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MASKING OF LIGHT SCATTERING INFORMATION ON

MATRIX ELEMENT_ 7'OM COMPLEX SCATTERING

1. INTRODUCTION

There is one overpowering question concerning light scattering as a

diagnostic tool: How good is it? For virtually every other diagnostic

technique--PIXE, neutron activation, ESCA, x-ray fluorescence, emission

spectroscopy, nuclear magnetic resonance (NMR), chemistry, etc.-- the range of

sensitivity, specificity, resolution, and discrimination is well-known. Many of

these techniques produce signals exactly proportional to the "amount" of a

specific parpmeter over many orders of magnitude. In addition, the signals are

often traceable through exact theory to fundamental constants. This makes
them valuable as diagnostic tools.

When we began this work no such assessment existed for light
scattering data. Perfect systems with known optical constants--refractive

index n1 , absorption n 2 , and size R--are special. They generate light

scattering signals exactly predicted by theory which often can be inverted to

yield n 1, n2 , and R exactly. Studies of such systems can be considered

"fundamental research" because all observables can be traced to fundamental

optical, electrical, and geometrical constants--refractive indices,

permittivities, dielectric constants and radii. However the motivation for such

studies soon "runs out of steam" when there seems no need to further test

Maxwell's equations, the speed of light, or pi.

However, as the perfect systems shift gradually to imperfection

(irregularity), theory is driven to approximation and finally to complete

fantasy where prediction of even the most complete properties of the scatterer

and scattering system are suspect. This situation exits because it is

experimentally difficult to get a perfect particle system "with a knob on it"
to adjust its parameters in an exactly known way while observing its light
scattering signal. Nevertheless, this is where the greatest amount of work

needs to be done--how to generate exactly known, imperfect, irregular, and

complex systems whose properties are still traceable to fundamental constants.

These scatterers belong to the real world.

We found a way to solve this problem. Our system is exactly

solvable theoretically, attainable experimentally, and complex--but exactly

known. We know that inverted signals do not yield the correct optical

constants, but we can find out exactly how close they are. This final report
describes some results of our attack on this universally important question.

We are convinced that this research has shed more light on the

validity of light scattering as a diagnostic tool than any theoretical
approximations or extensive experimental studies of uncharacterized, complex,

irregular particles and particle systems.

Our research dealt with the effects of electromagnetic radiation on

small particles (0.01 micron < r < 20 micron) of the order of the wavelength

of the incident radiation they scatter (0.4416 and 0.6328 micron).

9



Our approach used the concept of masking where certain properties of
light scattering signal can be camouflaged, obscured or completely covered

p by another. At our disposal are the optical and physical constants n (real
efractive index), (absorption) and r (radius) of perfect spheres and fibers.
e also investigate scattering signals from irregular particles and mixtures of
erfect particles with exactly known concentrations N1 , 2, ... N i . In general,
ur approach has been to slightly perturb erfect experimental systems exactly

escribed by theory while following the perturbation's effect on the light
cattering curve. The more gentle perturbations are reversible and produce
inear responses to the light scattering curve, while the more severe ones
iight be irreversible and produce non-linear responses. In all cases we
ollow the light scattering response as a function of the perturbation
trength to relate a signal to a particle property.

Our approach to the problem is summarized with the help of the
hree particle axes shown in Figure 1. The most obvious place to start a light

cattering study is at the origin which represents a Rayleigh particle. This
iystem can be easily solved exactly on the back of the proverbial envelope.
s we move out along the "perfect particle" axis, the sphere systems become
iore complicated. "hey become larger, hollow, layered, elliptical and finally
od-like (fibers), but still remain exactly, theoretically solvable. This means
hat electromagnetic theory, coupled with the well-defined geometrical

,article boundaries, and optical constants will exactly predict the light
cattering signals (all matrix elements S3j as a function of scattering angle).
iowever, even here, the light scattering signals, when inverted, will not
.lways yield the correct optical constants or be unique.

The inability to solve complex systems is not due to the fact that
heir boundaries are difficult to define mathematically. This is illustrated
iy the geometrically perfect particles along the Y axis. A curb can be defined
iy one geometrical constant as can a sphere. Yet scattering from a curb
!annot be solved exactly in the same way that spheres can. The other
;eometrical particles along the Y axis (pyramids, hexagons, etc.) suffer from
he same problem. Here theory is not exact and inversion of light scattering
lata from such particles would not uniquely describe the particle. Note that

oarticles located on the X-Y plane are even more complicated.

In order to get a particle system "with a knob on it," we developed

he particle systems indicated along the Z axis. They are p2here mixtures
thich are characterized by three very important and useful properties:

a. they can be solved exactly theoretically

b. they can be created exactly experimentally

c. inversion of the data cannot yield the parameters which
describe the system

Since light scattered by a system of spheres is simply the sum of

;he light scattered by each individual sphere, the light scattering signals
.rom such mixtures are exactly predicted. Only when the mixture is a one-

-omponent sphere system will the inversion be unique.

We studied such systems to find how effectively certain particles
ind particle features could be masked or destroyed by the presence of other
)articles. We determined which matrix elements Sij are sensitive to masked and

to
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The other curves of Figure 9 show the response of the matrix
elements as the sphere size decreases to approach the Rayleigh limit. The
number of oscillations and their amplitudes decrease as R decreases to R =
0.30 (thick solid line) and then to R = 0.15 (thin solid line), where the only
deviation from the purely symmetric final Rayleigh Sij curve (dotted line) is a
small hump in the backscatter region.

Figure 10 shows the matrix elements for the same R = 0.6 micron
(Mie) sphere particle approaching the Rayleigh-Gans region. Here the
refractive index difference between sphere and medium approach zero from n 1 (s)
= 1.128 (ragged line) to n1 (s) = 1.032 (thick solid line) and then to n 1 (s) =
1.002 (thin solid line). In this case, the number of oscillations remain
essentially constant (R is constant) while the envelopes of the curves
approach the well-known Rayleigh limit. The remaining phase information, which
is indicative of particle size at small ni(s), appears as sharp spikes at well-
defined angles.

Matrix element S 1 1 is especially interesting. The Rayleigh-Gans
limit deviates drastically from the Rayleigh limit which is smooth, symmetric
about 900, and almost constant in intensity. In contrast to the Rayleigh curve,
it contains its original phase information whose amplitude now varies by
several orders of magnitude. In addition, the backscatter intensity is down by
many orders of magnitude compared to the forward scatter.

It is also interesting to observe the behavior of S3 4 at the
Rayleigh-Gans limit as the index difference n1(s) - n1(M) goes from positive
value, through zero to a negative value. At both the Rayleigh and Rayleigh-
Gans limit, S 3 4 is zero. However it undergoes phase change as it passes
through zero, as shown in Figure 11. Here the medium index n(M) is 1.000.

The dotted curve is S 3 4 for n(s) 1.004 with nl(s) - n 1 (M) = +0.004.

The solid curve is S34 for n 1 (s) 0.996 with n1 (s) - nl(M) = -0.004.

Note that the two symmetric cases do not create signals exactly
symmetric about the zero polarization axis. This asymmetry persists even as
the index difference goes to zero.

