
AD-A158 128 ADVANCED AVIONICS COMPUTER ARCHITECTURE VOLUME 2
INSTRUCTION SET ARCHITEC. . (U) SANDERS ASSOCIATES INC
NASHUA NH L GREENSPAN ET AL. MAV 85

UNCLASSIFIED AFWAL-TR-85-1841-V0L-2 F23615-79-C-1935 F/G 9/2

1/4

'n^^v%^Ti^^si7C7V""^T^~y-'^T^^^":TE^x"^' ^•^j^^^'-'T^-^--'-'^''- '-- --L-._

.

••!;)

S 2J.

NATIONAL BUREAU OF STANDARDS
MCftOCOPY RESOLUT** TEST CHART

\

1

,1

-, .-.T.- •— •:,«• ,-,-.« •--•-,• --.-•• . ^- .-•-.- . -.- . - . *-r_-. - .^ ~T~J.- •- •• •,•.";" '.*.'.'r..^;*J.TAT r.T *^*. W.~ •." -." '

AD-A158 120
AFWAL-TR-85-1041

ADVANCED AVIONICS COMPUTER ARCHITECTURE

VOLUME II - INSTRUCTION SET ARCHITECTURE SPECIFICATION

LAWRENCE GREENSPAN

RONALD SINGLETARY

SANDERS ASSOCIATES, INC.
95 CANAL STREET
NASHUA, NEW HAMPSHIRE 03061-2034

MAY 1985

FINAL REPORT FOR PERIOD MAY 1980 - NOVEMBER 1984

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

OTIC FILE COPY

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

MS to my I

A

•

I^Zrttltttt^^

»•. ^•v'l,^:l * •v -• v. -v ^g* -•. -v."."-'. e g ;*.'»*.'•*. '•.^'.'."•P. .•, VV.-.-.V-- -" ." * T W

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

A. (jScE GUY
Project Engineer, Information Processing
Technology Branch
Avionics Laboratory

FOR THE COMMANDER

RAYMOND D. BELLE/A, COL, USAF
Deputy Chief
SyJ?" /• v'-vvcs Division

- • •« '. '.,o: "tOfV

'CAM.
-l«~€OVERT, Acting Chief

Information Processing Technology
Branch
Avionics Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notify AFVAL/AAAT72
W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

&m&&titä^^

REPORT DOCUMENTATION PAGE
la BEPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2e SECURITY CLASSIFICATION AUTHORITY

N/A
3b. lit CLASSIFICATION/DOWNGRADING SCHEDULE

lb. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL TR-85-1Q41 Vgl II
6a. NAME OF PERFORMING ORGANIZATION

SANDERS

5b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Avionics Laboratory (AFWAL/AAAT)
AF Wright Aeronautical Laboratories (AFSC)

6c. ADDRESS (City. Slat« and ZIP Cod»)

95 Canal Street
Nashua NH 03061

7b. ADDRESS (City. Slat« and ZIP Code)

WPAFB OH 45433-6543
8a. NAME OF FUNDING/SPONSORING

ORGANIZATION

Avionics Laboratory

8b. OFFICE SYMBOL
(If applicable)

AFWAL/AMT

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F33615-79-C-1935
8c. AOORESS (City. State and ZIP Code)

WPAFB OH 45433-6543

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

It. TITLE (Include Security Clauification)

Advanced Avionics Computer Architecture7~Vo
*s<se_J»ck 62204F

PROJECT
NO.

2003

TASK
NO.

04

WORK UNIT
NO.

19
12. PERSONAL AUTHOfl(S)

Lawrence firp.finfipan. Ronald fiinglfltarv
13a. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM 5/80 TO 11/84
»4. DATE OF REPORT fYr.. Mo., Day)

1985 May
15. PAGE COUNT

305
16. SUPPLEMENTARY NOTATION

Mi
COSATI COOES

FVELO GROUP

S1Z.

SUB. GR.

. SUBJECT TcRMS (Continue on reverie if necessary and identify by block number)

igh /£evel^£anguage Ada^tachine •
Semantic^ap Reduction;, ~
T.angiiflgp-T^rgn^tT Architecture • [G V•&-} J £ 10. ABSTRACT (Continue on reverie if necessary and identify by block number) J

This exploratory development program was originally aimed at developing a computer with
features to specifically support the JOVIAL (J73) programming language with considerations
to Ada. Later» the program was redirected to modify the instruction set architecture (ISA)
to more fully support Ada and increase performance. —^

The new ISA supports most of the standard functions found in most ISA, but gives addition-
al supports in: the Ada package concept, processing arrays and records, unconstrained
arrays, dynamic storage allocation, detecting dangling references, detecting undefined
variables, Ada-like exception handling, case instructions, for-loop instructions, Ada like
parameter passing, Ada like tasking instructions and IEEE-standard floating point data

types o (\ €y U)<ft (13 '.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED 09 SAME AS RPT. D DTIC USERS •

22a. NAME OF RESPONSIBLE INDIVIDUAL

Guy Vince

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22b. TELEPHONE NUMBER

(Include Area Code)

57706

22c. OFFICE SYMBOL

AFWAL/AAAT-2

.T.VV.V.WW '.: •-• >•." •.' -"• 1

UNCLASSIFIED

SECURITY CLASSIFICATION OP THIS PAGE

11. Title (Cont'd)

Volume TI Instruction Set Architecture Specification

18. v> Non-Von Neumann architecture •
Object Oriented Architecture.,
Capability Based Addressing

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS FAOE

A • * -..^• -. '-.^-.^ -ü -..W^-ifr.. •-•S-. •_. -A >s_. •• •> •> •> -V -> A -> -v ja ^ -^ -s -^ -* A >a -^ ^ -^ -^ A -^ -s A .^ -•• A ••• .ih Jk .»b... >•• «.,!•: »i

_", ,-. ,"»~7,I7»,T7.'r~"".7~' T^yxTT*. "\". .V.T."." % _V~VIV.^~.W.".V VJ ».--».•Hl- ».- k M'.nLTj^T-« «: J-* OJ-^r»

PREFACE

The contents of the document are technically accurate,
and no sensitive items, detrimental ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the document are those of the author(s) and
do not necessarily reflect the views of the Avionics
Laboratory, the Air Force Systems Command, the United
States Air Force, or the Department of Defense«

!Lon For

ORA&I
'C TAB

U —wmced f !
Just it Lcation

By
Distribution/

Availability Cod's

Ditf

ill

.••^>V-V->1>»\N-.V.N-.%W^V.w.y..-.v-\ v.v-\ •.•••V-.V.V.-C..-W: -,\ •••••^v.\v--.--JCV-•.••;••••••.••• ••• ••• -.-• ^v^v.' ••• i

SECTION 1
1. 1

SECTION 2
2. 1
2. 2
2. 3
2. 4
2. 5
2. 5. 1
2. 5. 2

SECTION 3
3. 1
3. 2
3, 3
3. 4
3. 5
3. 6
3. 7
3 .7. 1
3 .7. 2
3. .7. 3
3 .7. 4
3 .7. 5
3 .8
3 .8 1
3 .8 2

SECTION 4
4 .1
4 .2
4 .2 .1
4 .2 .2
4 .2 .3
4 .2 .4
4 .2 .5
4 .3
4 .4
4 .4 .1

TABLE OF CONTENTS
Page

INTRODUCTION 1-1
ISA Summary 1-2

STORAGE OBJECTS 2-1
Package Object (PO) 2-1
Activation Record (AR) 2-2
Task Object (TO) 2-2
Data Object (DO) 2-3
Implementation 2-3
Loading of Packages 2-3
Data Templates 2-4

DATA FORMATS 3-1
16-bit Value Data (V16) 3-1
32-bit Value Data (V32) 3-3
64-bit Value Data (V64) 3-5
96-bit Pointer (PTR) 3-6
96-bit Formal Reference Parameter (FRP) 3-7
Variable Size Record (REC) 3-8
Variable Size Array Header 3-10
Lover Bound and Upper Bound (LB/UB,LB,UB) 3-11
Multi-dimension Span (SPAN) .3-12
Separate Array Value Offset (AVO) 3-15
Dynamic Array Value Address (AVA) 3-15
Total Record Size (TRS) 3-16
Data Object Descriptor (DOD) 3-17
Constrained DOD 3-17
Unconstrained DOD 3-18

INSTRUCTION FORMATS 4-1
Operation Code (OPCODE) 4-1
Operand Formats (FMT) 4-1
Memory 4-1
Formats 4-3
Register 4-5
Immediate 4-8
Stack 4-9
New Operand Specifier (NOS) 4-9
Operand Qualifiers 4-9
Bit Position (BPOS) » 4-9

v>>>;.vvvs>;-^^^

• --«• -T. \r\ rti^ww.^l V" Si"1 • V ".-\." >C V ••J'.-V- v-T'VT :.T^.~7 •'.' •'." V.V--" »""•' " • \Tr'. •'. -".''": ""•• • •V'^r^.'^"s*r^"TVTVrwr7Y^.~V:V^." '."T*. •'

4.4.2 Record Component Offset (RCO) 4-10
4.4.3 Array Subscript (SUB) 4-10
4.4.4 Array Slice Index (SLICE) 4-11

. 4.4.5 Index Constraint (IDXCON) 4-12
4.4.6 Base Relative Offset (BRO) 4-13
4.4.7 Array Size (ASIZ) 4-13

SECTION 5 - BASIC INSTRUCTIONS 5-1
5.1 Data Movement 5-1
5.1.1 Move (MOV) 5-2
5.1.2 Move Array (MOVARR) 5-4
5.1.3 Move Array Slice (MOVSL) 5-6
5.1.4 Load Array Base Address (LDBA) 5-8
5.1.5 Move Pointer (MOVPTR) 5-9
5.1.6 Set Undefine (SETUND) 5-10
5.1.7 Purge Stack (PURGE) 5-11
5.1.8 Swap Stack (SWAP) 5-12
5.1.9 Clear Temporaries Mask (CLRMSK) 5-13
5.2 Arithmetic 5-14
5.2.1 Add Integer (ADDI2,ADDI3) 5-16
5.2.2 Add Floating Point (ADDF2,ADDF3) 5-18
5.2.3 Subtract Integer (SUBI2,SUBI3) 5-20
5.2.4 Subtract Floating Point (SUBF2,SUBF3) 5-22
5.2.5 Multiply Integer (MULI2,MULI3) 5-24
5.2.6 Multiply Floating Point (MULF2,MULF3) 5-26
5.2.7 Divide Integer (DIVI2,DIVI3) 5-28
5.2.8 Divide Floating Point (DIVF2,DIVF3) 5-30
5.2.9 Remainder Integer (REMI2,REMI3) 5-32
5.2.10 Remainder Floating Point (REMF2,REMF3) 5-34
5.2.11 Modulus Integer (MODI2,MODI3) 5-36
5.2.12 Modulus Floating Point (MODF2,MODF3) 5-38
5.2.13 Negate Integer (NEGI1,NEGI2) 5-40
5.2.14 Negate Floating Point (NEGF1,NEGF2) 5-42
5.2.15 Absolute Integer (ABSI1,ABSI2) 5-44
5.2.16 Absolute Floating Point (ABSF1,ABSF2) 5-46
5.2.17 Square Root Integer (SQRTI1,SQRTI2) 5-48
5.2.18 Square Root Floating Point (SQRTF1,SQRTF2) 5-50
5.2.19 Round to Nearest (RNDN) 5-52
5.2.20 Round to Zero (RNDZ) 5-53
5.2.21 Round to Plus Infinity (RNDP) 5-54
5.2.22 Round to Minus Infinity (RNDM) 5-55
5.2.23 Convert Integer to Floating Point (CONVIF) 5-56
5.2.24 Convert Floating Point to Integer (CONVFI) .5-57
5.3 Logical 5-58
5.3.1 And (AND2, AND3) 5-59
5.3.2 And Array (ANDA2, ANDA3) 5-61
5.3.3 And Slice (ANDS2, ANDS3) 5-63

vi

Ä£&&&&^^

."> .•• ;-. •,."''."• i"* ."* ."* k*1 ; . .-w -W-: •y7^r7V7 rs» -.-

5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10
5.4.11
5.4.12
5.4.13
5.4.14
5.4.15
5.4.16
5.4.17
5.4.18
5.4.19

Or (OR2, OR3) 5-
Or Array (ORA2, ORA3) 5-
Or Slice (ORS2, ORS3) 5-
Exclusive Or (EXOR2, EXOR3) 5-
Exclusive Or Array (EXORA2, EXORA3) 5-
Exclusive Or Slice (EXORS2, EXORS3) 5-
Equivalence (EQ2, EQ3) 5-
Equivalence Array (EQA2, EQA3) 5-
Equivalence Slice (EQS2, EQS3) 5-
Not (NOT1, NOT2) 5-
Not Array (NOTA1, NOTA2) 5-
Not Slice (NOTS1, NOTS2) 5-
Set (SET) 5-
Set Array (SETA) 5-
Set Slice (SETS) 5-
Clear (CLR) 5-
Clear Array (CLRA) 5-
Clear Slice (CLRS) 5-
Branch 5-

(IF) 5
Equal (IF=) 5-
Not Equal (IF < >) 5-
Less than Integer (IFK) 5-
Less than Floating Point (IFF<) 5-
Greater than Integer (IFI>) 5-

Floating Point (IFF>) 5
or Equal to Integer (IFI>=) 5-
or Equal to Floating Point (IFF>=)... .5-
Equal to Integer (IFI<=) 5-
Equal to Floating Point (IFF<=) 5-

Defined (IFD) 5-
in Range Integer (IFIRNG) 5
in Range Floating Point (IFFRNG) 5
To (GOTO) 5

Case (CASE) 5
Set Loop Control Variable (SETLCV) 5
Loop Up (LOOPUP) 5
Loop Down (LOOPDN) 5

If
If
If
If
If
If
If
If
If
If
If
If
If
If
Go

Greater than
Greater than
Greater than
Less than or
Less than or

65
67
69
71
73
75
77
79
81
83
85
87
89
90
91
92
93
94
95
96
97
98
•99
•101
•102
•103
•104
•105
•106
•107
108
•109
-110
•111
•112
•113
-114
-115

SECTION
6.1
6
6
6
6

2
2
2
2

6.2
6.2
6.2.6
6.2.7
6.2.8

SUBPROGRAMS 6-1
Call Subprogram (CALL) 6-2
Parameter Association 6-7
Passing via Register File 6-7
Passing via Memory Transfer 6-10
Load RO Reference Parameter (LDRO) 6-11
Load WO Reference Parameter (LDWO) 6-13
Load RW Reference Parameter (LDRW) 6-14
Clear Valid Parameter Mask (CLRVPM) 6-15
Bind Parameters (BIND) 6-16
Return from Subprogram (RETSUB) 6-18

Vll

-^•:.'-:,yv;g-^»v.r:;'r.,TV«'.T.;»--:tr;^.^V^..'f--L>r.L'--T>T'^-.r-.- -T- ' -.r?~7~*

PACKAGES 7-1
Initiate Load (INTLD) 7-8
Create Non-Nested Package Object (CRPO) 7-9
Create Nested Package Object (CRNPO) 7-10
Allocate Package Storage (ALLOCP) 7-12
Return from Package Elaboration (RETPE) 7-13

DYNAMIC STORAGE ALLOCATION/DEALLOCATION 8-1
Create Data Object (CRDO) : 8-2
Create Unchecked Data Object (CRUNDO) 8-4
Destroy Data Object (DSTROY) 8-5

TASKS 9-1
Task Schedul i ng 9-3
Task Switching 9-4
Except ion Modes 9-6
Tasking Instructions 9-8
Create Task Obj ect (CRTO) 9-9
Activate Task (ACTV) 9-14
End Elaboration (NELAB) 9-16
End Activation (NACTV) 9-17
End Elaboration & Activation (NELACT) 9-19
Evaluate Allocated Task Object (EVALTO) 9-20
Call Entry (CALEN) 9-23
Call Entry Conditionally (CALENC) 9-26
Call Entry with Time Out (CALENT) 9-29
Accept Entry (ACCEPT) 9-33
End Rendezvous (ENDRNV) 9-35
Delay (DELAY) 9-36
Select Accept (SACCPT) 9-37
Wait (WAIT) 9-39
Select Delay (SDELAY) 9-40
Select Else (SELSE) 9-41
Select Terminate (STERM) 9-42
Return from Task (RETTSK) 9-43
Schedule Task (SCHDL) 9-44
Set Task Duration (SETDUR) 9-45
Abort Task (ABORT) 9-46

POINTERS 10-1
Assign Pointer to Global Data (ASNPGD) 10-5
Assign Pointer to External VGD (ASNPXV) 10-7
Assign Pointer to External CGD (ASNPXC) 10-9
Assign Pointer to External Program (ASNPXP) 10-10
Restrict Access Rights (RSTRCT) 10-11

- EXCEPTIONS 11-1
Raise (RAISE) 11-7
Assert Range Integer (ASRTRI) 11-8

Vlll

tt/l&tiZY&tt

SECTION 7
7.1
7.2
7.3
7.4
7.5

SECTION 8
8.1
8.2
8.3

SECTION 9
9.1
9.2
9.3
9.4
9.4. 1
9.4. 2
9.4. 3
9.4 ,4
9.4. 5
9.4 .6
9.4 .7
9.4 .8
9.4 .9
9.4 .10
9.4 .11
9.4 .12
9.4 .13
9.4 .14
9.4 .15
9.4 .16
9.4 .17
9.4 .18
9.4 .19
9.4 .20
9.4 .21

SECTION 10
10. 1
10. 2
10. 3
10. 4
10. 5

SECTION 11
11. 1
11. 2

"1

11.3 Assert Range Floating Point (ASRTRF) 11-9
11.4 Initialize Handler (IHNDLR) 11-10
11.5 Retrieve Exception (RTRVXC) 11-11

SECTION 12 - USER CONSOLE 12-1

SECTION 13 - TRAPS 13-1
13.1 Control Trace (CTRACE) 13-3
13.2 Trace Trap (TRAP) 13-4

APPENDIXES

A.
B.

Examples of Arrays
Task Dependencies

A-l
B-l

IX

:^v^^^£^-i-^>:y:::yy^v:>:::•>:::>:•. £&&& >•>:•:•sy.-.ofr>:•>:&&d

1 INTRODUCTION

This document describes the Instruction Set Architecture (ISA) of
a computer known as the High Level Language Machine (HLLM) that
has special features to support the programming languages, Ada
and JOVIAL. The HLLM is intended for embedded applications. The
objectives of this ISA are to provide high performance support
for the frequently used "low level" features of the HOLS (integer
and floating point arithmetic, logical and relational operations,
processing of arrays, looping, calling subprograms) while
reducing the run time software overhead associated with the
advanced features of the HOLS (Ada packages, tasking, dynamic
storage allocation for unconstrained arrays and evaluation of
allocators, exception handling, etc.). Low level support is
accomplished by including powerful and versatile addressing modes
with multiple operand instructions in which the operands can be
in memory, registers, or on an expression stack. The register
file can also be used as a medium for passing parameters during
subprogram or task entry calls. Support for the advanced
features is embodied in powerful instructions in which microcode
and hardware will replace the software routines otherwise
required.

An attempt has been made to write the ISA in sufficient detail to
satisfy both the compiler designer and the system .implementor.
Each section has an introduction followed by a detailed
functional description; in many cases, the relationship between
the feature being described and a language construct is
indicated. For instructions, the legal formats and use of each
operand is specified; then, a detailed description of the
function of the instruction is provided with a list of applicable
exceptions. An attempt wa«; made to logically arrange the
sections of the ISA. First to be described are the four storage
objects into which all data and programs are organized. Next,
the various data types and data descriptors are described.
Finally, the instruction formats and functional operation of the
instructions are described. The instructions are divided into
ten groups: basic instructions, subprograms, packages, dynamic
storage allocation, tasks, pointers, exceptions, traps, input-
output, and attributes. Features and examples of the use of
instructions whose descriptions are too lengthy or detailed for
inclusion in the sections are relegated to appendixes.

1-1

X&ttttS^

••V^V •.-.• '^-JV .V.n. •.n^V".^ '-*" ".'^."•".*.".">".*.'.S'"

1.1 ISA Summary. Memory is logically partitioned into four
types of storage objects. Package objects, which are non-nested
or nested in other packages, support the Ada package construct.
Activation record objects, which are allocated whenever a
subprogram is called or a task object is created, support
recursion and reentrancy. Task objects, together with a task
scheduler and twenty specialized instructions, support Ada
tasking. Data objects, which are explicitly allocated during run
time, support the evaluation of allocators in Ada. (Task, as
well as data objects, can be dynamically created.) Data
templates for activation records, variable global data, and data
objects allow the compiler to assign initial values. (Declared
data that is not initialized is marked as undefined and cannot be
read until a value is assigned at run time.) There are three
distinct physical memories which are simultaneously accessible:
instruction memory, data template memory, and data value memory.
Packages are loaded into instruction memory and data template
memory, which are read-only at run time. A package contains
global data and the automatic data of subprograms and tasks as
well as the instructions of subprograms and tasks that are
contained in the main (outermost) package and in all nested
packages. Data value memory is allocated at run time for
activation records of subprograms and tasks, data objects, and
unconstrained arrays. (See Section 2.)

Data formats exist that accommodate Booleans, characters, 16, 32,
and 64-bit mask data, 16 and 32-bit signed integers, 32-bit
single precision and 64-bit double precision IEEE floating point
numbers, 96-bit pointers, and several array and record
descriptors. Pointers contain access rights which prevent
illegal access to or modification of data, illegal subprogram or
task entry calls, etc. Array and record processing are
supported. Array headers that contain descriptors specifying
bounds and spans for each dimension permit the machine to
automatically check subscripts vs bounds and to compute the
address of an array component. The machine also automatically
computes the size of unconstrained arrays whose bounds are not
known until run time. (See Section 3.)

Instruction formats include memory, stack, register, and
immediate addressing. Each activation record has a 16-word deep
stack for expression evaluation. Sixteen general purpose
registers and sixteen registers dedicated to passing parameters
are provided. Compact formats are available which utilize short
address offset and immediate value fields so that two or three
operands can be specified in a single instruction word. In
addition to operations on individual array and record components,
block moves and logical operations on whole arrays and slices are
supported. Array base addresses can be extracted from array

1-2

• VL*.~-*.'.V_"'- •.'-•-. >••.-.-••-.-. -.•> :-»y,' .'••'.: •j v v-' • ' '• »-.»- r, r. .•.? v '.'.,.' '.' •,»'.'. V v '.; '.'•vn.'1 •'H.^'^ .'•'.V,':,V^
I
.V .'.-,•.•

headers and loaded into registers. This allows base plus offset
addressing of array components and slices, a convenient
addressing mechanism when offsets are known at compile time or
can be easily computed at run time. Operand qualifiers provide
additional information about operands; they include array
subscripts, slice indexes, array size, record component offsets,
etc. (See Section 4.)

Basic instructions have one, two, or three operands (destination,
source-destination, and source-source-destination, respectively).
This category comprises (1) data movement which includes moving
whole arrays, slices, and records, (2) arithmetic operations
which include IEEE standard floating point instructions and
square root, remainder, modulus, rounding, and type conversion
instructions, (3) logical operations on scalar Booleans and mask
data and on arrays and slices of Booleans and masks, and (4)
branch operations that include the full complement of relational
instructions, range check instructions, a case instruction, and
loop control instructions. (See Section 5.)

Subprogram support includes calling and returning from
subprograms with parameter passing by value or reference using
memory or registers as the medium; control can be exercised over
the rights which a called subprogram has to the actual
parameters. (See Section 6.)

Operations on packages include (1) loading a package from an
external package representation, (2) creating a package object by
allocating space in data value memory for the package variable
global data and administrative data and returning a pointer to
the package, and (3) elaborating a package object by executing
subprogram #0 of the created package. (See Section 7.)

Data objects are allocated space in data value memory at run
time. The type definition of a data object is specified in its
data template. Storage is reclaimed (data object destroyed) when
the storage object in which the data object's access type is
declared is destroyed. This storage object is designated in the
instruction that creates the data object. Although storage is
normally reclaimed in the above manner, data objects can be
abnormally destroyed by a DESTROY DATA OBJECT instruction if Ada
unchecked storage deallocation was programmed. (Any dangling
references resulting from such destruction will be detected by
means of a "unique name" if access is attempted.) An important
use of data objects is for I/O buffering. (See Section 8.)

A task object comprises a task program, an activation record, and
associated attributes such as number of entries, identification
of dependent and MASTER storage objects, etc. Instructions are
available which create and activate tasks, evaluate task
allocators, control task rendezvous, and terminate tasks. A

1-3

^x^:^:^:;::-::^:^^

-. -" *". '•. y. •-—•, •• .-. r\ >•. J. r.1 r. •• «•; i-; tr. r. .'. i^. r ,' r i ;^'i'. • .'• • . w • w i i i i] i jm . • i • •:».»:• | »

hardware task scheduler and clock manager are provided.
Different exception modes allow errors to be handled differently
when a task (or subprogram) is being elaborated, a task is being
activated, a task is in rendezvous, or a task is running
normally. (See Section 9.)

Instructions are provided that assign values to pointers for data
entities located in the global storage area of the local package
or in the global storage area of an external package; in
addition, pointers can be assigned for subprograms in external
packages. Pointers contain the physical address of the data
entity or the subprogram identification and the access rights to
the data entity or subprogram. (Access rights to a subprogram
control whether the subprogram can be called.) For security, the
only operations permitted on pointers are to assign values to
them and move them. (The machine nulls all pointers when
packages are loaded.) Access rights can be restricted but never
expanded. Linking of separately compiled packages is
accomplished by moving a pointer to a data entity or a subprogram
located in one package into the variable global data area of
another package. (See Section 10.)

The Ada exception handling mechanism is fully supported.
Normally, the local exception handler is entered, if one is
present; if not, the machine traces dynamic links (calling chain)
until one is found (or the main program or a task object is
reached - terminating the search for a handler). Exceptions in
tasks cause them to be completed and exceptions in main programs
cause them to be abandoned. All predefined exceptions of Ada are
detected by hardware and user - defined exceptions are supported
with raise and range checking instructions. (See Se' ion 11.)

Several important Ada-defined attributes are supported with
instructions that extract and return the attributes. These
include array bounds, length, and size, image and value, and the
tasking attributes of count (number of tasks queued on an entry)
and callable (that returns a Boolean specifying whether a task is
callable, i.e., not completed or terminated). (See Section 12.)

Input/output is supported with six instructions that specify the
type of operation (READ, WRITE, GET, PUT, SEND CONTROL, and
RECEIVE CONTROL), the logical name of the I/O device, and a
pointer to the data object or address of the activation record
that serves as an input or output buffer. Direct memory access
(DMA) data transfer of 32-bit words or transfer of a single 32-
bit word takes place between an I/O card and the buffer under

| rontrol of the I/O card. During input operations, a 4-bit tag is
r«»ad from the buffer's data template and attached to a 32-bit

| data word as each word is written into the buffer (in data value
memory). During output operations, the tags are stripped before

; the data (32-bit words) are transferred to the I/O card. I/O
cards are responsible for any packing and unpacking of data

i i-4

ääfle&fta&&fl^^ • •-. •Jvo-A,yJ--y-,v..^'.j

»*.'•"• '•"•'•'*. •r. »*, •*• ' ' •* -". -", •*, P -* -* * !* *.»"•' •'•••' '. ' '. ' T^^^T^^^T^^^^^^T^ . • I ' I • | • 1 1 | I ' ^. •< .^1 ' •: •• ^

I

'

.
values that may be required because of different word sizes in
the device and the HLLM. I/O cards provide the interface between
the HLLM and a device. They receive control information from the
HLLM and send I/O operation status to the HLLM. I/O cards
support direct, sequential, and text I/O. When packages are
loaded from the User Console, a special interface card is
required that converts between the User Console data format and
the 36-bit word format of the HLLM (see Section 14).

A trapping mechanism is provided to permit program traces during
debugging. Traps can be programmed to occur after every
instruction, every successful branch, every unsuccessful branch,
every call, every exception, or whenever a special trace trap
instruction is executed (see Section 13).

1-5

2&&&a&&a^^ s£&&&

• ; m. i. ii. pi j , I j |i .• ^^^^^pwpjwqwwjppap

2 STORAGE OBJECTS

This ISA defines four types of storage objects: package object
(PO), activation record (AR), task object (TO), and data object
(DO). Instructions exist which explicitly create each type of
storage object. Storage objects contain information of two
types: administrative data and user-specified data.
Administrative data comprises ancillary information required for
the performance of functions called out in the ISA Specification.
It is created by the machine when a storage is created and may be
updated from time to time by the machine for the lifetime of the
storage object (see Appendix A for a complete description of
administrative data). User-specified information is acquired
directly from the program at the time of a storage object's
creation and includes instructions and/or data which are
logically related.

2.1 Package Object (PO). A package object is the central
storage for groups of logically related subprograms, data, task
programs, and nested packages. The external representation of a
package is shown in Figure 2-1. The entire activity of the
machine is determined directly or indirectly by the package
object.

A package object contains a header, variable global data (VGD),
constant global data (CGD), automatic data templates (ADT) for a
number of subprograms and task programs, a nested package area,
and instructions for subprograms and task programs in the package
(including instructions in nested packages). The package header
contains a 1 word package descriptor cell (PKG) and a 5 word
descriptor cell for each component in the package (subprograms,
task programs and nested packages; see Figure 2-2). The first
four bits of the package header descriptor cell is the
DESCription tag; the following four bits is the extend tag, PKG.
The next eight bits specify how many 5-word package component
descriptor cells for subprograms, tasks, and nested packages are
included in this package header. The remaining 20 bits specify
the storage size, in number of words, occupied by the variable
global data. Component descriptor cells for subprogram and task
components of packages are very similar as seen by the words at
offsets of -1..-5 and -6..-10 in Figure 2-2. (The only
differences exist in the words at offsets of -2 and -7; a
subprogram requires an exception mode subfield and a formal
parameter mask while a task program requires priority level and
number of entries.) The meaning and use of the subfields shown
in Figure 2-2 are described in Sections 6 and 9, on subprograms
and tasks. Note that when the external package is loaded into
the machine, all offset values in the package header are
converted to absolute addresses. The description of nested

2-1

nm «y "> • i • !'?7;.v.\-?.-?.-^7^.T.^.TT."r; "v *.»,v. '•..-I

packages also requires a 5-word descriptor cell per nested
package. The first word is the same as the package descriptor
cell except that the extended tag identifies a nested package
(NPKG) cell. Again, all offsets in this descriptor cell are
converted to absolute addresses when the external package is
loaded (See Section 2.5.1).

The variable global data and constant global data of a package
are directly accessible to any subprogram or task program defined
in the package header. Up to 220 halfwords may be addressed in
VGD and CGD areas. VGD may be read and written to but CGD can
only be read. Each subprogram and task program can contain data
with initial values preset by the compiler. Tag and initial
values of data are stored in the automatic data template for the
corresponding subprogram or task program.

2.2 Activation Record (AR). When a subprogram is called or
a task object is created, storage is allocated for an activation
record and administrative data. The activation record contains
an automatic data area, a stack area, and a separate array value
area (see Figure 2-3). The automatic data has a one to one
correspondence with initial values in the automatic data template
of the subprogram/task program (see Section 2.5.2 for details on
data templates). The stack area contains a sixteen word stack
that may be used to evaluate expressions with two or more terms.
The separate array value area provides efficient memory
utilization for arrays defined with one initial value for all of
its components. The size of these arrays must be known
(constrained) at compile time to compute the appropriate offset
to the separate values (see Section 3.7.3). Unconstrained arrays
with separate values are also handled by the machine but are not
permitted in activation records (see Section 3.8.2).

2.3 Task Object (TO). Ada defines tasks as entities whose
execution can proceed in parallel, independently, except at
points where they synchronize (rendezvous). Some tasks have
entries which permit rendezvous with other tasks which issue
entry calls. A task accepts a call of one of its entries by
executing an accept instruction for the entry. Some calls have
parameters which provide a controlled environment for
communicating values between tasks. The actions performed when
an entry of a task is called are similar to those performed when
a subprogram is called except that when the called task reaches a
return instruction, both the calling task and the task containing
the called entry will resume execution in parallel (see Section
9). When a task object is created, storage is allocated for an
activation record (automatic data area, stack area, and separate
array value area) and administrative data. Each task can be
considered to be executed by a logical processor of its own.

2-2

t". ~*~.^.r .wjr^w-z-r-rjir. »-.T-..»-.»-. v-_.-. •-.

Parallel tasks on the HLLM are implemented with interleaved
execution on a single physical processor. Each task object is
assigned a priority level by the compiler which determines the
relative percentage of CPU time allocated to it.

2.4 Data Object (DO). Data objects, which are explicitly
allocated during run time, support the evaluation of allocators
in Ada. In addition, data objects (as well as activation
records) are used as I/O buffer storage in the HLLM. Each data
object includes an administrative data area, a description of the
data object (which is usually an array or record or a composite
of them), and space for data values (see Figure 2-4). Arrays and
arrays of records, whose sizes are dynamically specified at run
time, can only appear in data object descriptions. Data object
descriptions can only appear in the constant global data area of
packages.

2.5 Implementation. The HLLM memory system is divided into
three distinct sections: instruction memory (IM), data template
memory (DTM), and data value memory (DVM). These storage
sections can be simultaneously accessed, a feature required to
support the HLLM's pipeline architecture. Package objects are
loaded into IM and DTM as discussed in Section 2.5.1. Space in
DVM is allocated at run time for activation records, data
objects, and unconstrained arrays. Since an activation record is
allocated each time a subprogram is called or a task object is
created, all subprograms and task programs are recursive and
reentrant. The implementation scheme for controlling access to
data in DTM and DVM is discussed in Section 2.5.2.

2.5.1 Loading of Packages. The external representations of
packages are loaded into the HLLM via a user console interface
card. A bootstrap loader on the user console interface card
first loads a package (called the loader-linker) that contains
programs that will subsequently load and link other related
packages. Headers of packages and all data are loaded into the
data template memory while all instructions in the packages are
loaded in the instruction memory. Offset fields in headers of
non-nested (library) packages are converted to absolute addresses
by the bootstrap loader prior to loading the headers. When the
loader-linker package has been loaded, the bootstrap loader, via
commands from the User Console, allocates storage in data value
memory for the package's administrative data and variable global
data and then elaborates the packge by invoking its subprogram 0.
The loader-linker, in turn, initiates the loading of other
packages and then creates, elaborates, and links them (see
Section 7).

2-3

töSä&fr^^^^^

_________ I—fg..- ,T.^. ^.^.^^

2.5.2 Data Templates. A data template corresponds to a
declarative part in Ada. Data templates are used for the
automatic data of subprograms and task programs, the variable
global data of packages, and for data objects. Their use allows
the compiler to assign initial values to any or all data
entities, including arrays. (Any declared data that is not
assigned an initial value is marked as undefined by the
compiler.) Data templates are loaded into data template memory
(DTM) as part of a package object. Templates contain read-only
data comprising tags and initial values of data and descriptors
of arrays and records.

When memory space is allocated in DVM at run time for an
activation record, variable global data, or a data object, the
size of the allocation is equal to that of the corresponding data
template plus space for administrative data. (Certain array
space which is allocated in DVM does not appear in the template,
as described in Section 3.7). Initial values of data entities
are read from DTM. When a value is first assigned to a data
entity, it is written with its tag into DVM. Since a template is
never disturbed, it can be reused, e.g., the template of an
activation record can be used for any number of subprogram
invocations. An initial value in DTM and the corresponding
variable value in DVM are located at the same offset from
different base addresses. A special control bit called the
"residency" bit selects DTM or DVM, depending on whether the
addressed data entity contains an initial value or a modified
value ("0" selects DTM, "1" selects DVM). A residency bit
corresponds to each word in DVM. Hence, its address is the same
as that of the data word in DVM. As part of power-up
initialization, all residency bits are cleared. Thereafter,
whenever a storage object is deallocated, the memory manager
clears all residency bits for the deallocated block before
attaching the storage to the free list. When a data entity is
first assigned a value, the following steps occur:

• Residency bit is read and found to be "0" (data in DTM).

• tag and initial value are read from template (in DTM) at
address = base of template + OFFSET.

• tag and new (computed) value are written into DVM at
address • base of activation record (or variable global
data or data object) + same OFFSET.

• residency bit is set to "1" so that data is henceforth
referenced in DVM.

2-4

:-;^v^:v^ j

.^7r'^,7'"k'',.*t .^'.'"' LTTT1 •"' •** '.** ^ V_.'*.. »J- ',V'.''.V ».?».•» »;» •.» •„• •?.'•• .'. .-. i- •.-. y; TH

When a value is first assigned to a data entity that occupies two
or three words (64-bit mask data, double precision floating point
number, or a pointer), the residency bit for each of the words is
set to 1. Residency bits for words in DVM that correspond to
descriptors always remain "0". (The single exception to this
occurs when the descriptor is for an unconstrained array - see
Appendix B.) Residency bits corresponding to administrative data
of storage objects start out as "0s" and are set to "Is" as the
administrative information is written. Administrative data has
no initial values and, therefore, no data template.

Residency bits may be stored in a fast 2-port RAM organized as 1-
bit x N words, where N is the number of words in DVM. Two ports
are required to allow the memory manager to clear the residency
bits of a deallocated block of DVM while, simultaneously, other
residency bits are being accessed during normal memory reference
operations.

2-5

•.T-.»V--..->

PACKAGE HEADER

VARIABLE GLOBAL DATA (VGD)

CONSTANT GLOBAL DATA (CGD)

AUTOMATIC DATA TEMPLATES (ADT)
FOR SUBPROGRAMS AND TASK PRO-
GRAMS IN THE PACKAGE

NESTED PACKAGE AREA

INCLUDING NESTED PACKAGE
HEADERS, GLOBAL DATA, AND
AUTOMATIC DATA TEMPLATES
FOR SUBPROGRAMS AND TASK
PROGRAMS IN EACH NESTED
PACKAGE

INSTRUCTIONS

FOR SUBPROGRAMS AND TASK PRO-
GRAMS IN THE NON-NESTED
PACKAGE

INSTRUCTIONS

FOR SUBPROGRAMS AND TASK PRO-
GRAMS IN NESTED PACKAGES

THIS PART OF THE
EXTERNAL PACKAGE
IS LOADED INTO THE
DATA TEMPLATE
MEMORY

I
I

I
I

THIS PART OF THE
EXTERNAL PACKAGE
IS LOADED INTO THE
INSTRUCTION MEMORY

FIGURE 2-1 EXTERNAL PACKAGE REPRESENTATION.

2-6

'.V T .n, -. • -••••

1

PACKAGE
COMPONENT
OFFSET
-N

-(N-l)

-(N-2)

-(N-3)

•10

•9

•8

-7

-6

-5

-4

-3

-2

-1

32
CONTl OFFSET TO NESTED PACKAGE DATA TEMPLATES

32
CONT I OFFSET TO NESTED PACKAGE INSTRUCTIONS

32
iCONTI OFFSET TO NESTED PACKAGE CONSTANT GLOBAL DATA

32
CONT I OFFSET TO NESTED PACKAGE HEADER

4 4 8 20
-(N-4) |DESC|PPGM|# COMPONENTS I VARIABLE GLOBAL DATA SIZE

32
CONTI OFFSET TO PROGRAM* 1 AUTOMATIC DATA TEMPLATE

4
CONT I

IT
OFFSET TO PROGRAM* 1 LAST INSTRUCTION

32
CONT OFFSET TO PROGRAM* ^INSTRUCTIONS

CONTl
4 4 4

I N.D. I
4 8

IPRLVLI I ENTRIES
28

DESClTPGMI ACTIVATION RECORD SIZE

32
CONTl OFFSET TO PROGRAM* 0 AUTOMATIC DATA TEMPLATE

32
ICONTI OFFSET TO PROGRAM* 0 LAST INSTRUCTION

32
CONT! OFFSET TO PROGRAM* 0 INSTRUCTIONS

16
CONT N.D. IEXCPTI FORMAL PARAMETER MASK

TT
DESCISPGMI ACTIVATION RECORD SIZE

4 4 *5 20|
DESCIPKG I* COMPONENTS I VARIABLE GLOBAL DATA SIZE I

PKG - PACKAGE DESCRIPTOR
SPGM- SUBPROGRAM DESCRIPTOR
TPGM- TASK PROGRAM DESCRIPTOR
PPGM- PACKAGE PROGRAM

DESCRIPTOR

EXCPT- EXCEPTION MODE
N.D. - NESTING DEPTH
PRLVL- PRIORITY LEVEL
N/5 - # OF 5-WORD HEADER

COMPONENTS

FIGURE 2-2 EXTERNAL PACKAGE HEADER.

2-7

•>>>>:>^Ä^ t.

TT

I
I

ACTIVATION
RECORD

I
I

ADMINISTRATIVE DATA

STACK AREA

AUTOMATIC DATA

SEPARATE ARRAY VALUE AREA

16-WORD STACK FOR
EVALUATING EXPRESSIONS
(STACK STORAGE = CELL
OFFSET IN THE RANGE
0..31 HALF-WORDS)

I
I

UP TO 1,048,544
HALF-WORDS DIRECTLY
ADDRESSABLE (CELL
OFFSET IN THE RANGE
32..1,048,575 HALF-
WORDS)

I

I

OVER 267 MILLION
WORDS INDIRECTLY
ADDRESSABLE FOR
SEPARATE ARRAY VALUES

FIGURE 2-3 ACTIVATION RECORD OBJECT.

2-8

!^&£>Äv}:>::••:>•:&:•
* .* •" •-••••• • • • • >-Svi

".- >\>T.T»JS ">- V-";T» -.-»\~g\-» »•ST^VV.'^T.^rLT. W V.' '.^- ".V^ *•'-*." *.~ 'v* V 5."1 -t.* *.- V IJ- <.' CT" ^~ •-•* r.' «•* •— T - ITTTT^i 1— .- ,

ADMINISTRATIVE DATA

DESC! DOD I SIZE OF DOD

AVOl ARRAY VALUE OFFSET

LOWER I UPPER
DESClLB/UBl BOUND I BOUND

V32DI INITIAL VALUE

SEPARATE ARRAY VALUE AREA
(OVER 267 MILLION WORDS
INDIRECTLY ADDRESSABLE)

FIGURE 2-4 DATA OBJECT - EXAMPLE OF ARRAY.

2-9

c^^x^c:^c<^v:vw:^-:<:^.::cv: ,.:., :/.Ävi-:Ävi^^^

i .N-^^^-V^" "IV "^.T V IT -. "- •

DATA FORMATS

The ISA supports 16-bit and 32-bit integers, 32-bit and 64-bit
floating point data, 8-bit characters, 16-bit, 32-bit, and 64-bit
mask data, 1-bit Booleans, 96-bit pointers, 96-bit formal
reference parameters, and variable size records and arrays. A
data cell is defined as a unit of addressable data that contains
a tag per word and a value part. Each data cell except records
and arrays has a 4-bit tag that identifies the bit size of the
value field and specifies whether the value is defined or
undefined. Tags specifying value sizes greater than 32 bits
require each additional 32-bit value to follow consecutively.
The tag identifier of each additional 32-bit value is the
CONTinued tag. Variable size records and arrays have a 4-bit tag
that identifies an extension to the tag description and the next
4-bit field specifies the type of description in the remaining 28
bits. Descriptor words and initial values of components are
combined to completely define records and arrays.

16-Bit 3.1
packed in 32
the value fie
required, bit
must be set t
value "one",
never be addr
initial value
assigns a val
which each
undeclared is
hexadecimal v

Value Data (V16).
The 4-bit

Two 16-bit
V16, specifie

If only on
o

bits. The 4-bit tag,
Ids is defined or not.
33, which is the undefined bit

o 1 (undefined) and value field(2)
This field corresponds to undecl

essed. Undefined data (declared bu
by the compiler) cannot' be read

ue, changing the UNDEFINED bit to
value is designated as defined

shown below. Here, XXXX rep
alue.

value fields are
s whether each of
e 16-bit value is
f value field(2),
must contain the
ared data and can
t not assigned an
until the program
0. The manner in
, undefined, or
resents a defined

MSB
35 32 31

LSB MSB
16 15

LSB
0
T

V16 VALUE FIELD 2 VALUE FIELD 1

TAG ID
V16DD=0

V16DU=1

VALUE(2)
XXXX

XXXX

VALUE(l)
XXXX

0000=> UNDEFINED
0001=> UNDECLARED

V16UD=2 0000=> UNDEFINED
0001=> UNDECLARED

XXXX

V16UU=3 0000=> UNDEFINED
0001=> UNDECLARED

0000=> UNDEFINED
0001=> UNDECLARED

3-1

• v v v ",<*.• ",• • -
-*»~~» i.'-- VS w". -N .'. , ... t, rjlZAUA-'dLTAiA. ^£*^^££: .--.•-. IT- K. t*_ ^. - . v.v?j»?>:v: .-:I

•. •_ I •_ • \ I - '-: I' ••••T"B^»I»H »||'»B» >».'» ,»',.»„ ^.'T'»'. * - -'.

Defined 16-bit value fields may represent a 16-bit signed (2's
complement) integer, an 8-bit character, a 16-bit mask, or a 1-
bit Boolean. The data type represented by the value field is
determined by the instruction. Examples of 16-bit integers and
8-bit characters are shown in Tables 3.1 and 3.2, respectively.

Table 3.1 16-bit integer numbers.

1 Integer 16-bit value field

1 32,767 7FFF
1 16,384 4000
1 4,096 1000
1 2 0002
1 1 0001
1 0 0000
1 -1 FFFF
1 -2 FFFE
1 -4,096 F000
1 -16,384 COOO
1 -32,767 8001

Table 3.2 8-bit characters in the 16-bit value field,

1 Character 16- -bit value field 1

"A" 0041 I
1 "B" 0042 1

npn 0043 1
"a" 0061 1

! "b" 0062 1
1 space 0020 1
1 "Z" 005A 1

The 16-bit mask data represents 16 binary digits that may be set
or cleared collectively or on an individual bit basis. Four
examples of 16-bit mask data are shown in table 3.3.

3-2

-j vv->>>^>i,>^iv^i ".•'•••'•>•••-' .".•'••."• ."• .*• V*»

>..-• V-V-\ .V.V-V. ,'.V-.\- V.A-.- OV

-: ••»•'.'».'•'•. •

Table 3.3 16-bit mask data.

1 1 1
1 Mask* 1 16-bit value field 1
1 1 1
1 1 1
1 1 1 0000 1
1 2 1 0001 I
1 3 1 A5C3 1
1 4 1 E976 1
1 1 1

The binary mask values "zero" and "one1

3.3) can also represent Boolean
respectively.

(masks #1 and #2 in Table
values FALSE and TRUE,

3.2 32-bit Value
whether the 32-bit

Data
value

xxxxxxxx

35

represents

MSB
31

(V32). The 4-bit tag, V32,
field is defined or not

a defined hexadecimal

specifies
Again,
value.

LSB

I V32 I VALUE FIELD

TAG ID
V32D=4
V32U=5

VALUE
XXXXXXXX
UNDEFINED

I Defined 32-bit value fields may represent a signed 32-bit
integer, 32-bit mask data, or a 32-bit floating point number in
the IEEE standard format. Examples of 32-bit integers are shown
in table 3.4.

Table 3.4 32-bit integer numbers.

1 Integer 32- -bit value field 1

2,147,483,647
1 1,073,741,824
1 2
1 o
1 -2
1 -1,073,741,824
1 -2,147,483,647

7PFF FFFF j
4000 0000 1
0000 0002 I
0000 0000 1
FFFF FFFE
C000 0000 I
8000 0001 1

3-3

7

.^i'*:.•-»".,•• .'VI

'.%'v* v. v v •_- •<.-<- • v • i • i » . • | • v rr •'••'••••, >-. »• • *-. »•. -r — .- .- V
• 1

The format of the 32-bit mask data is the same as the 16-bit mask
data except that the size of the mask is 32 bits. Floating point
numbers are represented in the IEEE floating point standard
format for single precision (32-bits) and double precision (64-
bits) numbers. Single precision floating point contains a 1-bit
sign (0=plus, l=minus), an 8-bit exponent, and a 23-bit fraction.

35
MSB

31 30
LSB

23 22

I V32 ISI EXPONENT I
III I

FRACTION
I

I

I

Exponents are represented in excess 127. Fractions are
represented in unsigned binary for numbers in the range
0..1-2-2 . For exponents in the range +1..+254, the number
represented is:

(-l)Sign * 2(exP°nent"127) * (1 + fraction).

These numbers, represented with full precision, are called
normalized. For an exponent of 0, the number represented is:

(-l)Sign * 2-126 * (0 + fraction).

In this case, the number is represented with less than full
precision and is called denormalized. Examples of 32-bit
floating point numbers are shown in table 3.5

Table 3.5. 32-bit floating point numbers.

1 Decimal Number 1SignlExponent 1Fractionl

0.5x2127 0 FD 1 000000 1

: 0.625x24 0 82 1 200000 1

0.5X21 10 7F 1 000000 !

0.5x2_1 0 1 7D i 000000

1 .25x2"127 10 1 00 1 200000 1

1-1.0x2° 1 7F 1 000000 1

|-0.7500001x24 111 82 400002 I

3-4

& tMj&&fcai3&^^

«^.-••.."«r.-vj-n- .^.- ^-.- V-"iw»^^T^-''

3.3 64-bit Value Data (V64) The 4 bit tag, V64, specifies
whether the 64-bit value field is defined or not. Defined 64-bit
data may represent 64-bit mask data or a double precision
floating point number. The 64-bit mask data contains 64 bits and
occupies two words. The tag of the second word is CONTinued (tag
ID • C). Double precision floating point requires two 32-bit
value fields to represent a 1-bit sign, an 11-bit exponent, and a
52-bit fraction.

35 32 30 20 19

V64 ISl
I I

EXPONENT FRACTION

TAG ID
LFD=6
LFU=7

35

Most significant
20 bits of
fraction

31

CONT L.S. FRACTION

TAG ID
CONT=C

Least significant
32 bits of

fraction

The 64-bit floating point exponent is represented in excess 1023.
For exponents in the range +1..+2046, the number represented is:

(_l)sign * 2(exponent-1023) * (1 + fraction).

For an exponent of 0, the number represented is:

(-l)sign * 2-1022 * (0 + fraction). .

