i

ror which

E[z] - p and Var[z] .052n

For convenience later define

Pj - Pr(toss of a single die - j)

The experiment is defined by the probabilities pj that define the

working of the dice (inputs), the transformation (4.4) that gives the

score (outputs), the sampling plan R- 12n), and the statistic Z.

Distribution Replacement (DR)

Suppose that the working of the dice is redefined in the following

way. Let

PI " P2 "3"'

and

1 "

P3 P4 P5 P6 12

Thus the total 3 occurs four times as often, on average. To compensate



66

the inputs. Thus, [DR, DII are necessary to generate those

transformations that redefine the inputs. Similarly, the classes lEA,

SAI and IEI, AII are necessary. The result is then an immediate

consequence of Theorem 2, which shows that these pairs of classes are

all disjoint.

qed

Theorem 3: Under the loss function

l(z,e) - (z - 0)2

where e is a scalar, there exists for each of the six classes a

simulation experiment E that can be transformed by a transformation

whose composition includes a member of that class into some E' such that

E [l(Z',O)] < E l(Z,e)]

where Z and Z' are both consistent estimators of 0.

Proof: The proof is by example. The example used was originally

suggested by Kahn (1956) to explain some basic VRTs. Consider the

problem of estimating the probability, p, that the sum of two fair dice

is 3. Clearly p - 1/18, but suppose that this is not known and p will

be estimated by tossing dice. Toss n pairs of dice (2n single dice), or

have a computer program simulate these tosses, and let

....... . .
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ikl(c) fik(c) for some ik by lemma 3.

which implies that f'ik fik for some ik by the definition of DR.

Thus, T1 , DI by the definition of DI.

Next consider T E DI. Then T2: f -> f' such that j
f $ f and f'ik f.ik V ik

Suppose that

f' i__k :k(43f'(c) " ik',(c) fi ik'(c) i .)
T.k

This implies that

by lemma 3, which is a contradiction. Thus, there exists some ik such

that (4.3) does not hold. This in turn implies that T 2 DR.

qed

corollary 2.1: Theorem I does not hold if any class is eliminated from

the six classes.

proof: All six classes of transformations are needed to prove Theorem 1,

unless some classes contain elements that have the same effect as.

members of other classes. However, by definition JEA, SA) and JEI, AII

do not transform thi inputs, so no composition of them will transform

<9

* ~ '.i .*.. -

S.-.. .-- - .....
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(Y (in) h' ( )

T: h( ) ,) -> h'( m ,) Y

Thus, T7 E EI by definition of EI.

Finally, let

T T 0 T TO T 0 T4O T 0 T Tj
1234-567

Then, by construction

T: E-> E' A
and T is a composition of transformations in the six classes DR, DI, EA,

SA, El, and AI.

qed

Theorem 2: The six classes of transformations are disjoint.

Proof: For any given experiment set, the classes EA, SA, EI, and AI are

mutually disjoint by their definition and the definition of simulation

experiments. Also, they are clearly disjoint from DR and DI. What

remains to be shown is that DR and DI do not overlap.

Consider T E DR. Then T f V such that

Wf W

V W ikl(c) f ikl(c) fik ..

Now since f' j f , then
W W

* *4455* *~* * .* ~ .~ * .* * * * * * * * * ..-..- ,. * .

'S.. *. . = *'S* **-~: ' -
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Igiol i " 1,2,... L" , , . ,

and

I g ' i~ i 1 , . . 1 2 , . . . L A.

Let T be the transformation such that

4

T4 " Igill -> c1g'i j
*

i 1,2,... L =  1,2,...l.

Thus, T E EA by definition of KA and the fact that 0 is always
4

achievable. Now let T be the transformation such that
5

T5: 0 ->R'

Thus, T5 E SA by definition of SA under the representation g'.

Next consider h(Y) and h'(Y'), where y C Y'. Since different

coding is irrelevant, without loss of generality let

h' <- h' 0 c

where 0 denotes composition. Thus, h(Y) and h'(Y) are being compared. -.

Let T6 be the transformation such that

T6: (m) -> (m)' V in

Thus, T6 E AI by definition of AI. Now let T be the transformation
6 7

such that

;A

*h.

4.

-.

, ,.n,'. ' ' '-, \- .- ,' ',-i , ' £' :.'.." ". ' " ," ." ' " " "-" / - - '- '- - ". "' ', ',-- -. - ,, -," " .'.- .- '.-'.-" ." 4"
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Proof: The proof is by construction of T. Assume a definition of E and

E' given by (f,(g;Re),h) and (f' ,(g';R'),h'), respectively. Let T 0

be the transformation such that

To: R.->0

where 0 is a vector of all zeroes of the same dimension as R.. Thus, T E
0

SA since 0 is always an achievable sample allocation.

