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ABSTRACT
7

A linear stability analysis of the Bénard problem for two layers of different fluids lying
on top of each other and bounded by free surfaces is considered. The fluids are assumed to
be similar and perturbation methods are used to calculate the eigenvalue in closed form.
The case of the Rayleigh number and wavenumber of the disturbance being close to the

: first criticality of the one-fluid Bénard problem has been investigated in a previous paper",/O\_-‘
and was found to exhibit both overstability and convective instability. In this paper, the
Rayleigh number is assumed to be less than that of the first criticality of the one-fluid
problem, and in this situation, overstability does not occur. An unexpected result is that
by an appropriate choice of parameters, it is possible to find linearly stable arrangements

with the more dense fluid on top. .
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SIGNIFICANCE AND EXPLANATION
Interfacial stability of a two-layer convective problem is analyzed for the case of two
similar liquids. Applications may involve the niodeling of convective instability in a variety

of multi-layered films, for example, pattern formation in rocks.
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INTERFACIAL STABILITY IN A
TWO-LAYER BENARD PROBLEM

Yuriko Renardy

1. INTRODUCTION

Two layers of fluids are sandwiched between infinite parallel horizontal boundaries.
The fluids have only slightly different properties. We neglect any diffusion of one fluid into
the other, so that there is an interface, with surface tension taken into account. The lower
plate is kept at a slightly higher temperature than the upper plate, and the tangential
stress and normal velocity vanish at the boundaries. Although the “free-free” boundary
conditions are physically unrealistic, they yield the advantage that closed-form solutions
can be obtained, and their analysis helps to shed light into the numerical investigation of
the more realistic “rigid-rigid”boundary problem?. We consider the linear stability of the
rest state when the Rayleigh number is below the first criticality of the corresponding one-
fluid problem. The case when the Rayleigh number and wavenumber of the disturbance
are close to that of the first criticality of the one-fluid problem has been investigated
previously!. For the linear stability analysis, we only need to consider two-dimensional
disturbances, because of the rotational symmetry about the vertical axis. The questions
we ask are: what kinds of instabilities can arise; are they different or similar to those that
arise in the one-fluid problem; and how do these instabilities depend on the dimensionless
parameters.

The equations used in each fluid are the Navier-Stokes equations with the Boussinesq
approximation, the linear heat equation and incompressibility. Temperature differences

in the problem are assumed to be small. The properties of the fluids are assumed to be

constants except for the density in the gravity term in the Navier-Stokes equations, where x
o

the density is expanded as a Taylor series about the temperature of the top boundary, and 3
£

truncated so that it is a linear function of the temperature. 3
»4
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At the interface, the following conditions are assumed to hold: the kinematic free-

surface condition, the continuity of velocity and shear stress, the difference in the normal
stresses must be balanced by surface tension. and the temperature and heat flux are
continuous. These equations yield 9 dimensionless parameters: a Rayleigh number and
Prandt]l number based on one of the fluids, a surface tension parameter, and 6 ratios of

the various thermal and mechanical properties of the fluids.

One solution to the equations is the rest state. with a linear temperature gradient in
each fluid, and a flat interface. We consider the linear stability of this solution by adding
a small perturbation which is proportional to exp(taz + ot) where x is the dimensionless
horizontal variable and t is the dimensionless time. The problem is set up as an eigenvalue
problem, to calculate o in terms of the other parameters.

It is instructive to recall some of the results for the one-fluid problem. Rayleigh,
in 1916,3 solved the linear stability problem for one fluid, for “free-free” boundaries. The
eigenvalues and eigenfunctions were found in closed form, and the marginal stability curves
are given by R; = (j2n2+a?)%/e?, j=1,2,... Ri < Rz < R3 < ... The critical Rayleigh
number is 2774/4. The Prandtl number does not enter into the criticality condition, but
appears in the growth rate. The “rigid-rigid” boundary and “free-rigid” boundary cases
were solved later3: here, the eigenvalues and eigenfunctions cannot be found in closed form
but have to be calculated numerically.

Another well-known result for the one-fluid problem is the “exchange of stabilities™:
the equations are self-adjoint so that all the eigenvalues are real. A consequence is that
the velocity at marginal instability is not periodic. The exponential growth of small dis-
turbances leads to a steady nonlinear motion, for example, steady cellular convection.
However. in the presence of solutes with one or more concentration gradients, or continu-

ous density-stratification, a time-periodic marginal instability ( “overstability”) is possible.