The actual Rayleigh-Gans approximation for spheres evokes the
condition that the sphere and medium indexes are almost equal but that no
reflection occurs at any surface. This approximation perserves, in the limiting
case, only the envelopes of the Sij but not the phase information. The Sij
signals generated above are the exact signals for Rayleigh and Rayleigh-Gans
particles calculated from exact Mie theory. They contain no approximations
and therefore carry the phase information into the limit.

2.3 Two-ComponentSphereSystems sAveraOptical Constants
and the Mas_n& of S Information.

In this study we examined how the presence of one particle affects
the light scattering signal from the other. We still consider independent
scattering. When the two components (1) and (2) are identical particles, the
light scattering signals from each are identical at all angles. Sij(1) =Sij(2).

When the components are different, each particle will scatter but in

25
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S33, and S3 4 by the total intensity S 1 1 . The final curves are summarized by
the dotted lines in Figure 8. They represent the "starting point reference
curves" for all light scattering curves from particulates. They form the
baselines from which curves for larger particles grow and to which curves
from complex systems might approach. These curves are independent of particle
size, shape, and orientation for individual and collections of Rayleigh
particles that scatter sin& e and independently. For non-independent and
multiple scattering from even small particles, these curves will appear
slightly distorted. It is proper to consider that the Rayleigh curves contain
no phase information. Oscillatory phase information, which is truly indicative
of larger particles and responsive to particle size changes, appears on these
curves only for larger particles. The solid lines of Figure 8 show, for
example, the four nonzero matrix elements for larger r = 0.30 micron Mie
sphere illuminated with 0.4416 micron laser light. It is easy to see how the
oscillatory structure developed out of the smooth Rayleigh curves. It is also
apparent that the phase information characteristic of larger sphere systems
can be destroyed by polydispersivity. Therefore, smooth curves do not imply
Rayleigh particle scattering.

2.2 The Rayleigh, Rayleigh-Gans and Mie Spheres.

Mie theory, which predicts sphere scattering exactly for all size
spheres, can be approximate in two regions where optical and geometrical
constants approach a limiting case.

One region is the Rayleigh region where the size of the particle is
considered to be very small compared to the wavelength of the scattered
radiation. This approximation permits the small sphere (or any particle) to be
treated as an electric dipole. The incident oscillating electric field is
essentially constant over the entire particle.

The other is the Rayleigh-Gans region where the sphere can be large
but where the refractive indexes of the sphere n1 (s) and that of the
surrounding medium n1 (m) are considered to be almost equal so that n1 (s)-n1 (M)
= 0 or nl(s)/nl(M) = 1.

We investigated the response of the matrix elements as a large Mie
sphere is extended into the Rayleigh region by letting its radius R go to zero,
and into the Rayleigh-Gans region by letting n1 (s)-n1 (M) go to zero.

Rayleigh signals from small particles, which are very common
physical scatterers, are well known. Rayleigh scattering is responsible for
the blue sky, red sunsets, and other atmospheric phenomena. The Rayleigh-Gans
limit is not as common in nature since very few particles have refractive
indexes close to air (or vacuum). However, Rayleigh-Gans behavior is
extremely important in biology and oceanography where macromolecules, protein,
eggs, and cells in water can have indexes very close to that of water. In
fact, Rayleigh-Gans phenomena are the reasons why some cells are almost
invisible, and sometimes disappear in solutions under microscope or in light
scattering experiments.

For a starting point, the jagged lines of Figure 9 are the four
nonzero matrix elements for large R = 0.60 micron (Mie) sphere with refractive
index nl(s) = 1.128, n2 = 0.0, immersed in a medium with n1 (M) = 1.0, and
illuminated with 0.4416 micron light. These four curves contain the well-known
phase information that exactly characterizes the sphere in terms of its
optical and geometrical properties.

22
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2.1.5 The Matrix Element S3 3.

Matrix element S3 3 is determined from four measurements, as
indicated in Figures 3 and 4. Figure 7 shows the optical arrangement of the
four polarization combinations needed for the measurements described below.

a. Measure I(++) S 11 + S13 + S31 + S3 3  (+45 goes to +45)
b. Measure I(+-) S + S13 - S S (+45 goes to -45)

Then Subtract V(.) +(-) :S31 + 33)
c. Measure I(-+) = S11 - S13 + S31 - S3 3  (-45 goes to +45)
d. Measure I(--) = S1l - 313 - S31 + S33  (-45 goes to -45)

Then Subtract I(-+) - I(--) = 2(S 3 1 - S3 3 )

Finally, compute [I(++) - I(+-)] - [I(-+) I(--)]
[I(++) + I(--)] - [I(-+) + I(+-)] 433

The resultant "intensity" curve for S33 therefore varies as cos%. This curve
is related to the +45 - -45 polarization function for dipole radiation.

2.1.6 The Matrix Element S 3 4.

Matrix element S3 4 , involving circularly polarized light, is
determined by the four measurements indicated in Figures 3 and 4. Applying the
same procedure described for S3 3 shows that S3 4 for small Rayleigh particles
is zero. By definition they are too small to evoke any geometrical or optical
path difference between any extreme rays that they scatter. Larger spheres
have a nonzero S3 4 matrix element.

2.1.7 All Other Matrix Elements Sjj.

All other matrix elements for Rayleigh spheres are either zero or
identical to ones just calculated. This can be easily shown by applying the
same procedures described above.

2.1.8 The Light Scattering Matrix for Spheres.

We conclude our discussion with some comments about the light
scattering matrix for spheres in general, regardless of refractive index and
absorption. These comments are valid for individual sphere mixtures and
polydispersed systems.

1. For all spheres, S11 = $229 S12 : S21 , S33 2 S4,
and S3 4 = -S 4 3 with all other matrix elements Sij = 0.

2. For all spheres, S12 and S3-4 are always zero at 00 and
1800. S3 3 is 100% at 00 and -100% at 1800. These bounds
hold regardless of how the Sij curve may fluctuate between
00 and 1800.

3. For Rayleigh spheres, S11 and S12 are symmetric while S3 3
is antisymmetric about 0 = 900. S34 is zero everywhere.

The four Rayleigh matrix element curves calculated above can be
converted directly into the well-known polarization curves by dividing S12,

20
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A previous paper calculated the functional relationships for the
various matrix element sums (intensities) that occur when the "scatterer" is a
non-scattering perfect linear polarizer, circular polarizer, or quarter wave
plate. These results calibrate the scattering instrument and establish a
"frame of reference" for a real scatterer which will behave in part like a
linear polarizer, quarter wave plate, circular polarizer, etc., and perhaps like
mixtures of them.

2.1.2 Scatterers and the Scattering Matrix.

Scatterers [S) can be divided into three categories: (1) small

Rayleigh spheres, (2) large Mie spheres, and (3) polydispersed, nonspherical,
irregular, random-oriented particulates. The scattering intensities and
polarizations from the first two perfect sphere systems can be calculated
exactly from Maxwell's equations and electromagnetic theory. This report
shows how to predict the experimentally measured matrix elements for a small
Rayleigh sphere using only knowledge about the electric fields and intensity
distributions for a driven dipole radiator and the effect of polarizers on the
incident and scattered light. This procedure gives insight into the scattering
process and demonstrates how polarized intensity measurements are used to
calculate matrix elements. The Rayleigh curves are fundamental, easy to
calculate, and represent the starting point for studies of larger and irregular
particles. The following procedure uses the optical setup of Figure 2 to make
the measurements described in Figures 3 and 4.

