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ABSTRACT 

A linear stability analysis of the Benard problem for two layers of different fluids lying 

on top of each other and bounded by free surfaces is considered. The fluids are assumed to 

be similar and perturbation methods are used to calculate the eigenvalue in closed form. 

The case of the Rayleigh number and wavenumber of the disturbance being close to the 

first criticality of the one-fluid Benard problem has been investigated in a previous paper , 

and was found to exhibit both overstability and convective instability. In this paper, the 

Rayleigh number is assumed to be less than that of the first criticality of the one-fluid 

problem, and in this situation, overstability does not occur. An unexpected result is that 

by an appropriate choice of parameters, it is possible to find linearly stable arrangements 

with the more dense fluid on top. v 

AMS (MOS) Subject Classifications: 76E15, 76E20, 76T05, 76V05 

Key Words: Convective instability,' Two-component flow) Interfacial stability     ' ' *v^1^   ^ ^ 
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SIGNIFICANCE AND EXPLANATION 

Interfacial stability of a two-layer convective problem is analyzed for the case of two 

similar liquids. Applications may involve the modeling of convective instability in a variety 

of multi-layered films, for example, pattern formation in rocks. 

Accession For 

NTIS     CP/Vfrl 
DTIC  TAB 
Unannounced 
Ju-.tif legion- 

f • 
D 

ay  
Distribution/       
Availability Codas 

lAvail and/or 
Sp<olal 

The responsibility for the wording and views expressed in this descriptive summary 
lies with MRC, and not with the author of this report. 

/•.••, 

N AY- »•-.-.- 
^ lT-'"- •"• •"• 

*• •.-v s« •/ V.Vi 

I - » - « -.:>I^»:^-VJ 



•' 1*l' ^•P>•,^•,^., ^.•T.'-f.^.--' •'••'•••'-'   •'• J. -"•' 1'. '.'J .*. 'L'l1 W "  "•'.'.''.' -'I'T •*.'.'  '-ü   l".1'1 ".* ' "• '.» '•'• «TV "•"••-••'-'•  ^ ••'••• VI , •• W   -•- • •- '•"• 

INTERFACIAL STABILITY IN A 
TWO-LAYER BENARD PROBLEM 

Yuriko Renardy 

I. INTRODUCTION 

Two layers of fluids are sandwiched between infinite parallel horizontal boundaries. 

The fluids have only slightly different properties. We neglect any diffusion of one fluid into 

the other, so that there is an interface, with surface tension taken into account. The lower 

plate is kept at a slightly higher temperature than the upper plate, and the tangential 

stress and normal velocity vanish at the boundaries. Although the "free-free" boundary 

conditions are physically unrealistic, they yield the advantage that closed-form solutions 

can be obtained, and their analysis helps to shed light into the numerical investigation of 

the more realistic "rigid-rigid"boundary problem2. We consider the linear stability of the 

rest state when the Rayleigh number is below the first criticality of the corresponding one- 

fluid problem. The case when the Rayleigh number and wavenumber of the disturbance 

are close to that of the first criticality of the one-fluid problem has been investigated 

previously1. For the linear stability analysis, we only need to consider two-dimensional 

disturbances, because of the rotational symmetry about the vertical axis. The questions 

we ask are: what kinds of instabilities can arise; are they different or similar to those that 

arise in the one-fluid problem; and how do these instabilities depend on the dimensionless 

parameters. 

The equations used in each fluid are the Navier-Stokes equations with the Boussinesq 

approximation, the linear heat equation and incompressibility. Temperature differences 

in the problem are assumed to be small. The properties of the fluids are assumed to be 

constants except for the density in the gravity term in the Navier-Stokes equations, where 

the density is expanded as a Taylor series about the temperature of the top boundary, and 

truncated so that it is a linear function of the temperature. 

Sponsored by the United States Army under Contract No. DAAG 29-80-C-0041. 
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At the interface, the following conditions are assumed to hold: the kinematic free- 

surface condition, the continuity of velocity and shear stress, the difference in the normal 

stresses must be balanced by surface tension, and the temperature and heat flux are 

continuous. These equations yield 9 dimensionless parameters: a Rayleigh number and 

Prandtl number based on one of the fluids, a surface tension parameter, and 6 ratios of 

the various thermal and mechanical properties of the fluids. 