3-5

-• v -• •" •' •" •* -• .• *• -• «• .* ,' •.•'•* -"-".**• ~J> • • * » 1

TC" "•-. ».*."•.• • •••-••
"•."f.-* .-»J

3.4 96-bit Pointer (PTR) Three 32-bit value fields are
required to represent pointers to whole storage objects, data
entities in the global storage area of packages, and non-nested
subprograms. The value field of the first word of the pointer
contains a 1-bit UNIQUE NAME flag, a 3-bit ENTITY (ENT) subfield,
a 4-bit RIGHTS subfield, and a 24-bit subfield whose contents
depend on the pointed-to entity specified by the ENT subfield
(see Table 3.6). If ENT designates a program in an external
package, the 24-bit subfield contains the offset, in number of
words, from the address of the package header to the program
(subprogram or task program) component in the header (see Figure
2-2). If ENT designates a data object, the UNIQUE NAME flag
controls whether the 24-bit subfield contains a UNIQUE NAME. If
the flag =1, a UNIQUE NAME is present; if the flag =0, the 24-bit
subfield is ignored. The value fields of the second and third
words of the pointer contain, respectively, the ABSOLUTE ADDRESS
of the ENTITY TEMPLATE and the ABSOLUTE ADDRESS of the ENTITY in
data value memory (the latter not used when the pointed-to entity
is a data entity in the constant global data area of a package.)
There is a special use of the pointer data type that does not
involve pointing to an entity. If ENT designates "package load
addresses", (1) the subfields that occupy bits 0..27 in word 1 of
the pointer are ignored, (2) the value in the second word of the
pointer is the absolute address of a package in data template
memory, and (3) the value in word 3 of the pointer is the
absolute address in instruction
of the first program contained
pointer is returned when the

memory of the first instruction
in the package. This special
instruction, ALLOCATE PACKAGE

STORAGE
7.4).

is executed during loading of package (see Sections 7 and

35 32 31 30 28 27 24 23
 1 1 1 1
PTR I I ENT |RIGHTS I

II I I
VALUE DEPENDS ON ENTITY

TAGID 1
PTRD=81
PTRU=9l

1
UNIQUE
NAME FLAG

1
1 READ = XXXI

WRITE = XXIX
DESTROY = XIXX

35 32 31

CONT ABSOLUTE ADDRESS OF ENTITY TEMPLATE

T
35 32 31

CONT ABSOLUTE ADDRESS OF ENTITY

3-6

>5M ^" *•" • V Vt Wtf*'
O "» ""» " m " . «I *

j_^ -' -• * * -• -* -• -• •-••->-V-- ---•-.el^

•" - ' -^ ••'•.^••r,.'-'^,.> •.lyr^iT'.VA .-.^ ••~.^'.V.^'.»..l^ mMVI ". .^i »J i.n"v
• *. ».—«." »• •

Additional information on pointers is found in Section 10

Table 3.6 Pointed-to Entities.

1 ENTITY CODE 1 ENTITY 1

000 PACKAGE OBJECT 1

001 1 TASK OBJECT

010 1 DATA OBJECT

011 1 DATA ENTITY IN VGD

100 1 DATA ENTITY IN CGD 1

101 1 PROGRAM IN EXTERNAL PACKAGE

1 110 1 PACKAGE LOAD ADDRESSES 1

In the above table, VGD = variable
constant global data area.

global data area and CGD •

3.5 96-bit Formal Reference Parameter (FRP). A formal
reference parameter contains a path to the actual parameter and
specifies the rights which the called subprogram has to the
actual parameter. Formal reference parameters have the same
forme as a pointer to a data entity. The ABSOLUTE ADDRESS of
the ENTITY TEMPLATE is the base address of the caller's data
template (or of an enclosing scope's template or the package
variable or constant global data) plus the offset to the actual
parameter. The ABSOLUTE ADDRESS of the ENTITY is the base
address of the caller's activation record (or of an enclosing
scope's activation record or the package variable global data)
plus the same offset. The FRP is assigned only during parameter
binding.

3-7

^•&>>:*^^>:>>y^^

. n.» •". >r* ;-s. ,-v .-"• ^"^ _^,_"-"

35 32 31 30 28 27 24 23 0
1 1 1 1 1 1
| FRP 1 -1 ENT 1 RIGHTS 1 1
1 1 1 1 1 1

TAG ID
FRPD=A
FRPU=B

Read
Write

XXXI
XXI0

35 32 31

I CONT ABSOLUTE ADDRESS OF ENTITY TEMPLATE

35 32 31

I CONT I ABSOLUTE ADDRESS OF ENTITY

In the FRP, the UNIQUE NAME flag and the UNIQUE NAME field are
not used. The ENT field can assume only the following values:

ENT
111

meaninc
actual parameter in caller's
activation or an enclosing
program's activation

Oil actual parameter in variable
global data area of enclosing
package

100 actual parameter in constant
global data area of enclosing
package

See Sections 6.3.1 and 6.3.2 for information on the use of FRPs

3.6 Variable Size Re
speci fies the number of
required to describe t
belongs to the extended
next four bits identify
field is divided into
record components (#C)
in number of words
Immediately following t

cord (REC)
record

 The record descri
components and the numbe

he record. The tag ID of
tag group called DESCriptor

the extended tag as a record,
an 8-bit subfield specifying

and a 20-bit subfield specifying
(#W), of the total record de
he record descriptor are #W-1

ptor (REC)
r of words
the record
tags. The
The value
number of
the size,

scription.
words that

3-8

&k&&&&t&i^

.!•.'*•. I •. !»J '».• m* •. • >.•' M. •. i • -•'-. . • • i ^ "i m' '•.'•» '.-•'.-»•.•

•"

define the components, including initial values. An initial
value is any legal value or UNDEFINED, preset by the compiler.
The entire record description would be located in the data
template of an activation record or a data object.

35 32 31 28 27 20 19

DESC I REC l# COMPONENTS # WORDS IN RECORD DESC

 1 1
TAGID EXTENDED
DESC=D REC=0

Figure 3-1 shows an example of the record format with three
initialized components including a 16-bit value, a 32-bit value,
and a 96-bit pointer. Note that the second value field of
V16(bits 16..31) is marked as undeclared. This corresponds to
the Ada construct in Figure 3.2 which declares one integer (KEY).
The pointer has been initialized to NULL.

35 32 31 28 27 20 19 0
1 DESC REC #C = 3 1 #W = 6

35 32 31 16 15 0
IV16UD Val .ue = 1 1 Value =5

35 32 31 0
I V32D Value = 1,073,741,824

35 32 31 0
I PTRU Null 1

35 32 31 0
I CONT Null 1

35 32 31 0
1 CONT Null

Figure 3-1 Three component record format

REC_DESC: record
KEY: integer: = 5;
SUM: long_integer: = 1,073,741,824;
ITEM_PTR: access array [< >] of float;

end record;

Figure 3-2 Ada record construct.

3-9

•^..Y.V.Y ^•.Y.v.v.y.ylv.-.'V.v?-.-' .••o^y^yjlf.: •:. -:. •-'- c* f. ^_-.<•_-.».y_y.-,*_y V^

.--"T- .v.^". A •-.•.•.. ".*••. •• '."••'.•"."• _•-' A-" ^"1

3.7 Variable Size Array Header. Arrays are defined as
collection! öl homogeneous data entities. An array header
describes the dimensions of the array (lower bound, upper bound,
and span for each dimension), specifies initial value(s) of array
components, and designates, explicitly or implicitly, the
location of the array component values. Array headers facilitate
automatic subscript vs bounds checking and array component
address calculation from the subscripts. (See Section 4.4.3 on
Array Subscripts.) In the header, the bounds in any dimension
can be designated as being unconstrained (not known at compile
time). Then, the values are supplied at run time, when storage
is allocated for the array. Array headers with constrained
bounds lvalues preset by compiler) may be located in the data
template of activation records or data objects. Headers with
unconstrained bounds can only be located in the templates of data
objects. In addition to dimension information, the header
contains one or more initial component values that were defined
in the source program and preset by the compiler. Components
that are not assigned initial values must be marked as UNDEFINED
by the compiler.

Constrained arrays may be defined with component values
immediately following the header or with component values
separated from the header by the array value offset. In the
former case, the location of -the array component values is
implicit (at the end of the header); each component can have a
separate initial value. These initial values are located in the
data template of the array; hence, as new values are assigned,
they are written to corresponding locations in data value memory.
In the latter case, the location of the array component values is
explicitly given by an array value offset to an area of storage
designated for separate array values (at the end of an activation
record or data object). These values do not have a corresponding
template. Hence, the components cannot have individual initial
values. However, the header contains one initial value (or
UNDEFINED) that applies to all components. Unconstrained arrays
must be of the class with separate array component values.

3-10

3.7.1 Lover Bound and Upper Bound (LB/UB,LB,UB). Array headers
with immediate values must start with one of the following
descriptors:

35 32 31 28 27 16 15
1 I I

I DESC ILB/UB I LOWER BOUND (LB) UPPER BOUND(UB)

T n^
TAGID EXTENDED
DESOD LB/UB=3

LB=> 2's complement.
range=> -211..+(211-1).
LB=800=> Unconstrained.

UB=> 2's complementt
range=> -215..+ (215-1).
UB=8000=> Unconstrained.

35 32 31 28 27

DESC LB LOWER BOUND (LB)

TAGID EXTENDED
DESC=D LB=1

2's complement.
=> -227..+(227-l

LB=>
range
LB= 8000000=>

)
Unconstrained,

35 32 31 28 27

DESC UB UPPER BOUND (UB)

TAG ID
DESC=D

EXTENDED
UB=2

UB=> 2'S
range=>
UB=80Q0000=>

complement.
-227..+(227-l)

Unconstrained,

Note that the LB/UB descriptor format combines the lower bound
and the upper bound into one word for describing small to medium
dimensions. Larger dimensions require two consecutive words
containing a 28-bit lower bound value and a 28-bit upper bound
value. Multiple dimensions are indicated by successive lower and
upper bound values.

3-11

v-SX'v\ \\! ••• v.v Äi aRtt-MÄ ;.«•. > > > i *' • » ' • "j *J» * • * jiT" j > - • i i

3.7.2 Multi-dimension Span (SPAN),
additional dimensions require an

dimension over the first. This
the nested dimension. For any dimension,

Arrays with two or more
descriptor word for each

descriptor is called the SPAN of
i.

SPANi = Lengthi-i * SPANi_!

where i-1 represents the number of the immediately nested
dimension and length = upper bound - lower bound + 1. For the

dimension (dimension 1), SPAN is replaced by the array
size, expressed in number of half-words (V16=> 1

V32*> 2 halfwords, etc.). Hence, for an n dimensional

innermost
component
halfword,
array,

SPAN2 • Lengthy * Component Size

SPAN3 = Length2 * SPAN2

SPAN4 = Length3 * SPAN3

•

SPANn = Length'n-i * SPANn_i

and the total array size is

SIZE = Lengthn * SPANn.

The advantage of including SPANs in the header is a
simplification of the component address computation. (See
Section 4.4.3.)

35 32 31 28 27 0
 1 r
DESC I SPAN I

I I
SPANi VALUE FIELD

—r
TAGID EXTENDED
DESC=D SPAN=4

Range=> 0..228-2 halfwords.

SPAN=FFFFFFF=> Unconstrained.

When the last dimension (dimension 1) is specified, the
components are listed with their initial values. The component
size is derived from the first component tag following the
dimension 1 descriptor.

3-12

& J> J* ^ J _• - •
•'- •'• •"- •-"- '"- -'- •-'-•-• iiiJ

•r ~^. v - r

Figure 3-3 shows an example of a three dimension array of
integers. Figure 3.2b shows the corresponding Ada construct.

35 32 31 28 27 16 15 0
1 DESC LB/UB LBi = -2 1 UB-i = - •1

1 DESC SPAN SPAN3 - 6 halfwords

1 DESC LB/UB LB? » 0 1 UB2 • 2

1 DESC SPAN SPAN2 s 2 ha tlf words

1 DESC LB/UB LBi » 1 1 UBT = 2

IV16DD VALUE = 2 1 VALUE s 1

IV16DD VALUE = 4 1 VALUE • 3

IV16DD VALUE = 6 1 VALUE a 5

IV16DD VALUE = 8 1 VALUE s 7

IV16DD VALUE = 10 1 VALUE s 9

IV16UD VALUE = 0 I VALUE * 11

Figure 3-3 3-dimensional array of 16-bit values

3-13

'^^^^^^^ ?.:&& •:-•.-.: ••. •-

'. r_ V .\ •_' .• .• ,• _• .» ." • .• • • • • • V •_! • I l i I •! • I • < i"l . • •! • I • I . I i • I I. I I I _ I I. I , I I I i « I • i •. I I I «I ia II • 1

RR DESC: array (-2..-1,0..2,1..2) of integer:=
(-2..-l=> (0..2=>(1..2=>(1,2,3,4,5,6,7,8,9,10,11)))).

Figure 3-4 Ada array construct.

ote that the last component of ARR_ DESC (-1,2,2) is not
nitialized by the Ada construct. Therefore, the compiler sets
he undefined bit for value field(2) in the tag and assigns all
eros to value field(2).

3-14

• '."• „••' '.•-'."- ."* r*' •* > T*

3.7.3 Separate Array Value Offset (AVO). Headers of
constrained arrays with separate values must start with the Array
Value Offset (AVO) descriptor. The AVO contains a 28-bit self-
relative offset (in words) to the start of the separate array
value area at the end of an activation record or data object.

35 32 31 28 27
T

DESC I AVO RELATIVE OFFSET

T
TAGID EXTENDED
DESC=D AV0=7

separate values. Offset to separat
Range => 3..228-l words.

Following the AVO descriptor are the lower bound, upper bound,
and SPAN of each dimension in the array and a single component
descriptor (tag and initial value) that applies to all the array
components in the separate array value area.

A description of a 1. dimension array with a lower bound of 1 and
an upper bound of 128 is shown in figure 3-5. The start of the
separate values is 48 words from the AVO descriptor and each
component is initialized to the value 16.

35 32 31 28 27 0
IDESC 1 AVO 1 RELATIVE OFFSET • « 48 1

35 32 31 27 16 15 0
IDESC ILB/UB i LB=1 I UB=128 1

35 32 31 0
1 V32D 1 VALUE =16 1

Figure 3-5 Separate constrained array header.

3.7.4 Dynamic Array Value Address (AVA). Array headers with
unconstrained bounds must start with the array value address
(AVA) descriptor. AVA contains the 32-bit address of
dynamically allocated storage for separate array values.
Initially, the machine sets the undefined bit in all AVAs to "1"
(UNDEFINED). When the template of a data object is an
unconstrained array (or is a record with one or more
unconstrained array components), the array bounds are supplied by
an operand qualifier (see Section 4.4.5) in the instruction,
CREATE DATA OBJECT. Then, the size of the array(s) can be

3-15

i^5^^^^^^:^i>i>i^i,ii>Ä>i4

:-=:•- •-'^"••C T^;-;jr-n.^r"^.'r--:.»X.- -_*>_•- -TV -,lr::r^^7'-Jr^r7.'r-.'' <T:W «T"'

>mputed and storage can be allocated for the data object. Since
te location(s) of the separate array values becomes known, the
ichine loads a valid address into each AVA and changes the
»defined bit to "0" (DEFINED).

35 31

AVA I ARRAY VALUE ADDRESS

TAGID 32-bit absolute address of
AVAD=E dynamically allocated array
AVAU=F storage. Absolute addresses

are assigned by the machine only.

jllowing the array value address descriptor are the lower bound,
jper bound, and SPAN of each dimension in the array and a
jmponent descriptor (tag and initial value) that applies to all
te array components in the dynamically allocated separate array
ilue storage area. As mentioned earlier, unconstrained array
?aders can only occur in data object templates.

.7.5 Total Record' Size (TRS). The total record size
»scriptor is used in an array header when the total size of a
»cord which is an array component is not given by the "number of
ards in record description" field in the REC descriptor. This
ase arises when an array with separate values has a record
jmponent and the record contains a component which is an array
Lth separate values. Each array may be unconstrained or
jnstrained with separate values. TRS contains the correct array
Dmponent size which is used in array component address
amputations. TRS precedes the REC descriptor of the record that
Dntains a component which is an array with separate values. The
alue of the TRS descriptor is a 28-bit field representing total
»cord size, in number or words. Appendix B gives four examples
f arrays with record components, when the record contains an
rray component. These examples illustrate when TRS is and is
3t required.

36 32 31 28 27 0
i 1 1 r
I DESC I TRS I 28-BIT TOTAL RECORD SIZE - I
I I I I j j (,

TAGID EXTENDED NUMBER OF WORDS
DESC=D TRS=8 IN TOTAL RECORD.

TRS=FFFFFFF=> UNCONSTRAINED.

3-16

&£&£&^^

3.8 Data Object Descriptor (POD). A Data Object Descriptor
specifies the fixed storage size (known at compile time) of a
dynamically allocated data object. A DOD identifies the
associated data template as that of a data object. These
templates are contained in the constant global data area of
packages (see Section 2.4). The DOD contains a 28-bit value

I

i

field representing size, in number of words, as shown below:

35 32 31 28 27 28 0
i 1 1 r
I DESC I DOD I FIXED STORAGE SIZE I

TAGID EXTENDED Size depends on the type
DESC=D D0D=9 of data object described

by the data template.

Data objects can be any data type including records and arrays,
but excluding pointers and formal reference parameters. The type
is specified in the description (template) that follows the DOD.
Data objects can be constrained or unconstrained. Unconstrained
data objects are unconstrained arrays or contain records with one
or more components that are unconstrained arrays.

3.8.1 Constrained DOD. The DOD of a constrained data object
specifies the total size of data value memory to be allocated
dynamically, in a CREATE DATA OBJECT or CREATE UNCHECKED DATA
OBJECT instruction. This includes the size of the data template
plus the size of separate array values, if the data object is (or
contains) an array with separate values.

3-17

&s&&aa^^

•1 •„« *.» *_• '.' ,' ,•_' -• /• ••, I n1. w, ».»-.».••-«- 1—• • « ••

3.8.2 Unconstrained POD. Since the storage size of an
unconstrained data object Ts not known at compile time, the size
field in the DOD specifies only the size of the unconstrained
array or unconstrained record description (data template). Bounds
of unconstrained arrays are supplied in the instruction, CREATE
DATA OBJECT or CREATE UNCHECKED DATA OBJECT. These instructions
first allocate storage in data value memory of a size equal to
that specified in the DOD. Then, lower and upper bounds and
computed quantities that depend on the values of the bounds (SPAN
and Total Record Size, if a record) are written into data value
memory at locations having the same relative offsets as their
counterparts in the template in data template memory. The total
size of the unconstrained data object, including separate array
values, can then be computed and storage allocated for it. The
addresses (in the allocated storage) of the separate array values
for each unconstrained array can then be written into the Array
Value Address descriptors, completing the operation. This
process is illustrated in Example 4 of Appendix B. An example of
an unconstrained data object description is shown in Figure 3-6.
Here, the symbol < > stands for "unconstrained" value (=
800...Ohex*•

3-18

...... d-..'. •• .• j ..j'-.»..'.^..». ...v.:.^-^. •••.,-AV.. -.--tJ.-.s. .-J,
JT^L.V.-.W.J'..

W
..~..VJ.H--..'-R*..-C-^-.- .*•. --•«-- .w--.:v:

-.; r;«-.'.-: -•; v. f. y; r. v.y_ •.-. JJ .-. yj J-. >-. .-. :r.v. v. .-; r. •.-..-; ••-. r. •-. s-: •»-.•

35 32 31 28 27 0
1 DESC 1 DOD 1 12 "T

35 32 31 0
I AVAU 1 DON'T CARE ~T

35 32 31 28 27 16 15 0
1 DESC ILB/UB 1 < > 1 < > 1

35 32 31 28 27 0
1 DESC 1 TRS 1 < > 1

35 32 31 28 27 20 19 0
1 DESC 1 REC 1 4 1 8 ~T

35 32 31 28 27 0
1 DESC 1 AVO 1 7 1

35 32 31 28 27 16 15 0
1 DESC ILB/UB 1 1 1 48 1

35 32 31 0
1 V32D 1 0 1

35 32 31 16 15 0
IV16DD 1 15 1 -3 T

35 32 31 0
1 AVAU 1 DON'T CARE I

35 32 31 28 27 16 15 0
1 DESC ILB/UB 1 < > 1 < > ~T

35 32 31 0
1 V32D 1 -2, 147,483,647 1

Figure 3-6 Unconstrained data object description.

The data object description in Figure 3-6 defines an
unconstrained array of unconstrained records. The record
descriptor defines four record components including an array with
48 separate 32-bit values, two 16-bit values, and an
unconstrained array with a 32-bit component.

3-19

y*xy^:m*£?*ttS£-^ .• .• ••• >>>^ i^:;iiv^^:-i .-;•,:A-.W:

1 . «. •••••«
 _,, . ,. .-^ •.••. IM ••> I .i.ii |...^^

4 INSTRUCTION FORMATS

The instruction set supports 1-operand, 2-operand and 3-operand
instructions. Twenty-eight operand formats specify 1-operand, 2-
operand, and 3-operand combinations of memory, register,
immediate, and stack references. Instructions vary in size from
one word (36 bits) to N words, depending on the number of
operands.

4.1 Operation Code (OPCODE). The operation code consists of
the eight most significant BTts (bits 35..28) of the first
instruction word. The OPCODE identifies the action to be taken,
the number of operands involved, and the value representation of
the operands.

4.2 Optrand Formats (FMT). Immediately following the OPCODE
is a 4-bit format (FMT) field (bits 27..24) specifying one of
fourteen memory reference formats or format extend. Additional
non-memory reference formats are obtained by extending the format
field by 4 bits (bits 23..20) when FMT = Extend.

4.2.1 Memory. Reference to data in memory requires a 4-bit
address space (ADS) specifier and a 20-bit cell offset (CO). The
address space field specifies the nesting depth of the addressed
data (in the local activation record, an activation record of an
enclosing subprogram or task program, or the constant or variable
global data area of the package).

Nesting Depth Location of Addressed Data

15 constant global data

0 variable global data

1 non-nested subprogram
or task program

2..14 nested subprograms or
task programs

The nesting depth of addressed data must be less than or equal to
the current nesting depth or 15. A nesting depth in the range
0..14 designates a display register pair that contains the base
address of the activation record (or variable global data area)
and the base address of the activation record's data template (or
the variable global data area's data template). Nesting depth 15
designates the display register that contains the base address of
the constant global data in data template memory. The 20-bit
cell offset is a halfword offset relative to the base addresses
mentioned above. Hence, the machine adds the CO to the

4-1

,.j _ ,. , V _^ _ .,„., , '»'J», i PI•»•• '"'• V"• ' !„• v v.'v r.'v . i". p;», , p i • J1
 • i • -. - -• -- .-• •. • . •. • •

base address of an activation record or data template to locate a
data cell. The residency
(in data value memory or
range of the CO value for
halfwords. (Offsets 0
addresses.)

bit determines which absolute address
data template memory) is used. The
memory references is 32 to 1,048,575
to 31 are reserved for register

35

I OPCODE

28 27 24 23 20 19
—T T
M I ADS I CELL OFFSET (CO)

0
T

8-bit operation
code

I

4-bit address
space 20-bit cell offset

5 20
Range=> 2 ..2 -1. 4-bit format

specifier for
single memory
operand
(see Table 4.1)

Data cells that are located within the first 1,024 halfwords of
the activation record (or global data area) can be referenced with
a compacted (shorter) cell offset format. Compact formats allow
the specification of multiple operands in a single word. Two
memory operands residing in the same activation record (or global
area) can be referenced with the 4-bit ADS field and two 10-bit
cell offsets. The range of the short cell offset values for
memory reference is 32 to 1,023 halfwords.

35 28 27 24 23 20 19 10 9

OPCODE MM
I I
I ADS I CELL OFFSET2 CELL OFFSET1

1 1
8-bit operation 1

code 1
4-bit format

1 1
10-bit cell offset2. 1

Range=> 25..210-1. !
specifier
for 2 memory
operands

(See Table 4.1)

10-bit cell
offsetl.

Range=> 25..210-1
4-bit address

space

4-2

??. •• _.- v v v.-. ^?. .^.-•f-.-^-^.r--..v.^.,....t-. •,•.-•••,... .•:...•.. - •:• .-•.--. v. ...-. ,.-..•. t-.,-. •.•.••-.%.--J

:'-.'\' l»l'i'i-.»i- •-•'•.-»-•.- '*." W

4.2.2 Formats. Table 4.1 shows
codes. Here, MEM=Memory, IMM= Ittunedi
Note that the table includes sever

For example, if FMT code
FMT, ADS, and

ot

formats
would specify OPCODE,
would imply the presence of two
(Stack operands are zero-address.)
instructions, the operand specified
example) is the destination and the
in this example) are sources.

No
la
ot

the fourteen memo
ate, and STK=Stack
al 2-operand and
=9, the 36-bit in
a full length CO
her operands on t
rmally, in multipl
st (memory operand
her operands (on t

ry format
operand.
3-operand
struct ion
field and
he stack,
e operand
, in this
he stack,

1 FORMAT MEMORY REFERENCE (ADS) FORMATS
1 CODES OPERAND
1 (FMT) LOCATIONS FIELD SIZES

1 0 = M Memory CO = 20 bits
1 1 • MM Mem-Mem Each CO = 10 bits
1 2 = IM Imm-Mem Imm = 10 bits, CO = 10 bits 1
1 3 = MI Mem-Imm CO = 10 bits., Imm = 10 bits 1
1 4 = SM Stk-Mem CO = 20 bits
1 5 = MS Mem-Stk CO = 20 bits
1 6 » MMS Mem-Mem-Stk Each CO = 10 bits
1 7 = MSM Mem-Stk-Mem Each CO = 10 bits
1 8 = SMM Stk-Merr.-Mem Each CO = 10 bits
1 9 = SSM Stk-Stk-Mem CO = 20 bits
110 = MSS Mem-Stk-Stk CO = 20 bits
111 = SMS Stk-Mem-Stk CO = 20 bits
112 = MIS Mem-Imm-Stk CO = 10 bits, Imm = 10 bits 1
113 - IMS Imm-Mem-Stk Imm = 10 bits, CO = 10 bits 1
114 = - Reserved
115 - Extend

Table 4.1 Memory Formats

4-3

^^^»^/Ivivlv'.vlv^-
L." ._' »-' 1_* . • «_" J

• \ • T " • • ".».»•

Format code 14 is reserved for
extends the format field by an
combinations of operands on the
values, and base-relative values,
shown in Table 4.2.

future use. Format code 15
additional 4 bits to specify
stack, in registers, immediate
The extended format codes are

. NON-MEMORY REFERENCE FORMATS
1 EXTENDED OPERAND
I FORMAT CODES LOCATIONS FIELD SIZES

1 0 _ s Stack
1 1 = ss Stk-Stk
1 2 = I Immediate Imm = 20 bits
1 3 = II Imm-Imm Each Imm = 10 bits
1 4 = SI Stk-Imm Imm = 20 bits
1 5 = IS Imm-Stk Imm = 20 bits
1 6 = SIS Stk-Imm-Stk Imm = 20 bits
1 7 = ISS Imm-Stk-Stk Imm = 20 bits
1 8 = RRR Reg-Reg-Reg Each Reg = 5 bits
1 9 = IRR Imm-Reg-Reg Imm=10 bits, Each Reg= 5 bitsl
1 10 = RIR Reg-Imm-Reg Imm=10 bits, Each Reg= 5 bitsl
1 11 a B Base Reg B-Reg = 5 bits
1 12 = BI Base-.Imm B-Reg = 5 bits, Imm • 10 bits 1
1 13 = BM Base-Memory B-Reg=5 bits,ADS=4 bits,

CO=10 bits
1 14 - Reserved
1 15 * Reserved

Table 4.2 Non-Memory Formats.

4-4

>^^^*££&&^^ .• .* *^>Ü

Zf. Jr.-'Jr. rT*\ • . •'.<.". .*. .*.-•-. ^. ' . •• • ~: •'. -'.'''.'.''-T v» •'."..• V.".P. '.•-':-• '.•• ',•' •• '• •- T^ _•%.•; I-; '-;~»^^-»7-J

4.2.3 REGISTER. Thirty-two 36-bit registers comprise the
register file which is divided into two groups: registers 0
through 15 and registers 16 through 31. The former group
comprises general purpose registers (of concern here) while the
latter group is dedicated to passing parameters (see Section
6.3.1). Register 0 contains two 16-bit control fields, leaving
registers 1 through 15 for general purpose use. Bits 0..15 of
register 0 is called the Temporaries Mask. (Bits 16..31 of
register 0 comprise the Valid Parameter Mask for control of
parameters.) Each bit in the Temporaries Mask corresponds to a
general purpose register in the following way: bit 0 corresponds
to register 0 (itself); bit 1 corresponds to register 1; ...bit
15 corresponds to register 15. Whenever a general purpose
register is written into, the corresponding bit in the
Temporaries Mask is automatically set to "1". If an attempt is
made to read a register when the corresponding bit in the
Temporaries Mask is not "1", a PROGRAM_ERROR is raised. The Mask
has no control over writing to registers. In presence of a task
switch, the contents of those registers corresponding to "Is" in
the Temporaries Mask, including register 0, are automatically
saved in the current task object's administrative data area; the
values are restored when the task is again scheduled to run. The
Temporaries Mask is automatically cleared for the called
subprogram when the CALL SUBPROGRAM instruction is executed. The
instruction, CLEAR TEMPORARIES MASK, is provided to allow
compiler optimization. (There is no need to save/restore
registers when the data they contain is garbage.)

Cell offsets in the range 1..31 address registers (ADS is
ignored). Therefore, the cell offset in activation records
starts at 32 halfwords. Note that the control register (register
0) is not generally addressable; this register is conditioned
automatically by the machine and is modifiable by special
instructions. A consequence of memory mapped register addressing
is that all formats in Table 4.1 are usable for registers ("REG"
replaces "MEM"). In addition, extended formats 8 through 13
utilize the general purpose registers (see Table 4.2). An
instruction using format 8 (RRR) is shown below:

35 28 21 24 23 20 19 15 14 10 9 5 4 0
i 1 1 1 1 1 i r
I OPCODE I EXT I RRR I - I REG3 I REG2 I REG1 I
I I I I I I I I

4-5

&&£&&L&&^^

TTT*:".'--.r-".-- .^ -.-• .v-.j-1*- A ."•''."-'."-:•• '-•" :• -•• .•- .•• .-• •.*•-.*'.• •:•• '.'• '.'•'.-- .-• -.'

Here, two source operands may be located in registers 1 and 2 and
register 3 may be the result destination. Extended formats 9 and
10 are similar, with a 10-bit immediate value replacing one
register operand.

When writing to a register, the 4-bit tag as well as the value
field are loaded. Data types V16, V32, V64, and pointers can be
loaded into general purpose registers. (Formal reference
parameters can be loaded into parameter registers 16 through 31).
A sixteen bit value (V16) is loaded into bits 0..15 of a general
register. A further feature permits array base addresses to be
loaded into general purpose registers. The undefined bit in the
base address tag identifies the array as having immediate values
or separate values. Array value and template base addresses are
loaded into registers by the instruction, LOAD ARRAY BASE ADDRESS
(see Section 5.1.4). Two consecutive general purpose registers,
addressed by CO and CO+1, are loaded as shown below:

(a) Arrays with separate values

|< REGISTER- >|
Register Address Tag Value Field

CO (1..14) F Address of 1st component in array
value space in data value memory

CO+1 CONT Address of component tag/initial
value in array header in template

(b) Arrays with immediate values

|< REGISTER >|
Register Address Tag Value Field

CO (1..14) E Address of 1st component in array
value space in data value memory

CO+1 CONT Address of 1st component tag/
initial value in array header in
template

Note that the tag used for the base address in data value memory
is the same as that used for Array Value Address (AVA). This
does not cause a problem since array headers are not permitted in

4-6

^AL:

J*. IVA • V-"^ VH.T"." A.T." -.' •<." •_- -." •'.* <L» i»

registers. Similarly, base addresses are only permitted to
reside in registers. An array component value is addressed by
adding an offset to the base address of the array values. The
base address is contained in the first register of each pair. In
case b (arrays with immediate values), the same offset added to
the base address of the component description in the header
yields the address of the tag/initial value of the component.
This base address is contained in the second register of the
pair. (The residency bit automatically selects DTM or DVM as the
source of the value.) In case a (arrays with separate values),
base address in the second register of the pair addresses the
single tag/initial value for the entire array. Instruction
formats are available for base plus offset addressing, where the
offset can be an immediate value or a memory operand (see
extended format codes 12 and 13 in Table 4.2). The extended
format code 12 (Base-Immediate) specifies a base register pair
and a 10-bit immediate displacement (in halfwords) to the
addressed array component.

35 28 27 24 23 20 19 15 14 10 9 0
i 1 1 1 1 1 r

I OPCODE I EXT I BI I B.REG I - I IMMEDIATE VALUE I
J I I I | I L

Extended format code 13 (Base-Mercery) specifies a base register,
an ADS field, and a 10-bit cell offset. If CO is in the range
1..31, it specifies a register which contains the 32-bit offset
and ADS is ignored; if CO is in the range 32..210-1, then ADS and
CO specify the memory location that contains the offset value.

35 28 27 24 23 20 19 15 13 10 9 0
i 1 1 1 n 1 r

I OPCODE I EXT I BM I B.REG I-I ADS I CELL OFFSET I
J I I I I I I L

If the 10-bit immediate value (extended format 12) or the 10-bit
CO (extended format 13) is too small, then extended format code
11 (base) that designates a base register is used with the
operand qualifier, Base Relative Offset (BRO). BRO specifies an
offset from the array base address using a full length format
(see Section 4.4.6). Shown below is the base register (B)
format:

35 28 27 24 23 20 19 15 14 0
1
1 OPCODE
1

III 1
1 EXT 1 B 1 B.REG I
III 1

- 1
1

4-7

&£&&ti&&^^

• '."••'.^'7*^''-•"•"""" ' '"* •"'TV-**""* v;'*• '.v/v '.T',* •.» •.•.'r.w.w.'.".'.'.*,'.*rT'.*-.'*l

irray component addresses can be derived by two methods. In the
irst, the instruction addresses the array header and includes
iubscript operand qualifiers (one per dimension). The machine,
ising the information in the array header, automatically checks
:he subscripts vs bounds for each dimension and computes the
irray component address using the subscripts and spans (see
lection 4.4.3). The second method of addressing an array
:omponent involves use of base plus offset addressing, as
lescribed earlier. Then, subscripts for each dimension must be
rhecked by program, using the instruction, ASSERT RANGE, unless
:he Ada index check is suppressed. Having base addresses in
•egisters greatly speeds up array processing when frequent
iccesses to array components is required. Note that there will
)e times when the compiler cannot compute the array component
offset, namely, when subscript values are not known at compile
;ime or when array bounds are unconstrained.

[nstructions are available which move and perform logical
jperations on whole arrays and slices. For a whole array, these

-y
Instructions that address whole arrays) are ' interpreted as
specifying base register and array size (in halfwords). Note
:hat extended formats B, BI, and BM (extended format codes 11,
L2, and 13) may only be used when addressing arrays.

"or a slice, the instructions either address the array header and
Include two slice index operand qualifiers (see Section 4.4.4) in
:he instruction stream (machine computes the location and size of
:he slice and checks the slice indexes vs bounds) or address the
array base, pre-computed slice size, and the offset to the start
Df the slice. In the latter case, extended format 11 (base) is
jsed with the operand qualifiers, BRO and ASIZ. Alternatively,
the compact formats, BI or BM, may be used with the single
3perand qualifier, ASIZ. (Here, BI and BM are interpreted the
same as when an array component is addressed, i.e., as a base
register and offset.)

1.2.4 Immediate. Several forms of immediate addressing
(operand value present in instruction) are provided. A full size
immediate operand is 20 bits which may be a single operand in an
instruction word (extended format I) or combined with one or two
stack operands (extended formats SI, IS, SIS, and ISS). Several
:ompact formats are available in which the immediate operand size
is 10 bits (formats [M, MI, and IMS and extended formats II, IRR,
IM, and BI). Tables 4.1 and 4.2 list all these formats.

4-8

:r. ••• ; :-_ ••; •-_ -• w* •• f p !•" '• • I f. -" ' ' • ,' r. •".• » . • ».»......

4.2.5 Stack. An expression stack of depth = 16 words is
included in each activation record for use by subprograms and
task programs. Although the purpose of the stack is to evaluate
non-trivial arithmetic expressions, any V(16), V(32), and V(64)
data type can be placed on the stack. V(16) types are unpacked
on the stack (right justified). Instructions can combine stack,
memory, and immediate operands as shown in Tables 4.1 and 4.2.
Stack overflow (push beyond sixteenth value) and underflow (pop
under first value) are detected and cause a PROGRAM_ERROR
exception to be raised.

4.3 New Operand Specifier (NOS). When an instruction has
multiple operands, the first instruction word that specifies the
first operand contains the OPCODE (bits 28 to 35). Each
consecutive instruction word that specifies another operand
contains the new operand specifier (code = FF) in place of the
OPCODE. The number of new operand specifiers in an instruction
depends on the OPCODE (instruction type) and FMT (full length or
compact operands).

4.4 Operand Qualifiers. Operand qualifiers provide
additional information about operands which cannot (for lack of
room) be coded into operand specifiers in instructions. The type
of an operand qualifier is coded into bits 28 to 35. The
function and location in an instruction of each type of operand
qualifier is shown below.

4.4.1 Bit Position (BPOS). This operand qualifier may be
used in the MOVE instruction or any logical instruction that
operates on V16, V32, or V64 mask data. A 6-bit field selects a
bit in the mask operand addressed in the instruction. The
selected bit takes part in the operation. BPOS follows the
operand specifier that addresses the mask data in the instruction
stream.

35 28 27 24 23 6 5 0
i 1 1 1 r

I BPOS I FMT I - I BIT I
I II i SSL I

I IGNORE BIT SELECTOR
INST-ID FIELD
00000000

4-9

'At-l&XA&i&tt

'.f^^T M.~ »." •-" "."

4.2 Record Component Offset (RCO). An RCO operand
alifier specifies, in number of half words, the offset from an
dressed record descriptor (REC) to the desired component of the
cord. RCO is a 20-bit immediate value. It is present in the
struction stream following the operand specifier that addresses
C; if the record containing the desired component is itself a
mponent of an array, RCO follows the array component offset
hen base register - offset addressing is used) or follows array
bscript operand qualifiers (when the machine computes the array
mponent address). The examples in Appendix x show how the
chine uses RCO in address computations.

35 28 27 24 23 20 19 0
i i i i r

I RCO I EXT I I I OFFSET (HALFWORDS) I
I I I I L ! ,

I
INST.ID
00000000

4.3 Array Subscript (SUB). An array subscript operand
lalifier addresses an array component index in a particular
mension of the array. To compute the offset to an array
imponent, the machine requires n subscripts, where n = number of
mensions in the array. A subscript is a signed integer that is
mstrained to be within the index bounds specified in the array
ader for the particular dimension. Subscripts are present in
ie instruction stream, following the operand specifier that
Idresses the header, in the order of descending dimension
imber.

35 28 27 24 23 20 19 0
i I i I r
I SUB I FMT | ADS I CELL OFFSET I
I I I I I 1

I
INST.ID
00000000

IT may specify memory, register, stack, or immediate format
lemory or register shown above); two subscripts may be combined
i a compact format.

ie following general formulas show how the machine computes the
Idress of a component in an i-dimension array using subscripts.

4-10

• \ '_•'.•' .»•.'• '.' V *.* *> ".'.'.T^' .'•'.V.^' VA" B." ^* '.7 wi" V v * I w '-'.* .",»_•

a) Arrays with Separate Component Values.
Address of component 1 = array header address + AVO

+ (SUBi - LBi) * SPANi

+ (SUBi_i - LBi-i) * SPANi_!

+

+ (SUB2 - LB2) * SPAN2

+ (SUBi - LB^) * component size

here

AVO = Array Value Offset,

LB = Lower Bound,

SPAN2 = Lengthy * component size,

SPANj = SPANj-i * Lengthj_x (j = 3..i),

ind

Lengthy = Upper Boundi - Lower Boundi + 1.

•or unconstrained arrays, Array Value Address (AVA) replaces
'array header address + AVO". (The value of AVA becomes known
rhen storage is allocated for an unconstrained data object during
:he instruction, CREATE DATA OBJECT or CREATE UNCHECKED DATA
)BJECT) .

!b) Arrays with Tmmediate Values.
The array coi "onent offset computation is the same for arrays
with immediate values. However, the base address of array
values is:

Array header address • size of header.

1.4.4 Array Slice Index (SLICE). Array slice indexes are
jperand qualifiers (always present in pairs) that specify the
Index values of the first (löwer index) and last (upper index)
romponent in a slice in any array dimension.

35 28 27 24 23 20 19

SLICE I FMT I ADS I
I I I

CELL OFFSET

 1
I

INST.ID
00000000

4-11

7^^^^y/y^^^^^^^jJ^<sJ^^^^A

•. 'K.

FMT may specify memory, register, stack, or immediate format
I (memory or register shown above); the two slice indexes may be

combined in a compact format. SLICE indexes are present in the
instruction stream in the order "lower index, upper index"

; following the operand specifier that addresses the array header.

The offset to the first component of a slice is computed from
! subscripts, lower bounds, and SPANs as shown in Section 4.4.3

except that the slice's lower index is used in place of the
highest dimension subscript. If the slice is in dimension i, the

'. offset to the first slice component is:
j
j (lower index - LB£) * SPANi

+ (SUBi_i - LBi_i) * SPANi-i

+ . . .

j + (SUB2 - LB2) * SPAN2

+ (SUBi - LBi) * component size.

The length of the slice is:

I upper index - lower index +1.

Each slice index in constrained to be within the bounds of the
dimension in which the slice is located.

4.4.5 Index Constraint (IDXCON). When lower and/or upper
j array bounds are unconstrained in a data object template, IDXCON

operand qualifiers supply the values of the bounds, constraining
•• the array. These operand qualifiers are present in the

instruction stream (part of the instruction, CREATE DATA OBJECT)
and appear in the same order as unconstrained bound descriptors

'. in the data object template.

35 28 27 24 23 20 19 0
1
1
1

IDXCON
1 1 1
I FMT 1 ADS 1
1 1 1

CELL OFFSET
1
1
1

1
I

INST.ID
00000000

! 4-12

>"•»'-.* - • u~- ." - . - , - ,"• - • •"• . * - •>.•-*.*. ••i. •-"*.*•«-• •*•_•*-,* *"- - *.-,-„-.-«•*•.•••-**•. *•-•..•. -•». •••„•-•»-•, ».-.*. •-"."•»*

* '-> -•• -I '-f *•!• *-•

T7T

FMT may specify any memory, • register, stack, or immediate format
(memory or register shown above). Note, however, that the 20-bit
immediate extended format does not support the full size lower or
upper bound descriptor value (28 bits). Compact formats may be
used, as appropriate.

4.4.6 Base Relative Offset
supplies the array component offset
component of a slice) relative to an
register. It is used when the offset
accommodated in extended format BI (Base-Immediate)
Memory).

(BRO). This operand qualifier
(or the offset to the first

array base address in a
value is too large to be

or BM (Base-

35 28 27 24 23 20 19 0
1
1
1

BRO
1 1 1
1 FMT 1 ADS 1
1 1 1

CELL OFFSET
~T

1
1

I
INST.ID
00000000

FMT may specify a memory,
(memory shown above).

stack, or immediate value format

4.4.7 Array Size (ASIZ). The ASIZ operand qualifier is used
with instructions that operate on whole arrays and slices. It
specifies the size of the array or slice, in halfwords.

35 28 27 24 23 20 19
T

ASIZ FMT ADS CELL OFFSET

I
INST.ID
00000000

FMT may specify a memory, stack," or immediate value format
(memory shown above).

4-13

\\- >>>SN> &tf

FT^:^^.-»V*,v'V>T'-.*» .'-yv .••'^'A '.«.•« •'•.••• i.» V^<^**^^*^>P_'V< .• » .•..», i1 !• .•_'•. • •» » • .• .• •.' .• .• .••»•;».n • »•*•;

5 BASIC INSTRUCTIONS

The following pages describe the basic set of HLLM instructions
including data movement, arithmetic, logical, and branching
operations. Instructions that support special features of Ada,
e.g., tasking, packages, exceptions, etc., are covered in other
sections.

In the description of the instructions that follows, the only
operand formats shown are for full length operands. This is for
convenience; any appropriate compact format can be used by the
compiler (see Tables 4.1 and 4.2). Of course, any memory format
designates a register if the cell offset is in the range 1..31.
In the description of the operands, S means Source and D means
Destination. Enclosed in parentheses following each Format (FMT)
alternative is the format code., e.g., memory (0), immediate
(EXT, 2), where EXT refers to the extended codes in Table 4.2.

5.1 Data Movement

These instructions correspond to simple assignment statements in
Ada, including assignment of whole arrays and records; also
included in this group are instructions that change the
representation of data during assignment., set data to
"undefined", manipulate the stack (swap, purge), and clear the
Temporaries Mask.

5-1

'•y.'-TV.'- '.,.V.'.,.".,.".T.»:V-".*-"T*T-".^'.'-'."- ."• .*••' .* •^,Tv',."'.1-"'.:'.•VW'."TTT?*:^1'.p>.p-,-'.,-".V^."-V^'=*.y.'vr:'

5.1.1 MOVE

Format: OOfl, S, D,

Mnemonic: MOV

Operands:
S: Source to Be Moved
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Destination of Move Operation
FMT: memory (0) or stack (EXT,0)

Function:
The operand specified by S (immediate value, any data entity
except a whole array or slice, or a data object) is copied to the
destination location specified by D. Table 5.1 shows the legal
combinations of source and destination operands. If the source
or destination operand is a pointer to a data entity in global
storage (ENT=011 or 100) or to a data object (ENT=010), the
pointed-to entity, not the pointer takes part in the operation.

Exceptions:
PROGRAM ERROR

5-2

.vf^vTSK^-LA."»."• •;"v"."- -••'.A .v.«. L*. ."- '_••" •:""."•:•.»-" "i" l-_ i.' »_• •.• ** •i'liTt".' v.-«:-i—r-

j source 1 destination

1 • immediate value 1 • conforming scalar in
I 1 memory (or register)
1 • scalar in memory or or stack
1 register) or stack |
1 1 • conforming array or
1 • array or record 1 record component
1 component 1

I • whole record 1 • conforming whole
1 1 record

1 • data object of any I • conforming data object
1 type except array 1
1 1 • conforming data entity
1 in an activation
1 1 record or in global

1 storage

j • any data entity except al • conforming data object
1 pointer or an array in 1
1 an activation record 1
1 or in global storage 1

Table 5.1

5-3

^^'f^t^(^^

"M-% ;.-VJ.^-».• *.z rr*rr>—v _»'.».-.». * . • .•» . «-;•"_". '•."•". '*". •".' .". .-J .".:". ,". ^ T—7 :• -7—7 .*'.'—7~:—T :* '."-.' •* J".1* yy^7

5.1.2 MOVE ARRAY

Format: Olpj, S, D

Mnemonic: MOVARR

Operands:
S: Source Array to Be Moved
FMT: memory (0) or array base register (EXT,11)

If an array base register is specified, the
array size must be provided by the operand
qualifier, ASIZ; alternatively, the compact
format BI or BM, may be used.

D: Pestination Array
FMT: memory (0) or array base register (EXT,11)

If an array base register is specified, the
array size must be provided by the operand
qualifies, ASIZ; alternatively, the compact
format BI or BM may be used.

Function:
The array operand specified by S is copied to the conforming
array specified by D. Table 5.2 shows the allowable addressing
combinations. If the source or destination operand is a pointer
to a data entity in global storage (ENT=011 or 100) that is an
array or is a pointer to a data object (ENT=010) of type array,
the pointed-to array, not the pointer, takes part in the
operation. Arrays in constant global storage must have immediate
ualiiac Uhan an ai*c9V ic a^/4raeea>4 ui 3 i •-o hca/^ar in m «a m #-i r-.» *• >in

locates the first array component.

Exceptions:
PROGRAM ERROR

5-4

••."••.V /•*." <Z* . ••."' 1+Z •'.'•f.' d&LLZ&teÜ^^

w •_i *_i •_» *;-' »_> \J '_• ».'.' *j. * > »_yj ">,' • a"..- "i *> v "j".»•-»•'j' Ti3" F ' <r i". -* ^ -".• sr .• T—»—^-n

1 source 1 destination

1 • array addressed via an 1
1 array header in memory 1

1 • array addressed via an 1
1 array base register and an 1
1 array size qualifier 1
1 1 • any conforming array,
1 1 similarly addressed
1 • array addressed via a 1

pointer to an array 1
header in the global 1

1 storage of a package 1

1 • array addressed via a 1
1 printer to a data object 1
1 of type array

Table 5.2

5-5

££££&g£&££ä^

/•.^.t^7 V

5.1.3 MOVE ARRAY SLICE

Format: 02H, S, D,

Mnemon i c: MOVSL

Operands:
S:
FMT:
Memory:

Source Array Containing Slice to Be Moved
memory (0) or array base register (EXT,11)
upper and lower array slice index (SLICE)
operand qualifiers and the necessary array
subscripts (SUB) are present in instruction

Base Req: base register offset (BRO) and slice size (ASIZ)
operand qualifiers are present in instructions;
alternatively, the compact format BI or BM may be
used to provide base register and offset to start
of slice with the operand qualifier, ASIZ,
providing slice size.

D: Destination Slice
FMT: memory (0) or array base register (EXT,11)
Memory: upper and lover array slice index (SLICE)

operand qualifiers and the necessary array
subscripts (SUB) are present in instruction

Base Req: base register offset (BRO) and slice size (ASIZ)
operand qualifiers are present in instructions; .
alternatively, the compact format BI or BM may
be used to provide base register and offset to
start of slice with the operand qualifier, ASIZ,
providing slice size.

Function:
The array slice specified by S is copied to the conforming slice
specified by D. Table 5.3 shows the allowable addressing
combinations. If the source or destination operand is a pointer
to a data entity in global storage (ENT=011 or 100) that is an
array or is a pointer to a data object (ENT=010) of type array,
the pointed-to array slice, not the pointer, takes part in the
operation. Slices of arrays in constant global storage must have
immediate values. When an array slice in a multi-dimensional
array is addressed through the array header in memory, the
machine computes the address of the slice from subscripts, lower
slice index, lower bounds, SPANs, and array component size (see
Section 4.4.4). It also computes the size of the slice as shown
below:

5-6

jf. W. A •*. .'.«-. •'. ^. •-. W. V-. ^. «r. *_ A, V. A A •'. /. *•. ••._'-.• . • «.<. «f. »'. •*. ^. •'. V\ •'. i ̂ ••^VL-^-rir-rlv! V..Y :-<:\i

r^.'.-v^t':"

1 source destination

1 • slice addressed via an
1 array header in memory,

array subscripts, and
1 upper and lover slice

index qualifiers

1 • slice addressed via an • any conforming array,
1 array base register and slice, similarly

base register offset and addressed
1 size qualifiers

1 • slice addressed via a
pointer to an array

1 header in the global
storage of a package,
array subscripts, and

1 upper and lover slice
index qualifiers

1 • slice addressed via a
pointer to a data object
of the type array, array

1 subscripts, and upper and
1 lover slice index

qualifiers

Table 5.3

Size=(Upper Index - Lover Index +1) * Component Size

Exceptions:
PROGRAM_ERROR
CONSTRAINT ERROR

5-7

yiy«>^y//-'v«£-£-\'>'.v ' »' '_>**_* b *'-**"-!»"" -"' **" mmjF* "%V' •"" -"* *"* »"" •»** **• »"* •"* »^ Am %""* •*"_*• k'• -*" k ^ »"* «^

•IV."".".''.«?/.'/./.''.''. •'."*"•'". •"."'".•••. r. .-;<r„ t. *•;*••;•*•: ••;.-..• ..•.'.-»7'TT/.-.T.^V- »"••.-•• i

5.1.4 LOAD ARRAY BASE ADDRESS

•"ormat: 03H, S, D

Mnemonic: LDBA

operands:
S: Array Header
FMT: memory (0)

•
D: Destination Array Base Register

array base register (EXT,11); register #1..14

Function:
The cell offset (CO) specified by S is added to the contents of
each register of the display register pair corresponding to the
nesting depth (ADS) specified by S to form'the address of the
array header in data template memory (DTM) and the corresponding
address in data value memory (DVM). The machine determines
whether the array has separate values (first word in header is
AVO or DOD followed by AVA) or immediate values (first word in
header is array bounds). If the array has separate values the
address of the first component value in DVM and the address of
the tag/initial value in DTM (for all components are found and
loaded into the base registers specified by D and D+l. The tags
written into these registers are F(AVA with UNDEFINED flag • 1)
and CONT, respectively. If the array has immediate values, the
address of the first component value in DVM and the address of
the first component tag/initial value in DTM are found and loaded
into the base registers specified by D and D+l. The tags written
into these registers are E(AVA with UNDEFINED flag=0) and CONT,
respectively. "AVA" provides a unique identification for array
base registers.

