’

 AD-A158 120

ADYANCED AYIONICS COMPUTER ARCHITECTURE YOLUME 2
INSTRUCTION SET ARCHITEC. . (U> SANDERS RASSOCIATES INC
NASHUA NH L GREENSPAN ET AL. MAY 85

UNCLASSIFIED AFWAL-TR-835-10841-Y0L-2 F33615-79-C-1935 F/G 9/2

\

B e @ i X i o GV N RS § ORI ANl T B Rkll P g ,‘ 3 r A m :

0
e
o

{
13
|
1
”

Caare

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART
T

H HEEEFT

= =0z

HEEER |
=

m—nrin

I

- e e e R BRI T P D 0P P g R, T

L IR PP e AT B B TS et At ALK IR N S TR R R Do Lotk Dbl od Sin e

(A PR SLES SLOL N e o e O g op

BACARRANME - VT LAA [GO/

J ¥

LY R TN Bt N T T e e R S i At i i - —
e e e s N R A R L T o T I e T I ™ T % E"B'WC"1

AD-A158 120 é - |

AFWAL-TR-85-1041

ADVANCED AVIONICS COMPUTER ARCHITECTURE

VOLUME II - INSTRUCTION SET ARCHITECTURE SPECIFICATION

LAWRENCE GREENSPAN
RONALD SINGLETARY

SANDERS ASSOCIATES, INC.
95 CANAL STREET
NASHUA, NEW HAMPSHIRE 03061-2034

MAY 1985

FINAL REPORT FOR PERIOD MAY 1980 - NOVEMBER 1984

APPROVED FOR PUBLIC RELEASE:; DISTRIBUTION UNLIMITED

TG FILE COPY

L
i ECTE j
AVIONICS LABORATORY R AUG15 g5 7 (Y|
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES g S
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

.i ..l""\‘A'.-.‘...-'.-'“‘..l'l‘.!‘-.-.-;h‘h.‘~.“P
PR I P O CULE, LU LR CR G, ¢

PR AR TG 0 SR IR U Dy CEM A T AT AT e I s = 5 SR L e S L I L A L B S, B I i St g O i A e O R i B el

-
- NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is ¥
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

_ ol Vier

GUY A. QZ‘CE

OVERT, Acting Chief

Project Engineer, Information Processing Information Processing Technology
Technology Branch Branch
Avionics Laboratory Avionics Laboratory

FOR THE COMMANDER

RAY!LORD D. BELLEM, COL, USAF

Daputy Chief
Sy ta Avionics Division
IR S LGY"'::O.'V

"If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notify AFWAL/AAAT;2
W-PAFB, OH 45433 to help us maintain a current mailing list"”. U

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

R— - — R R —
sl e A e e e e e Tt e

DAV AR A 0 IR .a..

P R———

REPORT DOCUMENTATION PAGE |

1a REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
N/A

28 SECURITY CLASSIFICATION AUTHORITY

N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
enlimited. ‘

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

=85-1041 Vol II

SANDERS

6a. NAME OF PERFORMING ORGANIZATION

J6b. OFFICE SYMBOL
(I applicable)

7s. NAME OF MONITORING ORGANIZATION

Avionics Laboratory (AFWAL/AAAT)
AF Wright Aeronautical L

6¢c. ADDRESS (City, State and ZIP Code)

95 Canal Street
Nashua NH 03061

7b. ADDRESS (City, State and ZIP Code)

WPAFB OH 45433-6543

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Avion aboratory

8b. OFFICE SYMBOL
(1f applicabdle)

8c. ADDRESS (City, State and ZIP Code)

WPAFB OH 45433-6543

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

|_AFWAL/AAAT

11. TITLE (lnclude Security Classification)

F33615-79-C-~1935
10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
62204F 2003 04 19

12. PERSONAL AUTHOR(S)

13s. TYPE OF REPORT

Advanced Avionics Computer Architecture, Voic¥]

13b. TIME COVERED

14. DATE OF REPORT (Yr., Mo., Day) 18. PAGE COUNT

FINAL FrRom _5/80 To_11/84 1985 May 305
16. SUPPLEMENTARY NOTATION] f‘ //"__ e

g

COSATI CODES

LD GROUP

SuUB. GR,

02

to Ada.

al supports 1in:

types. Kfyu va({' 0

. ABSTRACT (Continue on reverse if necessary and identify by block number)

“The new ISA supports most of the standard functions found in most ISA, but gives addition-
the Ada package concept, processing arrays and records, unconstrained
arrays, dynamic storage allocation, detecting dangling references, detecting undefined
variables, Ada-like exception handling, case instructions, for-loop instructions, Ada like
parameter passing, Ada like tasking instructions and IEEE-standard floating point data

eﬂ UBJECT TERMS (Continue on reverse if necessary and identify by block number)

igh evelzf/Bguage Ada,Mﬁchine»

Semantic _@ap_Reduction, .
>
ﬂwmmi.mgmuj.é@l@‘l)

his exploratory development program was originally aimed at developing a computer with
features to specifically support the JOVIAL (J73) programming language with considerations
Later, the program was redirected to modify the instruction set architecture (ISA)
to more fully support Ada-and increase performance.

™

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassIFIED/UNLIMITED (B same as reT. O ovicusers O

21. ABSTRACT SECURITY CLASSIFICATION

Guy Vince

22s. NAME OF RESPONSIBLE INDIVIDUAL

UNCLASSIFIED

22b. TELEPHONE NUMBER
(Include Area Code)

57706

22c. OFFICE SYMBOL
AFWAL /AAAT-2

<P Be B i, P P n TUF e R B S it P et LI S SR e o BV A T S Ay iR R T SR SRR A SR S-S oA e ate e ead sus

UNCLASSIFIED

BECURITY CLASSIFICATION OF THIS PAGE

oo

11, Title (Cont'‘'d)

i, 1 Volume IT Instruction Set Architecture Specification
NS

18.> Non-Von Neumann Architecture T
Object Oriented Architecture,
Capability Based Addressing.

/

¥

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

NN N R O NPT AN

'~‘.\‘.'!‘.'-..'i -F\ ‘-\;.\é\}'y..'-._ .“'-..\."'

. v
AptalP
2 T w

)
o0,

var

T .
<

N

. PREFACE

The contents of the document are technically accurate,

and no sensitive items, detrimental ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the document are those of the author(s) and
do not necessarily reflect the views of the Avionics
Laboratory, the Air Force Systems Command, the United
States Air Force, or the Department of Defense.

iR ston For
| FTTs GRART
. BITC TAB il
. Unrrncunced a

Justificatlan

By
. | Distridbution/ o
Avalilubility Codns

Aedas &g, 8T

0510 T (R e S {

M |

S A e S5 MW v, oL 2o bR N G A
B N A A AT N NS NN S A N

eOb S RSt Rl IS e TN o NG b SO S AN i SO, T A S L B S ML, o 04 B B M T M At M-S P 0 P O, SOSS ar pprt, rtpe J L Ret gread "o 23 w.."'r-v.".‘

TABLE OF CONTENTS

1]

'
N =0
(1]

SECTIONI | INTRODUCTION.0.00..0.00000.00.000.0..O0.00..
lol ISA Smnmary.oo.oo.oo.o...oooooooooo....o.o..o

S SECTION 2 = SEORAGESORIECT S oidie o o.¢ ololioisio allons ihetafale o ohoie e s oo s S 3 e

2.1 Paekage 'OBIGEt | (BO) ic oo cctscrohoepocssocassansosse
Activation Reeord: (ARWLI AL T W8hie Jilstddie s ene oo oo aldhe ois
PASK OBTEICE TO e ropensnenais.cqomeashe s, « ARt sfs sbele « o0 ¢ 5.4 50 ¢
Data object (Do).......0.00.00....O0.00..O0.00.000.000
I LS E i Ol Y o sepomen e iop-sonsis: sasl Etst oHe i or Feksns e smeraibhle. oo S ol B o
Laading of Paclkages . 4. sl bk, ae et o s detoigme onvislbie s, o § o s s oon
DEta Teamplatesidhi; . kre bl da . Fera. 5 Dowiihe cmren o o sdle s bsn

www [SY SESY SN SN SN S) N = = g
|

NN
L] L) [L) o L)
OO wn
e o

[O | [}

w N

SECTIO = 107 98N 01 P TG 00 500 0.0 5 6'0 $5:0 0 0 B0 b 00E0 b0 60 0T0 oD GIOC
le-bit value Data (vle)0.0..O0.0......O.....OO..O..OOO
32-bit value Data (v32)...O..O..OO..O.........0.0...OO
64-bit Value Data (VG4)0000ooooooooo0000000000000000003-5
96-bit pOinter (pTR)oooo‘oooooooooo000000000000000000003-6
96-bit Formal Reference parameter (FRp)ooooooooooooooo3-7
Variable Size ReCOl'd (REC)oooooooooooooooooooooooooooo3-8
Variable Size Array Header.....ceeeeeeececscsscsssescsesd=1l0
Lower Bound and Upper Bound (LB/UB,LB,UB)..cccceececeses3-1l
Multi-dimension Span (SPAN)....cceceeeccsccsscoscecscsed—12
Separate Array Value Offset (AVO)...ciceeesoessecesess3d=15
Dynamic Array Value Address (AVA).....ccceceeceesessss3-15
Total Recofd SHz€ (TRS) i 5 iN ol 08V csbase s ook snones3=16
Data Object Descriptor (DOD)...cceeceecsscsscsssocsseseld—l?
constrained Dooooooooooo.oooooooooooo.ooooooooo.ooo.oo3-l7

Unconstrained wD.....................................3-18

W = = B WWWN N -

> WN =

WWWWWWwWwWwWwLwwWwWwWwwwwWwr
> N = N W=

SECT

"~

0 o INSTRUCTION FORMATSoooooooooooooooooo00000-00000004-
operation Code (OPCODE)...............................4-
4_
4-

Operand, Formatst (FMP) . La%t o . saBiesrl co 50 oliare « s 47 ool v

Memory........................._.......................

Formats.o..oo.ol.o.....o..o.oo..o0000000000000000000004-

Registerooooooooooooooooooooooooooooooo0000000000000004-
Imediateooooooooooooooooooooooooooo0000000000000000004-
Stackoooooooooooooooooo.ooooooo-oooooooooooooooooooooo T
New Operand Specifier (NOS)....ecceeeeeesseosococscssesssd=9
Operand QUalifRerd. . i iiiithvn ot assdovaetdteionss i =9
Bit POSition (Bpos)ooooooobooooooo000000000000000000004-9

O N X L)
] L] L] o L] L] L]
R WNNRONNONDNDEZ 0OONNNNNNoOWm
L] [] *® [] *®
P W N -
OO W W = = =

L]
=

AP VS P———
LOLOURIE TIAE SR 5 |

[ple i Big Sna G o S o e el T A WL A e b il A AT CORAS A M AR AP LA S RGP B S 2k PO SIS S U w S O RS Sogt S SRR TR

Record Component Offset (RCO)...ceeeeeecercccccsccesead=1l0
Array SubBcript (SUBR. o« c o0 ccascneas s soasse ioesssess o=l
Arrag -Slice. Index, LSLICE) oo 05 «oiid s ithls oo moie o ate otivs Jo A1)
Index Constraint (IDXCON)...ceeeescccscscocoacaceesesed=12
Base Relative Offset (BRO)..veeeoeoescosesssccesscacssd=1l3
ADFAY G20 | CASBZY 10 < Toce Sreiagee s bt 8 S0 TNt as M0 o oo 044513 .

>
[] L] L] L] L] L]
o O
. L] L] L] L] L]
wn NSO e WwN

- BASIC INSTRUCTIONS. cccoeececccosoccosccscsscscssssed]
DEAES MOMEBIBIITE o eve s o0 e sloms o o siaae®ososedsdsesokivore o oo oasamssd=l f
MR-« ((MIANE)] o gewinonarerote fageianstose-ore o¥s onbiate oTMRAdNH ¢ obioe o 0 o dds a0 o 572
Move Array (MOVARR) ...ceeceesocscscocsssscssscscsessesd—d
Move Array Slice (MOVSL)...ieeeeoesrocscesoscsccsoaessd=6
Load Array Base Address (LDBA)...cceceeeeccsccsoscseesd—8
MOVQ POinter (MOVPTR)...o.............................5‘9
Set Undefine (SETUND)ooooooooooooooooooooooooooooooooos-lo
Pupge -SHack (BURGE) . il DU, 3ol 8ue 30 0aFicesineines8=11
Swap Stack USHAR) « oo Jad Il Baml, 800 8F. wdfli s o e o dokhes5=12
Clear Temporaries Mask (CLRMSK)..:eceoeeeeeccesoseaeesd—13
K IThet Ile ad s a g ge ot G RFR S SN2 008 fild e o s oo L5514
Add Integer (ADDI2,ADDI3) ...vcecececeecccccassaceosesesd=16
Add Floating Point (ADDF2,ADDF3).cecccececcsocccsccecesd—18
Subtract Integer (SUBlz,SUBI3)........................5-20
Subtract Floating Point (SUBF2,SUBF3).ccceccececcsseesd—22
Multiply Integer (MULI2,MULI3).csccocesascccsccccsscesi=24
. Multiply Floating Point (MULF2,MULF3)..ccecceccccccscesd=26
Divide Integer (DIVI2, DIVI3)..........................5 28
Divide Floating Point (DIVF2,DIVF3)..cccecccecscccesss=30
Remainder Integer (REM12,R8M13).......................5-32
Remainder Floating Point (REMF2,REMF3)...cc0ce000eses.5-34
Modulus Integer (MODI2,MODI3)..ccovecsscccsssccsocseesd=36
Modulus Floating Point (MODF2,MODF3).ccececccccccesess—38
Negate Integer (NEGI1,NEGI2)..ccecoeecsscsscsccsaossessd=40
Negate Floating Point (NEGF1,NEGF2)...cccecoceccccccesesd-42
Absolute Integer (ABSI1,ABSI2)...cccececercccccasceesed-44
Absolute Floating Point (ABSF1,ABSF2).......c00000....5-46
Square Root Integer (SQRTI1,SQRTI2)..ceececcecocccossed—48
Square Root Floating Point (SQRTF1l,SORTF2)..cccecesess5-50
Round. £ Neareft (RNDND. .o ook cMbslodnissesons e os5=52
REund to 2870 (RRDE) . . i cloniveean sl dvnles vMlne s o b slo amras s .5-53
Round to Plus INfinity (RNDP)...cceceecccccocceccsese =54
Round to Minus Infinity (RNDM)....vccoeceeoccoccccccsse : 5=5% .
Convert Integer to Floating Point (CONVIF).....ce00e..5-56
Convert Floating Point to Integer (CONVFI).....e0000405-57
LG 1ER w737 395 0 T @7 T PR TSRS TRAPDTEIT I AIFG 065 TT 0 oo w5 T DO .
And (ANDz' AND3).o..ooooooooooooooooo000000000000000005—59
A RE23Y (ANPA2, ANDA3)«..cscvvscoiscssvessnsissenaiss 6L
And Slice (Aanz' ANDS3)oooooooooooooooooooooooooooou05-63

(S O L el ol el el e e

NN EEHEEEREEREOONOOOEWN - WO W -

B WNHOWONANPWN O

WWWWANNNMNNMNONNDNNONDNNNNNDNNNDNDNODNDNDNDNNONNDNDN

e o o
W N =

vi

[J‘h‘J

NORDROR S

o 2te Ly o 00 Ly g A,

sRg® 2 Sy AW D08 T F Ul e e el Bl i L s e e e S P

PR SEL A4 Sia S S U OB SR IS A b S 0 U o S NI TI TN T W)

O (ORZ. OB o) s Bine' s Bhigetels olore b o A sl ble 3 exanale ame o @2 ¢ 3 BB |
Op iArray (ORA2, ORAI Y. 0: o3 e dleaudiiesbaes daodosineesssdB=b
Or'Slice (ORS2, ORSI V.. et et vescbodedersscnsaisoesss®=69 |
Exclusive Or (EXOR2, EXOR3)........ | P ¥ IN) I U . 6 |
Exclusive Or Array (EXORA2, EXORA3)...cceeceeeccecassead-73 1
Exclusive Or Slice (EXORS2, EXORS3)...cceeeeesccsasesd-75
Equivalence ‘(EQ2, BN . .0 U0 o o8l b aavdatie thes vn e -7 !
Equivalence Array (EQA2, EQA3)...cesececssecasscsseaesesd=79
Equivalence Slice (EQS2, EQS3) .. ccocsccesesscscaseesesd=81
Not (NOT1l, NOT2).eeeeeses S s i o AARE IR LB T pE s ke JEB=0)B
Not ‘Array (NOTAY, NOFRZ) ..t . 0o edte sveed sltat® e ciosans5=85
Hot- Sl ice (NOBS) NOTSRIN (AT o 80 s JOR MG L NG L R S0 e o 4587
Set (SET)CCCCCQcoocc.ccc.oc.ccocc.cc.co.co.oco.ccccc005-89
Set Array (SETA)CoocCcc...c.ocooococcccoccoocccoc...005-90
Set Slicé (SEBRSY., LM o4 . Lot bt b | GUaM S SRt L v o » wre I
Claar’ (CLA) .4 v es s aua by osl bn e s n@ILE LIRS L0 Wor s e s D92
Clear’ Array (CERE)S {08 et on ., Y B A inro s o5 o o kD93
Clear Slice” (EERS)L i o vi tnaanh « 95 05 s bbb o S ph% o o o 0aiD=94
Branehs % a«e% o ot bmaaete s o% o s 35 Tk R BHE L SN eken e sshils D= 95
If (IF).c..occocc.cc.cccocc.co.ccoco.ccoo00000000000005-96
If Equal (IF=)......-..-..............-o..-.....-.....5-97
¥ No¥ Bgael (IE <. oW, 30k cie WART L o PR o JA% 4% e o dor D=8
If LESS than Integer (IFI<)ocooocococcooccocococco..c.5-99
If Less than Floating Point (IFF<)..ccecccccecscsacseesd-101
1f Greater than Lateger (IPI>) 1A% oUW dibvafo. e s #69=-102
If Greater than Floating Point (IFF>)..cceeeesscsecsesd-103
If Greater than or Equal to Integer (IFI>=)...........5-104
If Greater than or Equal to Floating Point (IFF>=),...5-105
If Less than or Equal to Integer (IFI<=)......c000....5-106
If Less than or Equal to Floating Point (IFF<=).,......5-107
3 ‘Dafinad (IFPD) i Sodtade oo 8aste o 2 Bed b Heade ol 5=108
If in Range Integer (IFIRNG)...ccceceesccscccacccsesssd=109
If in Range Floating Point (IFFRNG) ..cceeeeecececeesss5-110
@9 TE (GOTON. o' i aw e Bado dsies g d Sp o o 4l oY, g L8 5=012
CEEE (CREBHEY A2 200 0ad o s I S0 o T NN D) N8 b pea™ JB=118
Set Loop Control Variable (SETLCV).ceeeeececccoeseeeead-113
LoD UP QBOOPUDY <o o 8isebe s dhd camobiod awboneh oot oesanhs 5104
Loop Down (LOOPDN).:.eeceeccocccacocccssasccsnsssnoaessS-115

ww

NN b b e W0 G0) OY e

HOWONONONMPEWNEFO

aogaoawm
e e . e o o
e e e o o

DR R RSB R R R R R R PRPLWLUMWWWWWLWWWWWLWLWLWWWW

o o
o [. [[. (] (] [o

L] [] [} [[L[] [} L]] [[] [)
[] [] [} L] [] [] [] []
= 0 0 S0 U W

WONONNBWNNHO

oo anaana

SECTIO

(2]

- SUBPROGRAMS 5 5jtc < sieve atsralitlis o o 57eNe o 515 ol ol ailavalefole & wroe &% fa % & 6-
Call Bubprogram (CALLY:iiiviivsatiitatettoscaans 6

PataNeter ASSO0CIFEIOMNY % o2 08 et avd S aTia il atleis ani™n®

PESEING Vid RRGIstER FIlE. i i ibeisnininsentesontnsesentd=
Passing via Memory TransSfer....cceccecececcccecas 6

Load RO Reference Parameter (LDRO)..c.cceceeccseccaoesab-11
Load WO Reference Parameter (LDWO)....cceceeesecceeeseb-13
Load RW Reference Parameter (LDRW) ...ccoecesccaocecesab-14d
Clear Valid Parameter Mask (CLRVPM)...cceveccocasceeseb-15
Bind PATENCLErS (BIND) i, . ivcsensmsnvatssconissnensss s ®©—19
Return from Subprogram (RETSUB)...cescceeesosccceesesob6-18

NN ONOYON YOO O
L] L] L] L] L]
NN NNNNDNDND P Z

NN WN

vii

-. “.- -.' .\. 5 S .‘.‘.‘ h\ - ‘. -‘ . “. “
*S.&‘L\t.“i:‘}:'.)\t‘.x\;ﬁ.-_ N A0 T W)

n
m
(@]
-3
—
o
4

o 1 o 3 e 5 Pt s 4 i i o A Tl Sl W P, S A

SECTION 7

Tsl

9

NN R HRER PR OONO0 R WN -
=

B e i D R R B R R B R W N

L] L] * L] L]
CWUDIONEBWN O

O
>

SECTION 10

10.1
10.2
10.3
10.4
10.5

SECTION 11

11.1
13.2

e PACKAGES e e 0 0 00

Initiate Load (INTLD).