One solution to the equations is the rest state, with a linear temperature gradient in 

each fluid, and a flat interface. We consider the linear stability of this solution by adding 

a small perturbation which is proportional to exp(mx + ot) where x is the dimensionless 

horizontal variable and t is the dimensionless time. The problem is set up as an eigenvalue 

problem, to calculate a in terms of the other parameters. 

It is instructive to recall some of the results for the one-fluid problem. Rayleigh, 

in 1916,3 solved the linear stability problem for one fluid, for "free-free" boundaries. The 

eigenvalues and eigenfunctions were found in closed form, and the marginal stability curves 

are given by Rj = (>27r2 + a2)3/a2, j = 1,2   R\ < R2 < Rz < ... The critical Rayleigh 

number is 27TT
4
/4. The Prandtl number does not enter into the criticality condition, but 

appears in the growth rate. The "rigid-rigid" boundary and "free-rigid" boundary cases 

were solved later3: here, the eigenvalues and eigenfunctions cannot be found in closed form 

but have to be calculated numerically. 

Another well-known result for the one-fluid problem is the "exchange of stabilities": 

the equations are self-adjoint so that all the eigenvalues are real. A consequence is that 

the velocity at marginal instability is not periodic. The exponential growth of small dis- 

turbances leads to a steady nonlinear motion, for example, steady cellular convection. 

However, in the presence of solutes with one or more concentration gradients, or continu- 

ous density-stratification, a time-periodic marginal instability ( "overstability") is possible. 

In the two-fluid problem, the equations are not self-adjoint2. Therefore, overstability 

is possible, and such a situation was found numerically for the case of rigid boundaries. 

2 



The marginal eigenvalues are a complex conjugate pair of multiplicity two. The rest state 

would bifurcate to either a traveling wave or a standing wave solution. An analysis of the 

subsequent nonlinear problem may be related to that4 of one-fluid double diffusion. 

It would be interesting to find out under what conditions complex eigenvalues arise 

and what conditions yield real eigenvalues in the linear stability problem, but a numerical 

attempt at this is not feasible because of the large number of parameters. However, 

the case of free boundaries where the two fluids have thermal and mechanical properties 

that differ by a small amount of O(c) can be analyzed with perturbation methods in 

the parameter t. The leading terms in the perturbation expansion for the eigenvalue are 

found in closed form. In a previous paper1, this analysis was performed for the situation 

where the unperturbed one-fluid problem is close to the first criticality. Thus, the analysis 

involved the perturbation of a double zero eigenvalue. 

In the present paper, the unperturbed one-fluid problem is below the first criticality, so 

that the analysis for two similar fluids involves the perturbation of a simple zero eigenvalue. 

Since the equations are real, the perturbed eigenvalue is also real. Hence, when the interface 

is unstable, one would expect the fluids to go into a different arrangement. For example, 

if the instability results from the upper fluid being the heavier, one would expect that 

it should fall and the fluids should exchange positions. However, there are more subtle 

cases as will be discussed. The short-wave asymptotics for a is identical to that obtained 

for the rigid-rigid boundaries2, and indeed this agrees with the short-wave asymptotics 

of our perturbation formula. Differences in density, coefficients of cubical expansion and 

surface tension are important in the short-wave limit. In the long-wave limit, the volume 

ratio, and differences in thermal conductivity, density and coefficients of cubical expansion 

are important. By making appropriate choices for the parameters, it is possible to find 

a linearly stable arrangement with the more dense fluid on top. In fact, the formula 

for a for small lx shows the unexpected "thin-layer effectr, where stability is strongly 

influenced by the thermal conductivity stratification. This behavior is reminiscent of the 



r-^-i ."; m .-. ,-.. . --..-. -..-..-..- m i j      i •• •    •    .• • *   :»'.•'.' *;i • i •  i. '   i • • T*X  "\  - V "-."•' L"V • y-» V»V"* 

lubricating effect of viscosity stratification in parallel shear flows composed of two layers 

of different fluids5, where linearly stable arrangements with the heavier fluid lying on top 

have been found, provided that suitable values are chosen for the volume ratio, surface 

tension, viscosity difference and density difference. 