In the two-fluid problem, the equations are not self-adjoint2. Therefore, overstability

is possible, and such a situation was found numerically for the case of rigid boundaries.
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The marginal eigenvalues are a complex conjugate pair of multiplicity two. The rest state

would bifurcate to either a traveling wave or a standing wave solution. An analysis of the

subsequent nonlinear problem may be related to that* of one-fluid double diffusion.

It would be interesting to find out under what conditions complex eigenvalues arise
and what conditions yield real eigenvalues in the linear stability problem, but a numerical
attempt at this is not feasible because of the large number of parameters. However,
the case of free boundaries where the two fluids have thermal and mechanical properties
that differ by a small amount of O(¢) can be analyzed with perturbation methods in
the parameter ¢. The leading terms in the perturbation expansion for the eigenvalue are
found in closed form. In a previous paper!, this analysis was performed for the situation
where the unperturbed one-fluid problem is close to the first criticality. Thus, the analysis

involved the perturbation of a double zero eigenvalue.

In the present paper, the unperturbed one-fluid problem is below the first criticality, so
that the analysis for two similar fluids involves the perturbation of a simple zero eigenvalue.
Since the equations are real, the perturbed eigenvalue is also real. Hence, when the interface
is unstable, one would expect the fluids to go into a different arrangement. For example,
if the instability results from the upper fluid being the heavier, one would expect that
it should fall and the fluids should exchange positions. However, there are more subtle
cases as will be discussed. The short-wave asymptotics for o is identical to that obtained
for the rigid-rigid boundaries®. and indeed this agrees with the short-wave asymptotics
of our perturbation formula. Differences in density, coefficients of cubical expansion and
surface tension are important in the short-wave limit. In the long-wave limit, the volume
ratio, and differences in thermal conductivity. density and coefficients of cubical expansion
are important. By making appropriate choices for the parameters, it is possible to find
a linearly stable arrangement with the more dense fluid on top. In fact, the formula

for o for small [, shows the unexpected “thin-layer effect”, where stability is strongly

influenced by the thermal conductivity stratification. This behavior is reminiscent of the
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lubricating effect of viscosity stratification in parallel shear flows composed of two iayers
of different fluids®, where linearly stable arrangements with the heavier fluid lying on top
have been found, provided that suitable values are chosen for the volume ratio, surface

tension. viscosity difference and density difference.
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1I. GOVERNING EQUATIONS

We consider two fluids, lying on top of each other between two parallel boundaries
of infinite extent in the (z°,2")-plane. Fluid 1 denotes the lower of the fluids and Fluid

2 denotes the upper fluid. Asterisks denote dimensional variables. The upper boundary

at z° = " is kept at a constant temperature T, and the lower plate is kept at a higher
constant temperature T; + A T". The interface is at z = I]. Subscript i (=1,2) denotes
Fluid i. At temperature T, the fluids have coefficients of cubical expansion &; , thermal
diffusivity Kiy thermal conductivity k;, viscosity u,, kinematic viscosity v; and density p;.
We use the Boussinesq approximation in the Navier-Stokes equations, that is, the densities

in the buoyancy term for each fluid is approximated by pi(1 — &;(T" — Tj)).

There are 6 dimensionless ratios of the physical properties:

o (0
U2
o=
P2
K '
3] B
K2
k,
a
B=—,
Q2
l.
11=F=1—12

Following Drazin and Reid 2, we introduce dimensionless variables (without asterisks)

as follows:

(z,2) = (z7,27)/1",

t = K1t~‘/l)2!

(2)
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p=p1%/(pr3).

Here, u” = (u",w") is the velocity, p° the pressure and T the temperature. We define

a Rayleigh number
R =g&,AT 13/ (k11),

where g denotes gravitational acceleration, and a Prandtl number
P =vy/k;.

We include a surface tension between the fluids, described by a dimensionless parameter
S = S*1"/(k1p1), where S~ is the dimensional surface tension coefficient.

We study the linear stability of the static solution
u=0,
T=To+1- A,z for 0<2<y, (3)
=To+ Ax(1 — 2) for I, <2<1,

where 4; = m and A; = ¢A,.
If disturbances are proportional to exp(ot + 1az). then the following linearized eigenvalue
problem arises for the velocity u and perturbation © to the temperature.