Next consider f (x) and f (x). Both have the same support, .

Let

a f and f'
ik ik-

be the product of all scalar marginal distributions of f and f'

respectively. Let T1 be the transformation such that

T " 1: -> ik

Thus, T E DI by definition of DI. Now let T2  be the transformation

such that

T Hf ->Uaf,ik ik

Thus, T2 E DR by definition of DR. Now let T be the transformation

such that

T Hf' -> f
3ik

Thus, T3 E DI by definition of DI.

Next consider (g(x);0) and (g'(x);R'*) defined on the same x.

Consider he representations

.''-'-'.'-' -'v'"." "," ".'"~~ ~ ~ ~~~.. .... ......... ,""" , "" . . . "." ' ' '..". -.-. -. , .-. -,. ......... ''
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f1,2:n3,4,....,n-i+1 112,3,...,n-i+1 f2i3,4,...,n-i+1 '

f2 f

211,3,4,... ,n+i-1 113,4,... ,n-i ;

The proof proceeds exactly as above to show that the (n-i-1)st order

scalar conditionals are determined. By induction, this shows that all

scalar conditionals (including the first order scalar marginal

distributions) are determined. And since

f f f f f
1,2,...,n 1 2, 1 311,2 " nh ,2,...,n-1

then fl,2,...,n is determined.

qed

Main Results

In this section the main results of this research are proved;

namely that for a given experiment set ES(0,e) the associated six

classes of transformations generate all possible VRTs via composition,

they are disjoint classes, and they are useful. Remember that these

transformations are from any e-equivalent class of experiments to any

other e-equivalent class in ES(a,e). In the results that follow, E and

E' are both elements of ES(,).

Theorem 1: Given E E', there exists a transformation T: E-> E', and Z

is a composition of members of the six classes of transformations.

4 -.
.........
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f2134 . f21 t
f3,4,...,n. 1,3,'".n f r(x) (4.2)

,4,...,n 12,3,...,n

for all x - (xI ,...,x). It is easy to show that if the denominator of

(4.2) is zero for some x, then the numerator is as well; in fact so is

fl, 2,...,n" Such values of x are not of interest and the value of r(x)

will be left undefined there, restricting attention to values of x where

this is not the case.

Now for any fixed value of (x3,4,...xn) equation (4.2) gives

1- 2 13,4,...,ndx 2  f1 13,4,...,n 5 r(x)dx2

which implies that

f113,4,...,n 1

By the argument above, r(x) > 0 in the regions of interest, so the

density exists. Since r(x) is given, f is determined. Using

a similar argument, it can be shown that all (n-2)nd order scalar

conditionals

fji1 ,......,n " 1J,2,...,n

are determined by the (n-1)st order scalar conditionals.

The remainder of the proof proceeds by induction. Assume that the

(n-i)th order scalar conditionals are determined for some i - 2,3,...,n.

For example, f1l23...,n-i+1 and f21 4 ,n-i+1" Then write

. ;. .°.
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The condition is not necessary if, for instance, f(c)lik is constant

over those regions where f and f' differ.
ik ik

The next result characterizes multivariate distributions in terms ..

of conditional distributions. The notation

fl,2.. " fl (j .. xn),2,...,n 1,2, ...,n a l ' ' '

will be used for the n variate density and/or mass function, and the

usual notation for conditional distributions will also be used. For

example

fiL2 " f 1g2(x I x2 )

lemma 3: The distribution fl,2,...,n is determined (up to a set of

Lebesgue measure zero) by

f 1 2,3,...,n ' 1,3,4,...,n U1n ,29,....,n-I"°

the (n-1)st order scalar conditional distributions.

* proof: From elementary properties of conditional distributions

" "f f .... f'
1 f,213,4,*..,n 112,3,..,n f213,4, ,.n

fl f

= 211,3,... ,n 1l13,4,... ,n-.

After some rearrangement .

i..
I.

. ... •. . . . .*•o" -. . . .° ... = ° 4 * . ,.. . . . . . . .. . .. 4 - 4 4 4 .. 4 . 4
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fe~ -(( - I

proof: Let T E DR. For any fixed ik

fe fmie ik
~iI~) ik(c .- (since T E DR)

(c) ik

i

f ife. i-
W ik f ( ic

ii "

T> ' (ci_(c) fik e(C) t o

qe

,. . "f (C)

ik i c)a ik ar i n

i k 
. .

b°f 
f (| )

"> f(c)lik "f(c),ik f'c ,'

A parallel argument shows that (4.1) implies the definition of DR. -

= qed

Lemmas I and 2 are alternative definitions of the class DR. A

sufficient condition for there to exist a transformation in DR that -

' transforms f ik into f* ik f fik is that X ik and X X Xik are independent.