'././. 
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11. GOVERNING EQUATIONS 

We consider two fluids, lying on top of each other between two parallel boundaries 

of infinite extent in the (x",s*)-plane. Fluid 1 denotes the lower of the fluids and Fluid 

2 denotes the upper fluid. Asterisks denote dimensional variables. The upper boundary 

at z' = /' is kept at a constant, temperature To, and the lower plate is kept at a higher 

constant temperature T'0 + A T'. The interface is at z = l\. Subscript i (=1,2) denotes 

Fluid i. At temperature T^. the fluids have coefficients of cubical expansion d, , thermal 

diffusivity *ct, thermal conductivity fc,-, viscosity //,, kinematic viscosity ux and density Pi. 

We use the Boussinesq approximation in the Navier-Stokes equations, that is. the densities 

in the buoyancy term for each fluid is approximated by p,(l - &i(T' - TQ)). 

There are 6 dimensionless ratios of the physical properties: 

Ml 
m = 

Ml' 

Pi r = 
Pi 

*1 
1 = 

«2 

*1 
? - 

Q] 
ß = 

Q2 

h 
' I' 

=  l-/2 

(1) 

Following Drazin and Reid 3, we introduce dimensionless variables (without asterisks) 

as follows: 

(x,z) = (x',z~)/l\ 

t = Kit\/l-2. (2) 

u = u"/' ,'KX, 

T = T' /AT\ 
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P=pT2/(p,IC*). 

Here, u" = (u",u;*) is the velocity, p* the pressure and 7" the temperature. We define 

a Rayleigh number 

R = gaiAT'l 3/(/c,^), 

where g denotes gravitational acceleration, and a Prandtl number 

P = UI/KI. 

We include a surface tension between the fluids, described by a dimensionless parameter 

5 = 5*/"/(/C!/ii), where 5* is the dimensional surface tension coefficient. 

We study the linear stability of the static solution 

w = Q, 

T = T0 + l-A1z       for       0 < z < /,, (3) 

= T0 + A2{l-z)       for       li<z<l, 

where Ay = -77^ and A2 = Ms> 

If disturbances are proportional to exp(at + toi). then the following linearized eigenvalue 

problem arises for the velocity u and perturbation 0 to the temperature. 

ForO< z</i, 

<rO = wAi + A0, 

For li <z<l, 

au = -dp/dx + PA«. 

aw m -dp/dz + RPQ + PAa\ 

du      dw 

OI 02 

«70 =  tlM2 +   -  A0. 

(4) 
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^P r      ,>      A 

ax     m 

dp     RP Ä      r      A 
<"t,= -rS + Te+mPAw' (5) 

du      die 

dy      dx: 

At s = 0,1, slip boundary conditions are assumed to apply, i.e., the shear stress is 

zero, or, Jjj =0: 

e = w = IT = °- (6) oz 

The interface is perturbed to the position z —\\-\- h(x,t). The interface conditions 

linearized about z=/i are2'6 : 

continuity of temperature:    [6   J= h   JA   |, 

continuity of heat flux:   |Jfc|f   J=0, 

continuity of velocity: |w  ]=   |u  ]=0, (7) 

continuity of shear stress: |M(|^ + §7)   1=0» 

balance of normal stress: 

^w^       1 dwi^ d2h 

kinematic free surface condition: 

ah — w\. (8) 

Here, |. Jdenotes the jump of a quantity across the interface, foi example, 

\Aj = Ai-A2, 

and we have set 

M' = Ä/><lfÄr+'^-,»• 
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We now proceed as follows. It is known2,3 that when the fluids have identical prop- 

rties. the eigenvalues are real, the presence of the interface introduces a zero eigenvalue 

t any Rayleigh number, and another zero eigenvalue occurs first at R — ^ln4 for a = 

~ l'*m. We let R be arbitrary but less than the value of the first criticality of the one-fluid 

roblem. We assume the fluids have slightly different properties, and introduce a small 

arameter t. We regard 1 — m,l - r,l — ffl - f, 1 — &,M\ and S as small quantities 

roportional to e; that is, we set 

1 - m = fht, 

1 — r = fe, 

1 - 1' = I*-, 

1 - c = f£, 

1-0 = 0c. 