2.1.3 The Matrix Element S 1 1 .

Matrix element S1 1 is determined from the single measurement of the
0-dependent total intensity scattered from a scatterer illuminated with
unpolarized light. The exact intensity function for a Rayleigh particle is I
k(1 + cos2 0), which in this special case is independent of frequency. Figure 5
shows how this function would be measured by the optical system shown in
Figure 2. Note that as the open hole and detector scan from 00 to 1800, the
measured intensity I(00), as plotted on a strip chart, will be exactly I = k(1 +
cos2e). The small intensity dip at 900 shows that a small Rayleigh sphere
scatters unpolarized light almost isotropically.

2.1.4 The Matrix Element $12.

Matrix element S12 is determined from two measurements. The total
scattered intensity must be measured for the scatterer, illuminated first with
a horizontal and then with a vertical linear polarization. Note from the two
optical arrangements shown in Figure 6 that as the open hole and detector are
scanned 1800 for horizontally polarized illumination, the intensity measured is
I = I(o)1/2(1 + cos26) = (S 1 1 + S12). When they are scanned for vertically
polarized illumination the intensity is I 1(0) = (S1 1 - S1 2). From Figures 3
and 4 we see that 2 S1 2 = [($11 + S1 2 ) - (S 1 1 - S 12 )], which is the same as
I(vo) - I(ho). The resultant "intensity" curve for S12' therefore varies as
-sin 6. This curve is the horizontal-vertical polarization function for dipole
radiation.

riickel, William S, and Bailey, Wilbur M. Stokes Vectors, Mueller Matrices
and Polarized Light Scattering. Unpublished data.
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The following example shows how to determine what scattering matrix
elements Sij are involved when a particular set of input-output polarizers are
used to prepare and analyze the scattered light. We assume that the arbitrary
scatterer [S) is illuminated with horizontally polarized light Ihi. The
scattered Stokes vector will be IVs1 = [SI*Ihi. In terms of the specific
Mueller matrices and Stokes vectors involved we have

SI] * IhI I Ivs

$11 S12 $13 S14 1 Sil + S12

S21 S22 S23 S24 1 $12 + S22
(1)

S31 S32 S33 S34  0 S13 + S32

$41 S42 S4 3 S44, 0 $14 + S42

We see that the scatterer [S] mixes the initially pure polarization
state lhi to produce a scattered Stokes vector with mixed polarizations. In
addition, each Stokes component is now a mixture of two matrix elements. The

*first component (S11 + $12) is the total intensity.

If this scattered light is now passed through a +45 linear polarizer

[+], we get [+]*IVsl IVfi, which will be detected by the detector. Specifically
we have:

[ 1 * 1Vs1 IVfI

1 0 1 0 S11 + S12 S11 + S12 + S31 + S32

0 0 00 S21 + S22 0
(2)

1 0 1 0 $31 + $32 $11 + S12 + S31 + S32

0 0 0 0 S4 1 + S4 2  0

The first component of the final Stokes vector is now a mixture of
four matrix elements. The first element sum ($11 + S12 + S31 + $32) has
special experimental significance since it is the total intensity that will be
measured by the detector.

We put the results of all such calculations for all 16 Stokes vector
combinations into a final matrix array shown in Figure 3. Each matrix element
lable Sij is in the uppermost left-hand corner of each matrix element block.
The symbols to the immediate right of Sij represent the kind of light involved
in the measurement. Symbols below the dotted line in each box show the
complementary orientations of the input-output polarizations. The actual
matrix element combinations involved in that intensity measurement are given
on the right of each symbol pair. Each matrix element sum is the intensity
measured using a particular input-output polarization combination. S11 is
determined with one measurement. The matrix elements of row 1, column 1 need
two measurements, while all the others need four. Therefore 49 e-dependent
intensity measurements are needed to uniquely determine the 16 e-dependent
matrix elements which completely characterize the scatterer. They are

displayed in Figure 4.
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perturbed features and which ones best yield the correct optical and physical
constants. We also applied various analytical techniques to detect the masked
particle or particle feature near detection threshold. Such studies can tell
how much light scattering information must be gathered to get an accurate
description of the scatterers--which matrix elements and what 0-range contain
the most useful information.

Our first studies dealt with perfect spheres and fibers for which
the errors and uncertainties could be related to fundamental constants. Our
later work dealt with the more complex problem of sohere mixtures and finally
irregular particles and irregular particle systems. Although the conclusions
we draw are often very system-dependent, the techniques we developed can be
used to directly assess the accuracy of the optical and physical constants
obtained from light scattering data from many real-life systems. Since
virtually all light scattering (environmental, biological, astronomical,
physical, industrial, etc.) is from non-perfect systems, this approach has
special significance, and the results have special value for the analysis of
real and natural scatterers.

2.1. Mueller Scattering Matrix Elements for Rayleigh Spheres.

All 16 elements of the Mueller light scattering matrix for a
Rayleigh sphere can be predicted from systematic application of the input-
output polarizers used to measure scattering intensities from a classical
electric dipole. A careful examination of dipole scattering gives good insight
into the origin and interpretation of each matrix element.

2.1.1. Introduction.

In a previous paper we described the most general light scattering
* experiment and derived the general Mueller scattering matrix elements Sij in

terms of the input-output Stokes vectors required to characterize the
scattering process. A particular light scattering data point is generally
nothing more than the value of a particular matrix element measured at a
particular angle. Of the infinite number of angles and polarization

- combinations to choose from, only a small number of highly motivated
"" measurements is needed to completely characterize the scatterer.

The experimental setup that can measure the polarized intensities
scattered by the scatterer [S] into the angles 0 and 4 is shown in Figure 2.
The input optics can be selected to be: an open hole [0], a horizontal linear
polarizer Ihi, a +45 linear polarizer [+], or right-hand circular polarizer (r).
The exit optics choices are the same and can be chosen independently of the
input optics. In addition, they can be swung with the detector through the
scattering angle 0 from 00 to 1800. These choices are sufficient because only
three definite Stokes vector components are needed to uniquely establish the
polarization states of the beam. They are linear polarization (relative to any
axis), a linear polarization at 450 to the first axis, and a left- or right-
handed circular polarization. These 3 * 3 input-output combinations make a set
of nine polarization measurements. In addition, the scatterer [S] can be
illuminated also with completely unpolarized light (total intensity) and the
total intensity output can be measured. Therefore, 16 possible input-output
Stokes vector combinations must be measured in order to get the total
information about the scatterer.

12
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competition with the other. The resultant Sij(1,2) will be determined by the
intensities scattered by each component at angle 8 as well as the degree of
polarization at angle 0.

The total intensity S1 1 (T) will simply be the sum S 1 1(1) + S 1 1 (2) of
the individual intensities. The other Sij(T) for the combination which involves
polarizations are not simply the sums but depend on what intensity a
particular polarization resides on. The polarization of the particles that
scatter more light will dominate the polarization of the mixture. For a two-
component system of particles (1) and particles (2) we can write:

1 P2 = (3)

P(I) - =r + (I +(r (t+q) r A
(It.+ ,r) + (It + 1r) I + I

1 1 2 2 1 2

This shows that if a particle with high polarization does not scatter
much light, its contribution to the polarization P of the system will be low.
For example, if P(1) = 100% with Si1 = 1 and P(2) = 3% with S11 = 300 the
polarization P(1,2) for the system will be only 3.32%, i.e., dominated by the
"brighter particle." This kind of normalization is taken into account in all
calculations of Sij involving many spheres.