,°z
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Transformations in the AI class are characterized by altering the

argument set of the function h. In practice, members of AI most often

recruit additional outputs, thus providing more information for

*. estimation of 0. Restricting attention to those transformations in AI

that augment the ori'ginal argument set, it is possible to identify two

- important subclasses: those that yield more information about 0 (AI.e),

and those that recruit outputs containing information about Z (AI.Z). I
In Chapter 3 the concept of information about a parameter contained

in a random variable was discussed. The idea can be extended quite

naturally to information contained in one random variable about

realizations of another. In particular, if the two random variables are

independent, then looking at the realization of one reveals nothing

about the other. However, if the two are statistically dependent, then

the realization of one may reveal something about the likelihood of the

particular realization of the other. Thus, uncertainty about the

likelihood of the realization of a statistic may be reduced, and the

estimate may be modified based on this knowledge. In Chapter 5 o VRT

- (control variates) that makes use of this type of information is

, discussed. Note that AI.0 and AI.Z need not be disjoint, but that

members of AI - AI.8 - AI.Z will never be effective for reducing

, variance.

' The Transformations and Information

Throughout the development of this research, the concept of'

statistical information and its usefulness in the discussion of variance

reduction has been stressed. The six classes of transformations are a

r"

V , mmm ~ m - -L - - d " m ... ,:'- . . ' '" '''''
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particularly useful breakdown of the possible transformations because of

the close association of each class with either the idea of increasing

the available information or making better use of information. As noted

briefly above, DR, DI, and SA transformations can increase information

in the simulation experiment. This is because f determines the(L.

information content of the initial sample (X) and R. controls how the

sampling effort is allocated. On the other hand, g and h determine the

information loss via transformation of the intial sample.

Transformations in the EA, EI, and AI classes can reduce the loss,

It should be noted that effective members of the EI class of

transformations have been extensively studied in the classical

statistical literature on optimality of estimators. Concepts such as

sufficiency and minimum variance estimators are results of this work.

Estimators using auxiliary information have also been studied in the

same manner.

II

.4

.- °
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I FIVE WELL-KNOWN VRTS

In this chapter five of the more well-known VRTs are reviewed in

I light of the framework developed in Chapters 3 and 4. The VRTs

considered are antithetic variates, common random numbers, control

* variates, stratified sampling, and use of conditional expectations. For

each a brief review of the literature is presented, along with a

* description of the VRT and graphical display of how the VRT is composed

* of members of the six classes of transformations. The purpose is not to

I propose a precise definition of these five VRTs, since the same names

are used for several variations. Rather, an attempt is made to present

the most widely accepted version of each technique. First, a symbol set

I is given to be used for graphical presentation.

SyblSet

Only three basic symbols are needed (see Figure 5.1). A rectangle

* will enclose a definition of an input, output, or statistic in the

simulation experiment. A circle denotes a class of transformations, and

* a trapezoid some prior knowledge used to make the application of the

transformation reasonable. The progression is from left to right,

r proceeding from a definition of some input, output, or statistic to a

* new definition via a transformation.

1' 4 '
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definition of random variables

Q class of transformations

prior knowledge

progression

Figure 5.1 Syrmbol Set for VPTs
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Recall that VRTs are composed of members of the six classes of

transformations combined with prior knowledge; given a specific problem

they can be implemented as algorithms. The presentation in this chapter

is on the VRT level.

Antithetic Variates (AV)

Antithetic Variates is a VRT that has been extensively studied in

the context of Monte Carlo estimation. The technique was invented by

Hammersley and Morton (1956), with further developments by Ham'mersley

and Mauldon (1956), Morton (1956), Halton and Handscomb (1957), and

Handscomb (1958). In its broadest sense, "we use the term antithetic

variates to describe any set of estimators which mutually compensate

each other's variations." (Hammersley and Handscomb, 1964, p. 61)

Statistical results such as

Var(Y +Y.) - Var(Y.) + Var(Y) + 2Cov(Yi,Y.) (5.1)

make clear the advantage of random variables being correlated.

Correlation may be inherent in the outputs of a simulation experiment.