Exceptions:
PROGRAM ERROR

5-8

•v '~iWTr'.^-i.'-nrrm r- *;.*:.*•,w^r^w:ir.\r- •r. ;v--- y.i^.v: •••.• r. .•..•,•-•_ r. • ~ I- .• .»•y.. iv :• i- .—?—T-.-T T-

5.1.5 MOVE POINTER

Format: 04H, S, D

Mnemonic: MOVPTR

Operands:

S: Pointer to Be Moved
FMT: memory (0)

D: Destination Pointer
FMT: memory (0)

Function:
The pointer operand addressed by S is copied to the destination
location addressed by D. In every case when a pointer is
referenced except this instruction, the pointed-to entity takes
part in the operation.

Exceptions:
PROGRAM ERROR

5-9

^•te^Xtts^^^

.1 •>' »r »'- ' - ' V* '-' ' t ' V• V ' 'A . V• *•• '.-^ pi | ,.^T*.'"."^'-«.,1» »: «. •- v ic- *-- «r

1.6 SET UNDEFINE

>rmat: 05H, D

lemonic: SETUND

je rands:
):
FMT:

Data to Be Set to Undefined
memory (0)

set to undefined by writing a
the tag. For type V16, the
to 000H (see Section 3.1). If

jnction:
le data entity addressed by D is
L" into the "undefined bit" in
Jdressed 16-bit field is also set
tie data entity is a pointer, writing ä "1" into the undefined
it causes the pointer value to be NULL. If D addresses an array
r a record, each component is set to undefined.

xceptions:
None

5-10

"-• 'j*v ~-WJV '"^ r^ ."*• ~^.~ir_"«r.j *"_ <*. »vw»

3.1.7 PURGE STACK

format: 06H

-(nemonic: PURGE

operands:
None

Function:

The local stack is pop'd (contents lost) until the stack pointer
points to the top-of-stack.

Exceptions:
None

5-11

••' g"^'J
w"'.' "' • y'.'^*' V'*'.' *"; r;i „ '.r'." »".• y. y. •". "•, »~; «-. »V^T*"^

T".' »"-T"": •*" »'

8 SWAP STACK

iat: 07H

ionic: SWAP

•ands:
le

:tion:
contents of the top two locations on the local stack are

tanged.

sptions:
M

5-12

i i--f ij--y -•^^•m <m • '. •• <_-*% •—» \—v- r**' '.T'.—.' "V

5.1.9 CLEAR TEMPORARIES MASK

Format: 08H

Mnemonic: CLRMSK

Operands:
None

Function:
Each bit in the Temporaries Mask (bits 0..15 of register 0) is
cleared.

Exceptions:
None

5-13

^>::>:v>::S>>^

.'.VT? .'•'•'•'.•.', .'.'.'.".'j .'..* yy.1 r f.'':'''.'.'•,'•,'•,'•' V ' *. " '-".'; m. "•**• ,*v*'-"* • '^* '•• — • » i- .• r ;• f—

5.2 Arithmetic

The basic principle of operations involving numeric operands is
that, except where otherwise specified, the result is computed as
if correct to infinite precision. This infinite precision result
is then rounded, if necessary, to the precision of the result
operand. The arithmetic operations and floating-point formats
are based on the proposed IEEE floating-point" standard [IEEE 81],
modified as described below (unless otherwise noted, section
numbers refer to [IEEE 81]).

Formats (Para 3): The ISA does not support representations of
infinity. The only not-a-number (NaN) which can be represented
in "Undefined". The representations specified for infinity and
other NaNs must not be used.

Default Rounding Mode (Para 4.1): Unless otherwise specified in
the ISA, round-to-nearest is the default rounding mode for all
operations.

Directed Rounding Modes (Para 4.2): The default rounding mode
for any instruction can be overridden by preceding that
instruction by one of the rounding instructions (Round Toward
Zero, Round Toward Minus Infinity, Round Toward Plus Infinity,
round to Nearest). .

Rounding Precision (Para 4.3): Rounding is always to the
precision of the result operand, regardless of whether that
operand is integer or floating or whether the result precision is
less than or greater than other operands.

Operations (Para 5): Operations are defined only for
combinations of the same operand type. Exceptions are the
CONVERT instructions.) Instructions may have different precision
operands, however, (V16, V32, V64). Some operations required by
the standard (e.g. round to integer) require software
implementations. Comparison testing is by predicates (Para
5.6.2) rather than condition codes; it is not possible for the
relation "unordered" to occur, given the modifications herein
described, so no "unordered" predicate test is provided.

Infinity Arithmetic (Para 6.1) is not supported.

Operations with NaNs (Para 6.2) are not supported.

[IEEE 81] "A Proposed Standard for Binary Floating-Point
Arithmetic", Computer, March 1981, pp. 51-62

5-14

^rrv-N-».-^.-».-.^,'. .'.-.Vr-.'.,"'•-.';'VW ••".•. S. I'M'.". —% 'in

Sign Bit (Para 6.3): The sign of zero in an integer type is
considered to be " + ". If -0 is required to be delivered as a
result of integer type, the sign bit is ignored.

Normalizing Mode (Para 7.1) is the only mode supported; warning
mode is not supported.

Exceptions (Para 8): The only exception which is raised when
operands have valid numeric values (i.e., not "undefined") is
NUMERIC_ERROR. NUMERIC_ERROR is raised for

1. DIVIDE, MODULUS, OR REMAINDER where the divisor is zero.

2. Square root of a negative number (square root of -0 results
in -0 and does not raise an exception).

3. Overflow, i.e., the rounded result's magnitude is too large
to represent in the result format.

Underflow (Para 8.4) and inexact (Para 8.5) are not supported;
the rounded result is always delivered (in order to directly
support Ada arithmetic rules). In no case is any result
(including infinity or NaN) provided when an exception is raised.

Traps (Para 9): Traps, as defined in the standard, are not
provided. Exceptions raised are handled in the manner specified
in Section 11 of the ISA. In particular, exception handling
cannot be disable, no information (other than the exception type)
is delivered to the exception handler, and the handler cannot
return control to the point at which the exception occurred.

In the integer arithmetic instructions, the precision of 10-bit
and a 20-bit immediate operands is taken to be V16 and V32,
respectively.

[IEEE 81] "A Proposed Standard for Binary Floating-Point
Arithmetic", Computer, March 1981, pp. 51-62

5-15

5.2.1 ADD INTEGER

Format: 09fj, S, D

Mnemonic: ADDI2

Operands:
S: First Addend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Second Addend and Sum
FMT: memory (0) or stack EXT,0)

Function:
The binary addition of the integers specified by S and D is
performed. Source and destination operands may have different
precisions (V16 or V32); the precision of the operation is V32.
The result (sum) is checked for overflow (magnitude of result
larger than precision of destination allows). A NUMERIC_ERR0R
exception is raised in the presence of overflow, else the result
is stored in the destination location.

The source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. The
destination operand may be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-16

1

5.2.1 (CONT) ADD INTEGER

Format: OAH, SI, S2, D

Operands:
SI:
FMT:

S2:
FMT:

D:
FMT:

First Addend
immediate (EXT,2), memory (0), or stack (EXT,0)

Second Addend
immediate (EXT,2), memory (0), or stack (EXT,0)

Sum
memory (0) or stack (EXT,0)

Functions:
The binary addition of the integers specified by SI and S2 is
performed. Source and destination operands may have different
precisions (V16 or V32); the precision of the operation is V32.
the result (sum) is checked for overflow (magnitude of result
larger than precision of destination allows). A NUMERIC_ERROR
exception is raised in the presence of overflow, else the result
is stored in the destination location.

Each source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. The
destination operand may be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-17

iÜi \ - W V ^ •« v ••* • ' * • " • ^-^^>^:^^i£^:^N^

•.'-WA '••• -A •••"A V- ••".Vi.T'.'.-.'.1 /. 'A1'.'- .V."- ..VA A 'A'l^A IT. A .*• -'- '-*- T '.'• 'AV "

5.2.2 ADD FLOATING POINT

Format: OBH» S, D

Mnemonic: ADDF2

Operands:
S: First Addend
FMT: memory (0) or stack (EXT,0)

D: Second Addend and Sum
FMT: memory (0) or stack (EXT,0)

Function:
The binary floating point addition of the floating point numbers
addressed by S and D is performed. Source and destination
operands may have different precisions (V32 or V64). The
precision of the operation is sufficient to accommodate the
largest magnitude result (sum). The fractional part of the
result is rounded,if necessary, to the precision of the
destination fraction. The result is then checked for exponent
overflow (magnitude larger than precision of destination exponent
allows). A NUMERIC_ERR0R exception is raised in the presence of
overflow, else the result is stored in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-18

- * - v - I -.'-.-» .— V .-s-j% L-^'.^--T7 T'.^' ITT»."^.•«•Tl-q.T'^'f IL*^*"*» »••<•.•«"• 4"., »f »».'» I» t »•>••. •i.i.j.. ... :...

5.2.2 (CONT) ADD FLOATING POINT

Format: OCH# SI, S2, D

Mnemonic: ADDF3

Operands:
SI: First Addend
FMT: memory (0) or stack (EXT,0)

•
S2: Second Addend
FMT: memory (0) or stack (EXT,0)

D: Sum
FMT: " memory (0) or stack (EXT, 0)

Function:
The binary floating point addition of the floating point numbers
addressed by SI and S2 is performed. Source and destination
operands may have different precisions (V32 or V64). The
precision of the operation is sufficient to accommodate the
largest magnitude result (sum). The fractional part of the
result is rounded, if necessary, to the precision of the
destination fraction. The result is then checked for exponent
overflow (magnitude larger than precision of destination exponent
allows). A NUMERIC_ERROR exception is raised in the presence of
overflow, else the result is stored in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-19

•:*.\-*3*vrri-i •.-. >•? <T •.T'.'.-.'.-.'-T.'.TV.V.VT..*':.^ ».•' >.• <* -r *r%

5.2.3 SUBTRACT INTEGER

Format: ODH, S, D

Mnemonic SUB12

Operands:
S: Subtrahend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

0: Minuend and Difference
FMT: memory (0) or stack (EXT,0)

Function:
The binary subtraction of the integer specified by S from the
integer addressed by 0 is performed. Source and destination
operands may have different precisions (V16 or V32); the
precision of the operation is V32. The result (difference) is
checked for overflow (magnitude of result larger than precision
of destination allows). A NUMERIC_ ERROR exception is raised in
the presence of overflow, else the result value is stored in the
destination location.

The source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. The
destination operand may be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-20

^T-s-T"

5.2.3 (CONT) SUBTRACT INTEGER

Format: OEH/ SI, S2, D •

Mnemonic: SUB13

Operands:
SI: Minuend
FMT: Immediate (EXT,2,) memory (0), or stack (EXT,0)

•
S2: Subtrahend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Difference

Function:
The binary subtraction of the integer specified by S2 from the
integer specified by SI is performed. Source and destination
operands may have different precisions (V16 or V32); the
precision of the operation is V32. The result (difference) is
checked for overflow (magnitude of result larger than precision
of destination allows). A NUMERIC^ ERROR exception is raised in
the presence of overflow, else the "result value is stored in the
destination location.

Each source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type inter),
or an integer component of an array or record. The destination
operand may be any of these except an immediate value.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-21

ls^:^fr:^^^

vw^,'q.*'." *.•«.'*v v I'J* v v'•'.*f.* ';* •.*'•'" -.*VTJ7 -'.* •.* *:* 'r''.' •.'<-.*.'.'•.*• -'.*-• •• * ~ "•* • *. •*• • *.•'*;

2.4 SUBTRACT FLOATING POINT

rmat: OPH# S, D

emonic SUBF2

erands:
: Subtrahend
FMT: memory (0) or stack (EXT,0)

): Minuend and Difference
FMT: memory (0) or stack (EXT,0)

met ion:
ie binary floating point subtraction of the floating point
imber addressed by S from the floating point number addressed by
is performed. Source and destination operands may have

fferent precisions (V32 or V64), The precision of the
»erations is sufficient to accommodate the largest magnitude
(suit (difference). The fractional part of the result is
»unded, if necessary, to the precision of the destination
•action. The result is then checked for exponent overflow
tagnitude larger than precision of destination exponent allows).
NUMERIC_ERROR exception is raised in the presence of overflow,
Lse the result value is stored in the destination location. .

»ch operand may be a directly addressed floating point number,
\ indirectly addressed number in global storage or a data object
f type floating point), or a floating point component of an
•ray or record.

cceptions:
JROGRAM_ERROR
NUMERIC ERROR

5-22

"»•»•"• V. T. • •> '.t :*.»"-'','—•: «•.".« '.T .•» .v.^."^ '".i- •*."'*• ^«:-

5.2.4 (CONT) SUBTRACT FLOATING POINT

Format: IOJI, S1,S2, D

yinemonic SUBF3

Operands:
SI: Minuend
FMT:

S2:
FMT:

D:
FMT:

memory (0), or stack (EXT,0)

Subtrahend
memory (0) or stack (EXT,0)

Difference
memory (0) or stack (EXT,0)

Function:
The binary floating point
number addressed by S2 from
by SI is performed. Source
different precisions (V32
operation is sufficient to
result (difference). The
rounded, if necessary, to
fraction. The result is
(magnitude larger than precis
A NUMERIC_ERROR EXCEPTION is
else the result is stored in

subtraction of the floating point
the floating point number addressed
and destination operands may have

or V64). The precision of the
accommodate the largest magnitude
fractional part of the result is
the precision of the destination

then checked for exponent overflow
ion of destination exponent allows).
raised in the presence of overflow,

the destination location.

Each operand may be a directly addressed floating point OP
number, an indirectly addressed number (via a pointer to a
floating point number in global storage or a data object of type
floating point), or a floating point component of an array or
record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-23

• \ •«" • • ;»i • • • .V.V.V,

rrj

MULTIPLY INTEGER

at: 11H, S, D

onic MULI2

ands:

T:

Multiplier
immediate (EXT,2), memory (0), or stack (EXT,0)

Multiplicand and Product
memory (0) or stack (EXT,0)

tion:
binary multiplication of the integers specified by S and D is
ormed. Source and destination operands may have different
isions (V16 or V32); the precision of the operation is V32.
result (product) is checked for overflow (magnitude of result
er than precision of destination allows). A NUMERIC_ERROR
ption is raised in the presence of overflow, else the result
tored in the destination location.

source operand may be an immediate value, a directly
essed integer, an indirectly addressed integer (via a pointer
in integer in global storage or a data object of type
sger), or an integer component of an array or record. The
:ination operand may be any of these except an immediate
le.

sptions:
)GRAM_ERROR
IERIC ERROR

5-24

w.:< •V»-^VLV\V.V>Vi.-.V-.-\-> ••.-.-.

'.•li. . TT • V. % r^» -^"'^ 1\.\IM\ "\J 1.1^ •** '^CTT^ ' -- rv •r^z—•;——:—w.

2.5 (CONT) MULTIPLY INTEGER

rmat: 12H, SI, S2, D

emonic: MULI3

erands:

FMT:

2:
FMT:

FMT:

Multiplicand
immediate

Multiplier
immediate

Product

(EXT,2)-, memory (0), or stack (EXT,0)

(EXt,2), memory (0) or stack (EXT,0)

memory (0) or stack (EXT,0)

inction:
ie binary multiplication of the integers specified by SI and S2
I performed. Source and destination operands may have different
ecisions (V16 or V32); the precision of the operation is V32.
ie result (product) is checked for overflow (magnitude of result
irger than precision of destination allows). A NUMERIC_ERROR
:ception is raised in the presence of overflow, else the result
i stored in the destination location.

ich source operand may be an immediate value, a directly
ldressed integer, an indirectly addressed integer (via a pointer
> an integer in global storage or a data object of type
iteger), or an integer component of an array or record. The
»stination operand may be any of these except an immediate
ilue.

cceptions:
JROGRAM_ERROR
JUMERIC ERROR

5-25

LAÜI .y.-'. >2^>iM . V ". *.' \ \ *w - <, •E

''••v'.^'.v '.^ rv^". '•••;'*1,*',|''i*.'i'.".»;i':i.i,i' i •. i i i

MULTIPLY FLOATING POINT

t: 13H, S, D

nie SULF2

nds:
Multiplier

: memory (0), or stack (EXT,0)

Multiplicand and Product
: memory (0) or stack (EXT,0)

ion:
inary floating point multiplication of the floating point
rs addressed by S and D is performed. Source and
nation operands may have different precisions (V32 or V64).
recision of the operation is sufficient to accommodate the
st magnitude result (product). The fractional part of the
t is rounded, if necessary, to the precision of the
nation fraction. The result is then checked for exponent
low (magnitude larger than precision of destination exponent
s). A NUMERIC_ERROR exception is raised in the presence of
low, else the result is stored in the destination location.

operand may be a directly addressed floating point number,
idirectly addressed number (via a pointer to a floating point
ir in global storage or a data object of type floating
.), or a floating point component of an array or records.

»tions:
IRAM_ERROR
JRIC ERROR

5-26

;^.-^Jv?>/>?.•7-"?^7^7;-.^^^,-^.-^.-"^'•^.;'^-^^-^^•^,-•^l-•^,^--"•,'•,•l•,",;T' 1.1 . 11.1 (»II11
•» ','• '. 1 • »•

5.2.6 (CONT) MULTIPLY FLOATING POINT

Format: 14H, SI, S2, D

Mnemonic MULF3

Operands:
S: Multiplicand
FMT: memory (0) or stack (EXT,0)

S2: Multiplier
FMT: memory (0) or stack (EXT,0)

D: Product
FMT: memory (0) or stack (EXT,0)

Function:
The binary floating point multipli
numbers addressed by SI and S2
destination operands may have diffe
The precisions of the operation is
largest magnitude result (product),
result is rounded, if necessary,
destination fraction. The result
overflow (magnitude larger than prec
allows). A NUMERIC_ERROR exception
overflow, else the result is stored

cation of the floating point
is performed. Source and

rent precisions (V2? or V64).
sufficient to accommodate the

The fractional part of the
to the precision of the

is then checked for exponent
ision. of destination exponent
is raised in the presence of

in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or to a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-27

5.2.7 DIVIDE IN'

Format: 15H, S, D

Mnemonic DIVI2

Operands:
S:
FMT:

Division
immed

..p.M*,^,!.. '.^ „"«' P1 '"-.^ '•*^J>J»^^J^>^.-\»\-\-''v't.-*

D:
FMT:

immediate (EXT,2), memory (0), or stack (EXT,0)

Dividend and Quotient
memory (0) or stack (EXT,0)

Function:
The binary division of the integer addressed by D by the integer
specified by S is performed. With integer arithmetic, the result
(quotient) will be non-zero if the magnitude of the dividend is
greater than the magnitude of the divisor. Source and
destination operands may have different precisions (V16 or V32);
the precision of the operation is V32. The result is rounded, if
necessary, using "round-toward-zero" as the default rounding rule
(rather than the standard "round-to-nearest" rule). A NUMERIC
ERROR exception is raised if the divisor is zero, else the result
is stored in the destination location.

The source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. The
destination operand may be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-28

•ivS •:•:•>;•. Sj/J:i&£±^j£ >£&£ .. t.m .X* a. .,% ,»,..*• * yÄ:>:v^»^Mv^,v;^

' VT V. Km. y_«." «lT *••- O * '.» -V—.1 » J • „-^.;.* ITTM KJI.: w -.- • -.- ->-. r.-rr

5.2.7 (CONT) DIVIDE INTEGER

Format: 16H, Sl, S2, D

Mnemonic DIVI3

Operands:
S: Dividend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

S2: Divisor
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Quotient
FMT: memory (0) or stack (EXT,0)

Function:
The binary division of the integer specified by SI by the integer
specified by S2 is performed. With integer arithmetic, the
result (quotient) will be non-zero if the magnitude of the
dividend is greater than the magnitude of the divisor. Source,
and destination operands may have different precisions (V16 or
V32); the precision of the operation is V32. The result is
rounded, if necessary, using "round toward zero" as the default
rounding rule (rather than the standard "round-to-nearest" rule).
The result is then checked for overflow (magnitude of result
larger than precision of destination allows). A NUMERIC ERROR
exception is raised in the presence of overflow or if the dTvisor
is zero, else the result is stored in the destination location.

Each source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. The
destination operand may be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-29

:&^^>v:>^^

•Si ,-T. .*-'.*-"•'»''•' l> '.*• '.'•'.*• '."^V- -*• '.*•'•*• .*•'•'•'•*•" " J • • • J MJ ('". •' i I J ,'•

5.2.8 DIVIDE FLOATING POINT

Format: 17H, S, D

Mnemonic DIVF2

Operands:
S: Divisor
FMT: memory (0) or stack (EXT,0)

D: Dividend and Quotient
FMT: memory (0) or stack (EXT,0)

Function:
The binary floating point division of the floating point number
addressed by D by the floating point number addressed by S is
performed. Source and destination operands may have different
precisions (V32 or V64). The precision of the operation is
sufficient to accommodate the largest magnitude result (quotient)
representable in an intermediate format compatible with the
accuracy rules specified in the 1981 IEEE proposed floating point
arithmetic standard. The fractional part of the result is
rounded, if necessary, to the precision of the destination
fraction. The result is then checked for exponent overflow
(magnitude lar7*»r than precision of destination exponent allows).
A NUMERIC_ERROl- exception is raised in the presence of overflow
or if the divisor is zero, else the result is stored in the
destination location.

Each operand may be a directly addressed floating point number,
an indirectly address number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or records.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

•

5-30

v> . •• ?'.v;. \y. - •:•.;--.-.y^-.L-Z'i-:- ^".:;~2>^--^^rI>lyiv:-; rl&ü&äettafcä >:%•: ".' s" * 1

l~ T.'V. V. VVVV..' ».• -.•••.•" -.' ••* • * -.* • T • ", - T -' * • *'.'' - ' '• ''.' K 'F. r. *. r •• v; T. W. '*? '•". ir. «•.' »•.- TV r y: w n^' i,- j" r; • if. ij-' y »i

5.2.8 (CONT) DIVIDE FLOATING POINT

Format: 18H» SI, S2, D

Mnemonic DIVF3

Operands:
SI: Dividend
FMT: memory (0), or stack (EXT,6)

S2: Divisor
FMT: memory (0) or stack (EXT,0)

D: Quotient
FMT: memory (0) or stack (EXT,0)

Function:
The binary floating point division of the floating point number
addressed by SI by the floating point number addressed by S2 is
performed. Source and destination operands may have different
precisions (V32 or V64). The precision of the operation is
sufficient to accommodate the largest magnitude result (quotient)
representable in an intermediate format compatible with the
accuracy rules specified in the 1981 IEEE proposed floating point
arithmetic standard.

The fractional part of the result is rounded, if necessary, to
the precision of the destination fraction. The result is then
checked for exponent overflow (magnitude larger than precision of
destination exponent allows). A NUMERIC_ ERROR exception is
raised in the presence of overflow or if the divisor is zero,
else the result is stored in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-31

._-._-.^ar--jx-m-v•A.
I
J^LV;V,VA' .V3 K: I; I*. ».' K.' «Tg«.l»-'.«.'i'' '-.* -.TT»'••''•'.'"T. «V".'"".' V. »•. ?; ar;

..2.9 REMAINDER INTEGER

'ormat: 19H» S, D

Mnemonic REMI2

)perands:
S: Divisor
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Dividend and Remainder
FMT: memory (0) or stack (EXT,0)

Function:
rhe binary division of the integer addressed by D by the integer
addressed by S is performed. Source and destination operands may
have different precisions (V16 or V32); ' the precision of the
operation is V32. The quotient is rounded toward zero, leaving
only the integer part of the quotient, called Q. The remainder,
R, is computed as

R=Dividend - Q*Divisor

When R is non-zero, its sign is the same as the .sign of the
dividend. A NUMERIC_ERROR exception is raised if the divisor is
zero, else the result (remainder) is stored in the destination
location.

The source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. The
destination operand may be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-32

£JV:C;%^V:N<^

7j«w :-.?•„-. • -*• -^ '.T,.,._i.-*t'."^ .^.v.^..1» .' i.l'l';T:'J»j.,t •.' .•-i.'.jLr.j'.'-vT* rr^rz

5.2.9 (CONT) REMAINDER INTEGER

Format: IAH, SI, S2, D

Mnemonic REMI3

Operands:
SI:
FMT:

S2:
FMT:

D:
FMT:

Dividend
immediate (EXT,2), memory (0), or stack (EXT,0)

Divisor
immediate (EXT,2), memory (0), or stack (EXT,0)

Remainder
memory (0) or stack (EXT,0)

by SI by the integer
destination operands
the precision of the
toward zero (leaving
The remainder, R, is

Function:
The binary division of the integer specified
specified by S2 is performed. Source and
may have different precisions (V16 or V32);
operation is V32. The quotient is rounded
the integer part of the quotient called Q).
computed as

R=Dividend - Q*Divisor

When R is non-zero, its sign is the same as the sign of the
dividend. The result (remainder) is then checked for overflow
(magnitude of result larger than precision of destination
allows). A NUMERIC ERROR exception is raised in the presence of
overflow or if the divisor is zero, else the result is stored in
the destination lcoation.

Each source operand may be an. immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer conponent of an array or record. The
destination operand may be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-33

frMStttt^^UX^^

'•;.'•:''••' w±w'^m .'.'•. ',';ri' • »•» f;.'TTiT:TS.r.TJ»-J•-.• irrenr;»-. •-.

2.10 REMAINDER FLOATING POINT

rmat: lBfl, S, D

emonic REMF2

erands:
Divisor

FMT: memory (0), or stack (EXT,0)

: Dividend and Remainder
FMT: memory (0) or stack (EXT,0)

notion:
e binary floating point division of the floating point number
dressed by D by the floating point number addressed by S is
rformed. Source and destination operands may have different
ecisions (V32 or V64). The precision of the operation is
ifficient to accommodate the whole number (integer) part of the
iotient plus the extra bits required for rounding. The quotient
i rounded to the nearest integer; the fractional part is
scarded. If the integer part of the quotient is called q, the
imainder, R, is computed as

R=Dividend - Q*Divisor

le remainder is rounded, if necessary, toward nearest (unless a
•eceding rounding instruction specifies otherwise). A NUMERIC
tROR exception is raised if the divisor is zero, else the result
•emainder) is stored in the destination location.

ich operand may be a directly addressed floating point number,
l indirectly addressed number (via a pointer to a floating point
imber in global storage or a data object of type floating
jint), or a floating point component of an array or record.

ccepcions:
>ROGRAM_ERROR
•fUMERIC ERROR

5-34

lÄkÄ.-v.-*..:».«.-»—•VT.'V VLvrvJVi'JU.' •-" '.". *.'"« »i'»:1 »V ' .' • . • .".-. >• ji'i-r: v; r_—.• «•, T- •»-. r-:.ir.:

5.2.10 (CONT) REMAINDER FLOATING POINT

'ormat: ICH, SI, S2, D

Mnemonic REMF3

operands:
S: Dividend
FMT: memory (0) or stack (EXT,0)

S2: Divisor
FMT: memory (0) or stack (EXT,0)

D: Remainder
FMT: memory (0) or stack (EXT,0)

Function:
The binary floating point division of the floating point number
addressed by SI by the floating point number addressed by S2 is
performed. Source and destination operands may have different
precisions (V32 or V64). The precision of the operation is
sufficient to accommodate the whole number (integer) part of the
quotient plus the extra bits required for rounding. The quotient
is rounded to the nearest integer; the fractional part is
discarded. If the integer part of the quotient is called Q, the
remainder, R, is computed as

R=Dividend - Q*Divisor.

The remainder is rounded, if necessary, toward nearest (unless a
preceding rounding instruction specified otherwise). The result
(remainder) is then checked for exponent overflow (magnitude of
result larger than precision of destination exponent allows). A
NUMERIC_ERROR exception is raised in the presence of overflow or
if the divisor is zero, else the result is stored in the
destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-35

k^^ik:^:^^^

t>.."-"-.-••-•> :-••-•• .--.-• ."^-.^••.-w .-*•;-'v^:v.-«.:•» .V'-IVJ-WJ^ •.•.v-\» m.\-7?:*^n,r*s*."s'r<r.TJ*'£*'*r.^-T^T-.^r*

11 MODULUS INTEGER

lat: lDHf S, D

ionic MODI 2

rands:
Divisor

: immediate (EXT,2), memory (0), or stack (EXT,0)

Dividend and Modulus
4T: memory (0) or stack (EXT,0)

:tion:
binary division of the integer addressed by D by the integer
ressed by S is performed. Source and destination operands may
2 different precisions (V16 or V32); the precision of the
ration is V32. The quotient is rounded toward minus infinity,
zing only the integer part of the quotient, called Q. The
jlus, M, is computed as

M»Dividend - Q*Divisor.

n M is non-zero, its sign is same as the sign of the divisor.
JMERIC_ERROR exception is raised if the divisor is zero, else
result (modulus) is stored in the destination location.

source operand may be an immediate value, a directly
ressed integer, an indirectly addressed integer (via a pointer
an integer in global storage or a data object of type
eger), or an integer component of an array or record. The
tination operand may be any of these except an immediate
ue.

eptions:
OGRAM_ERROR
MERIC ERROR

5-36

a««^ir"vw ;-n.->.T.> LV jx: ;.i*- '."..".->•".•'.*.'. \: «r.

2.11 (CONT) MODULUS INTEGER

irmat: 1EH, SI, S2, D

temonic MOD 13

»1: Dividend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

»2: Divisor
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Modulus
FMT: memory (0) or stack (EXT,0)

jnction
le binary division of the integer specified by SI by the integer
pecified by S2 is performed. Source and destination operands
ay have different precisions (V16 and V32); the precision of the
Deration is V32. The quotient is rounded toward minus infinity,
saving only the integer part of the quotient, called Q. The
odules, M is computed as

M=Dividend - Q*Divisor.

hen M is non-zero, its sign is the same as the sign of the
ivisor. The result (modulus) is then checked for overflow
magnitude of result larger than precision of destination
Hows). A NUMERIC ERROR exception is raised in the presence of
verflow or if the divisor is zero, else the result is stored in
he destination location.

ach source operand may be an immediate value, a directly
ddressed integer, an indirectly addressed integer (via a pointer
o an integer in global storage or a data object of type
nteger), or an integer component of an array or record. The
estination operand may be any of these except an immediate
alue.

xceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-37

fr^:v:v>vv:;oxxv:v^:k^

.•vvsUVJVA. -•.- *.- *.* '.*'.-'' ••.•-•-•-• .•»."'. »'..• T '*—'•. '•. i~ •". .•. j". T.T.r. :•. r

2 MODULUS FLOATING POINT

t: 1FH, S, D

nie: M0DF2

nds:
Divisor

': memory (0) or stack (EXT,0)

Dividend and Modulus
': memory (0) or stack (EXT,0)

;ion:
>inary floating point division of the floating point number
>ssed by D by the floating point number addressed by S is
>rmed. Source and destination operands may have different
tsions (V32 or V64). The precision of the operation is
Lcient to accommodate the whole number (integer) part of the
ient plus the extra bits required for rounding. The quotient
rounded toward minus infinity; the fractional part is
irded. If the integer part of the quotient is called Q, the
Lus M, is computed as

M=Dividend - Q*Divisor.

nodulus is rounded, if necessary, toward nearest (unless a
»ding rounding instruction specifies otherwise). A NUMERIC
R exception is raised if the divisor is zero, else the result
jlus) is stored in the destination location.

operand may be a directly addressed floating point number,
idirectly addressed number (via a pointer to a floating point
»r in global storage or a data object of type floating
t), or a floating point component of an array or record.

Dtions:
3RAM_ERROR
ERIC ERROR

5-38

v:vy.>-;^<<vsfrfc^^

,j,,;.',.,v.. •,. ,.i:.%"8V.".'.''..'-',.'."^PiiU'i.''."'J'::'iljr"''>'.7'.t>^»yj'i|ii'j •„« ••• '-• .'T

.12 (CONT) MODULUS FLOATING POINT

mat: 20H, SI, S2, D

monic MODF3

rands:

MT:
Dividend

memory (0) or stack (EXT,0)

: Divisor
MT: memory (0) or stack (EXT,0)

Modulus
MT: memory (0) or stack (EXT,0)

iction:
i binary floating point division of the floating point number
Iressed by SI by the floating point number addressed by S2 is
•formed. Source and destination operands may have different
scisions (V32 or V64). The precision of the operation is
ificient to accommodate the whole number (integer) part of the
>tient plus the extra bits required for rounding. The quotient
rounded toward minus infinity; the* fractional part is

;carded. If the integer part of the quotient is called Q, the
lulus, M, is computed as

M=Dividend - Q*Divisor.

; modulus is rounded, if necessary, toward nearest (unless a
»ceding rounding instruction specified otherwise). The result
jdulus) is then checked for exponent overflow (magnitude of
»ult larger than precision of destination exponent allows). A
4ERIC_ERROR exception is raised in the presence of overflow or
the divisor is zero, else the result is stored in the
ätination location.

:h operand may be a directly addressed floating point number,
indirectly addressed number (via a pointer to a floating point

nber in global storage or a data object of type floating
int), or a floating point component of an array or record.

:eptions:
SOGRAM_ERROR
JMERIC ERROR

5-39

AY* ^«^>>.>;^v;tfHr»>.v>,\. :^r*rJL.

NEGATE INTEGER

I 21H, D

ic: NEGI1

is:
Integer to Be Negated and Negated Integer

memory (0) or stack (EXT,Q)

on:
gative of the integer (V16 or V32) addressed by D is stored
destination location.

erand may be a directly addressed integer, an indirectly
sed integer (via a pointer to an integer in global storage
ata object of type integer), or an integer component of an
or record.

ions:
AM_ERROR
IC ERROR

5-40

AD-A158 129 ADVANCED AVIONICS COMPUTER ARCHITECTURE VOLUME 2
INSTRUCTION SET ARCHITEC. . <U) SANDERS ASSOCIATES INC
NASHUA NH L GREENSPAN ET AL. MAV 85

UNCLASSIFIED AFHAL-TR-85-1041-VOL-2 F32615-79-C-1935 F/G 9/2

2/4

•MUMLJMLJMU

K

V

22

20

1-6

.

NATIONAL BUREAU OF STANDARDS
Mcmcorr RESOLUTION TEST CHART

•;.-• _••^:»7,-.'.l.,,'.'.T.V.'»V»V-'.'•*.y. •y-'"'- f •'^^ r- ' ••'•.' •.' •• \ ', *• I '. '."' '• '."• .*'.' **• ,'J i. 1 . t . I • '• • ' • T«—i'. 7-.7" "7" --•» •

5.2.13 (CONT) NEGATE INTEGER

Format: 22H, S, D

Mnemonic: NEGI2

Operands:
S: Integer to Be Negated
FMT: memory (0) or stack (EXT,0)

D: Negated Integer
FMT: memory (0) or stack (EXT,0)

Function:
The negative of the integer addressed by S is taken. Source and
destination operands may have different precisions (V16 or V32).
The result is checked for overflow (magnitude or result larger
than precision of destination allows). A NUMERIC_ERROR exception
is raised in the presence of overflow, else the result is stored
in the destination location.

Each operand may be a directly addressed integer, an indirectly
addressed integer (via a pointer to an integer in global storage
or a data object of type integer), or an integer component of an
array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-41

LVC% v «. %" %* O v--" - V' -O-.' «.* S- "V." Ol • *»A *JO%' •- % -." V •-" -. >\,'v ^" •." "k^T^ÄVtf O %" O "wf^T^I•." V V" V"«v" *.* V v" v' • * -,

JX5S7' —» B——j-- ir w • w "; c*' i • . ^ . • T~-"r*r T-— • — -*

i

I

l

i

*

.V

V

5.2.14 NEGATE FLOATING POINT

Format: 23H, D

Mnemonic: NEGF1

Operands:
D: Floating Point Number to Be Negated and Negated Number
FMT: memory (0) or stack (EXT,0)

Function:
The negative of the floating point number (V32 or V64) addressed
by D is stored in the destination location.

The operand may be a directly addressed floating point number, an
indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-42

&&£ü&m&^^

1
5.2.14 (CONT) NEGATE FLOATING POINT

Format: 24^, S, D

Mnemonic: NEGF2

Operands:
S: Floating Point Number to Be Ne
FMT: memory (0) or stack (EXT,0

D: Negated Number
FMT: memory (0) or stack (EXT,0)

Function:
The negative of the floating point number addressed by S is
taken. Source and destination operands may have different
precisions (V32 or V64). The fractional part of the result is
rounded, if necessary, to the precision of the destination
fraction. The result is then checked for exponent overflow
(magnitude of result larger than precision of destination
exponent allows). A NUMERIC_ ERROR exception is raised in the
presence of overflow, else the result is stored in the
destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-43

^^>::^fr^^^

'•;--*-ri.w--':s.-*7\'\-\-\r.:*:-'Z'.m>:m!'7! !*TV»»VV
I
.''.

I
MV

I
'7 J •' "." "" ' "'i.'.'" r.rr.r.T:1,". .••.' '.»VJ ?-.i:.f j'.vm;»^.ii.i.

5.2.15 ABSOLUTE INTEGER

Format: 25^, D

Mnemonic: ABSII

Operands:
D: Integer and Absolute Value of Integer
FMT: memory (0) or stack (EXTr0)

Function:

The absolute value of the integer (V16 or V32) addressed by D is
stored in the destination location.

The operand may be a directly addressed integer, an indirectly
addressed integer (via a pointer to an integer in global storage
or a data object of type integer), or an integer component of an
array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-44

' -"• ."<• '.-• .-• .-V .L-W •."WVWJV^

5.2.15 (CONT) ABSOLUTE INTEGER

Format: 26JJ, S, D

Mnemonic: ABSI2

Operands:
S: Integer
FMT: memory (0) or stack (EXT,0)

D: Absolute Value of Integer
FMT: memory (0) or stack (EXT,0)

Function:
The absolute value of the integer addressed by S is taken.
Source and destination operands may may have different precision
(V16 or V32). The result is checked for overflow (result larger
than precision of destination allows). A NUMERIC_ERROR exception
is raised in the presence of overflow, else the result is stored
in the destination location.

Each operand may be a directly addressed integer, an indirectly
addressed integer (via a pointer to an integer in global storage
or a data object of type integer), or an integer component of an
array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-45

*£^A&££J£&^^

,">•-•'.' .'v ', -'. '. • .v.^ .". _T"j*,_^ • I.'.'A '.^'^'A^'.v^r.'T. ••J.,.^"^^i.%r.L,^,.%.'.H.L,^,--t

5.2.16 ABSOLUTE FLOATING POINT

Format: 27fl, D

Mnemonic: ABSF1

Operands:
D: Floating Point Number and Absolute Value of Number
FMT: memory (0) or stack (EXT,0)

Function:
The absolute value of the floating point number (V32 or V64)
addressed by D is stored in the destination location.

The operand may be directly addressed floating point number, an
indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or records.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-46

&&&^:&^^^ .:,->^^

5.2.16 (CONT) ABSOLUTE FLOATING POINT

Format: 28H, S, D

Mnemonic: ABSF2

Operands:
S: Floating Point Number
FMT: memory (0) or stack (EXT,0)

D: Absolute Value of Floating Point Number
FMT: memory (0) or stack (EXT,0)

Function:
The absolute value of the floating point number addressed by S is
taken. Source and destination operands may have different
precisions (V32 or V64). The fractional part of the result is
rounded, if necessary, to the precision of the destination
fraction. The result is then checked for exponent overflow
(result larger than precision of destination exponent allows). A
NUMERIC_ERROR exception is raised in the presence of overflow,
else the result is stored in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-47

'ää£&2&^ ^j^L:i"_- &2

."Kw^ W-» .T ,

5.2.17 SQUARE ROOT INTEGER

Format: 29H, D

Mnemonic: SQRTI1

Operands:
D:
FMT:

Integer and Square Root of Integer
memory (0) or stack (EXT,0)

Function:
The square root of the integer (V16
taken. The result is rounded, if
NUMERIC_ERROR exception is raised if
is negative, else the result is
location.

or V32) addressed by D is
necessary, toward zero. A
the integer addressed by D

stored in the destination

The operand may be a directly addressed integer, an indirectly
addressed integer (via a pointer to an integer in global storage
or a data object of type integer), or an integer component of an
array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-48

t± •Si.' l-t *.^c3-u- . •'.>. ..-PO-.»••«-•• <-•• ' • t-' t-' ?.- U »-• >•• i^3

^rvqrrrrMTVr'.-.«.•>•*-.• tV<,'-.'l'i.*<'-.'-.' T"- * •••'-• •'" • *i '.''.''.• -« .'«•Ji .'»••»•.I ,'», '-' . •!• •»'. t Ji-.'%- ir^T-.y. y :—j-T—

\

5.2.17 (CONT) SQUARE ROOT INTEGER

Format: 2AH, S, D

Mnemonic: SQRTI2

Operands:
S: Integer
FMT: memory (0) or stack (EXT,0)

D: Square Root of Integer
FMT: memory (0) or stack (EXT,0)

Function:
The square root of the integer addressed by S is taken. Source
and destination operands may have different precisions (V16 or
V32); the precision of the operation is V32. The result is
rounded, if necessary, toward zero. The result is then checked
for overflow (result larger than precision of destination
allows). A NUMERIC_ERROR exception is raised in the presence of
overflow or if the integer addressed by S is negative, else the
result is stored in the destination location.

Each source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-49

* m " •'* h"" »"" -"* 5"V -"".*"• -% *"' •*" *'* »* m*" »"* »^ *"* W~* fc^ ^"*V* •*" »'* h"- •"" k** •"* '. ^ '*** h"» .% •"• l % «%W '• ."*»"»•* ""-# m+ *•*••• * * " J* '.* .'

. v."«^«'. '^ ;->'..-;';T ' ,'.«..».''"r.'j* *..* vv.',." w.'.',' «.^L.* -.*-.* i.*-..*»•' •:*.,'.''

5.2.18 SQUARE ROOT FLOATING POINT

Format: 2BHF D

Mnemonic: SQRTF1

Operands:
D:
FMT:

Floating Point Number and Square Root of Number
memory (0) or stack (EXT,0)

Function:
The square root of the
addressed by D is taken,
rounded, if necessary. A
the floating point number

floating point number (V32 or V64)
The fractional part of the result is
NUMERIC ERROR exception is raised if
addressed by D is negative, else the

result is stored in the destination location.

The operand may be a directly addressed floating point number, an
indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-50

y^&^&C^stt'tttttt

5.2.18 (CONT) SQUARE ROOT FLOATING POINT

Format: 2CH, S, D

Mnemonic: SQRTF2

Floating Point Number
memory (0) or stack (EXT,0)

Square Root of Floating Point Number
memory (0) or stack (EXT,0)

Operands:
S:
FMT:

D:
FMT:

Function:
The square root of the floating point number addressed by S is
taken. Source and destination operands may have different
precisions (V32 or V64). The precision of the operation is
sufficient to accommodate the largest result representable in an
intermediate format compatible with the accuracy rules specified
in the 1981 IEEE proposed floating point arithmetic standard.
The fractional part of the result is rounded, if necessary, to
the precision of the destination fraction. The result is then
checked for exponent overflow (magnitude larger than precision of
destination exponent allows). A NUMERIC_ ERROR exception is
raised in the presence of overflow . or i7 the floating point
number addressed by S is negative, else the result is stored in
the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-51

•••.v.-ftfrfr.y i;;it-:;-:-;:\>:jy.:•:-;•;•:•:-:•: SÜfcaffi^' ' ---'•-• • -V-".vV." ZtäjZtäi kk^a&kfl£=&

-.».vvr.w^^ . » I « . u _ « ' I -^3-—w_ r"^ T~ ""^"1

5.2.19 ROUND TO NEAREST

Format: 2DH,,

Mnemonic: RNDN

Operands:
None

Function:
The next instruction is executed with its rounding rule, for the
result of the operation, if any, replaced by ROUND TO NEAREST.
This instruction and the following instruction are executed as an
inseparable couplet.

Exceptions:
None

5-52

•••V^VV^^W^ -.-.sT. -AVI v/-.' %•
-•• -'• - •'••

M T" M _^ f J» * I^V^t

-1' l*. T.'.'.'I* V '.''.".'•'>'" ." «'.•»•.•«T* .'.VT.TrvrTV/'.'V'^vn'.-i-,-.';

n
••

r
.-

I

5.2.20 ROUND TO ZERO

Format: 2Epj

Mnemonic: RNDZ

Operands:
None

Function:
The next instruction is executed with its rounding rule, if any,
for the result of the operation replaced by ROUND TO ZERO. This
instruction and the following instruction are executed as an
inseparable couplet.

Exceptions:
None

5-53

[>^ •-.. f- *1 V- Jl ^JJ^JV Jl. -V.i. J. *- .1 V-V- *. .'..^. *.••_.-. ,-..- W?> .'. •-. .f, A. .-, rf-_ W. t-. >-. ^. gy •,-. •-. .•. . . •-. ,-_••. y. ._-. .-. „». ._-.••.»•.- V.

. • ._• ._• ..• •. _•. .•: ,"._^ .^'."- ~ .""• r"

K

I

i

5.2.21 ROUND TO PLUS INFINITY

Format: 2FH

Mnemonic: RNDP

Operands:
None

Function:
The next instruction is executed with its rounding rule, if any,
for the result of the operation replaced by ROUND TO PLUS
INFINITY. This instruction and the following instruction are
executed as an inseparable couple.

Exceptions:
None

5-54

sto^:^.^^^^^ £i

:•-» •-v.-v "^—^7 .•-•.". ,^-.-v. ,-w- -. -*. K'.WK ^'"..^ ^.'^.'.^.••. ".'.*. ^J ».n. v

5.2.22 ROUND TO MINUS INFINITY

Format: 30H

Mnemon i c: RNDM

Operands:
None

Function:
The next instruction is executed with its rounding rule, if any,
for the result of the operation replaced by ROUND TO MINUS
INFINITY. This instruction and the following instruction are
executed as an inseparable couplet.

Exceptions:
None

f
V

5-55

fosrt^rtft^ «". f. «". •« IT« - . " 'T • ' \.' ' « " « " <\." "•' s' S' «." '

•:»-7.--ji'.-v'v«->".4^:"i.^i1
,«.A >.'i .*„*':*".*!.". V".".«.".v 'i• i" i •. > .•

5.2.23 CONVERT INTEGER TO FLOATING POINT

Format: 31R, S, D

Mnemonic: CONVIF

Operands:
S: Integer
FMT: memory (0) or stack (EXT,0)

D: Floating Point Number
FMT: memory (0) or stack (EXTf0)

Function:
The type conversion of the integer (V16 or V32) addressed by S to
the floating point number format (V16 .or V64) addressed by D is
performed. The fractional part of the result is rounded, if
necessary, to the precision of the destination fraction and the
result (floating point number) is stored in the destination
location.

The source operand may be a directly addressed integer, an
indirectly addressed integer (via a pointer to an integer in
global storage or a data object
component of an array or record,
a directly addressed floating
addressed number (via a pointer
global storage or a data object
floating point component of an array or record.

Exceptions:
PROGRAM ERROR

of type integer), or an integer
The destination operand may be
point number, an indirectly
to a floating point number in
of type floating point), or a

5-56

»*.v.^v.vv> J-V -.v.i

rr^.'.'yy.'V'^v« v.^v'.- vy'•>"-•:*• .*- .* '.v.*-'.'.' ',*'.' *^"T.•» V '.* '.* •'.' '-.*•'>y?^r^.". .'.r r

5.2.24 CONVERT FLOATING POINT TO INTEGER

Format: 32H, Sf
Mnemonic: CONVFI

Operands:
S:
FMT:

D:
FMT:

Floating Point Number
memory (0) or stack (EXT,0)

Integer
memory (0) or stack (EXT,0)

Function:
The type conversion of the floating point number (V32 or V64)
addressed by S to the integer format (V16 or V32) addressed by D
is performed. The resulting integer is rounded to the nearest
integer. Note that the result will be zero if the magnitude of
the floating point number is less than 0.5 in value. The result
is checked for overflow (magnitude of result larger than
precision of destination integer allows). A NUMERIC_ERROR
exception is raised in the presence of overflow, else the result
is stored in the destination location.

The source operand may be a directly addressed floating point
number, an .indirectly addressed number (via a pointer to a
floating point number in global storage or a data object of type
floating point), or a floating point component of an array or
record. The destination operand may be a directly addressed
integer, an indirectly addressed integer (via a pointer to an
integer in global storage or a data object of type integer), or
an integer component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC ERROR

5-57

v-p ^f.<-.,.,,.. _«:....-. A, «•..-. w- «»• A.«-. «r_ ,-. wn '.-• -».... afc& ,:.v.y.-.••-.- -.•• , &u •»:>£• :^->:.sJ

'.'.1": v.* .-.^"T'."r^-7-:-.-.-r-7r-.-r-.-^-.T •.-.••.•!..-. •;-« 777V7VT77.V7Tw:?'..'="V"">"".•".".: '• W.V." ."-*."••* .'•'.'-'.-'.'-. '.T.'u.-.r.

5.3 LOGICAL

The logical instructions fully support Ada by including all the
well known logical operations on Booleans, mask data, and arrays
and slices of Booleans and masks. Additional logical
instructions set and clear Booleans, mask data, and arrays and
slices of Booleans and masks.

5-58

» " *» "_> " » " • * « **_^ *•"•*•*•»* •• • •» "_>• "_> ••* • ~ _* " _«• " » P * v* — • —_ • —_• •* * _* •* J* - J> r-M "u *"—• • •• * • • _• _• » •* _• ^ «*• _^ • • • • _— _• • _• _• » - — I

„-. •„-»- •.-»-« ;-s rsv«'V""^TT?V^ TV-WIA"..*
1
 ."- 'A jv'.': •."-' v" *."" •.'' »i •»:•

5.3.1 AND

Format: 33^, S, D

Mnemonic: AND2

Operands:
S: First Logical Operand
FMT: immediate (EXT,2), memory (0) or stack (EXT,0)

D: Second Logical Operand and Result
FMT: memory (0) or stack (EXT,0)

Function:
The AND operation between the operands specified by S and D is
performed. When corresponding bits of the operands are both 1 s,
the result bit is set to 1, else the result bit is set to 0. The
result is stored in the destination location.