Using these normalization procedures we investigated the role of
"average optical constants" for a two- (or more) component system. In our
first experiments, we concentrate especially on the concept of average
absorption, which is one of the more controversial optical constants for
mixtures and complex scattering systems. Figure 12 shows the accuracy to
which the four matrix elements are able to predict the average absorption
n2 (av) of a two-component sphere system. For this study we chose the
following system:

Two-component sphere system (1) and (2)

R(1) = R(2) = 0.40 micron
N(1) = N(2) = total number of spheres
n1 (1) = n1 (2) = 1.10 (the refractive index)
n2 (;) n2 (2) 0.10 (the complex part) n* = n I + in 2

To generate the S 1 1 curve labeled n2 (av) = 0.05, we first generate
the matrix element curve for the two-component mixture with parameters given
above, but specifically with n 2 (1) = 0.00 and n 2 (2) = 0.10. The resulting
S 1 1 (1,2) matrix element curve can be characterized with an average absorption
of n2 (av) - 0.05. This curve was then compared to single component S11 matrix
element curves each having definite absorption n2 which r~n from 0.0 to 1.2.
For each value of absorption, the absolute difference Sij(n 2 av) - Sij(n2 ) = A
of the two matrix elements was calculated. For example, as absorption n2 ran
from 0.0 to 1.2, the single S 1 1 curve labeled 0.05 was generated. Similiar
procedures were followed for all other matrix element curves of Figure 12.

In general as n2 increases, all curves decrease in value to a
minimum (not zero) and then increase again.
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We note that the best fit occurs when n2 (av) of the combination
equals n2 of the single component system. This occurs for all curves and for
all Si- We note also that better fits occur (x is smaller) for higher index
partices. In general, all S give a decisive "best fit" at the value where
n2 (av) = n2 , although the fi is not perfect. It is interesting that S 3 4
actually increases its x while S12 for large n2 (av) remains flat initially as
n2 (av) approaches n2 . We find in general that the average value for absorption
is more accurate and meaningful than the average value of refractive index.

In our second experiment we studied the properties of marking of a
two-component sphere system. To do this we generate the masking curve shown
in Figure 13.

Consider a mixture of two perfect spherical systems:

System (1) = r(1), ni(1), n2 (i), N(1) (spheres)
System (2) r(2), ni(2), n2 (2), N(2) (spheres)

We make mixtures of the above systems in the following ratios:

R N(1) 0 1 1 1 1 1 2 4 512 1 N(1)
N(2) I 512 256 128 2 1 1 1 1 0 N(2)

and then calculate and measure the combination matrix elements Sij(c) for each
mixture ratio N(1)/N(2). Note that N(1)/N(2) = 1/0 corresponds to the single
particle system with matrix elements Si(1) for (system 1); N(1)/N(2) = 0/1
corresponds to the single particle system with element Sij( 2 ) for (system 2).
All other N(1)/N(2) represent a mixture of the two pure systems with various
ratios represented by matrix elements Sj(c) for the combination. As described
above, the combination matrix elements must be properly normalized to account
for each component's contribution to the total intensity and polarization.
Finally we compute the difference:

A=E1 5  (6) - Sc (6)l (6)Iii ij
for all 0 for each matrix element and plot A as a function of R. The final
masking curves obtained are shown in Figure 13. Note that adding particles of
system 2 to system 1 generates the masking curve going from left to right, as
indicated by the arrows.

Interpretation.

Observe the ratio for which AE crosses each masking curve. Where A
lies below the experimental detection limit, the region to the left of the
vertical dotted line, system 1 particles completely mask system 2 particles.
In the region to the right of the dotted line, system 2 particles completely
mask system 1 particles. AE represents the experimental limit of resolution
((horizontal) dotted line at AE) and must be established for a particular set
of measurements.

The masking curves and the line AE established the range of
experimental detection of the two particle systems. For example, a
concentration N(1) of a single particle system 1 made up of identical particles
with parameters r(1), n(1), u(1) will yield a matrix element signal Sij( 1 ) for
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(system 1). This is the starting point, represented by R 0/1 on the left side
of Figure 11. This system, when contaminated, with N(2) identical particles of
system 2 having parameters r(2), n(2), u(2) will yield matrix element signal
S. (2) for (system 2). However, Sij(c) will not be different from Sij(1) until
N(8) is large enough to affect the light scattering curves. Therefore, below
the threshold ratio S i(c) = Sij(1) at all angles, and no information about N(2)
can be extracted from the combination matrix element signal Si (c). In this
case, particle system 1 completely masks particle system 2 and ij(c) = Sij(1)
for (system 1). System 2 is invisible.

As system 1 is contaminated with particles of system 2, by adding
particles of system 2, the Sij(1) for (system 1) will change gradually to the
combination matrix element Sij(c) for (system 1 plus system 2) and begin to
carry information about system 2 also. Now A > AE. The masking curve, as a
function of the ratio R = N(1)/N(2), increases going left to right as R
increases.

Further contamination of system 1 by system 2 will gradually make
the combination matrix element Si (c) look like the one for system 2 and
finally cause Sij(c) to become exac ly S (2) for (system 2). When this occurs,
particle system 2 completely masks partcle system 1 and Sij(c) = Sij( 2 ) for
(system 2). Now system 1 is invisible. Regions of complete masking are
characterized by the plateaus (zero slope part) of the masking curve, since
addition of even more particles will not change the shape of the Sf 1 . Note
that if, for a particular matrix element Si, A > AE for all ratios, tha matrix
element will be insensitive to the presence of either particle.

Figure 14 shows the four light scattering curves from a two-
component sphere system as a function of relative concentration. The system
containing mostly large spheres is characterized by the Sij for 0.7 micron
spheres. As more and more small 0.3 micron spheres are added to the system,
the original Sij gradually lose phase information and finally become equal to
the Sij for 0.3 micron spheres. At certain angles, where both particles have
the same polarization, all curves pass through the same point. These crossing
points are independent of the population ratio and do not occur at the same
angle for all Sij. The single component 0.3 and 0.7 micron Sij curves bound all
curves that result from any other population ratio. Data taken at certain
(crossing point) angles will show no response to population changes, whereas
data obtained at other "well chosen" angles will give large monotonic
responses represented by the well known S-shape masking curve. These are the
angles that must be selected if the matrix element is to be used as a probe
for change.

Figure 15 shows the actual masking curves for the four matrix
elements of Figure 14. For this case (and in general), S 3 4 is the most
sensitive matrix element for monitoring changes in multicomponent systems.
334 shows the largest absolute difference when masking is complete, and it has
the largest slope (difference change with respect to system change), in this
case near the ratio 1/64. Numerical data show that S3 4 is more than twice as
sensitive as the other Si at threshold, in this case where N(2)/N(1) = 4/1.
For an instrumental detection level (or noise) set at 0.05, system changes can
be detected only between population ratios 1/8 to 1/1024, a factor of 128.
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2.4 Quartz Calibration Fibers.