2
TR -5
Create. Non-Nested Package Object GERB®) uis ¢ suond e s o ot a5
Create Nested Package Object (CRNPO)..:eceeecoscccceesl™
2
2

Allocate Package Storage (ALLOCP)..ccceeescns 56006060066
Return from Package Elaboration (RETPE)...c.ceee..

= DYNAMIC STORAGE ALLOCATION/DEALLOCATION c 8-1
Create Data Object (CRDO)......: . TN 8-2
Create Unchecked Data Object (CRUNDO) T iond) © [ondlld] + oot B 4
Destroy Data Object (DSTROY)... 8-5

[
— = O 0P W H

!
N =
OV

- TASKS:ceceeoosen
Task Scheduling...

TAER SWItCHING. o oo o siacsscscliionsvssens
Exception ModeS.....cceeeeceans
Tasking Instructions.....cec.s
Create Task Object (CRTO)...
Activate Task (ACTV)....
End Elaboration (NELAB).
End Activation (NACTV). Ere oI5 IR GAS| GAREGIE el T po » 3
End Elaboration & Activation (NELACT).......
Evaluate Allocated Task Object (EVALTO).
€31l Bntry (CALBN)iowelin e om skebule o tueies ous
Call Entry Conditionally (CALENC)....,....
Call Entry with Time Out (CALENT). ot
Accept Entry (ACCEPT)................
End Rendezvous (ENDRNV). . onifine o e
Delay (DELAY) . c oo o oreoenoosioee ssemuasnsassias i finessesseId=36 °
Select Accept (SACCPT)..ceeecaes
WEIL (WRIT) s cio 000 vmaqdnmias o e ogsgmnle oo s amas o wee 7 ohe o a5 s »
gelect Delay (SDEIMY) ..o sime e oo sois o ol 56 sreasa@s awses
SELect Bl (SELSEY iuiive o cot e aioe ot o iommhde oo o oo ssieesh 9-41
Seléct Terhinat® (STERMYcvciititigotonsooes iseas
Return from Task (RETTSK)... M e 10 § Pe% o' 9-43
Sch@dule TOSK (SOHDEN .5 e o sio o b0 adbsrs seiseoss ssoesssssns 9-44
Set Task Duration (SETDUR)...ceeeeecocecss
Abort Task (ABORT)..cicsicocccvvnscns

I
N
w

L]
(Vo Vo Vo IV Vo Vo Vo Vo Vo JVa AV Vo]
| |

® 0.0 0 0 00 0 2 0

= POINTERS.... 0'C 010
Assign Pointer to Global Data (ASNPGD) .

Assign Pointer to External VGD (ASNPXV)
Assign Pointer to External CGD (ASNPXC)..eevevoccnssos
Assign Pointer to External Program (ASNPXP)..
ReStTict AcEesB RIGhES . (RETRET) (s vonwincssnsssocionn sin 10-11

= EXCEPTIONS....'...- -ll—l
Ralse (RAISE) . & & & 0 0 ..I....OIOOOOOOOIOOOOOOIII..’11-7
Assert Range Integer (ASRTRI).........................11-8

viii

* -
¢_h_4 _.n&.n\ .‘j

11.3
11.4
31.5
SECTION 12
SECTION 13
13.2
13.2

APPENDIXES

A,
B

Assert Range Floating Point (ASRTRF)...cceeeeececeeessll=9
Initialize Handler (IHNDLR)I..II.I'IIII...IIII..II.IIQll-lo
Retrieve Exception (RTvaC) ® & & & & 5 5 0 6 s s 0 0 e SO0 0 11-11

= USER CONSOLE......................................12-1
e TRAPS....-.-...---o.ooooo.oooo.-ooo-ooooo.o-..-.oo.13-l

Control Trace (CTRACE) vt veeeesoeeosonoeoessonensssssl3=-3
Trace Trap (TRAP).....................................13-4

Examples of Arrays _ A-1
Task Dependencies - B-1

ix

B ST T T e R N Y SR T O R ey S R T e A T T . R TR TS

UL AP A b ety S i 1ot i S i o i R S)

1 INTRODUCTION

This document describes the Instruction Set Architecture (ISA) of
a computer known as the High Level Language Machine (HLLM) that
has special features to support the programming langquages, Ada
and JOVIAL. The HLLM is intended for embedded applications. The
objectives of this ISA are to provide high performance support
for the frequently used "low level" features of the HOLS (integer
and floating point arithmetic, logical and relational operations,
processing of arrays, looping, calling subprograms) while
reducing the run time software overhead associated with the
advanced features of the HOLS (Ada packages, tasking, dynamic
storage allocation for unconstrained arrays and evaluation of
allocators, exception handling, etc.). Low level support is
accomplished by including powerful and versatile addressing modes
with multiple operand instructions in which the operands can be
in memory, registers, or on an expression stack. The register
file can also be used as a medium for passing parameters during
subprogram or task entry calls, Support for the advanced
features is embodied in powerful instructions in which microcode

and hardware will replace the software routines otherwise
required. ’

An attempt has been made to write the ISA in sufficient detail to
satisfy both the compiler designer and the system implementor.
Each section has an introduction followed by a detailed
functional description; in many cases, the relationship between
the feature being described and a language construct is
indicated. For instructions, the 1legal formats and use of each
operand 1is specified; then, a detailed description of the
function of the instruction is provided with a list of applicable
exceptions. An attempt was made to logically arrange the
sections of the ISA. First to be described are the four storage
objects into which all data and programs are organized. Next,
the various data types and data descriptors are described.
Finally, the instruction formats and functional operation of the
instructions are described. The 1instructions are divided into
ten groups: basic instructions, subprograms, packages, dynamic
storage allocation, tasks, pointers, exceptions, traps, input-
output, and attributes. Features and examples of the use of
instructions whose descriptions are too lengthy or detailed for
inclusion in the sections are relegated to appendixes.

AT T B e T S b T T R T e R T o 0 i T
SIS DR R R 1o, T R £ i S L QR EG L S RO, LH L T S R LTI L Rt LI OGN I A O I AT 4

.
2"t "

1.1 ISA Summary. Memory is logically partitioned into four
types of storage objects. Package objects, which are non-nested
or nested in other packages, support the Ada package construct.
Activation record objects, which are allocated whenever a
subprogram 1is called or a task object 1is created, support
recursion and reentrancy. Task objects, together with a task
scheduler and twenty specialized 1instructions, support Ada
tasking. Data objects, which are explicitly allocated during run
time, support the evaluation of allocators 1in Ada. (Task, as
well as data objects, can be dynamically created.) Data
templates for activation records, variable global data, and data
objects allow the compiler to assign initial values. (Declared
data that is not initialized is marked as undefined and cannot be
read until a value is assigned at run time.) There are three
distinct physical memories which are simultaneously accessible:
instruction memory, data template memory, and data value memory.
Packages are loaded 1into instruction memory and data template
memory, which are read-only at run time. A package contains
global data and the automatic data of subprograms and tasks as
well as the instructions of subprograms and tasks that are
contained in the main (outermost) package and in all nested
packages. Data value memory 1is allocated at run time for
activation records of subprograms and tasks, data objects, and
unconstrained arrays. (See Section 2.)

Data formats exist that accommodate Booleans, characters, 16, 32,
and 64-bit mask data, 16 and 32-bit signed integers, 32-bit
single precision and 64-bit double precision IEEE floating point
numbers, 96-bit pointers, and several array and record

descriptors. Pointers contain access rights which prevent
illegal access to or modification of data, illegal subprogram or
task entry calls, etc. Array and record processing are

supported. Array headers that contain descriptors specifying
bounds and spans for each dimension permit the machine to
automatically check subscripts vs bounds and to compute the
address of an array component. The machine also automatically
computes the size of unconstrained arrays whose bounds are not
known until run time. (See Section 3.)

Instruction formats include memory, stack, register, and
immediate addressing. Each activation record has a 16-word deep
stack for expression evaluation. Sixteen general purpose
registers and sixteen registers dedicated to passing parameters
are provided. Compact formats are available which utilize short
address offset and immediate value fields so that two or three
operands can be specified in a single instruction word. 1In
addition to operations on individual array and record components,
block moves and logical operations on whole arrays and slices are
supported. Array base addresses can be extracted from array

o

T W

|
(]

RAAFRIAS MRS APANArACA GRS B Arandr i SR g ASe Ry Ee FLSR. T () SR
(

i 0 @ aWTe o

Cpralimeg, v gn pov it Shd: TNSTOBL I it prtARaA A i Q. o530 ML oA S R ITE R AR S Bt e inie BUACASR PR, SR AR S g an D aouin S ot e Ria Wi e plig ety 'y

headers and loaded into registers. This allows base plus offset
addressing of array components and slices, a convenient
addressing mechanism when offsets are known at compile time or
can be easily computed at run time. Operand qualifiers provide
additional information about operands; they 1include array
subscripts, slice indexes, array size, record component offsets,
etc. (See Section &.)

Basic instructions have one, two, or three operands (destination,
source-destination, and source-source-destination, respectively).
This category comprises (1) data movement which includes moving
whole arrays, slices, and records, (2) arithmetic operations
which 1include IEEE standard floating point 1instructions and
square root, remainder, modulus, rounding, and type conversion
instructions, (3) logical operations on scalar Booleans and mask
data and on arrays and slices of Booleans and masks, and (4)
branch operations. that include the full complement of relational
instructions,. range check instructions, a case instruction, and
loop control instructions. (See Section 5.)

Subprogram support includes calling and returning from
subprograms with parameter passing by value or reference using
memory or registers as the medium; control can be exercised over
the rights which a called subprogram has to the actual
parameters. (See Section 6.) i

Operations on packages include (1) 1loading a package from an
external package representation, (2) creating a package object by
allocating space in data value memory for the package variable
global data and administrative data and returning a pointer to
the package, and (3) elaborating a package object by executing
subprogram #0 of the created package. (See Section 7.)

Data objects are allocated space 1in data value memory at run
time. The type definition of a data object is specified in its
data template. Storage is reclaimed (data object destroyed) when
the storage object 1in which the data object's access type is
declared is destroyed. This storage object is designated in the
instruction that creates the data object. Although storage is
normally reclaimed in the above manner, data objects can be
abnormally destroyed by a DESTROY DATA OBJECT instruction if Ada
unchecked storage deallocation was programmed. (Any dangling
references resulting from such destruction will be detected by
means of a "unique name" if access is attempted.) An important
use of data objects is for I/0 buffering. (See Section 8.)

A task object comprises a task program, an activation record, and
associated attributes .such as number of entries, identification
of dependent and MASTER storage objects, etc. Instructions are
available which <create and activate tasks, evaluate task
allocators, control task rendezvous, and terminate tasks. A

=3

VXD A0 0 e e PR 0T e r P SO 0 I SO A A AT G, WL R I O G T Y N

NN

.r ..l LE TN ..,....._.;_.;\..J

v
v e

AR - RPN e | ACINCIS M

T T e e

. - - - - o - e - - - . - Ve - i e o - k) ey w A S
i et e L O e e L B S R O e B S S e i P R i e S v 5 T T o i P e e T Pl |

hardware task scheduler and clock manager are provided.
Different exception modes allow errors to be handled differently
when a task (or subprogram) is being elaborated, a task is being
activated, a task 1s in rendezvous, or a task 1is running
normally. (See Section 9.)

Instructions are provided that assign values to pointers for data
entities located in the global storage area of the local package
or in the global storage area of an external package; in
addition, pointers can be assigned for subprograms in external
packages. Pointers contain the physical address of the data
entity or the subprogram identification and the access rights to
the data entity or subprogram. (Access rights to a subprogram
control whether the subprogram can be called.) For security, the
only operations permitted on pointers are to assign values to

them and move them. (The machine nulls all pointers when
packages are loaded.) Access rights can be restricted but never
expanded. Linking of separately compiled packages is

accomplished by moving a pointer to a data entity or a subprogram
located in one package 1into the variable global data area of
another package. (See Section 10.)

The Ada exception handling mechanism 1is fully supported.
Normally, the local exception handler -is entered, 1if one is
present; if not, the machine traces dynamic links (calling chain)
until one is found (or the main program or a task object is
reached - terminating the search for a handler). Exceptions in
tasks cause them to be completed and exceptions in main programs
cause them to be abandoned. All predefined exceptions of Ada are
detected by hardware and user - defined exceptions are supported
with raise and range checking instructions. (See Se:~ion 1ll.)

Several important Ada-defined attributes are supported with
instructions that extract and return the attributes. These
include array bounds, length, and size, image and value, and the
tasking attributes of count (number of tasks queued on an entry)
and callable (that returns a Boolean specifying whether a task is
callable, i.e., not completed or terminated). (See Section 12.)

Input/output is supported with six instructions that specify the
type of operation (READ, WRITE, GET, PUT, SEND CONTROL, and
RECEIVE CONTROL), the logical name of the 1I1/0 device, and a
pointer to the data object or address of the activation record
that serves as an input or output buffer. Direct memory access
(DMA) data transfer of 32-bit words or transfer of a single 32-
bit word takes place between an 1I/0 card and the buffer under
vontrol of the I/0 card. During input operations, a 4-bit tag is
read from the buffer's data template and attached to a 32-bit
data word as each word is written into the buffer (in data value
memory). During output operations, the tags are stripped before
the data (32-bit words) are transferred to the I/0 card. 1/0
cards are responsible for any packing and unpacking of data

-

DR Bl Sl A A

AT A Ty 170 T ") A",

h

values that may be required because of different word sizes in
the device and the HLLM. 1/0 cards provide the interface between
the HLLM and a device. They receive control information from the
HLLM and send 1/0 operation status to the HLLM. 1/0 cards
support direct, sequential, and text I/0. When packages are
loaded from the User Console, a special interface card is
required that converts between the User Console data format and
the 36-bit word format of the HLLM (see Section 14).

A trapping mechanism is provided to permit program traces during
debugging. Traps can be programmed to occur after every
instruction, every successful branch, every unsuccessful branch,
every call, every exception, or whenever a special trace trap
instruction is executed (see Section 13).

e

2 STORAGE OBJECTS

This ISA defines four types of storage objects: package object
(PO), activation record (AR), task object (TO), and data object
(DO). Instructions exist which explicitly create each type of
storage object. Storage objects contain information of two
types: administrative data and user-specified data.
Administrative data comprises ancillary information required for
the performance of functions called out in the ISA Specification,
It is created by the machine when a storage is created and may be
updated from time to time by the machine for the lifetime of the
storage object (see Appendix A for a complete description of
administrative data). User-specified information 1is acquired
directly from the program at the time of a storage object's
creation and includes instructions and/or data which are
logically related.

2.1 Package Object (PO). A package object is the central
storage for groups of 1logically related subprograms, data, task
programs, and nested packages. The external representation of a
package is shown in Figure 2-1. The entire activity of the
machine is determined directly or 1indirectly by the package
object.

A package object contains a header, variable global data (VGD),
constant global data (CGD), automatic data templates (ADT) for a
number of subprograms and task programs, a nested package area,
and instructions for subprograms and task programs in the package
(including instructions in nested packages). The package header
contains a 1 word package descriptor cell (PKG) and a 5 word
descriptor cell for each component 1in the package (subprograms,
task programs and nested packages; see Figure 2-2). The first
four bits of the package header descriptor cell 1is the
DESCription tag; the following four bits is the extend tag, PKG.
The next eight bits specify how many 5-word package component
descriptor cells for subprograms, tasks, and nested packages are
included in this package header. The remaining 20 bits specify
the storage size, in number of words, occupied by the variable
global data. Component descriptor cells for subprogram and task
components of packages are very similar as seen by the words at
offsets of -1..-5 and -6..-10 in Figure 2-2. (The . only
differences exist in the words at offsets of -2 and -7; a
subprogram requires an exception mode subfield and a formal
parameter mask while a task program requires priority level and
number of entries.) The meaning and use of the subfields shown
in Figure 2-2 are described in Sections 6 and 9, on subprograms
and tasks. Note that when the external package is loaded into
the machine, all offset values in the package header are-

converted to absolute addresses. The description of nested
2-1
RO s gl A ORI BT SORE B P N R X8 AR S SO T S DRSO (TR LIRS T A A, TR
A O TR AN O UL O O N R L R e o NI R St '.'_"-':’n"-:"-:"('1':"‘:"::!’ o :\“:\4

R T N AT RN S R N N N T A SR SR S IR AT RTINS

N A T St A P T T S R DAL S S

packages also requires a 5-word descriptor cell per nested
package. The first word is the same as the package descriptor
cell except that the extended tag identifies a nested package
(NPKG) cell. Again, all offsets in this descriptor cell are
converted to absolute addresses when the external package is
loaded (See Section 2.5.1). .