The source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component, of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision
(V16, V32, or V64). If the operand qualifier, BIT POSITION, is
present, only the selected bit position (same for both operands)
takes part in the operation. All unselected bits of the
destination operand are unchanged. Note that the operation
performed on Booleans is exactly the same as the operation
performed on V16 masks (a 16-bit operation). The machine cannot
differentiate Booleans from masks since both have V16 tags.
Differentiation occurs in the use of the result, e.g., the IF
instruction tests a Boolean but when the operand qualifier, BIT
POSITION, is present, it tests the selected bit in a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-59

c:vttv^^^iä££^^ L&.

,-_,-_» - K vi»i ^ »-w ..^ .-^^-« rvi"* .-v^."; .".~-""«" "T" V» ^'I'.l V V '.'. *-" *•.." «." •J'i"" v • ,«•. T ,w;* ."••;»-;•«.' "'.»-. »•.*-. r-;v . »-; r-.- v.^-.

5.3.1 (CONT) AND

Format: 34n, SI, S2, D

Mnemonic: AND3

Operands:
SI: First Logical Operand
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

S2: Second Logical Operand
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Result
FMT: memory (0) or stack (EXT,0)

Function:
The AND operation between the operands specified by SI and S2 is
performed. When corresponding bits of the source operands are
both 1 s, the result bit is set to 1, else the result bit is set
to 0. The result is stored in the destination location.

Each source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Source and destination
operands must be Booleans (V16) or mask data of the same
precision (V16, V32, or V64). If the operand qualifier, BIT
POSITION, is present, only the selected bit position (same for
each operand) takes part in the operation, all unselected bits
of the destination operand are unchanged. Note that the
operation performed on Booleans is exactly the same as the
operation performed on V16 masks (a 16-bit operation). The
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in the use of the result, e.g.,
the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-60

..-.•<•.•-.

.-» V ,-v •.-» •••» , • . i: m •.•• •• MB »J •.•>"• ^ .1 J ju ...» ..<• v.... v.. ..^.^y,^, -.-»-j ... t ..•.,. t ,T

1

5.3.2 AND ARRAY

Format: 35«, S, D

Mnemon i c: ANDA2

Operands:
S: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

D: Second Array of Logicals and Result Array
FMT: memory (0) or base register (EXT,11)

Function:
The AND operation between each pair of corresponding components
of the arrays addressed by S and D is performed. The arrays must
have Boolean components or mask components of the same precision
(V16, V32, or V64) and must have the same number of dimensions
and equal lengths for corresponding dimensions. The number of
dimensions and lengths are checked by the machine only when the
arrays are addressed through their headers (FMT=0). Then, the
machine computes the array size as the product of the the
outermost (highest dimensioned) length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are both Is, the result bit is set to 1, else
the result bit is set to 0. The components of the result array
are stored in the destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-61

•nr> .^^n.-irvii ."».'.> L">>'."*'..•» >.^'.^ .'•'.T .>'.- L"1 ."• -•• .•- ."•' ."."A ."•'

5.3.2 (CONT) AND ARRAY

Format: 36H, SI, S2, D

Mnemonic: ANDA3

Operands:
SI: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

S2:
FMT

D:
FMT:

Second Array of Logicals
: memory (0) or base register (EXT,11)

Result Array
memory (0) or base register (EXT,11)

Function:
The AND operation between each pair of corresponding components
of the arrays addressed by SI and S2 is performed. The arrays
must have Boolean components or mask components of the same
precision (V16, V32, or V64) and all arrays must have the same
number of dimensions and equal lengths for corresponding
dimensions. The number of dimensions and lengths are checked by
the machine only when the arrays are addressed through their
headers (FMT=0). Then the. machine computes the array size as the

(highest dimensioned) length and SPAN
if the number of dimensions is 1).

through a base register (FMT=EXT,11 or
designates a base register - with an

qualifier, ARRAY SIZE (ASIZ), is required
Alternatively, the compact format,

product of the outermost
(length and component size
When an array is addressed
FMT=0 and the cell offset
AVA tag), the operand
in the instruction.
BI(EXT,12) or BM(EXT,13), may be used as explained in Section
4.2.3 (page 4-8). For each pair of corresponding array
components, when corresponding bits are both 1 s, the result bit
is set to 1, else the result bit is set to 0. The components of
the result array are stored in the destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-62

Wv v. £/>- Ay.»' '».i.„i„. I.I.-./V^-J

1 *">.""• •"«*"• *'«C"V .v.v.v. •L'i>Vj*^!v>rfj.- -->*:•

.- «L-V K2 V.\T=.- «T - *"V* -.*"•' . ••.»\ «•: *•;. .•. ."."•—7

5.3.3 AND SLICE

Format: 37fl, S D

Mnemonic: ANDS2

Operands:
SI:
FMT:

First Array of Loqicals and Result Array
memory (0) or base register (EXT,11)

D:
FMT:

Second Ar
memory

ray of Loqicals and Result Array
y (0) or base register (EXT,11)

Function:
The AND operation between each pair of corresponding components
in slices of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions; the slice lengths must be the same but the slices
need not be in the same dimension of the arrays. The number of
dimensions and slice lengths are checked by the machine only when
the arrays are addressed through their headers (FMT=0). In this
case, ARRAY SUBSCRIPT (if required) and upper and lower ARRAY
SLICE INDEX operand qualifiers are present in the instruction for
each array operand. The machine computes the address of the
beginning of each slice and the slice size. When an array is
addressed through a base register (FMT=EXT,11 or FMT=0 and the
cell offset designates a base register - with an AVA tag), the
operand qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE
(ASIZ), are required in the instruction. BRO gives the offset
from the array base address (contained in the base register) to
the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI(EXT,12) or BM(EXT,13), may
be used with the single operand qualifier, ASIZ, as explained in
Section 4.2.3 (page 4-8). When corresponding bits in the slices
are both 1 s, the result bit is set to 1, else the result bit is
set to 0. The result is stored in the destination array slice
location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-63

.- .* v
••^^ >»\N> •.-.••., Kiia --v-v- -•• ii A •>••-• -v-.v.-:.-/v:-. ••'-•»'-''- ̂

-" •". m.£ .y . m . ^ .
'.l/-u"^">,-.--.v?. nrrrrir.-^rr;

5.3.3 (CONT) AND SLICE

Format: 38H, SI, S2, D

Mnemonic: ANDS3

Operands:
SI:
FMT:

S2:
FMT:

D:
FMT:

First Array of Logicals
memory (0) or base register (EXT,11)

Second Array of Logicals
memory (0) or base register (EXT,11)

Result Arra ? memory (0) or base register (EXT,11)

Function:
The AND operation between each pair of corresponding components
in slices of the arrays addressed by SI and S2 is performed. The
arrays must have Boolean components or mask components of the
same precision (V16 , V32, or V64) and all arrays must have the
same number of dimensions;the slice lengths must be the same but
the slices need not be in the same dimension of the arrays. The
number of dimension and slice lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
In this case, ARRAY SUBSCRIPT (if required and upper and lower
ARRAY SLICE INDEX operand qualifiers are present in the
instruction for each array operand. The machine computes the
address of the beginning of each slice and the slice size. When
an array is addressed through a base register (FMT=EXt,ll or
FMT=0 and the cell offset designates a base register - with an
Ava Tag), the operand qualifiers, BASE RELATIVE OFFSET (BRO) and
ARRAY SIZE (ASIZ), are required in the instruction. BRO gives
the offset from the array base address (contained in the base
register) to the start of the slice and ASIZ gives the slice
size. Alternatively, the compact format BI(EXT,12) or BM
(EXT,13), may be used with the single operand qualifier, ASIZ, as
explained in Section 4.2.3 (page 4-8). When corresponding bits
in the slices are both 1 s, the result bit is set to 1), else the
result bit is set to 0. the result is stored in the destination
array slice location.

When addressed through a header, each array of logicals operands
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-64

 .,W l ,«,,,fc,'..-L .^ -- •»• •- •- •- 1- ^ -m I'--- ^ü^ -^^^::>:v>:->;->;.}^>> v -

"_¥•. •'.»•. -".-•". r. vT.r.w.-»rv7

5.3.4 OR

Format: 39H, S, D

Mnemonic: 0R2

Operands:
SI: First Logical Operand
FMT: immediate (EXT,2), memory, (0) or stack (EXT,0)

D: Second Logical Operand and Result
FMT: memory (0) or stack (EXT,0)

Function:
The inclusive OR operation between the operands specified by S
and D is performed. When either (both) of a pair of
corresponding bits of the operand is 1 (are 1 s), the result bit
is set to 1, else the result bit is set to 0. The result is
stored in the destination location.

The source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision (V16, V32, or
V64). If the operand qualifier, BIT POSITION, is present, only
the selected bit position (same for both operands) takes part in
the operation. All unselected bits of the destination operand
are unchanged. Note that the operation performed on Booleans is
exactly the same as the operation performed on V16 masks (a 16
bit operation). The machine cannot differentiate Booleans from
masks since both have V16 tags. Differentiation occurs in the
use of the result, e.g., the IF instruction tests a Boolean but
when the operand qualifier, BIT POSITION, is present, it tests
the selected bit in a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-65

— .. • • , - ... -i -j—j ______ i L t - l | . i . i . i , i . . i; . i m . n i i.

5.3.4 (CONT) OR

Format: 3AH, SI, S2, D

Mnemonic: 0R3

Operands:
SI: First Logical Operand
FMT: immediate (EXT,2), memory, (0) or stack (EXT,0)

S2: Second Logica1 Operand
FMT: immediate (EXT,2), memory (0) or stack (EXT,0)

D: Result
memory (0) or stack (EXT,0)

Function:
The inclusive OR operation between the operands specified by SI
and S2 is performed. When either (both) of a pair of
corresponding bits of the source operands is 1 (are 1 s), the
result bit is set to 1, else the result bit is set to 0. The
result is stored in the destination location.

Each source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask (via a pointer to a Boolean or mask in
global storage or a data object of type Boolean or mask), or a
Boolean or mask component of an array or record. The destination
operand may be any of these except an immediate value. Source
and destination operands must be Booleans (V16) or mask data of
the same precision (V16, V32, or V64). If the operand qualifier,
BIT POSITION, is present, only the selected bit position (same
for each operand) takes part in the operation. All unselected
bits of the destination operand are unchanged. Note that the
operation performed on Booleans is exactly the same as the
operation performed on V16 masks (a 16 bit operation). The
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in the use of the result.,
e.g., the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit
in a 16-bit mask.

Exceptions:
PROGRAM_ERROR

•

>

5-66

>vi--v^i:^2&&£ .>^iv\ ££& siiii "v;v::.; v;
'•'^•'''-'-"•»'-•^"•-'^•-" •-••'-'*•-•**-'"•-*'•-•'--'•'v.^^

r-v- .-v.-. -.•%••.- -^^^T^r<rrrr^ '.»".»-.»-J'TT-: . •-. *. r. «-

i
5.3.5 OR ARRAY

Format: 3Bjjf S, D

Mnemonic: 0RA2

r.
.-.

I

Operands:
S: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

D:
FMT:

Second Arra
memory

y of Logicals and Result Array
(0) or base register (EXT,11)

Function:
The inclusive OR operation between each pair of corresponding
components of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
outermost (highest dimensioned) length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT,11) or FMT=0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI (EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corresponding array components, when
corresponding bits are both 1 s, or when either of the bits is 1,
the result bit is set to 1, else the result bit is set to 0. The
components of the result array are stored in the destination
array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-67

-y-w.v.-. w • • » - - - « • • •

TT! p*_. rw ..«•• •'•>.•"..»•«-•"• *"-.•"-T• »".."".•*". T;*-
. «r-TV"--"«.""^-.»..' t»

5.3.5 (CONT) OR ARRAY

Format: 3CH, SI, S2, D

Mnemonic: 0RA3

Operands:
Sl: First Array of Loqicals
FMT: memory (0)-or base register (EXT,11)

S2:
FMT:

D:
FMT:

Second Array of Loqicals
memory (0) or base register (EXT,11)

Result Array
memory (0) or base register (EXT,11)

Function:
The inclusive OR operation between each pair of corresponding
components of the arrays addressed by SI and S2 is performed.
The arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array, size as the product of the
outermost (highest dimensioned) length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT,11) or FMT=0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI (EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corresponding array components, when
corresponding bits are both 1 s, or when either bits is 1, the
result bit is set to 1, else the result bit is set to 0. The
components of the result array are stored in the destination
array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-68

ttAt-:'S/#s*te<w^

w-fci.-.tt.-*-.'." '•' '-• N.I *." •.'-"• •-m. * •'. •".«.••". *r~. • • •".' •". —. •". .". -'. ." ." „• ".• ':> ' ;• •.' •.'

5.3.6 OR SLICE

Format: 3DH, S
»

D

Mnemonic: ORS2

Operands:
I S: First Array of Logicals

FMT: memory (0) or base register (EXT,11)

D: Second Array of Logicals and Result Array
8 FMT: memory (0) or base register (EXT,11)

| Function:
The inclusive OR operation between each pair of corresponding

| components of the arrays addressed by S and D is performed. The
I arrays must have Boolean components or mask components of the

same precision (V16, V32, or V64) and must have the same number
. of dimensions;the slice lengths must be the same but the slices
1 need not be in the same dimension of the arrays. The number of
I dimensions and lengths are checked by the machine only when the

arrays are addressed through their headers (FMT=0). In this
i case, ARRAY SUBSCRIPT (if required and upper and lower ARRAY

SLICE INDEX operand qualifiers are present in the instruction for
»each array operand. The machine computes the address of the

beginning of each slice and the slice size. When' an array is
r\ addressed through a base register (FMT=EXT, 11 or FMT = 0 and the
*• cell offset designates a base register - with an AVA tag), the

operand qualifier, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE
g (ASI2), are required in the instruction. BRO gives the offset
• from the array base address (contained in the base register) to
I the start of the slice and ASIZ gives the slice size.
;• Alternatively, the compact format, BI (EXT,12) or BM (EXT,13),
>' may be used with the single operand qualifier, ASIZ, as explained
•! in section 4.2.3 (page 4-8). When corresponding bits in the

slices are both 1 s, or when either bit is a 1, the result bit is
I set to 1, else the result bit is set to 0. The result is stored
I in the destination array slice location.

;.' When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to

'.• • an array in global storage or a data object of type array) , or a
f component of a record.
ji
g Exceptions:
I PROGRAM ERROR

5-69

&s&£k£k£&^^

>,^.-^~'^.-> ••• .Ty':tr^':.*Tvv»y^vv7'.s^T\v^ri^^^^^ T» .-<••» •••• • • •„•n

5.3.6 (CONT) OR SLICE

Format: 3EH, SI, S2, D

Mnemonic: ORS3

Operands:
SI: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

S2: Second Array of Logicals
FMT: memory (0) or base register (EXT,11)

D: Result Arrai f FMT: memory (0) or base register (EXT,11)

Function:
The AND operation between each pair of corresponding components
in slices of the arrays addressed by SI and S2 is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions; the slice lengths must be the same but the slices
need not be in the same dimension of the arrays. The number of
dimensions and slice lengths are checked by the machine only when
the arrays are addressed through their headers (FMT=0). In this
case, ARRAY SUBSCRIPT (if required) and upper and löwer ARRAY
SLICE INDEX operand qualifiers are present in the instruction for
each array operand. The machine computes the address of the
beginning of each slice and the slice size. When an array is
addressed through a base register (FMT=EXt, 11 or FMT=0 and the
cell offset designates a base register - with an AVA tag), the
operand qualifiers, BASE RELATIVE OFFSET (BRO) AND array size
(ASIZ), are required in the instruction. BRO gives the offset
from the array base address (contained in the base register) to
the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI (EXT,12) or BM (EXT,13),
may be used with the single operand qualifier, ASIZ, as explained
in section 4.2.3 (page 4-8). When corresponding bits in the
slices are both 1 s, or when either bit is a 1, the result bit is
set to 1, else the result bit is set to 0. The result is stored
in the destination array slice location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-70

' «."_•." ". V." «."-.• ».'• «_" • • -." ' K" *r v •-• •-• v r-«.- •-• •. v •".'• «

5.3.7 EXCLUSIVE OR

Format: 3FH, S, D

Mnemonic: EXOR2

Operands:
S: First Logical Operand
FMT: immediate (EXT,2), memory (0) or stack (EXT,0)

D: Second Logical Operand and Result
FMT: memory (0) or stack (EXT,0)

Function:
The EXCLUSIVE OR operation between the operands specified by S
and D is performed. When corresponding bits of the operands are
complements of one another (1 and 0 or 0 and 1), the result bit
is set to 1, else the result bit is set to 0. The result is
stored in the destination location.

The source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a"pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision (V16, V32, or
V64). If the operand qualifier, BIT POSITION, is present, only
the selected bit position (same for both operands) takes part in
the operation. All unselected bits of the destination operand
are unchanged. Note that the operation performed on Booleans is
exe-tly the same as the operation performed on V16 masks (a 16
bit operation). The machine cannot differentiate Booleans from
masks since both have V16 tags. Differentiation occurs in the
use of the result, e.g., the IF instruction tests a Boolean but
when the operand qualifier, BIT POSITION, is present, it tests
the selected bit in a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-71

>ttc;v&yj&tt

5.3.7 (CONT) EXCLUSIVE OR

Format: 40H, S1,S2, D

Mnemon i c: EXOR3

Operands:
SI: First Logical Operand
FMT: immediate (EXT, 2), memory (0) or stack (EXT,0)

S2:
FMT:

D:
FMT:

Second Logical Operand
immediate (EXT,2), memory (0) or stack (EXT,0)

Result

memory (0) or stack (EXT,0)

Function:
The EXCLUSIVE OR operation between the operands specified by SI
and S2 is performed. When corresponding bits of the operands are
complements of one another (1 and 0 or 0 and 1), the result bit
is set to 1, else the result bit is set to 0. The result is
stored in the destination location.

Each source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Source and Destination
operands must be Booleans (V16) or mask data of the same
precision (V16, V32, or V64). If the operand qualifier, BIT
POSITION, is present, only the selected bit position (same for
both operands) takes part in the operation. All unselected bits
of the destination operand are unchanged. Note that the
operation performed on Booleans is exactly the same as the
operation performed on V16 masks (a 16 bit operation). The
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in the use of the result, e.g.,
the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-72

•••-•-v^ tt£tt-t ••••,'•

1 •• "*• "•' *•• "•• *-• *«i "«A.*.* * \- "-• * * * * \.»" * * • * o »w* •*• ß~m_*y i"» »"* *"• fc"'« •'vi

: .- iÄ .-• .- -•» .- .- .- -- ..--•" .-TS7f. JT-'r .' •" .-"•"-

5.3.8 EXCLUSIVE OR ARRAY

Format: 41H, S» D

Mnemonic: EX0RA2

Operands:
S: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

D: Second Array of Loqicals and Result Array
FMT: memory (0) or base register (EXT,11)

Function:
The EXCLUSIVE OR operation between each pair of corresponding
components of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
the outermost (highest dimensioned) length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASI2), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are complements of one another (0 and 1 or 1
and 0),the result bit is set to 1, else the result bit is set to
0. The components of the result array are stored in the
destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-73

.V^V^-V^TS. .»,-:•- :••-•••-^.-JT.^.^:^^-.*:,:,.-.v'.vr,T.r.|:v.,.,-''.vV:':'A'.TA'.-. .•• '^vs• .»-•i--1,1'.^"."•".v."-l»- A .^'."-"^.vL-- .*»'.-r1.-1

5.3.8 (CONT) EXCLUSIVE OR ARRAY

Format: 42H, 81, S2, D

Mnemon i c: EX0RA3

Operands:
SI: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

S2: Second Array of Logicals
FMT: memory (0) or base register (EXT,11)

D: Result Arra^ irray
>ry (FMT: memory (0) or base register (EXT,11)

Function:
The EXCLUSIVE OR operation between each pair of corresponding
components of the arrays addressed by SI and S2 is performed.
The arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
the outermost (highest dimensioned) length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are complements of one another (0 and 1 or 1
and 0), the result bit is set to 1, else the result bit is set to
0. The components of the result array are stored in the
destination array location.

when addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-74

r 'jr •~v v-v r* -- -•V V'.^, ••» il ' V v ••- VI V • ' ^-' »-1 «T •-• «-• •-- *- H- I

5.3.9 EXCLUSIVE OR SLICE

Format: 43H, S, D

Mnemonic: EXORS2

Operands:
S: First Array of Loqicals
FMT: memory (0) or base register (EXT,11)

D: Second Array of Loqicals and Result Array
FMT: memory (0) or base register (EXT,11)

Function:
The EXCLUSIVE OR operation between each pair of corresponding
components in slices of the arrays addressed by S and D is
performed. The arrays must have' Boolean components or mask
components of the same precision (V16, V32, or V64) and must have
the same number of dimensions; the slice lengths must be the same
but the slices need not be in the same dimensions of the arrays.
The number of dimensions and slice lengths are checked by the
machine only when the arrays are addressed through their headers
(FMT=0). In this case, ARRAY SUBSCRIPT (if required) and upper
and lower ARRAY SLICE INDEX operand qualifiers are present in the
instruction for each array operand. The machine computes the
address of the beginning of each slice and the slice size.
When an array is addressed through a base register (FMT=EXT, 11
or FMT = 0 and the cell offset designates a base register - with
an AVA tag), the operand qualifier, BASE RELATIVE OFFSET (BRO)
and ARRAY SIZE (ASIZ) are required in the instruction. BRO gives
the offset from the array base address (contained in the base
register)to the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI(EXT,12) or BM(EXT,13), may
be used with the single operand qualifier, ASIZ as explained in
section 4.2.3 (page 4-8). When corresponding bits in the slices
are complements of one another (0 and 1 or 1 and 0), the result
bit is set to 1, else the result bit is set to 0. The result is
stored in the destination array slice location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-75

•. -." v- -." •-• •. .-. >."• -,-\
.-. '.V. .\.\V

. 1 k 1 . 1 I • i :&£&&£&&& •.\VS_s i:*^d

r.M- J^-a-j.r.-r^^'.-r.-.r. «-. I-.-T-. t~. »^. <-.' --.' »•. r .-•-.• •»:; » . • ; • .';» T.».» - «„• r • ,*.~.'t .'. ."J '.'^ '.» I ''. ' ^V]

5.3.9 (CONT)EXCLUSIVE OR SLICE

Format: 44H> SI, S2, D

Mnemonic: EX0RS3

Operands:
SI: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

S2: Second Array of Logicals
FMT: memory (0) or base register (EXT,11)

D: Result Arrai
% FMT: memory (0) or base register (EXT,11)

Function:
The EXCLUSIVE OR operation between each pair of corresponding
components in slices of the arrays addressed by SI and S2 is
performed. The arrays must have Boolean components or mask
components of the same precision (V16, V32, or V64) and must have
the same number of dimensions; the slice lengths must be the same
but the slices need not be in the same dimensions of the arrays.
The number of dimensions and slice lengths are checked by the
machine only when the arrays are addressed through their headers
(FMT=0). In this case, ARRAY SUBSCRIPT (if required) and upper
and lower ARRAY SLICE INDEX operand qualifiers are present in the
instruction for each array operand. The machine computes the
address of the beginning of each slice and the slice size.
When an array is addressed through a base register (FMT=EXT, 11
or FMT = 0 and the cell offset designates a base register - with
an AVA tag), the operand qualifier, BASE RELATIVE OFFSET (BRO)
and ARRAY SIZE (ASIZ) are required in the instruction. BRO gives
the offset from the array base address (contained in the base
register) to the start of the slice and ASIZ gives the slice
size. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used with the single operand qualifier, ASIZ
as explained in Section 4.2.3 (page 4-8). When corresponding
bits in the slices are complements of one another (0 and 1 or 1
and 0), the result bit is set to 1, else the result bit is set to
0. The result is stored in the destination array slice location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via pointer to
an array in global storage or a data object of type array), or a
component of a record.
Exceptions:
PROGRAM ERROR

5-76

!"T"^_ ~. V. 7" ' T"."~^"~ r.'T"? V. -r_ V. •»"•. I

5.3.10 EQUIVALENCE

Format: 45JJ, S, D

Mnemonic: EQ2

Operands:
S: First Logical Operand
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Second Logical Operand and Result
FMT: memory (0) or stack (EXT,0)

Function:
The EQUIVALENCE operation between the operands specified by S and
D is performed. When corresponding bits of the operands are
equal (both 0 or both 1), the result bit is set to 1, else the
result bit is set to 0. The result is stored in the destination
location.

The source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision (V16, V32, or
V64). If the operand qualifier, BIT POSITION, is present, only
the selected bit position (same for both operands) takes part in
the operation. All unselected bits of the destination operand
are unchanged. Note that the operation performed on Booleans is
exactly the same as the operation performed on V16 masks (a 16-
bit operation). The machine cannot differentiate Booleans from
masks since both have V16 tags. Differentiation occurs in the
use of the result, e.g., the IF instruction tests a Boolean but
when the operand qualifier, BIT POSITION, is present, it tests
the selected bit in a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-77

tt&tttttt^^^^ :.v.-..-V-V-VY v«'..-.u\v. _*. *_* .-_». ?_- _^_* • »* - •

•.•«•.•%1VA'.VA •.•^1^. V.1 A-'., I •• '..•." «• ••.' ^' *.- v ••' V

5.3.10 (CONT) EQUIVALENCE

Format: 46H, SI, S2, D

Mnemonic: EQ3

Operands:
SI: First Logical Operand
FMT: immediate (EXT,2), memory (0), or stack.(EXT,0)

S2: Second Logical Operand
FMT: immediate (EXT,2),memory (0), or stack (EXT,0)

D: Result

Function:
The EQUIVALENCE operation between the operands specified by SI
and S2 is performed. When corresponding bits of the operands are
equal (both 0 or both 1), the result bit is set to 1, else the
result bit is set to 0. The result is stored in the destination
location.

Each source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or maskr an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision (V16, V32, or
V64). If the operand qualifier, BIT POSITION, is present, only
the selected bit position (same for both operands) takes part in
the operation. All unselected bits of the destination operand
are unchanged. Note that the operation performed on Booleans is
exactly the same as the operation performed on V16 masks (a 16-
bit operation). The machine cannot differentiate Booleans from
masks since both have V16 tags. Differentiation occurs in the
use of the result, e.g., the IF instruction tests a Boolean but
when the operand qualifier, BIT POSITION, is present, it tests
the selected bit in a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-78

-.•"Vs V <M» v V \> > \> •V-\w.
.••»..-• •V.Vw ^•^z^^-ivi^-^-:-.:: .:^v:

v. i—v. r~

5.3.11 EQUIVALENCE ARRAY

Format: 47H, S, D

Mnemonic: EQA2

Operands:
S: First Array of Logicals
FMT: memory (0) or base register (EXT, 11")

D:
FMT:

Second Arra
memory

y of Logicals and Result Array
(0) or base register (EXT,11)

Function:
The EQUIVALENCE operation between each pair of corresponding
components of the arrays addressed by SI and S2 is performed.
The arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
the outermost (highest dimensioned) length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 .and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used äs explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are equal (both 0 or both 1) the result bit is
set to 1, else the result bit is set to 0. The components of the
result array are stored in the destination array location.

when addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-79

frv-vS^-v-^^

5.3.11 (CONT) EQUIVALENCE ARRAY

Format: 48H, SI, S2, D

Mnemonic: EQA3 .

Operands:
SI: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

S2:
FMT:

D:
FMT:

Second Array of Logicals
memory (0) or base register (EXT,11)

Result Arra
memory (0) or base register (EXT,11)

Function:
The EQUIVALENCE operation between each pair of corresponding
components of the arrays addressed by SI and S2 is performed.
The arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
the outermost (highest dimensioned) length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corresponding array components, when
corresponding bits are equal (both 0 or both 1) the result bit is
set to 1, else the result bit is set to 0. The components of the
result array are stored in the destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-80

'. r* tlL. *. f.t- .-. »- .* Ü1 «• J-, .J: Wl -• -* -* *•• •v-i-'
* • * * » * - "> * • •> * fc * I. " . * * * W " .1

•-TT;. \-ir ••^•'

•-

l
''.; 5.3.12 EQUIVALENCE SLICE

Format: 49H, S> D

Mnemonic: EQS2

Operands:
S: First Array of Loqicals
FMT: memory (0) or base register (EXT,11)

D:
FMT:

Second Array of Loqicals and Result Array
memory (0) or base register (EXT,11)

Function:
The EQUIVALENCE operation between each pair of corresponding
components of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions; the slice lengths must be the same but the slices
need not be in the same dimension of the arrays. The number of
dimensions and slice lengths are checked by the machine only when
the arrays are addressed through their headers (FMT=0). In this
case, ARRAY SUBSCRIPT (if required) and upper and lower ARRAY
SLICE INDEX operand qualifiers are present in the instruction for
each array operand. The machine computes the address of the
beginning of each slice and the slice size. When an array is
addressed through a base register (FMT=EXT, 11 or FMT = 0 and the
cell offset designates a base register - with an AVA tag), the
operand qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE
(ASIZ), are required in the instruction. BRO gives the offset
from the array base address (contained in the base register) to
the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI(EXT,12) or BM(EXT,13), may
be used with the single operand qualifier ASIZ, as explained in
Section 4.2.3 (page 4-8). When corrresponding bits in the slices
are equal (both 0 or both 1) the result bit is set to 1, else the
result bit is set to 0. The result is stored in the destination
array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-81

i I

s

r - 1 -yi^rrTZr ; ;. •-— • T.•. - - 17^ , •» . r-.TTT. r !" .-. .--.»-?r.<TJTl •.I-.i.-aM-.kllJ

5.3.12 (CONT) EQUIVALENCE SLICE

Format: 4AH, Si, S2, D
1

Mnemonic: EQS3

Operands:
S: First Array of Logicals
FMT: memory (0) or base register (EXT,11)

S2: Second Array of Logicals
FMT: memory (0) or base register (EXT,11)

O: Result Array
FMT: memory (0) or base register (EXT,11)

Function:
The EQUIVALENCE operation between each pair of corresponding
components in slices of the arrays addressed by S and D is
performed. The arrays must have Boolean components or mask
components of the same precision (V16, V32, or V64) and must have
the same number of dimensions; the slice lengths must be the same
but the slices need not be in the same dimension of the arrays.
The number of dimensions and slice- lengths are checked by the
machine only when the arrays are addressed through their headers
(FMT=0). In this case, ARRAY SUBSCRIPT (if required) and upper
and lower ARRAY SLICE INDEX operand qualifiers are present in the
instruction for each array operand. The machine computes the
address of the beginning of each slice and the slice size. When
an array is addressed through a base register (FMT=EXT, 11 or FMT
= 0 and the cell offset designates a base register - with an AVA
tag), the operand qualifiers, BASE RELATIVE OFFSET (BRO) and
ARRAY SIZE (ASIZ), are required in the instruction. BRO gives
the offset from the array base address (contained in the base
register) to the start of the slice and ASIZ gives the slice
size. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used with the single operand qualifier ASIZ,
as explained in Section 4.2.3 (page 4-8). When corrresponding
bits in the slices are equal (both 0 or both 1) the result bit is
set to 1, else the result bit is set to 0. The result is stored
in the destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-82

••'•'•'.•••W:1-'.*> •,,'.y.T».'rLV.''.'u'T».' AT'.'.V-'.I». .yjJ'Wl'. '. «. irTT^TWTT' —tm

5.3.13 NOT

Format: 4BH, D

Mnemonic: N0T1

Operands:

D:
FMT:

Logical Operand and Result
memory (0) or stack (EXT,0)

Function:
The NOT operation is performed on the operand addressed by D.
The bit (or bits) in the operand is (are) complemented (0 to 1 or
1 to 0) and the result is stored in the destination location.

The operand may be a directly addressed Boolean (V16) or mask
(V16, V32, or V64) an indirectly addressed Boolean or mask (via a
pointer to a Boolean or mask in global storage or a data object
of type Boolean or mask), or a Boolean or mask component of an
array or record. If the operand qualifier, BIT POSITION, is
present, only the selected bit position is affected. All
unselected bits of the operand are unchanged. Note that the
operation performed on a Boolean is exactly the same as the
operation performed on a V16 mask (a 16 bit operation). The
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in the use of the result, e.g.,
the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-83

^it^
•- V ?- '- •"-•»

-- * - • ^ •- •-

' ±m .^« L" ^ v"* =~**. '

5.3.13 (CONT) NOT

Format: 4CH, S, D

Mnemonic: N0T2

Operands:
S: Logical Operand
FMT: memory (0) or stack (EXT,0)

D: Result
FMT: memory (0) or stack (EXT,0)

Function:
The NOT operation is performed on the operand addressed by S.
The bit (or bits) in the operand is (are) complemented (0 to 1 or
1 to 0) and the result is stored in the destination location.

Each operand may be a directly addressed Boolean or mask, an
indirectly addressed Boolean or mask (via a pointer to a Boolean
or mask in global storage or a data object of type Boolean or
mask), or a Boolean or mask component of an array or record.
Source and destination operands must both be Booleans (V16) or
mask data of the same precision (V16, V32, or V64). If the
operand qualifier, BIT POSITION, is present, only the selected
bit position is affected. All unselected bits of the destination
operand are unchanged. Note that the operation performed on a
Boolean is exactly the same as the operation performed on a V16
mask (a 16 bit operation). The machine cannot differentiate
Booleans from masks since both have V16 tags. Differentiation
occurs in the use of the result, e.g., the IF instruction tests a
Boolean but when the operand qualifier, BIT POSITION, is present,
it tests the selected bit in a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-84

£^>££S££^^

'•,'_• ..••!," -.' »,'"." ;,".*."."."*.^-'."- '.", '."•""' ' ' '•'.•» '.TT TTrTTwTT"

5.3.14 NOT ARRAY

Format: 4DH, D

Mnemonic: NOTAl

Operands:
D: Array of Logicals
FMT: memory (O) or base register (EXT,11)

Function:
The NOT operation is performed on the components of the array
addressed by D. The array must have Boolean components or mask
components. When the array is addressed through its header
(FMT=0), the machine computes the array size as the product of
the outermost (highest dimensioned)length and SPAN (length and
component size if the number of dimensions is 1). When the array
is addressed through a base register (FMT=EXT, 11 or FMT=0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ) is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
Each bit in each component is complemented (0 to 1 or 1 to 0) and
the result array is stored in the destination array location.

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-85

^>^:^>>£>>:^fr

»"^U"» -""L~" W^ '."» .T .•>•.""' -• 1

5.3.14 (CONT) NOT ARRAY

Format: 4EH, S, D

Mnemonic: NOTA2

Operands:
S: Array of Loqicals
FMT: memory (0) or base register (EXT,11)

D: Result Array
memory (0) or base register (EXT,11)

Function:
The NOT operation is performed on the components of the array
addressed by S. Source and destination arrays must have Boolean
components or mask components of the same precision (V16, V32', or
V64) and must have the same number of dimensions and equal
lengths for corresponding dimensions. The number of dimensions
and lengths are checked by the machine only when the arrays are
addressed through their headers (FMT»0). Then, the machine
computes the array size as the product of the the outermost
(highest dimensioned) length and SPAN (length and component size
if the number of dimensions is 1). When an array is addressed
through a base register (FMT=EXT,- 11 or FMT = 0 and the cell
offset designates a base register - with an AVA tag), the operand
qualifier, ARRAY SIZE (ASIZ), is required in the instruction.
Alternatively, the compact format, BI(EXT,12) or BM(EXT,13), may
be used as explained in Section 4.2.3 (page 4-8). Each bit in
each component of the source array is complemented (0 to 1 or 1
to 0) and the result is stored in the destination array location,
precision

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-86

^^•^•^^^^y^^^^^i'^^^^v^.^-:.. ••••••••»:•••:>vvlv'/--l"--'.vI'-\,--lv'.'.-."--*.'-*lv:,.\v--^v?.-lv':.-:v'

. i-fc •„•v.'^vv vf w wiv awTVA'-rnw, v *.* '?.".' • ; • • i ".'»•. »•_• "."'. '.-. IT.

5.3.15 NOT SLICE

Format: 4FH, D

Mnemonic: N0TS1

Operands:
D: Array of Logicals
FMT: memory (0) or base register (EXT,11)

Function:
The NOT operation is performed on the components in a slice of
the array addressed by D. the array must have boolean components
or mask components. When the array is addressed through its
header, ARRAY SUBSCRIPT (if required) and upper and lower ARRAY
SLICE INDEX operand qualifiers are present in the instruction.
The machine computes the address of the beginning of the slice
and the slice size. When the array is addressed through a base
register (FMT*EXT,11 or FMT=0 and the cell offset designates a
base register - with an AVA tag), the operand qualifiers, BASE
RELATIVE OFFSET (BRO) and ARRAY SIZE (ASIZ), are required in the
instruction. BRO gives the offset from the array base address
(contained in the base register) to the start of the slice and
ASIZ gives the slice size. Alternatively, the compact format,
BI(EXT,12) or BM(EXT,13), may be used with the single operand
qualifier, ASIZ, as explained in Section 4.2.3 (page 4-8). Each
bit in each component of the slice is complemented (0 to 1 or 1
to 0) and the result is stored in the destination array slice
location.

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-87

) &<&d

«. .•:'?•'S*n' .T•;•»• >„% •.-. "Ti T •-••:• '.•, .•.' .«.«-VAT"VAT*.""•.* •-" r^ >." -." -.' •'.''-_• •••.••." -' , ••.•!«. i .•> .

5.3.15 (CONT) NOT ARRAY

Format: 50H, S, D

Mnemonic: NOTS2

Operands:
Array of Loqicals

memory (0) or base register (EXT,11)
S:
FMT:

D: Result Array

memory (0) or base register (EXT,11)

of dimensions;
need not be in
dimensions and
the arrays are

FMT:
Function:
The NOT operation is performed on the components in a slice of
the array addressed by S. Source and destination arrays must
have Boolean components or mask components of the same precision
(V16, V32, or V64) and must have the same number
the slice lengths must be the same but the slices
the same dimension of the arrays. The number of
slice lengths are checked by the machine only when
addressed through their headers (FMT=0). In this case, ARRAY
SUBSCRIPT (if required) and upper and lower ARRAY SLICE INDEX
operand qualifiers are present in the instruction for each array
operand. The machine computes the address of the beginning of
each slice and the slice size. When an array is addressed
through a base register (FMT=EXT,11 or FMT=0 and the cell offset
designates a base register - with an AVA tag), the operand
qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE (ASIZ), are
required in the instruction. BRO gives the offset from the array
base address (contained in the base register) to the start of the
slice and ASIZ gives the slice size. Alternatively, the compact
format, BI(EXT,12) or BM(EXT,13), may be used with the single
operand qualifier, ASIZ, as explained in Section 4.2.3 (page 4-
8). Each bit in each component of the source array slice is
complemented (0 to 1 or 1 to)) and the result is stored in the
destination array slice location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of ä record.

Exceptions:
PROGRAM ERROR

5-88

.V\V\> "V , /.VMs\l

•.'••.'»:-•. Tir•'*".

5.3.16 SET

Format: 51H, D

Mnemonic: SET

Operands:
D: Logical Operand and Result
FMT: memory (0) or stack (EXT,11)

Function:
The SET operation is performed on the operand addressed by D.
The bit (bits) in the operand is (are) set to 1 and the result is
stored in the destination location

The operand may be a directly addressed Boolean (V16) or mask
(V16, V32, or V64), an indirectly addressed Boolean or mask (via
a pointer to a Boolean or mask in global storage or a data object
of type Boolean or mask), or a Boolean or mask component of an
array or record. If the operand qualifier, BIT POSITION, is
present, only the selected bit position is affected. All
unselected bits of the operand are unchanged. Note that the
operation performed on a Boolean is exactly the same as the
operation performed on a V16 mask (a 16 bit operation). The
machine cannot differentiate Booleans from.masks since both have
V16 tags. Differentiation occurs in the use of the result, e.g,
the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-89

£>££i#:^^^^

' V '." V V k* ^.T*^*1? *.* A." •'••"T^^T^T1.* • " ^ * <T*!^T*T,^P'^^T^^"^^^?^^'^^^^T^^^'^^^ w-T- y- * • r *"-

5.3.17 SET ARRAY

Format: 52H, D

Mnemonic: SETA

Operands:
D: Array of Loqicals
FMT: memory (0) or base register (EXT,11)

Function:
The SET operation is performed on the components of the array
addressed by D. The array must have Boolean components or mask
components. When the array is addressed through its headers
(FMT*0) the machine computes the array size as the product of the
the outermost (highest dimensioned) length and SPAN (length and
component size if the number of dimensions is 1). When the array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
Each bit in each component is set to 1 and the result array is
stored in the destination array location.

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-90

r \.m ;• l'..',';'',''''>V".''.''." ' • ' '.^ ? •I*'.'-',^"T.' '-'V '.' '' '.'','''''.' '<

5.3.18 SET.SLICE

Format: 53y D

Mnemonic: SETS

Operands:
D: Array of Logicals
FMT: memory (0) or base register (EXT,11)

Function:
The SET operation is performed on the components in a slice of
the arrays addressed by O. The arrays must have Boolean
components or mask components. When the array is addressed
through its header, ARRAY SUBSCRIPT, (if required) and upper and
lover ARRAY SLICE INDEX operand qualifiers are present in the
instruction. The machine computes the address of the beginning
of each slice and the slice size. When the array is addressed
through a base register (FMT»EXT,11 or FMT=0 and the cell offset
designates a base register - with an AVA tag), the operand
qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE (ASIZ), are
required in the instruction. BRO gives the offset from the array
base address (contained in the base register) to the start of the
slice. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used with the single operand qualifier, ASIZ,
as explained in Section 4.2.3 (page 4-8). Each bit in each
component of the slice is set to 1 and the result is stored in
the destination slice location.

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM ERROR

5-91

Jtättti^^

^7^TTT*T^*T»T^T^T*y^r"' - ' '.».".' ' * ' ' ' . • T»l^l—y—*»*^i.' I. • •- r- •• w-w MI. •. ••; »; -. ^ .^'"' ',.*''•'* ."* •!

i.3.19 CLEAR

'ormat: 54H, D

fnemonic: CLR

)perands:
D: Logical Operand and Results
FMT: memory (0) or stack (EXT,11)

^unction:
The CLEAR operation is performed on the operand addressed by D.
The bits (bits) in the operand is (are) reset to 0 and the result
Ls stored in the destination location.

The operand may be a directly addressed Boolean (V16) or mask
(V16, V32, or V64) an indirectly addressed Boolean or mask (via a
pointer to a Boolean or mask in global storage or a data object
jf type Boolean or mask), or a Boolean or mask component of an
array or record. If the operand qualifier, BIT POSITION, is
present, only the selected bit position is affected. All
jnselected bits of the operand are unchanged. Note that the
operation performed on a Boolean is exactly the same as the
Dperation performed on a V16 mask (a 16 bit operation). The
nachine cannot differentiate Booleans from masks since both have
i/16 tags. Differentiation occurs in the use of the result, e.g.,
the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask.

Exceptions:
PROGRAM ERROR

5-92

._., .«.^.^.^,...,-. •-' M'.'ll'VA".

5.3.20 CLEAR ARRAY

Format: 55jjf D

Mnemonic: CLRA

Operands:
D: Array of Loqicals

(0) or base FMT: memory register (EXT,11)

Function:
The CLEAR operation is performed on the components of the array
addressed by D. The array must have Boolean components or mask
components. When the array is addressed through its header
(FMT=0), the machine computes the array size as the product of
the outermost (highest dimensioned)length and SPAN (length and
component size if the number of dimensions is 1). When the array
is addressed through a base register (FMT*EXT, 11 or FMT=0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
Each bit in each component is reset to 0 and the result array is
stored in the destination array location.

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.
Exceptions:
PROGRAM ERROR

5-93

.•"V"*.'"' •"* '''J^J> »%>N>> ."• -s .*• »v «'•.'
•^-v^-Vi-.: *:. C •%.: «J

-.,•» .— V*'.*» ..•% "-'.I ."- ^".^'.'- '..'T «'•'•.* ».' U* «,* J.» '•'.• •.*'•.' •','^^:'

.3.21 CLEAR SLICE

ormat: 56H, D

nemonic: CLRS

perands:
D: Array of Loqicals
FMT: memory (0) or base register (EXT,11)

unction:
he CLEAR operation is performed on the components in a slice of
he array of the array addressed by D. The array must have
oolean components or mask components. When the array is
ddressed through its header ARRAY SUBSCRIPT (if required) and
ipper and lower ARRAY SLICE INDEX operand qualifiers are present
n the instruction. The machine computes the address of the
»eginning of the slice and the slice size. When the array is
iddressed through a base register (FMT=EXT,11 or FMT=0 and the
:ell offset designates a base register - with an AVA tag), the
»perand qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE
ASIZ), are required in the instruction. BRO gives the offset
:rom the array base address (contained in the base register) to
:he start of the slice. Alternatively, the compact format,
II(EXT,12) or BM(EXT,13), may . be used with the single operand
lualifier, ASIZ, as explained in Section 4.2.3 (page 4-8). Each
)it in each component of the slice is set to 0 and the result is
»tored in the destination array location.

fhen addressed through a header, the array of logicals operand
lay be directly addressed, indirectly addressed (via a pointer to
in array in global storage or a data object of type array), or a
:omponent of a record.
Exceptions
PROGRAM ERROR

5-94

..-'•.^Y/v.V.V.'.v.v.v. .«y .«._.«...w .vu

,• • I» I • I • • .. •». I, I.. .1 ..

::

5.4 Branch

The branch instructions support the Ada IF statement (if Boolean-
rj expression then, else), the CASE statement, the LOOP statement
£ (for-loop), and the GOTO statement. Note that Ada WHILE LOOP
;vi statements are supported by the HLLM IF and GOTO instructions as
£ shown below:

I

l

::'•

LABEL A: IF (RELATIONAL), LABEL B SEQUENCE OF
INSTRUCTIONS GOTO LABEL A

LABEL B:

5-95
•

[;„„„.....„.,..
L'.V.TA••-.,. . ^•>iy:^^v.,v:-//.-\,v:^

"•*=—•"*»—"C~ •'.'*• '•> »^ r^T^ -v '.^'."' '.*• ."-'-^ '.^.^L"«V^ '5.'.'VL^1.^ '.^IT'.^ •'•'.*-' .^". •T-.---.^ .^

5.4.1 IF

Format: 57fl S, D

Mnemonic: IF

Operands:
S: Logical Operand
FMT: memory (0) or stack (EXT,0)

D: Label
FMT: ~~immediate (EXT,2), interpreted as a label operand

Function:
The state of the operand addressed by S is tested; if 1 (true),
no action is taken but if 0 (false), a branch is made to the
address of the current instruction plus the value of the label
operand (displacement, in words). The source operand must be a
Boolean (V16) or mask data (V16, V32, or V64). If mask data, the
operand qualifier, BIT POSITION, must be present in the
instruction to select the bit of the mask to be tested..

The source operand may be a directly addressed Boolean or a mask,
an indirectly addressed Boolean or mask via a pointer to a
Boolean or mask in global storage or a data object of type
Boolean or mask), or a Boolean or mask component of an array or
record

Exceptions:
PROGRAM ERROR

5-96

>>* •-v>",,>> .'• -% •"• .v »**»*• ."• v jfti
- - «-' w£ *•• •-' - I - • ///.->£& vv^.-.^ v»v>v.

•^'-^••«'

•.-• .^ .V.T.MVA7.VA-V.V.V ^.-r»- V-.^'VT". «-.' ', '. TT ". •'. i~. ••.•'.''•,-. •-. •?v=v ••- -

5.4.2 IF EQUAL

Format: 58H SI, S2, D

Mnemonic: IF»

Operands:
SI: Comparand 1
FMT: immediate (EXT,2), memory (0), stack (EXT,0),

or base register (EXT,11)

S2: Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),

or base register (EXT,11)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
The operands specified by SI and S2 are compared for equality.
If the values are equal, no action is taken but if the values are
not equal, a branch is made to the address of the current
instruction plus the value of the label operand (displacement, in
words). The source operands may be numeric or logical (V16, V32,
or V64), pointers (PTR), components of arrays or records, or
whole arrays or records. Immediate source operands are
interpreted as having a V32 tag with sign extend. Equal pointers
are both undefined (null) or both defined with identical absolute
address and unique names (checked if unique name flags = 1).
Equal arrays have the same number of dimensions, the same lengths
for corresponding dimensions, and equal corresponding components.
Equal records have equal corresponding components.

Note that in this instruction (and in the IF NOT EQUAL
instruction), when SI and S2 address pointers, the pointers, not
the pointed to data entities, are compared for equality. Also
note, as usual, when arrays are addressed via base registers, the
operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction; alternatively, the compact format, BI(EXT,12) or BM
(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).

EXCEPTIONS:
PROGRAM ERROR

5-97

-•. v, a££££&£&£&&£&&&&^ &J&&&&3

• ••••. ••- »_••' '_•. »> •;• '.: \z •-. •>• "> •,.' V ".* \l *.' "> V" -J^rr^T^TT

5.4.3 IF NOT EQUAL

Format: 59H SI, S2, D

Mnemonic: IF <>

Operands:
SI: Comparand 1
FMT: immediate (EXT,2), memory (0), stack (EXT,0),

or base register (EXT,11)

S2: Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),

or base register (EXT,11)

D:
FMT:

Label
Immediate (EXT,2), interpreted as a label operand

Function:
The operands specified by SI and S2 are compared for inequality.
If the values are not equal, no action is taken but if the values
are equal, a branch is made to the address of the current
instruction plus the value of the label operand (displacement, in
words). The source operands may be numeric or logical (V16, V32,
or V64), pointers (PTR), components of arrays or records, or
whole arrays or records. Immediate source operands are
interpreted as having a V32 tag with sign extend. Source
operands are not equal if they do not meet the equality
definitions specified in the IF EQUAL instruction.

Note that in this instruction (and in the IF EQUAL instruction),
when SI and S2 address pointers, the pointers, not the pointed-to
data entities, are compared for equality. Also note, as usual,
when arrays are addressed via base registers, the operand
qualifier, ARRAY SIZE (ASI2), is required in the instruction;
alternatively, the compact format, BI(EXT,12) or BM (EXT,13), may
be used as explained in Section 4.2.3 (page 4-8).