We have standardized our techniques for producing high quality,

quartz fibers for the calibration of nephelometers and other light scattering
instruments. The fibers are characterized by the following parameters:

real refractive index n, = 1.466
imaginary index n2 = 0.000
radius r 0.2 to > 5 microns
length 1 1 - 5 cm

The fibers have a circular cross section whose radius is determined
by a best fit to theoretical curves. This technique gives the radius to better
than 0.1% (1 nanometer in 1 micron fiber), making them useful as calibrators.

Fibers are single "perfect" particles. They can be permanently
mounted on a frame, stored in a safe place and used over and over again. They
can be geometrically manipulated (tilted, bent, and rotated) reversibly, and are
devoid of the problems of polydispersivity, clumping and irregularity that
characterizes systems or collections of perfect spheres.

Figure 16 shows the 4 experimentally measured matrix elements of a
perfect fiber and the best fit to theoretical curve. The fiber radius is 1.02
microns. Figure 17 shows a mounted fiber fastened to the lid of a container
which can survive transit through the US Maill

2.5 Scattering from Geometrically Perturbed Quartz Fibers.

The simplest but yet significant perturbation that can be given to a
perfect fiber is an exactly known geometrical distortion. Geometrical
distortions such as tilting, bending, and rotation can be carefully controlled
and exactly characterized. They are reproducible, reversible, and amenable to
exact theoretical treatment.

Fiber diffraction patterns are extremely sensitive indicators of
fiber parameters. Two similar micron size fibers could look identical when
viewed through a microscope, yet give diffraction patterns that are very
different. Extremely small variations in the fiber size, cross-sectional shape,
optical constants, and illumination geometry which cause indiscernible changes
in their image can cause significant changes in their diffraction patterns. To
understand fiber scattering characteristics in a completely controlled
laboratory situation, we manipulated a fiber's geometric illumination,
morphology, and geometry while examining diffraction patterns and relating
them to fiber parameters.

We did four experiments to examine the response of a fiber
diffraction pattern while a perfect fiber was subjected to geometrical
perturbations. To produce the perturbations, the fiber was rotated, bent, bent
and rotated, and tilted in a laser beam.

Figure 18a shows the experimental apparatus used to identify and
select a so-called perfect fiber for further study. The 40-micron diameter
quartz fiber is illuminated by a HeNe laser beam (X6328A) while it is rotated
about the Z axis at one rotation per 3 minutes by motor. The light scattering
pattern is recorded on photographic paper located on a screen 450 mm downbeam
from the fiber on the X-Z plane. The photographic paper simultaneously moves
in the Z direction 1 inch per 45 seconds. An almost perfect fiber with uniform
cross-section, produces a diffraction pattern which remains almost constant
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FIGURE 17. Photograph of Mounted Fiber and
Its Container
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during one rotation, as shown in Figure 19. A perfect fiber, which scatters
light that is exactly predicted by theory, is the logical starting point for
fiber scattering studies. We used one for further experimentation, as
described in the next sections.

2.5.1 Scattering From a Bent Fiber.

Figure 18b shows the experimental apparatus used to study the
diffraction pattern as a function of fiber bend. The fiber, illuminated as
described by Figure 18a, is connected across two supports which, when brought
together, bend the fiber into a predetermined radius, r. As the fiber is bent,
its diffraction pattern is recorded on photographic paper in a series of
photographs, one for each particular fiber bend radius. The results are shown
in Figure 20.

2.5.2 Scattering as a Function of Bend and Rotation.

Figure 18c shows the experimental apparatus used to study the
diffraction pattern of the fiber bent with radius r z 7.94 mm as a function of
the fiber rotation angle. The fiber holder can turn the fiber about the Z
axis. As the fiber is rotated through angle 0, a specific scattering pattern is
recorded in a series of photographs each at a specific rotation angle. The
results are shown in Figure 21.

2.5.3 Scattering as a Function of Tilt.

Figure 18d shows the experimental apparatus used to study the
diffraction pattern of the fiber as a function of tilt in the Y-Z plane. The
fiber is attached perpendicularly to a holder which rotates about the X axis,
which is also perpendicular to the laser beam. As the fiber is tilted through
angle 6, its scattering pattern is recorded in a series of photographs each
taken at specific tilt angle B. The results are shown in Figure 22.

2.5.4 Results and Discussion.

The effects of bending are seen in Figure 20. First, we note that
the max/min locations along the X axis of the diffraction patterns are
independent of fiber bend. This information, therefore, can be used to measure
the fiber diameter, giving the same value as that from an unbent fiber.

Second, bending the fiber causes additional interference along the Z
axis and out of the scattering plane. Perfect fibers scatter light
perpendicular to the fiber axis, whereas deformed fibers scatter out of the
plane. In this case the exactly known deformity is the bend.

Third, a "focus" is formed in the diffraction pattern on the concave
side of the fiber. The distance, D, from the center of the diffraction pattern
(e 0) to the focus (0 > 0) is proportional to the radius r of the fiber bend,
(D = kr).

The effects of rotating bent fiber are seen in Figure 21. First we
note that the max/min locations vary with fiber rotation. -1he minima locations
on the concave side of the fiber move towards the enter (0 = 0) while the
minima locations on the convex sile move ;w 1v . the center as angle 0
approaches 900.



2.7 Response of Matrix Elements to Changes
in Absorption and Refractive Index.

Figures 30a-30b summarize a study of the response of light
scattering curves to refractive index, absorption, and spherical particle size.
These curves are for single component monodispersed sphere systems.

Figures 30a-30c show the total intensity (matrix element S11)
scattered from perfect spheres with n I = 1.10 for three different absorptions
n2 = 0.00, 0.04, and 0.40 as a function of sphere radius (0.10 to 1.0 microns).
We observe the following:

Figure 30a. For relatively low index particles (n1 = 1.1) the total
scattered intensity (area under the curve) increases by over 5 orders of
magnitude as the particle size increases from r = 0.10 to 1.0 microns. The
intensity in the forward scatter (6 < 180) increases monotonically over 8
orders of magnitude, making it a good indicator of particle size and size
change. The forward scatter to backscatter intensity ratio, which is 1 for
small particles, increases to over 4 orders of magnitude for larger particles.
This ratio is the main, and sometimes the only, indicator that irregular
scatterers are large compared to the wavelength of light. The backscatter
intensity at 1800, and for all angles larger than 180, does not react
monotonically with particle size, making the backscatter a poor probe of
particle size and change. Data like these show, for example, that 0.10 micron
spheres in the ratio of 108 to 1 will mask the large sphere information in the
backscatter (>900). Large spheres can be hidden effectively by many small
spheres. Also, small spheres can be hidden effectively by very few large
spheres. This effect puts a high demand on the purity of small scatterers
whose light scattering signals can be masked or destroyed by the contamination
of just a few large particles.

Figure 30b. Increasing absorption slightly from n2 = 0.0 to 0.04 has
little effect on the scattering except to decrease slightly the backscatter
intensity which still is not monotonic to size change.

Figure 30c. Increasing absorption significantly by an order of
magnitude from n 2 = 0.04 to 0.40 causes significant changes. The oscillatory
structure almost disappears in the backscatter which now varies almost
monotonically with particle size, as does the forward scatter. Even light
scattered from the small Rayleigh particles (r = 0.10 micron) has increased by
over 1 order of magnitude.