The variable global data and constant global data of a package
are directly accessible to any suEBrogram or task program defined
in the package header. Up to 2 halfwords may be addressed in
VGD and CGD areas. VGD may be read and written to but CGD can
only be read. Each subprogram and task program can contain data
with initial values preset by the compiler. Tag and initial
values of data are stored in the automatic data template for the
corresponding subprogram or task program.

2.2 Activation Record (AR). When a subprogram is called or
a task object 1s created, storage is allocated for an activation
record and administrative data.. The activation record contains
an automatic data area, a stack area, and a separate array value
area (see Figure 2-3). The automatic data has a one to one
correspondence with initial values in the automatic data template
of the subprogram/task program (see Section 2.5.2 for details on
data templates). The stack area contains a sixteen word stack
that may be used to evaluate expressions with two or more terms.
The separate array value area provides efficient memory
utilization for arrays defined with one initial value for all of
its components. The size of these arrays must be known
(constrained) at compile time to compute the appropriate offset
to the separate values (see Section 3.7.3). Unconstrained arrays
with separate values are also handled by the machine but are not
permitted in activation records (see Section 3.8.2).

2:3 Task Object (TO). Ada defines tasks as entities whose
execution can proceed 1n parallel, independently, except at
points where they synchronize (rendezvous). Some tasks have

entries which permit rendezvous with other tasks which issue
entry calls. A task accepts a call of one of its entries by
executing an accept instruction for the entry. Some calls have
parameters which provide a controlled environment for
communicating values between tasks. The actions performed when - ’
an entry of a task is called are similar to those performed when
a subprogram is called except that when the called task reaches a
return instruction, both the calling task and the task containing .
the called entry will resume execution in parallel (see Section
9). When a task object 1is created, storage is allocated for an
activation record (automatic data area, stack area, and separate
array value area) and administrative data. Each task can be
considered to be executed by a 1logical processor of its own.

MBS I A A 8 N e N N N N N S e Y N S N I W N T W o N W W e T F I e s O W S W o™ o Wi (T -y

Parallel tasks on the HLLM are implemented with interleaved
execution on a single physical processor. Each task object is
assigned a priority level by the compiler which determines the
relative percentage of CPU time allocated to it.

! 2.4 Data Object (DO). Data objects, which are explicitly
allocated during run time, support the evaluation of allocators
in Ada. In addition, data objects (as well as activation

‘ records) are used as '1/0 buffer storage in the HLLM. Each data

object includes an administrative data area, a description of the
data object (which is usually an array or record or a composite
of them), and space for data values (see Figure 2-4). Arrays and
arrays of records, whose sizes are dynamically specified at run
time, can only appear in data object descriptions. Data object
descriptions can only appear in the constant global data area of

packages.

255 Implementation. The HLLM memory system is divided into
three distinct sections: instruction memory (IM), data template
memory (DTM), and data value memory (DVM). These storage

sections can be simultaneously accessed, a feature required to
support the HLLM's pipeline architecture. Package objects are
loaded into IM and DTM as discussed 1in Section 2.5.1. Space in
DVM is allocated at run time for activation records, data
objects, and unconstrained arrays. Since an activation.record is
allocated each time a subprogram 1is called or a task object is
created, all subprograms and task programs are recursive and
reentrant. The implementation scheme for controlling access to
data in DTM and DVM is discussed in Section 2.5.2.

2.5.1 Loading of Packages. The external representations of
packages are loaded into the HLLM via a user console interface
card. A bootstrap loader on the user console interface card
first loads a package (called the loader-linker) that contains
programs that will subsequently 1load and 1link other related
packages. Headers of packages and all data are loaded into the
data template memory while all instructions in the packages are
loaded in the instruction memory. Offset fields in headers of
non-nested (library) packages are converted to absolute addresses
by the bootstrap loader prior to 1loading the headers. When the
loader-linker package has been loaded, the bootstrap loader, via
commands from the User Console, allocates storage in data value
memory for the package's administrative data and variable global
data and then elaborates the packge by invoking its subprogram 0.
The loader-linker, 1in turn, initiates the . loading of other
packages and then creates, elaborates, and 1links them (see
Section 7). :

it S) LU I e T VT S YT et bt v . . . - 3 y
. O ORI S) . PRTNUS Lw g . LY aw
T L N A A N LR A e Pt STt ST S QTR

R ER TR A A Bt IS RO

I e LN 8 Dl] e D

- - R i i it sl B e e B e s T L T e i i)]

2 5102 Data Templates. A data template corresponds to a
declarative part 1n Ada. Data templates are used for the
automatic data of subprograms and task programs, the variable

global data of packages, and for data objects. Their use allows

the compiler to assign 1initial values to any or all data
entities, including arrays. (Any declared data that is not .
assigned an initial value is marked as undefined by the
compiler.) Data templates are loaded into data template memory

(DTM) as part of a package object. Templates contain read-only .
data comprising tags and initial wvalues of data and descriptors

of arrays and records.

When memory space is allocated in DVM at run time for an
activation record, variable global data, or a data object, the
size of the allocation is equal to that of the corresponding data
template plus space for administrative data. (Certain array
space which is allocated in DVM does not appear in the template,
as described in Sectinn 3.7). Initial values of data entities
are read from DTM. When a value 1is first assigned to a data
entity, it is written with its tag into DVM. Since a template is
never disturbed, it can be reused, e.g., the template of an
activation record can be used for any number of subprogram
invocations. An initial value in DTM and the corresponding
variable value in DVM are located at the same offset from
different base addresses. A special control bit called the
"residency" bit selects DTM or DVM, depending on whether the
addressed data entity contains an 1initial value or a modified

value ("0" selects DTM, "1" selects DVM). A residency bit
corresponds to each word in DVM., Hence, its address is the same
as that of the data word in DVM., As part of power-up

initialization, all residency bits are cleared. Thereafter,
whenever a storage object 1is deallocated, the memory manager
clears all residency bits for the deallocated block before
attaching the storage to the free list. When a data entity is
first assigned a value, the following steps occur:

e Residency bit is read and found to be "0" (data in DTM).

e tag and initial value are read from template (in DTM) at
address = base of template + OFFSET.

e tag and new (computed) value are written into DVM at
address = base of activation record (or variable global ’
data or data object) + same OFFSET.

@ residency bit is set to "1" so that data is henceforth
referenced in DVM.

T A A P

e, w T m s e @ ca s e el ey - .« i ve o0
NGl N .‘.‘-.'. et .\.. .'.:s.‘..‘. ."~_"~. Jist ::.' i |
N Ty

LR R N L T Sy G St S et De S BRI S R RO e i e i i 0 i g B G B e B i n

D e TR R T T

When a value is first assigned to a data entity that occupies two
or three words (64-bit mask data, double precision floating point
number, or a pointer), the residency bit for each of the words is
set to 1. Residency bits for words 1in DVM that correspond to
descriptors always remain "0". (The single exception to this
occurs when the descriptor 1is for an unconstrained array - see
Appendix B.) Residency bits corresponding to administrative data
of storage objects start out as "Os" and are set to "ls" as the
administrative information is written. Administrative data has
no initial values and, therefore, no data template.

Residency bits may be stored in a fast 2-port RAM organized as 1-
bit x N words, where N is the number of words in DVM. Two ports
are required to allow the memory manager to clear the residency
bits of a deallocated block of DVM while, simultaneously, other
residency bits are being accessed during normal memory reference
operations.

SRS il Be s Bal el RS e 2 DA S e i WA S Ul B O AR 2 T B S 0 B A e A 90 A W, S B I e T

| T O L U A R DA R IT Ao YR A AT S |

PACKAGE HEADER

VARIABLE GLOBAL DATA (VGD)

CONSTANT GLOBAL DATA (CGD)

—— —— —— — —— — — ———)

AUTOMATIC DATA TEMPLATES (ADT)
FOR SUBPROGRAMS AND TASK PRO-
GRAMS IN THE PACKAGE

THIS PART OF THE
EXTERNAL PACKAGE
IS LOADED INTO THE
DATA TEMPLATE
MEMORY

NESTED PACKAGE AREA

HEADERS, GLOBAL DATA, AND
AUTOMATIC DATA TEMPLATES
FOR SUBPROGRAMS AND TASK
PROGRAMS IN EACH NESTED
PACKAGE .

I
I
I
I
I
I
I
|
I
v
INSTRUCTIONS :
FOR SUBPROGRAMS AND TASK PRO-
GRAMS IN THE NON-NESTED
PACKAGE ;

| .
THIS PART OF THE
EXTERNAL PACKAGE
IS LOADED INTO THE
INSTRUCT}ON MEMORY

INSTRUCTIONS

FOR SUBPROGRAMS AND TASK PRO-
GRAMS IN NESTED PACKAGES

I
I
[
I
[
[
I
[
I
I
I
I
I
I
[
I
I
I
[
(
[
INCLUDING NESTED PACKAGE I
I
I
I
I
[
I
I
[
I
I
I
I
[
I
I
I
(
[
[
I
(

I
I
I
I
v

FIGURE 2-1 EXTERNAL PACKAGE REPRESENTATION,

L Lo TN S TR -yt u R
‘ - " 4 - '\-

l 2, -
~)\ -‘-;ﬁJ 4}4 A ,\ ASLS O aSnets .-;x4J4\$4;~; TS A

.J-““‘

- 3 - B] T | g - v e i S -
SRS R R b ke Tl SR o LR e S i Ol

PACKAGE

COMPONENT
OFFSET 4 32
-N | CONT | OFFSET TO NESTED PACKAGE DATA TEMPLATES |
4 32
-(N-1) [CONTI OFFSET TO NESTED PACKAGE INSTRUCTIONS |
4 32
-(N-2) TJCONT|OFFSET TO. NESTED PACKAGE CONSTANT GLOBAL DATA]
4 32
-(N-3) TCONT] OFFSET TO NESTED PACKAGE HEADER [
4 4 8 20

-(N-4) |DESCIPPGM|# COMPONENTS| VARIABLE GLOBAL DATA SIZE |

) 4 32
-10 [CONT| OFFSET TO PROGRAM# 1 AUTOMATIC DATA TEMPLATE]
4 32
-9 [CONT | OFFSET TO PROGRAM# 1 LAST INSTRUCTION [
4 32
-8 [CONT| OFFSET TO PROGRAM# 1 .INSTRUCTIONS]
4 q)) 4 4 4 8
-7 [CONT] [N.D. | | | |PRLVL] # ENTRIES |
1) - 28 ~
-6 . |DESCITPGM] J ACTIVATION RECORD SIZE]
4 32 i
-5 |CONT| OFFSET TO PROGRAM# 0 AUTOMATIC DATA TEMPLATE|
4 32
-4 TCONT] OFFSET TO PROGRAM# 0 LAST INSTRUCTION [
4 32
-3 TCONT] OFFSET TO PROGRAM# 0 INSTRUCTIONS]
4 4)) a 16
-2 [CONT] | N.D. TEXCPT] TFORMAL PARAMETER MASK]
a4 28
-1 TDESCISPGM] ACTIVATION RECORD SIZE [
4 4 8 20 =
0 [DESCIPKG |# COMPONENTS| VARIABLE GLOBAL DATA SIZE |
PKG - PACKAGE DESCRIPTOR EXCPT- EXCEPTION MODE
SPGM- SUBPROGRAM DESCRIPTOR N.D. - NESTING DEPTH
TPGM- TASK PROGRAM DESCRIPTOR PRLVL- PRIORITY LEVEL
PPGM- PACKAGE PROGRAM N/S5 - # OF S-WORD HEADER
DESCRIPTOR COMPONENTS

FIGURE 2-2 EXTERNAL PACKAGE HEADER.

2-7

- _ e = Snd
LI) -)

CI = e N e U U RC B D B ST T S T R S Rl T Tt 3 4 S i S 0 SR H T P TS I TP N L D A B
DN IS AN TN \.A\h.\.nm.-q\&-A‘ﬂ A\.‘!-';‘ -..I:A..l..in.\f:!'-ﬁ.:‘-:&T:\-{‘Jt\‘A\'.\-:\‘:\.:'.‘:‘.‘.'.‘.\"\"'L'A. (\ ‘.:_‘..\ 1'% .‘-'}-' S

IR S T I R S o T S e B N e e N I R R A R e S P T P T s A A L T TS S YT "

ADMINISTRATIVE DATA

........

~

STACK AREA

16-WORD STACK FOR
EVALUATING EXPRESSIONS
(STACK STORAGE = CELL
OFFSET IN THE RANGE

AUTOMATIC DATA

0..31 HALF-WORDS)

|

I
UP TO 1,048,544
HALF-WORDS DIRECTLY
ADDRESSABLE (CELL
OFFSET IN THE RANGE
32..1,048,575 HALF-
WORDS)

r
|
I
i
|
|
I
|
{
|
I
|
|
I
[
|
|
|
I
I
I
|
I
|
I
|
I
l
I
|
|
|
I
I
I
I
I
I
I
|

—_—_——————e—_——_—_——_———__ee—_—_— e —_—_——_—_———_— e e— — e — — | — — — — —] — — —]

|
|
ACTIVATION |
szoao v
| I
I I
I |
I I
I I
| OVER 267 MILLION
I WORDS INDIRECTLY
I SEPARATE ARRAY VALUE AREA ADDRESSABLE FOR
: SEPARATE|ARRAY VALUES
I I
I I
I I
I I
I I
I I
I I
\'4 v

FIGURE 2-3 ACTIVATION RECORD OBJECT.

N S S A T N N T N T S TR Ve v s A sl e W v ey

T T I S e I T TR TR T ey

—
ADMINISTRATIVE DATA I

|

[| T
DESC| DOD | SIZE OF DOD |
| | |

| T
AVO| ARRAY VALUE OFFSET |
| |

I | LOWER | UPPER |
DESC|LB/UB| BOUND | BOUND |
| | | I

| T
v32D| INITIAL VALUE |
| |

—

SEPARATE ARRAY VALUE AREA
(OVER 267 MILLION WORDS

'
I
|
|
I
I
I
I
I
|
I
I
I
I
I
i
I
I
I
I
I
I
I
:
I INDIRECTLY ADDRESSABLE)
I

I

I

I

I

I

FIGURE 2-4 DATA OBJECT - EXAMPLE OF ARRAY,

PP AR MR T SR L WL P L use e e (N T e e e e, S T R S o S g T S e S o P o (o TR s
.\{\{\{\t\i\t‘. \':..&."i\'d.L"‘g‘-'::':-{!.\.zs‘:'!.k‘.s.\‘. o b st n e, i’v.'.'-.'- PP IR AURCIAS S 1P S ST P, T4 A 3, DR

R R bt et L S ER T N i i S S Sl S G i e S A P A S A T A R i St

e e R e e o T e i L e |

3 DATA FORMATS

The ISA supports 16- bit and 32-bit integers, 32-bit and 64-bit
floating point data, 8-bit characters, 16-bit, 32-bit, and 64-bit
mask data, 1-bit Booleans, 96-bit pointers, 96-bit formal
reference parameters, and variable size records and arrays. A
data cell is defined as a unit of addressable data that contains
a tag per word and a value part. Each data cell except records
and arrays has a 4-bit tag that 1identifies the bit size of the
value field and specifies whether the value 1is defined or
undefined. Tags specifying value sizes greater than 32 bits
require each additional 32-bit value to follow consecutively.
The tag 1identifier of each additional 32-bit wvalue 1is the
CONTinued tag. Variable size records and arrays have a 4-bit tag
that identifies an extension to the tag description and the next
4-bit field specifies the type of description in the remaining 28
bits. Descriptor words and 1initial values of components are
combined to completely define records and arrays.

% 16-Bit Value Data (V16). Two 16-bit value fields are
packed in 32 bits. The 4-bit tag, V16, specifies whether each of
the value fields is defined or not. If only one 16-bit value is

required, bit 33, which is the undefined bit of value field(2),

must be set to 1 (undefined) and value field(2) must contain the’

value "one". This field corresponds to undeclared data and can
never be addressed. Undefined data (declared but not assigned an
initial value by the compiler) cannot' be read until the program
assigns a value, changing the UNDEFINED bit to 0. The manner in
which each value is designated as defined, undefined, or
undeclared is shown below. Here, XXXX represents a defined
hexadecimal value.

MSB LSB MSB LSB
35 32 31 16 15 0
[| | |
| vie | VALUE FIELD 2 | VALUE FIELD 1 |
| | | |

] | ; I
TAGID VALUE(2) VALUE(1)
V16DD=0 XXXX , XXXX
Vv16DU=1 XXXX 0000=> UNDEFINED
0001=> UNDECLARED
V16UD=2 0000=> UNDEFINED XXXX
0001=> UNDECLARED

V16UU=3 0000=> UNDEFINED 0000=> UNDEFINED

0001=> UNDECLARED 0001=> UNDECLARED

-.:.':: "::".51_

Defined 16-bit value fields ma

y represent a 16-bit signed (2'

S

complement) integer, an 8-bit character, a 16-bit mask, or & 1-
represented by the value field is

Examples of 16-bit integers and
8-bit characters are shown in Tables 3.1 and 3.2, respectively.

bit Boolean. The data type
determined by the instruction.

Table 3.1 16-bit integer numbers.

Integer

16-bit value field

32,767
16,384
4,096

.———————————————q———-‘
—

TEFF
4000
1000
0002
0001
0000
FFFF
FFFE
F000
Co0o0

!
I

I
T
I
I
I

I

I

I

I

I

I

I
8001 :

Table 3.2 8-bit characters in

the 16-bit value field.

| | i
: Character I 16-bit value field :
| | I’
| "A" | 0041 |
| "p" | 0042 |
I (i | 0043 I
I "a" | 0061 |
| o | 0062 |
| space I 0020 I
: "z : 005A :

The 16-bit mask data represents 16 binary digits that may be set
individual bit basis. Four
examples of 16-bit mask data are shown in table 3.3.

or cleared collectively or on

LAC N SR e '.- T e . e

) Ly e w T T VR R S e
[OFS A)'.n".-\.e\.;'_h. A Gt e '.b.'.? ’l_n_r .f.I-

an

3-2

-s_p

YR 2% SV P i o g

- S N Y N L I N Y T T IS T

l6-bit mask data.