EXCEPTIONS:
PROGRAM ERROR

5-98

•-2Ü •J. -V, V- -•'«-•>-• ••...~... •w- ^ hJfcS --• %• •--:-- £k£»££ääa&££&ä

TTT"^^"!.-1

5.4.4 IF LESS THAN INTEGER

Format: 5AH SI, S2, D

Mnemonic: IFK

Operands:
SI: Comparand 1
FMT: immediate (EXT,2), memory (0), stack (EXT,0),

or base register (EXT,11)

S2: Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),

or base register (EXT,11)

D: Label
FMT: immediate (EXT,2), 'interpreted as a label operand

Function:
The operands specified by SI and S2 are compared; if the former
value (SI) is less than the latter value (S2) no action is taken,
else a branch is made to the address of the current instruction
plus the value of the label operand (displacement, in words).
Both source operands must be integers (V16 or V32) or single
dimension arrays of integers. If arrays, lower bounds and
lengths need not match. The value of the array operand addressed
by SI is less than the value of the array operand addressed by S2
if the former value lexicographically precedes the latter value,
using the collating sequence of the component type. Formally
stated, let k be the largest integer such that

k<*length of SI array operand

and
k<=length of S2 array operand

and let the first k components of the SI and S2 array operands be
equal (k>=0). Then array operand SI is less than array operand
S2 if and only if k is less than the length of array operand S2
and either

1. k=length of array operand SI, or

2. k=length of array operand SI and
the k+lst component of array
operand SI is less than the k+ls*
component of array operand S2.

5-99

:^c^v:vv^^:^S:-^:: j . ^^^^

Note that a source operand may be an integer component of an
array or record. As usual, when an array component is addressed
via a base register, the operand qualifier, BASE RELATIVE OFFSET
(BRO) is required in the instruction to locate the component.
When a whole array of integers is addressed via a base register,
the operand qualifier, ARRAY SIZE (ASIZ) is required in the
instruction. In both cases, the compact format, BI(EXT,12) OR
BM(EXT,13) may be used as explained in Section 4.2.3 9 (page 4-
8). Note, also, that immediate source operands are interpreted
as having a V32 tag with sign extend.

Exceptions:
PROGRAM ERROR

5-100

v->>^vJv..v-J-' •V*Y-V-\vV- :•- * '••v.-v •Jy..'-,H^:'
.•.;.-•. .\-,.-. .-. .. v.'.•..•..-.-..•.. .-. .• .v.v.>
*-••-•-» k i k i -1 - • - • '• i - '..-.-% s - . . . i. • - . L . i-. •-•» 1

--'r^'^r-T.'."_•; ."•".^ ."• '."•• .'i .*•• ."^ ."^ rvIT*:•»:-• :"• i-"•.-»:-*••-•-7-»T-;r»m37"3r^-jr-LT-^-s»-^ ri- -y-»-j

5.4.5 IF LESS THAN FLOATING POINT

Format: 5BH SI, S2, D

Mnemonic: IFF<

Operands:
SI: Comparand 1
FMT: memory (0) or stack (EXT,0)

S2: Comparand 2
FMT: memory (0) or stack (EXT,0)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
The operands specified by SI and S2 are compared; if the former
value (SI) is less than the latter value (S2), no action is
taken, else a branch is made to the address of the current
instruction plus the value of the label operand (displacement, in
words). Both source operands must be floating point numbers (V32
or V64).

Exceptions:
PROGRAM ERROR

5-101

Ä^->:t^:v: :;-;^^^

V-VTvTV." •-" vT 'J."V" ..^....... -,,»...-.. ^i^yCTyj-r^'W'Wft'tR'A^'v.Ttn^^ii'tT^.t';.'^

5.4.6 IF GREATER THAN INTEGER

Format: 5CH SI, S2, D

Mnemonic: IFK

Operands:
SI:
(EXT,0),

Comparand FMT: immediate (EXT,2), memory (0), stack
or base register (EXT,11)

S2: Comparand 2 tt. . »_uiu(jox gnu i.
FMT: immediate (EXT,2), memory (0), stack EXT,0),

or base register (EXT,11)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
The operands specified by SI and S2 are compared; if the former
value (SI) is greater than the latter value (S2) no action is
taken, else a branch is made to the address of the current
instruction plus the value of the label operand (displacement, in
words). Both source operands must be integers (V16 or V32) or
single dimension arrays of integers. If arrays, lover bounds and
lengths need not match. The value of the array operand addressed
by SI is less than the value of the array operand addressed by S2
if the latter value is less than the former value as formally
defined in the IF LESS THAN INTEGER instruction (Section 5.4.4.).

Note that a source operand may be an integer component of an
array or record. As usual, when an array component is addressed
via a base register, the operand qualifier, BASE RELATIVE OFFSET
(BRO) is required in the instruction to locate the component.
When a whole array of integers is addressed via a base register,
the operand qualifier, ARRAY SIZE (ASIZ) is required in the
instruction. In both cases, the compact format, BI(EXT,12) OR
BM(EXT,13) may be used as explained in Section 4.2.3 9 (page 4-
8). Note, also, that immediate source operands are interpreted
as having a V32 tag with sign extend.

Exceptions:
PROGRAM ERROR

5-102

-v. ^ JS-JN".*. .v,",-».- w.VA" "L" '.' •'-• t." • " '.' '•. *••.' «•.•»". T"

5.4.7 IF GREATER THAN FLOATING POINT

Format: 5DH SI, S2, D

Mnemonic: IFF>

Operands:
SI: Comparand 1
FMT: memory (0) or stack (EXT,0)

S2: Comparand 2
FMT: memory (0) or stack (EXT,0)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
The operands specified by SI and S2 are compared; if the former
value (SI) is greater than the latter value (S2), no action is
taken, else a branch is made to the address of the current
instruction plus the value of the label operand (displacement, in
words). Both source operands must be floating point numbers (V32
or V64).

Exceptions:
PROGRAM ERROR

5-103

&&k£M&&&£&^

-•:v.i .•» '.TV'-U^".^ v.1«j.v;»'v ':,,j7':'v.r,'.|,j.v:.':7,7.T..-r.r.'-.f.'-.,':' .• •

.4.8 IF GREATER THAN OR EQUAL TO INTEGER

ormat: 5EH SI, S2, D

[nemonic: IFI>=

perands:
SI: Comparand 1
FMT: immediate (EXT,2), memory (0), stack EXT,0),

or base register (EXT,11)

S2: Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),

or base register (EXT,11)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

'unction:
?he operands specified by SI and S2 are compared; if the former
ralue (SI) is greater than or equal to the latter value (S2), no
iction is taken, else a branch is made to the address of the
:urrent instruction plus the value of the label operand
[displacement, in words). Both source operands must be integers
[V16 or V32) or single dimension arrays of integers. If arrays,
Lower bounds arid lengths need not match. The value of the array
aperand specified by SI is greater than or equal to the value of
:he array operand specified by S2 if the former value is not less
:han the latter value as formally defined in the IF LESS THAN
[NTEGER instruction (Section 5.4.4).

tote that a source operand may be an integer component of an
array or record. As usual, when an array component is addressed
jia a base register, the operand qualifier, BASE RELATIVE OFFSET
(BRO) is required in the instruction to locate the component.
«Jhen a whole array of integers is addressed via a base register,
the operand qualifier, ARRAY SIZE (ASIZ) is required in the
instruction. In both cases, the compact format, BI(EXT,12) OR
3M(EXT,13) may be used as explained in Section 4.2.3 9 (page 4-
3). Note, also, that immediate source operands are interpreted
as having a V32 tag with sign extend.

Exceptions:
PROGRAM ERROR

5-104

. n .-»*-« IT» --» :.-»i""TTw ."» n"v .x L-. :.-. .•v .-.—'z-rm^'. *- *."*.'•.•»- '. ?«.*'.' '."•.' >.* *.• s.: <'•:- «.-«.- •—»—•-—•—r- » • »- •—•-

5.4.9 IF GREATER THAN OR EQUAL TO FLOATING POINT

Format: 5FH SI, S2, D

Mnemonic: IFF>=

Operands:
SI: Comparand 1
FMT: memory (0) or stack (EXT,0)

S2: Comparand 2
FMT: memory (0) or stack (EXT,0)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
The operands specified by SI and S2 are compared; if ehe former
value (SI) is greater than or equal to the latter value (S2), no
action is taken, else a branch is made to the address of the
current instruction plus the value of the label operand
(displacement, in words). Both source operands must be floating
point numbers (V32 or V64).

Exceptions:
PROGRAM ERROR

5-105

4.10 IF LESS THAN OR EQUAL TO INTEGER

rmat: 60H SI, S2, D

emonic: IFI<=

>e rands:
;l: Comparand 1
FMT: immediate (EXT,2), memory (0), stack EXT,0),

or base register (EXT,11)

12: Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),

or base register (EXT,11)

): Label
FMT: ""immediate (EXT,2), interpreted as a label operand

met ion:
le operands specified by SI and S2 are compared; if the former
ilue (SI) is greater than or equal to the latter value (S2), no
:tion is taken, else a branch is made to the address of the
irrent instruction plus the value of the label operand
lisplacement, in words). Both source operands must be integers
/16 or V32) or single dimension arrays of integers. If arrays,
Dwer bounds and lengths need not match. The value of the array
jerand specified by SI is less than or equal to the value of the
rray operand specified by S2 if the latter value is not less
lan the former value as formally defined in the IF LESS THAN
YTEGER instruction (Section 5.4.4).

Dte that a source operand may be an integer component of an
rray or record. As usual, when an array component is addressed
ia a base register, the operand qualifier, BASE RELATIVE OFFSET
3RO) is required in the instruction to locate the component,
hen a whole array of integers is addressed via a base register,
tie operand qualifier, ARRAY SIZE (ASIZ) is required in the
nstruc :i.on. In both cases, the compact format, BI(EXT,12) OR
4(EXT,1.<) may be used as explained in Section 4.2.3 9 (page 4-
). Note, also, that immediate source operands are interpreted
s having a V32 tag with sign extend.

icceptions:
PROGRAM ERROR

5-106

yvV/VvVv\^>i\^VJVA.V-A.V-.,-.V>'.->,.v.^V .V-»:. »Vw.-OVV-V.V.V--..v.N-.V.V.J

•> -j- • •> •••'.•"i'l. *>»:.•«•> •.•<•••-3i"-y-.-» -j -3» -jw-j'j' -J ~=r -s- -ir -r -i—

5.4.11 IF LESS THAN OR EQUAL TO FLOATING POINT

Format: 61H SI, S2, D

Mnemonic: IFF<=

Operands:
SI: Comparand 1
FMT: memory (0) or stack (EXT,0)

S2: Comparand 2
FMT: memory (0) or stack (EXT,0)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
The operands specified by SI and S2 are compared; if the former
value (SI) is less than or equal to the
latter value (S2), no action is taken, else a branch is made to
the address of the current instruction plus the value of the
label operand (displacement, in words). Both source operands
must be floating point numbers (V32 or V64).

Exceptions:
PROGRAM ERROR

5-107

•i<<-:.-• ^- :• >:^

•--_«.-.V.'V.^-T-.^-'T-;»—7<;••_-.- •r-.'^.T^r-.^-.'t-.-i-.v-.^-.-.-.-.-.-^_-._-.->-. s^Wi

.12 IF DEFINED

nat: 62H S, D

inonic: IFD

rands:
Data Entity to Be Tested

MT: memory (0), stack (EXT,0), or base register
(EXT,11)

Label
MT: immediate (EXT,2), interpreted as a label operand

ction:
undefined bit in the tag of the operand addressed by S is
ted; if 0 (data defined), no action is taken but if 1 (data
efined), a branch is made to the address of the current
truction plus the value of the label operand (displacement, in
ds). The source operand may be any data type including a
nter, formal reference parameter, an array or record
ponent, or a whole array or record. A pointer is defined if
undefined flag=0; however, if the pointed -to entity is a

a object (ENT=010) with a true (1) unique name flag, the
nter is defined only if the addressed data object still
sts, i.e., if the pointer is not a "dangling reference". A
tie array or record is defined only if every component is
ined.

e that if S addressed an array component via a base register,
I operand qualifier, BASE RELATIVE OFFSET (BRO) is required in
i instruction to locate the component. If S addresses a whole
ay via a base register, the operand qualifier, ARRAY SIZE
IIZ) is required in the instruction. In both cases, the
ipact format, BI(EXT,12) or BM(EXT,13) may be used as explained
Section 4.2.3 (page 4-8).

:eptions:
tOGRAM ERROR

5-108

.^>>&^->fr:fr^^^

f-N.T-.Ti —- Ti '-"

5.4.13 IF IN RANGER INTEGER

Format: 63H SI, S2, S3, D

Mnemonic: IFIRNG

Operands:
SI: Test Integer
FMT: memory (0) or stack (EXT,0)

S2: Upper Limit Integer
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

S3: Lover Limit Integer
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
An in-range test is performed on the operand addressed by SI. If
that operand is less than or equal to the operand addressed by S2
and greater than or equal to the operand addressed by S3, no
action is taken; otherwise, a branch is made to the address of
the current instruction plus the value of the label operand
(displacement, in words). All source operands must be integers
(V16 or V32). Any source operand may be an integer component of
an array or record. Immediate source operands are interpreted as
having as V32 tag with sign extend.

Exceptions:
PROGRAM ERROR

5-109

:>tt>i<<tt<tt^^^^^

T^T^n-r^T" ' "> "-•' I «Jl" » ">"_* "i» "Jf "J rTTKTrr^T. TTT^TTV-;T

5.4.14 IF IN RANGE FLOATING POINT

Format: 64H SI, S2, S3, D

Mnemonic: IFFRNG

Operands:
SI: Test Floating Point Numbers

memory (0) or stack (EXT,0) FMT:

S2:
FMT:

S3:
FMT:

D:
FMT:

Upper Limit Floating Point Number
memory (0) or stack (EXT,0)

Lover Limit Floating Point Number
memory (0) or stack (EXT,0)

Label
immediate (EXT,2), interpreted as a label operand

Function:
An in-range test is performed on the operand addressed by SI. If
that operand is less than or equal to the operand addressed by S2
and greater than or equal to the operand addressed by S3, no
action is taken; otherwise, a branch is made to the address of
the current instruction plus the value of the label operand
(displacement, in words). All source operands must be floating
point numbers (V32 or V64). Any source operand may be a floating
point component of an array or record.

Exceptions:
PROGRAM ERROR

5-110

>2^ü^; yly^y^^^^si^Xvrvrv: •:•>". oi>: ->i: *:'£•

'.»•.-. r-r <-."•-. y.'.r,'•«. .r,-r *. r J. •'..••.•..'. yjy. •'•-V-V-'.'T.-P.1 ^Wjy.i.'.JJ'^J If.1 !••.:•..'• J.V.ff,'."y •••..••:• r ••• :• •• •.- ••-?-.-

5.4.15 GOTO

Format: 65H, D

Mnemonic: GOTO

Operands:
D:
FMT:

Label
in immediate (EXT,2), interpreted as a label operand

Function:
A branch is made to the address of the current instruction plus
the value of the label operand (displacement, in words).

Exceptions:
NONE

5T111

^.ttsfrttto^^

—^ TT' '(«««»•I •" • i • ••« ii • i •T rTTTJT TOT^ST»

5.4.16 CASE

Format: 66H SI, S2, S° DQ, . . . Dn

Mnemonic: CASE

Operands:
SI: Case Selector
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

S2: Lover Limit of Case Selector Range
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

S3: Upper Limit of Label Subscripts
FMT: immediate (EXT,2)

D: • 1st Label
FMT: immediate (EXT,2), interpreted as a label operand

'n nth Label (n»S3)
FMT: immediate (EXT,2), interpreted as a label operand

Function:
The operand specified by S2 (lower limit of case selector range)
is subtracted from operand SI (case selector) to produce an
unbiased (base 0) label subscript, called k. If k is in the
range 0..S3, where S3 is an immediate operand, a branch is made
to the address of the current instruction plus the value of the
label operand, Dfc. If k is greater S3, a branch is made to the
address of the current instruction
operand, Dn, where n=S3 (value
subscripts).

plus the value of the label
of upper limit of label

All source operands must be integers (V16 or V32). Immediate
source operands are interpreted as having a V32 tag with sign
extend. Source operands, SI and S2, may be immediate values,
directly addressed integers, indirectly addressed integers (via
pointers to integers in global storage or data objects of type
integer), or integer components of an array or record.

Exceptionsj
PROGRAM ERROR

5-112

^-/^yl\^\v:4->-:vCv> v*,v>:-l »:-'.-:-.\ -VM-.s. •':% -.; •'. v •'.'•;. /.s -A-z^/V'-:-;^ ^i^-Jif-A ^.-I-lOt l\-lv>: t2fc£a • > v^^-;^/'' v -ji J

-tr.-y,- ~« .^—-s- r^ i-';-»j-».-«;-».. • j.1 »v*.•'..'":• '•• w.' *.* *-* V V V.,' •." '.". A"-" (5 .'•'i'l'i'iT-

5.4.17 SET LOOP CONTROL VARIABLE

Format: 67H, S, D

Mnemonic: SETLCV

Operands:
S: Initial Value of Loop Control Variable
FMT: immediate (EXT,2), memory (C), or stack (EXT,0)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
The operand specified by S is used as the initial value of the
loop control variable in the instruction, LOOP UP or LOOP DOWN.
Hence, this instruction and LOOP UP or LOOP DOWN form an
inseparable execution couplet. The source operand must be an
integer (V16 or V32). The instruction at an address equal to the
current instruction address plus the value of the label operand
(displacement, in words) is next executed and must be LOOP UP or
LOOP DOWN.

The source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. An
immediate source operand is interpreted as having a V32 tag with
sign extend.

PROGRAM ERROR

5-113

«•-L^—TW» J..rr r;i', r. ir. ^••.y . »•. »•.• y .• w,; T-, a",11.-, r IT.

5.4.18 LOOP UP

Format: 68H SI, S2, S3, D

Mnemonic: LOOPUP

Operands:
SI:
FMT:

S2:
FMT:

Loop Control Variable
memory (0) or stack (EXT,0)

Increment Amount
immediate (EXT,2), memory (0), or stack (EXT,0)

S3: Upper Limit
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
This instruction, compiled from the Ada FOR LOOP iteration
scheme, controls program looping. If this instruction is the
branch target of a SET LOOP CONTROL VARIABLE instruction, the
operand addressed by SI (loop control variable) is set to the
value of the operand specified by S in the SET LOOP CONTROL
VARIABLE instruction. Since these are integer operands with V16
or V32 tags, a check is made for overflow (magnitude of operand S
from SET LOOP CONTROL VARIABLE instruction larger than precision
of operand SI in LOOP UP instruction allows). A NUMERIC_ERROR
exception is raised in the presence of overflow, else the
instruction proceeds. When this instruction is not the branch
target of a SET LOOP CONTROL VARIABLE instruction, the loop
control variable is incremented by the value of the operand
specified by S2 (increment amount). The incremented value is
checked for overflow (magnitude larger than precision of loop
control variable allows; a NUMERIC_ ERROR exception is raised in
the presence of overflow else the instruction proceeds. The
incremented (or preset) value of the loop control variable is
next checked against the operand specified by S3 (upper limit of
loop control variable). If less than or equal to the limit
value, a branch is made to the address of the current instruction
plus the value of the label operand (displacement, in words); if
greater than the limit value, no further action is taken.

All source operands must be integers. Source operands specified
by S2 and S3 may be immediate values, directly addressed
integers, indirectly addressed integers (via pointers to integers
in global storage or data objects of type integer), or integer
components of an array or records. Source operands SI may be any
of these except an immediate value. An immediate source operand
is interpreted as having a V32 tag with sign extend.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

5-114

".'••. J . • . 1 . I . »J

5.4.19 LOOP DOWN

Format: 69H SI, S2, S3, D

Mnemon i c: LOOPDN

Operands:
SI: Loop Control Variable
FMT: memory (0) or stack (EXT,0)

S2: Decrement Amount
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

S3: Lover Limit
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
This instruction, compiled from the Ada FOR LOOP iteration
scheme, CONTROLS PROGRAM LOOPING. If this instruction is the
branch target of a SET LOOP CONTROL VARIABLE) instruction, the
operand addressed by SI (loop control variable) is set to the
value of the operand specified by S in the SET LOOP CONTROL
VARIABLE instruction. Since there are integer operands with V16
or V32 tags, a check is made for overflow (magnitude of operand S
from SET LOOP CONTROL VARIABLE instruction larger than precision
of operand SI in LOOP UP instruction allows). A NUMERIC_ERROR
exception is raised in the presence of overflow, else the
instruction proceeds. When this instruction is not the branch
target of a SET LOOP CONTROL VARIABLE instruction, the loop
control variable is decremented by the value of the operand
specified by S2 (decrement amount). The decremented value is
checked for overflow (magnitude larger than precision of loop
control variable allows); a NUMERIC_ERR0R exception is raised in
the presence of overflow, else the instruction proceeds. The
decremented (or preset) value of the loop control variable is
next checked against the operand specified by S3 (lower limit of
loop control variable). If greater than or equal to the limit
value, a branch is made to the address of the current instruction
plus the value of the label operand (displacement, in words); if
less than the limit value, no further action is taken.

All source operands must be integers. Source operands specified
by S2 and S3 may be immediate values, directly addressed
integers,indirectly addressed integers (via pointers to integers
in global storage or data objects of type integer), or integer
components of an array or record. Source operand SI may be any
of these except an immediate value. An immediate source operand
is interpreted as having a V32 tag with sign extend.

Exceptions:
PROGRAMERROR
NUMERIC_ERROR

5-115

• TVw-.ir,w..r.1^. ^ ,- ,-.»*'. ir.v .'v.1-.' r. .

6 SUBPROGRAMS

Any visible subprogram in the local package, i.e., enclosing,
immediately enclosed, sibling, or self (as determined by the
compiler) can be called. In addition, any non-nested subprogram
in an external package can be called. (Nested subprograms in
external packages cannot be called because their environments are
not visible.) The instructions which call a subprogram, pass
parameters, and return to the calling environment are described
in this section.

b-1

••' •". •' •""'. ':'».*•' '"'•'.' .' ""' •.'» ,.','.17'.' • »•yvy*y*'.— \.— v,+ \.* V l.,«'V^'T'.,*-",,V',.^. g* .^v*. 'A'V* ','i1.^ .*.'.»: 'JM .•• „•- A'.V.V.^'.TI

CALL SUBPROGRAM.

mat: &&n, SI, S2,...

monic: CALL

rands:
: Subprogram Identification
MT: immediate (EXT,2) or memory (0)
Immediate: SI specifies an offset to a subprogram

component in the local package header.
Memory: SI addresses a pointer to a program

(subprogram) in a external package.

dte:If no parameters are passed via memory transfer,
hen no additional operands are present in this
nstruction.

,...: Actual Parameters
MT: immediate (EXT,2) or memory (0)

rote:Any number of parameters may be passed via memory
ransfer. Any two may be combined in a 2-operand compact
ormat.

6-2

„•••-" •".'-"" k" '.".". «\ "0" TTTTT-T"

Function:
This instruction calls a visible subprogram in the local package
(offset to subprogram component in local package header given by
immediate value of operand SI) or calls a non-nested subprogram
in an external package (offset to subprogram component in
external package header contained in the pointer addressed by
SI). The pointer must have READ authority for the called
subprogram.

The CALL instruction is processed only up to the actual parameter
operands; thus, the value
word following operand SI
in the program counter is
of the caller and becomes
memory parameters is zero,

in the program counter addresses the
(subprogram identification). The value
saved in the administrative data area
the return address when the number of

If, however, one or more parameters
are passed via memory transfer, they are bound during execution
of the BIND PARAMETERS instruction (first instruction of the
called subprogram) which requires access to both actual and
formal parameters. BIND PARAMETERS completes the processing of
the operands in the CALL instruction and the last value in the
program counter (return address) is saved in the administrative
data area of the caller. (In addition to saving the return
address, the following quantities are saved in the caller's
administrative data area: address of first instruction of
calling subprogram, address of last instruction of calling
subprogram, caller's stack index, all general purpose registers
that correspond to "Is" in the caller's Temporaries Mask,
caller's nesting depth, and caller's exception mode.) See
Section 6.2.2 for more details on passing parameters via memory.

Parame
parame
execut
not pr
passed
by the
in the
compon
match
actual
for mo

ters that
ter regist
ion and no
esent in
via regis
machine.
formal pa

ent in the
"Is" in th
parameter

re detaiLs

are passed via registe
ers (16..31) at some point
further action is required

the called subprogram if
ter. Parameter placement in
A PROGRAM_ERROR exception
rameter mask retrieved from
package header (set by

e Valid Parameter Mask (set
s are loaded into registers
on passing parameters via r

rs are loaded into
s during the caller's
. BIND PARAMETERS is

all parameters are
registers is checked

is raised if the "Is"
the called subprogram
the compiler) do not

by the machine as the
). See Section 6.2.1
egisters.

when a subprogram in the local package is called, the offset to
the subprogram component in the local package header, given by
operand SI, is an immediate value. The base address of the local
package header is the value in display register 0 that addresses
the base of the package variable global data template -1. ("One"

:&&&»:* SÄivW.v i^£i >^>w.>. VJLVVV.

P T !" "• •• -". r -". -•. '."' ¥• ."

btracted because the header is displaced by 1 word from the
ble global data template - see Figure 2-1). When a
ogram in an external package is called, the offset to the
ogram component in the external package header is retrieved
word 1 of the pointer to the subprogram, addressed by
nd SI. The base address of the external package header is
alue retrieved from word 2 of the pointer. In both cases,
ffset is subtracted from the base address of the header to
ce the subprogram component address. This is the start of a
d packet of information pertinent to the called subprogram
Figure 2.2). The following information is extracted:

• size of activation record, in words (28 bits) - The
size includes immediate and separate array values and
the stack. This value is passed to the memory manager
which allocates space for the activation record plus
the fixed size administrative data area and returns
the base address of the activation record. The base
address is loaded in one of the pair of local display
registers. (See discussion below on adjusting display
registers.)

• nesting depth of called subprogram (4 bits) - The
nesting depth is used in the determination of which
display registers are saved. (See discussion below).

• address of first and last instruction of called sub-
program (each 32 bits) - Program control is
transferred to the first instruction; instruction
addressing and branching is confined to be within
the specified limits.

• address of automatic data template (32 bits) - This
address is loaded in one of the pair of local display
registers (see discussion below on adjusting display
registers).

• formal parameter mask (16 bits) - The "Is" in the
formal parameter mask must match "Is" in the Valid
Parameter Mask register and the former is loaded into
the Valid Parameter Mask register.

• exception mode (4 bits) - This field specifies the
initial exception mode (ELABORATION or NORMAL) of the
called subprogram. The called subprogram enters the
ELABORATION exception mode if, at the Ada program
level, the subprogram has a declarative part that
requires creation of objects and/or subcomputations
for initialization of declared objects; the NORMAL
exception mode is entered otherwise.

6-4

•• V- 'I '••'•»••* ••'•''. I1.1-1 '.*'•'- '-•'••• 'A ^'. ...iM... -..^ !• i .;,, .#IV,.M ,, ._, „

t, the stack index is set to "0", the Temporaries Mask is
ared for the called subprogram, and display registers are
jsted. When the called subprogram is in.the local package,
rules for adjusting display registers depend on the nesting
ths of the called and calling subprograms as follows:

(a) nesting depth (ND) of called subprogram • ND of calling
subprogram +1 - The base address of the called
subprogram's automatic data template is loaded into one
of the pair of the display registers corresponding to
the NO of the called subprogram.

(b) NDs of called and calling subprograms are equal - The
contents of the local display register pair (of the
calling subprogram) are saved in the calling sub-
program's administrative data area and the base address
of the called subprogram's data template is loaded into
one register of that display register pair.

(c) ND of called subprogram is less than ND of calling
subprogram - The contents of the local display register
pair (of the calling subprogram) and of each display
register pair corresponding to NDs less than that of the
calling subprogram but greater than and equal to that of
the called subprogram are saved in the administrative
data area of the calling subprogram. The base address
of the called subprogram's data template does not have
to be loaded into one of the registers of the display
register pair corresponding to the nesting depth of the
called subprogram since it is already resident.

m the called subprogram is in an external package, all display
lister pairs corresponding to NDs less than and equal to the ND
the calling subprogram (including ND = 0 and 15 for global
a) are saved in the caller's administrative data area. The
;e addresses of the external package header in data template
lory and the external package administrative data in data value
lory are retrieved from words 2 and 3 of the pointer to the
»program; these addresses are incremented by "1" so that they
nt to the variable global data in data template and data value
lory, respectively. They are then loaded into display register
r 0 (corresponding to ND = 0). Next, the size of the variable
>bal data is retrieved from the package header descriptor (PKG)
ng an offset of -1 from the base address of the variable
»bal data template (see Figure 2.2). The base address of the
istant global data is computed as the sum of the base address
the variable global data's template and the size of the

•iable global data. This value is loaded into display register

6-5

&Ste£&&&^^

V T

rresponding to ND • 15). Finally, the base address of the
subprogram's and its automatic data template is loaded

ne of the pair of display registers corresponding to ND =

bove operations take place concurrently with storage
tion. When space for the called subprogram's activation
and administrative data has been allocated, the base

s of the activation record is loaded into the second
er of the display register pair that corresponds to the
g depth of the called subprogram. (Recall that for both
and external subprogram calls, the base address of the
subprogram's automatic data template is already in place -
other register of the display register pair). In addition
usting the display register, the following information is
n into the called subprogram's administrative data area:

ynamic link to base of calling subprogram's
dministrative data.

itatic Save Flag which is set to "0".

ate of the Static Save Flag designates whether the static
lents of the machine state (priority level, addresses of
and last subprogram instructions, nesting döpth of

»gram, and display registers of nesting depths < = nesting
of subprogram) need to be saved in the subprogram's

.strative data area when the subprogram is executing in
ice of a task switch. A "0" means the information must be
and a "1" means it does not have to be saved because it is
ly in the administrative data area (previously saved). Note
:he dynamic components of the machine state (registers
sponding to "Is" in the Temporaries and Valid Parameter
, stack index, exception mode, and execution resumption
>s) are always saved when tasks are switched.

:ions:
*AM_ERROR
KGE ERROR

6-6

"^."VT" . L •. •*. «.'.-.' -.

Parameter Association,
value or by reference via
ory transfer. Performance
ister file. If the number
eeds sixteen, however, some
lory-memory transfer.

Actual parameters may be passed
the register file or via memory-
advantages accrue
of words taken by

parameters must

from using the
the parameters
be passed by

.1 Passing via Register File,
"to

Regx
pass

Valid Par
register file are dedicated

.31 of register 0 comprise the
this mask corresponds to a parameter reg
': bit 16 corresponds to register 16;
lister 17; ...; bit 31 corresponds to reg
(Valid Parameter Mask specify which reg
the current task is (asynchronously)
listers hold valid parameters. The Val
•cifies which registers hold passed
)program is entered.

sters 16 through 31 of
ing parameters. Bits
ameter Mask. Each bit
ister in the following
bit 17 corresponds to
ister 31. The bits in
isters are to be saved
switched out. These

id Parameter Mask also
parameters when a

;n a parameter
jisters (range
•ameter Mask i
•pose register
attempt is

•responding bi
>sing a parame
fE) with the d
ierence, thre
lilable:

is to be passed, it is loaded into one of the
16..31) and the corresponding bit in the Valid

s automatically set to 1. As with the general
s (registers 0..15), a PROGRAM_ERROR is raised if
made to read a parameter register when the

t in the Valid Parameter Mask is not "1". If
ter by value, any instruction may be used (e.g.,
estination being the register. If passing by
e instructions (executed by the caller) are

LOAD RO REFERENCE PARAMETER
LOAD WO REFERENCE PARAMETER
LOAD RW REFERENCE PARAMETER.

{.--i

a£mi V r-. • ^- «- •>-• *-' •-

T»"

These instructions load a Formal Reference Parameter (FRP) into a
register (See Section 3.5 for a description of the format of an
FRP). RO designates that the called subprogram has read-only
authority to the actual parameter, WO designates write-only
authority, and RW designates that the subprogram has both read
and write authorities to the actual parameter. As with pointers,
initial values are not permitted in FRPs; hence, FRPs are set to
UNDEFINED by the machine when the containing package is loaded.
An FRP contains a path to the actual parameter (absolute
addresses of parameter in data template memory and in data value
memory) and specifies the rights which the called subprogram has
to the actual parameter. The subprogram uses the FRP like a
pointer to the actual parameter, i.e., it references the actual
parameter indirectly via the FRP. An actual parameter could be
an array, a slice, or a component thereof. (In these cases,
additional descriptors and/or operand qualifiers follow.) Hence,
arrays, slices, and components' can be passed by reference. If
the actual parameter is a pointer, the called subprogram,
executing the appropriate instruction, can indirectly reference
any of the entities which a pointer can point to (See Table 3.6).
For example, if the entity is a task object, the subprog-am can
call an eatry of the task by referencing the pointer parameter
indirectly through an FRP. Similarly, if the pointed-to entity
is a non-nested subprogram in an external package, the called
subprogram can call the external subprogram by referencing the
pointer parameter indirectly through an FRP. When any entity is
thus accessed through an FRP-pointer pair, the subprogram's
rights to the target entity are the most restrictive rights
present in the FRP-pointer. (As discussed earlier, the rights of
the called subprogram to an actual parameter can be controlled.)

If the source operand of a Load Reference Parameter instruction
(an actual parameter) is an FRP, all fields of the actual FRP are
moved to the FRP in the register, in a one-to-one correspondence.
This eliminates a level of indirection when the subprogram
references the FRP, The effect is that of passing the actual FRP
by value.

6-3

:••:••:•; :>>>^^>^v:>vv;:^:y::y-;-

?rr. T-y. v.-*.'. «r. ^.'i*v. •'.'••T:'.,rT:"-F:'.">'gT'*-:' i,1".'1, '• .'t'^^r1.1-1' " 'v" ", - •.•i.^::\ <-•:••: :,:,\ r'.'rr'r'.-p

The use of registers 16..31 to pass parameters may be summarized
as follows:

1. Whenever a parameter is loaded into a register, a
corresponding bit is automatically set in the Valid
Parameter Mask. Parameters may be values (pass by
value) or FRPs (pass by reference). Only registers
corresponding to "Is" in the Valid Parameter Mask may
be read.

2. In presence of a task switch, those parameters in
registers corresponding to "Is" in the Valid Parameter
Mask, including register 0, are automatically saved in
the administrative data area of the current task object
or subprogram, depending on which is executing; the
parameters are restored when the task program or
subprogram is again scheduled to run.

3. During the CALL instruction, the following steps
relating to passing parameters via registers are taken:

• The Formal Parameter Mask for the called subprogram
(read from the called subprogram component in the
package header) has a "1" corresponding to each
formal parameter. Corresponding "Is" must be present
in the Valid Parameter Mask register to indicate that
expected actual parameters were indeed passed. If an
expected "1" is missing in the Valid Parameter Mask
register, a PROGRAM_ERROR exception is raised. Note
that additional "Is" may be present in the Valid
Parameter Mask register; these would correspond to
parameters that were passed to the caller. They
present no probLem since the Valid Parameter Mask
is regenerated at each CALL.

• The Formal Parameter Mask (retrieved from the called
subprogram's header) is loaded into the Valid
Parameter Mask register.

4. During execution of the RETURN FROM SUBPROGRAM or END
RENDEZVOUS instruction, the Valid Parameter Mask is
cleared.

Finally, an instruction, CLEAR VALID PARAMETER MASK, is provided
to allow compiler optimization. (There is no reason, during task
switching, to save/restore parameter registers that contain data
which is no longer needed.)

törfriy;:;?:^^

".% .yA'.'-.'AA."^^ A."'.V.'-L'- A .*• VI- '- .*• .?• ,
,
.
,,

:.
,
:
,

,
,
.7

,
',V'\

,
T'--.I-.I^I . ^.,,••

6.2.2 Passing via Memory Transfer. As with registers,
parameters can be passed by value or by reference. When passing
by value, the actual parameter(s) addressed in the CALL
instruction (immediate or memory operands) are retrieved and
stored in the formal parameter location(s) specified by the BIND
PARAMETERS instruction. This instruction must be the first in
the called subprogram. The tags of corresponding actual and
formal parameters must match according to the rules of the MOVE,
MOVE POINTER, MOVE ARRAY, or MOVE ARRAY SLICE instruction. When
passing a parameter by reference, the CALL instruction addresses
the actual parameter (cannot be an immediate operand) and the
BIND PARAMETERS instruction in the called subprogram addresses
and FRP (which must be in the called subprogram's activation
record). Then, as discussed in Section 6.2.1, the following
values are stored in the FRP:

• Absolute address of actual parameter in data template
memory.

• Absolute address of actual parameter in data value
memory.

The comments in Section 6.2.1 on FRPs applies here, as well,
except for the method of restricting rights to the actual
parameters. When reference parameters are passed via registers,
the instructions that load the registers restrict rights to read-
only, write-only, or read-write. However, when passing reference
parameters via memory transfer, the compiler stores the rights
(READ, WRITE, or READ and WRITE) directly into the FRP.

Note that pass by value parameters and pass by reference
parameters with read-only authority support Ada in parameters,
pass by reference parameters with write-only authority support
Ada out parameters, and pass by reference parameters with read-
write authority support Ada in-out parameters.

•5 - n

-^-V •••»• '.^ '.f.^-MVA-TVAW,',' 'W, '7 '<•'•* »••H'^."^,ü.«r','t-'s^f- (•;,"•»• «•>•»»•• .•:•;-?».••:• •.-

6.2.3 LOAD RO REFERENCE PARAMETER.

Format: 6BH, S, D

Mnemonic: LDRO

Operands:
S: Data Entity (Actual Parameter)
FMT: memory (0)

D: Register Address
FMT: memory (0)

Function:
This instruction loads registers addressed by D, D+l, and D+2
with a formal reference parameter that points to the actual
parameter addressed by S. The cell offset in D can only
designate registers 16..29. The rights given to the formal
reference parameter are READ only. The following values are
loaded into the formal reference parameter:

(a) when ADS of data entity is not 0 or 15

WORD1 - ENT <= 110 (actual parameter in an activation).

- RIGHTS <= READ.

WORD2 Absolute address of actual parameter in the
automatic data template corresponding to the
nesting depth (ND) specified by ADS (base address
of template in display register #ND + cell offset
specified by S).

WORD3 - Absolute address of actual parameter in
activation record corresponding to nesting
depth (ND) specified by ADS (base address of
activation record in display register #ND + cell
offset specified by S).

(b) when ADS of data entity = 0

WORD1 - ENT <= Oil (actual parameter in variable global
data area).

- RIGHTS <= READ.

6-11

MV»'. It '."• 'J">'.^ '. . ^ .^..j.^,.^ .vwi^S*-".-. t

W0RD2 - Absolute address of actual parameter in the
variable global data template of the enclosing
package (base address of template in display
register #0 + cell offset specified by S).

WORD3 - Absolute address of actual parameter in the
variable global data area of the enclosing
package (base address of data values in
display register #0 + cell offset specified
by S).

,c) when ADS of data entity = 15

WORD1 - ENT <= 100 (actual parameter in constant global
data area).

- RIGHTS <= READ.

WORD2 - Absolute address of actual parameter in the
constant global data area of the enclosing
package (base address in display register
#15 + cell offset specified by S).

WORD3 - Not used.

Sxcept ions:
PROGRAM_ERROR
CONSTRAINT ERROR

12

K-" » *.• '. • '"• *T* •*'• • »• "• v_ •*. -*. **. •?_ v. •". -* •" ** »' ," .* •" m" m"
?> V *> V V '.- ' - *\» • -%'- . • :•>->• , • . - . • . -i"-\> .v •. • V:^ ^.^-.-

.'•.' ." .- r r j t-

6.2.4 LOAD WO REFERENCE PARAMETER.

Format: 6CH/ S, D

Mnemonic: LDWO

Operands:
S: Data Entity (Actual Parameter)
FMT: memory (0)

D: Register Address
FMT: memory (0)

Function:
This instruction loads registers addressed by D, D+l, and D+2
with a formal reference parameter that points to the actual
parameter addressed by S. The cell offset in D can only
designate a register in the ränge 16..29. The rights given to
the formal reference parameter are WRITE only. The detail
functions performed by this instruction are the same as described
for LOAD RO REFERENCE PARAMETER except that the assigned rights
are WRITE ONLY.

Exceptions:
PROGRAM_ERROR
CONSTRAINT ERROR

6-13

2^->V&££v^ iii^ii^^ -V .W.-.V y. .•fVTcl

• .•" 'A '.^ g crg^ A '.". .^ w i*: L% .*•• \.mryr.\~.wr.\' v V. wr K" T V. V *r y

2.5 LOAD RW REFERENCE PARAMETER.

rmat: 6DH, Sr D

emonic: LDRW

erands:

FMT:

FMT:

Data Entity (Actual Parameter)
memory (0)

Register Address
memory (0)

net ion:
is instruction loads registers addressed by D, D+l, and D+2
th a formal reference parameter that points to the actual
rameter addressed by S. The cell offset in D can only
signate a register in the range 16..29. The rights given to
e formal reference parameter are READ and WRITE. The detail
net ions performed by this instruction are the same as described
r LOAD RO REFERENCE PARAMETER except that the assigned rights
e READ and WRITE.

ceptions:
ROGRAM_ERROR
ONSTRAINT ERROR

6-14

^-,-jv.i-»;:> :?.j,\;r*;?r.<vv —r.." -• -T\V. r. vrr.7« V ••,-.•"_»-.v ••_%••. ^ '-.-»»i.» •«-*•.-» i. •*•--•;•-« •V.-I-V.^.^.-JC »

5.2.6 CLEAR VALID PARAMETER MASK.

Format: 6EH

Mnemonic: CLRVPM

Dperands:
None

Function:
The Valid Parameter Mask, bits 16..31 of register.0, is cleared.

Exceptions:
None

6-15

, -r.' ••. • . w . vi •••; »'; ^. rv» . ^: f.' 1 '.'-1' ' '. ' •' ' •' *- « '•' " V» •'.' .,' ._».;»!'• I.*'-',' •'.' -'.' >," -.* " ' '-,* I * •',*'•' " ',* '.'..'• *V'

I BIND PARAMETERS.

it: 6FH, Dl, D2, D3f...

>nic: BIND

»nds:
Formal Parameter

T: memory (0)

:ion:
is the first instruction of a called subprogram (or an
>T body) when parameters are to be passed via memory-memory
ifer. Any number of formal memory parameters can be
Lfied as operands. Formal and actual parameters have a one-
le correspondence. It is the responsibility of the compiler
leek that the number of formals and actuals match. Before
Leving the actual parameters, the caller's execution
apt ion address (saved program counter value) must be read
the caller's administrative data area at a location which is
awn (fixed) offset relative to the dynamic link to the
»r's administrative data area. This is the address in the
SUBPROGRAM instruction (or one of the CALL ENTRY

ructions) where execution was halted (at the address of the
and which is the first actual parameter). To compute the
Lute addresses of the actual parameters (each as a cell
et + base address of activation or package global data), the
er's display register environment, saved in the caller's
nistrative data area, is required. A display register is
ssed using a known offset from the dynamic link, indexed by
actual parameter's nesting depth (given by ADS). One-by-one,
al parameters are retrieved and stored in corresponding
al parameters, addressed by Di. All formal parameters must
n the local activation record of the called subprogram (or
er task). Parameters that are passed by value (Di addresses
ta cell which is not a formal reference parameter) must obey
rules of the MOVE, MOVE POINTER, MOVE ARRAY or MOVE ARRAY
E instruction. If an array component, array, or slice is
ed by value, the actual parameter expands to a group of
rmation (descriptors and/or operand qualifiers) that defines
array or component. The compiler must ensure that sufficient
e has been allocated in the activation record of the called
rogram (or server task). Parameters that are passed by

6-16

•". *.• •k ,^".-v 1 •- "-•". •-• ^ 1".. T. * • ^-'. • ". ". »- --•!

»ferenc
lysical
iramete
:ored i
Idresse
iir of
issed (
jramete
aller's
abprogr

e (Di addresses a
ly moved; rather,
r in data template
n words 2 and 3 of
s are derived from
the actual parameter.
new instruction detected

formal reference parameter) are not
the absolute addresses of an actual
memory and in data value memory are
the formal reference parameter. These
the cell offset and display register

When all parameters have been
in place of another actual

r), the address of this next instruction is stored in the
execution resumption address (return address for

am calls) in the caller's administrative data area.

receptions:
PROGRAM ERROR

6-17

:>>>>:Sw > ••>

".'' "*•-*. •»'. r.*v. r.'•.'.v.'y *:'*iBT-'*.'J '.*• '>I
.'-.';\'.

,
»;I:^<,L.^ T .1 .vi* A1

»
1
" .*•'.'".*•'.*>"-*'"J*.rw^".*-*-'-"

RETURN FROM SUBPROGRAM.

: 70H

ic: RETSUB

is:

Dn:
astruction completes the execution of the subprogram. If
ependent tasks are extant, the activation record and
strative data storage cannot be immediately reclaimed. The
of the subprogram (same as the state of the task to which
bprogram is dynamically linked, through any number of
) is changed from RUNNING to SUSPENDED. * The only
ents of the machine state that need to be saved in the
gram's administrative data area are priority level and
ion resumption address. The latter is the address of this
FROM SUBPROGRAM instruction. The task scheduler schedules

r task to run. At some later time, when the last dependent
s TERMINATED, the state of the subprogram is changed to
and the subprogram is put on the ready queue corresponding
saved priority level. When the subprogram is scheduled to

he RETURN FROM SUBPROGRAM instruction is again executed,
ime without any non-terminated dependent tasks. Storage
w be reclaimed for any data objects that designated this
gram in the CREATE DATA OBJECT or CREATE UNCHECKED DATA
instruction. (Designation of the subprogram means, at the

rogram level, that the data object's access type was
ed in the subprogram.) The dynamic link to the
strative data area of the calling subprogram or task is
ved from the called subprogram's administrative data area;
ailed subprogram's activation record/administrative data
e are then deallocated. . Finally, the dynamic link is used
rieve the machine state (dynamic and static components) of
Hing subprogram, completing the return.

ions:

6-18

7 PACKAGES

ickage objects and the loading of packages were introduced
i Section 2.1 and 2.5.1. Packages reside in three
»mories: (1) data template memory, which contains headers,
mstant global data, variable global data template (initial
ilues), and automatic data templates of subprograms and
isk programs, (2) data value memory, which contains
iministrative data and modified values of variable global
ita, and (3) instruction memory, which contains
istructions of subprograms and task programs contained in
le package (see Figure 2-1). Note that variable global
ata requires a template because subprograms that declare
»sted packages support reentrancy and recursion. Non-
»sted (library) packages may contain nested packages that
»re declared in the Ada package body or in subprograms or
asks that were themselves declared in the non-nested
ackage. The location in data template memory and
istruction memory of each nested package (its
eader/variable global data template, constant global data,
jtomatic data tempLates, and instructions) is specified in
5-word component of the non-nested package's header (see
igure 2-2). In the external representation of a non-nested
ackage header, all locations are specified as offsets from
he base of the. non-nested package in data template memory
nd from the base of instructions in instruction memory,
hen a non-nested package is loaded, these offsets are
onverted to absolute addresses.

ackages are compiled to machine code in the following
eneral way:

(a) Data declared in an Ada package specification is
placed in the package's global data area (constants
in the constant global data area and variables with
initial values in the variable global data area).

(b) Data declared in an Ada package body is located in
the global data area if any subprograms or task
programs in ettt package body reference the data.
Data declared in the package body that is only
referenced by subprograms 0 (that elaborates the
declarative part of the package) is located in the
automatic data template of subprogram 0. It is the
responsibility of the compiler to enforce
visibility rules.

7-1

£££&&&tä J

»r» .•»•-'»"• - '.^'."- l,'l.''.''T>"^';•• ;*• .^•'•.^"•.T.'^I'VUT v»1;.-* L~* I-*-. • LV.T:-»;T;

(c) Packages declared in the specification part of an
Ada non-nested package are merged with the non-
nested package, i.e., data is merged with the non-
nested package's global data and subprograms and
task programs are included with those of the non-
nested package. This has the effect of creating a
single larger package.

(d) Packages declared in the body of a non-nested
package are not merged as in (c); rather, they are
nested packages, created in subprogram 0 of the
non-nested package and elaborated via calls to
subprogram 0 of the nested packages. Each nested
package becomes dependent on the non-nested package
that created it.

(e) Tasks and subprograms declared in an Ada package
are defined in the package header, each as a 5-word
component of the header, as shown in Figure 2-2.
Tasks declared in the Ada package body are created
and activated (see Sections 9.4.1, 9.4.2, and
9.4.6) in subprogram 0 of the package; tasks
declared in the Ada package specification may be
created/activated in subprogram 0 or in an external
program. (Tasks created in subprogram 0 become
dependent on the enclosing non-nested package.)
The instructions and automatic data of the task
programs and subprograms are included in the
package, as shown in Figure 2-1.

(f) The sequence of statements, if any, in an Ada
package body compile to instructions in subprogram
0.

that packages that are declared in tasks or subprograms
nested in these programs and, therefore, are created and
Drated within them and become dependent on them (package
al and administrative data areas not reclaimed until the
is TERMINATED or subprogram returns). In general, a

sd package depends on the environment in which it is
ared (created, at the machine level). The instructions
automatic data of programs in a nested package declared
task or subprogram are located in the enclosing non-

ed package (see Figure 2-1). Non-nested (library)
ages do not depend on any objects and their global
age lives "forever." Finally, note that some Ada
ages may not include a body. These packages contain
declared data entities which, at the machine level,
ar in the giobal data area of the package. No further

t-2

• IT» IT« .^w V*vw .v\ „T. i". _"% "._"<. ^^w ^- ^- «•—«-" r- *r~ ^-*r-*r.T-. -»^ •>

boration of such a package is required, i.e., there is no
1 to subprogram 0.

i-nested packages, including all nested package
iponents, are loaded via a User Console interface card
:IC) that contains a bootstrap loader (see Section 2.5.1).
I first package loaded, called the loader-linker, contains
»grams which load other packages and link programs and
:a in those packages. The loader-linker is loaded under
itrol of the bootstrap loader microcode which relies on
unands and responses from the User Console. The loading
>cedure commences when the User Console sends an "initiate
id" command to the UCIC. This immediately puts the HLLM
the User console (highest) priority level. The UCIC then
ids a request to the User Console for the storage size of
» package to be loaded. The User Console responds by
iding the sizes required in data template and instruction
nories. The UCIC, which contains a 2K x 36 bit buffer
arge enough to accommodate any package header), sends a
juest to the User Console for the package header. At the
ne time, it requests storage allocation for data and
structions from the memory manager. Note that the UCIC
at buffer individual 16-bit or 32-bit words from the User
isole before storing standard HLLM 36-bit words in the 2K
Efer (nine 16-bit words form four 36-bit words or nine 32-
t words form eight 36-bit words). When the header has
en loaded into the 2K buffer and the base addresses in
ta template and instruction memories are known (returned
3m the memory manager in the form of a pointer cell -- see
;tion 3.4), the UCIC converts all address offsets in the
i-nested package header to absolute addresses. Next, it
ansfers the contents of the 2K buffer to the allocated
Drage in data template memory in the HLLM. At this point,
Dwing the size of the header, the UCIC modifies word 2 of
s pointer (address of the package in data template memory)
subtracting the header size; the result is the address of

» base of the header, i.e., the package descriptor, PKG
ee Figure 2-2). This address is needed later, when the
zkaqe is created. The UCIC then requests the next data
ack (equal or less than 2K x 36 bits in size) from the
er Console. When stored in the buffer, the UCIC scans the
ta, nulling all pointers (setting UNDEFINED bits to 1) and
tting all array value addresses (AVAs) and formal
ference parameters (FRP's) to UNDEFINED. The buffer
ntents are then transferred to the HLLM. This process is
ntinued until the data template memory load is complete.
e UCIC then requests a block of instructions from the User
isole. When loaded, the UCIC transfers the contents of
e 2K buffer to the instruction memory in the HLLM. When
I entire non-nested package (loader-linker) is resident in
e HLLM, the UCIC sends a "load complete" response to the
er Console. The User Console then, normally, sends a

7-3

'-• W\" ".-"v*'.•'" •"*./•"• •"" -"• •'• •"• -"•./• >% «"• Vn•*• •"• '•"* -N •'•' - •"*»'- •'•_».*•_/'• -*• .*- -'-J.*- .s*"•.'-."' ."• .*• »"• »> • - iiivd

AD-A158 129 ADVANCED AVIONICS COMPUTER ARCHITECTURE VOLUME 2 3/4
INSTRUCTION SET ARCHITEC. . <U> SANDERS ASSOCIATES INC
NASHUA NH L GREENSPAN ET AL. MAV 85

UNCLASSIFIED AFUAL-TR-85-1841-V0L-2 F33615-79-C-1935 F/G 9/2 NL

-<r-—

WfttKUtKKKmmmammK^mmm .- •' l.'«T.i .>-***''«.«-».».-««.»<<»^*>**i'M»-M»'«%»»'•«.,•••«.'<

5

\
V

••

•:.:•-•

4'V

NATIONAL BUREAU OF STANDARDS
MOMOOFY (WOUniOK TMT CH«T

T7! . V* .>• -.•• A -

\V SJ>\V N

•^rrj

tiufo t iVlillii

^ „V.V.V, i •>,<v->_'V1" J • .•'.'« . • . • . v<_ '.•' t '.' .• '-• J .•_ .•

command to the UCIC which directs it to create the loader-
linker package in data value memory (simulating a CREATE
NON-NESTED PACKAGE OBJECT instruction). The UCIC extracts
the size of the variable global data from the package
descriptor (PKG) and requests the memory manager to allocate
storage in data value memory for the variable global data
and fixed size administrative data (a single allocation).
The memory manager returns the address of the variable
global data and the UCIC sends a "package created" response
to the User Console. The User Console next sends a command
to elaborate the created package. The UCIC interprets this
command as a request to invoke subprogram 0. The following
preliminary steps are taken:

Extract machine state information from the subprogram
0 component in the package header (a 5-word packet of
information pertinent to subprogram 0, as shown in
Figure 2-2). Note that the Formal Parameter Mask
contains all zeros since no parameters are passed, the
exception mode is ELABORATION, and the nesting depth
is "1".