Mi = Mxt,     Mi = PR{-- 
cxiAT- 

+ h(? + ß)), 

S = St. .' 

At t = 0. there is a simple eigenvalue a = 0, arising from the presence of the interface. 

3r small t, this eigenvalue is perturbed into a power series in t. The purpose of the 

flowing analysis is to find the coefficient of t in this expansion. 

»1 
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III. PERTURBATION ANALYSIS 

The perturbation expansion for a double eigenvalue is carried out in detail in Ref. 1, 

and closely parallels the procedure adopted here so that the explanation in this section 

will be terse. The perturbation expansion for the simple eigenvalue involves finding the 

eigenspace belonging to the eigenvalue a — 0 for the unperturbed problem and its adjoint, 

and does not require finding the eigenspace of the perturbed O(i) problem at all. 

Suppose a0 is a simple eigenvalue of a matrix LQ. Let A be an eigenvector of ha 

with eigenvalue oo, and let C be an eigenvector of L'0 (the adjoint of Lo) with eigenvalue 

do (the overbar here denotes the complex conjugate). Let Lo be perturbed into L(t) = 

I/o + «Lj + 0(i2) with L\ depending smoothly on e. Then the peiturbed eigenvalue a 

is given by the zero of the expression ty(e,o). which represents to 0(e) the projection of 

L(t) - a, first onto the eigenspace of the unperturbed problem and then onto the adjoint 

eigenspace: 

*(<,o) = (C,(Lo + tL,-a)A) + 0(e2). (9) 

For the same reasons as in §111. Ref. 1, we will need to redefine ty. 

Let X denote the set of functions (0,u,u/,/i). We introduce an inner product by 

f2*/a    rli 

(Xi.Xi) =   I I      ©i©2 + ü]U2 -r W\w2 dzdx 
Jo Jz=Q 

r2xja    f\ 

+ 
ri.Tj<x     /• 1 

JO Jz = l, 
©i©2 + W]«2 t W)U>2 dzdx 

2r/a 
+ I h\hi dx (10) 

to generate a Hilbert space. In this Hubert space, we consider the subspace determined by 

the "Hodge projection" (see space H in Theorem 1.4, Ref. 7), that is, by the conditions that 

the velocity field be divergence-free, that the vertical velocity vanish at the boundaries, and 

be continuous across the interface. By L(<)X we denote the right hand sides of equations 

(4),(5) and (8). We regard L(t) as an operator in the subspace so that the conditions on w 

9 
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t* 

in (6) and (7) and the normal stress balance in (7) are an integral part of the definition of *, 
*• 

L(e). The domain of definition of L(t) is determined by the rest of the boundary conditions 

in (6) and (7), which we write in the form B(c)X=0. The range of the operator L(e) must 

satisfy the following conditions in order for the pressure p occuring on the right sides of 

(4) and (5) to be determined as a function of X: The "velocity part" of L(c)X must be 

divergence free, the vertical velocity must vanish on the walls and be continuous across 
i.; 

the interface, and the jump in p across the interface must be given by the normal stress >• 

balance. Thus, the problem we wish to solve is: for small c, find o satisfying 

L(e)X = oX, (11) 

B{e)X = 0, 

L(e) = L0 + el, + 0(e2), 

B{e) = Bo + tBi+Ole2). 

The explicit forms of Lo, L\% B0 and Bj are given in §111, Ref. 1. 

We now redefine *': 

*(£,*) = (C, ((£,(<) - I)"1 - a)A) + 0(<2), (12) 

where the C and A are as before. 

The boundary value problem adjoint to (11) is calculated in Appendix A of Ref. 1. 