For0< 2z2<1,,

00 = wA1 ot AG,

ou= -9p/dz+ P A u.

ow = -9p/dz+ RPO + P A uw, (4)
9 ;
S
dr 0z

Forl; <2z2<1,

1
09=wA2-r;A9.
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ou = —rd—p —r—PA u,
0r m
dp RP
Sw= o 3 O+ PAw, (5)
du Ouw
6—1". S5 5‘: — 0.

At z = 0,1, slip boundary conditions are assumed to apply, i.e., the shear stress is
zero, or, 5— =0:

(6)

O=uw-=

Q:loa
N | e
1
=]

The interface is perturbed to the position 2z = I; + h(z,t). The interface conditions
linearized about z=I; are2 :
continuity of temperature: [© ]=h [A ],
continuity of heat flux: [k%2 ]=0,

continuity of velocity: [w ]= [u ]=0, (7)

continuity of shear stress: [u(3% -+ gu) ]=0,

balance of normal stress:

w; 1 dw, 8%h
p2—p1 +2P(5 - ~=2) + Mih - PS5 =0,

kinematic free surface condition:
oh = w;. (8)

Here, |. ]denotes the jump of a quantity across the interface. for example,

PRSP AP Wil M 9 4 | | TSP e B By R

[A] = A1 - As,

and we have set
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We now proceed as follows. It is known?:® that when the fluids have identical prop-
rties, the eigenvalues are real, the presence of the interface introduces a zero eigenvalue
t any Rayleigh number, and another zero eigenvalue occurs first at R = 2—47-7r" for a =
=12z We let R be arbitrary but less than the value of the first criticality of the one-fluid
roblem. We assume the fluids have slightly different properties, and introduce a small

arameter ¢. We regard 1 - m,1 — r,1 — 4,1 —¢.1 — 3, M, and S as small quantities

roportional to ¢; that is, we set

|
3
[
2

v o
X

| DL

1—5':{_(,

1—5=B€,

M1=M1€, M1=PR(—"$,—.+I‘2(F+B)),

(P LY | | SOPPOF LR |

SE=0Se

*

At € = 0. there is a simple eigenvalue 0 = 0, arising from the presence of the interface.

or small ¢, this eigenvalue is perturbed into a power series in ¢. The purpose of the

LIV e

e
Satind

llowing analysis is to find the coefficient of ¢ in this expansion.
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IIl. PERTURBATION ANALYSIS

The perturbation expansion for a double eigenvalue is carried out in detail in Ref. 1,
and closely parallels the procedure adopted here so that the explanation in this section
will be terse. The perturbation expansion for the simple eigenvalue involves finding the
eigenspace belonging to the eigenvalue o = O for the unperturbed problem and its adjoint.

and does not require finding the eigenspace of the perturbed O(¢) problem at all.

Suppose o is a simple eigenvalue of a matrix L,. Let A be an eigenvector of Ly
with eigenvalue o¢, and let C be an eigenvector of L;, (the adjoint of Lo) with eigenvalue
&0 (the overbar here denotes the complex conjugate). Let L, be perturbed into L(e) =
Lo + eLy + O(e?) with L, depending smoothly on ¢. Then the peiturbed eigenvalue o
is given by the zero of the expression ¥(¢,0), which represents to O(¢) the projection of
L(e) — o, first onto the eigénspace of the unperturbed problem and then onto the adjoint
eigenspace:

Y(e,0) = (C,(Lo + eLy ~ 0)A) + O(€?). (9)

For the same reasons as in §III, Ref. 1, we will need to redefine ¥.

Let X denote the set of functions (6,u,w,k). We introduce an inner product by

2% /a 1l _
(X|.k'2:)=/ / 6,0, + t,u; + W wy dzdzx
O 2=0

2x/a 1 _
+/ / 0,0, + juy +~ wywo dzdr
O =1,

2r/a
+ / h]hg dr (10)
o

to generate a Hilbert space. In this Hilbert space, we consider the subspace determined by
the “Hodge projection™ (see space H in Theorem 1.4, Ref. 7), that is, by the conditions that
the velocity field be divergence-free, that the vertical velocity vanish at the boundaries, and

be continuous across the interface. By L(c)X we denote the right hand sides of equations