16-bit value field

Table 3.3
[|
| Mask# |
| |
| , w
| 1 |
| 2 |
| 3 I
| 4 |
| |

0000
0001
AS5C3
E976

——] . e e}

The binary mask values "zero"

and "one" (masks #1 and #2 in Table

3.3) can also represent Boolean values FALSE and TRUE,
respectively. : .
3.2 32-bit Value Data (V32). The 4-bit tag, V32, .specifies
whether the 32-bit value field is defined or not. Again,.
XXXXXXXX represents a defined hexadecimal value.
MSB LSB
35 31 0
|- | |
} v32 .| VALUE FIELD. |
| |
| B
TAGID VALUE
V32D=4 XXXXXXXX
v32U=5 UNDEF INED
Defined 32-bit value fields may represent a signed 32-bit

integer, 32-bit mask data, or
the IEEE standard format.
in table 3.4.

Ex

a 32-bit floating point number in
amples of 32-bit integers are shown

Table 3.4 32-bit integer numbers.
[1 |
: Integer | 32-bit value field :
|
i “l |
2,147,483,647	7FFF FFFF
1,073,741,824	4000 0000
2	0000 0002
0	0000 0000
-2	FFFF FFFE
] -1,073,741,824	C000 0000
-2,147,483,647	8000 0001 :
3-3

T o e A e s b R ake o i S MCELT e e L g Sl T

R Bl R D S S R e e e R R e e R i i e €/ R S L e SIS i i L B S At
A e e e A T |
»

TeTAPTEF L.,

The format of the 32-bit mask data is the same as the 16-bit mask
data except that the size of the mask is 32 bits. Floating point
numbers are represented in the IEEE floating point standard
format for single precision (32-bits) and double precision (64-
bits) numbers. Single precision floating point contains a l-bit

APPSR o

sign (0=plus, l=minus), an 8-bit exponent, and a 23-bit fraction. .
I MSB , LSB
X 35 31 30 23 22 0 _
B | [N | of
' | v32 |S| EXPONENT | FRACTION |
¥ | | | | |
f Exponents are represented .in excess 127. Fractions are

represeg&ed in unsigned binary for numbers in the range
Ja =255, For exponents 1in the range +1..+254, the number
represented is:

5 (-1)Sign » p(exponent-127) » (1 + fraction).

e These numbers, represented with full precision, are called
% normalized. For an exponent of 0, the number represented is:

(-1)Sign » 2-126 x (g + fraction).

In this case, the number 1is represented with less than full
precision and 1is called denormalized. Examples of 32-bit
floating point numbers are shown in table 3.5

e
LPAJOFLIRrS LB

. Table 3.5. 32-bit floating point numbers.
: | l | S]
g IDecimal Number|Sign|Exponent|Fraction]
o | | | | |
- |] }] &
F : 0.5x2127 | 0 : FD | 000000 |
: | | |
4 | 0.625x24% .0 | 82 | 200000 |
B | . | | | |
: 0.5x21 | 0 : 7F | 000000 | ;
| | |
| 0.5x2"1 |l o | 70 | 000000 |
| 12 | | | [
} .25x2"127 I 0 | 00 I 200000 |
| ' |
I-1.0x20 : 1 | 7F I 000000 |
' [|
1-0.7500001x2% | 1 | 82 | 400002 :
| | | |

r
;
LS
J
y
!
:
‘h
¢
¢
;
)

3-4

i L] - e A e N L L S N T R s N R A R T I N R T R T TN N . N T e T I NN e T U 5 = * s YT I v v wowo

398 64-bit Value Data (V64). The 4 bit tag, V64, specifies
whether the 64-bit value field 1s defined or not. Defined 64-bit
data may represent 64-bit mask data or a double precision
floating point number. The 64-bit mask data contains 64 bits and
occupies two words. The tag of the second word is CONTinued (tag

% ID = C). Double precision floating point requires two 32-bit
value fields to represent a l-bit sign, an 1l1-bit exponent, and a
52-bit fraction.

35 32 30 20 19 0
I {1 | "4
: V64 {S: EXPONENT : FRACTION I
I
I . I
TAGID Most significant
LFD=6 20 bits of
LFU=7 fraction
35 31 0
[| ' g [
: CONT : L.S. FRACTION :
L | '
TAGID Least significant
CONT=C 32 bits of
| fraction

The 64-bit floating point exponent is represented in excess 1023,
For exponents in the range +1..+2046, the number represented is:

(-1)Sign é(exponent-1023) * (1 + fraction).

For an exponent of 0, the number represented is:

(-1)Sign » 2-1022 « (9 4+ fraction).

3=8

...............

3.4 96-bit Pointer (PTR). Three 32-bit value fields are
required to represent pointers to whole storage objects, data
entities in the global storage area of packages, and non-nested
subprograms. The value field of the first word of the pointer
contains a 1l-bit UNIQUE NAME flaqg, a 3-bit ENTITY (ENT) subfield,
a 4-bit RIGHTS subfield, and a 24-bit - -subfield whose contents s
depend on the pointed-to entity specified by the ENT subfield
(see Table 3.6). If ENT designates a program in an external
package, the 24-bit subfield contains the offset, in number of s
words, from the address of the package header to the program
(subprogram or task program) component in the header (see Figure
2-2). If ENT designates a data object, the UNIQUE NAME flag
controls whether the 24-bit subfield contains a UNIQUE NAME. 1If
the flag =1, a UNIQUE NAME is present; if the flag =0, the 24-bit
subfield is ignored. The value fields of the second and third
words of the pointer contain, respectively, the ABSOLUTE ADDRESS
of the ENTITY TEMPLATE and the ABSOLUTE ADDRESS of the ENTITY in
data value memory (the latter not used when the pointed-to entity
is a data entity in the constant global data area of a package.)
There is a special use of the pointer data type that does not
involve pointing to an entity. If ENT designates "package load
addresses”, (1) the subfields that occupy bits 0..27 in word 1 of
the pointer are ignored, (2) the value in the second word of the
pointer is the absolute address of a package in data template
memory, and (3) ‘the wvalue in word 3 of ‘the pointer is-the
absolute address in instruction memory of the first instruction
of the first program contained -in the package. This special
pointer is returned when the instruction, ALLOCATE PACKAGE
STORAGE is executed during loading of package (see Sections 7 and

7.4).
'35 32 31 30 28 27 24 23 0
J P 1F | -
| PTR | | ENT |RIGHTSI VALUE DEPENDS ON ENTITY
| | — | |
b !
TAGID | |
PTRD=8 | |_ READ = XXX1
PTRU=9| WRITE = XX1X
I DESTROY = X1XX -
UNIQUE
NAME FLAG
35 32 31 0
| | [
| CONT | ABSOLUTE ADDRESS OF ENTITY TEMPLATE |
| | Sl
35 32 31 0
i | |
| CONT | ABSOLUTE ADDRESS OF ENTITY I

» - -.-.' l."l -'. '
- 4
.;'.-_{u_'_.rl'f_.

g
- fy

R LS P A RN D i eun i, B i A i 050 80~ iy B Bl e Pty WAy "R A Sl e e et Gl o s bl i don i MBS Sones mas g bl

CERCRR R R b R S oo

Additional information on pointers is found in Section 10.

Table 3.6 Pointed-to Entities.

{ENTITY CODE : ENTITY T

{ 000 { PACKAGE OBJECT T|

: 001 } TASK OBJECT :

= 010 : DATA OBJECT }

: 0l1l : DATA ENTITY IN VGD :

: 100 : DATA ENTITY IN CGD :

: 101 : PROGRAM IN EXTERNAL PACKAGE :

: 110 { PACKAGE LOAD ADDRESSES :
In the above table, VGD = variable global data area and CGD =
constant global data area. . .
3.5 96-bit Formal Reference Parameter (FRP). A formal

reference parameter contains a path to the actual parameter and
specifies the rights which .the called subprogram has to the
actual parameter. Formal reference parameters have the same
forme as a pointer to a data entity. The ABSOLUTE ADDRESS of
the ENTITY TEMPLATE 1is the base address of the caller's data
template (or of an enclosing scope's template or the package
variable or constant global data) plus the offset to the actual
parameter. The ABSOLUTE ADDRESS of the ENTITY 1is the base
address of the caller's activation record (or of an enclosing
scope's activation record or the package variable global data)
plus the same offset. The FRP is assigned only during parameter
binding.

327

A '-".'.'i' 18 s fara e

-."1‘ n."~ (ALY DR

oo Te s “;’ SN

P Ve

T

e R et S Rl e R i R TR D e A B P R Don Wik Prtin, D, Sl Bl PGl i - P i i S e T B Bl 3o i R0 Nt T R AR 1
1
35 32 31 30 28 27 24 23 - 0
| R [I) I -
| ERE | =) ENE |RrGHTS| f T e 0 e | '
I el I | I
| =l |
TAGID I d
FRPD=A |_ Read = XXX1 ’
FRPU=B Write = XX10
35 32 31 0
[| |
| CONT | ABSOLUTE ADDRESS OF ENTITY TEMPLATE I
I | |
35 32 31 - 0
[|]

| CONT | ABSOLUTE ADDRESS OF ENTITY I

In the FRP, the UNIQUE NAME flag and the UNIQUE NAME field are
not used. The ENT field can assume only the following values:

ENT meaning

111. . actual parameter 1in caller's
activation or an enclosing
program's activation

011 actual parameter in variable
global data area of enclosing
package

100 actual parameter in constant
global data area of enclosing
package , :

See Sections 6.3.1 and 6.3.2 for information on the use of FRPs.

3.6 Variable Size Record (REC). The record descriptor (REC)
specifies the number of record components and the number of words
required to describe the record. The tag ID of the record
belongs to the extended tag group called DESCriptor tags. The
next four bits identify the extended tag as a record. The value
field is divided into an 8-bit subfield specifying number of
record components (#C) and a 20-bit subfield specifying the size,
in number of words (#W), of the total record description.
Immediately following the record descriptor are #W-1 words that

3-8

. L®

° - - -
RN

oy TN\ -, <l a T
A R e | L it s R e s S e i (e s s e g, e s D

define the components, including 1initial wvalues. An initial
value is any legal value or UNDEFINED, preset by the compiler.
The entire record description would be located 1in the data
template of an activation record or a data object.

35 . 32 31, 2827 20 19 0
F T] | |
| DESC | REC |# COMPONENTS | # WORDS IN RECORD DESC |
| | | i I

|
I iR
TAGID EXTENDED
DESC=D = REC=0

Figure 3-1 shows an example of the record format with three
initialized components including a 16-bit value, a 32-bit value,
and a 96-bit pointer. Note that the second value field of
v16(bits 16..31) is marked as undeclared. This corresponds to
the Ada construct in Fiqure 3.2 which declares one integer (KEY).
The pointer has been initialized to NULL.

3 32 31 28 27 20 19
T DESC | REC | #C | #W = 6

]
w

35 32 31 ' } . 16 15
TvieuD | Value | Value

[}
—

-5

0
:
0
I
35 32 31 . 0
T V32D |) Value = 1,073,741,824 T
' 0
T
0
L
0
I

35 32 31
T PTRU | Null

35 _32.31
| _CONT | Null

35 32 31
T CONT | Null

Figure 3-1 Three component record format.

REC_DESC: record
KEY: 1integer: = 5;
SUM: long_integer: = 1,073,741,824;
ITEM_PTR: access array (< >] of float;
end record; '

Figure 3-2 Ada record construct.

3-9

5 e b

3.7 Variable Size Array Header. Arrays are defined as
collections of homogeneous data entities. An array header
describes the dimensions of the array (lower bound, upper bound,
and span for each dimension), specifies initial value(s) of array

components, and designates, explicitly or implicitly, the
location of the array component values. Array headers facilitate g
automatic subscript vs bounds checking and array component
address calculation from the subscripts. (See Section 4.4.3 on
Array Subscripts.) In the header, the bounds in any dimension =

can be designated as being unconstrained (not known at compile
time). Then, the values are supplied at run time, when storage
is allocated for the array. Array headers with constrained
bounds (values preset by compiler) may be located in the data
template of activation records or data objects. Headers with
unconstrained bounds can only be located in the templates of data
objects. In addition to dimension information, the header
contains one or more initial component values that were defined
in the source program and preset by the compiler. Components
that are not assigned initial values must be marked as UNDEFINED
by the compiler.

Constrained arrays may be defined with component values
immediately following the header or with component values
separated from the header by the array value offset. In the
former case, the location of rthe array component values is.
implicit (at the end of the header); each component can have a
separate initial value. These 1initial values are located in the
data template of the array; hence, as new values are assigned,
they are written to corresponding locations in data value memory.
In the latter case, the location of the array component values is
explicitly given by an array value offset to an area of storage
designated for separate array values (at the end of an activation
record or data object). These values do not have a corresponding
template. Hence, the components cannot have individual initial
values. However, the header contains one initial value (or
UNDEFINED) that applies to all components. Unconstrained arrays
must be of the class with separate array component values.

3-10

............

. .

o Riaal 2w N o Bike T o P ua)

TR T L T T T o N L S R e L A R R R T N e T S T I TN

3.7.1 Lower Bound and Upper Bound (LB/UB,LB,UB). Array headers
with immediate values must start with one of the following
descriptors:

35 32 31 28 27 16 15 0

B | | ' 1 i

| DESC {LB/UB | LOWER BOUND (LB) | UPPER BOUND(UB) |

| | | | |

| 0

TAGID EXTENDED
DESC=D LB/UB=3

LB=> 2's coppleme
range=> —Z?T +(2?i 1).
LB=800=> Unconstrained.

|
I
|
I
UB=> 2's c?gplemenis
1)

range=> -2 + (2
UB=8000=> Unconstrained.

35 32 31 28 27 - ‘ _ 0
1. |] - |
| DESC : LB } LOWER BOUND (LB) :
I

o I :

TAGID EXTENDED LB=> 2's cggplemeg;.

range=> -2 +(247-1).,

DESC=D LB=1
: LB= 8000000=> Unconstrained.

38 32 31 28.27 0
1) 1 W |
| DESC : UB : UPPER BOUND (UB) - :
[:

1 It .

TAGID EXTENDED UB=> 2's cggpleme&;.

DESC=D UB=2 range=> -2 +(2¢7-1),

UB=8000000=> Unconstrained.

Note that the LB/UB descriptor format combines the lower bound
and the upper bound into one word for describing small to medium
dimensions. Larger dimensions require two consecutive words
containing a 28-bit lower bound value and a 28-bit upper bound
value. Multiple dimensions are indicated by successive lower and
upper bound values.

=11

NN L
'}x"'-. A AR R ATV X AT AN,

PR RORT R

T AT S T T SR T AT AL T VIS NI T TR

u

3

S e, VN Ty TR T A Y e Y e T A a Y e T TN T e T e T e Ve " TR TeTe Ye "ERTY YR YWY YYL W - Badil B Sadn e et Bam B - ~
2 -~ S ST AT IR S ST SSIIOSTE S e S e T P o SRR WeCto i P D e TR i e s

3.7.2 Multi-dimension Span (SPAN). Arrays with two or more
dimensions require an additional descriptor word for each
dimension over the first. This descriptor is called the SPAN of
the nested dimension. For any dimension, i,

SPAN; = Lengthj.j * SPAN;_. .

where 1i-1 represents the number of the immediately nested
dimension and length = upper bound - lower bound + 1. For the
innermost dimension (dimension 1), SPAN is replaced by the array
component size, expressed in number of half-words (V16=> 1
"halfword, Vv32=> 2 halfwords, etc.). Hence, for an n dimensional
array,

SPAN; = Length; * Component Size
SPAN3 = Lengthy * SPAN3

SPANg4 = Lengthj * SPANj

SPANn = Length.n-l X SPANn..l

and the total array size is
SIZE = Lengthp * SPANp.
The advantage of including SPANs in the header 1is a

simplification of the component address computation. (See
Section 4.4.3.)

35 32 31 28 27 0

| | | |

| DESC | SPAN | SPAN; VALUE FIELD I

| | | |
I | 1=

TAGID EXTENDED Range=> 0..228-2 halfwords.

DESC=D SPAN=4
SPAN=FFFFFFF=> Unconstrained.

When the last dimension (dimension l) is specified, the .
components are listed with their initial values. The component

size is derived from the first component tag following the
dimension 1 descriptor.

3-12

L AT Sl S LA R ST i T AP ASr e I BBl o S S~ Stk s i aginih Juiep it 0o it miall Lod DNE wA o8 niG o ai WY W T WINPT e e

Figure 3-3 shows an example of a three dimension array of
integers. Figure 3.2b shows the corresponding Ada construct.

35 32 31 28 27 16 15 0
T DESC |LB/UB | LB3 = -2 I UB3_= -1 i
T DESC | SPAN | SPAN3 = 6 halfwords i
T DESC TLB/UB | LB, = 0 | UBp = 2 T
T DESC [SPAN | ~ SPANZ2 = 2 halfwords [
| DESC ILB/UB | LB = 1 T UB]_= 2 T
[V16DD | VALUE = 2 T VALUE = 1 dli
[V16DD | QMME=4 | VALUE = 3 il
TVieDD | : VALUE = 6 o VALUE = 5 ,
[V16DD I VALUE = 8 = VALUE = 7]
TV16DD | VALUE = 10 I VALUE = 9 I
[VI6UD | VALUE = 0 | VALUE = 11 il

Figure 3-3 3-dimensional array of 16-bit values.

3-13

L AT LR (I ______ g E e RN P BRATER .'- .’-‘.‘- T R AR T e
Léz‘s,‘s RS ITY R S A .p\‘_r"& f\l ".h\.n & .L‘.; s _.":L AR ,'ﬁr_L‘ 1' ANCERR L LIRS LR IR A -“'~‘." T, '.'-'}1

RR_DESC: array (-2..-1,0.
(-2..-1=> (0..2

.2,1..2) of integer:=
(

=>(1

c2=x(1, 2,3,4,876,7 @y9; 30,10 k.

Figure 3-4 Ada array construct.

ote that the last component of ARR_ DESC (-1,2,2) is not
nitialized by the Ada construct. Therefore, the compiler sets J

he undefined bit for value field(2) in the tag and assigns all
.eros to value field(2).

3-14

o ' A BT G Y ~
('."' - ﬁ '.\: L.‘l_ .-\’_' -_"._ \\'Su a® *L‘h: e ‘,:_ _' ‘\‘.1

LR el S e AR e S e i A ot Babc T g Bai Shafe i o e B e i v

.......................

kI Sl Separate Array Value Offset (AVO). Headers of
constrained arrays with separate values must start with the Array
Value Offset.(AVO) descriptor. The AVO contains a 28-bit self-
relative offset (in words) to the start of the separate array
value area at the end of an activation record or data object.

35 32 31 28 27 0
1 | | |
| DESC : AVO | RELATIVE OFFSET }
| |

I] I
TAGID EXTENDED Offset to sepagate values.
DESC=D AVO=7 Range => 3,.2°-1 words.

Following the AVO descriptor are the lower bound, upper bound,
and SPAN of each dimension in the array and a single component
descriptor (tag and initial value) that applies to all the array
components in the separate array value area.