However, AV attempts to force a correlation structure onto the
C.

observations while preserving their marginal distributions. The

correlation is usually accomplished by making them analytically

dependent. When an estimator consists of a sum of n random

observations, the antithetic-variates theorem (Hammersley and Mauldon,

1956, Handscomb, 1958, Wilson, 1979, 1982a, 1983c) shows that under

fairly general conditions the greatest lower bound of the variance of

the estimator can be approached arbitrarily closely by generating all n

,........... . .,,., . .,. .. ,. ,,:.:.............
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observations from a deterministic transformation of one random

observation. Texts that discuss AV in both the Monte Carlo and

simulation contexts include: Tocher (1963), Hammersley and Handscomb

(1964), Shreider (1964, 1966), Mize and Cox (1968), Meier, Newell and

Pazer (1969), Fishman (1973, 1978), Gaver and Thompson (1973), Hillier

and Lieberman (1974), Kleijnen (1974), Carter and Cashwell(1975),

Yakowitz (1977), Pritsker and Pegden (1979), Rubinstein (1981), Kohlas

(1982), Law and Kelton (1982), and Payne (1982). Research into the

application of AV in the simulation of stochastic networks has been done

by Burt, Gaver, and Perlas (1970), Burt and Garman (1971a, 1971b),

Sullivan, Hayya, and Schual (1982), Carson (1983), Grant (1983, 1980),

and Grant and Solberg (1983); Kumamoto, Tanaka, Inoue and Henley (1980a)

investigate Monte Carlo evaluation of fault trees. Moy (1965, 1971),

Page (1965), Gaver (1969), and Mitchell (1973) use AV for simulating

queuing systems. George (1977) looks at simulating replacement processes

with AV, while Fishman (1981, 1982a, 1982b, 19E5a) deals with simulation

of Markov chains and processes. Issues relating to the generation of

antithetic observations in various contexts are discussed in Fishman

(1972, 1974), Franta (1975), and Cheng (1981, 1982, 1983a, 1983b).

Combining AV and other VRTs is examined in Fishman (1974), Gentle

(1975), Kleijnen (1974, 1975); Schruben (1978, 1979), Schruben and

Margolin (1978), and Cooley and Houck (1982) incorporate AV and CRN (see

below) into the design of simulation experiments. Roach and Wright

(1977) correctly state that systematic sampling (SYS) plans are a subset.

of general AV sampling plans; see Madow and Madow (1944) for a reference

on SYS. Other papers of interest are Deutsch and Schmeiser (1980),

" -'..'- . . .. .' ". .",",. . , .... '.'.. . ..- . " ..%
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Fishman (1979, 1968), McGrath and Irving (1973a, 1974), Simon (1976),

Lavenberg and Welch (1978), Halton (1979), Rubinstein and Samordnitsky

(1982), Rubinstein, Samordnitsky, and Shaked (1982), and Wilson (1982,

1983a, 1983b, 1983d).

Consider estimating e1 using a simulation experiment defining

Y il gi1 (X (il)) i 1,2,...,I I  2n :'+

where E(Y ) - 6 , with statistic

I
1 

1
m Z Yi

Further, suppose that

X(i1) i.i.d f()(X (ii) (5.2)

The usual AV transformation is to redefine the joint distribution of

(X (2i-1,1 X(2 i,1)) ial,2,...,n

such that they still have the aarginals given in (5.2), but the pairs

are negatively correlated in some way. When X(il) is a scalar, or if AV

is only used on a scalar component of X(iI) , the correlation is most

often induced by generating realizations via the inverse cumulative

distribution function (cdf) of X(il) in the following manner:

X(2i-1, 1) F (1)(U i)

............ .
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X(2i,l) -F(1 UI )

where U U(0,1) i 1,2,...,n. When X(iI) is multivariate, there are

a variety of approaches and objectives. The reason for redefining the

inputs to be dependent is to cause

C~(2i-1 ,1 '2i,1 ) < 0!l

reducing the variance of Z via (5.1). Figure 5.2 shows how AV employs

the DI class of transformations.

Common Random Numbers (CRN)

Common random numbers is often called "correlated sampling" (CS).

There is some confusion because CRN is both a method for generating

correlated samples and a VRT that exploits induced correlation. "The

name of the technique stems from the possibility in some situations of

using the same stream of basic U(0,1) random variables to drive each of

the alternative models through time..." (Law and Kelton, 1982, p.350).

Here, the term CRN is used in the sense of CS, meaning that correlation

is induced (by whatever means) between certain inputs to obtain

positively correlated outputs, and the interest is in estimating a

parameter that can be exprelsed as a difference.

CRN has the distinction of being "...the only VRT that is as a rule

used by practitioners of simulation" (Kleijnen, 1974, p. 206). Papers

and books discussing various aspects of CRN include Kahn and Marshall

(1953), Jessop (1956), Conway (1963), Fishman (1968, 1974), Ignall

(1972), McGrath and Irving (1973a, 1974), Becker (1974), Kleijnen (1974,

................................-
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puts

~(2i-1,1)' X(2i,1)) " (2i-1,1)' X(2i ,1)) '.

if if DIf(.1)(1) " f:.()"

Itputs

il= gil(X(1l)) 
.