(4),(5) and (8). We regard L(¢) as an operator in the subspace so that the conditions on w

.
.
3 ,
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in (6) and (7) and the normal stress balance in (7) are an integral part of the definition of
L(¢). The domain of definition of L(¢) is determined by the rest of the boundary conditions
in (6) and (7), which we write in the form B(¢)X=0. The range of the operator L(¢) must
satisfy the following conditions in order for the pressure p occuring on the right sides of
(4) and (5) to be determined as a function of X: The “velocity part” of L(¢)X must be
divergence free, the vertical velocity must vanish on the walls and be continuous across
the interface, and the jump in p across the interface must be given by the normal stress

balance. Thus, the problem we wish to solve is: for small ¢, find o satisfying

Lie)X =0X, (11)
B(e)X =0,
L(€) = Lo + €Ly + O(€?),
B(€) = Bo + €By + O(€?).
The explicit forms of Ly, L;, By and B, are given in §1II, Ref. 1.
We now redefine ¥!:

(e, 6) = (C, ((L(e) = 1)~ = 8)A) + O(¢?), (12)

where the C and A are as before.
The boundary value problem adjoint to (11) is calculated in Appendix A of Ref. 1.

Then we determine the eigenvectors A and C in the Appendix of this paper. They satisfy:
LoA =0, BaA =0,
Lo,C =0, B,C =0. (13)
In formula (12), we must determine the expressions

(C,(L(e) - 1) 7" 4) (14)

10
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to first order in ¢. To facilitate this calculation. we introduce x" and x! defined by
(L(€) —1)7'A = 2% + ez' + O(?). (15)

Equating the coefficients of equal powers of ¢, we find the equations governing z° and z!

(Lo — 1)z" = A.
Boz’ =0, (16)
and
Lz% + (Lo - 1)z' =0,
B;z° + Boz! = 0. (17)
From (16), we find z° = — A. We will not need the solutions z! to the perturbation problem

(17) but only certain inner products involving them, namely (C,z'). This is seen from
(12) and (15):
V(e,8) = (C,z° + €(C, z*) — 5(C, A) + O(€?). (18)

We calculate (C,z') from (17):

(C,z') = (C,L1z°% + (C, Loz'), (19)
and an integration by parts:
(C,Loz") = (LoC, 2"y + T, (20)

where the boundary integrals I are evaluated using the second part of (17). (The boundary
integrals would vanish if Boz! were zero.)

We note that z° = — A and since LgA =0, %f = -‘g’;’ = 0 so that

gc

L]A =

e
=R

L]

11
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in both fluids so that

= w[5]. (21)

3
} 2
E
:
N
N
N
A
M
|
B

where we denote C = (0",u",w",h"), and
[5] = (M, + P§a?)e'>>. (22)

The form of T can be read off from the calculation of the adjoint in Appendix A in Ref.1:

6"
axxr "~
r /gc az o (23)

where the interval of integration I extends over one wavelength in x, at z = [y, and

©; = £ A%w;. From setting ¥ = 0, we have

(T + w[p]) 2
€ (. A) + O(¢%). (24)
We next evaluate (C, A):
c.ay= [ hretes (25)
where
1 . P
h™ = _ﬁp ]} = az!.'“zzz[ (26)
|
8
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IV. RESULTS AND DISCUSSION

When sinh Q2 # 0, we have. using the Appendix,

I'+afp] = ?g‘ (f{; [51Q3(Q§ ~ a?)2cosh Qal; + €3Q2(Q3 — a?)?cosh Q2l;

‘f'ésQ](Q? = 02)2 cosh Q]ll]

+(M1 ch 02PS)

Cy sinh Q3ll + E3sinh Q2ll + €5 sinh Qlll]) (27)

and
l]w(',",j = Q?(C] COSh Q]ll = d] cosh Q]lg) + Qg(C:g COSh Q2ll = d3COSh lez)

+Q3(cs cosh Qaly — ds cosh Qalz), (28)

which, on using equations (A15), becomes

" 3 pa2y1/3(_ sinh Q3
— d5Q32(Ra ) (-1 + \/—)snh Qs (29)
" Hence,
P h
€,4) = 2 L8,0,5 (Ra?) Vo0 + ivE) 2 (30)
and

€ aporyss]| sinh Q3l2 cosh Qal; sinh Q 4l cosh Q3!
= 6(‘(R° ) [ (1-iv3) sinh Q4 T NG,