• Set stack index to "0" and clear Temporaries Mask.

• Load display register 0 and 15 for package global
data.

• Request memory manager to allocate storage for
subprogram 0's activation record and fixed size
administrative data. When the base address of the
activation record is known, proceed to next step.

• Load display register pair corresponding to nesting
depth • 1 (local display registers for subprogram 0).
These registers are loaded with the base addresses of
the subprogram's activation record and automatic data
template.

• The dynamic link and Status Save Flag are ignored
(need not be saved in subprogram 0's administrative
data area as in a normal call).

In the above, the last operation performed is to load the
first instruction of subprogram 0 (gotten from the
subprogram 0 component in the package header) into the
program counter, starting the execution of subprogram 0.
When the loader-linker package is being elaborated,

7-4

.» .* ." > • > '-I- • ;y;v;v:r .\VY.Y«. " V* »^_»'* »*• .** *"* «** «\ *"
• nil i. m,k • •> ^WvSl-to:^^^

•••'>'••'••'••' .;.V.^i., ... , -.I'V-^ .-•.I,.,'. A.V.'l".,•."•-••:'.* ^Vl ••-. •. ^ .. %,....% ^.•^.•.^•,.

subprogram 0 must create and activate at least one task
(which is put on a ready queue that corresponds to the
task's priority level). All created/activated tasks are
placed on ready queues; none gets scheduled to run because
subprogram 0 executes at the User Console priority level -
highest in the system. . The last instruction of subprogram 0
is RETURN FROM PACKAGE ELABORATION. This instruction
deallocates subprogram O's activation record/administrative
data storage. It then "wipes out" the User console priority
and invokes the task scheduler which schedules a task in the
loader-linker package to run. This task will be the one at
the head of the highest priority ready queue. (Note that
there is no requirement to create/activate tasks during
execution of subprogram 0 in subsequently loaded non-nested
packages; when RETURN FROM PACKAGE ELABORATION is executed,
previously activated tasks in other packages will compete to
be scheduled to run).

Task programs and/or . subprograms in the loader-linker
package load other non-nested packages (which may contain
nested packages) and link data and subprograms in different
packages. The latter is accomplished by assigning values to
pointers to data and/or non-nested subprograms and moving
the pointers to the variable global data areas of
appropriate packages. Loading of any non-nested package
other than the loader-linker is accomplished by a program in
the loader-linker package. First, the instruction, ALLOCATE
PACKAGE STORAGE, is executed which requests the memory
manager to allocate storage for the package in data template
and instruction memories. The required storage sizes are
operands of this instruction. When storage allocation is
complete, the base addresses in data template and
instruction memories are returned in the form of a pointer.
The loader-linker program then executes an INITIATE LOAD
instruction which passes a "load command" together with the
pointer and the package number (of the non-nested package to
be loaded) to the UCIC. The UCIC sends a request to the
User Console to load the header of the package identified by
the package number. Loading proceeds, as described earlier,
under control of the User Console. When the non-nested
package is loaded, the UCIC returns a "load complete" signal
to the HLLM. This completes the INITIATE LOAD instruction.
The loader-linker program next executes a CREATE NON-NESTED
PACKAGE instruction which, after extracting the size of the
package variable global data from the package descriptor,
requests storage allocation in data value memory for the
variable global data and fixed size administrative data >a
single allocation). When the base address is returned from
the memory • manager, a pointer tö

7-5

^>>;>>^ y^ad

'."•"•••'.•- ,yTi,7*7*-?y!myvim? '?•'. •'.' ' ."•'':*-.'.•' »r.i.,•,••, .•.,•.•:••:•_•:'*:« '.'l>^.'•^>".v^,^^^•^«..-,-* v,^^(v\^ ._.._;..._^,rr

the package is generated. This pointer contains the
absolute addresses of the variable global data in data
template and data value memories. To elaborate the package,
a call to its subprogram 0 must be programmed. First, a
pointer to subprogram 0 is assigned (see Section 10.4);
then, the CALL SUBPROGRAM instruction is executed in which
operand SI (see Section 6.1) addresses a pointer to a
subprogram in an external package (subprogram 0 in the non-
nested package being elaborated). Tasks created in
subprogram 0 are made dependent on the non-nested package.
(These tasks were declared in this package in the Ada
program.) The last instruction in subprogram 0 is RETURN
FROM PACKAGE ELABORATION which deallocates the activation
record/administrative data, removes the User Console
priority, and invokes the task scheduler which schedules a
task to run.

Nested packages, declared in Ada tasks, subprograms, or non-
nested package bodies must also be created and elaborated.
This is accomplished within the respective cask program,
subprogram, or non-nested package (more precisely, within
subprogram 0 of the non-nested package) that declared the
nested package. The process of creating and elaborating a
nested package is similar to that for non-nested packages,
described earlier. However, the CREATE NESTED PACKAGE
instruction, in addition to allocating storage for the
variable global data and administrative data and returning a
pointer to the created package, must convert all offsets in
the nested package header to absolute addresses (see Section
7.3). The created nested package is made dependent on the
task, subprogram, or non-nested package that created it.
Dependency of a nested package means that reclamation of its
variable global data and administrative data storage in data
value memory is delayed until the destruction of the object
that created the nested package. When this happens, any
dependent data objects (whose access types were declared in
the nested package) are also destroyed. The nested package
is elaborated, as before, by calling its subprogram 0 (if it
exists). When the nested package is declared in the body of
a non-nested package, subprogram 0 of the non-nested package
calls subprogram 0 of the nested package. Note that the
User Console priority is in effect even while subprogram 0
of the nested package is executing. The completion of
subprogram 0 of any nested package is marked by the normal
RETURN FROM SUBPROGRAM instruction.

Tasks that are created and activated in subprogram 0 of any
nested package will not get a chance to be scheduled to run
until the instruction, RETURN FROM PACKAGE ELABORATION, is

i*.-.*• .^A .'-*-'• VI* A •*•KZ"?• S[r-V^9-'.*'\w- .*• '".'''.'."y-'.V.A'.1 •'.' -Vi'-'-l'-'.'-'.'•'.*•'-'••.' I. i.i ., ..,..,., i-."^;

executed in subprogram 0 of the non-nested package. (As
stated earlier, this instruction removes the User Console
priority from the system; it represents the completion of
the elaboration of the enclosing non-nested package.) A
task created and activated in subprogram 0 of a nested
package is made dependent Off the task, subprogram, or non-
nested package in which the nested package was created.
(Nested packages cannot be masters.)

-7

•y±<*^--'?^t^*''i*<z<&-'-.'-<- -*_-: Jfca •••'--• -»-•. *••«-••<-•

v,vv

.^,."» . - '. v '.'* .•% '» % . »• .. 1 '.•» '.> '.*'• '• 1 .'^- '.•* L."« .~* l** V '."'.'.'« L"1 :•».' L »,»••'.'.»'.' 1 »,' ;

7.1 INITIATE LOAD.

Format: 71H, SI, S2, S3

Mnemonic: INTLD

Operands:
SI: Pointer Containing Package Load Addresses
FMT: memory (0)

S2: Package Number
FMT: immediate (EXT,2)

S3: Delay Amount
FMT: memory (0) or immediate (EXT,2)

Function:
This instruction initiates loading of a non-nested package.
A "load command" is sent to the User Console via the User
Console Interface Card. Accompanying this command are the
pointer addressed by SI and the package identification
number, equal to the immediate value of operand S2. Words 2
and 3 of the pointer contain the absolute (base) addresses
of the storage allocated in data template and instruction
memories for the package load. Simultaneously with emitting
the "load command", timing of the delay specified by S3
begins. (See Section 9.4.12 for an explanation of how the
delay amount is expressed.) The INITIATE LOAD instruction
is not completed until a "load complete" message is received
from the user Console Interface Card or the delay times out.
In the latter case, a PROGRAM_ERROR exception is raised.

Exceptions:
PROGRAM ERROR

7-8

S-^^^^^^^^^^ o -M^^^^^Sfe :-••;.•••. sA'A-x&tt:-:.i^;-^;^^

„•yjy^i-v;-/.--*?—i ., ...^.^^^M..,.;,^.^,^,, -,.,. vi.»«-v«L,^*X,.V.,g,-.*>'^-,';^:,':T »'. ».»•: ^.«-:>•• »•. r:i, ••.?.- .- -•-

7.2 CREATE NON-NESTED PACKAGE OBJECT.

Format: 72JI, S, D

Mnemonic: CRPO

Operands:
S: Pointer to Loaded Package
FMT: memory (0)

D: Pointer to Created Package
FMT: memory (0)

Function:
This instruction requests allocation of storage in data
value memory for the package variable global data and fixed
size administrative data. The size of the variable global
data, in words, is extracted from the package descriptor
(PKG) addressed by the contents of word 2 of the pointer
addressed by S. When storage has been allocated, the
absolute address of the variable global data in data value
memory is stored in word 3 of the pointer to the created
package and the absolute address of the variable global data
in data template memory is stored in word 2. (The former
address is the address of the allocated storage + size of
administrative data and the latter address is the address of
the package header + 1.) The rights assigned to the pointer
are READ and WRITE. The ENTITY (ENT) field is set to 000.

Exceptions:
STORAGE ERROR

7-9

ft£ te>^£>i-i-:£^k^>Sv^^

:%svvv _%'.^..-.' „•% .•i'^.'-'.v i> '."- '.'•'.*• '."^'.*• -I%-1 •'.'-. ''.''.'v1 •"! ". ' . • 'j *'_'"» *•" •; • v*yw-''. v.- *.'• *_• *> '••'V "J ".*'•'-'•'•> '.'•'.- *JJ *.» *.* •.» v

7.3 CREATE NESTED PACKAGE OBJECT.

Format: 73H, SI, S2, S3, D

Mnemonic: CRNPO

Operands:
SI: Pointer to Containing Non-Nested Package
FMT: memory (0)

S2: Offset to. Nested Package Component
FMT: immediate (EXT,2)

S3: Creator
FMT: immediate (EXT,2)

S3 specifies, via nesting depth (ADS), the
task, subprogram, or non-nested package on
which the created package depends.

D: Pointer to Created Package
FMT: memory (0)

Function:
This instruction allocates storage in data value memory for
the nested package's variable global data and administrative
data. To extract the variable global data size, the package
program descriptor (PPGM) in the nested package component in
the containing non-nested package header must be addressed
(see Figure 2-2). The base address of the non-nested
package header is retrieved from word 2 of the pointer
addressed by SI. The offset, given by S2, subtracted from
this base is the address of the package program descriptor
that contains the size, in words, of the variable global
data of the nested package. Storage allocation in data
value memory for the variable global data and fixed size
administrative data is requested. While the memory manager
is allocating storage, the offsets in the nested package
header are converted to absolute addresses using the
absolute addresses in the 5-word nested package program
component. The word at an offset of -1 from the package
program descriptor contains the absolute (base) address of
the nested package header. Each 5-word program component in
the nested header contains an offset to the program's
automatic data template. Each offset is added to the base
address of the nested package header; the resulting absolute
addresses are written into the components of the nested
package header. Similarly, the word at an offset of -3 from
the package program descriptor contains the absolute (base)
address of the nested package instructions. This is added
to the offset to the first instruction and the offset to the

7-10

n^^TT* •-"<*"<"•.*;/ -/-.* •.' • "'-.r-' '• r -*•.•'- *'i **.'•.' ^" -". •'.'". ••'•*'^.-*.'•*.•'..*. .".'J
1
'. i*. ." .• i* .*..•..•'.• >•.».• >» J

last instruction in each program component of the nested
package header; again, the resulting absolute addresses are
written into the components of the nested, package header.

When the address of the allocated storage is returned by the
memory manager, the pointer to the created nested package,
addressed by D, can be formed. The absolute address of the
variable global data in data value memory is stored in word
3 of the pointer and the absolute address of the variable
global data in data template memory is stored in word 2.
(The former address is the address of the allocated storage
+ size of administrative data and the latter address is the
address of the nested package header + 1). The rights
assigned to the pointer are READ and WRITE. The ENTITY
(ENT) field is set to 000.

S3 specifies the task or subprogram in the non-nested
package or the non-nested package itself on which the
created nested package depends. This dependency is
specified by the nesting depth (or address space, ADS) of
the task, subprogram, or non-nested package. Nesting depth
designates the display register pair which contains the base
addresses of the task, subprogram, or non-nested package in
data template memory and data value memory. (For tasks and
subprograms, this would be the addresses of the activation
record and corresponding automatic data template; for the
non-nested package that corresponds to a nesting depth of 0,
this would be the addresses of the variable global data and
variable global data template).

Exceptions:
STORAGE ERROR

7-11

>-:£&£it*^^-^ ..•.., ^^^^^^^^^^^^^^i

33T* TI -.^T-^^-.-.,,.-r.-.",%-;^:-'».T^.T^-.'.*. • * '.i. *-• <' >.• L.J '•-• i •' •— >•'.• « ..'v. -.^ - * .•.»••••••••

7 4 ALLOCATE PACKAGE STORAGE.

Format: 74H, SI, S2, D

Mnemonic: ALLOCP

Operands:
SI: Size of Allocation in Data Template Memory
FMT: memory (0) or immediate (EXT,2)

S2: Size of Allocation in Instruction Memory
FMT: memory (0) or immediate (EXT,2) "

D: Pointer to Allocated Package
FMT: memory (0)

Function:
This instruction requests allocation of storage in data
template memory and instruction memory for the non-nested
package to be subsequently loaded. SI and S2 address or
directly specify the sizes, in words, required for storage

package in data template memory and
respectively. Note that immediate
allocation size to 220 word whereas

an upper limit of 232 words. The base
template memory and instruction memory

allocation of the
instruction memory,
values restrict the
memory operands have
addresses in data
returned by the memory manager are stored in words 2 and 3.
respectively, of the pointer addressed by D. The ENTITY
(ENT) field is set to 110; other fields in word 1 of the
pointer are ignored.

Exception:
STORAGE ERROR

7-12

^<vC:-:v*v--:•-.
-J-^.- ^^^•^c/>>:^-:.vy:<v:^>>:: v/-

-• •-> Lfclt '•* ••»»>:
•»**•» «••'v'v\ -HSVÖV«. \'*.\L\ JivVA'^

VLVVV^"^^ V*.

7.5 RETURN FROM PACKAGE ELABORATION.

Format: 75H

Mnemonic: RETPE

Operands:
None

Function:
This instruction marks the completion of subprogram 0 of a
non-nested package. The activation record and
administrative data of the subprogram are deallocated
immediately since no objects are dependent on it. The User
Console priority is removed from the system and the task
scheduler is invoked.

Exceptions:
None

7-13

&frafr;£a£*^^ ,:/^^:^^^^^^

•".',J".'!" -". ~ -"—T ,.-»-!- J-.

8 DYNAMIC STORAGE ALLOCATION/DEALLOCATION

Data objects are allocated space in data value memory at run
time. Their creation corresponds to the evaluation of
allocators in Ada when the objects created are any type
other than a task. (Evaluation of an allocator that creates
a task object is supported with the EVALUATE ALLOCATED TASK
OBJECT instruction, described in Section 9.4.6.) Access
values, returned when an allocator is evaluated in Ada, are
represented in the HLLM by pointers. Data templates for
data objects are placed in the enclosing package's constant
global data area.

Deallocation of space in data value memory normally takes
place when the subprogram, task, or package in which the
access type was declared is destroyed (per the Ada
CONTROLLED pragma). The data object is said to be dependent
on the subprogram, task object, or package object. Data
objects can be explicitly destroyed (storage in data value
memory reclaimed) when the instantiated generic library
procedure, UNCHECKED_DEALLOCATION, is called at the Ada
program level. Dangling references caused by
UNCHECKED_DEALLOCATION are detected in the HLLM. This is
accomplished by creating a data object with the instruction,
CREATE UNCHECKED DATA OBJECT, that assigns a 24-bit unique
name to the data object, stores it into the pointer, and
sets the unique name flag (see pointer format in Section
3.4). A unique name will not be reassigned until 224
different names have been assigned to data objects that are
to be explicitly destroyed. Wher assigned, a unique name is
stored in a system-wide Unique Name Table; when the pointed-
to data object is destroyed (via the DESTROY DATA OBJECT
instruction), its unique name is deleted from the table,
never, in principle, to reappear. Any reference via a
pointer to a data object in which the unique name flag is
set requires a check for the existence of the unique name in
the table. If the unique name is not in the table, a
CONSTRAINT_ERROR exception is raised.

The template of a data object can specify any supported data
type except pointers and formal, reference parameters; arrays
and records should be most common. Arrays may be
constrained or unconstrained (see Appendix B). Data objects
may be used as I/O buffers.

8-1

•

;*v-: .j^v-v-.:-.- '.-_ v..

r^v.V '.MV.' , • • • .A J«

8.1 CREATE DATA OBJECT.

Format: 76H, SI, S2, D

Mnemonic: CRDO

Operands:
SI:
FMT:

Data Object
memory (0

Typ_ e (Data Template)

S2: Object on which Data Object Depends
FMT: immediate (EXT,2) or memory (0)
Immediate: S2 specifies, via address space (ADS), the

subprogram, task object, or enclosing package
object on which the data object depends.

Memory: S2 addresses a pointer to a subprogram or task
object in an external package or to an
external package object on which the data
object depends.

D: Pointer to Created Data Object
FMT: memory (0)

Function:
This instruction allocates storage in data value memory for
the data object and returns a pointer to the data object.
SI is the address of the data object template in the
constant global data area of the enclosing package; hence,
the address space (ADS) must be equal to 15. The first word
in the template is a Data Object Descriptor (see Section
3.8) which specifies the total size of storage in data value
memory to be allocated for the data object when the data
object is not an unconstrained array or a record with one or
more unconstrained array components. If the data object is
an unconstrained array or a record with unconstrained array
components, index constraints (which supply the array
bounds) follow the CREATE DATA OBJECT instruction in the
instruction stream. The order of unconstrained bounds in
the data object description corresponds to the order of the
index constraints (see Section 4.4.5) in the instruction
stream. When array bounds are unconstrained, the total size
of the data object in data value memory is computed as
described in Section 3.8.2 and illustrated in example 4 of
Appendix B. When storage has been allocated (two
allocations for unconstrained arrays), the pointer addressed
by D is assigned values as follows:

Word 1
unique name flag <= 0

ENT <= 010
RIGHTS <• read, write.

8-2

•**^.-"'.-''J«
N
^ v :^_-s_^. -•V >i *.7 rj- :.•; -yyy-y-»* ̂ •^..vyy.^ ->V-V-'C'.'.V.-- --.i •• _• V

'v "." TTT^T^^TT^TTTTT 'V.V T. . ". r. ^TTTl r^T^i

5

I

Word 2
Receives absolute address of data object template
(address of Data Object Descriptor).

Word 3
Receives absolute
(address in data
the Data Object
memory).

address of data object values
value memory that corresponds to

Descriptor in data template

V

1}

» *

:•'• Z^LuC^X^,

S2 specifies the subprogram (via its activation record),
task object, or package object on which the lifetime of the
data object depends. It will be called a "dependee" in this
instruction. If S2 is an immediate operand, its value is
the address space (nesting depth) of the dependee. The
display register pair corresponding to this nesting depth
contains the dependee's absolute (base) addresses in data
value and data template memories. If S2 addresses a pointer
to the dependee, the base addresses are contained in the
pointer. Having the address of the administrative data of
the dependee, a doubly linked list of dependent data objects
originating at the dependee can be maintained as follows:

(a) In the dependee's administrative data is a link to
the former most recent data object. This link is
moved to the created data object and the address of
the administrative data of the created data object
replaces the link in the dependee.

(b) The address of the created data object is also
stored in the administrative data area of the former
most recent data object and the latter's address is
stored in the administrative data area of the
created data object.

(c) If there is no "former most recent data object," the
link in the dependee will contain a NULL. Then, the
address of the created data object replaces the NULL
link and the address of the dependee is stored in
the administrative data area of the created data
object.

When a dependee is destroyed (storage in data value memory
reclaimed), all data objects in the linked list are
deallocated in data value memory. Note that the links are
in place to support explicit destruction (via the DESTROY
DATA OBJECT instruction) of a data object at any location in
the linked list.

Exceptions:
STORAGE ERROR

8-3

;^:^^v;->:^^^

1 yj» ._• ._• ._"^7i_» -• ._• .' • :_• .•• . • . « rm . • __i • •-- - *• .-•.". t- FXVTZX'-

8.2 CREATE UNCHECKED DATA-OBJECT.

Format: 77H, SI, S2, D

Mnemonic: CRUNDO

Operands:
SI: Data Object Type (Data Template)
FMT: memory (0;

S2: Object on which Data Object Depends
FMT: immediate (EXT,2) or memory (0)
Immediate: S2 specifies, via address space (ADS), the

subprogram, task object, or enclosing package
object on which the data object depends.

Memory: S2 address a pointer to a subprogram or task
object in an external package or to an
external package object on which the data
object depends.

D: Pointer to Created Data Object
FMT: memory (0)

Function:
This instruction performs the same function as CREATE DATA
OBJECT and, in addition, assigns a unique name to the data
object for the purpose of detecting dangling refereno that
may result if the created data object is explicitly
destroyed (allowed when the UNCHECKED_DEAL^JCATION library
procedure is called). Prior to assigning values to word 1
of the pointer addressed by D, a request is made to the
memory manager to assign a unique name to the data object.
Then, word 1 of the pointer is assigned values as follows:

unique name flag <= 1
ENT <* 010

RIGHTS <=» read, write, destroy
bits 0..23 <• unique name.

Exceptions:
STORAGE ERROR

8-4

i&mztez&te&ä^^ ,, x JL A^i^:^^

•: WS-.'-.".* -v.wrÄS.TT«.'.^.'.-'."^":.:••.;•. v.^ A".T,'.,-.^.-!'r. •'•;.•« :•»..•»': •! «^»^».g».«^ TT.-J-

8.3 DESTROY DATA OBJECT.

Format: 78jj, s

Mnemon i c: DSTROY

Operands:
S: Pointer to Data Object to be Destroyed
FMT: memory (0)

Function:
The data object pointed-to by the pointer addressed by S is
destroyed, i.e., storage occupied in data value memory
(values and administrative data) is reclaimed. The pointer
must have DESTROY authority. The data object is removed
from the list of data objects dependent on some task object,
subprogram, or package object. The unique name assigned to
the data object (found in word 1 of the pointer) is deleted
from the unique name table.

Exceptions:
CONSTRAINT ERROR

8-5

K3*rati*a^tt^^^^

'-••• .->•'.t ..^ .^ -V'A .-.';". .-IV\ ..^.TIl-Vl'V '.1.^1. L> •-•*'.

9. Tasks

The support for tasking provided in the HLLM is firmly based on
the concept of tasking described in Section 9 of MIL-STD-1815A.
When a task object is created, it can spawn a dynamically linked
chain of activation records through successive subprogram calls.
Any subprogram can create new tasks which spawn other dynamically
linked chains of activation records, and so forth. In addition,
any task can create other tasks each of which may parent a
dynamic chain. The resulting structure is a cactus stack of task
and subprogram activations. The rules of tasking specify certain
lifetime dependencies of tasks on other tasks and subprograms
within the cactus stack and on library packages. The manner in
which the HLLM supports task dependencies is described in
Appendix C.

To assist in the understanding of the tasking instructions, the
following important terms are defined in accordance with their
use in this ISA:

TASK OBJECT A task object is a created storage object
comprising the entries, data values (template
and activation record), and instructions of the
task unit.

TASK PROGRAM - A task program is the instructions compiled
from the task body statements.

COMPLETED TASK - A COMPLETED task is one that has executed all
its instructions (end of task program reached)
or one in which a TASKING ERROR was raised
during its activation. Although no
instructions are executed in a COMPLETED task,
the task's local data is still accessible to
other tasks and subprograms.

SUSPENDED TASK - A SUSPENDED task is one that has been activated
but is neither executing instructions nor ready
to be scheduled; it is temporarily blocked on
an entry queue or at an accept, delay, or
wait instruction. SUSPENDED tasks are
normally resumed when the suspending condition
is removed.

ABNORMAL TASK - An ABNORMAL task is one that has been aborted.
Although an ABNORMAL task is allowed to execute
until it reaches a synchronization point, it
will immediately become a COMPLETED task in the
HLLM and will be TERMINATED when dependency
conditions permit.

9-1

^^<^^^^^^^v^v^ ^^^>:^^;.^:>s ::>;•: :• v ; ^•-V.'<»'; sLtfs^Z<Z*Z<fc'A.sf.\ VlM

. t:Tvs,'j-v. T-'T. rjr: ,v «-. •;• :.«.-? TJ» ••.T-y.v 'n ^ •.«. v,'•-"< •> r* '.•* r* '^'A .•• ,,.'.,.vr,MV.'--.,,v.' ».•'.''

TERMINATED TASK - TERMINATED tasks are destroyed with storage
reclaimed in the HLLM. COMPLETED tasks with
all termination conditions met are TERMINATED.

CUSTOMER TASK

SERVER TASK

A customer task is one that partakes in a
rendezvous by calling an entry of another
(server) task.

A server task is one that partakes in a
rendezvous by accepting an entry call of
another (customer) task.

DEPENDENT TASK - A dependent task is one that affects the
lifetime (activation to termination) of
another task designated as its master and,
under certain conditions, whose own lifetime
is affected by the state of the master and its
dependent tasks. In the latter case, the
master could be a subprogram or library package
as well as a task.

MASTER

ACCEPT BODY

A master may be a task, a subprogram (which
includes a block statement in the HLLM
implementation), or a library package. A
completed master is not destroyed until all its
dependent tasks are TERMINATED.

An ACCEPT body is a group of instructions that
immediately follows an ACCEPT ENTRY or SELECT
ACCEPT instruction and is terminated with the
END RENDEZVOUS instruction. The ACCEPT body
corresponds to the sequence of statements that
follows an ACCEPT statement in Ada.

Refer to the Glossary and
definitions and explanations.

to MIL-STD-1815A for further

9-2

feütä£&&^^

'••-">• L"» .^ . • IT« '.• •. •_ . *•: *. • 'j ri *my > -•-•_•*•• -;_-r- i i . ••••.-- ^''.'i'fV'i'i'l'I'HI

9.1 Task Scheduling,
categories of tasks:

The HLLM task scheduler deals with two

1.RUNNING TASK- A RUNNING task is one that has been activated
(created and started) and is executing on a
processor.

2.READY TASK - A READY task is one that has been activated
(created and started), is neither SUSPENDED nor
COMPLETED, and is waiting on a ready queue to
be scheduled for execution.

When tasks compete for access to a processor, the scheduling
algorithm ensures that no READY task is waiting to be scheduled
while a lower priority task is RUNNING. Each task waiting to be
scheduled is put on a ready queue corresponding to the task's
priority level. When two or more tasks of the same priority are
ready to be scheduled, the order of scheduling is FIFO. In this
case, when the scheduler is invoked, the task at the head of the
highest priority ready queue is scheduled for a specified
execution time period and the executing task is moved to the tail
of the ready queue. When the time quantum expires, an interrupt
is generated that again invokes the scheduler. If an executing
task becomes SUSPENDED or COMPLETED or if a higher priority task
becomes READY before this interrupt occurs, a new task is
scheduled, resetting the eicecution time quantum. A different
time quantum may be specified for each ready queue. One choice
is "infinite" duration. If a task scheduled with "infinite"
duration is at the highest priority level, only suspension or
completion of the task will cause it to relinquish the processor.
(However, if a lower priority task is scheduled with an
"infinite" time quantum, it could get "bumped" if a SUSPENDED
higher priority task becomes READY.) Tasks not assigned any
priority are relegated to the lowest priority level (priority 0).
When a task is activated or when some event removes a task from a
state of suspension, the task becomes READY and is appended to
the tail of its ready queue. If, however, it is the only task at
the highest priority level, it will be scheduled to run with a
fresh execution time quantum. Tasks in rendezvous assume a
priority which is the higher of that of the customer and server
tasks. Since a ousiomer task in rendezvous is SUSPENDED, its
priority level need not be modified if lower than that of the
server task. However, if the server has the lower priority, its
priority is raised to that of the customer for the duration of
the rendezvous ACCEPT body.

9-3

:ÜhA'<* • • • • w . -'. •- • A '. • * «f •
-V---U.V; ^JLTJ^LIJ ^•'>-:: ^:- v •!:••/• •:••:••: • •Ä^S-iv: •••••SiXv

T» £~» i-» i"»

9.2 Task Switching. Tasks exist in one of five states:
RUNNING, READY, COMPLETED, SUSPENDED, or TERMINATED. A
scheduling decision is made whenever any task changes state.
Following is a list of actions that cause a change of state,
hence invocation of the task scheduler:

(a) a task is activated (through execution of the END
ACTIVATION or END ELABORATION AND ACTIVATION instruction)
and becomes READY or RUNNING.

(b) a task is suspended (when, for example, a task calls an
entry or tries to accept an entry call when, there is no
caller) and becomes SUSPENDED (another task is
scheduled to run).

(c) a task is removed from the state of suspension (when, for
example, a delay expires or a rendezvous is completed)
and becomes READY or RUNNING.

(d) a task is completed for any reason and becomes COMPLETED
(another task is scheduled to run).

(e) a task is directly terminated for any reason and becomes
TERMINATED (another task is scheduled to run).

Note: A task may be directly terminated only when (1) it
becomes COMPLETED and all its dependent tasks, if any,
are already TERMINATED or (2) it executes a SELECT
TERMINATE instruction and its master is in a COMPLETED
state and all tasks that depend on that master are
TERMINATED or waiting at SELECT TERMINATE instructions.

(f) an interrupt from the clock manager signals that an
execution time quantum has expired (another task is
scheduled to run).

In the discussion that follows, when reference is made to a "task
or subprogram", the subprogram belongs to the task to which it is
dynamically linked (through any number of levels); hence, the
subprogram executes at that task's priority level. Priority
level is a static component of the machine state for subprograms
as well as tasks. Its value must be known when tasks are
switched and when a rendezvous takes place (server's priority
level can be affected by customer's level). The task scheduler
keeps track of the address of the activation record and the
priority level of the current task or subprogram. During task
switching, the scheduler manages the change Of environments,
i.e., it changes the state of tasks, manages delay and entry
queues, and saves/restores the states of switched-out and
switched-in tasks and subprograms. In particular, if a task

9-4

.V.-J-.-VL-V.V V.tT V ' >.T.r^ "*~r*T^^ rm --:--.:-. rr> *. .-. -*.-T-

program is executing when the
dynamic components of the
(stack index, exception mode,
the Temporaries and Valid
resumption address) are saved

scheduler switches tasks, only the
switched-out task's machine state
registers corresponding to "Is" in
Parameter Masks, and execution
in the task's administrative data

area. The static components of the state (nesting depth of task
program, priority level, display registers of nesting depths < =
nesting depth of task program, and addresses of first and last
instructions of the task program) are not saved since they are
stored in the task's administrative data area when the task is
created. If a subprogram is executing when tasks are switched,
the above listed static components of the subprogram's machine
state are saved in the administrative data area of the subprogram
if the Static Save Flag (see Section 6.1) is "0". The Static
Save Flag is set to "1" when these components are first saved
and, thereafter, the static components are not saved in the
presence of a task switch. The above listed dynamic components
are always saved for the switched-out subprogram. Further, all
components of the machine state (static and dynamic) are restored
for the switched-in task or subprogram.

9-5

-- ».* v" - " •." v" • • •
-- V V-' ;;-^ ;v: .v>xv'y •V-V-".".". .\sw.sv.iv\ .\V\ v

1

•-« --v •>. •:• v *:*'? '7 ".•'•-».-:• '^r^7j^~wr?

9.3 Exception Modes. Tasks and subprograms exist in one of four
exception modes, managed by the machine. Errors are handled
differently in each mode as described below:

ELABORATION mode - This corresponds to the elaboration of a
declarative part in Ada. An error causes termination of all
created but not yet activated subcomponent tasks and
abandonment of the executing task or subprogram. If the
executing program is a task, it is marked as COMPLETED and
a TASKING_ERROR exception is raised at the point of its
activation. If the executing program is a subprogram, the
same error exception is raised at the point of call. (If the
subprogram is a main program, it is abandoned without error
propagation).

ACTIVATION mode - This corresponds to the parallel activation
of tasks that are subcomponents of declared objects in Ada.
(In the HLLM, tasks are activated sequentially.) An error
causes the task being activated to be marked as COMPLETED.
Activation of other subcomponent tasks (successfully or not)
is not affected. When each of these tasks has been activated
(or marked as COMPLETED), a TASKING_ERROR is raised in the
environment of the task or subprogram whose declarative part
is being elaborated, i.e., the task or subprogram that is
executing the ACTIVATE TASK instructions.

ACCEPT BODY mode - This corresponds to the sequence of
statements following the ACCEPT statement in Ada. While
executing an ACCEPT body, an error that is not handled by
a local exception handler causes the following to occur:

(a) ACCEPT body is abandoned.

(b) the same exception is raised again in the server task's
environment at a point immediately following the ACCEPT
ENTRY or SELECT ACCEPT instruction.

(c) the customer task is marked with TASKING ERROR pending
and its state is changed from SUSPENDED (Tn rendezvous)
to READY; when it next becomes RUNNING, a TASKING_ERROR
is raised at the point of entry call.

If the ACCEPT body is executing when the server task is
destroyed (aborted), the server task is marked as COMPLETED
and the customer task is marked with TASKING_ERROR pending
(raised when the customer task is again RUNNING, as
described in (c) above).

NORMAL mode - This mode corresponds to the statement between
"begin" and "end" in Ada. The handling of exceptions in the
NORMAL mode is described in Section 11 on Exceptions and, in
a few special cases, is included in the description of an
instruction.

9-6

. --. ^<. -^yy. -. ^..... •-. ^..-. v<. .-. ^.Av^A-v,v.> --• ••-v u -•• *" •-••• • ^- ^- -v--^>>. •/•.-.
v^w;\-

.»-. f. y. -; •* -" •. f. .*."•*. ~*. y.1 •>. r1 'J. -*. -• ".• .•. J-:T: C-.T

Error modes are entered as the result of executing certain
instructions, as explained below:

(a) When a subprogram or task program executes a CALL
instruction, the called subprogram enters the ELABORATION
mode or NORMAL mode, depending on whether or not the
called subprogram has a declarative part that requires
creation of objects and/or subcomputations for
initialization of declared objects. Within the area of
the package header that corresponds, to the subprogram is
a bit that specifies which of these two modes is entered.

(b) When a subprogram or task program executes an END
ELABORATE instruction, that subprogram or task enters the
ACTIVATION mode.

(c) When a subprogram or task program executes an ACTIVATE
TASK instruction, the named task enters the ELABORATION
mode.

(d) When a subprogram or task program executes an EVALUATE
ALLOCATED TASK instruction, the named task, when created,
enters the ELABORATION mode.

(e) When a subprogram'or task program executes an END
ACTIVATE or END ELABORATE AND ACTIVATE instruction, that
subprogram or task enters the NORMAL mode.

(f) When a server task program executes an ACCEPT ENTRY or
SELECT ACCEPT instruction and a customer task is queued
on the accepted entry, the exception mode is changed to
ACCEPT BODY for the duration of the ACCEPT body.

9-7

c%-:^:*fr/Cic&^^^

J.4 Tasking Instructions. The group of instructions described
jn the following pages supports Ada tasking as outlined in
Sections 9.0 through 9.4. These instructions implement task
:reation, activation, rendezvous, and termination.

9-8

säua&Efc&S^^ '-•:--^-"-- ••• •• - •-'•• s££s- • • ••'-^•••^•'-••-<•-

• A7-r ."- .". .". «r,-:.T- '.'. •> *,> *-' '.* '.» '-• •:»

9,4.1 CREATE TASK OBJECT.

Format: 79H, SI, S2, D

Mnemonic: CRTO

Operands:
SI: Task Program Identification
FMT: immediate (EXT,2) or memory (0)
Immediate: SI specifies an offset to a task program

component in the local package header.
Memory: SI addresses a pointer to a program (task

program) in an external package.

S2: Master
FMT: Immediate (EXT,2) or memory (0)
Immediate: S2 specifies a local master via its

nesting depth (ADS).
Memory: S2 addresses a pointer (no specific

authority required) to an external
package master (library package).

D:
FMT:

Pointer to Created
Tul

Task Object
memory
D addresses a pointer in the local
package that is assigned to point to
the created task object (ENT- 100).

9-9

.->nur^>v^-.:^:.>;v^v^ £v>±>J

::»-••• *v" J3 -i • J. '••'-•I

jnction:
lis instruction creates
le offset to the task
ilue or is contained
rogram. (this pointer
rogram.) The offset is
»ader of the local or
Lsplay register 0, the latter
isk program. The result is the
iformation pertinent to the task,

(but does not activate) a task object,
program component (SI) is an immediate

to the external task
authority for the task

the base address of the
the former derived from
from the pointer to the

address of a 5-word packet of
from which the size of the

in the pointer
must have READ
subtracted from

external package,
retrieved

absolute address of the task's
task's nesting depth, priority

addresses of the first and

isk's activation record, the
jtomatic data template, the
»vel, and number of entries, and the
ist instructions of the task program are retrieved. Space for
le activation record and the administrative data area are
Llocated in data value memory. The size of administrative data
rea is a fixed value + 16*number of entries,

area for subsequent easy access. In addition, the following
isplay registers are saved, completing the state of the created
ask:

(a) when the task program is in the local package

• all display registers corresponding to nesting depths
< nesting depth of created task.

• local display register pair corresponding to created
task's nesting depth (address of task's activation
record and address of task's automatic data template).

(b) when the task program
at nesting depth = 1)

is in an external package (hence,

display register 0 of external package (addresses
contained in display register pair gotten from words 2
and 3 of the pointer to the task program).

9-10

••X-ll^^-^^v-^v-^^^^^^^ .-y/yy^/V •- •• v V^^-V:.r •-V-V^ v.v.v.v.^.-Av^v.t;

•*•*•. ••"•*. ••. •• •--. ••; • .•. .• .' .• r .' .' -•''.', .• -• .' j .» •• ,• .''.'' .• ••• .'."-*."'. .*. •. '.v.* .» .•. .• .• i* •.• '.^

• display register 15 of external package (address
contained in display register = contents of word 2 of
the pointer + size of variable global data + 1).

• local display register pair corresponding to nesting
depth = 1 (address of task's activation record and
address of task's automatic data template).

S2 specifies the package, task, or subprogram that is the created
task's master. It may be any enclosing activation, the enclosing
package, or an external (library) package. The number of
entries, Ngr restricts any rendezvous with this task to entry
numbers O..NE~1. The pointer addressed by D is given READ,
WRITE, and DESTROY authorities. The absolute addresses of the
task's automatic data template and activation record are loaded
into words 2 and 3 of the pointer, respectively. This is now the
pointer to the created task object (ENT = 001).

If an exception is raised during this instruction (the
ELABORATION mode is extant), creation of this task is abandoned
and all tasks previously created but not yet activated during
this elaboration are terminated. Hence, a chain of tasks must be
maintained as tasks are successively created. When a task is
created, a link to the previously created task (null, if no
previous task) is retrieved from a location, L, in the
administrative data area of the task or subprogram being
elaborated and stored in the created task's administrative data
area. A link to the newly created task is stored in L. This
process is repeated for all created tasks (illustrated below for
three tasks).

9-11

tt£\W.-teWs/Sf.u'S&<l:.'Aw. ,£&£&£tt

-r----'T»-i-.'v^-^T-jv-;v-'jM.,^-^~ v.v«rr».- <"<•».-v.- v* •." -.".-.* •• •-.*. -.*< - •'•'."•-.*".,.T- »v.' *•: r.l". v. *•: =•: •• ••.:_. *-

I I
I v
I GND
1

1
1 TO
1

1
1
1

1
1

1
1 Tl
1

1
1
1

1
1

1 1
1 T2 1
1 1

i r
I L I

9-12

KN'V: >Sv-y>:-y-y v-:<•!&&&&ä&&2&&&£^ &&L •^vo.%: :v . [sikiaJ

•.'.'••" '••••»-»"- • .'»••-'•• V I • ^w^"V ^.^.n ^ .^'•^.^,

l

Any instruction executed in the ELABORATION exception mode has
access to L so that, in the event of an error, all linked tasks
can be located and terminated. Further, an error in the
ELABORATION mode causes a return to the point of call if a
subprogram is executing or completion of the task and a return to
its point of activation if a task program is executing. In the
former case, the exception is raised in the caller's environment
while in the latter case, a TASKING_ERROR pending condition is
set at the point of activation of the task. (For continuity of
discussion, see the description of errors in the ACTIVATE TASK
instruction.)

Exceptions:
PROGRAM_ERROR
STORAGE ERROR

P

9-13

i^aajaaaaaa^

^-xTCTv^rvrtTT'-i •T';,Tv, '"•:•••••• :•*':»':»•.'. *•:*. •. • .'».».• ,r.^ ;».»•;»•. T„ '.;TVJT3»-J'T''.T; »I »v»-» •-. •

9.4.2 ACTIVATE TASK.

Format: 7An, D

Mnemonic: ACTV

Operands:
D: Pointer to Task Being Activated
FMT: memory (0)

D addresses a pointer to the task
being activated.

Function:
This instruction causes the activation of a previously created
task by executing what corresponds to the declarative part of the
task body in Ada. Prior to transferring program control to the
created task's task program for activation, the following
administrative steps are performed:

• A link to the administrative data area of the activating
current task or subprogram is stored in the administrative data
area of the created task; this allows a return to the environment
of the activating task or subprogram when the created task has
been successfully activated or if an error occurs during its
activation.

• If a task is executing (activating the pointed-to task), the
executing task's dynamic machine state components are saved in
the executing task's administrative data area. If a subprogram
is executing, the dynamic components are saved in the
subprogram's administrative data area; the static components of
the machine state are saved only if the Static Save Flag is "0"
(see Section 9.2). These actions permit proper resumption of
execution of the activating task or subprogram when the created
task has been successfully activated or if an error occurs during
its activation.

9-14

. . iaiiii^u:

t."*" _"s« "-.*%

The initial machine state for the task to be activated is next
established. This involves retrieving information stored in the
pointed-to task's administrative data area when the task was
created (see CREATE TASK OBJECT instruction. Section 9.4.1).
Included are the task priority level, nesting depth, display
registers corresponding to nesting depths < = nesting depth of
task to be activated, and the addresses of the first and last
instructions of the task program. Further, the Temporaries and
Valid Parameter Masks (register 0) are cleared, the stack index
is set to zero, and the exception mode of the task is set to
ELABORATION. This completes the transfer of program control to
the task to be activated. The task program starts with a group
of instructions that activates (elaborates the declarative part
of) the created task. The instruction, END ACTIVATION or END
ELABORATION AND ACTIVATION, returns control to the activating
task or subprogram.

If a return to the activating task or subprogram is made because
an error occurred during the activation of the created task (or
if an error occurs during the execution of the ACTIVATE TASK
instruction prior to transfer of control to the task program for
activation), the created task becomes COMPLETED and TASKING_ERROR
pending is set in the activating task or subprogram. When all
the created subcomponent tasks have been activated, the END
ACTIVATION instruction- is executed. The ensuing action depends
on whether a task or subprogram is executing and is described in
the END ACTIVATION instruction (see Section 9.4.4).

Exceptions:
PROGRAM_ERROR
CONSTRAINT ERROR

9-15

••^••i.->>>>>>>>:>\.-->>y- .••-.•>;* >w.\ w^v.v.>.v^:.:;<^^^:- ^^^^:,^,^^^^>:^•^>y^>>••>>v•>::^v:•^v^^^vx^•^v:Sv.v•v.•^•:^J

•'.'••• *v•.». A '.« .'.i^.i:si.!r...'- :\<.•* ..\ *..'.••.. *.* -r* ,v. *.« . *_; WJ. ».: v:»j: •„. w '-'• '.*'.v v'.T'r-'r*.m*r~\~rr3'.~r± -•• r- rT-.• -.'

9.4.3 END ELABORATION.

Format: 7BH

Mnemon i c: NELAB

Operands:
None

Function:
This instruction marks the end of elaboration of the declarative
part of a task or subprogram. The exception mode is changed from
ELABORATION to ACTIVATION. Subcomponent tasks created during the
elaboration (with no errors) are now ready to be activated.

Exceptions:
None

9-16

'v-<vn-CT«r«y»y*';.-»VT,tTr..*«i'v .v:*. '_". .^".T.' *".•.' '."*, '.',. '. V V!r '!''.' ^.' s* '.' '.' <.'•.' k* t'

9.4.4 END ACTIVATION.

Format: 7CH

Mnemonic: NACTV

Operands:
None

Function:
This instruction marks the end of a series of one or more
ACTIVATE TASK instructions. If TASKING__ ERROR pending in the
executing subprogram or task is not true (no errors), the
instruction proceeds as follows:

(a) If a subprogram is executing, its exception mode is changed
from ACTIVATION to NORMAL and execution continues.

(b) If a task program is executing, the task has been properly
activated. The exception mode is changed from ACTIVATION to
NORMAL and the dynamic components of the machine state (see
Section 9.2) are saved in the activated task's administrative
data area, allowing proper resumption of execution when the
activated task is scheduled to run. Prior to invoking the
scheduler, a few additional administrative functions are
performed to return control to the task or subprogram that
activated this task. The link to the administrative data area of
the task or subprogram that activated this task (saved in the
activated task's administrative data area by the ACTIVATE TASK or
the EVALUATE ALLOCATED TASK instruction) is retrieved and used,
in turn, to retrieve the machine state (dynamic and static
components) of the task or subprogram (see Section 9.2). The
scheduler is then invoked.

Note: The scheduler will assign the READY state to the activated
task and append it to the tail of the ready queue that
corresponds to its priority level. On the queue, the task is
identified by the address of its administrative data area.

If TASKING_ERROR pending is true (an error occurred during the
activation of a subcomponent task), then a TASKING_ERROR is
raised if a subprogram is executing. If a task is executing
(call it task A), it is COMPLETED since an error occurred during

9-17

.v.*«"*-" V »•'' ».' V J-' '.* •'.* -.* • .* '.'T'."''.' »'. I . • • , '•'"PF^^^*yy»yT?y

the elaboration of its declarative part. A return is made to
task A's point of activation in another task program or
subprogram (call it program B). The return is effected by
restoring the state of program B, known via the link to its
administrative data area (that had been saved in the
administrative data area of task A when task A was activated).
TASKING_ERROR pending is set in program B; then, other
subcomponent tasks of program B, if any, are activated followed
by END ACTIVATION, etc.

Exceptions:
PROGRAM ERROR

9-18

-.--.- -.--.-^yjr ' ••••»•>*.'-"»•••>• "»»'.'•J»c»'.'»jv.•; •y.vj,.ii,j>>vjiv? j-.- .--JT v j".-.-ir.

9.4.5 END ELABORATION AND ACTIVATION.

Format: 7DJJ

Mnemon i c: NELACT

Operands:
None

the end of the elaboration of the
or subprogram when no subcomponent

Function:
This instruction is used at
declarative part of a task
tasks were created, i.e., when there is no activation of
subcomponent tasks. Hence, the end of elaboration and activation
are coincident. The instruction proceeds as follows:

(a) If a subprogram is executing, the exception mode is changed
from ELABORATION to NORMAL and execution continues.

(b) If a task is executing, it has been properly activated. The
exception mode is changed from ELABORATION to NORMAL and the
dynamic components of the machine state (see Section 9.2) are
saved in the activated task's administrative data area, allowing
proper resumption of execution when the activated task is
scheduled to run. Prior to invoking the scheduler, a few
additional administrative functions are performed to return
control to the task or subprogram that activated this task. The
link to the administrative data area of the task or subprogram
that activated this task (saved in this task's administrative
data area by the ACTIVATE TASK or EVALUATE ALLOCATED TASK
instruction) is retrieved and used, in turn, to retrieve the
machine state (dynamic and static components) of the task or
subprogram (see Section 9.2). The scheduler is then invoked.

Note: The scheduler will assign the READY state to the activated
task and append it to the tail of the ready queue that
corresponds to its priority level. On the queue, the task is
identified by the address of its administrative data area.

Exceptions:
PROGRAM ERROR

9-19

•'». .--.•• &£&&£&^

9.4.6 EVALUATE ALLOCATED TASK OBJECT.

Format: 7EH, SI, S2, D

Mn emo n i c: EVALTO

Operands:
SI: Task Program Identification
FMT: immediate (EXT,2) or memory (0)
Immediate: SI specifies an offset to a task program

component in the local package header.
Memory: SI addresses a pointer to a program (task

program) in an external package.