Then we determine the eigenvectors A and C in the Appendix of this paper. They satisfy: 

LQA = 0, B0A = 0, 

L0C = 0, BÖC = 0. (13) 

In formula (12), we must determine the expressions 

{C,(L{c)-iylA) (14) 

10 
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i 

to first order in t. To facilitate this calculation, we introduce x" and x' defined by 

j    . (L(e)-l)-1A^x° + exi+0(t2). (15) 

Equating the coefficients of equal powers of (, we find the equations governing x° and x1 

(L0-1)xt] = A. 

B0x° = 0, (16) 

and 

L1x
0+(Lo-l)z, =0, 

BlX° + B0xl = 0. (17) 

From (16), we find x° = -A. We will not need the solutions x1 to the perturbation problem 

(17) but only certain inner products involving them, namely (C,!1). This is seen from 

(12) and (15): 

*(e,&) = (C,x°)+e(C,xx)-ö(C,A) + 0(t2). (18) 

We calculate (C,xJ) from (17): 

(C,x') = (C,L1x°) + {C,Lox1), (19) 

and an integration by parts: 

(C,Lox1) = {LoC,x1)+r, (20) 

where the boundary integrals T are evaluated using the second part of (17). (The boundary 

integrals would vanish if Box1 were zero.) 

We note that x° = -A and since L0A = 0, f£ - §*' = 0 so that 
* 
.-. 

L,v4 = 

1] < 

.:•:-! 
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in both fluids so that 

(C\£,,xc'} = -{C,LXA) 

=  I    u' • Vp + /    ü' • Vp 

= u» i«< (21) 

where we denote C = (Q',uw,w',h'), and 

[pi = (M, + PSa2)c 2\„taX (22) 

The form of T can be read off from the calculation of the adjoint in Appendix A in Ref.l: 

"//«'" 

de- 
dz ' 

where the interval of integration I extends over one wavelength in x, at z 

©z = £A
2
W'Z. From setting * = 0, we have 

We next evaluate (C,A): 

where 

....ejgBUort. 

(C,A)=   fh'e" 

h' = -IP"I = -~^lKzz\ 

(23) 

I.ti and 

(24) 

(25) 

(26) 

•r. '. ••.«*, 
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IV. RESULTS AND DISCUSSION 

When sinh Q2 i- 0, we have, using the Appendix, 

a \   a* 
c,Q3(Ql - a2)2coshg3/, + c3Q2{Ql - a2)2cosh02/, 

+ c5Q](Q, -a2)2coshQ,/, 

+ (JfiT, + a2 PS) C} sinhQ3/j + c3sinhQ2'i + c5sinhQi/i 
) 

(27) 

and 

I«Wl = Q?(ci cosh Q,/i-di coshQi/2) + C?2(c3cosh Q2/i -d3coshQ2/2) 

+Qt(c5 cosh Q3/i -d5coshQ3/2), (28) 

which, on using equations (A15), becomes 

Hence, 

-**&•**-*+<*£& 

<C,.) = ^>4,^,-(1 + .V3»^^, 

(29) 

(30) 

and 

-~;«i/3 
. /-, sinh Q3/2 cosh Q3/i     „sinh Q2h cosh Q2h 

-(l-tV3) r^—z  

-(1 + iVz) 

sinhQ- 

sinhQ]/2coshQi/] 

sinhQ2 

sinh Q1 

+ ̂ —VH.IP^'S) • /ö\s'n^ ^3^2 sinh Q3^i        sinh Q2/2 sinh <J2/j 
— (1 •+ tv 3)  "¥ 2 s 1  v Q3sinhQ3 02sinhQ2 

. ^sinhQxhsinhQ,/ 
Q\ sinhQi 

+ 0(i2)  as  1 — 0. (31) 
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We note that a is real. It is independent of the Prandtl number of the basic one-fluid 

flow, the perturbation on the viscosity, and the perturbation on thermal diftusivity. The 

coefficient of f in a is antisymmetric about /] - 0.5 (see Figure 1); the coefficients of M\\P 

and S are symmetric about /) = 0.5 (see Figures 2-4). In M\ IP, Qj AT1' is small compared 

with 1. In numerical computations, we have set a] AT' - 0.001. Hence, the coefficient of 

f in a will be almost symmetric about /i = 0.5 (see Figure 2). The coefficient of ß in a is 

the product of li and a term symmetric about l\ — 0.5 (see Figure 3). 