A description of a 1. dimension array with a lower bound of 1 and
an upper bound of 128 is shown in figure 3-5. The start of the
separate values is 48 words from the AVO descriptor and each
component is initialized to the value 16.

35 2 [k = 2824, 0
IDESC | AVO | RELATIVE OFFSET = 48 |
35 320 3l 27 16 15 0
TDESC ILB/UB | LB=1] UB=128 I
35 32 31 0
[v32D T VALUE = 16]

Figure 3-5 Separate constrained array header.

3.7.4 Dynamic Array Value Address (AVA). Array headers with
unconstrained bounds must start with the array value address
(AVA) descriptor. AVA contains the 32-bit address of
dynamically allocated storage for separate array values.
Initially, the machine sets the undefined bit in all AVAs to "1"
(UNDEFINED). When .the template of a data object 1is an
unconstrained array (or is a record with one or more
unconstrained array components), the array bounds are supplied by
an operand cualifier (see Section 4.4.5) 1in the instruction,
CREATE DATA OBJECT. Then, the size of the array(s) can be

3=18

———

5 R0 R TLT SR N RO e iy TN O G i RO AN 2 S T T, ._v"""!‘ e B e SO PP B A R ot f."'..v .-‘r' T

ymputed and storage can be allocated for the data object. Since
1e location(s) of the separate array values becomes known, the
ichine loads a valid address into each AVA and changes the
\defined bit to "0" (DEFINED).

35 31 0

| |]

{ AVA : ARRAY VALUE ADDRESS :
| | .

TAGID 32-bit absolute address of

AVAD=E dynamically allocated array

AVAU=F storage. Absolute addresses

are assigned by the machine only.

>llowing the array value address descriptor are the lower bound,
»per bound, and SPAN of each dimension 1in the array and a
omponent descriptor (tag and initial wvalue) that applies to all
1@ array components in the dynamically allocated separate array
1lue storage area. As mentioned earlier, unconstrained array
2aders can only occur in data object templates.

Y £1) Total Record Size (TRS). The total record size
ascriptor 1s used 1n an array header when the total size of a
2cord which is an array component is not given by the "number of
>rds in record description” field in the REC descriptor. This
ise arises when an array with separate values has a record
>mponent and the record contains a component which is an array
ith separate values. Each array may be wunconstrained or
>nstrained with separate values. TRS contains the correct array
>mponent size which 1is used in array component address
»mputations. TRS precedes the REC descriptor of the record that
>ntains a component which is an array with separate values. The
1lue of the TRS descriptor 1is a 28-bit field representing total
2acord size, in number or words. Appendix B gives four examples
f arrays with record components, when the record contains an

rray component. These examples 1illustrate when TRS is and is

>t required.

36 32 31 .28 27 0

| | I |

| DESC } TRS { 28-BIT TOTAL RECORD SIZE - |

| |
|)y]]

TAGID EXTENDED NUMBER OF WORDS

DESC=D TRS=8 IN TOTAL RECORD.

TRS=FFFFFFF=> UNCONSTRAINED.

3-16

- e & e 1.0 . “ry FWNS_ e S TR 8 T F e L e b e St A eagrore — -
AN e T T WM T ST e M B WIS LA TN T RS LY A e Wi e T L R R L S L T N R I T T T Iy " im0 i TN T B W I s g oy

3.8 Data Object Descriptor (DOD). A Data Object Descriptor
specifies the fixed storage size (known at compile time) of a
dynamically allocated data object. A DOD 1identifies the
associated data template as that of a data object. These
templates are contained in the constant global data area of
packages (see Section 2.4). The DOD contains a 28-bit value
field representing size, in number of words, as shown below:

. 35 32 31 28 27 28 0
I ! i ']
| DESC : DOD | , FIXED STORAGE SIZE :
i | {
i i [4
TAGID EXTENDED Size depends on the type
DESC=D DOD=9 of data object described

by the data template.

Data objects can be any data type including records and arrays,
but excluding pointers and formal reference parameters. The type
is specified in the description (template) that follows the DOD.
Data objects can be constrained or unconstrained. Unconstrained
data objects are unconstrained arrays or contain records with one
or more components that are unconstrained arrays.

3.8.1 Constrained DOD. The DOD of a constrained data object
specifies the total size of data value memory to be allocated
dynamically, in @ CREATE DATA OBJECT or CREATE UNCHECKED DATA
OBJECT instruction. This includes the size of the data template
plus the size of separate array values, if the data object is (or
contains) an array with separate values.

3-17
""" AT S R g O R LS e B, AT R T
o o n) ') S A S WATYRI AR [
A Yt N A A D N A A IR T TR M W)

AL P s e O T P R Y

3.8.2 Unconstrained DOD. Since the storage size of an
unconstrained data object 1s not known at compile time, the size
field in the DOD specifies only the size of the unconstrained
array or unconstrained record description (data template). Bounds
of unconstrained arrays are supplied 1in the instruction, CREATE
DATA OBJECT or CREATE UNCHECKED DATA OBJECT. These instructions
first allocate storage in data value memory of a size equal to
that specified in the DOD. Then, lower and upper bounds and
computed quantities that depend on the values of the bounds (SPAN .
and Total Record Size, if a record) are written into data value
memory at locations having the same relative offsets as their
counterparts in the template in data template memory. The total
size of the unconstrained data object, including separate array
values, can then be computed and storage allocated for it. The
addresses (in the allocated storage) of the separate array values
for each unconstrained array can then be written into the Array
Value Address descriptors, completing the operation. This
process is illustrated in Example 4 of Appendix B. An example of
an unconstrained data object description 1is shown in Figure 3-6.
Here, the symbol < > stands for "unconstrained" value (=
800-..0hex). '

3-18

Bt Thindt
..

e
f

B R R R A AL N AR SR R AN A SR LI N s P ol il 0k el i . SO0 O it gt - U it Al il i et 2fo0 DAl by it

[4 . L] - - -« '- - L ad e - a” .' & % e v - .‘ .. -' .u »
B T TR SV g A G .

35 32 31 28 27 :
" | DESC | DOD | 12

— 0

35 32 31 L
|_AVAU | DON'T_CARE

35 32 31 28 27 16 15
[DESC |LB/UB | < >] < >

35 32 31 28 27
| DESC | TRS | < >

—Jo |—Ho ——Jo

38 - 32 31 28 27 20 19
| DESC | REC | 4] 8

35 32 31 28 27
| DESC | AVO | 7

33 32 31 28 27 16 15
| DESC ILB/UB_| b | 48

35 32 31
[V32D] 0

35 32 31 16 15
TviebpD | 15 | -3

35 32 31 .
| AVAU | . DON'T CARE

35 32 31 28 27 16 15
| DESC |LB/UB | < > I < >

35 32 31 ;
V32D | =2,147,483,647

—do |Ho lHdo |Ho |Hdo |Ho |Ho IHo

Figure 3-6 Unconstrained data object description. .

The data object description g Figure 3-6 defines an
unconstrained array of unconstrained records. The record
descriptor defines four record components including an array with
48 separate 32-bit values, two l6-bit values, and an
unconstrained array with a 32-bit component.

=19

..'ﬂ-‘-.l-.'..'..'Q L LTI S e R T s G]
e 4% %y "

.

w et T, ey
O P A A A A R SO AL AL

T T v T . o o i
R SR S s P e L i e, N i g i e S i =

4 INSTRUCTION FORMATS

The instruction set supports l-operand, 2-operand and 3-operand
instructions. Twenty-eight operand formats specify l-operand, 2-
operand, and 3-operand combinations of memory, register,
immediate, and stack references. Instructions vary in size from
one word (36 bits) to N words, depending on the number of
operands. :

4.1 Operation Code (OPCODE). The operation code consists of
the eight most significant bits (bits 35..28) of the first
instruction word. The OPCODE identifies the action to be taken,
the number of operands involved, and the value representation of
the operands.

4,2 Operand Formats (FMT). Immediately following the OPCODE
is a 4-bit format (FMT) field (bits 27..24) specifying one of
fourteen memory reference formats or format extend. Additional
non-memory reference-formats are obtained by extending the format
field by 4 bits (bits 23..20) when FMT = Extend.

4.2.1 Memory. Reference to data in memory requires a 4-bit
address space %ADS) specifier and a 20-bit cell offset (CO). The
address space field specifies the nesting depth of the addressed
data (in the local activation record, an activation record of an
enclosing subprogram or task program, or the constant or variable
global data area of the package).

Nesting Depth Location Sf Addressed Data
15 constant global data
0 variable global data
1 non-nested subprogram

or task program

2..14 nested subprograms or
task programs

The nesting depth of addressed data must be less than or equal to
the current nesting depth or 15, A nesting depth in the range
0..14 designates a display register pair that contains the base
address of the activation record (or variable global data area)
and the base address of the activation record's data template (or
the variable global data area's data template). Nesting depth 15
designates the display register that contains the base address of
the constant global data 1in data template memory. The 20-bit
cell offset is a halfword offset relative to the base addresses
mentioned above. Hence, the machine adds the CO to the

4-1

base address of an activation record or data template to locate a

data cell. The residency bit determines which absolute address
(in data value memory or data template memory) is used. The
range of the CO value for memory references is 32 to 1,048,575
halfwords. (Offsets O to 31 are reserved for register
addresses.)
35 28 27 24 23 20 19 0
| I | | I
: OPCODE i M I ADS : CELL OFFSET (CO) I
I
i I i |
8-bit operation | 4-bit address I
code space 20-bit cell offset.

I
4-bit format
specifier for
single memory
operand
(see Table 4.1)

Data cells that are located w
the activation record (or globa
a compacted (shorter). cell
the specification of multiple
memory operands residing in the

offset

20

Range=> 25..2 -1.

ithin the first 1,024 halfwords of
1 data area) can be referenced with
format. Compact formats allow
operands in a single word. Two

same activation record (or global

area) can be referenced with the 4-bit ADS field and two 10-bit
‘cell offsets. The range of the short cell offset values for
memory reference is 32 to 1,023 halfwords.
35 28 27 24 23 20 19 10 9 0
| | | I | II
I OPCODE = MM | ADS : CELL OFFSET2 I CELL OFFSET1 |
I
[| ! ! |
8-bit operation | | 10-bit cell offset2. |
code I 5 10 I
4-bit formatl Range=> 27..27"-1. I
specifier | I
for 2 memory| 10-bit cell
operands | offsetl.
(See Table 4.1) | : 5 10
| Range=> 2~..2" " -1.

4-bit address
space

[RC s S S e i o e A5 e e S e e iR S e o S o e i ik S G i S B e G e i O Al aE o o -1

4,2.2 Formats. Table 4.1 shows the fourteen memory format
codes. Here, MEM=Memory, IMM= Immediate, and STK=Stack operand.
Note that the table 1includes several 2-operand and 3-operand
formats. For example, 1f FMT code=9, the 36-bit instruction
would specify OPCODE, FMT, ADS, and a full length CO field and
would imply the presence of two other operands on the stack.
(Stack operands are zero-address.) Normally, in multiple operand
instructions, the operand specified last (memory operand, in this
example) is the destination and the other operands (on the stack,
in this example) are sources.

1 I N
| FORMAT ! MEMORY REFERENCE (ADS) FORMATS !
| CODES { OPERAND | |
| (FMT) | LOCATIONS | FIELD SIZES |
| [} | i
0 =M {Memory	CO = 20 bits	
1 = MM	Mem-Mem	Each CO0 = 10 bits
2 = IM	Imm-Mem	Imm = 10 bits, CO = 10 bits
3 = MI	Mem- Imm	CO = 10 bits, Imm = 10 bits
4 = SM	Stk-Mem	CO = 20 bits
5 = MS {Mem-Stk	CO = 20 bits .	
6 = MMS IMem-Mem-Stk	Each CO = 10 bits (
7 = MSM IMem-Stk-Mem	Each C0 = 10 bits	
8 = SMM	Stk-Mem-Mem	Each CO = 10 bits
..l 9 = SSM	Stk-Stk-Mem	CO = 20 bits !
10 = MSS IMem-Stk-Stk	CO0 = 20 bits I	
11 = SMS IStk-Mem-Stk	CO = 20 bits	
{12 = MIS IMem-Imm-Stk	CO = 10 bits, Imm = 10 bits	
13 = IMS	Imm-Mem-Stk	Imm = 10 bits, CO = 10 bits
14 = -	Reserved I	
15 = Extend		

Table 4.1 Memory Formats.

1S

1l

Fala®a

1.\; _A\Am\

LB ey S re mahie i R e

Format code 14 is reserved for
extends the format field by an
combinations of operands on the

values, and base-relative values.
shown in Table 4.2.

future use. Format code 15
additional 4 bits to specify
stack, in registers, immediate

The extended format codes are

!] i
I : | NON-MEMORY REFERENCE FORMATS I
| EXTENDED | OPERAND I |
| FORMAT CODES | LOCATIONS | FIELD SIZES I
| | I I
'@ = § |Stack I I
! 1 =8S |Stk-Stk | I
| 2 =1 | Immediate | Imm = 20 bits |
T | Imm-Imm | Each Imm = 10 bits I
| 4 = SI | Stk-Imm | Imm = 20 bits |
b S = IS | Imm-Stk | Imm = 20 bits I
| 6 = SIS |Stk-Imm-Stk | Imm = 20 bits I
I %= i8S | Imm-Stk-Stk | Imm = 20 bits I
| 8 = RRR IReg-Req-Req | Each Req = 5 bits . I
| 9 = IRR | Imm-Reg-Req | Imm=10 bits, Each Reg= 5 bits]|
| 10 = RIR |Reg-Imm-Req | Imm=10 bits, Each Reg= 5 bitsl|
| 11 = B |Base Reg | B-Reg = 5 bits I
| 12 = BI _|Base-Imm | B-Reg = 5 bits, Imm = 10 bits|
|13 = BM |Base-Memory | B-Req=5 bits,ADS=4 bits, ol i
I I I C0=10 bits |
I 14 - | Reserved I I
A - | Reserved I I
I I I |
Table 4.2 Non-Memory Formats.
4-4
2 I J;.)\..,_,-...,.'_\.,\.s.}\}

M g e e e Ny TR SR LU SR Vi W S A N VT ‘T

M il Sl Aares BV AL R B il T A e w
. - s (LA = . . s ‘v‘J‘. -.'|....'-?. L “ .'_:T“.-,‘.-L‘". B (4 LI e 0 S B

4.2.3 REGISTER. Thirty-two 36-bit registers comprise the
register file which is divided 1into two groups: registers 0
through 15 and registers 16 through 31. The former group

comprises general purpose registers (of concern ‘here) while the
latter group is dedicated to passing parameters (see Section
6.3.1). Register 0 contains two 16-bit control fields, leaving
registers 1 through 15 for general purpose use. Bits 0..15 of
register 0 is called the Temporaries Mask. (Bits 16..31 of
register 0 comprise the Valid Parameter Mask for control of
parameters.) Each bit in the Temporaries Mask corresponds to a
general purpose register in the following way: bit 0 corresponds
to register 0 (itself); bit 1 corresponds to register 1l; ...bit
15 corresponds to register 15, Whenever a general purpose
register is written into, the corresponding bit 1in the
Temporaries Mask is automatically set to "1". If an attempt is
made to read a register when the corresponding bit 1in the
Temporaries Mask is not "1", a PROGRAM ERROR is raised. The Mask
has no control over writing to registers. In presence of a task
switch, the contents of those registers corresponding to "1ls" in
the Temporaries Mask, including register 0, are automatically
saved in the current task object's administrative data area; the
values are restored when the task is again scheduled to run. The
Temporaries Mask 1is automatically cleared for the called
subprogram when the CALL SUBPROGRAM instruction is executed. The
instruction, CLEAR TEMPORARIES MASK, is provided. to allow
compiler optimization, (There 1is no need to save/restore
reqgisters when the data they contain is garbage.)

Cell offsets in the range 1..31 address registers (ADS is
ignored). Therefore, the cell. offset in activation records
starts at 32 halfwords. Note that the control register (register
0) is not dgenerally addressable; this register is conditioned
automatically by the machine and 1is modifiable by special
instructions. A consequence of memory mapped register addressing
is that all formats in Table 4.1 are.usable for registers ("REG"
replaces "MEM"). In addition, extended formats 8 through 13
utilize the general purpose registers (see:- Table 4.2). An
instruction using format 8 (RRR) is shown below:

(R R i Rl EE e |

35 28 27 24 23 20 19 15 14 10 9 5 4 0
I I | | T | [|
) OPCODE | EXT | RRR | - | REG3 | REG2 | REGl |
| | | | | | | |
4-5
N e e T S T o o e e e e e R

Here, two source operands may be located in registers 1 and 2 and
register 3 may be the result destination. Extended formats 9 and
10 are similar, with a 10-bit immediate value replacing one
register operand.

When writing to a register, the 4-bit tag as well as the value
field are loaded. Data types V16, V32, vé64, and pointers can be-
loaded 1into general purpose registers. (Formal reference
parameters can be loaded into parameter registers 16 through 31). .
A sixteen bit value (V16) is 1loaded into bits 0..15 of a general
register. A further feature permits array base addresses to be

loaded into general purpose registers, The undefined bit in the

base address tag identifies the array as having immediate values

or separate values. Array value and template base addresses are

loaded into registers by the instruction, LOAD ARRAY BASE ADDRESS

(see Section 5.1.4). Two consecutive general purpose registers,
addressed by CO and CO+1l, are loaded as shown below:

(a) Arrays with separate values

e e == R RESESTERESE == == o5 — = == = >|
Register Address Tag Value Field
Co (1..14) i F Address of lst component in array

value.space in data value memory

€0 § 1 CONT Address of component tag/initial
value in array header in template

(b) Arrays with immediate values

R e L L Lt REGISTER--------=--~~~~-—- >|
Register Address Tag value Field
Co (1..14) E Address of lst component in array
value space in data value memory
€O + 1 CONT Address of 1lst component tag/
initial value in array header in
template

Note that the tag used for the base address in data value memory
is the same as that wused for Array Value Address (AVA). This
does not cause a problem since array headers are not permitted in

™

DRSS AR SR e SRS s T B e o 2R Sy T G R Gl i S B s e sal el A

registers. Similarly, base addresses are only permitted to
reside in registers. An array component value is addressed by
adding an offset to the base address of the array values. The
base address is contained in the first register of each pair. In
case b (arrays with immediate values), the same offset added to
the base address of the component description 1in the header
yields the address of the tag/initial value of the component.
This base address 1is contained 1in the second register of the
pair. (The residency bit automatically selects DTM or DVM as the
source of the value.) In case a (arrays with separate values),
base address in the second register of the pair addresses the
single tag/initial value for the entire array. Instruction
formats are available for base plus offset addressing, where the
offset can be an immediate value or a memory operand (see
extended format codes 12 and 13 in Table 4.2). The extended
format code 12 (Base-Immediate) specifies a base register pair
and a 10-bit immediate displacement (in halfwords) to the
addressed array component.

| i |] | i [
| OPCODE | EXT | BI | B.REG | - | IMMEDIATE VALUE

35 28 27 24 23 20 19 1514 10 9 0
I
I
| | I I | | |

Extended format code 13 (Base-Mem-“ry) specifies a base register,
an ADS field, and a 10-bit cell offset. If CO is in the range
1..31, it specifies a register which contains 8he 32-bit offset
and ADS is ignored; if CO is . in the range 32..21 -1, then ADS and
CO specify the memory location that contains the offset value.