In general, increasing the absorption of relatively low index
particles increases the amount of backscatter and washes out the valuable
oscillatory phase information which is often used to determine particle size.

Figures 30d-30f show similar total intensity curves for the same
three different absorptions n2 = 0.0, 0.04, and 0.40, but for spheres of large
refractive index n i = 1.70, we observe the following:

Figure 30d. For relatively high index particles (n, = 1.7) the
intensity in the forward scatter (0 < 180) increases by more than 6 orders of
magnitude but not monotonically as with low index spheres. Also, there is
significantly increased backscatter with increasing particle size approaching a
ratio (forward:back) of less than 10. In fact, slightly polydispersed large Mie
particles give curves that are similar to the small Rayleigh (nl = 1.1)
spheres.
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rough surface particles--(Arizona road dust). It is instructive to visually

examine the scattering patterns created by apparently perfect fibers. Figure
24 is a photograph of the total intensity diffraction pattern from a "perfect"

fiber. The nature of the imperfection could not be detected or determined by

examination with a light microscope. The photograph shows how phase
information can become confused when light is scattered from a slightly

imperfect fiber. Scattering occurs both in the 0 direction, perpendicular to

the fiber, and in the a direction, out of the scattering plane. A detector
scanned in the 8 direction would average over the intensity scattered in the B

direction, and thereby create a loss of 0-phase information. Experimentally

measured matrix element curves from imperfect quartz fibers of known radius
and optical constants do not fit the theoretical curves for perfect fibers.
The phase information is almost totally destroyed, and that which remains does

not necessarily coincide with that from the perfect fiber. More severe
perturbations create even more severe phase loss.

We have studied the loss of phase information in the Sij from two

quartz fibers that have had their surfaces artificially roughened.

One is an r = 2.5 micron quartz fiber that had its surface roughened

during its manufacture. A photomicrograph is shown in Figure 25. All four

nonzero matrix elements, shown in Figure 26, are smooth and devoid of the

phase information to determine fiber size. S 1 2 and S 31 4 are almost zero. The

light scattering pattern shown in Figure 27 is characterized by extreme, out of

the 8-plane scattering.

The other is a perfect 1.4 micron quartz fiber that we coated with

small (<0.2 micron) MgO crystals. A photomicrograph is shown in Figure 28.
The four nonzero matrix elements are shown in Figure 29.

Matrix element S 1 1 shows that the total scattering in the 8 plane

decreases. This is due to increased out-of-plane scattering and some
absorption by the MgO crystals. The remaining phase information is barely
sufficient for determining the fiber size. The "high frequency" oscillations

are noise, due more to the random scattering by individual MgO particles than

by the increased diameter due to coating.

Matrix elements S12 and S3 3 are almost smooth. Increased roughness
drives S12 toward zero, and not toward the usual sin squared curve for

Rayleigh particles. S3 3 is slightly flatter than the S 3 3 for Rayleigh

particles. Both curves show a hint of phase information from which the

diameter of the uncoated fiber can be determined. Matrix element S 3 4 is
almost zero everywhere, but like S12 and S3 3 , it contains some phase

information.

It is obvious and significant that while increasing roughness

destroys phase information, it does not create Rayleigh shaped signals for the

Sij in the limit of extreme polydispersivity or surface roughness. This same

behavior is obs--ved for polydispersed sphere and irregular particle systems.
It is important to point out that the matrix element bounds at 00, 900, and
1800 that hold for spheres do not hold for fibers. $12 and S314 are not
necessarily zero, and S 3 3 is not necessarily ±100% at 00 and 1800 as they are
for spheres, regardless of size.
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FIGURE 23. Light Scattering Pattern (S11  from a Complex Collection
of Random Fibers
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Second, as angle 8 approaches 00, intensity changes occur in each
diffraction pattern. However they are not as significant as the increase
asymmetry about the X axis. A twisting, or overlapping occurs in the
diffraction pattern itself. This irregularity makes it difficult to determine
the thickness of bent fiber because the max/min locations are not well defined
along the scattering pattern.

The effects of fiber tilting are seen in Figure 22. First, tilting
the fiber through angle 8 creates a diffraction pattern described by various
conic sections. At 8 0 0, a straight line in the X-Y plane is formed. When
00 < 8 < 450, a hyperbola is formed; when 8 450, a parabola is formed; when
B > 450, an ellipse is formed; and when 8 = 900 (the limiting case), a circle is
formed. For this case the laser beam would hit the fiber head on, leaving only
a single point for the diffraction pattern.

Second, the diffraction pattern of a perfect fiber should remain
symmetric as the fiber is tilted. The pattern becomes asymmetric at 8 = 840
simply because this perfect fiber is not completely perfect. In spite of the
small asymmetries, the overall pattern changes significantly as 0 changes.
Individual interference beats (max/ain) occur as before on the curved X axis.
The asymmetries formed by the tilting of a perfect fiber are very sensitive
indicators of fiber perfection.

2.5.5 Conclusion.

Light scattered from perfect fibers forms diffraction patterns that
are much more complex than first suspected. Pure geometrical manipulations of
the fiber are very basic and easily controlled perturbations, which affect both
the total intensity and the geometrical distribution of the scattered light.
The effect of these exactly known perturbations of perfect fibers can be used
to learn about non-perfect fibers.

These total intensity light scattering patterns (matrix element S 1 1 )
point out the difficulty of measuring the scattered light with a polar
nephelometer. The detector would have to move in the proper path described by
the conic section as well as aim toward the fiber. The slit (or circular
aperture) will still be collecting light from various overlapping sections of
the diffraction pattern.

Perfect fibers and well-characterized perturbations should be
studied to increase our fundamental knowledge of small particle z.cattering.
In biology, scattering from muscle fibers and nerve tissue while undergoing
biological activity can give information about their structure. Some biological
changes can be detected only by light scattering techniques.

Our concluding Figure 23 shows a very complex scattering pattern
from a complex system of fibers. The previous experiments explain how various
individual fibers in the system create the diffraction pattern. It is obvious
that this pattern is an image created by a collection of many bent and tilted
fibers.

2.6 Rough Fiber Scattering.

Phase information on matrix element signals is lost as the individual
particles or scattering systems become more irregular. This has been shown
for polydispersed spheres--(an irregular system of perfect particles) and
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Figure 30e. Increasing absorption slightly from n2  0.0 to 0.04 has
little effect except to lower the total intensity scattered by the larger
particles.

Figure 30f. Increasing absorption significantly from n2 = 0.04 to
0.40 destroys virtually all oscillatory phase information in the backscatter as
it did for the low index particles. In fact, the curves of Figure 30f are
almost identical to those of Figure 30c, showing that when absorption is high
it dominates the light scattering curves. Therefore, high absorption
effectively masks out all information about the particle's refractive index
regardless of its magnitude. This also means that a small change in
refractive index would go undetected in the total intensity signal.

To examine further the role of the refractive index, we generated
Figures 31a-31c which show the total intensity scattered from 1.0 micron
spheres as a function of refractive index nI for three different absorptions n2

0.0, 0.05, and 0.50.

Figure 31a. (n 2 = 0.0) As n I increases, the relative amount of light
in the backscatter increases over 4 orders of magnitude. Large spheres,
polydispersive in R and nl, would interfer to give relatively smooth curves
containing little phase information similar to small particle Rayleigh curves.