[1,2, ... I

tatistics

1-

Figure 5.2 Antithetic Variates (AV)
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75), Lavenberg and Welch (1978), Heidelberger and Iglehart (1978),

itsker and Pegden (1979), Rubinstein (1981), Gal, Rubinstein, and Ziv

981), Wilson (1982a, 1982b, 1983a, 1983b), Law and Kelton (1982),

hlas (1982), Banks and Carson (1983), and Bratley, Fox and Schrage

983). Gentle (1975) calls the technique control variates. Mihram

974), Heikes, Montgomery, and Rardin (1976), Schruben (1978, 1979),

:hruben and Margolin (1978), and Cooley and Houck (1982) investigate j
LCOrporating CRN into the design of the simulation experiment as a

Lndom block effect. The last three papers consider incorporating AV

,th CRN, as do Fishman (1974) and Kleijnen (1974, 1975). Wright and

imsey (1979) give a simple example of an inventory simulation where

3ing CRN gives counterintuitive results.

Consider estimating

eA - -~ -

2 3

sing a simulation experiment defining

YiL gi (X(i)) i 1 ,2,...,L 2,3

here E(Yi) at, with statisticit

1 2 1 3

1 3ZI 2 illi2 3 i=I .

2 3

Dr convenience assume that 1 - 1 . The basis for CRN is the well-

2 3,

" , .-,. .* -' '" .. "' .. . -. " '. - ," - . -' .- - ' .. -. .-. ".'v ' .. " . . . " . .-....-.
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relation

Var(Y -7) Var(Y2 ) Var(Y3) -2Cov(7 2,Y3)

idefining the joint distribution of (X( 2) X( 3)) i 2...I
that they are positively correlated--without redefining their

Lnal distributions--it is hoped that Cov(Y2 , Y) > 0, reducing the

ince of ZI. Several of the references cited discuss conditions and j
)ds that insure a favorable covariance term. See Figure 5.3 for a

ical presentation of this VRT.

F.

rol Variates (CV)

The term control variates has a variety of meanings. Here, it will

used to describe a class of statistics that attempt to correct the

e of an estimator based on the discrepancy between the value of a

nd estimator and the known value of its expectation. For example,

Y(1) and Y(2) be sets of output random variables in a simulation

riment, and a1 and s2 be scalar valued functions such that

E[Sl (Y(I))] M 61 E[s 2(Y(2 ))] =

e810 and m are real scalars; 81 is the parameter of interest and a

nown. The two most common CV estimators are the linear control

Zc  S I5(Y()) - b(s2 (Y(2 )) - a) (5.3)

e b is a constant, and the ratio estimator

,J'4

"-.i'"."- " " " "*. "-. -'..'-.'--"""""" "" ." ". . ". - --,. -.•.--.. . . . 2',
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F-1

F-11

~(2) (3) ()3

;s-

L,2

3t1cs

-~y

12
2

I E1 3
3

Figure 5.3 Coinon Pandom Numbers (cRN)
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s (YZ a 1 (54) :

2 (Y2)

ation s2 is the control variate. Both (5.3) and (5.4) extend

ly to multiple control variates, but that extension will not be

red here. Also not discussed is the determination of the

er b, except to cite several references. In the simulation

ure, a distinction is made between "internal" control variates

variables that are part of the same real or conceptual system)

ternal" control variates (random variables that are part of a

real or conceptual system). This distinction is not relevant

iince both types are simply functions of outputs in the simulation

Lent. However, external control variates employ a transformation

Le class DI, while internal CV does not.

)xtbooks providing general descriptions of CV for Monte Carlo

;ion are Hammersley and Handscomb (1964), Shreider (1964, 1966),

;z (1977), and Rubinstein (1981). Concentrating more specifically

iulation are Tocher (1963), Fishman (1973, 1978), Gaver and

in (1973), Kleijnen (1974), Pritsker and Pegden (1979), Law and

(1982), and Bratley, Fox, and Schrage (1983); see Cochran (1977)

icussion of CV in survey sampling. Use of CV in the simulation of

itic networks is investigated in Burt, Gaver and Perlas (1970),

Ld Garman (1971), Grant (1980) and Grant and Solberg (1983), while

;o, Tanaka, and Inoue (1977) apply CV to fault tree analysis.

irg, Moeller, and Welch (1977a, 1977b, 1978, 1982), Taaffe and

1983), Wilson (1979b, 1983e, 1983f), Wilson and Pritsker (1982)

.th CV in the simulation of queuing iystems. The selection or
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,a of the CV multipliers under various assumptions for linear

like (5.3) has received considerable attention; see for

Cheng (1978), Hopmans and Kleijnen (1980) and Koehler (1981).