S2: Master
FMT: immediate (EXT,2) or memory (0)
Immediate: S2 specifies a local master via its

nesting depth (ADS).
Memory: S2 addresses a pointer (no specific

authority required) to an external
package master (library package).

D: Pointer to Created Task Object
FMT: memory (0)

D addresses a pointer in the local
package that is assigned to point to
the created task object

Function:
This instruction creates and causes the activation of a task
object. The offset to the task program component (SI) is an
immediate value or is contained in the pointer to the external
task program. (This pointer must have READ authority for the
task program.) The offset is subtracted from the base address of
the header of the local or external package, the former derived
from display register 0, the latter retrieved from the pointer to
the task program. The result is the address of a 5-word packet
of information pertinent to the task, from which the size of the
task's activation record, the absolute address of the task's
automatic data template, the addresses of the first and last
instructions of the task program, and the task's nesting depth,
priority level, and number of entries are retrieved. Space for
the activation record and the administrative data area are
allocated in data value memory. The size of the administrative
data area is a fixed value + 16* number of entries, thus allowing
a maximum of 16 customer tasks to be queued on each entry. All
the quantities retrieved from the package header (except the
first two listed) are now saved in the created task's
administrative data area for easy access when the task is
scheduled. In addition, the display register environment of the

9-20

T" » V •••»•. '
• . • '.I - ' \."<- '.-"•

"

created task's task program
in detail for the CREATE
9.4.1). S2 specifies the
the created task's master,
the enclosing package, or

is established and saved as described
TASK OBJECT instruction (see Section
package, task, or subprogram that is
It may be any enclosing activation,

an external (library) package. The
number of entries, Ng, restricts any rendezvous with this task
to entry numbers O..NE~1. The pointer addressed by D is given
READ, WRITE, and DESTROY authorities. The absolute addresses of
the task's automatic data template and activation record are
loaded into words 2 and 3 of the pointer, respectively. This is
now the pointer to the created task object (ENT = 101).

Following these actions associated with creating the task, the
task is activated by executing what corresponds to the
declarative part of the task body in Ada. Prior to transferring
program control to the created task's task program for
activation, the following administrative steps are performed:

• A link to the administrative data area of the activating task
or subprogram is stored in the administrative data area of the
created task; this allows a return to the environment of the
activating task or subprogram when the created task has been
successfully activated or if an error occurs during its
activation.

• If a task is executing, the dynamic machine state components
are saved in the executing task's administrative data area. If a
subprogram is executing, the dynamic components of the machine
state are saved in the subprogram's administrative data area; the
static components are saved only if the Static Save Flag is "0"
(see Section 9.2). These actions permit proper resumption of
execution of the activating task or subprogram when the created
task has been successfully activated.

The initial machine state of the task to be activated is next
established. Since the quantities retrieved from the package
header are available (i.e., do not have to be read from the
administrative data area as in the ACTIVATE TASK instruction) and

9-21

.-•:.•.">•.•„ :,..:• .\vv.w:-.-

wrr. rr^:«*. •»*.«•. •*. •r.r..-. #-. --.»-.

the display register environment was established earlier, all
that remains to be done to complete the transfer of program
:ontrol to the task being activated is to clear the Temporaries
3nd Valid Parameter Masks (register 0), set the stack index to
zero, and set the execution mode of the created task to
ELABORATION. The task program starts with a group of
instructions that activates (elaborates the declarative part of)
the created task. The instruction, END ACTIVATION or END
ELABORATION and ACTIVATION, returns control to the activating
task or subprogram.

Response to an error depends on the exception mode existing when
the EVALUATE ALLOCATED TASK instruction is executed and on
whether this instruction is contained in a task program or a
subprogram.

(a) ELABORATION mode, subprogram executing
If an error occurs while the task is being created, creation is
abandoned and all tasks previously created during this
elaboration but not yet activated are terminated. Hence, this
instruction (as any instruction executing in the ELABORATION
mode) has access to the chain of tasks created but not activated,
as described in the CREATE TASK OBJECT instruction. The
subprogram returns to its point of call where the exception is
raised.
If the task was successfully created but a return from its
activation is made with a TASKING_ERROR pending, the created task
becomes COMPLETED, all tasks previously created during this
elaboration but not yet activated are terminated as discussed
above, and the subprogram returns with a TASKING_ERROR raised at
the point of call.

(b) ELABORATION mode, task executing
Handling of errors is the same as (a) except that the executing
task is marked as COMPLETED and a TASKING_ERROR pending condition
is returned to the executing task's point of activation.

(c) NORMAL mode
Response to errors again depends on whether a subprogram or task
program is executing as described in Section 11 on Exceptions.

Except ions:
PROGRAM_ERROR
STORAGE ERROR

9-:

••- ^ •- •-••- •- •-1* ••• 1**. ^^:^^:v•^^^:<^o^:^•^>^^^^\v^^^^•^•:•^^;:>/:/J

•- =-". *v»r^r-v «".»".' f. '. ?."»" A" .'"•". v.w.1
•.• •»••.•••

9.4.7

Format:

Mnemonic:

Operands:
SI:
FMT:

S2:
FMT:

CALL ENTRY.

7FH, 81, S2, S3,...

Pointer to Server Task
memory (0)
SI addresses a pointer to the server
task.

Entry Number of Server Task
memory (0) or immediate (EXT,2)

Note: If no parameters are passed via memory transfer,
then no additional operands are present in this
instruction.

S3,...: Actual Parameters
FMT: memory (0) or immediate (EXT,2)

Note: Any number of parameters may be passed via memory
transfer. Any two may be combined in a 2-operand compact
format.

Function:
This instruction calls the entry, given by S2, of the server task
identified by the pointer addressed by SI. The pointer must have
READ authority for the server task. The number of entries, Ng,
is retrieved from the server task's administrative data area and
the following condition must be met (else a CONSTRAINT_ERROR is
raised):

0<-S2<-NB-l.

As with the CALL instruction, CALL ENTRY is processed only up to
the actual parameter operands; thus, the execution resumption
address (value in the program counter) that is saved in the
customer task's administrative data area when the customer is
SUSPENDED addresses the word following operand S2 (entry number
of server task). Parameters that are to be passed by memory are
bound during execution of the BIND PARAMETERS instruction (first
instruction of the ACCEPT body) which requires access to both
actual and formal parameters. BIND PARAMETERS completes the
processing of the operands in the CALL ENTRY instruction.

9-23

:&tt>>i>'*tt'->^^

i • ^. ,-u T: •.->, ,-v i.-v '.-V .•V.-V '.TVV •.-.- •••^.-.-J- '.- -1

irameters that are passed by registers are loaded into parameter
»gisters (16..31) at some points during execution of the
jstomer task program. During CALL ENTRY, the registers
jecified in the Valid Parameter Mask (see Section 6.2.1) are
ived (as part of the dynamic machine state) in the customer
isk's administrative data area. These values are restored in
le registers by the server task when the instruction, ACCEPT
4TRY or SELECT ACCEPT, is executed provided that a customer task
5 queued on the accepted entry.

>xt, actions (a) and (b), actions (a) and (c), or action (d)
akes place with the assistance of the task scheduler:

a) The customer (executing) task's state is changed from RUNNING
D SUSPENDED and the customer task is placed at the tail of the
itry queue for entry S2 of the pointed-to task. All dynamic
Dmponents of the machine state are saved in the administrative
ata area of the queued customer task. (Note that if a
jbprogram had executed the CALL ENTRY instruction, the static
Dmponents of the state would also be saved if the Static Save
lag is "zero".)

b) If the server task is SUSPENDED and marked as waiting for a
all of entry S2 (it had executed an ACCEPT ENTRY instruction but
o task had called that entry or it had executed a WAIT
nstruction after being marked during a SELECT ACCEPT instruction
s waiting for a call of entry S2), its state is changed to READY
nd it is placed at the tail of the ready queue corresponding to
he higher priority of the customer and server tasks. If an Ada
elective Wait statement had been programmed, several SELECT
CCEPT instructions could have been executed prior to WAIT. In
rder for the server to resume execution at the proper SELECT
CCEPT instruction (when the server is next scheduled to run),
he SELECT ACCEPT instruction must save its own address in a
edicated location in the server's administrative data area,
ach such location corresponds to the accepted entry number.
During execution of ACCEPT ENTRY, the address of the ACCEPT
NTRY instruction is also saved in a location corresponding to
he entry number.) Then, during execution of CALL ENTRY, after
t is determined that the server task is marked as waiting for a
all of this entry (S2), the address of SELECT ACCEPT (or ACCEPT
NTRY) that corresponds to S2 is transferred to the location that
ontains the "execution resumption address" of the server task,
his ensures that when the server task is scheduled to run, it
ill resume execution at the proper SELECT ACCEPT (or ACCEPT
NTRY) instruction and a rendezvous will successfully begin. The
erver task ceases to be marked as waiting for any entry to be
ailed or delay to expire. Then, all subsequent calls are placed
n the proper entry queue without changing the server task's
xecution resumption address.

9-24

.•% .-•••.•q.-y.* .-V~y.-\~.- .:'*.•*"" V"~ -''.''.','!•*.*-*'•* *'* '* -'*. y y. *•. *. i »*.»••.•• .•»•!

Note: When the server task is scheduled to run, the rendezvous
will proceed (parameters passed to ACCEPT body which is then
executed).

(c) If the server is READY and is marked as waiting for a call of
entry S2 (it had executed a SELECT ACCEPT instruction but no
customer task had called the entry), the address of SELECT ACCEPT
is moved to the location that contains the server's execution
resumption address as described above and the server task ceases
to be marked as waiting for any entry to be called or delay to
expire. The server task is moved to the ready queue
corresponding to the customer task's priority if that priority
level is higher than the server task's level. The rendezvous
proceeds as described in the Note under (b) above.

(d) If the server task is not SUSPENDED on entry S2 nor READY and
marked as waiting for a call of entry S2, only the actions
described in (a) above take place.

If the server task is COMPLETED when one of its entries is
called, a TASKING_ERROR is raised in the customer task at the
point of call. If customer tasks are SUSPENDED on entry queues
of a server task which becomes COMPLETED before accepting any
call, the task scheduler removes the customer tasks from the
queues and changes their state to READY. In each of these
customer tasks, TASKING_ERROR pending is set. (The exception is
raised as each task is scheduled to run.) If an exception is
raised while the ACCEPT body is executing, the local exception
handler is entered. If, however, no local handler is defined for
the ACCEPT body, the exception is raised in the server task
following the ACCEPT ENTRY or SELECT ACCEPT instruction.
Further, the scheduler is invoked which changes the customer
task's state to READY. TASKING_ ERROR pending is set. If the
customer task is SUSPENDED in rendezvous (ACCEPT body executing)
when the server task becomes abnormally COMPLETED, the scheduler
changes the state of the customer task to READY and TASKING_ERRCR
pending is set in the customer task. If the customer task is
SUSPENDED on an entry queue when it becomes ABNORMAL, the
scheduler removes it from the queue and immediately changes its
state to COMPLETED. If, however, the customer task becomes
ABNORMAL during a rendezvous, the rendezvous is finished and then
the scheduler changes the customer task's state to COMPLETED.

Exceptions:
PROGRAM_ERROR
CONSTRAINT_ERROR
TASKING ERROR

9-25

^^-:::Ä:-:;>£:ivÄ

^•'<: -.T-.'• V."" r.w^r. i"-;-x^i' •:• : »..• :»•.

9.4.8 CALL ENTRY CONDITIONALLY.

Format: 80H, SI, S2, S3, S4,...

Mnemon i c: CALENC

Operands:
SI: Pointer to Server Task
FMT: memory (0)

SI addresses a pointer to the server
task.

S2: Entry Number of Server Task
FMT: memory (0) or immediate (EXT,2)

S3: Label
FMT: immediate (EXT,2), interpreted as a label operand

Note: If no parameters are passed via memory transfer,
then no additional operands are present in this
instruction.

S4,...: Actual Parameters
FMT: memory (0) or immediate (EXT,2)

Note: Any number of parameters may be passed via memory
transfer. Any two may be combined in a 2-operand compact
format.

Function:
This instruction attempts to call the entry, given by S2, of the
server task identified by the pointer addressed by SI. The
pointer must have READ authority for the server task. The number
of entries, Ng, is retrieved from the server task's
administrative data area and the following condition must be met
(else a CONSTRAINT_ERROR is raised):

0<=S2<=NE-1.

As with the CALL instruction, when parameters are passed via
memory, CALL ENTRY CONDITIONALLY is processed only up to the
actual parameter operands; thus, the execution resumption address
(value in the program counter) that is saved in the customer
task's administrative data area when the customer is SUSPENDED

i .

9-26

tttetttttt^^^^

V •} •««

addresses the word following operand S3 (label). Parameters that
are to be passed by memory are bound during execution of the BIND
PARAMETERS instruction t (first instruction of the ACCEPT body)
which requires access to both actual and formal parameters. BIND
PARAMETERS completes the processing of the operands of the CALL
ENTRY CONDITIONALLY instruction.

Parameters that are passed by registers are loaded into parameter
registers (16..31) at some points during execution of the
customer task program. During CALL ENTRY CONDITIONALLY, the
registers specified in the Valid Parameter Mask (See Section
6.2.1) are saved (as part of the dynamic machine state) in the
customer task's administrative data area. These values are
restored in the registers by the server task when the
instruction, ACCEPT ENTRY or SELECT ACCEPT, is executed provided
that a customer task is queued on the accepted entry.

Program control is immediately transferred to the absolute
address of the first instruction of the customer task program +
the label offset, S3, if either of the following conditions is
true:

(a) One or more customer tasks are already queued (waiting for
service) at entry S2 of the server task.

(b) The server task is not marked as waiting for a call of entry
S2.

the above conditions is true, a rendezvous is
task scheduler is invoked and actions (a) and (b)
take place:

(a) The customer (executing) task's state is changed from RUNNING
to SUSPENDED and the customer task is placed at the head of the
entry queue for entry S2 of the pointed-to server. All dynamic
components of the machine state are saved in the administrative
data area of the queued customer task. (Note that if a
subprogram had executed the CALL ENTRY CONDITIONALLY instruction,
the static components of the state would also be saved if the
Static Save Flag is "zero".)

(b) If the server task is SUSPENDED and marked as waiting for a
call of entry S2 (it had executed an ACCEPT ENTRY instruction but
no task had called that entry or it had executed a WAIT
instruction after being marked during a SELECT ACCEPT instruction
as waiting for a call of entry S2), its state is changed to READY
and it is placed at the tail of the ready queue corresponding to
the higher priority of the customer and server tasks. As
described for the CALL ENTRY instruction, the address of the

If neither of
possible. The
or (a) and (c)

tavrt&ta^^

.^\r." .'TT^V^T.T:!'. .<*, f.T.'' ..,'.'.» •'', ..'i» •: »,'V I,'','i ». •. •.'•—»:• •.••• ,T •-•—i . »f»T» • •'*'

SELECT ACCEPT (or ACCEPT ENTRY) instruction corresponding to
entry S2 is transferred to the location in the administrative
data area of the server task that contains the "execution
resumption address" of the server. The server task, when
scheduled to run, will resume execution at the proper SELECT
ACCEPT (or ACCEPT ENTRY) instruction. The server task ceases to
be marked as waiting for any entry to be called or delay to
expire.

Note: When the server task is scheduled to run, the rendezvous
will proceed (parameters passed to ACCEPT body which is then
executed).

(c) If the server task is READY and is marked as waiting for a
call of entry S2 (it had executed a SELECT ACCEPT instruction but
no customer task had called the entry), the address of SELECT
ACCEPT of entry S2 is moved to the location that contains the
server's execution resumption address as described above and the
server task ceases to be marked as waiting for any entry to be
called or delay to expire. The server task is moved to the ready
queue corresponding to the customer task's priority if that
priority level is higher than the server task's level. The
rendezvous proceeds as described in the Note under (b) above.

If the server task is COMPLETED when one of its entries is
called, a TASKING_ERROR is raised in the customer task at the
point of call. If an exception is raised while the ACCEPT body
is executing, the local exception handler is entered. If,
however, no local handler is defined for the ACCEPT body, the
exception is raised in the server task following the ACCEPT ENTRY
or SELECT ACCEPT instruction. Further, the scheduler is invoked
which changes the customer task's state to READY. TASKING_ERROR
pending is set. If the customer task is SUSPENDED in rendezvous
(ACCEPT body executing) when the server task becomes abnormally
COMPLETED, the scheduler changes the state of the customer task
to READY and TASKING_ERROR pending is set in the customer task.
If the customer task becomes ABNORMAL during a rendezvous, the
rendezvous is finished and then the scheduler changes the
customer task's state to COMPLETED.

Except ions:
PROGRAM_ERROR
CONSTRAINT_ERROR
TASKING ERROR

>i<*~>2tt&

^•...:v,.J<.A.VA.,,.AV.,.,.,.,.,. j. ..•••i.p..;iT.,.i,').'i-.»il-y,i.Tij K'\~ :>VK" :•:':-v. *.•••:•».• *. ^•••-^ •. -.-^-

9.4.9 CALL ENTRY WITH TIMEOUT

Format: 81H, SI, S2, S3, S4, S5,...

Mnemo nie: CALENT

Operands:
SI: Pointer to Server Task
FMT: memory (0)

SI addresses a pointer to the server
task.

S2: Entry Number of Server Task
FMT: memory (0) or immediate (EXT,2)

S3: Label
FMT: immediate (EXT,2), interpreted as a label operand

S4: Delay Amount
FMT: memory (0) or immediate (EXT,2)

Note: If no parameters are passed via memory transfer,
then no additional operands are present in this
instruction.

S5,...: Actual Parameters
FMT: ~ memory (0) or immediate (EXT,2)

Note: Any number of parameters may be passed via memory
transfer. Any two may be combined in a 2-operand compact
format.

9-29

Function:
This instruction attempts to call the entry, given by S2, of the
server task identified by the pointer addressed by SI. The
pointer must have READ authority for the server task. The number
of entries, NE, is retrieved from the server task's
administrative data area and the following condition must be met
(else a CONSTRAINT_ERROR is raised):

0<»S2<=NE-1.

As with the CALL instruction, CALL ENTRY WITH TIMEOUT is
processed only up to the actual parameter operands; thus, the
execution resumption address (value in the program counter) that
is saved in the customer task's administrative data area when the
customer is SUSPENDED addresses the word following operand S4
(delay amount). Parameters that are to be passed by memory are
bound during execution of the BIND PARAMETERS instruction (first
instruction of the ACCEPT body) which requires access to both
actual and formal parameters. BIND PARAMETERS completes the
processing of the operands of the CALL ENTRY WITH TIMEOUT
instruction.

Parameters that are passed by registers are loaded into parameter
registers (16..31) at some points during execution of the
customer task program. During CALL ENTRY WITH TIMEOUT, the
registers specified in the Valid Parameter Mask (See Section
6.2.1) are saved (as part of the dynamic machine state) in the
customer task's administrative data. area. These values are
restored in the registers by the server task when the
instruction, ACCEPT ENTRY or SELECT ACCEPT, is executed provided
that a customer task is queued on the accepted entry.

The delay amount, S4, is specified in units of 50 micro-seconds.
If the delay is zero or negative, execution of this instruction
is the same as CALL ENTRY CONDITIONALLY. If the delay is
positive, the task scheduler changes the state of this (customer)
task to SUSPENDED and puts it on the entry queue for entry S2 of
the pointed-to server; timing of the delay begins. All dynamic
components of the machine state are saved in the administrative
data area of the queued customer task. (Note that if a
subprogram had executed the CALL ENTRY WITH TIMEOUT instruction,
the static components of the state would also be saved if the
Static Save Flag is "zero".) If the pointed-to server task is
not marked as waiting for a call of entry S2 and does not execute
a SELECT ACCEPT or ACCEPT ENTRY instruction before the delay
expires and/or if other customer tasks are queued on entry S2 up
to the time the delay expires, then no rendezvous takes place.

9-30

• » •» • • • • • - • • - Tm • • • « "* - * — - * - • > * _ > - " _ * .

The scheduler changes
removes it from the
address stored in the
task becomes "address
label offset, S3".

the state of the customer task to READY and
entry queue. The execution resumption
administrative data area of the customer
of first instruction of customer task •

When conditions
invoked and the

do permit a
actions in (a)

rendezvous,
(b), or (c)

the task scheduler
take place:

is

(a) If the server task is SUSPENDED and marked as waiting for a
call of entry S2 (it had executed an ACCEPT ENTRY instruction but
no task had called that entry or it had executed a WAIT
instruction after being marked during a SELECT ACCEPT instruction
as waiting for a call of entry S2), its state is changed to READY
and it is placed at the tail of the ready queue corresponding to
the higher priority of the customer and server tasks. As
described for the CALL ENTRY instruction, the address of the
SELECT ACCEPT (or ACCEPT ENTRY) instruction corresponding to
entry S2 is transferred to the location in the administrative
data area of the server task that contains the "execution
resumption address" of the server. The server task, when
scheduled to run, will resume execution at the proper SELECT
ACCEPT (or ACCEPT ENTRY) instruction. The server task ceases to
be marked as waiting for any entry to be called or delay to
expire.

Note: When the server task is scheduled to run,
will proceed (parameters passed to ACCEPT body
executed).

the rendezvous
which is then

(b) If the serve
call of entry S2
no customer task
ACCEPT of entry
server's executi
server task ceas
called or delay
queue correspond
priority level i
rendezvous proce

r task is READY
(it had executed
had called the

S2 is moved to
on resumption add
es to be marked
to expire. The s
ing to the cus
s higher than
eds as described

(c) If the server task executes
instruction for entry S2 while
delay is reset and a rendezvous
under (a).

and is marked as waiting for a
a SELECT ACCEPT instruction but
entry), the address of SELECT
the location that contains the

ress as described above and the
as waiting for any entry to be

erver task is moved to the ready
tomer task's priority if that
the server task's level. The
in the Note under (a) above.

a SELECT ACCEPT or ACCEPT ENTRY
the delay is being timed, the
ensues as described in the Note

If the server task is COMPLETED or becomes COMPLETED before the
delay expires when one of its entries is calLed, a TASKING_ERROR
is raised in the customer task at the point of call. If an
exception is raised while the ACCEPT body is executing, the local
exception handler is entered. If, however, no local handler is

9-31

:v:ic^ &&&&&&&£££ -•-<-.<•: A

~.»-'.".*-".^-.'-'".^*1.* v.rLr.'.".".r.v
>, '.v.'-".'-' v.'-v. v^v^r

defined for the ACCEPT body, the exception is raised in the
server task following the ACCEPT ENTRY or SELECT ACCEPT
instruction. Further, the scheduler is invoked which changes the
customer task's state to READY. TASKING_ERROR pending is set.
If the customer task is SUSPENDED in rendezvous (ACCEPT body
executing) when the server task becomes abnormally COMPLETED, the
scheduler changes the state of the customer task to READY and
TASKING_ERROR pending is set in the customer task. If the
customer task becomes ABNORMAL during a rendezvous, the
rendezvous is finished and then the scheduler changes the
customer task's state to COMPLETED.

Exceptions:
PROGRAM_ERROR
CONSTRAINT_ERROR
TASKING ERROR

9-32

v.V tä&/täAtt£/&*y£*&:*sz: •- •- v ••-- •- -•:.. r..-:^-cV.'' •;:•.!

••• V- V-'».,-T-> gT»TTt« '.••"- A".'-'.*-""i^lT, ^P^ffffr ^ ' U« l« rr.

9.4.10 ACCEPT ENTRY.

Format: 82H, SI, S2

Mnemonic: ACCEPT

Operands:
SI: Entry Number of Server Task
FMT: memory (0) or immediate (EXT,2)

S2: Formal Parameter Mask
FMT: immediate (EXT,2)

Function:
This instruction attempts to accept, on behalf of the executing
server task, a customer task's call of the entry given by SI. If
one or more customer tasks are SUSPENDED on the entry queue for
entry SI, the customer task at the head of the queue is taken off
the queue (still SUSPENDED) and a rendezvous takes place. Values
in parameter registers saved in the administrative data area of
the customer task during CALL ENTRY, CALL ENTRY CONDITIONALLY, or
CALL ENTRY WITH TIMEOUT are now restored in the registers. Only
those registers, if any, designated by the Valid Parameter Mask
are restored. As in the CALL SUBPROGRAM instruction, the "Is" in
the Formal Parameter Mask (operand S.2) must be matched by "Is" in
the Valid Parameter Mask, else a •PROGRAM_ERROR exception is
raised. The instruction following ACCEPT ENTRY is the start of
the ACCEPT body; if parameters are passed via memory, this
instruction is BIND PARAMETERS. The exception mode of the server
task is changed from NORMAL to ACCEPT BODY. The instruction, END
RENDEZVOUS, marks the end of the ACCEPT body.

9-33

£rt;w;;£ra;^^

vyr, v, ••. J .','• .'r.1'.^ f'lM;1!;1!,1!.!!.!1, . i i i» :.-».^v l-i '.-. ;-. • r •-r.

If no customer task is present on the entry queue for entry SI,
the server task is marked as waiting for a call to entry SI and
the address of the ACCEPT ENTRY instruction is stored in a
location in the administrative data area of the server task
corresponding to entry SI (to be moved to the location that
contains the "execution resumption address" of the server by the
first CALL ENTRY, CALL ENTRY CONDITIONALLY, or CALL ENTRY WITH
TIMEOUT instruction that calls entry SI of this server task).
The dynamic components of the machine state are saved in the
administrative data area of the server task. The scheduler then
changes the state of the server task to SUSPENDED.

Exceptions:
PROGRAM_ERROR
STORAGE ERROR

9-34

". :" -••. '^. -r:1^. T: •*•. rTr^rT^TTT^r^T'' _

9.4.11 END RENDEZVOUS.

Format: 83H» D

Mnemonic: ENDRNV

Operands:
D: Label Offset
FMT: immediate (EXT,2), interpreted as a

label operand.

Function:
This instruction marks the end of the ACCEPT body and the end of
the rendezvous. The Valid Parameter Mask is cleared, the
priority level of the server task is lowered to its pre-
rendezvous value (if it had been raised to the customer's level
during rendezvous), the exception mode of the server task is
changed from ACCEPT BODY to NORMAL, and the "execution resumption
address" of the server task (value in program counter) is changed
to "address of first instruction in server task program + label
offset" (done to handle the case when the ACCEPT body follows a
SELECT ACCEPT instruction and other SELECT alternatives must be
skipped over). Then, the task scheduler is invoked which changes
the state of the customer task from SUSPENDED to READY and places
it on its ready queue. A task is scheduled to run (server task
unless another task, e.g., the customer, is extant on a higher
priority ready queue).

Exceptions:
None

9-35

tttt&rftftett^^ ^•A-:W:- .^^>£&£taa

•• »•« ^ '^ •< . I. A W r."A •.' •,".' '•" r' ^' <•' l' •• y r '•' '• ••• '. '!"Mvi.»i !••' v • a - » • i- »- "»-T-r^

.12 DELAY.

mat: 84H, S

mon i c: DELAY

rands:
Delay Amount

MT: memory (0) or immediate (EXT,2)

iction:
s instruction delays execution of the RUNNING task by an
lunt specified by operand S. The delay amount is expressed in
iber of seconds, up to the maximum representable by the
:hine. The quantization used is 50 micro-seconds. (In one
r, 1,728*10° "ticks" would occur, counting off a delay of
,400.00000 seconds.) Floating point is needed to represent
Ltiples of .00005 seconds. If S is an immediate operand,
Lays in units of whole seconds are represented. Negative delay
Lues are interpreted as zero delay. If the delay is negative
zero, this instruction is a NO-OP. If the delay is positive,

? task is marked as waiting for a delay to expire. The task
leduler is invoked and the task's state is changed to
SPENDED. When the delay expires, the scheduler changes the
sk's state to READY and puts it at the tail of its ready queue.
e task ceases to be marked as waiting for a delay to expire.

reptions:
ROGRAM ERROR

9-36

" • . T.vr,'_ r-.' -^^T'.^-.v • v •'.»'.» . '•^•.-'r'Tr.T.ii.T.^-vi

.4.13 SELECT ACCEPT.

ormat: 85H, SI, S2, S3

hemonic: SACCPT

ipe rands:
SI: Entry Number of Server Task
FMT: memory (0) or immediate (EXT,2)

•
S2: Formal Parameter Mask
FMT: immediate (EXT,2)

S3: Label Offset
FMT: immediate (EXT,2), interpreted as a

label operand.

function:
This instruction executes an open ACCEPT alternative of the Ada
SELECT statement. If one or more customer tasks are SUSPENDED on
an entry queue for entry SI, the customer task at the head of the
jueue is removed from the queue (still SUSPENDED) and a
rendezvous takes place. The server task ceases to be marked as
waiting for any entry calls. Values in parameter registers saved
in the administrative data area of the customer task during CALL
ENTRY, CALL ENTRY CONDITIONALLY, or CALL ENTRY WITH TIMEOUT are
now restored in the registers. Only those registers, if any,
designated by the Valid Parameter Mask are restored. As in the
CALL SUBPROGRAM instruction, the "Is" in the Formal Parameter
Mask (operand S2) must be matched by "Is" in the Valid Parameter
Mask, else a PROGRAM_ERROR exception is raised. The instruction
following SELECT ACCEPT is the start of the ACCEPT body; if
parameters are passed via memory, this instruction is BIND
PARAMETERS. The exception mode of the server task is changed
from NORMAL to ACCEPT BODY. The instruction, END RENDEZVOUS,
marks the end of the ACCEPT body.

9-37

^•:-V^^.>V-%^v-^J-.y^0- .-.y...".y..-._.-.y.^^- --..\^.fofi« ^^>S-->:.^>>'>>>>>:,-->>\

no customer task is present on the entry queue for entry SI,
; server task is marked as waiting for a call to entry SI, the
Iress of the SELECT ACCEPT instruction is stored in a location
the administrative data area of the server task corresponding
entry SI (to be moved to the location that contains the
cecution resumption address" of the server by the first CALL
TRY, CALL ENTRY CONDITIONALLY, or CALL ENTRY WITH TIMEOUT
»truction that calls entry SI of this server task). Then,
jgram control is transferred to the address of the first
»truction of the server task program + label offset. (In this
»e, other SELECT alternatives should be evaluated or, if none
i there are no instructions corresponding to an ELSE part, the
[T instruction should be executed.)

reptions:
*OGRAM_ERROR
TORAGE ERROR

9-38

::••::•>:<•: •:-.:< \-:N^:A- I-^_ ^£ i-^-i-i-

•jTTTrr " ~. ' ~-T ^.- w.". ^"" ^ " •-" ^." ".1

.4.14 WAIT.

ormat: 86H

nemonic: WAIT

perands:
None

unction:
his instruction
lternatives were
ustomer tasks we
ilternatives or a
»reviously marked
o each ACCEPT
icheduler. When
:hanges the serve
larked as waiting
raller (customer
scheduled to run.
:or any entry cal

exceptions:
PROGRAM ERROR

is executed when one or more open ACCEPT
selected by the executing (server) task but no

re queued on entries and no other open SELECT
n ELSE part were present. The server task,
as waiting for a call of an entry corresponding
alternative, is now SUSPENDED by the task
one' of the entries is called, the scheduler

r task's state to READY, the task ceases to be
for any entry call, and a rendezvous with the

task) ensues as soon as the server task is
If the server task is not marked as waiting

1, the PROGRAM_ERROR exception is raised.

9-39

• •-•V •>>'.>: •«
'.•.".x.fi.L.1.1

J

•xv? ?-7 •"" r- '"'r«. .,»•-"r. r.'v. r. 7 •;•.:»•:» •.•*•.••• •.» •> -T'.IT^.T»g^r»y> vT* .•* r* .%• v* .-• -•-.•• v- -.-.v. v

9.4.15 SELECT DELAY.

Format: 87H, S

Mnemonic: SDELAY

Operands:
S: Delay Amount
FMT: memory (0) or immediate (EXT,2)

Function:
This instruction executes an open DELAY alternative of the Ada
SELECT statement. Execution of the RUNNING task is delayed by an
amount specified by operand S. The delay amount is expressed in
number of seconds, up to the maximum representable by the
machine. The^quantization used is 50 micro-seconds. (In one
day, 1,728*10° "ticks" would occur, counting off a delay of
86,400.00000 seconds.) Floating point is needed to represent

t multiples of .00005 seconds. If S is an immediate operand,
' delays in units of whole seconds are represented. Negative delay

values are interpreted as zero delay. If the delay is negative
or zero, the instruction immediately following SELECT DELAY is
executed If the delay is positive, the task is marked as
waiting for a delay to expire and the dynamic components of the
machine state are saved in the administrative data area of the
task. The task scheduler is then invoked and the task's state is
changed to SUSPENDED. The task may also have been marked as
waiting for a call of one or more of is entries. The task
scheduler is again invoked when an entry of this task is called
or the delay expires, whichever occurs first. Then, the state of
the task is changed to READY, the task ceases to be marked as
waiting for any delay expirations or entry calls, and, when the
task is scheduled to run, the machine state is restored and the
task either enters a rendezvous with a caller (customer) or
continues execution at the instruction immediately following
SELECT DELAY. (A GOTO instruction can be used at the end of the
sequence of instructions following SELECT DELAY to skip over
other SELECT alternatives.)

Exceptions:
PROGRAM ERROR

9-40

.".-•.v^V.-A .'.•.r,T.|,,,s1^ .'A".\s A?-".l'.'. 13. .V3- L'-1!.'-'.'• '.'I'''•'.' |y.,-?-'HW.3'-'-'.'. L'.1»':" ••"

9.4.16 SELECT ELSE.

Format: 88H

Mnemonic: SELSE

Operands:
None

Function:
This instruction is executed when one or more open ACCEPT
alternatives were selected but no callers were queued on entries
and no other SELECT alternatives were present. The task ceases
to be marked as waiting for any entry call. The instructions
corresponding to the ELSE sequence of statements in Ada are next
executed.

Exceptions:
None

9-41

^y^^^y::^:\y.:^^-^-:^<y. ..W
•-."••-" •'"'-' fid •-:• - •--•>•' •-••-•..• •-•

f ."..* •"•• '^ '^''.'» '.» '- *:.•»•.•»••» '.>'.•» .•»'--« i ».»UTC*T»C^vr»-.-• -.

9.4.17 SELECT TERMINATE.-

Format: 89H

Mnemonic: STERM

Operands:
None

Function:
This instruction executes an open TERMINATE alternative of the
Ada SELECT statement. If the termination conditions as described
in Appendix C are met, the task becomes TERMINATED. Storage for
the task object's activation record is reclaimed. Further,
storage is reclaimed for any data object that designated this
task in a CREATE DATA OBJECT instruction. (Designation of the
task in the CREATE DATA OBJECT instruction means, at the Ada
program level, that the data object's access type was declared in
the task program.) If any customer tasks are queued on entries
of this server task, the scheduler removes them from the entry
queues, changes their state from SUSPENDED to READY, and sets
TASKING_ERROR pending in each. If the termination conditions are
not met, the task is marked as potentially terminated and the
task scheduler is invoked which changes the state of the task to
SUSPENDED. This (server) task may also be marked as waiting for
entry calls (if it had previously executed SELECT-ACCEPT
instructions with no queued customer tasks). Then, if a call to
one of the marked (ACCEPTed) entries arrives before the
termination conditions are met, the scheduler changes the task's
state from SUSPENDED to READY, the task ceases to be marked as
potentially terminated and waiting for any entry call, and a
rendezvous ensues as soon as this server task is scheduled to
run. If the termination conditions are met before a call to a
marked entry arrives, the task is TERMINATED by the task
scheduler and any customer task queued on an unmarked (not
ACCEPTed) entry of this server task is removed from the queue
with its state changed to READY and TASKING_ERROR pending set.

Exceptions:
None

9-42

rTy^-f t- •-;',-;'A-.T •••:-'.- ".-v-«.-^ x-i-.*.-ir--.- «rTT^iT.-.-v... - . -

9.4.18 RETURN from TASK.

Format: 8AH

Mnemon i c: RETTSK

Operands:
None

Function:
This instruction signals the normal completion of a task program.
The task becomes COMPLETED but must wait to be TERMINATED until
each of its dependent tasks, if any, becomes TERMINATED. When
TERMINATED, storage for the task object's activation record is
reclaimed. Further, storage is reclaimed for any data object
that designated this task in a CREATE DATA OBJECT instruction.
(Designation of the task in the CREATE DATA OBJECT instruction
means, at the Ada program level, that the data object's access
type was declared in the task program.) The task scheduler is
invoked to schedule another task.

Exceptions:
None

9-43

k££&£&&&£&&£^^

> '.-> --«i^-Sr»..-* J^TWV^^U^^l^l^'.^r^-l^X*^ V*'1-'.^'.'*1'.'''''.**''. 'V' '.'»'.' '.'•'V» • ». - T ''J ,« g1» T, *• T ' ' '. ' J — ': « '. ».1 » i'l'l »_. •> ._•,-!-_..-,

9.4.19 SCHEDULE TASK.

Format: 8BJJ, D

Mnemon i c: SCHDL

Operands:
D: Pointer to Task
FMT: memory (0)

D addresses a pointer to the next task to
be scheduled.

Function:
The pointer, which must have WRITE authority, designates the next
task to be scheduled. This task, is placed at the head of the
highest priority ready queue. Individual task priority, if any,
that was assigned by the compiler and written in the package
header for the task, is ignored. If the designated task is not
READY, a PROGRAM_ERROR exception is raised.

Comment:
This instruction, which explicitly schedules a task regardless of
task priority, is meant to be part of a user scheduler task that
replaces the standard Ada-specific microcode scheduler. This
microcode reduces to a single function: whenever a task changes
state and the microcode is entered (meaning that a scheduling
decision must be made, per Section 9.2), the user scheduler task
is always scheduled for execution; the state of the scheduler is
changed from SUSPENDED to RUNNING. To exit, the user scheduler
executes a DELAY instruction, suspending itself for an "infinite"
duration. (As indicated above, this state is overridden when the
microcode schedules the scheduler task.)

Exceptions:
PROGRAM ERROR

9-44

. WT. v -,-_Ti .-. i.-t v" B- v- ^.- ^-TT-«;- 3T^ST- *T •.•»." v* .•.".•.».".•- '
'••<

9.4.20 SET TASK DURATION.

Format: 8CH, SI, S2

Mnemonic: SETDUR

Operands:
SI: Time Quantum
FMT: memory (0) or immediate (EXT,2)
Immediate: SI specifies a time quantum in units of

50 micro-seconds.
Memory: SI addresses an integer that is

interpreted as the time quantum in
units of 50 micro-seconds.

S2: Priority Level of Ready Queue
FMT: memory (0) or immediate (EXT,2)
Immediate: S2 specifies a ready queue by priority

level.
Memory: S2 addresses an integer that is

interpreted as a ready queue
priority level.

Function:
The operand designated by SI is a positive integer representing
the assigned time quantum for execution of tasks on the ready
queue identified by S2 via priority level. The operand
designated by S2 is an integer of value >=0. If an activated
task is not explicitly assigned a task duration, infinite
duration is assumed when the task is scheduled to run. Tasks
scheduled to run with this time quantum relinquish the processor
only when they become SUSPENDED or COMPLETED or when the state of
a higher priority task changes from SUSPENDED to READY.

Exceptions:
PROGRAM ERROR

9-45

,4.21 ABORT TASK.

srmat: 8DH,
D

lemonic: ABORT

perands:
D: Pointer to Task to Be Aborted
FMT: memory (0)

unction:
perand D addresses the pointer to the task to be aborted; the
ointer must have DESTROY authority. If the task's state is
EADY, it is changed to COMPLETED. (However, if the task has
een created but not yet activated, it is TERMINATED.) The
ask's state is also changed to COMPLETED if the task is
USPENDED on an ACCEPT ENTRY, SELECT ACCEPT, DELAY, or SELECT
ELAY instruction. Further, if the task is a customer SUSPENDED
n an entry queue, it is removed from the queue and its state is
hanged to COMPLETED. If the task is a customer in rendezvous,
ts state is changed to ABNORMAL and the rendezvous goes to
ompletion; then, the task's state is changed to COMPLETED. In
11 cases described, when a task is aborted, every dependent task
ecomes COMPLETED or ABNORMAL, the latter only if the task is a
ustomer in rendezvous. COMPLETED tasks immediately become
ERMINATED when all dependent tasks, if any, are TERMINATED.

f a customer calls an entry of an aborted (COMPLETED) task, a
'ASKlNG_ERROR exception is raised at the point of call. If a
:ustomer is SUSPENDED on an entry queue or is SUSPENDED in

VV-A.N .'.-.•»•.••

9-46

;>::^>>SSvvv^

\" •" •" .". i". ir. w. *•.-*

rendezvous when the server task is aborted, the customer's state
is changed to READY, the customer is placed on its ready queue,
and TASKING_ERROR pending is set.

Exceptions:
PROGRAM ERROR

9-47

*£<ori-\/.> v &££& &£&2££&&£^

.-. •.-*• "„-v .-^ fi l-v •.•»J-'v >••* •.-» :-* \n> '.-g •-,

10 POINTERS

A pointer can designate a storage obj
variable or constant global area of a
Read, write, and destroy authorities
are specified in the pointer. A poin
returned by each instruction that crea
base addresses of the storage object i
in data value memory are contained in
shows the contents of the pointers
instruction.

ect, a data
package, or
for the poin

ter to a stor
tes a storage
n data templa

the pointer
returned by

entity in the
a subprogram,
ted-to entity
age object is
object. The

te memory and
. Table 10.1
each "create"

Table 10.1 Pointers to storage object.

|< POINTER >l

1 Instruction Addresses R ights !

1 CREATE 1. R, W, D 1
1 TASK 2.absolute address of task's
1 OBJECT automatic data temp Late

3.absolute address of task's
AR

1 CREATE 1. R, w 1
1 PACKAGE 2.absolute address of VGD
1 OBJECT template

3.absolute address of VGD

1 CREATE 1. R, W
1 DATA 2.absolute address of DO
1 OBJECT template

3.absolute address of DO

1 CREATE 1.unique name R, W, D 1
1 UNCHECKED 2.absolute address of DO
1 DATA template
1 OBJECT 3.absolute address of DO

In Table 10.1, AR = Activation Record, VGD = Variable Global
Data, DO = Data Object, R = Read authority, W = Write authority,
and D = Destroy authority. Note, in Table 10.1, that CREATE
PACKAGE OBJECT represents the two instructions, CREATE NON-NESTED
PACKAGE OBJECT and CREATE NESTED PACKAGE OBJECT; both
instructions return the same pointer format.

10-1

v£^i^ „> ,-WL> „>
V ^' O «•' <-• .-« - /./>£* Z+&tttJtitit

I."" .v.^'..•% v.v,"-",.*• •_»..'»:•_« •»,-•• w« v" j« «r"J" '•.'

pointer to a task object, the absolute address of the
/ation record in data value memory can be used to access
es in the adjacent task administrative data. (Base address
iministrative data = absolute address of activation record
) In a pointer to a package object, the absolute address of
variable global data template can be used to access values in
adjacent package header. (Base address of header = absolute
ess of variable global data template -1.) The absolute
ess of the variable global data in data value memory can be
to access values in the adjacent package administrative

(Base address of administrative data • absolute address of
able global data -1.) Finally, in a pointer to a data
ct, the absolute address of the data object in data value
ry can also be used to access values in the adjacent data
ct administrative data. (Base address of administrative data
solute address of data object -1.)

ecked storage deallocation, programmed at the Ada Level,
ws explicit deallocation of dynamically allocated data
cts. Execution of the instruction, DESTROY DATA OBJECT,
d leave dangling references (pointers to objects that no
er exist). To detect dangling references, data objects can
reated with the CREATE UNCHECKED DATA OBJECT instruction that
gns a 24-bit unique name to the data object, stores it into
pointer, and sets the unique name flag (see pointer format in
ion 3.4). A unique name will not be reassigned until 224

erent names have been assigned to data objects that are to be
. icitly destroyed. (Note that the normal procedure for
roying a data object is to wait for the destruction of the
age object in which the Ada access type was declared.) When
iique name is assigned, it is stored in a system-wide Unique
! Table; when the pointed-to data object is destroyed, its
[ue name is deleted from the table, never, in principle, to
>pear. Any reference via a pointer to a data object in which
unique name flag is set requires a check for the existence of
unique name in the table. If the unique name is not in the
.e, a CONSTRAINT_ERROR is raised.

auctions are provided which assign values to pointers to data
ties in the variable and constant global data of local and
srnal packages and to non-nested subprograms in external
cages. These pointers support the Ada context clause
'H/USE). Table 10.2 shows their contents.

10-2

•".'•'.*»•. »•;••••.

Table 10.2 Explicitly assigned pointers.

|< POINTER •>l

INSTRUCTION ADDRESSES RIGHTS

ASSIGN POINTER
TO GLOBAL DATA

ASSIGN POINTER
TO EXTERNAL VGD

ASSIGN POINTER
TO EXTERNAL CGD

ASSIGN POINTER
TO EXTERNAL
PROGRAM

1.
2.absolute address of data
entity in VGD (or. CGD)
template

3.absolute address of data
entity in VGD (not used for
CGD)

R, W
(see note)

absolute address of data
entity in VGD template of
external package
absolute address of data
entity in VGD of external
package

1.
2'. absolute address of data
entity in CGD template of
external package

3.

1.offset to program component
in external package header

2.absolute address of
external package header

3.absolute address of
external package adminis-
trative data

R, W
(see note)

R

In Table 10.2, VGD = Variable Global Data, CGD = Constant Global
Data, R = Read authority, and W • Write authority.

Note: The rights indicated may be further restricted by certain
conditions existing when a particular instruction that
assigns a value to a pointer is executed-(see Sections
10.1 and 10.2).

In a pointer to an external
in an external package), the
the package header gives

program (subprogram or task program
offset to the program component in

the relative location, in number of

10-3

LuV. ••• .'-•••••• •:••:•'.• •_• c* »_• ^' ^-.
•..--

.«. •- * •.'.•. •-. _•.'."JA'AL^'.<<.•.*. V.V '. • •-•

is, of
3 ram.

a five-word packet of information pertinent to the

i a data entity in the variable global data area of a local or
»rnal package is referenced via a pointer, the residency bit
;cts the address in data template memory (pointer word 2) or
iata value memory (word 3). When a data entity in the
ätant global data area is referenced, the address in template
Dry (pointer word 2) is always used.

iters can be moved to any visible location in the local
tage and to the global data area of an external package (to
ieve linking). Pointers can be passed as parameters and can
B their rights restricted. For security, initial values of
iters, preset by the compiler, are not permitted. Only the
nine can load values into pointers. When packages are loaded,
iter values are set to NULL (undefined bit = 1 interpreted as
L). NULL pointers designate no entity.

D and WRITE authorities for data entities simply allow the
nted-to data to be examined and modified, respectively,
ever, when these authorities appear in a pointer to a task
ect or a subprogram, their meaning depends on the particular
truction in which the pointer is an operand and is described
ividually for each such instruction. DESTROY authority allows
explicit destruction of certain storage objects. Present in
pointer which is an operand of a DESTROY DATA OBJECT
truction, it permits the destruction of the pointed-to data
ect. Present in a pointer which is an operand of an ABORT
K instruction, it permits the destruction of the TASK OBJECT
suming dependency conditions permit the COMPLETED task to
Dixie TERMINATED). Note that packages and activation records
never destroyed explicitly.

Section .<. 4 for a description of the pointer format.

10-4

A/\.«%y\j»> ."• •*• .*• •>.«"•/• •"-'."»V* /• .v.y.v v v .
OJLL .v.v.v,

•.'• -•vr.-r.%-'v-.v.^n'^-^T^-.«rq.ik'^H'.'':''«».1.«.»-: *•. •-. r.

,1 ASSIGN POINTER TO GLOBAL DATA,

-mat: 8EH, SI, D

»mon i c: ASNGPD

Brands:
L: Data Entity in Global Data Area
FMT: memory (0)

: Assigned Pointer
FMT: memory (0)

nction:
is instruction generates a pointer to a data entity located in
e variable or constant global data area of the enclosing
ocal) package. SI is the address of the data entity. The
dress space, ADS, must be 0 or 15, designating either display
gister 0 (that contains the base addresses of the package
riable global data and its template) or display register 15
hat contains the base address of the package constant global
ta in template memory). The absolute addresses of the data
tity are computed as follows:

(a) ADS =0

• Address in data template memory = base address of
variable global data template + cell offset.

• Address in data value memory = base address of variable
global data + cell offset.

(b) ADS = 15

• Address in data template memory • base address of
constant global data + cell offset.

le following values are assigned to the pointer addressed by D:

(a) ADS « 0

• WORD 1 - ENT <« Oil (data entity in variable global data
area).

- RIGHTS <= READ, WRITE (see Note).

• WORD 2 - Absolute address of .dat.. entity in variable
global data template.

10-5

•^T" p^r*^—^'«'. w <*. *.< • '. U • I IP w T^T" 1

WORD 3 - Absolute address of data entity in. variable
global data area in data value memory.

ADS 15

• WORD 1 - ENT <= 100 (data entity in constant global data
area).

- RIGHTS <= READ.

• WORD 2 - Absolute address of data entity in constant
global data area.

• WORD 3 - Not used.

If SI addresses a pointer or a formal reference parameter,
the values in the three words of the pointer or formal
reference parameter are copied into the pointer addressed
by D. Hence, the rights to a data entity in the variable
global data area may be restricted (i.e., not READ and
WRITE). If a formal reference parameter is addressed by
SI, it must have an ENT field or Oil or 100 (global data).

a pointer to a data entity in the variable global data area
»ferenced (ENT = Oil), the residency bit selects the absolute
?ss in word 2 or word 3 of the pointer. When the data entity
l the constant global data (ENT = 100), the absolute address
)rd 2 is always used.

itions:
}RAM ERROR

10-6

•\y.y.v. .•-.:<••.:•• rav: o

7» -"* -"• ~- . "-

10.2 ASSIGN POINTER TO EXTERNAL VGD.

Format: 8FH, SI, S2, D

Mnemonic: ASNPXV

Operands:
SI: Pointer to External Package
FMT: memory (0)

S2: Offset to Data Entity in Variable Global Data
FMT: immediate (EXT,2)

D: Assigned Pointer
memory (0)

Function:
This instruction generates a pointer to a data entity located in
the variable global data area of an external package. SI is the
address of a pointer to the external package. S2 is the offset
to the data entity in question in the variable global data area
of this package. The absolute addresses of the data entity are
computed as follows:

o Address in data template memory = base of variable global
data template (retrieved from word 2 of the pointer to the
external package) + cell offset (operand S2).

o Address in data value memory = base address of variable
global data (retrieved from word 3 of the pointer to the
external package) + cell offset (operand S2).

The following values are assigned to the pointer addressed by D:

o WORD 1 - ENT <= Oil (data entity in variable global data
area).

- RIGHTS <= READ, WRITE (See Note).

o WORD 2 - Absolute address of data entity in variable
global data template.

o WORD 3 - Absolute address of data entity in variable
global data area in data value memory.

Note: The rights to the data entity are READ and WRITE only if
the pointer to the package has these rights. Lesser
rights in this pointer restrict the rights given to the
generated pointer.