5 28 27 24 23 20 19 15 13 10 9 0
1 | I I 1 i

OPCODE | EXT | BM | B.REG |-| ADS I CELL OFFSET |

| | l | | |

_———]w

If the 10-bit immediate value (extended format 12) or the 10-bit
CO (extended format 13) is too small, then extended format code
11 (base) that designates a base register 1is wused with the
operand qualifier, Base Relative Offset (BRO). BRO specifies an
offset from the array base address using a full length format

(see Section 4.4.6). Shown below 1is the base register (B)
format: '
35 28 27 24 23 20 19 15 14 0
] I I =) | ' I
| OPCODE | EXT | B | B.REG | = |
|

........

'~‘.~‘ A,) ' S . . . ARESSIRTA gy ey g O ROR] i R O O i
L& 3'-li\"ﬂ\:]h“-4§) D AT . O ._'.?’"._ " e .‘:, A “-.‘.‘.,- ‘\ e \"\-_o_-. 5

«rray component addresses can be derived by two methods. In the
‘irst, the instruction addresses the array header and includes
subscript operand qualifiers (one per dimension). The machine,
1Ising the information in the array header, automatically checks
:he subscripts vs bounds for each dimension and computes the
irray component address wusing the subscripts and spans (see
jection 4.4.3). The second method of addressing an array
:omponent -‘involves use of base plus offset addressing, as
lescribed earlier. Then, subscripts for each dimension must be
:hecked by program, using the instruction, ASSERT RANGE, unless
:he Ada index check is suppressed. Having base addresses in
‘egisters dreatly speeds up array processing when frequent
iccesses to array components is required. Note that there will
>e times when the compiler cannot compute the array component
»ffset, namely, when subscript wvalues are not known at compile

:ime or when array bounds are unconstrained. '

Instructions are available which move and perform logical
perations on whole arrays and slices. For a whole array, these
instructions either address the array header and the array size
ls automatically computed by the machine or address a base
register and the pre-computed array size 1is gotten from the
perand qualifier, ASIZ (see Section 4.4.7). Alternatively, the
rompact formats, BI and BM, may be used which (only for
instructions that address whole arrays) are ' interpreted as
specifying base register and array size (in halfwords). Note
that extended formats B, BI, and BM (extended format codes 11,
12, and 13) may only be used when addressing arrays.

for a slice, the instructions either address the array header and
include two slice index operand qualifiers (see Section 4.1.4) in
the instruction stream (machine computes the location and size of
the slice and checks the slice indexes vs bounds) or address the
irray base, pre-computed slice size, and the offset to the start
>f the slice. 1In the latter case, extended format 11 (base) is
ised with the operand qualifiers, BRO and ASIZ. Alternatively,
the compact formats, BI or BM, may be used with the single
>perand qualifier, ASIZ. (Here, BI and BM are interpreted the
same as when an array component 1is addressed, i.e., as a base
register and offset.)

1.2.4 Immediate. Several forms of immediate addressing
(operand value present in instruction) are provided. A full size
immediate operand is 20 bits which may be a single operand in an
instruction word (extended format I) or combined with one or two
stack operands (extended formats SI, IS, SIS, and ISS). Sevéral
compact formats are availabie in which the immediate operand si:ze
is 10 bits (formats M, MI, and IMS and extended formats Il, I[RR,
IR, and BI). Tables 4.1 and 4.2 list all these formats.

’ g
................................

4.2.5 Stack. An expression stack of depth = 16 words is
included in each activation record for use by subprograms and
task programs. Although the purpose of the stack is to evaluate
non-trivial arithmetic expressions, any V(16), V(32), and Vv(64)
data type can be placed on the stack. V(16) types are unpacked
on the stack (right justified). Instructions can combine stack,

memory, and immediate operands as shown 1in Tables 4.1 and 4.2.:

Stack overflow (push beyond sixteenth value) and underflow (pop
under first value) are detected and cause a PROGRAM_ERROR
exception to be raised.

4.3 New Operand Specifier (NOS). When an instruction has
multiple operands, the first 1instruction word that specifies the
first operand contains the OPCODE (bits 28 to 35). Each
consecutive instruction word that specifies another operand
contains the new operand specifier (code = FF) in place of the
OPCODE. The number of new operand specifiers in an instruction
depends on the OPCODE (instruction type) and FMT (full length or
compact operands). :

4.4 Operand Qualifiers, Operand qualifiers provide
additional information about operands which cannot (for lack of
room) be coded into operand specifiers in instructions. The type
of an operand qualifier is coded 1into bits 28 to 35. The
function and location in an instruction of each type of operand
qualifier is shown below. . ;

4.4.1 Bit Position (BPOS). This operand qualifier may be
used in the MOVE 1nstruction or any logical instruction that
operates on V16, V32, or V64 mask data. A 6-bit field selects a
bit in the mask operand addressed in the instruction. The
selected bit takes part in the operation. BPOS follows the
operand specifier that addresses the mask data in the instruction
stream.

35 28 27 24 23 6 5 : 9
T I [I . o
| BPOS | FMT | - | BT I
| | I | SEL |
] I I
I I I
| IGNORE BIT SELECTOR
INST-1D FIELD
00000000
4-9

Yo v

N |

R T e S e i I N S i R L e e T T R e R A e o v Vv v R

4.2 Record Component Offset (RCO). An RCO operand
alifier specifies, 1n number of half words, the offset from an
dressed record descriptor (REC) to the desired component of the
cord. RCO is a 20-bit immediate value. It is present in the
struction stream following the operand specifier that addresses
C; if the record containing the desired component is itself a
mponent of an array, RCO follows the array component offset
hen base register - offset addressing is used) or follows array
bscript operand qualifiers (when the machine computes the array
mponent address). The examples in Appendix x show how the
chine uses RCO in address computations.

35 28 27 24 23 20 19
|] I I’
I
I

RCO | EXT | I l OFFSET (HALFWORDS)
| | |

———o

[

I
INST. ID
00000000

4.3 Array Subscript (SUB). An array subscript operand
lalifier addresses an array component 1index in a particular
mension of the array. To compute the offset to an array
mponent, the machine requires n subscripts, where n = number:of
mensions in the array. A subscript is a signed integer that is
nstrained to be within the index bounds specified in the array
rader for the particular dimension. Subscripts are present in
le instruction stream, following the operand specifier that
ldresses the header, in the order of descending dimension
mber.

35 28 27 24 23 20 19 0
E i | I !
| SUB | FMT | ADS | CELL OFFSET j
| | I | l
|
I
INST.ID
00000000
IT may specify memory, régister, srack, or immediate format

lemory or register shown above); two subscripts may be combined
I @ compact format. =

le following general formulas show how the machine computes :he
ldress of a ccinponent in an i-dimension array using subscripts.

(O e o e sy = R o

LR NEFOR LA i) D et 160 A R A BCRR A i fPe Schtbin an Sl Wi it it il at A sl ek Sl b A a s s S a B |

a) Arrays with Separate Component Values.
Address of component 1 = array header address + AVO

+ {(SUBj - LBj) * SPAN;
+ (SUBj-1 - LBj-1) * SPAN;_3

+

+ (SUB2 - LB3) * SPAN>

+ (SUBy - LB3j) * component size
here

AVO = Array Value Offset,

LB = Lower Bound,

SPAN)

Length; * component size,

SPANj = SPANj.] * Lengthj_1 (j = 3..i),

ind
Length; = Upper Boundj - Lower Bound; + 1.

‘or unconstrained arrays, Array Value Address (AVA) replaces
'array header address + AVO",. (The value of AVA becomes known
then storage is allocated for an unconstrained data object during
:he instruction, CREATE DATA OBJECT or CREATE UNCHECKED DATA
)BJECT) .

'b) Arrays with "mmediate Values.
The array coi..onent offset computation is the same for arrays
with immediate values. However, the base address of array
values is:

Array header address + size of header.

t.4.4 Array Slice Index (SLICE). Array slice indexes are
perand qualifiers (always present 1n pairs) that specify the
index values of the first (lower index) and last (upper index)
component in a slice in any array dimension.

35 28 27 24 23 20 19 0
| I | | |
I SLICE | FMT | ADS | CELL OFFSET I
| | | | : |
|
|
INST.ID
00000000
4-11
B e e e T e A L L L] e o S e e Sl

e e et maar cpe i s PR e ot L i e TRl il Bk ot Sl S A S i Skl v —— R S S P A At Pl bai aga e i i e S
” -—= o 3 - o . L ea 0l oI 1, VIR RUL iy B AN L mes i .

................. SR ey
~ B e e S I R T T R) - Ve Rog Vg T lheig Yoo WG Moo Ve S, RN

i FMT may specify memory, register, stack, or immediate format
(memory or register shown above); the two slice indexes may be
combined in a compact format. SLICE indexes are present in the
instruction stream 1in the order "lower index, upper index"
following the operand specifier that addresses the array header.

e @ -

The offset to the first component of a slice is computed from
subscripts, lower bounds, and SPANs as shown in Section 4.4.3

except that the slice's lower index 1is wused 1in place of the :
highest dimension subscript. If the slice is in dimension i, the

offset to the first slice component is:

e e W e

i (lower index - LBj) * SPANj
+ (SUBj-1 - LBj-1) * SPANj_;
i + (SUB2 - LB3) * SPANj

+ (SUBy; - LB}) * component size.
The length of the slice is:
.upper -index - lower index +l.

Each 3lice index in constrained to be within the bounds of the
dimension in which the slice is located.

¢ % 3.0 ¢ NEEE o+ o~ °

] 4.4.5 Index Constraint (IDXCON). When lower and/or upper
I array bounds are unconstrained 1n° a data object template, IDXCON
operand qualifiers supply the valuyes of the bounds, constraining
the array. These operand qualifiers are -present in the

instruction stream (part of the instruction, CREATE DATA OBJECT)
and appear in the same order as unconstrained bound descriptors
in the data object template.

§ 35 28 27 24 23 20 19 0
; T T I ™ 2l
[IDXCON | FMT | ADS | CELL OFFSET |
l | | | |

[L
I :
INST.ID 5
00000000

2 8 2 TEERE.TeTe.Te"s OTWEE s ¢ ¢ . °

T TR TR TR S W N e e T e TR W b a i o — i B 2 S e
RT3 Shel Sp R0 B P Pl i o e e B e e e e e i i b i o e e~ b N ke o Lt 3t o i e e e g |

FMT may specify any memory, - reqgister, stack, or immediate format
(memory or register shown above). Note, however, that the 20-bit
immediate extended format does not support the full size lower or
upper bound descriptor value (28 bits). Compact formats may be
used, as appropriate.

b 4.4.6 Base Relative Offset (BRO). This operand qualifier
supplies the array component offset (or the offset to the first
. component of a slice) relative to an array base address in a

register. It is used when the offset value is too large to be
accommodated in extended format BI (Base-Immediate) or BM (Base-

Memory).
35 28 27 24.23 20 19 0
W [[[I
| BRO | FMT | ADS | CELL OFFSET |
I | | | I
|
I
INST.ID
00000000

FMT méy specify a memory, stack, or immediate value format
(memory shown above).

4.4.7 Array Size (ASIZ). The ASIZ operand qualifier is used
with instructions that operate on whole arrays and slices. It
specifies the size of the array or slice, in halfwords.

35 28 27 24 23 20 19 0
T e [LS T
| ASIZ | FMT | ADS | . CELL OFFSET |
| I | I I
I
INST.ID
00000000

FMT may specify a memory, stack,” or immediate value format
(memory shown above).

ORI S q.. DRI YL AL P e T S P VO IR T R A
N A A N A A A A N N N AT

G IR A, RO 0 g O S L AT e Tateceecace aca e

'{-\‘. .I. -t .'. .(.

S5 BASIC INSTRUCTIONS

The following pages describe the basic set of HLLM instructions
including data movement, arithmetic, logical, and branching
operations. Instructions that support special features of Ada,
e.g., tasking, packages, exceptions, etc., are covered in other
sections.

In the description of the instructions that follows, the only
operand formats shown are for full length operands. This is for
convenience; any appropriate compact format can be used by the
compiler (see Tables 4.1 and 4.2). Of course, any memory format
designates a register if the cell offset is in the range 1..31.
In the description of the operands, S means Source and D means
Destination. Enclosed in parentheses following each Format (FMT)
alternative is the format code., e.g., memory (0), immediate
(EXT, 2), where EXT refers to the extended codes in Table 4.2.

5.1 Data Movement

These instructions correspond to simple assignment statements in
Ada, including assignment of whole arrays and records; also
included 1in this group are instructions that change the
representation of data during assignment,, set data to
"undefined”, manipulate the stack (swap, purge), and clear the
Temporaries Mask. . :

Tt et et e T, S s s e e e e e e

O T = " AN et et N
F ST PSRN 3 IR SO0 PRI I A T e T P, Wt P e Vi Ty oy D, S S SN S S N AN

. o P =
e . Cimro gy g o R b

Ty o Vb T e e — — Bt e St fhrt] — b
I e e R S A Py Wi ra i Sla t i Mim.tre STANle Vie W 000 Nem. 00 S A R R T e B e e R AT T AR Ly

5.1.1 MOVE:
Format: 00y, S, D,

Mnemonic: Mbv

Operands:

S: Source to Be Moved

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
D: Destination of Move Operation

FMT: memory (0) or stack (EXT,0)
Function:

The operand specified by S (immediate value, any data entity
except a whole array or slice, or a data object) is copied to the

destination location specified by D. Table 5.1 shows the legal

combinations of source and destination operands. If the source
or destination operand is a pointer to a data entity in global
storage (ENT=011 or 100) or to a data object (ENT=010), the
pointed-to entity, not the pointer takes part in the operation.

Exceptions:
PROGRAM_ERROR

e AT

WJJ.J:..M

— - — — A — —— S — A — — — — . G " G— S — —— — — . — — — — —

source destination

e 1mmediate value e conforming scalar 1in

memory (or register)
@ scalar in memory or or stack
register) or stack
e conforming array or
e array or record record component

component

e conforming whole

e whole record
: record

e data object of any
type except array

e conforming data object

e conforming data entity
in an activation
. record or in global
storage

e any data entity except a
pointer or an array in
an activation record
or in global storage

° confofming data object

|
I
I
I
I
I
|
I
I
|
I
|
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I

Table 5.1

=3

ot N RS R P Py S, e, el
,:&(Y '-'-'-.'. o -": J‘l ..""I LR NI A AT A .-‘.-;

—— D D S G G T S— — T G, E— D e G G G G G S — — —— — — — ——— O— o—

R T e A s N R s e e e T R T T T I T oo™ L, .'-.1

51 a2 MOVE ARRAY
Format: Oly, S, D

Mnemonic: MOVARR

Operands:
82 Source Array to Be Moved
FMT: memory (0) or array base register (EXT,1l) .
If an array base register 1is specified, the
array size must be provided by the operand
qualifier, ASIZ; alternatively, the compact
format Bl or BM, may be used.
D: Destination Array
FMT: memory (0) or array base register (EXT,1l)
If an array base register 1is specified, the
array size must be provided by the operand
qualifies, ASIZ; alternatively, the compact
format BI or BM may be used.
Function:

The array operand specified by S 1is copied to the conforming
array specified by D. Table 5.2 shows the allowable addressing
combinations. If the source or destination operand is a pointer
to a data entity in global . storage (ENT=011 or 100) that is an
array or is a pointer to a data object (ENT=010) of type array,
the pointed-to array, not the pointer, takes part 1in the
operation. Arrays in constant global storage must have immediate
values. When an array is addressed via its header in memory, the
machine computes the array size as the product of the highest
numbered (outermost) dimension SPAN and Length- the machine also
locates the first array component.

Exceptions:
PROGRAM_ERROR

a V" ."-é‘ - \.\'\;.\,"')\..\}\ Swa Lt e

ORI AT NG N

source

destination

array addressed via an
array header in memory

array addressed via an
array base register and an
array size qualifier

array addressed via a
pointer to an array
header in the global
storage of a package

array addressed via a
printer to a data object
of type array

e any conforming array,
similarly addressed

Table 5.2
5-5
e e N N N e Y e e e T g T O

R et By P #5000 ~u b AL H-SC i b FMCE R shcRie Y ST St A it g

AT Sl i ER SR P e G e e A e VA A R i - e A0 e T)1

§5.1.3 MOVE ARRAY SLICE
Format: 02y, S, D,

Mnemonic: MOVSL

Operands: .
S: Source Array Containing Slice to Be Moved
FMT: memory (0) or array base register (EXT,11) -
Memory: upper and lower array slice index (SLICE)

operand qualifiers and the necessary array
subscripts (SUB) are present in instruction

Base Req: base register offset (BRO) and slice size (ASIZ)
operand qualifiers are present in instructions;
alternatively, the compact format BI or BM may be
used to provide base register and offset to start
of slice with the operand qualifier, ASIZ,
providing slice size.