Lnd Beale (1983) discuss verification of the hypothesis that the

ihip with the CV is indeed linear. Olkin (1958), Matern (1962),

977), and Isaki (1983) treat CV in the survey sampling context,

(1956), Swain (1981, 1982), and Swain and Schmeiser (1983)

Lte on Monte Carlo problems. Iglehart and Lewis (1979) consider

he general context of regenerative simulations. Initial

LOs of CV in simulations used a single, linear control. In an

survey paper, Lavenberg and Welch (1981) summarize results on

iltiple linear control variates. Rubinstein and Markus (1982)

iese results to estimation of multiple parameters with multiple

and Nozari, Arnold, and Pegden (1983) extend them to

alation simulation experiments. Other papers of interest are:

i and Ben Tuvia (1962), Moy (1965, 1971), Gaver (1969), Gaver

ler (1971), McGrath and Irving (1973a, 1974), Gentle (1975),

g and Welch (1978), Cheng and Feast (1980) and Wilson (1982b,

383b).

Dre describing the general characterization of CV an expression

variance of a function of two random variables will be derived.

ad Q be two real, scalar valued random variables with finite

Let

E[Q] = i 1,2

a function h(QI ,Q ) that is analytic at (yI ,'2) for all values
2 2l
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of Q and Q2 " Then to two terms, the Taylor series expansion of h about

this point is

2 ah(y1 ,y2)
hh(y 1 ,y 2 )h(Q1,Q2) -h(y Y2

) + Z (Qi - ) + R (5.5)
i=I 

2.

where R is a remainder term given by the next term in the Taylor
2 nre

expansion with h evaluated at an unknown point between yi and Qi - 1,2

for QI and Q2' respectively. Ignore this term for the moment. Using
E[Qi " i' (5.5) implies that ":

E[h(Q ,Q2 )] h(yI Y2 )

and

E[h 2(QIQ2) h h2(y I PY 2 ) 4°.

2 2 ah(y , y 2  ah(y P 2y:':

Z 3Q aQ Cov[QiQJ]
IV i1 j-l 1.

Combining these two gives

Var[h(Q1 'Q ) C2 £a(1'2 h¥Y)OoV[QiQ j  (5.6)""

Interestingly, to make (5.6) an equality only requires adding the term

Var(R2 ) to the right hand side.

Now, returning to the description given at the beginning of this

section, the CV estimator will be of the form

" -" ",. ' "-:" " - -:,. -:,.-',. , ,., , - - , , *' * * ''*', . *,--:, , . - .'.- .-. 5,: -.:.. .* . . .-
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zo -hs(Y(1)I'e2'Y(2)))

with the restriction that h(e1 ,a) e1. Assume that h is analytic. It

is clear that (5.3) and (5.4) are of this general form. Several authors

have noted that these two estimators are in the same general class,

including Kleijnen (1974) and 01kin (1983). ?'

Result:

Srhi 1h 2 h3Var(Zc) - 2var(s - Var(s + 2 - 2- Cov[ ,s

L 1 2 2s as2

where all the partial derivatives are evaluated at (e1,a).

Proof: In (5.6), identify s. with Q., 01 with y, and a with y2 •-- 1 3. 1

qed

Note that for the linear control, R.= 0. The result shows that

nonzero covariance between the estimator of the parameter of interest

and the control variate is usually necessary for CV to be effective.

The estimator s contains information about s,, in the sense that

uncertainty about the expected value of sI is reduced by knowledge of

s2  The covariance term represents this information. See Figure 5.4
2'w

for a description of how CV combines transformations from the El and AI

classes.

Stratified Sampling (STRAT)
Books discussing stratified sampling in Monte Carlo problems

include Hammersley and Handscomb (1964), Shreider (1964, 1966) and

Rubinstein (1981). In the context of survey sampling, see Cochran

2
~ ~ % V%% *~~** ***.**.**.~.** *.**-:
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* Inputs

x "f low
wI

Outputs

(y~~ Y C g(X)lo

Cov(y()

y
(2)

Statistics #0

*~A z! h__ _ __ _

E(y( (2)2

*1(

*tt

Figure 5.4 Control Variates (cv)
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(1977). Some books or chapters dealing with stratified sampling

specifically in systems simulation are Moy (1971), Kleijnen (1974),

Hillier and Lieberman (1974), Pritsker and Pegden (1979), Payne (1982),

and Bratley, Fox and Schrage (1983). Methods for setting stata

boundaries are examined in Delanius (1950), Delanius and Gurney (1951),

Sethi (1963), and Singh (1975a, 1975b, 1977). Papers of general

interest in simulation, Monte Carlo, and survey sampling contexts

include Ehrenfeld and Ben-Tuvia (1962), Moy (1965), Sardnal (1968), Burt I
and Garman (1971a), Bayes (1972), McGrath and Irving (1973a, 1974),

Gentle (1975), Hartley (1977), and Wilson (1979b, 1982b, 1983a, 1983b).