. sinh Q]lgCOSh Q]l]
(1+ iV/3) SinhQ; ]

02

T {Ra?) '3

sinh Qslzsinh Qsl; 2sinhQQI-‘»sinhQQh

=) 25
(My/P + a S)[ (1+V3) Q3sinh Q3 ' Q2sinhQ;

5 sinhQ;lgsinthll
(1 ,\/5) Q1s8inh Q,

) + O(e?) as ¢ — 0. (31)

13
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We note that o is real. It is independent of the Prandtl number of the basic one-fluid
flow, the perturbation on the viscosity, and the perturbation on thermal diffusivity. The
coefficient of ¢ in o is antisymmetric about [, = 0.5 (see Figure 1); the coefficients of M,/P
and S are symmetric about [, = 0.5 (see Figures 2-4). In M,/P. &,AT " is small compared
with 1. In numerical computations, we have set @;AT" = 0.001. Hence, the coefficient of
7 in o will be almost symmetric about /, = 0.5 (see Figure 2). The coefficient of 3 in o is
the product of I, and a term symmetric about [/, = 0.5 (see Figure 3).

If Q2 = 0, then the two terms in (27) involving &3 are replaced by a*c; and !,
respectively, and the term involving @, in (28) vanishes. Equation (30) remains as is. In
(31). the two terms containing Q2 in the square brackets are to be replaced by 2/ and
2l,ly respectively. The symmetries discussed in the preceding paragraph still hold.

If Q3 = —j%72, j =non-zero integer, i.e., sinhQ; = 0, then as pointed out after
equation (A8), c¢3 and d3 are infinite. In {C, A), d3 is multiplied by sinhQ; so (C, A) is
bounded when the basic one-fluid problem is at neutral stability, making the numerator
T + @[] unbounded due to the ¢3-term. In this case, our perturbation procedure is not

valid, and must be replaced by the perturbation procedure for a double zero eigenvalue’.

14




Figure 1
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Graph of o versus [, the depth of the lower fluid. o, AT = 0.001.R=1,8=1,a=
0.1,1.0,5.0,10.0,20.0.
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Graph of o versus [, the depth of the lower fluid. ;AT = 0.001, R=1,§=1, a =

0.1,1.0,5.0,10.0,20.0.
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Short wave asymptotics

When « is large, the boundary conditions at z = 0.1 are irrelevant and the asymptotic
behavior of ¢ is the same as in the case of solid boundaries. The following expansion was
derived (Eq.(29). Ref. 2) by scaling the z-variable with 1/a and taking the distinguished

limit & — o0, Sa? = O(1):

- ( ) SWONE T £)+O($)

77 2a(X 1)\ @AT 3" R
Re # _ . a’S 1
= E(&;AT‘ —l(F+8) - T) t0(—¢ ). (32)

If Sa? is larger than O(1), then it will be the dominant term in the asymptotic expansion
but the other terms in (32) will not necessarily be the correct next-order terms.

The numerical calculations checked with this formula for {; sufficiently far away from
0 and 1, i.e., for waves that are short enough so that they do not to feel the presence of

the boundaries. The coefficient of — £¢(Ra?)/2 in equation (31) behaves as

(_(1 _ i\/g).zl_(e"ﬂlQa L 6-212Q3) + e-”nQ: _ 6-212Q:

-(1+ i\/i);-(e'zl‘q‘ - e“zl:q‘)> (l + O(c'z")) as a — 0o (33)

so is exponentially small in |a|.

Long wave asymptotics

For long wave disturbances, the effect of surface tension is O(a*) and, provided @, # 0,

o ~ eRa’l, (- 3%0(151: +3012(12 - 1) + 7 + 13(-10 + 312))

L F

+E —m + la(7 +3))(ll2 -#-l::: - l))

+0(a?) as a—0. (34)
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When Q, = 0. the above dominant terms are O(a®) and
o~ (a‘%(lf -12-1)§+0(a°) as a — 0. (35)

Thin-layer effects

In the linear stability analysis of parallel shear flows composed of two layers of fluids
with different viscosities and densities, the effect of gravity on the density stratification
can be countered by the viscosity stratification®. A linearly stable arrangement is possible
with the more dense fluid being the lower fluid if it is also very much less viscous than the
upper fluid and if that layer is sufficiently thin. In the present problem, the basic flow has
no shear, but we find that the stability of thin layers can also be counter to intuition. Here,

the role of viscosity stratification is taken over by the thermal conductivity stratification.