If Q2 — 0, then the two terms in (27) involving c3 are replaced by a4c3 and l\C$ 

respectively, and the term involving Qi in (28) vanishes. Equation (30) remains as is. In 

(31), the two terms containing O2 in the square brackets are to be replaced by 2/2 and 

2/2/1 respectively. The symmetries discussed in the preceding paragraph still hold. 

If Q\ — —727T2, j =non-zero integer, i.e., sinhQ2 = 0, then as pointed out after 

equation (A8), c3 and d3 are infinite. In (C, A), d3 is multiplied by sinhQ2 so {C, A) is 

bounded when the basic one-fluid problem is at neutral stability, making the numerator 

r -+ ti'jpj unbounded due to the c3-term. In this case, our perturbation procedure is not 

valid, and must be replaced by the perturbation procedure for a double zero eigenvalue1. 
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Figure 1 
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Graph of a versus /j. the depth of the lower fluid. ojAT   - 0.001, R = 1, 

C= 1, a = 0.1,1.0,5.0,10.0.20.0. 
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Figure 2 

Graph of a versus f|, the depth of the lower fluid. a^AT' * 0.001. 7? = 1, 

f = I, a - 0.1,1.0,5.0,10.0,20.0. 
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Figure 3 
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Figure 4 
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Short wave asymptotics 

When a is large, the boundary conditions at z — 0.1 are irrelevant and the asymptotic 

behavior of a is the same as in the case of solid boundaries. The following expansion was 

derived (Eq.(29), Ref. 2) by scaling the z-variable with I/o and taking the distinguished 

limit a —» oo. Sot2 = O(l): 

a ~ 
2«(^ + l) (Ö^-^-TH*) 

t 

Re 
'*<' ^)+°(72'f2)- a2 (32) 

If 5a2 is larger than 0(1), then it will be the dominant term in the asymptotic expansion 

but the other terms in (32) will not necessarily be the correct next-order terms. 

The numerical calculations checked with this formula for / j sufficiently far away from 

0 and 1, i.e., for waves that are short enough so that they do not to feel the presence of 

the boundaries. The coefficient of -^(Äa2)1//3 in equation (31) behaves as 

j _(1 _ iV3)-(e-2llQ= - e-2'^=) + e-
21'^ - e~21^ 

-(1 + tV3)^(e-2',<?' - e~2hQ>) j | 1 -r 0(e"20) ) as        a —• oo (33) 

so is exponentially small in \a\. 

Long wave asymptotics 

For long wave disturbances, the effect of surface tension is 0(a4) and, provided Q% # 0, 

a - iR«2l2   - 3^(15/f + 30/2(/2 - 1) + 7 + /2(-10 + 3/2)) 

£<-i^F+M>+*»(*?+ 'i-i) 

•0(a4) as 

19 
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When Q2 - 0- the above dominant terms are 0{ah) and 

a-to4 — {l'\-l\- l)5 + 0(a6)        as  a-0. (35) 
6 

Thin-layer effects 

In the linear stability analysis of parallel shear flows composed of two layers of fluids 

with different viscosities and densities, the effect of gravity on the density stratification 

can be countered by the viscosity stratification5. A linearly stable arrangement is possible 

with the more dense fluid being the lower fluid if it is also very much less viscous than the 

upper fluid and if that layer is sufficiently thin. In the present problem, the basic flow has 

no shear, but we find that the stability of thin layers can also be counter to intuition. Here, 

the role of viscosity stratification is taken over by the thermal conductivity stratification. 

The value of a for l\ small is essentially l\ §f-(h = 0) where 

^(/, =0) = -^-(Äa2),/3JÄea/|(l+«V3)Qicothg1]-02Cothg2) + 0(e2).    (36) 

Hence, in the presence of a thin layer, the effect of surface tension and the differences in 

density and cubical expansions are dominated by the difference in thermal conductivity. 