10-7

'rvvvA'yvr'.'».''.^-' v« -.'••'V'»'»v.«. »•; T »•. TS "• "*:>-.' '.\ i-. <-*. •*. '•-. ••. •-":*:••

When the generated pointer is referenced, the residency bit
selects the absolute address in word 2 or word 3.

Except ions:
PROGRAM ERROR

10-8

10.3 ASSIGN POINTER TO EXTERNAL CGD.

Format: 90H, SI, S2, D

Mnemonic: ASNPXC

Operands:
SI: Pointer to External Package
FMT:' memory (0)

S2: Offset to Data Entity in Constant Global Data
FMT: immediate (EXT,2)

D: Assigned Pointer
FMT: memory (0)

Function:
This instruction generates a pointer to a data entity located in
the constant global data area of an external package. SI is the
address of a pointer to the external package. S2 is the offset
to the data entity in question in the constant global data area
of this package. The absolute address of the data entity is
computed as follows:

• Address in template memory = base address of variable global
data template (retrieved from word 2 of the pointer to the
external package) + size of variable global data area
(retrieved from the package descriptor located at the address
in word 2 of the pointer to the external package -1) + cell
offset (operand S2).

The following values are assigned to the pointer addressed by D:

• WORD 1 - ENT <= 100 (data entity in constant global data
area).

- RIGHTS <= READ.

• WORD 2 - Absolute address of data entity in constant
global data area.

Note:

• WORD 3 - Not used.

The rights in the pointer to the external package must
include READ.

Exceptions:
PROGRAM ERROR

10-9

^*&&teX&&K^^

i . ,ii_,iMi, _i. _ , ,wm,j ii j 11 i j ti_ fin wm i JI. i.i ^ r_ IF.'PTT^
1
'. *. • . -*'*'. =*. ^J»1! "*. •*• •'.*•: r: v. r^« •, r. r-j ^; f. T-. -r, IT.'»-, r. »-. w »

10.4 ASSIGN POINTER TO EXTERNAL PROGRAM.

Format: 91H» SI, S2, D

Mnemonic: ASNPXP

Operands:
SI: Pointer to External Package
FMT: memory (0)

S2: Offset to Program Component in Package Header
FMT: immediate (EXT,2)

D: Assigned Pointer
FMT: memory (0)

Function:
This instruction generates a pointer to a non-nested program
(subprogram or task program) in an external package. SI is the
address of a pointer to the external package. S2 is the offset
in the external package header to the subprogram or task program
component (a 5-word packet of information pertinent to the
program). The following values are assigned to the pointer
addressed by 0:

• WORD 1 - ENT <» 101 (program in external package).

- RIGHTS <= READ.

- Offset, in number of words, to program component
in package header (operand S2).

• WORD 2 - Absolute address of external package header
(address in word 2 of the pointer to the
external package - 1).

• WORD 3 - Absolute address of external package
administrative data area (address in word 3 of
the pointer to the external package -1).

Note: The rights in the pointer to the external package must
include READ.

Exceptions:
PROGRAM ERROR

10-10

•A .*.v '.v.M. l. V,t Wll trvil.'gWVkLl '3 !5i g« W ':•. H-1 .^ll'J IV .1 'I'. .•• L'J.'. IM'- '.'J". 'A ,'. •> *^T"^X.". v *. '.'':' ».• •_ »a

10.5 RESTRICT ACCESS RIGHTS.

Format: 92H, SI, D

Mnemonic: RSTRCT

Operands:
81-1
FMT:

D:
FMT:

Access Rights Restrictions
immediate (EXT,2)

Pointer Whose Rights Are Restricted
memory (0)

Function:
This instruction lowers one or more of the authorities of the
pointer addressed by D. SI is a 3-bit immediate operand that
controls the rights of the pointer as follows:

BIT 0: 1 - READ authority removed.

0 - no restriction imposed.

BIT 1: 1 - WRITE authority removed.

0 - no restriction imposed.

BIT 2: 1 - DESTROY authority removed.

0 - no restriction imposed.

Exceptions:
None

10-11

M^Mf^^^iÄri^&SSji:-: .:^^/>>>SV>V>:V:^ä'S^

'.•- '_•*- •:% .^ _-»• -^ -."v •-•* .

11 Exceptions

An exception is an indication that an erroneous condition has
occurred in the execution of a program. When an exception occurs
(is "raised"), normal execution of the program unit in which the
exception occurred is abandoned and is replaced by execution of
an exception handler (see below). It is not possible to continue
or resume execution at the point at which the exception occurred.

Exceptions may be predefined or user-defined. Predefined
exceptions (see Table 11.I) are raised automatically by the
machine when the corresponding erroneous condition is detected.
User-defined exceptions may only be explicitly raised by the
RAISE instruction; the RAISE instruction can also be used with
predefined exceptions. I/O devices can only raise predefined
exceptions.

An exception handler can be defined for an activation record (of
a subprogram or task program) by execution of the INITIALIZE
HANDLER instruction that specifies the address of the first
instruction of the exception handler in the corresponding
subprogram or task program.

When an exception is raised during an instruction, execution of
that instruction is abandoned after completing any operations
required to maintain the integrity of the machine, e.g. linking
into a queue). If a handler is defined in the current
environment (subprogram or task program), execution continues at
the first instruction of the handler; otherwise, the current
environment is terminated (after waiting for the termination of
any dependent tasks, as in the RETURN FROM SUBPROGRAM
instruction) and the exception is "propagated". If the current
environment is an activation record resulting from a subprogram
call, the exception is raised in the dynamically linked (calling)
environment. If the current environment is activation record of
a task program (sever task) when an ACCEPT body is executing
RENDEZVOUS extant), the exception is raised in the server task
and the customer task enters the ready state with TASKING_ERROR
pending is set. Special cases of exceptions corresponding to the
different exception modes are covered in detail in the text.

The exception handler can obtain the exception which occurred by
executing the RETRIEVE EXCEPTION instruction. The handler can
execute any instruction which is otherwise legal,including
raising the same or another exception, or any RETURN instruction.

11-1

»'. r. r. f. • .„...._.-,..,.
-".'•i •:•••> TV 'AW A •„"*;> We , ' .VTOIV.V

Table 11.I Predefined Exceptions.

Number Name

CONSTRAINT
ERROR

NUMERIC
ERROR

PROGRAM
ERROR

Raised by Machine When

1. operand falls outside range
of values specified in
ASSERT RANGE INTEGER or
ASSERT RANGE FLOATING POINT
instruction.

2. array subscript falls
outside bounds of
corresponding dimension
when an array component or
slice is referenced through
the array header.

3. instruction addresses a data
object but its unique name
is unknown to the machine
(not in unique name table).

4. attempt made to reference an
entity via a Null pointer.

1. arithmetic overflow occurs.

2. division by zero is
attempted.

3. taking square root of
negative number is
attempted.

~T~. invalid instruction
operation code or format
(FMT) detected.

2. end of subprogram's or task
program's instruction space
encountered during fetching
of an instruction.

3. stack overflow/underflow
occurs.

11-2

a&2&£S&^ •rl^C^^ ^ivd

••TP *• b'

Table 11.1 Predefined Exceptions, (continued)

Number Name

PROGRAM
ERROR

STORAGE
ERROR

Raised by Machine When

4. operand tag not compatible,
with instruction.

5. value of a label operand
would cause a branch outside
the current subprogram's or
task program's instruction
space.

6. executing WAIT instruction
and there are no open SELECT
alternatives (task not
marked as waiting for any
entry call).

7. program attempts to operate
on an entity via a pointer
or formal reference
parameter and lacks the
appropriate authority.

~T~. insufficient storage is
available in data value
memory for creation of an
activation record and
associated administrative
data, the variable global
data of a package and
associated administrative
data, (or a data object,
and associated
administrative data

2. insufficient storage is
available in data template
memory and/or in instruction
memory when space is to be
allocated for a non-nested
package (in the ALLOCATE
PACKAGE STORAGE
instruction).

11-3

viv>,-;- :•• •. <^\v.'-

. %• m . »•. i „i v'i ,i'.-i -^ .»,.*_ - '. i'.1*.".^;.<'•'*..*.':*'.^'.1i:%i .^'.^'•.m^L'^L'SWJL^IL^'.^'.^lTV,^'. ''-* .^. • •'' -^ ?*'.'> ••*• ''.

Table 11.1 Predefined Exceptions. (continued)

j Number 1 Name 1 Raised by Machine When

1 4 1 TASKING_ 1 Any of several conditions
I 1 ERROR 1 arise during task creation,
I 1 1 activation, and rendezvous
1 1 1 (see Section 9).

5-7 | RESERVED 1

1 8-31 I/O iSee Table 11.2, these exceptions
I I lare raised automatically only as
I 1 la result of performing
1 loperations on I/O devices.

11-4

^^c^a;^^^^;y^:^^ „ :<';&&

-^r ^^tTX7T^-^.-.«r «CT - - .

Table 11.2 Predefined I/O Exceptions.

1 Number 1 Name j Raised by Device When

1.8 1 NAME ERROR 1 1. a file with the specified
1 1 I file name cannot be created
1 1 1 (e.g., because a file with
1 1 1 that named already exists).

1 1 1 2. a file with the specified
1 l# 1 file name does not exist or
1 j' 1 access to the file is
1 1 1 prohibited.

j 9 | USE ERROR 1 an operation is incompatible
I 1 I with the properties of the
1 1 1 specified file (e.g., an
1 1 1 attempt is made to write to a
I 1 I protected file).

10 1 STATUS ERROR 1 an operation cannot be
1 1 1 performed on a file in its
1 1 1 present state (e.g., an attempt
1 1 I is made to read a file which is
1 1 1 not open).

1 11 I DATA ERROR 1 1. input data has the
1 1 undefined value.

1 12. input data is not of the
1 1 required type.

1 12 I DEVICE ERROR 1 an operation cannot be
1 1 completed because of a mal-
1 1 - 1 function of the underlying
1 1 system (e.g., printer runs out
1 1 1 of paper).

T

11-5

£•*>*•£& •>>i>>^!f^j ".* "*• ~J* 'V ""." ".* "J L^^±-^^:^:C^\V^^

".^ 1~- v^ V^ '."• ."*•'. '•',"- _"•'."• ". '• ' • '• l '• ' .' ' '. • '-'• ^ • '! 'I. •'^^^T^^ • .••»•' . • •. •..' • . ' . • . "_1 - v » i • :

Table 11.2 Predefined I/O Exceptions, (continued)

1 1
1 Number 1 Name Raised by Device When

13 END ERROR an attempt is made to read
beyond the end of a file.

14 LAYOUT ERROR an operation is incompatible
with the layout of the
specified file.

1 15 MODE ERROR an attempt is made to read
an OUT FILE or write to an
IN FILE.

16-31 RESERVED

11-6

•^•ir^^i^lvivN••>.••••; ,^i&£äj[&i££&^

v'^...*...'^ -' TV.'.' «•'.».'*• ''". »v *-.«•- •*-.• T-. *•; *•.• .«'f TTT»T; TW_ r. « w-z-r. w-^-wx •-.

L.l RAISE

>rmat: 93H, S

lemonic: RAISE

perands:
5: Exception Number
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

unction:
he exception specified by operand S is raised, operand S must
e a position integer (V16 or V32). The correspondence between
he exception raised and the value of the integer is shown below:

integer exception

0-7 machine predefined
8-31 I/O device predefined

31-Limit user-defined

f S is an immediate value, it is interpreted as having a V32 tag
ith sign (zero) extend.

xceptions:
PROGRAM ERROR

11-7

t&tt&Üfr^^

'•'•'•".'• .'.".*r.'"A A'.V.VA'.'.''-*.'.1 ^ •.'•l' '.'l''.'•':*-.',•'.' i'.1'.''.,''.,1 ._»•-•*'•'_"-,^J"' "• '•*•'•"•'-*.'T•":'•" •'.r~. •'.". '•"••."*1

ASSERT RANGE INTEGER

t: 94H, SI, S2, S3

nie: ASRTRI

nds:
Upper Limit ci Range

': " immediate (EXT,2), memory (0), or stack (EXT,0>

Lover Limit of Range
': immediate (EXT,2), memory (0), or stack (EXT,0)

Variable to Be Range Checked
': memory (0) or stack (EXT,0)

;ion:
le value of the operand addressed by S3 is greater than or
. to the value of the operand specified by S2 and less than
[ual to the value of the operand specified by SI, no action
iken, else a CONSTRAINT ERROR exceptions is raised. All
»nds must be integers (VlS or V32). Immediate operands are
•preted as having a V32 tag with sign extend.

jtions:
;RAM_ERROR
JTRAINT ERROR

11-8

-7T'^TT~^.~'f-'-'"- '.' ».- T »7 »• •••'.''.•TTTrT-T—T~. L-l'.-m .T-

3 ASSERT RANGE FLOATING POINT

mat: 95H, SI, S2, S3

»monic: ASRTRF

?rands:
L: Upper Limit of Range
•"MT: memory (0) or stack (EXT,0)

2: Lover Limit of Range
?MT: memory (0) or stack (EXT,0)

3: Variable to Be Range Checked
FMT: memory (0) or stack (EXT,0)

nction:
the value of the operand addressed by S3 is greater than or

ual to the value of the operand specified by S2 and less than
equal to the value of the operand specified by SI, no action
taken, else a CONSTRAINT_ERROR exceptions is raised. All

erands must be floating point numbers (V16 or V64).

ceptions:
ROGRAM_ERROR
ONSTRAINT ERROR

11-9

I.« I • J • l_» 1^" 1 ._•-.• •!"•!•..' • ' -'V'^..'i'.1 • .*•***. IHiuinyi!! '• r wm:

11.4 INITIALIZE HANDLER

Format: 96H, S

Mnemonic: IHNDLR

Operands:
S: Label
FMT: immediate (EXT,2),interpreted as a label operand

Function:
If the operand specified by S is non-zero, the exception handler
located at the address of the current instruction plus the value
of the label operand is enabled (handler enable bit set to 1 and
address of handler written into administrative data area of the
local activ&tion). The instruction data at the address o: the
handler mis: be RETRIEVE EXCEPTION. If the operand specified by
S is zero, the current local exception handler is disabled
(handle enable bit reset to 0).

Exceptions:
PROGRAM_ERROR
CONSTRAINT ERROR

11-10

• C<S£^v>.>!>-v-yvS->.

.*--• .-•->--• - * • • k * * w .ä '. a " »"*»>"'

11.5 RETRIEVE EXCEPTION

Format: 97H, S, D
Mnemonic: RTRVXC

Operands:
S: Label
FMT:

D:
FMT:

immediate (fXT,2), interpreted as a label operand

Exception Number Location
memory (0)

Function:
This is the first instruction of the exception handler. The
exception number of the exception that occurred prior to entering
this handler (automatically written into the administrative data
area of the activation containing the enabled handler) is made
available to the program by storing it in the location specified
by operand D. Operand D must be an integer
handler for subsequent exceptions is set to
currrent instruction plus the value of the
enabled (if the label is no 2ero) as in the
instruction.

Exceptions:
PROGRAM ERROR

(V16 or V32). The
the address of the
label operand and
INITIALIZE HANDLER

11-11

te^:^v;Sv:-::v:>v:^^^^

i.V."

12 User Console

The User Console is a small computer - based "workstation" used
to control all' phases of program debugging, maintenance, and
loading of the HLLM. The computer may be a small DEC model such
as the PDPll/34a or the PDP11/24. The User Console has two
interfaces: a general purpose parallel interface (e.g., DR11-C)
with the HLLM (which requires a user Console Interface Card) and
a serial modem - controlled interface le.g., DLll) with VAX
mainframe. User Console software is partitioned into three
functional area: (1) user interface, (2) HLLM interface, and (3)
mainframe interface.

1. User Interface - All interactions between the User
Console, the HLLM, and the mainframe are a direct or indirect
result of user commands. These include the following categories:

• console control commands (initialize, terminate, show
console status, execute commands in file, etc.)

• memory commands (inspection and alteration of HLLM
memory words or of an image of the HLLM memory stored
in a file.

• storage object related commands (display of
administrative data, list of task objects, cell
displays, instruction displays, etc.).

• HLLM control commands (set/report machine state,
control instruction execution, control trace options,
report execution history).

breakpoint control
breakpoints).

commands (set, clear, list

symbolic definition commands (create, delete, list
symbols which may be used in command parameters).

HLLM I/O commmands (create input data files, display
output data files, connect files to logical simulated
I/O device).

save/restore commands (save HLLM memory block contents
in files, restore HLLM memory blocks from files,
compare memory blocks to files).

commands to effect transfer of files (in either
directions) between the User Console and the VAX
mainframe.

12-1

MI mm£a «"> •*> *-~ *"- £- •-- •*• .L&J&2&••";:••.,••>>:'.>:; :Sy-:Sy>Sv3

-.•v .•* .— .i .1 ."• .•• .-• *» -yr».». MI ";. v-''.-v".'•''."'" •.v.'".'.I."-'.F.'.'•'.••'."•VAV."',;
;*. 7". r-T-.* -.' •••.» •:•, •:* 'r.,.'.*r.Tr.,.~.^~.w. .•v

2. HLLM Interface - The User Console (PDP11) may issue
commands to the HLLM and the HLLM may issue request and responses
to the User Console across this interface. The former (user
Console command) comprise the following:

• reset

• read status

• read register

• write register

• read block

• write block

• run

• halt

• step

• set breakpoint

• interrupt (raised for a simulated I/O device)

• take input data (for a simulated I/O device)

• send output data (from a simulated I/O device)

• send trace data

The latter (requests and responses to User Console)
include the following:

• status

• register data

• memory data

• HLLM output data (from simulated I/O device)

• trace data

• request "send input data"

• request "receive output data"

12-2

•r. T. T. •:•'. •". »T-^.*"*:'<••••".•»•'.'••: •> •.* -'-''•.*7:*-:' *."*.' »." '••'•"•^•','-"^1.* ' ' ' 'V--'"" ' ",-:v.'v;vi-;'.-;-.-;'v •7—n

3. Mainframe (VAX) Interface - user commands effect the
transfer of files between the User Console and the VAX mainframe.
The user's terminal (on the (User Console) appears as a normal
"dumb" terminal to the VAX until file transfers are initiated.

The hardware configuration of the User Console is the
following:

• 64K word memory (minimum).

• disk drive, e.g., RL01 drive.

• general purpose parallel interface, e.g., DR11-C.

• general purpose video terminal, e.g., VT-52 or VT-100.

• serial interface with modem (e.g., DL11-E).

The User Console hardware and software are described in
more detail in the following documents:

1. Functional Design for an Advanced Avionics Computer
Architecture (interim report for period 22 Nov. 1980
to 18 Feb. 1982), 19 March 1982, pages 65-73.

2. Theory of Operation HLLM Hardware, 19 Nov., 1982,
pages 25-32, pages 73 to 80, and pages 90 to 95.

3. HLLM User Console Software Functional Requirements
(supplement to third interim report), 19 March 1982.

12-3

'.-^T".•"•.••.•"'.v"-''.l'.''>T>V.JV'.' '-»'*> *>.*.» *A*>W V-' « * • i • * • i
.' • .»••-•

13 Traps

A trap is an automatically generated entry call to a task called
the trap handler. A trap occurs at predetermined times as a
result of executing certain instructions. Traps can occur in the
following situations (at most one trap is generated per
instruct ion):

trap type when trap occurs

instruction trace every instruction (excluding
those generating other traps)

branch trace every IF instruction in which
the branch is actually taken or
the GOTO instruction

no branch trace every IF type instruction in
which the branch is not taken

call trace every procedure
instruction

call

exception trace every time an exception is
raised either by the machine or
explicitly by the RAISE
instruction

TRACE instruction every time the
instruction is executed

TRACE

Each type of trap may be independently enabled or disabled by the
CONTROL TRACE instruction. A trap of a particular type is
ignored if it has not been enabled. The task entry which is
called as a result of a trap is identified to the machine by a
call to entry zero of the trap mechanism, a predefined pointer
which is available to the machine. The call must have two output
parameters: a pointer to the trap handler, and an integer
specifying the trap handler task entry number. If no entry has
been so identified, all traps are ignored. Traps may also be
handled by the User Console in an implementation dependent
manner.

13-1

-•'•-•"".•"v"\ ^i^i:^>^; fifty^tfv^aflifEfl'a .^:v::-s^v>d

'V *•'.*;'.'•'.*•'.'•','*.4.'.'. .«.'.'- .' '.''-*,-'.'-*.l-'.^*'.,'*.'".p-*.1'.1'.^."'.'?".*.'•'.'V-*.^ .'-'.* *'.^'.m- .*• '.V.'^VM* V- A".'-'A'-'- .'• A ^ '•!

ien a trap occurs, six read-only parameters are passed to the
lentified entry of the trap handler task. The first is a
unter with no authority to the package causing the trap. The
»cond is an integer specifying the subprogram number in which
le trap occurred. The third is an integer specifying the
ibprogram number in which the trap occurred. The third is an
iteger specifying the instruction address of the instruction
lich caused the trap. The fourth is an integer specifying the
race type. The fifth is an integer whose value is (1) the
amber of the called subprogram .for call trace, (2) the number of
ie exception for an exception trace, (3) the immediate operand
Dntained (S2) in the TRACE TRAP instruction, or UNDEFINED
therwise. The sixth is (1) a pointer with no authority to the
ackage containing the subprogram called for a call trace, (2) a
Dinter with READ authority to the data entity addressed by the
RACE TRAP instruction, or a "null" pointer otherwise.

hen a trap occurs, execution of the instruction causing the trap
s blocked until the corresponding entry call is processed.

13-2

•_...>..,. ..v.,..,.,..,, py^yg^y^^, W^WWWWTW ^ ^^IM».'! V «.T.'T «L •*-tt-«••«• «-••-•

L3.1 CONTROL TRACE

Format: 98H, 61, S2, D

Mnemonic: CTRACE

Operands:
SI: On/Off Control for all Trace Functions
FMT: immediate (EXT,2),

S2: Trace Functions
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Pointer to Package Being Traced
FMT: memory (0)

Function:
The trace function indicated by the operand specified by S2 for
the package pointed-to by the pointer addressed by D are turned
"on" if SI is a 1 or "off" if SI is a 0. The immediate value of
operand SI is interpreted as a Boolean (V16) and the operand
specified by S2 is mask data (V16), interpreted as follows:

Bit Position in Mask Trace Function

6-15 reserved
5 exception trace
4 no-branch trace
3 branch trace
2 call trace
1 instruction trace
0 explicit TRACE TRAP

instruction

For each bit (in the range 0..5) in the mask that is a 1, the
corresponding trace function is turned on or off by SI. Trace
functions corresponding to the bits in the mask which are 0 are
unaffected.

Exceptions:
PROGRAM ERROR

13-3

• jfjrarar.vg-iTjv.'-j-j^.TV-T«.ivT:vvrvr.,y;_w*3».:'•'.-V'.'>'-';,.7.'"«:,.T:r.~•vii*:-;,7"j.:y.j,»,y»,•.•>.•>•,», »-.-• <—rr_'~^T^j"wv«'.=Ta

2 TRACE TRAP

mat: 99H, SI, S2, S3

monic: TRAP

>rands:
.: Trace Trap Control
"MT: immediate (EXT,2), memory (0), or stack (EXT,0)

!: Type of Trace
'MT: immediate (EXT,2)

I: Additional Trace Information
'MT: memory (0)

\ction:
explicit tracing is "on" (see CONTROL TRACE instruction) and

» operand specified by SI is 1, a Trace Trap occurs; otherwise,
action is taken. The operand specified by SI is a Boolean
L6) and the immediate value of operand S2 is mask data (V16),
terpreted as a code to identify the type of trace trace. TRACE
\P instructions may be selectively inserted after any
struct ion and identified by S2. Additional information
quired on the trace function, may be passed to the trap handler
sk via the operand specified by S3 (a pointer to a data entity
ntaining the information).

ceptions:
ROGRAM ERROR

13-4

•.• »v.. •'Y^T^T"'. v. <•-. •*. r. •'. •*: -•- *. •'. **. -*,' •*. '_'.•. - . -*. -'- v. 'J . -*." r.' '* v f ". '-- ;p v. r ur. T^T-

APPENDIX A - EXAMPLES OF ARRAYS

tes 1: In each example, all values are expressed in decimal
unless otherwise indicated.

2: Values in the Data Template Memory (DTM) can only be
read.

3: In general, data in data value memory (DVM) can be read
and written to. In the following examples, these
locations are indicated by 0, 1 in the column under
residency bit and by the assignment symbol (=)
following the data type in the column under DVM. When
data is first written into one of these locations, the
residency bit is changed from 0 (data accessed from
DTM) to 1 (data accessed from DVM). Certain locations
in DVM, however, are never written to. These
correspond to descriptors in DTM of constrained arrays
and records and to initial values of scalar and record
components of arrays with separate values. A "0" in
the column under residency bit designates such a
location in DVM. Note that the type of descriptor
(e.g., LB/UB) and tag (e.g., V32) are indicated for
clarity of reading the examples.

A-l

frtt&tttett

f'JU'w.fi'if^.'.IA.'^-l.^l.WWL^. Al'."^ ^ -•> .l'.«.'«.".»^.».—.: *. .•."•.-.-T ••:-

S #1

Type RECi is
record
BIG_NUM:LONG INTEGER:=5000;
ARR5:array (0~..2) of FLOAT: =

(0..2*> 100.1, 1000.1, 10000.1);
end record;

ARRi:array (1..2) of RECi;

the type definition of RECi, tne variable name ARRi defines
ay with two RECi components. In this example, the array of
5 (ARRi) has separate values and the array component of the
(ARR2T has immediate values (See Figure A-l).

• DTM CO DVM RESIDENCY

rogram
#1

—AVO1-8
LBi/UBi»l,2
RECi=2,6
V32-5000 1

-32 AVOi
34 LB1/UB1
36 RECi
38. V32

0
0
0
0

mat ic
ata

LB2/UB2=0,2
V32-100.1

40 LB2/UB2
42 V32

0
0

V32-1000.1 44 V32 1 0
-- V32-10000.1 46 V32 0

48 RECi <
50 V32 =

0
0,1

Subprogram
#1

52 LB2/UB2
54 V32 =

0
0,1

Activation 56 V32 = 0,1
Recordn 58 V32 » 0,1

60 RECi
62 V32 =

0
0,1

! 64 LB2/UB2
1 66 V32 =

0
0,1

1 68 V32 = 0,1
--70 V32 = 0,1

F igure A-l

A-2

Ö&^o&ä Ä^S^-'^^ä^^^ ii

-^irrr.-?; •.-. ••-. J\-W\ rj •*•.
--: •"••'

.»."."V•.". • 1"I •• | '•' ."• r • r1

ference data at a cell offset (CO) of 70 halfwords, AVO^
be addressed first; the address space (ADS) determines the
ute base addresses of the containing activation record and
emplate. A cell offset of 32 halfwords added to the
ate base produces the base address of the ARRi header (AVOi)

[the same offset added to the base of the activation record
ices the base address of the array in data value memory. The
»wing additional information is supplied in the instruction
im to allow computation of the offset from AVOi to the
•ed data (at CO=70 halfwords):

Subscript! (SUB].) = 2

Record^ Component Offset (RCOi) = 4 halfwords

Subscript2 (SUB2) = 2

5 assumed, in example 1, that the subscripts of both arrays
variables (values not known at compile time). Hence, the
Lne computes the component address as shown:

Data Address = base (ADS) + CO + AVOi*2

+ (SUBi-LBi)*compi size + RCOi

+ Size of ARR2 header+(SUB2-LB2)*comp2 size.

Data Address = base (ADS) + 32 + 8*2

+ (2-l)*6*2 + 4

+ 2 + (2-0)*2

• base (ADS) +48+16+2+4

= base (ADS) + 70 halfwords.

In the above computation, AVOi is multiplied by 2 to
convert to halfwords. Component^ size of ARRi is
converted to halfwords by multiplying the number
of words in the recordi description (6) by 2. TRS
is not needed since componenti size of ARRi is
correctly specified by the size of the record
description given in the RECi descriptor (6 words).

A-3

^••:-:>V:;^:Vä^-NV:-; :-:•:>::•:- •^ * AV» .% /-A »V -S •> « \, -^ -.» *_» •J^J.>^.>JI 'J

. »v» ir: •;»•»v»-•'.' ••".*'.u '• «*: '--.1 ri^ „'T' »-: ». T'. •••. ". ». y-. »»": »••'''•'' -~

»2

Type RECi is
record
BIG_NUM:LONG_INTEGER;
ARR2:array (0..2) of FLOAT;

end record;

ARRi:array (1..2) of RECi:=
(1=> (5000,(others=> 100.D)
2=> (10000, (others=> 1000.1)))

e type definition of RECi, the variable name ARRi defines
with two RECi components. The first RECi component,
is initialized with values 5000 for BIG_NUM and 100.1

of ARR2 values. The second RECi component, ARR^(2), is
zed with values 10000 for BIG_NUM and 1000.1 for all
ues. In this example, the array of records (ARRi) has
e values and the array component of the record (ARR2) has
values (See Figure A-2)..

A-4

>>>s>>5**>ra;-.:^

1 ^r:,*..-. -•; w* IT. IT. f. >.*. iJ '•*.'-*.' "J'W

DTM CO DVM RESIDENCY BIT

-LB1/UBi=l,2 -32 LBi/UBi 0
RECi=2,5 34 RECi 0
V32=5000 36 V32 = 0,1
AV0i=8 38 AVOi 0

»rogram LB2/UB2=0,2 40 LB2/UB2 0
#2 V32=100.1 42 V32 0
»matic RECi=2,5 44 RECi 0
)ata V32=10,000 46 V32 = 0,1

AV02=6 48 AV02 0
LB2/UB2=0,2 50 LB2/UB2 1 0

— V32=1000.1 52 V32 1 1 0
54 V32 - <--+ 0,1

Subprogram 56 V32 = 1 0,1
#2 - 1 58 V32 = 1 0,1

Activation 1 60 V32 = <-- 0,1
Recordn 1 62 V32 = 0,1

--64 V32 = 0,1

Figure A-2

<&&&£&: V_'V_V.

A-5

AD-A158 120

UNCLASSIFIED

ADVANCED AVIONICS COMPUTER ARCHITECTURE VOLUME 2 4/4
INSTRUCTION SET ARCHITEC..(U) SANDERS ASSOCIATES INC
NASHUA NH L GREENSPAN ET AL. MAV 85
AFWAL-TR-85-1841-V0L-2 F33615-79-C-1935 F/G 9/2 NL

M< rtnTiiYtfTi Y. !'•*• .1 * i «I i , jaja^yjj^^j.^.'.^^T.'y: V'wr.*zxxxzxaKa&mrjKaA.-Mm.~MM

m

NATIONAL BUREAU OF STANDAROS
MCNOCOW «SOLUTION TUT CHWT

• > w>^xrr?-..-_•<->-..* •>••••.'' v>-.*»> v.»".» v? v.» .»••.• .« .•.•.:•./•.v.-P.-T-

Before showing a second example of a component address
computation, some general remarks on addressing of array
components will be made. When arrays have immediate values and
subscripts are known at compile time, the address of the array
component can be computed by the compiler and the component can
be directly addressed at run time. Alternatively, the compiler
can compute the offset to the component; then, array base address
register/offset addressing can be used to improve performance
when frequent accesses to components in the array is required.
If subscripts are variables and not known at compile time, then
either the machine computes the component's address (using
subscripts and header information) or the offset to the component
is computed at run time, allowing base address register/offset
addressing to be used. When arrays have separate values,
individual components cannot be directly addressed even if
subscripts are known at compile time because the tag/initial
value of the separate values is not addressable in instructions.
Hence, either the machine computes the component address or base
address register/offset addressing is used. (In the latter case,
the offset is computed at compile time if the subscripts are
known, else at run time.)

In example 2, it is assumed that the subscript for kRR\ (=2) and
the record component offset (=4 halfwords) are known at compile
time. Hence,, the compiler can directly address AVO2 using CO=48
(offset from base of activation record). If the subscript for
ARR2 is a variable addressed in the instruction stream, the
machine performs the component address computation as follows
(assuming the variable subscript also -2, referencing the data at
CO=64):

A-6

v;w- r -'. y. •*. -.,-'. -'. '-v^.'U". i'i iT*7T*"*r*^^^^^y^rTT+?y. ~^

Base(AV02) = base(ADS) + CO.

Data address = base(ADS) + CO + AV02*2

+ (SUB2"LB2)*comp2 size.

Data address = base(ADS) + 48 + 6*2

+ (2-0)*2

- base(ADS) + 60
+ 4

• base(ADS) + 64 halfwords.

Note: In the computation above, AVO2 *s multiplied by 2 to
convert to halfwords. Component2 size of ARR2 is
implied by the V32 component descriptor at CO=64 in
Figure A-2. Again, TRS is not needed since the size
of the arrayi component is correctly specified in the
RECx descriptor (5 words).

A-7

&aato^^^^

wwwwivAi'.'jr^'.vw.y.r.r.Tv.v:1." v •;••: •.• •••».-'

EXAMPLE #3

Type RECi is
record
BIG_NUM:LONG INTEGER:»5000;
ARR2:array (Ö"..2) of FLOAT:»(others»> 10.9),•
end record;

ARR],:array (1..2) of RECi;

Given the type definition of RECi, the variable name ARRi defines
an array with two components with initial values determined by
RECi type definition. In this example, both the array of records
(ARRi) and the array component of the record (ARR2) have separate
array values (See Figure A-3).

A-8

:-

•.-'.- V ,-»;>:»i.«.-.•.••?:: i -• ^ ^ " • T:»\r. r:r: T.T*- » W~W..Ti . -*

DTM CO DVM RESIDENCY BIT

Subprogram
#3

Automatic
Data

-AV0i*8
LBi/UBi=l,2
TRS=8
RECi-2,5
V32-5000
AV02-3
LB2/UB2=0,2

- V32-10.9

Subprogram
#3 —

Activation
Record

--32 AVOi
34 LBi/UBi
36 TRS
38 RECi
40 V32
42 AVO2
44 LB2/UB2 I
46 V32 I
48 RECi < <-«
50 V32 -
52 AVO2
54 LB2/UB2 I
56 V32 I
58 V32 - <—
60 V32 -
62 V32 »
64 RECi
66 V32 >
68 AVO2
70 LB2/UB2 I
72 V32 I
74 V32 « <—
76 V32 ="

—78 V32 -

0
0
0
0
0
0
0
0
0
0,1
0
0
0
0,1
0,1
0,1
0
0,1
0
0
0
0,1
0,1
0,1

Figure A-3

A-9

.•^y^W-.--•, >.N.V> ^^ I^ej

••'.•,••,' .•. v* .• i m; »,' > , .• m tm p ijrv IJ p; i^^^i»»^»^^^wy^^»"—•»»•»•*»* ; pn P i , n . . ,, ,, , •,. ,.rr

To reference data at CO=78, AVOi must be addressed first; ADS
determines the base addresses of the containing activation record
and its data template. CO=32 specifies the offset to ARR^ header
(AVOi) as well as to the base of the array in data value memory.
The following additional information is required:

Subscripti (SUBi) =2

Recordi Component Offset (RCOi) • 4 halfwords

Subscript2 (SUB2) s 2

In this example, it is assumed that the subscripts of both arrays
are variables (values computed at run time). The address
computation performed by the machine is as follows:

Data Address = base(ADS) + CO + AVOi*2

+ (SUBi-LBi)*compi size + RCO

+ AV02*2 + (SUB2"LB2)*comp2 size

Data Address = base(ADS) + 32 + 8*2

+ (2-l)*8*2 + 4

+ 3*2 + (2-0)*2

=48+16+10+4

= base(ADS) + 78 halfwords.

Note: In the computation above, AVOi and TRS are multiplied by 2
to convert to halfwords. The component size of ARR^ is
explicitly specified in the Total Record Size (TRS)
descriptor (located at C0=36 halfwords). TRS is needed
in this example since the size of ARRj component does not
equal the size of the record description (5 words) in RECi
(at C0=38); TRS gives the correct size of ARR^ components
(8 words).

A-10

. * \ "V v • ",'. ' '.':».••'" ". -»A h .'' -"* '-•". '.-* 'jx zu..-* •' s.m •-*-,.T.i it imTi

EXAMPLE #4

Type RECi is
record
BIG_NUM:INTEGER:=5000;
ARR2:array (< >) of FLOAT:=10.9;

end record;

ARRi:array (< >) of RECi;

Given the type definition of RECi, the variable name ARRi defines
an array of records. In this example, the array of records
(ARRi) and the array component of the record (ARR2) are
unconstrained (with dynamic bounds). Hence, in the arrayi header
(See Figure A-4), LB1/UB1, LB2/UB2, and TRS have values to
indicate "unconstrained" and AVA is set to undefined.
Unconstrained 'array headers as well as unconstrained record
descriptors can only appear in the contents of a Data Object
Descriptor (DOD). Data object descriptions are only present in
the constant global area of a package.

A-ll

• t .". t . Hi.«., _l ' 1 _' •* • I".gyjf.P.'.VI1 'l' '[""T1.- '.'- V'.'- ,.7T.'.'1.'*T.T'.'.^"v.*".*» u^'.^".^".V.T.,'.,,'.'.TA'A,.V M

DTM DVM RESIDENCY BIT

--D0D=9 —X+0 DOD 0
1 AVA=Undefined 2 AVA=Y 0,1
1 LBi/UBi=800H/8000H 1 4 LBx/UBx'1,2 0,1

Constant 1 TRS=FFFFFFFH 6 TRS=8 0,1
Global—1 RECi=2,5 8 RECi 0
Data 1 V32=5000 10 V32 0

1 AV02=3 12 AVO2 0
1 LB2/UB2=800H/8000H 14 LB2/UB2=0,2 0,1
— V32=10.9 — 16 V32 0

1st allocation size
—j worcis VLHJUJ.— —
X is the address of the —Y+0 RECi 0
1st storage allocat ion 2 V32 = 0,1
in DVM. 4 AVO2 0

6 LB2/UB2 1 0
8 V32 I 0

10 V32 = <-- 0,1
12 V32 = 0,1
14 V32 = 0,1
16 RECi 0
18 V32 = 0,1

2nd allocation size 1 20 AV02
22 LB2/UB2 1

0
0 aetermineu at run

time = 16 words. 1 24 V32 1 0
Y is the address of
the 2nd storage

1 26 V32 = <-- 0,1
1 28 V32 = 0,1

allocation. ---30 V32 = 0,1

Fi< gure A-4

A-12

' ••"-•. » .TW.' »*"».."»• -"» lT».r"» i."* L~> ~>" i~* -~*~-.-'- ir>^."^'L'*".*v '.'-.!• •• '."^ '•"* .-*£'' '.'•"

Note in figure B-4 that the first entry in the header in DTM is
the Data Object Descriptor (DOD) which identifies this template
as that of a data object with template size • 9 words. Execution
of the instruction, CREATE DATA OBJECT, includes computing the
size of the outer array (ARRi) values and allocating storage for
the arrays as shown below:

(a) First Storage Allocation - Nine words are allocated
in DVM for the header. This is required because of
the unconstrained arrays. Lower and upper bounds
are extracted from the instruction stream (given by
"index constraint" operand qualifiers) and written
at locations in DVM corresponding to the bounds
designated as unconstrained in the DTM header.

(b) Arrayi Size Computation - With the bounds known, the
machine computes the size of the arrays as follows:

(1) Size of ARR2a(UB2-L32+D*comp2 size

*3*2=6 half-words(3 words).

(2) Component^ size-size of record description
• size of array2 values

=5+3=8 words.

A-13

^^j^^\y>>>\w^:.i\'f^

A" •-. '• .'••. i ,'- i' .V'Wß. '_•.''.••".^Il5 Hm 13L^'IV*. !!^ 5l'y W-*!M*i WMi'••- '••• 'A'.'..' .•-'••-• .vr ••.-•

This value (8 words) can now be written in
TRS at a location in DVM corresponding to
TRS in the DTM header.

'3) Size of arrayi=(UBi-LBi+l)*componenti size

=2*8=16 words.

(c) Second Storage Allocation - Sixteen words are
allocated for arrays values at some address in DVM.
This address (Y) is written in AVA at a location in
DVM corresponding to AVA in the DTM header.

D reference data at the location of Y+30 halfwords, AVA must be
idressed first; ADS designates the absolute base address of the
anstant global data area and the specified cell offset from that
ase addresses AVA. The following additional information is
equired to specify data located at Y+30 halfwords:

Subscripti (SUB].) = 2

Record component offset (RCOi) = 4 halfwords

Subscript2 (SUB2) = 2

A-14

:• '^XV^^ü^C^^^^ ii^vÄEöSfia

•.T ~;s -7- •.- ••• •.-.• »_•• «•• 7', • '.^ 1. • v« i *•.*•, •» -,-v •.

The address computation performed by the machine is as follows:

Data Address = Y + (SUBi-LBi)*compi size

+ RCOi + size of ARR2 header (halfwords)

+ (SUB2-LB2)*comp2 size

= Y + (2-1) *8*2

+ 4 + 6

+ (2-0)*2

Data Address = Y + 30 halfwords.

Note: In the above computation, the component size of ARRi
(given by TRS) is multiplied by 2 to convert to halfwords.

A-15

v-v.-j :>^i^>\v;<y^A^vys::v^

•? *>'.- *:'•-.'• '*•"'•'• J.'-T- ^'.^*'.•-^'^•^^•'..^* -••••^ •^••-:-.-v.--l,V-.'^-^"T-.^ri^-.

Appendix B - Task Dependencies

The rules of Ada specify precise task termination conditions
that are fully supported in the HLLM. They are the
following:

1. A task becomes TERMINATED when it is COMPLETED and
all tasks directly or indirectly dependent on it, if
any, are TERMINATED. If non-terminated dependent tasks
are extant, the COMPLETED task is marked as waiting for
dependent tasks to terminate. Further, a subprogram
that is a master cannot complete its execution, i.e.,
must wait at a RETURN instruction until all its
dependent tasks have TERMINATED.

2. A task becomes TERMINATED when it is marked as
potentially terminated (task executed SELECT TERMINATE
instruction and is SUSPENDED waiting for termination
conditions to be fulfilled) and both of the following
termination conditions are met:

(a) One of the potentially terminated task's
masters (mor.e than one master are possible if some
are indirect) has completed execution. That master
could be a task in the COMPLETED state or a subpro-
gram waiting at a RETURN. A subprogram master is
also considered to have completed execution if it
is waiting at a RETURN of an exception handler or
if no handler exists to process the exception.

(b) Every task that depends directly or indirectly
on that master is SUSPENDED and marked as
potentially terminated or is TERMINATED.

Every task is directly dependent on one master and can be
indirectly dependent on other masters. A task's direct
master is specified in the CREATE TASK OBJECT or EVALUATE
ALLOCATED TASK instruction. Indirect masters come into
being when the direct master of a created task is a
subprogram called by another master (the indirect master of
the created task) or when the direct master of a created
task is itself a task created by another master (the
indirect master).

B-l

:Äs>:££^vv&v^^^

'..'V'.'*.1 '•> *.••"•V*.* '•'.',•,'•', -.V-'.''*. •'.*»'. '*,"•',*•'. -*. •*,*-*."-' T- *T p. -*•' -*-'f.'''- • '-' * -.' *.' T."v.' *.~.*•''."-'•*- "Tv""-—•—r-

Example 1

TASK 1

1
1

V
1
1

1 TASK 2 1

1
1

V
1
1

I TASK 3 1

1
1

V
1
1

I TASK 4 i

1. Task 1 creates Task 2.
Task 2 depends on Task 1 directly,

2. Task 2 creates Task 3.
Task 3 depends on Task 2 directly.
Task 3 depends on Task 1 indirectly.

3. Task 3 creates Task 4.
Task 4 depends on Task 3 directly.
Task 4 depends on Tasks 1 and 2
indirectly.

B-2

££ä&&£>2ä£ >£*&&& V-V-V-".-»": *»"»V." •';•«>"•".•
-1.? «Jf».-• «J mJUJ fc.-- »XJCi .«-•-.a« ,«-^-^. «-.-•-• »._ ft°_ . _ A «fi. a a?. »'^ J

«.r«.-H.Twr ..T- wrrrr.-is '•*". ^."«-r^. *•. v-. •-: y. .-.••.••-::».:•. y. :»,•.•.».• .» .. y.r r,.., y - • -r ^ ,- y ,—,- -^ r r, r. »„ ,. ^_ r,

Termination rule #1 states that if any task is COMPLETED, it
is TERMINATED when all its directly and indirectly dependent
tasks are TERMINATED. In example 1, if task 2 is COMPLETED,
it cannot be TERMINATED until task 3 (a direct dependent)
and task 4 (an indirect dependent) are TERMINATED. Note
that if task 4 is COMPLETED, it is immediately TERMINATED
since it has no dependent tasks.

Termination rule #2 states that a potentially terminated
task is not TERMINATED until one of its masters is COMPLETED
and all the tasks directly or indirectly dependent on that
master are potentially terminated or TERMINATED. Stated
another way, rule #2 means that when a task (a master) is
COMPLETED and all directly and indirectly dependent tasks
(beneath the master in the dependency chain) are potentially
terminated or TERMINATED, all the dependent tasks linked to
the master and the master are TERMINATED. For example, if
task 2 is COMPLETED and tasks 3 and 4 are potentially
terminated, task 4 can be TERMINATED because one of its
masters (task 2, indirectly) is COMPLETED and all of task
2's directly and indirectly dependent tasks are potentially
terminated. Task 3 can be TERMINATED because its direct
master, task 2, is COMPLETED and all of task 2's directly
and indirectly dependent tasks are potentially terminated.
Then, task 2 can be TERMINATED because, from rule #1, it is
COMPLETED and all of its dependent tasks are TERMINATED.
Hence, each master must maintain a count of its dependents
and the termination state of each. A doubly linked chain of
tasks is necessary for the following reasons:

1. If a task becomes COMPLETED (or, as we will see, if a
subprogram executes RETURN), it must check its dependent
tasks (down the chain) for potential termination or
TERMINATED State.

2. If a task becomes potentially terminated, it must
notify all its masters (up the chain) so that the
masters can maintain the count and termination state
of its dependents. If a potentially terminated task
receives an entry call, it must service the call; hence,
it ceases to be marked as potentially terminated and all
masters (up the chain) are notified.

«.»

When a dependency chain is being traversed, a special
, "restriction" mode is entered that is reset at the end of

the chain (designated by a null link). While this mode is
in effect (a chain is being traversed), no task is allowed
to change state.

B-3

rtttfrfo^m^

'.'•.'•>•* v'.-'.I'M',1 '.i '
M
I•'•..• i^u'^i»'.«",*.'^'.^'.^'yi^'W.^1-^!WIMS'A.«• '-'•"-,. '•"'•.rw-vr.'-'^.'.v.'T T.T.T-.V.'.-.«:-.-.-I

Example 2

ISUBPRG1I 1. Subprogram 1 calls subprogram 2.
I I

* Dynamic
I Link

ISUBPRG2I
I I

v I
I TASK II

I TASK 21
I I

2. Subprogram 2 creates Task 1.
Task 1 depends on subprogram 2
directly.
Task 1 depends on subprogram 1
indirectly.

3. Task 1 creates Task 2.
Task 2 depends on Task 1 directly.
Task 2 depends on subprograms 1 and 2
indirectly.

i .••W.\-.V.V.V.V^s'-.

B-4

;•' .'•Y- ;>v«."- ;*•<."" »v «"• »"»j.xs

I v**.* V *.V*-V-* '•* ' V-* '•*. -V '•* -*. T,'^-.^. * v^T^TTT^^T^^^^TT'^^T •.i •.. v\ »v»-.-»\-«-.-

From rule #1, if task 2 in example 2 is COMPLETED, it can be
TERMINATED immediately. If task 1 is COMPLETED, it cannot
be TERMINATED until its dependent, task 2, becomes
TERMINATED. In the latter case, if tasV 2 becomes
potentially terminated when task 1, its direct master, is
COMPLETED, rule #2 allows task 2 to be TERMINATED and then
rule #1 allows task 1 to be TERMINATED. If subprogram 2 is
waiting at a RETURN (execution completed), it must not
complete the RETURN instruction until both its dependent
tasks are TERMINATED or potentially terminated. As in
example 1, the subprogram master must maintain a count of
its dependent tasks and the termination state of each.
Although tasks 1 and 2 indirectly depend on subprogram 1,
subprogram 1 does not affect the termination of the tasks
since subprogram 2 will always execute RETURN first.

B-5

-. • "-.*'•." N." v •« «.. v •." ••* -.• \r* , «y- -•*%." -»" • • • • - • • * • • v*v. "fi" • voV'i * •' • "r• S2ÜJ >^^^>>^^>>^^

«•„-".' r^.-;^"*":1 r> .- 'J^'/. -.•,•'.'•"..''. • . l - - - •'.' ^ip. • . l" ". ' l - '\ J - •• »V fVJ ' •" ' " '•* '•'.' •_" •.". -." • " '.' • k - i. • . r—v-

Example 3

TASK 1 1
1

1
1

V
1
1

1 TASK 2 1
1

1
i i 1

V
1
1

SUBPRG 1
1 1

1
1

V
1
1

1 TASK 3 1
1

1. Task 1 creates Task 2.
Task 2 depends on Task 1 directly,

2. Task 2 calls the subprogram.

3. The subprogram creates Task 3.
Task 3 depends on the subprogram
directly.
Task 3 depends on Tasks 1 and 2
indirectly.

B-6

fr^*^^-.:^^ ^

•'•; v •." - J . . . T^T*-!^^—T"1—'—T '.'••-••.- i-. ^.-

From rule #1, if task 3 in example 3 is COMPLETED, it can be
TERMINATED immediately. If the subprogram is waiting at a
RETURN, rule #1 prevents it from completing the instruction
until its dependent task, task 3, has TERMINATED. However,
if task 3 becomes potentially terminated, rule #2 allows it
to be TERMINATED and then rule #1 allows the subprogram to
complete its RETURN instruction. If task 2 becomes
COMPLETED, the subprogram, by definition, must also have
returned. (If task 2 is aborted, the subprogram is
considered to have completed .its execution.) Then, when
task 3 becomes potentially terminated, rule #2 permits task
3 and then task 2 to be TERMINATED. If task 1 becomes
COMPLETED, rule #1 prevents it from being TERMINATED until
tasks 2 and 3 are TERMINATED. If task 3 is potentially
terminated when task 1 (one of task 3's indirect masters)
becomes COMPLETED, rule #2 prevents termination until task 2
becomes potentially terminated. Then," task 3, task 2, and
task 1 are TERMINATED.

B-7

&&&&&^

.•JA.!.1 «J'. WV«. Sll'WWW '','.'.','«.'•''.l.'.J'!• J. ••.•'." •:- "". ' V '.'•» '. rt, ;• ••. .«•» •.• -'-.W •' V v'.«W '

Example 4

I LIBRARY I 1. The Library Package creates the task.
I PACKAGE I The Task is dependent on the Package
(no links directly,
required) 4

I TASK $

The task, if COMPLETED, can be TERMINATED immediately. If
the task becomes potentially terminated, it never terminates
because the library package never becomes COMPLETED.

A

I

B-8

END
"••-

'a

FILMED
<r

7

9-85

DTIC /'

R*WW^^^