D: Destination Slice ,
FMT: memory (0) or array base register (EXT,11)
Memory: upper and lower array slice index (SLICE)

operand qualifiers ‘and the necessary array
subscripts (SUB) are present in instruction

Base Req: base register offset (BRO) and slice size (ASIZ)
operand qualifiers are present in instructions;
alternatively, the compact format BI or BM may
be used to provide base register and offset to
start of slice with the operand qualifier, ASIZ,
providing slice size." g '

Function: -

The array slice specified by S is copied to the conforming slice
specified by D. Table 5.3 shows the allowable addressing
combinations. If the source or destination operand is a pointer
to a data entity in global storage (ENT=011 or 100) that is an
array or is a pointer to a data object (ENT=010) of type array,
the pointed-to array slice, not the pointer, takes part in the
operation. Slices of arrays in constant global storage must have i
immediate values. When an array slice in a multi-dimensional -

array is addressed through the array header in memory, the
machine computes the address of the slice from subscripts, lower
slice index, lower bounds, SPANs, and array component size (see
Section 4.4.4). It also computes the size of the slice as shown
below:

YAy, o

P 20 MGG NP 3 |

T T S M N A T T R B R e T on s e T T ey o Ly R Y e S Y Y L T TV R W S T Y S O T

source destination

@ slice addressed via an
array header in memory,
array subscripts, and
upper and lower slice
index qualifiers

-
I
I
|
|
|
I
|
|
|
@ slice addressed via an | e any conforming array,
array base register and | slice, similarly
base register offset and | addressed
. size qualifiers {
slice addressed via a |
pointer to an array |
header in the global I
storage of a package, |
array subscripts, and |
upper and lower slice |
index qualifiers ‘
|
|
I
|
I
I
|
I
|

@ slice addressed via a
pointer to a data object
of the type array, array
subscripts, and upper and
lower slice index
qualifiers

— — —— — — — — — — — — — — — — ——— — — — — —— — —— ——— — — — — —
[]

Table 5.3

Size=(Upper Index - Lower Index +1) * Component Size

Exceptions:
PROGRAM_ERROR
CONSTRAINT_ERROR

N I A R RS

atayat i’ ‘.\'. PCAOROA

L B RS S P e e S R P e R e R S - = g o i T o i R J R N AR TS A e P A S

CREA R T A I 5N

’.1.4 LOAD ARRAY BASE ADDRESS
format: 034, S, D

inemonic: LDBA

Jperands:
S: Array Header
FMT: memory (0)
D: Destination Array Base Regiéter
array base register (EXT,1l1l); register #1..14
Function:

The cell offset (CO) specified by S 1is added to the contents of
each register of the display register pair corresponding to the
nesting depth (ADS) specified by S to form the address of the
array header in data template memory (DTM) and the corresponding
address in data value memory (DVM). The machine determines
whether the array has separate values (first word in header is
AVO or DOD followed by AVA) or immediate values (first word in
header is array bounds). If the array has separate values the
address of the first component value in DVM and the address of
the tag/initial value in DTM (for all components are found and
loaded into the basé registers specified by D and D+1. The tags
written into these registers are F(AVA with UNDEFINED flag = 1)
and CONT, respectively. If the array has immediate values, the
address of the first component value in DVM and the address of
the first component tag/initial value in DTM are found and loaded
into the base registers specified by D and D+1. The tags written
into these registers are E(AVA with UNDEFINED flag=0) and CONT,
respectively. "AVA" provides a unique identification for array
base registers.

Exceptions:
PROGRAM_ERROR

5-8

%
LSS

LRI P T T T i S e i e e O T e Pt WU S S
F=toh -‘-‘o,.-':'o_\-(..'..az:..)‘-‘l..l..

TYY % QOGO <. sy LA . Oy Y | 1
‘L .-',.l'_.-' AN " -!':.!:.'.’xt J\J\A\af.e ’.."..’ SRS "-". A S) 'tn' .'~ ."--’ _'t '\

i)
i

AR e U M al & N Y R e L N N N R W W N Vel sl ® 0

$.1.8 MOVE POINTER
Format: 043, S, D
Mnemonic: MOVPTR
Operands:
S: Pointer to Be Moved
FMT: memory (0)
D: Destination Pointer
FMT: memory (0)
Function: ' :
The pointer operand addressed by S 1is copied to the destination
location addressed by D. In every case when a pointer is

referenced except this instruction, the pointed-to entity takes
part in the operation.

Exceptions:
PROGRAM_ERROR
5-9
b AT G O B G R R R I O N P Pt T T P St A A A AT Y

b SRl S sa st i i BRRCATRE S Il A et B o e e P e B AN s T S U A S AR e T G D Ae Rl Dby B Se f e R fa A IS T Rt Nrd e St 200) Sdh b S |

1.6 SET UNDEFINE
yrmat: 054, D

iemonic: SETUND

>erands:

bH Data to Be Set to Undefined

FMT: memory (0) .
jnction: '

e data entity addressed by D is set to undefined by writing a
l" into the "undefined bit" in the tag. For type V16, the
idressed 16-bit field is also set to 000y (see Section 3.1). If
he data entity is a pointer, writing a "1" into the undefined
it causes the pointer value to be NULL., If D addresses an array .
r a record, each component is set to undefined.

xceptions:
None

5-10

EA SN R -‘, ALY e % o'e A W% Lol V'-". AN) > e AR LGN & k
}&‘;' R AOEI k{c -(s_x_: ‘\.ft: ._'.: ».’- s '\'x g\. (6.4 :\'\‘h:\‘_"-_f \\‘.L -_" ."- \'L." (\.\ \' oM ﬁ

i SR S0t Byt e SLP P AS LSS S p AN B0 00 oA RN Nt S VLR Y S BY Uefl U oA R Np i Mol e et it Sy iagt B Aat Ay Soad Jtg Jtan o RIS AR b Bt Sacsiead

¥oda? PURGE STACK
‘format: 06y
inemonic: PURGE

Jperands:
None

Function:

The local stack is pop'd
points to the top-of-stack.

Exceptions:
None

(contents lost) until the stack p01nter

g

Lo

8 SWAP STACK
1at: 07y
ionic: SWAP

‘ands:
e

:tion:
contents of the top two
1anged.

ptions:
1e

AT E >

.'-1. P SEANYGAON \',\..\)

locations

5-12

SO N - S
SRR~ 2, -\.'s-.\‘:_..._..., >

on

the local stack are

KSRV TS

WHEN

i

SEU NN T T A © A D Pt A AD Rl PR e et e b B S Bt S R e S e Dl B g Jhia 6 i Sk SR8 &l Eai 6 Ge S Bibs Baarion mog mon o vrw}

|

. 5.1.9 CLEAR TEMPORARIES MASK
Format: 08y
Mnemonic: CLRMSK

Operands:
None

Function:
Each bit in the Temporaries Mask (bits 0..15 of register 0) is
cleared.

Exceptions:
None

5-13

R BRI R I I TIPS o S e B S PR R S G Y ._'. Dol T vasiNg LI ICH T T O O T -
T A R I N I NIRRT A A A L I R U R SO M, .-")]
a ¥ gy §

LAY Bt R] S L " gt s v Al Shad Thaflh Fhnd vy >
ELER SO R £ e R s L et S i et ik e e e s e e e o S e b P B e o g g R

52 Arithmetic

The basic principle of operations involving numeric operands is
that, except where otherwise specified, the result is computed as
if correct to infinite precision. This infihite precision result
is then rounded, if necessary, to the precision of the result
operand. The arithmetic operations and floating-point formats
are based on the proposed IEEE floating-point standard [IEEE 81],
modified as described below (unless otherwise noted, section
numbers refer to (IEEE 81]).

Formats (Para 3): The ISA does not support representations of
infinity. The only not-a-number (NaN) which can be represented
in "Undefined". The representations specified for infinity and
other NaNs must not be used.

Default Rounding Mode (Para 4.1): Unless otherwise specified in
the ISA, round-to-nearest is the default rounding mode for all
operations.

_ Directed Rounding Modes (Para 4.2):. The default rounding mode
for any instruction can be overridden by preceding that
instruction by one of the rounding instructions (Round Toward
Zero, Round Toward Minus Infinity, Round Toward Plus Infinity,
round to Nearest). . : :

Rounding Precision (Para 4.3): Rounding 1is always to the
precision of the result operand, regardless of whether that
operand is integer or floating or whether the result precision is
less than or greater than other operands.

Operations (Para 5): Operations are defined only for
combinations of the same operand type. = Exceptions are the
CONVERT instructions.) Instructions may have different precision
operands, however, (V16, V32, V64). Some operations required by
the standard (e.q. round to integer) require software
implementations. Comparison testing 1is by predicates (Para
5.6.2) rather than condition codes; it 1is not possible for the
relation "unordered" to occur, given the modifications herein
described, so no "unordered" predicate test is provided.

Infinity Arithmetic (Para 6.1) is not supported.

Operations with NaNs (Para 6.2) are not supported.

(IEEE 81] "A Proposed Standard for Binary Floating-Point
Arithmetic", Computer, March 1981, pp. 51-62

o s oAt |
e el g St iR e

RETF T o se i SRR TR G e il 1 G Bl e W Gyl Uei Ay e W-e R, Yalle 8 A 0 i L -

Sign Bit (Para 6.3): The sign of zero 1in an integer type is
considered to be "+", If -0 1is required to be delivered as a
result of integer type, the sign bit is ignored.

Normalizing Mode (Para 7.1) 1is the only mode supported; warning
mode is not supported.

Exceptions (Para 8): The only exception which is raised when
operands have valid numeric values (i.e., not "undefined") is
NUMERIC_ERROR. NUMERIC_ERROR is raised for

1, DIVIDE, MODULUS, OR REMAINDER where the divisor is zero.

2. Square root of a negative number (square root of -0 results
in -0 and does not raise an exception).

3. Overflow, i.e., the rounded result’s magnitude is too large
to represent in the result format.

Underflow (Para 8.4) and 1inexact (Para 8.5) are not supported;
the rounded result 1is always delivered (in order to directly
support Ada arithmetic rules). In no case 1is any result
(including infinity or NaN) provided when an exception is raised.

.Traps (Para 9): Traps, as defined in the standard, are not
provided. Exceptions raised are handled in the manner specified
in Section 11 of the ISA. - In particular, exception handling

cannot be disable, no information (other than the exception type)
is delivered to the exception handler, and the handler cannot
return control to the point at which the exception occurred.

In the integer arithmetic instructions, the précision of 10-bit
and a 20-bit immediate operands is taken to be V16 and V32,
respectively.

(IEEE 8l1] "A Proposed Standard for Binary Floating-Point
Arithmetic", Computer, March 1981, pp. 51-62

Al o LS G L B] T ch M) e ottt S Dafnate pigly ¥ P T

e e e R e T, N T N, '.—v*-"':vx-v?‘j

5.2.2 ADD INTEGER
Format: 094, S, D

Mnemonic: ADDI2

Operands:
S First Addend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0) .
D: Second Addend and Sum _ '
FMT: memory (0) or stack EXT,0)
Function: L

The binary addition of the integers specified by S and D is
performed. Source and destination operands may have different
precisions (V16 or V32); the precision of the operation is.V32.
The result (sum) is checked for overflow (magnitude of result
larger than precision of destination allows). A NUMERIC ERROR
exception is raised in the ' presence of overflow, else the result
is stored in the destination location.

The source operand may be an immediate value, a directly
addressed 1nteger, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. The
destination operand may be any of these except an immediate
value.

Excepiions:
PROGRAM_ERROR
NUMERIC_ERROR

5-16

4(\\\:.‘,*.,"\{‘\)\ 'u!.\‘...'h ‘e N \:\.“\')ﬁ:_ q,-z-;c\ o v-\,,: _‘\; \:-.P:-."Q'.,.‘w Ok P o ‘e Te N

‘.-’ SIS IR . ",' e e A d’_" LY

EAS O TR ML SRR A B DA BAR P8 _tr S S et B A A e S % S Syl e

P T T I T N TN Y W T RANS TN R -u.’.r<1

5.2.1 (CONT) ADD INTEGER

Format: ©OAy, S1, S2, D

Operands:
Sl: First Addend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
S2: Second Addend
FMT: immediate (EXT,2), memory (0), or stack (EXT,O0)
D: Sum
FMT: memory (0) or stack (EXT,O0)
Functions:

The binary addition of the integers specified by Sl and S2 is
performed. Source and destination operands may have different
precisions (V16 or V32); the precision of the operation is V32.
the result (sum) 1is checked for overflow (magnitude of result
larger than precision of destination allows). A NUMERIC_ERROR
exception is raised in the presence of overflow, else the result
is stored in the destination location.

Each source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an 1integer 1in global storage or a data object of type
integer), or an integer component of an array or record. The

destination operand may be any of these except an immediate
value.

Exceptions:

PROGRAM_ERROR
NUMERIC_ERROR

5-17

‘.. . (TR I I N g D AT '-"r"s".'
A% X f\ . \ e ‘,J,_._,. W \".\ N \!\ MR R L, \ -i-;\.\l.ﬁ.\i'-b A -_x’\\n.'-\\\.\;\ _\.\‘1

5.2.2 ADD FLOATING POINT

Format: OBy,.S, D

Mnemonic: ADDF2

Operands: 3
S: First Addend
FMT: memory (0) or stack (EXT,0)]
D: Second Addend and Sum
FMT: memory (0) or stack (EXT,O0)
Function: . ‘
The binary floating point addition of the floating point numbers
addressed by S and D is performed. Source and destination

operands may have different precisions (V32 or V64). The
precision of the operation ' is sufficient to accommodate the
largest magnitude result (sum). The fractional part of the
result 1is rounded,if necessary, to the precision of the
destination fraction. The result is . then checked for exponent
overflow (magnitude larger than precision of destination exponent
allows). A NUMERIC_ERROR exception is raised in the presence of
overflow, else the result is stored in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

U

LRt R DS U TR TSN S B 5 G Mg Biy, tig Py f in 3 An 'Sl Seily He i ‘il cpd Gndt Af Sn - og - Sl Gt Jioril G- Bn Gafl et e o B k-0 Nl S0 T A Tt g o0 e o o T

5.2.2 (CONT) ADD FLOATING POINT
Format: OCyx, S1, S2, D

Mnemonic: ADDF3

Operands:

Sl: First Addend

FMT: memory (0) or stack (EXT, 0)
S2: Second Addend

FMT: memory (0) or stack (EXT,0)
D: Sum '

FMT: memory (0) or stack (EXT, 0)

Function:

The binary floating point addition of the floating point numbers
addressed by S1 and S2 is performed. Source and destination
operands may have different precisions (V32 or Vé64). The
precision of the operation 1is sufficient to ‘accommodate the
largest magnitude result (sum). The fractional part of the
result 1is rounded, if necessary, to the precision of the
destination fraction. The result 1is then checked for exponent
overflow (magnitude larger than prec1s1on of "destination exponent
allows). A NUMERIC_ERROR except1on is raised in the presence of
overflow, else the result is stored in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

{ (ﬂ' 'J S _[' _‘E‘!J - I\I‘.I$»

il A Bodh B R L S R e P PR S D AR e RO i SO B D SRR A e S 3 i i i i e e i Sl AL oA ARl o, R B A

5.2.3 SUBTRACT INTEGER
Format: ODy, S, D

Mnemonic SUBI2

Operands:
S: Subtrahend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0) ‘
D: Minuend and Difference
FMT: memory (0) or stack (EXT,0)
Function:
The binary subtraction of the integer specified by S from the
integer addressed by D 1is performed. Source and destination

operands may have different precisions (V16 or V32); the
precision of the operation 1is V32. The result (difference) is
checked. for overflow (magnitude of result larger than prec1sxon
of destination allows). ‘A NUMERIC_ ERROR exceptxon is raised in
the presence of overflow, else the result value is stored in the
destination location.

The source operand may .be an immediate wvalue, ‘a dxrectly
addressed 1nteger, an 1nd1rectly addressed integer (via a pointer
to an integer in global storage or .a data object of type
integer), or an integer component of "an array or record. The
destination operand may be any of these except an immediate
value. '

Exceptions:

PROGRAM_ERROR
NUMERIC_ERROR

5-20

A v)-'L'.-,'-'-‘ g
o "

LSS CHTSNNN

AT AT A TR T (e T s Lo e S n A e W e Y A Y Ty Lr e

eV s " a - v Fhain il b eac, Sl ey o]

5.2.3 (CONT) SUBTRACT INTEGER
Format: OEyg, S1, S2, D

Mnemonic: SUBI3

Operands:.
Sl: Minuend
FMT: ' immediate (EXT,2,) memory (0), or stack (EXT,0)
S2: Subtrahend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)"
D: Difference
Function: |

The binary subtraction of the integer specified by S2 from the
integer specified by S1 is performed. Source and destination
operands may have different precisions (V16 or V32); the
precision of the operation is V32, The result (difference) is
checked for overflow (magnitude of result larger than prec1s1on
of destination allows). A NUMERIC_ ERROR exception is raised in
the presence of overflow, else the “result value is stored in the
destination location.’

Each source operand may be 'an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type inter),
or an integer component of an array or record. The destination
operand may be any of these except an immediate value.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

-.F\;- - o
VALY

b is:m.aauzs.ni.i

B e e s S A B S A A e &b it R S A AR A S o R SR O 0 |

2.4 SUBTRACT FLOATING POINT
rmat: OFy, S, D : |
emonic SUBF2-

erands:

: Subtrahend :
FMT: memory (0) or stack (EXT,0) .
)e Minuend and Difference

FMT: memory (0) or stack (EXT,0)

lnction:

le binary floating point subtraction of the floating point
mber addressed by S from the floating point number addressed by

is performed. Source and destination operands may have
fferent precisions (V32 or V64). The precision of the
)erations is sufficient to accommodate the largest magnitude
'sult (difference). The fractional part of the result is

wunded, 1if necessary, to the precision of the destination
‘action, The result is then checked for exponent overflow
1agnitude larger than precision of destination exponent allows).
NUMERIC_ERROR exception is raised in the presence of overflow,
lse the Tresult value is stored in the destination location.

ich operand may be a directly addressed floating point number,
' indirectly addressed number in global’ storage or a data object
‘ type floating point), or a floating point component of an
‘ray or record.

tceptions:
>ROGRAM_ERROR
YUMERIC_ERROR

5=22

-«

ﬁ:{:}:::t. -:1.;.. H..f;f:} ;fu l P } R RO '.{‘-(‘{ ol n. r',.“:f':a"_-' _l\.l ot :‘;";"gs' -‘.- .P*J\h j A7) _.'F.n L .p")" ‘f‘-.&]

hA . Pl Prte Jrpomtttdiva e gg i ginbie B AL T A S50 T e iy A Mg Tl g 2ot B e B AR, RO ST B~ TSy W B, P Ry Il o e S Tp o Dot g 0 |

5.2.4 (CONT) SUBTRACT FLOATING POINT
Format: 103, s1,s2, D

Mnemonic SUBF3

Operands:

83 Minuend

FMT: memory - (0), or stack (EXT,O0)
S2:° ‘Subtrahend

FMT: memory (0) or stack (EXT,0)
D: Difference

FMT: . memory (0) or stack (EXT,0)
Function:

The binary floating point subtraction of the floating point
number addressed by S2 from the floating point number addressed

by S1 is performed. Source and destination operands may have
different precisions (V32 or V64). The precision of the
operation is sufficient to accommodate the largest magnitude
result (difference). The fractional part of the result is

rounded, if necessary, to the precision of the destination
fraction. The result 1is then checked for exponent overflow
(magnitude larger than precision of destination exponent allows).
A NUMERIC_ERROR EXCEPTION is raised in the presence of overflow,
else the result is stored in the destination location.