The coefficient of - ($ in (36) is positive for Rayleigh numbers up to the first critical value 

27TT
4
/4 for the one-fluid problem, and typically looks like Figure 5. At the first critical 

value of the Rayleigh number, the coefficient has a pole and is infinite at the critical value 

of a - 7r/v'2. AS the Rayleigh number increases above the first criticality. there will be two 

values of o for which the one-fluid problem is neutrally stable3, and hence the coefficient 

will have two poles, until the Rayleigh number reaches that of the second criticality, when 

the coefficient will have three poles, and so on. Our perturbation scheme is valid away 

From the poles. 

For small l}, 9 < 0, and by antisymmetry, for small /2. a > 0. Hence, the arrangement 

with a thin layer of a less dense fluid lying below the more dense fluid is stable to long 

ind order 1 wavelength disturbances, if the lower fluid has the lesser thermal conductivity. 

20 
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However, for short wave disturbances, the effect of the thermal conductivities is exponen- 

tially small, and the density difference and surface tension dominate the stability criterion. 

Figure 6 displays o{a) for f - 0.1, < = 100.0, & = 1.0, S = 10.0, Ä = 0.1 and /, = 0.05 

showing linear stability even though Fluid 1 is the less dense. 
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Figure 5 
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Graph of the coefficient of -<c in f^(/i - 0) versus a for R = 10.0,50.0,100.0,200.0. 

le amplitudes decay to zero for large o. As /? approaches 277r4/4, the peak amplitude 

proaches infinity and the location of the peak approaches a = n/\/2. 
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Figure 6 

Graph of a versus a. r - O.i, f = 100.0, Q - 1.0, 5 = 10.0, /, « 0.05, R • 

0.1,1.0,10.0. Fluid 1 is the less dense fluid. At R = 0.1 and 1.0, the arrangement is 

linearly stable for all a. As R increases, the arrangement will become less stable. For 

example, at R = 10.0, the arrangement is unstable. 
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APPENDIX : Eigenfunctions of the unperturbed problem 

If (=0, the variable h does not occur in the right hand sides of (4), (5) ,(8), or in the 

interface conditions, and we have the eigenfunction 

A = ex 
(Al) 

The adjoint equations yield: 

LClC = 0, 

B'0C = 0, 

where C = (0,u\u'",/T). This leads to the equations1: 

A0" + RPw' = 0, 

ox 

PAu'-e-^o, 
oz 

du'      dw' 
+ -r- =0. 

dx        dz 

Boundary and interface conditions are1: 

{A2) 

r 

h s 

: 

ou' 
&    = W    -   -r—  = 0 

OZ 
at 2 = 0,1. 

at   2 = /j, |ej =0. 

rde"r     * 

(AS) 

(A4) 

\w'\ = 0. 

„an-    a«-- 
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We set uT - u>0e"" etc., and obtain by combining the equations: 

.d2 

dz'< a2) V, - ÄaV, r- 0- (AS) 

The genera) solution of this equation is 

u/c", = <rj sinhQiz + r2coshQ|2 + c3sinhQ22 + c4coshQ2z 

+ es sinh Q3Z + ce cosh Q3z (.46) 

in fluid 1, and 

w I, = a, sinh Q, (2 - 1) -r d2cosh Qi(z - 1) - d3sinhQ2(2 _ 1) + d4coshQ2{z - 1) 

-d5sinhQ3(2 - l) -1- d6coshQ3(z - 1) 

in fluid 2, where Qt is the complex conjugate of Q3. 

(A7) 

Ql = a2 + (Ra2)V3e-l*f3. (A8) 

The case when <?2 = 0 is considered later (see equations A16-A18). When Q\ = -TT
2
, 

sinh<?2 = 0, and the problem reduces to that considered in Ref. 1, i.e. the perturbation 

of a double zero eigenvalue. This occurs first at R — 2-^L- and a = it ' \^2, and the Q\ 

and Q3 above reduce to Q\ and Q2 of equation (B8) of Ref. 1. In fact, sinhQ2 = 0 for 

R ~ U7*2 "+ a2)3/o2, j =non-zero integer, so that when the basic one-fluid problem is at 

neutral stability, our c3 and d-A are 00. 