Kahn (1950a, 1950b) and Steinberg (1963) discuss it under the name

"quota sampling." For interesting application papers see Surkis, Gordon,

and Hynes (1975), Gordon and Hynes (1978), and Diegert and Diegert

(1981). DeGroot and Starr (1969) look at the problem from a Bayesian

viewpoint; the stratum means and proportion of the population in each

stratum have prior distributions.

Consider estimating 9 when it is possible to sample 11

observations of Yi1, where E(Y el, i 1,2,...,II. Thus, the crude

estimator of 81 might be

ZI  h h(Y(1)

l - ii "

Now suppose Y can be expressed as a transformation of (X X ) for i-k

il(i'i



90

some fixed column index k of X. For convenience write

Y gl (Xik) (5.7)

suppressing the X(i1 ). Assume that Xik are i.i.d. random variables for

all i, and that the range of X can be divided into n nonoverlapping,

ik

exhaustive intervals (strata). Denote these strata by

L. , j - 2,...,n+1. An equivalent way to view (5.7) is
"J-:

Y ij gij(Xk) j 2,...,n+I i = 1,...,T

th
such that Y.j is the i observation of Y when Xmk E L, and

n+1SI. =1 -'Io

j=2 j

Now, if pj - P(x E Lj) is known for all j, and if the values of

I. , j - 2,...,n+I can be fixed arbitrarily, then the STRAT estimator

Z' h' (Y )
1 1 M)

n+1 ' J
II

may have smaller variance that Zi, depending on the allocation I'.

Allocation strategies will not be discussed here (see for instance,

Cochran, 1977), but if proportional allocation (Ij - I1Pj) is used then*

.--



91

Var(Z' 1) < Var(Z)-

(Rubinstein, 1981). Note that if I. is not altered then the VRT is

known as poststratified sampling. See Figure 5.5.

Conditional Expectations (CE)

Conditional expectations is often called "conditional Monte Carlo"

(CMC). However, CMC is a sampling technique originally developed by

Trotter and Tukey (1956) to "use a family of transformations to convert

given samples into samples conditioned on a given characteristic (p.

64)." The original C0C was not inherently a variance reduction

technique, although when used as one it is most closely akin to

importance sampling (Dubi and Horowitz, 1979). Here, the term

conditional Monte Carlo is reserved for the original sampling technique.

Other references include Arnold, Bucher, Trotter, and Tukey (1956),

Hammersley (1956), Wendel (1957), Hammersley and Handscomb (1964),

Granovsky (1981), Rubinstein (1981), and Wilson (1983b).

The use of conditional expectations (CE) will be described as the

term is used by Law and Kelton (1982). Fishman (1973) and Pritsker and

Pegden (1979) refer to it as use of "prior information"; Carter and

Ignall (1970, 1975) use the term "virtual measures." Brown, Solomon, and

Stephens (1979) use CE for estimating the expected number of renewals in

LO,tj for a renewal process, while Andrews, Bickel, Hampel, Huber,

Rogers and Tukey (1972) employ conditioning in Monte Carlo estimation of

location parameters. Lavenberg and Welch (1979) surveys applications of

CE. Other papers of interest are Kahn (1950, 1956), Kahn and Marshall

, ..~ 'S . . . .. ... ..
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Inputs
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i --- 1,2,...

i<

Outputs

Y = gij(Xk)  Y = giJ(Xk)

,J 2,3,...,n+ = 2,3,...,n+1i = 1,2,...,I "1. = 1,2,..., .['

n+1 n+1
J=2 j 1 J=2 I 1

Pj"-,

Statistics

Z, y Zp E
J=2 i-1i 1 -J=2 P1  i :i

I-i

".."

Figure 5.5 Stratified Sampling (STRAT)
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(1953), McGrath and Irving (1973a, 1974), Gross (1973), Simon (1976),

Lavenberg and Welch (1978), and Wilson (1982, 1983a, 1983b). The latter

paper by Wilson compares CMC and CE. Fox (1983) establishes conditions

that guarantee effectiveness of CE when based on correlated outputs; see

also Bratley, Fox and Schrage (1983).