Figure 31b. (n 2 = 0.05) Increasing absorption slightly washes out
the backscatter phase information for angles greater than 90. Note the curve
for nI = 1.00 is that for an "index matched" particle which scatters only
because of its absorption. Increasing n I destroys even more phase information
toward the forward scatter and increases the amount of backscatter by over 2
orders of magnitude.

Figure 31c. (n 2 = 0.50) Large absorption, large index particles give
curves which are essentially Airy functions--diffraction patterns from circular
apertures. In the forward scatter the curves are essentially independent of
n I. The only response to change in nI occurs in the backscatter.

2.7.1 Matrix Elements As Probes of Small Perturbations.

We investigated the use of matrix elements as a probe for change in
particle property. An ideal probe would respond linearly to a linear change in
a narticle property. For real probes, any response will at first be linear (by
definition), then non-linear but single valued, and finally oscillatory
(multivalued), or flat (showing no response at all). A summary of the expected
response is displayed in Figure 32, where "any feature" of an Sij curve is
plotted as a function of the strength of perturbation.

2.7.2 S§ize Refractive Index AbsortionLand Wavelength

Figures 33 and 34 show the actual responses of the matrix elements
resulting from "perturbation" of some optical and geometrical properties.

Figures 33a and b show the Sij response at 6 = 900 as the radius of
sphere changes from 0.4 to 0.6 microns (at constant wavelength) and as the
illuminating wavelength changes from 0.4 to 0.6 microns (at constant radius).
All Sij display the features shown in Figure 32. With the exception of a small
wavelength-dependent index nl, Figures 33a and b can be matched quite well if
the radius scale is plotted in the opposite direction. This occurs because
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RESPONSE OF LIGHT SCATTERING DATA
5 TO A SYSTEM PERTURBATION
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FIGURE 32. The Response of Light Scattering Data as a Function of
System Perturbation
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radius change is similar to wavelength change except for a small change in the
wavelength-dependent refractive index. Consequently, angle scans with fixed
wavelength or wavelength scans with fixed angle give almost identical data and
equal sensitivity to change. For this case, matrix elements S 1 2 and $34 would
be the first choices as probes since their signals go through zero polarization
at some wavelength or radius. Matrix elements S 1 2 and $33, in contrast to S34P
have rather large regions of flat response making them insensitive as size
indicators at certain sizes. However, placing the detector at another, more
favorable angle can prevent this problem by adjusting the probe to lie in the
steepest slope of the curves.

Figures 34a and b show the Sij response at e = 900 as the real
refractive index (nl ) changes from 1.1 to 1.3 and as the imaginary part (n 2 )
changes from 0.0 to 0.3. Although these curves are special cases described by
the particle parameters listed above each figure, they show that the proper
choice of matrix element (and scattering angle) can maximize the probe's
effectivenes. For these cases S 1 2 would be the least sensitive to an imaginary
index change whereas it is the most sensitive to a real index change. Matrix
element S34 is the second choice, giving respectable responses (and going
through zero) over the entire range. S33 is too flat f or an indicator of
changes in n 1 , whereas it responds respectably to changes in n 2 .

These studies were also done for the forward and backward scatter,
as well as at other "useful" angles. The main point is to show that light
scattering can be a sensitive probe if, in advance, the response of various
matrix elements is known over the range in which the perturbation is to occur.
If an applied perturbation is expected to affect one of the parameters of a
scattering system, both the choice of matrix element and scattering angle for
a particular illuminating wavelength can be selected to maximize the probe's
sensitivity. Showing that this can be done and that the information gained can
be substantial is one of the main conclusions of this work.

2.8 Loss of Oscillatory Phase Information on Light Scattering Curves

Polarized light scattering data from suspended particulates are
often devoid of the important oscillatory phase information needed to
accurately characterize the scattering system. The absence of phase
information can be due to the properties of the one individual particle or of
the many-particle system. We will examine the loss of phase information from
perfect and imperfect particle systems by considering data from (1) very small
Rayleigh particles, (2) very large Mie spheres, (3) polydispersed spheres, (4)
highly absorbing spheres, (5) multiple scattering spheres, (6) Rayleigh-Gans
spheres, and (7) irregular particles.

Figure 35 illustrates how phase information from large perfect
spheres can be lost as the particles become irregular or mixed with different
particles. As the particle systems in rows B, C, D, and E progress to the
right, they become more complex, causing their light scattering curve, row A,
to become less complex. It is because of this fact that light scattering data
can be unreliable as a diagnostic tool. Our research has examined the
polydispersive systems of perfect spherical particles (which are exactly
solvable theoretically and attainable experimentally) and irregular particles-
-both of which give smooth light scattering curves.

When phase loss is severe, the light scattering data are not unique
to the scattering interaction. Inversion will then yield wrong or highly
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uncertain values for the optical and geometrical constants. In some cases,
however, the remaining data are sufficient to partially characterize the
scattering system.

2.8.1 Small Rayleigh Particles.

The simplest particle system for which the diffraction (scattering)
of electromagnetic radiation can be calculated exactly is that of a small
Rayleigh sphere (or any particle) whose diameter is much less than the
wavelength of light. The well-known Rayleigh angular intensity distribution
and the polarizations are displayed in Figure 36 in the context of the four
nonzero light scattering matrix elements, Sij for spheres. Matrix element S1 1
represents the 8-dependent scattered total intensity distribution, I(8), which
for a small particle is symmetrical about the slight intensity minimum at 900.
S11 corresponds exactly to the central maximum of the single slit diffraction
pattern, where for a slit width d = X, the first minimum (m = 1) would occur
at e = 900. The matrix element S12 representing the 8-dependent linear
polarization is equal to the function sin2 e. The matrix element S33
representing the coupling of 450 linear polarization is equal to the function
cos 2 0. The matrix element S34 measuring circular polarization is equal to
zero, since Rayleigh particles (by definition) are too small to evoke any
geometrical or optical path difference between any extreme rays that it
scatters. All other matrix elements Sij are zero.

We call attention to some important properties of the light
scattering curves for Rayleigh particles. S11 and S 1 2 are symmetric, while S3 3
is antisymmetric about 0 = 900. S3 4 is zero everywhere. In addition, the Sij
for spheres in general are characterized by other bounds: S 1 2 and S31 4 are
always zero at 8 = 00 and 900. S3 3 is +100% at 8 = 0 and -100% at 0 = 1800.
These bounds hold regardless of how the Sij curve may fluctuate between the
end points at 00 an 1800. They are independent of the wavelength, particle
size, refractive index, and absorption--so long as all particle properties are
spherically distributed. This condition does not occur for single ellipses,
fibers, and other irregular particles.

The four Rayleigh matrix element curves of Figure 36 represent the
"starting point reference curves" for all light scattering curves from
particulates. They form the baselines from which curves for larger particles
grow and to which curves from complex systems might approach. These curves
are independent of particle size, shape, and orientation for individual and
collections of Rayleigh particles that scatter singly and independently. For
non-independent and multiple scattering from even small particles, these
curves will appear slightly distorted. It is proper to consider that the
Rayleigh curves contain no phase information. The desired oscillatory phase
information, which is truly indicative of larger particles and responsive to
particle size changes, appears on these curves only for larger particles. This
is discussed in the next section.