The coefficients c\ - Co and rfi - do must be determined such that the boundary 

conditions are satisfied. The conditions (A3) at the walls reduce to 
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At z=0, this yields 

C2 + c4 + Cc = 0, 

C??c2 + Qlc4 + Q3C0 - 0. 

Q?c2 + <?2c< + 9k. - 0. 

From thi      -e obtain c2 = c4 — cc = 0. At z-1, we find 

<*2 + <*4 + rfc = 0, 

Q\d2 + Qlrf4 + Qldc = 0, 

Q\d2 + QU4 + Q*d6 = 0. 

(A10) 

(All) 

This yields d2 = d4 = d& = 0. The first five of conditions (A4) lead, after eliminating u" 

and 6*, to the conditions 

,dtl){,.        .dWn, „rf4lfA, 

,<i5 tlV 
-2ttS ,rf

3 tu 

We thus obtain the following system of equations 

?l=o. (A12) 

ci sinhQ)/] + c3sinhQ2/i + cssinh<33/i = -d\ sinhQ]/2 - d3sinhQ2/2 - dssinhQ3/2, 

cjQi cosh Q,/, + c3Q2coshQ2/i + c5Q3cosh Qzlx = Qid] coshQi/2 

+ Q2rf3 cosh Q2/2 + Qzdh cosh Q3/2, 

c1Q]sinhQll1 + c3<?2sinh<?2/i -f c5#f sinhQ3/, - -Q]d^ sinh<?i/2 

-Q\dz sinh Q2/2 - Q\dh sinh <?3/2, 

ciQ^sinhQ]/] + c3Q2 sinh Q2/i + C5Q3 sinh Q3/| = -Qjdi sinhQi/2 

-C?^3sinhQ2/2 - Q^5sinhQ3/2> (An) 
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u;ö = C] sinhQjZ + 032 + Css'mhQaz        in fluid 1 

and 

w'0 - rfisinhQj(2 - 1) + d3(z - 1) + <f5sinhQ3(2 - 1)        in fluid 2. 

As expected, from taking the limit as Q2 —• 0 in (A 14), 

C3 = -r-"3- 
«1 

Hence, (A15) holds for Ci, C5 and <4], and 

C?3/2sinhQ3(l-tV3) 
C3       5   sinh<?3/, 2 

Ml«) 

(417) 

(418) 

ci(Qf -2c?Q\)cosh(?1/1 +c3((?2 " 2o2Ql)coshQ2h + c5(Qs - 2a2Q^)coshQ3/i 

= dx(Q\ - 2a2Q\)coshQil2 + d3{Q\ - 2a2Ql)co&\iQ2h + ^(Qs - 2a2Ql)cosh<?3/2. 

From these, we find the following relations that will be useful later: 

sinh@}/2 
c\ — -d 

CS = ~d3 

sinhQi/j' 

sinhQ2'2 
sinhQ2'i' 

sinhQ3/2 

sinhQ3/i 

We express the coefficients in terms of ^5: 

Q3sinh Q3 sinh Qxl2 (1 + t'\/3) 

C3= <*5 

^1 = ~^5 

d3 = -<f$ 

Qi sinh Qi sinh Q3/1        2 

Q3 sinh Q3 sinh Q2h (1 - *V3) 
Q2 sinh Q2 sinh Q3/1        2 

sinh Q3/2 

sinhQ3/j 

Q3 sinh Q3 sinh Q1/1 (1 + «V5) 
Qi sinh Qi sinh Q3/1        2 

Q3 sinh Q3 sinh Q2/1 (1 - t\/5) 
Q2sinhQ2

s'nh Q3/i        2 

When a2 = (flo2)1/3, Q2 = 0. The general solution of (A5) is 

(414) 

(415) 

• 
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ABSTRACT (cont.) 

of the one-fluid Benard problem has been investigated in a previous paper1, 

and was found to exhibit both overstability and convective instability.  In 

this paper, the Rayleigh number is assumed to be less than that of the first 

criticality of the one-fluid problem, and in this situation, overstability 

does not occur.  An unexpected result is that by an appropriate choice of 

parameters, it is possible to find linearly stable arrangements with the more 

dense fluid on top. 
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