Consider estimating 01 using a simulation experiment defining

Yil , gi1 (ii) '"

where E(Y.l) - 01, with statistic

I 1

(Y( h 1y r.Y (5.8) ,

However, suppose there is another output random variable

Yi2 i 1,2,...,12 and

E[Y I "i2 - 12-

can be calculated for all realizations yi2 of Yi2' Here Y is generic

for any of Yil" Based on the well-known relation
i,%*

Var[E[Y 1 Yi2 J] Var[Y 1] - E[Var[Y1 :Y. 2 ]

use the estimator

12 [ 1 "h (Y -- y ,li (5.91)-
) 12 i,1 i2

The estimator (5.9) is unbiased for 01, and if the Y are independent

then it has no greater variance than (5.8) if 11 12 See Fox (1983) F

. . .%

.. ,. .
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for more general. conditions. However, CE is often employed when

1I > I,, such as when Y, are results of "rare events." Clearly the

estimator (5.9) may be based on a vector of outputs, not just a scalar

Y Note that Y has not been redefined, but rather other outputs in

the simulation experiment are used. CE is shown in Figure 5.6.
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CONCLUSIONS

Although the research presented here may seem remote from actual

problems, it should have ramifications on practical simulation

experiments- Conversations with practitioners indicate that, with the

exception of the most simple applications of AV and CRN, variance

reduction techniques are seldom employed. This is due partly to a lack

of knowledge and understanding; to the casual student of simulation,

variance reduction appears to be a collection Of special purpose

techniques that need to be red erived for each application, The

existence of an underlying theory and a small number of elemental

transformations provides structure not previously available. This

structure should facilitate coherent instruction in variance reduction

and also provide common ground for reporting applications that take

place. The distinction between transformations, VRTs, and algorithms is

central: 1) The six classes generate all of variance reduction, in a

sense providing a checklist of possible approaches to take based on what

prior knowledge is available. 2) Graphical presentation of VRTs

(Chapter 5) provides a clear description of general VRTs, what knowledge

is commonly needed to "make them go," and yet does not relate them to a

particular application. 3) Algorithms, the problem specific part, do not

seem as ad hoc when they are just examples of general methods and even
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more basic transformations. The definition of simulation experiments

(Chapter 3) not only provides the structure needed to prove the results

of Chapter 4, but also structures the thinking of the experimenter,

helping him to recognize prior knowledge that can be exploited.

The research presented here depends heavily on the usefulness and

validity of the lefinition of simulation experiments; this definition is

consistent with the general idea of an experiment in probability and

statistics, and appears to be broad enough to encompass Monte Carlo

experiments and survey sampling. We suspect that the characterization

covers any "sampling experiment," but do not know how to prove such a

conjecture. The terms and definitions used are well-known statistical

objects: sample spaces, events, probability distributions, and

transformations. The formal definition permits investigation of issues

such as experimental design, restrictions on sampling, efficient

estimation techniques, and the trade off between variance and bias. An

unexpected bonus is that numerical techniques and analytic solutions are

special cases. Finally, the axioms are few and reasonable: the

experiment is relevant to the estimation problem, and the experiment can

be performed.

Other approaches could have been taken. The definition ignores

issues of model validity, implementation of computer algorithms, and

numerical limitations of the computer. It is often useful (as a

modelling perspective) to view a computer simulation as a stochastic

process, but our definition does not do so. In variance reduction we

are concerned with statistical properties of estimators in a sampling

experiment, and we capture that aspect.

-7, 
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useful, for instance. The implications of the various equivalence

relations for simulation experiments also appears to be an interesting

area for future research.
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Recent research in the area of variance reduction has emphasized

the application of VRTs in specific, but hopefully Itroad classes of

problems. Attempts have been made to specify rather weak conditions

under which a variance reduction is guaranteed. We hope that our

research will accelerate the effort, making it possible to derive even

more general conditions for even broader classes of problems. The

ultimate achievement, which is probably not possible, would be necessary

and sufficient conditions under which application of each class of

transformations would achieve a variance reduction.

As mentioned above, the definition of simulation is quite broad in

scope. Certainly the inclusion of survey sampling should be studied

* more thoroughly. By having such a general model of sampling

experiments, defining the differences between particular cases such as

"systems simulation," Monte Carlo, and survey sampling is possible. For

instance, McGrath and Irving (1973a) stated that simulation experiments

can be viewed as Monte Carlo estimation problems like (2.2). The

definition reveals why this is sometimes difficult. In systems

simulation the integral might be of the form:

S' ,g(x)f(xl)dx
A

where S is a function of g(x).

To attack the problem of determining necessary and sufficient

-* conditions for a transformation to be effective, the theory of

statistical information might be a key tool. An investigation of the

types and value of different kinds of auxiliary information is in order.

" The result in Chapter 5 demonstrates that linear correlation can be

'
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