Thie value of o for I} small is essentially /, gT‘:(ll = 0) where

gT‘:(ll =0) = -%f(Ra2)1/3(Rcal[(l +1v/3)Q, coth Q1] — Q2coth QQ) +O0(?). (36)

Hence. in the presence of a thin layer, the effect of surface tension and the differences in
density and cubical expansions are dominated by the difference in thermal conductivity.
The coefficient of —¢{ in (36) is positive for Rayleigh numbers up to the first critical value
2774/4 for the one-fluid problem. and typically looks like Figure 5. At the first critical
value of the Rayleigh number. the coefficient has a pole and is infinite at the critical value
ofa = 7r/\/§. As the Rayleigh number increases above the first criticality. there will be two
values of a for which the one-fluid problem is neutrally stable®. and hence the coefficient
will have two poles. until the Rayleigh number reaches that of the second criticality, when
the coefficient will have three poles, and so on. Our perturbation scheme is valid away
from the poles.

For smalll;. 0 < 0, and by antisymmetry, for small l;, 0 > 0. Hence. the arrangement
with a thin layer of a less dense fluid lying below the more dense fluid is stable to long

ind order 1 wavelength disturbances. if the lower fluid has the lesser thermal conductivity.
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However, for short wave disturbances. the effect of the thermal conductivities is exponen-
tially small, and the density difference and surface tension dominate the stability criterion.
Figure 6 displays a(a) for # = 0.1, ¢ = 100.0, 3 =1.0. § = 10.0, R = 0.1 and /, = 0.05

showing linear stability even though Fluid 1 is the less dense.
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Figure 5

12

Graph of the coefficient of —¢¢ in gﬁ(l. = 0) versus a for R = 10.0,50.0,100.0, 200.0.
ie amplitudes decay to zero for large a. As R approaches 2774/4, the peak amplitude

proaches infinity and the location of the peak approaches a = 7/v/2.
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Graph of o versus a. 7 = 0.1, ¢ = 1000, 3 = 1.0, § = 100, /; = 0.05, R =
0.1,1.0,10.0. Fluid 1 is the less dense fluid. At R = 0.1 and 1.0, the arrangement is
linearly stable for all a. As R increases, the arrangement will become less stable. For

example, at R = 10.0, the arrangement is unstable.
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APPENDIX : Eigenfunctions of the unperturbed problem

If €=0, the variable h does not occur in the right hand sides of (4), (5) ,(8), or in the

interface conditions, and we have the eigenfunction

0
PR
1
The adjoint equations yield:
L,C =0,
g B,C =0,

where C' = (©",u",w",h"). This leads to the equations!:

A ' AO + RPw =0

L]
.

ow , ow
oz dz

Boundary and interface conditions are!:

._ .. _ouw
e T 9z
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du’ :
i "~ P _—i+h =0.
1 lp -2 FEL :
! We set w* = w(e'”* etc., and obtain by combining the equations: _
o d2 9\ 2 2 :
.: (az';; a‘)"w.'. -+ RO u,'". = (0 (AS) :
- The general solution of this equation is g
w,, = ¢, sinhQ;z + ¢; cosh Q2 + e3sinh Q22 + c4cosh Q22 !
. , {
- +cssinh Q32 + ¢gcosh @3z (Ae) !
i j

in fluid 1, and

PPNy e

w;, = d) sinhQ(z — 1) ~ dacoshQ(z — 1) ~ d3sinh Q2(z — 1) + dy cosh Q2(z — 1)
+dssinh Q3(z — 1) + dg cosh Q3(z — 1) (A7)

: in fluid 2, where @, is the complex conjugate of Q3.