2.8.2 Lare Mie. Spheres.

As the size of the Rayleigh sphere increases, all the S become
distorted and begin to show phase information indicative of larger partlcles.

Figure 37 shows the four nonzero Sij for an r = 0.15 micron particle,
for a particle 1 % larger (solid lines), and their difference (dotted line). The
new information, indicating scattering by a larger particle (of the order of
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the wavelength) first occurs in the backscatter. Since this sphere is only
slightly larger than Rayleigh, the distortion in the backscatter is the first
oscillation. Note that the r = 0.15 micron sphere is about two-thirds the
wavelength of the 0.4416 micron scattered radiation.

Figure 38 shows the same four matrix elements Sij for an d - 1.2
micron sphere, for a sphere 1% larger (solid lines) and their difference
(dotted line). Comparison of Figures 37 and 38 shows that a small (0%) change
in size of a large particle contributes a more significant change to the
scattering data than does the same percentage change in a small particle.
Consequently, a small amount of polydispersivity in a collection of large
particles will destroy backscatter phase information for larger particles much
more than for smaller. Size polydispersivity is the main destroyer of phase
information on light scattering curves from large particles.

2.8.3 Polydispersed Spheres.

Figure 39 shows the four Sj for a polydispersed sphere system with
equal numbers of monodispersed particles of size = 0.52, 0.54, 0.56, 0.58, 0.60,
0.62, 0.64, 0.66, and 0.68 microns. The average size is 0.60 microns. As
expected, the backscatter suffers the largest loss of phase information,
although there is general loss everywhere. Its absence can cause large
uncertainties in the particle size determinations.

An interesting question concerns the shape of the Sij curves for
systems that are totally polydispersive in size (and all other properties).
The first guess that all Sij (except S11) would be zero is wrong. Experimental
work and computer modeling show that they "tend toward" the Rayleigh curves
shown in Figure 36. Although the Sij are smoother and tend toward the
Rayleigh limit, phase destruction is not complete. Generally S3 4 remains
nonzero. The other Sjj, although almost smooth, are not symmetric about 900
and show reduced polarization.

2.8.4 Absorbing Fibers.

Increasing the absorption of perfect spheres and fibers destroys
virtually all phase information in the backscatter direction. Figure 40 shows
the matrix element S11 as a function of absorption for an R = 1.0 micron fiber
system. Although most of the phase information is gone, the more than one
order of magnitude decrease in backscatter (compared to forward scatter) is
still indicative of large particles. The phase information remaining in the
forward scatter (<600) gives a very accurate value for the diameter of the
sphere from aperture diffraction theory. This calculation is quite valid for
highly absorbing fibers, since light scattering dominated by high absorption is
almost independent of the refractive index. The absorbing fiber is essentially
the complement of a clear aperture in an opaque plate. Therefore their
scattering should be similiar, as suggested by Babinet's principle. The
essentially flat backscatter (>900) prevents this system from being confused
with low index particles slightly larger than Rayleigh.

2.8.5 Multiple Scattering Spheres.

Figure 41 shows the progressive loss of phase information on Sij in
response to increased multiple scattering by spheres. Each adjacent curve
represents a factor-of-2 difference in concentration of 0.80 micron spheres.
All Sij lose phase information and become smooth with increased multiple
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scattering. S3 3 is quite similar to the Rayleigh sphere signal except for a
small shift of the 900 zero polarization crossing point to higher angles. In
this multiple scattering system, S 1 2 and S34 tend to oscillate about the final
smooth curve while S 3 3 approaches it tangentially. Evidently, extreme multiple
scattering does not create Rayleigh shape signals in the limit. In this case,
S 1 2 is driven away from the Rayleigh limit while S 3 3 oscillates about its
nonzero highly multiple scattering limit.

2.8.6 Irregular Particles.

Figure 42 shows the four matrix element signals for Arizona road
dust. This is a log-normal system of irregular particles polydispersed in all
optical and geometrical constants. A scanning electron micrograph of the

particle system is shown in Figure 43. All matrix elements are smooth.
Matrix elements S 12 and S 3 3 appear almost Rayleigh except that the minimum of
S12 and the zero crossing point of $33 are shifted approximately 200 toward
the backscatter. S34 is almost zero as it is for Rayleigh spheres. S 1 1 '
varying by more than 2.5 orders of magnitude and increasing in the backscatter,
is the only signal that suggests that the particles are large with high
refractive index and low absorption.

These six examples show that oscillatory phase information can be
missing or destroyed in light scattering data for many reasons. Consequently,
certain conclusions about scatterers giving smooth light scattering curves
must be carefully drawn and qualified. Studies are underway to determine the
accuracy of the optical and geometrical constants extracted from data with
minimal phase information. These studies show that in general, light
scattering measurements do not give accurate values for the optical,
electrical, or geometrical constants of particulates.

Although conclusions are often very system dependent, we can draw a
few important ones that seem to characterize a large class of light scattering
curves.

a. Smooth curves do not imply small Rayleigh particles.

b. Size polydispersivity is the main destroyer of phase information
from perfect sphere systems.

c. Polydispersivity in the refractive index n I destroys phase
information from perfect sphere systems.

d. Absorption destroys phase information mainly in the backscatter,
both for single spheres and particle systems.

e. Particles that scatter approximately equal intensity in the
forward and backscatter are either Rayleigh (small) or large polydispersed
systems with a high refractive index and zero (or very low) absorption.

f. A total intensity signal S11 , symmetric about its few percent
intensity dip at 900 is from a Rayleigh system.

g. Low index, large particles (approximate Rayleigh-Gans systems)
scatter much less in backscatter than in forward scatter.
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FIGURE 43. Electron Micrograph of Arizona Road Dust
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These conclusions, if applied carefully, should be helpful in
extracting some general but useful information about a scattering system.
These results show that if only one matrix element curve is available or if
information is gathered over a limited angular range, the information extracted
will definitely be limited.

3. CONCLUSIONS

The experimental work carried out over the past 2 years with Army
support is finished, and the major results have been reported in this final
report. As with any good research, new questions have been asked and other
paths of investigation have opened up. Therefore, the techniques we developed
and the results we report will affect our ongoing research program for years
to come. Some unanswered questions and new applications will be persued
during the next 2 years with Army funding, some others will be supported by
other grants.

A number of papers are in preparation for publication in the
referenced journals. Several topics reported in the results will be written as
separate papers. In addition to the progress reports, and this final report,
many results have been reported at seminars and colloquia in various
departments throughout the University-- chemistry, optical sciences, lunar and
planetary sciences, geosciences, microbiology, etc.--wherever light scattering
techniques are used to extract data. Researchers in those departments have
benefitted greatly from our work on complex particles, since most of their
scatterers are irregular. The techniques developed in these experiments are
now being extended to surfaces under a continuing Army grant from CRDC. It is
interesting to see how these ideas were developed and extended: from a sphere
= point; to a fiber = line; to a surface = area. We are optimistic that the
Mueller Matrix-Stokes Vector approach to light scattered from surfaces will
also be a valuable contribution to fundamental science and technology.

73

D " '. °.". .m." " ..." .°
• - .". °. "". ..... o" " . o . -" -" . - .. . .... - - "" "* -""""""" - . - .." - - "-. ."



FILMED

9-85

DTIC