Q? = 02 e (Raz)l/aeir/3,

: " Q=a?- (Ra2)l/3’
X Q2 = o? + (Ra?) /312, (48)
The case when Q2 = O is considered later (see equations A16-A18). When Q3 = —=2, Z
sinh@2 = 0, and the problem reduces to that considered in Ref. 1, i.e. the perturbation
of a double zero eigenvalue. This occurs first at R = 274"‘ and a = 7'r,-'\/§, and the @, ‘
'Z and Q3 above reduce to Q; and Q; of equation (B8) of Ref. 1. In fact, sinhQ, = O for
i R = (3°7% + a®)3/a?, j =non-zero integer, so that when the basic one-fluid problem is at
A ) neutral stability, our e¢3 and dg are oo. {
i The coefficients ¢, - ¢ and d;, - d, must be determined such that the boundary i
‘ conditions are satisfied. The conditions (A3) at the walls reduce to

d? d*

w(‘, = d—z'iw(., = E;w('. = 0. (Ag)

e R B
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At 2=0, this yields

Ca+cqg+¢cc=0,
2¢2 + Q2cy + Q2cc = 0. (A10)
‘:cg + Q;c., + Qgc(i —40
From thi e obtain ¢y = ¢4 = ¢ = 0. At z=1, we find

dy+dq+ds=0,

Q%d2 + Q2ds + Q3ds = 0, (A11)

Q:dg + Q;d.; + Q;da = 0
E This yields d2 = d4 = dg = 0. The first five of conditions (A4) lead, after eliminating u"

and ©", to the conditions

o dwg.  cdPwg. o dwg
fug] = 1428 - [£2%) - 2

ddw; o 3wy,
= —2a22 20
ﬂ dz*® iz

l=o0. (A12)

We thus obtain the following system of equations.
) sinh Q]l] + €3 sinh Qzll + ¢35 sinh Q3l| = —d] sinh Q]lg = d3 sinh Q212 = d5 sinh Q312,

¢1Q1coshQly + ¢3Q2cosh@Qal; + csQ3coshQal; = Qydycosh @i,
+Q2d3 cosh Q2ls + Qadscosh Q3lo,

¢1Q2sinh Q! + c3Q2sinh Qaly + ¢5Q2sinh Qal, = —Q%d; sinhQ,l,
~Q2d3sinh Qol; — Q%dssinh Q3ls.

¢1Q%sinh Q! + c3Q%sinh Qaly + c5Q3sinh Q3l;, = —Q1d,sinh Q!

—Q4d3sinh Q4l; — Q3ds sinh Q3ls. (A13)
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c;(Q? - 202Qf)cosh Qih + cg(Qg = 2a2Q§’) coshQaly + c5(Qg - 2a2Q§)cosh Qaly ’
= d)(Q3 - 2a2Q3) cosh Q12 + d3(Q3 ~ 202Q3) cosh Q212 + ds(Q3 — 2a2Q3) cosh Qal. |

From these, we find the following relations that will be useful later:

N sinh Q]Ig
= smh Q]I]
sinh leg
= - 4
£9 ds sthgl; vy
T SlnhQ;;Ig
L smh Qall

We express the coefficients in terms of ds:

Qasmh Qasinh Qyl, (1 + z\/-)

1% Q) sinh Q] sinh Qall 2
. Q3 sinh Q3 sinh Q21 (1 — iv/3)
s Q2 sinh Q2 sinh Qal; 2
sinh leg
—_— 5
d5smh Qal] (Al )
di = Q3 sinh Qasinh @11, (1 + 1V/3)
U Q; sinh Q, sinh Q3l, 2
& e & Q3 sinh Q3sinh @2y (1 — z\/-)
S Qg sinh Qg sinh le] 2
When a? = (Ra?)!/3, Q2 = 0. The general solution of (A5) is
"
w, = ¢;sinhQ,z + ¢3z + ¢5s5inh Q32 in fluid 1 ,
and ,
P
wg = dysinh @y (2 ~ 1) + da(z — 1) + dssinh Qz(z — 1) in fluid 2. (A16) hy
As expected, from taking the limit as Q; — 0 in (A14), f1
: - —?da. (A17) "
1 X
Hence, (A15) holds for ¢;, c¢5 and d;, and 1
: ’ 5
5Q3.lgsmh Qs (1~ t\/ﬁ) (A]S) a
sinh @3l 2 L
27
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of the one-fluid Benard problem has been investigated in a previous paperl,
and was found to exhibit both overstability and convective instability. In .
this paper, the Rayleigh number is assumed to be less than that of the first
criticality of the one-fluid problem, and in this situation, overstability

does not occur. An unexpected result is that by an appropriate choice of

Rt e bt

parameters, it is possible to find linearly stable arrangements with the more

dense fluid on top.
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