Each operand may be a directly addressed . floating point OP
number, an indirectly addressed number (via a pointer to a
floating point number in global storage or a data object of type

floating point), or a floating point component of an array or
record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

fo 0 ta Pe . Al ®a ®ou Yoo VYle fhe B S0 LS 0

5 MULTIPLY INTEGER

at: lly, S, D

onic MULI?2

ands:)
Multiplier

i & 1mmediate (EXT,2), memory (0), or stack (EXT,0)
Multiplicand and Product

T: memory (0) or stack (EXT,0)

tion:

binary multiplication of the integers spec1f1ed by S and D is
ormed. Source and destination operands may have different
isions (V16 or V32); the precision of the operation is V32,
result (product) is checked for overflow (magnitude of result
er than prec151on of destination allows). A NUMERIC_ERROR -
ption is raised in the presence of overflow, else the result
itored in the destination location.

source operand may be an immediate value, a d1rect1y
‘essed 1nteger, an indirectly addressed integer (via a pointer .
in integer in global storage or a data object of type
\ger), or an integer -component of an array or.record. The
.ination operand may be any of these except an immediate
le.

wptions:
)JGRAM_ERROR
{ERIC_ERROR

e R il BRI MR S ST SP [P S R E S D 1 Ja dpum ity faty it e fie “Shta 2 ity e B el Do giiy Woitn "R e o3 oS - Smcil g~ e o P e el IS SRR S

2.5 (CONT) MULTIPLY INTEGER
rmat: 124, S1, S2, D

emonic: MULI3

erands:

s Multiplicand

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

2: Multiplier

FMT: ‘immediate (EXt,2), memory (0) or stack (EXT,0)

H Product |

FMT: memory (0) or stack (EXT,0)

nction:

i@ binary multiplication of the integers specified by S1 and S2
, performed. Source and destination operands may have different
‘ecisions (V16 or V32); the precision of the operation is V32,
le result (product) is checked for overflow (magnitude of result
irger than precision of destination allows). A NUMERIC_ERROR
iception is raised in the presence of overflow, else the result
i stored in the destination location. '

ich source operand may be an immediate value, a directly
ldressed integer, an indirectly addressed integer (via a pointer
> an integer in global storage or a data object of type
iteger), or an integer component of an array or record. The
»stination operand may be any of these except an immediate
1lue,

tceptions:
>ROGRAM_ERROR
{UMERIC_ERROR
5-25
N I I B s S Ay s T S R A OO S SR ~SAN G SRR

Rl R B i R St e i A S, S8 SN S TR A e i R i P e iy i T i o i B A SR A S e 100 AP BPI foi

MULTIPLY FLOATING POINT
Els 134, S, D |
nic SULF2
nds:

Multiplier ,
memory (0), or stack (EXT,0)

Multiplicand and Product

: memory (0) or stack (EXT,0)

ion:

inary floating point multiplication of the floating point
rs addressed by S and D 1is performed. Source and

nation operands may have different precisions (V32 or V64).
recision of the operation 1is sufficient to accommodate the
st magnitude result (product). The fractional part of the
t 1is rounded, . if necessary, to the precision of "the
nation fraction. The result 1is then. checked for exponent
low (magnitude larger than precision of destination exponent
's). A NUMERIC_ERROR exception 1is raised in the presence of
low, else the result is stored in the destination location.

operand may be a directly addressed floating point number,
idirectly addressed number (via a pointer to a floating point
'r in global storage or a data object of type floating
.}, or a floating point component of an array or records.

)tions:
/RAM_ERROR
'RIC_ERROR

..............

_____ R O o e Mma i el i) .--...~ SN gt gt R e (e, e e g ges e ge ey gl
i LAY

‘= . b S

» . eioa
A i . - - J . B
[AR AT IS OMOM O I ATONORD S i S S AT SN S S AT I SATIE WAL S W St S SO S LI

TN Wy Wy W RN P L R TN oY [e o .
PSS = ':‘A'u'“. o ST Tt R oA e L S AR e S il A S A R b I

CRMMEIU AU IACIU By San Soay San S Som Ban fow aoe B ol o

5.2.6 (CONT) MULTIPLY FLOATING POINT
Format: lay, S1, S2, D.

Mnemonic MULF3

g Operands:
Si Multiplicand
FMT: memory (0) or stack (EXT,0)
S2: Multiplier
FMT: memory (0) or stack (EXT,0)
D: Product
FMT: memory (0) or stack (EXT,0)
Function:
The binary floating point multiplication of the floating point
numbers addressed by S1 and S2 1is performed. Source and

destination operands may have different precisions (V22 or Vé64).
The precisions of the operation 1is sufficient to accommodate the
largest magnitude result (product). The fractional part of the
result is rounded, if necessary, to the precision of the -
destination fraction. The result 1is then checked for exponent
overflow (magnitude larger than precision of destination exponent
allows). A NUMERIC_ERROR exception 1is raised in the presence of
overflow, else the result is stored in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or to a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

L o e e e i ezt St s e At AR e Tee e A T S T i SR I KT e geta s due 0 W)

5570l DIVIDE INTEGER
Format: 154, S, D

Mnemonic DIVI2

Operands:
S: Division
FMT: - immediate (EXT,2), memory (0), or stack (EXT,0) :
D: Dividend and Quotient)
FMT: memory (0) or stack (EXT,0)
Function:

The binary division of the integer addressed by D by the integer
specified by S is performed. With integer arithmetic, the result
(quotient) will be non-zero if the magnitude of the dividend is
greater than the magnitude of the divisor. Source and
destination operands may have different precisions (V16 or Vv32);
the precision of the operation is V32. The result is rounded, if
necessary, using "round-toward-zero" as the default rounding rule
(rather than the standard "round-to-nearest" rule). A NUMERIC
ERROR exception is raised if the divisor is zero, else the result
is stored in the destination location.

The. source operand may be an .immediate wvalue, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer 1in global storage or a data object of type
integer), or an integer component of an array or record. The
destination operand may be any of these except an immediate
value. i

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

A

5-28

T T e

b e iy pnd L R R
T S B LN AT 0 i N SN etV SORRY,

U R vy Iy gy A NP ALY

S

SR e 2 R A o T i S Wt At~ ® g " S98.0 the, B o 0 B il e A Sl o B e

5.2.7 (CONT) DIVIDE INTEGER
Format: léy, S1, s2, D

Mnemonic DIVI3

Operands:
S: Dividend
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
S2: Divisor -
FMT: ' immediate (EXT,2), memory (0), or stack (EXT,0)
D: Quotient
FMT: memory (0) or stack (EXT,0)
Function:
The binary division of the integer specified by S1 by the integer
specified by S2 1is performed. With integer arithmetic, the

result (quotient) will be non~zero 1if -the magnitude of the
dividend is greater than the magnitude of the divisor. Source.
and destination operands may have different precisions (V16 or
Vv32); the precision of the operation is V32, The result is
rounded, if necessary, using "round "toward zero" as the default
rounding rule (rather than the standard "round-to-nearest” rule).
The result is then checked for overflow (magnitude of result
larger than precision of destination allows). A NUMERIC ERROR .
except1on is raised in the presence of overflow or if the divisor
is zero, else the result is stored in the destination location.

Each source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer 1in global storage or a data object of type
integer), or an integer component of an ‘- array or record. The

destination operand may be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

—T—— = — PP) .
[of UINAD AR R 40 =D gl D) LT S0 A S S B B N SRR BRI B o e L R e e & e GV s T LN EA B e A e 1

5.2.8 DIVIDE FLOATING POINT
Format: 174, S, D

Mnemonic DIVF2

Operands:
S: Divisor
FMT: memory (0) or stack (EXT,0) §
D: Dividend and Quotient
FMT: memory (0) or stack (EXT,O0)
Function:

The binary floating point division of the floating point number
addressed by D by the floating point number addressed by S is
performed. Source and destination operands may have different
precisions (V32 or V64). The precision of the operation is
sufficient to accommodate the largest. magnitude result (quotient)
representable in an intermediate format compatible ‘with the
accuracy rules specified in the 1981 IEEE proposed floating point
arithmetic standard. The fractional part of the result is
rounded, 1if necessary, to the precision of the destination
fraction. ° The result is then checked for exponent overflow
(magnitude larcer than prec1s1on of destination exponent allows).
A NUMERIC ERROF nxcept1on is raised in the presence of overflow
or if the divisor is zero, else the result is stored in the
destination location. ;

Each operand may be a directly addressed floating point number,
an indirectly address number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or records.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

5-30

.' (b SO 'l'-".'.' RACRAL R Tl o e LU T o IRl A o

- - o
*'- "L’ ey e s e L’J»MLMLM&LA‘;’\{:H! s '-T.‘- .’i:'t: IS PR S W NN |

| P 30 e N Bl PO T T R L T i SSRGS . e A - G A IR S S 89S 90 6 L i B G /R G ar) e ool 000 i e Ln i b g/ med g g g o o

5.2.8 (CONT) DIVIDE FLOATING POINT
Format: 184, S1, s2, D

Mnemonic DIVF3

Operands:
Sl: . Dividend '
FMT: memory (0), or stack (EXT,0)
S2: Divisor
FMT: memory (0) or stack (EXT,0)
D: Quotient
FMT: memory (0) or stack (EXT,0)
Function:

The binary floating point division of the floating point number
addressed by S1 by the ' floating point number addressed by S2 is
"performed. Source and destination operands may have different
precisions (V32 or Vé64). The precision of the operation‘is
sufficient to accommodate the largest magnitude result (quotient)
representable in an intermediate format compatible with the
accuracy rules specified in the 1981 IEEE proposed floating poxnt
arithmetic standard. .]

The fractional part of the result 1is rounded, if necessary, to
the precision of the destination fraction. The result is then
checked for exponent overflow (magnitude larger than precision of
destination exponent allows). A NUMERIC_ ERROR -exception is
raised in the presence of overflow or if the divisor is zero,
else the result is stored in the destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM ERROR
NUMERIC_ERROR

] .4—;,;(.;'\ =3 .‘ c,,.' .’ '$.\r_ IR O v‘.'v'

]

DAV AATORY, (3, U LG OO0

1e2.9 REMAINDER INTEGER

‘ormat : 194, S, D

fnemonic REMI2

Jperands:
S: Divisor ,
FMT: immediate (EXT,2), memory (0), or stack (EXT,0) i
D: Dividend and Remainder
FMT: ~ memory (0) or stack (EXT,0)
Function:

The binary division of the 1nteger addressed by D by the integer
addressed by S is performed. Source and destination operands may
have different precisions. (V16 or V32); the precision of the
operation is V32. The - quotient is rounded toward zero, leaving
only the integer part of the -quotient,: called Q. The remainder,
R, 1s computed as ' .

R=Dividend - Q*Divisor

When R is non-zero, 1its sign 1is the same as the sign of the
dividend. A NUMERIC ERROR exception is raised if the divisor is
zero, else the result (remainder) 1is stored in the destination
location.) j

The source operand may be an immediate value, a directly
addressed 1nteger, an indirectly addressed integer (via a pointer
to an integer . in global storage or a data object of type
integer), or an integer component oOf an array.or record. The
destination operand may ‘be any of these except an immediate
value.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

5-32

:
Ly 3 N A g b e

S T e b N T S e T a1 T o T RN

5.2.9 (CONT) REMAINDER INTEGER

Format: 1Ay, S1, S2, D

Mnemonic REMI3

Operands: _
Sl: Dividend J
FMT: immediate (EXT 2), memory (0), or stack (EXT,0)
S2: Divisor :
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
D: Remainder
FMT: memory (0) or stack (EXT,O0)
Function: .
The binary division of the integer specified by S1 by the integer
specified by S2 is performed. - Source and destination operands

may have different precisions (V16 or V32); the precision of the
operation is V32. The quot1ent is rounded toward zero (leaving

the integer part of the quotient called Q). The remainder, R, is
computed as h

R=Dividend - Q*Divisor

When R is non-zero, its sign is the same as the sign of the
dividend. The result (remainder) is then checked for overflow
(magnitude of result larger ~than precision of destination
allows). A NUMERIC ERROR exception is raised in the presence of -
overflow or if the divisor is zero, else the result is stored in
the destination lcoat1on.

Each source operand may be an immediate value, a d1rectly
addressed 1nteger, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer conponent of an array or record. The

destination operand may be any of these except an immediate
value,

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

S T R Tt e SN M S FR N S S nin il M AR RO o A R W SV AT, Qb A0 O I iy PRSPy~ o, S W N DD 9 76 9 7 B P e Bt ot o 3o W 39 P g s]

2.10 REMAINDER FLOATING POINT
rmat: 1By, S, D

emonic REMF2

erands:

: Divisor _
FMT: memory (0), or stack (EXT,O0)

: Dividend and Remainder
FMT: memory (0) or stack (EXT,0)
nction:

e binary floating point division of the floating point number
dressed by D by the float1ng point number addressed by S is
rformed. Source and destination operands may have d1fferent
‘ecisions (V32 or V64). The precision of the operation is

fficient to accommodate the whole number (integer) part of the.

lotient plus the extra bits required for rounding. The quotient
; rounded to the nearest integer; the fractional part .is

.scarded. If the integer part of the Quot1ent is called q, the

mainder, R, is computed as
R=Dividend - Q*Divisor

le remainder is rounded, if necessary, toward nearest (unless a
receding round1ng instruction specifies otherwise). A NUMERIC
ROR exception is raised if the divisor is zero, else the result
remainder) is stored in the destination location.

ach operand may be a directly addressed floating point number,
1 indirectly addressed number (via a pointer .to a floating point
mber in global storage or a data object of type floating
’>int), or a floating point component of an array or record.

tceptions:

>ROGRAM_ERROR
JUMERIC_ERROR

5-34

—— s -
s Py 0 P I SWRI R0 I0IN . S0 S T AR AVEN S S, O U S LIRS CORATR CONCTTIR R PORL L Y A

&

.\.At ._‘

3.2.10 (CONT) REMAINDER FLOATING POINT

format: 1Cyx, S1, S2, D

fnemonic REMF3

Jperands:
Sis Dividend
FMT: memory (0) or stack (EXT,0)
S2: Divisor
FMT: memory (0) or stack (EXT,O0)
D: Remainder
FMT: memory (0) or stack (EXT,0)
Function:

The binary floating point division of the floating point number
addressed by S1 by the floating point number addressed by S2 is
performed. Source and destination operands may have d1fferent
precisions (V32 or V64). The precision of the operation is

sufficient to accommodate the whole number (integer) part of the"

quotient plus the extra bits required for rounding. The quotient
is rounded to the nearest integer; the. fractional part is
discarded. If the integer part of ‘the quot1ent 1s called Q, the
remainder, R, is computed as .

R=Dividend - Q*Divisor.

The remainder is rounded, if necessary, toward nearest (unless a

preceding rounding instruction specified otherwise). The result
(remainder) is then checked for exponent overflow (magnitude of
result larger than precxsion of destination exponent allows). A
NUMERIC_ERROR exception is raised in the presence of overflow or
if the “divisor is zero, else the result is stored in the
destination location.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

5-35

*‘. l'\:"".‘.'-'b'h") IRICRICRA Y

) N e h_‘\, ".'\\‘\‘\;\"_-; '

ﬁhﬂ

11 MODULUS INTEGER

at: 1Dy, S, D

wonic MODIZ

rands:
Divisor i

' immediate (EXT,2), memory (0), or stack (EXT,0)
Dividend and Modulus -

AT: memory (0) or stack (EXT,0)

stion:

binary division of the integer addressed by D by the integer
ressed by S is performed. Source and destination operands may
» different precisions (V16 or V32); the precision of the
ration is V32. The quotient is rounded toward minus infinity,
ving only the integer part of the quotient, called Q. The
alus, M, 1s computed as.)

M=Dividend - Q*Divisor.

n M is non-zero, its sign is same as the sign of the divisor.
UMERIC_ERROR exception is raised 1if the divisor is zero, else
result (modulus) is stored in the destination location.

source operand may be an immediate value, a directly
ressed integer, an indirectly addressed integer (via a. pointer
an integer in global storage or a data object of type
eger), or an integer component of an array or record. The
tination operand may be any of these except an immediate
ue. 4 4

eptions:
OGRAM_ERROR
MERIC_ERROR

5-36

2.11 (CONT) MODULUS INTEGER

)rmat: lEy4, S1, 82, D

lemonic MODI3

i1 Dividend

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

32 Divisor .

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Modulus

FMT: memory (0) or stack (EXT,0)

inction \ :

ne binary division of the integer specified by S1 by the integer
pecified by S2 is performed. Source and destination operands

ay have different precisions (V16 and V32); the precision of the
peration is V32. The quotient is rounded toward minus infinity,
raving only the integer part of the 'quotient, called Q. The
odules, M is computed as

M=Dividend - Q*Divisor.

hen M is non-zero, 1its sign 1is the same as the sign of the
ivisor. The result (modulus): is then checked for overflow
magnitude of result larger than precision of destination
llows). A NUMERIC ERROR exception is raised in the presence of
verflow or if the divisor is zero, else the result is stored in
he destination location. .

ach source operand may be an immediate value, a directly
ddressed integer, an indirectly addressed integer (via a pointer
o an integer 1in global storage or a data object of type
nteger), or an integer component of an array or record. The
estination operand may be any of these except an immediate
alue.

xceptions:
PROGRAM_ERROR
NUMERIC_ERROR

MOCORIR TN S

T S e A e
(W AN PN NN RN A

REEL R e o SCosneare ._’
LUNE R S R NP S e e

oo e e e DO S S S e S P L S ST A T O BE R RO RN

2 MODULUS FLOATING POINT
L - 1Fy, S, D
nics MODF2
nds: s
Divisor

Ve memory (0) or stack (EXT,0)

Dividend and Modulus
's memory (0) or stack (EXT,0)

.ion:
yinary floating point division of the floating point number
1issed by D by the floating point number addressed by S is
)rmed. Source and destination operands may have different
.sions (V32 or V64). The precision of the operation is
icient to accommodate the whole number (integer) part of the
lent plus the extra bits required for rounding. The quotient
rounded toward minus infinity; the fract1ona1 part is
irded. If the integer part of the quotient is called Q, the
lus M, is computed as

M=Dividend - Q*Divisor.

nodulus is rounded, if necessary, toward nearest (unless a
ading rounding instruction specifies otherwise). A NUMERIC
R exception is raised if the divisor is zero, else the result
1lus) 1s stored in the destination location.

operand may be a directly addressed floating point number,
1directly addressed number (via a pointer to a floating point
or in global storage or a data object of type floating
t), or a floating point component of an array or record.

otions:
SRAM_ERROR
ERIC_ERROR

nywy e

TR
NN A N e s e SR

- . N .J
)\.' LN AL

R R T N R R G R e R R R R e I T . O T T P T Ty T iy~ W]

.12 (CONT) MODULUS FLOATING POINT
mat: 20y, S1, s2, D

monic MODF3 ‘

rands:
Dividend
MT: memory (0) or stack (EXT,0):
3 Divisor
MT: memory (0) or stack (EXT,0)
Modulus
MT: memory (0) or stack (EXT,0)
iction:

» binary floating point division of the floating point number
Iressed by S1 by the floating point number addressed by S2 is
‘formed. Source and destination operands may have different
:cisions (V32 or V64). The precision of the operation is
‘ficient to accommodate the whole number (integer) part of the
)tient plus the extra bits required for rounding. The quotient

rounded toward minus infinity; the fractional part is
scarded. If the integer part of the quotient is called Q, the
lulus, M, is computed as . .

M=Dividend - Q*Divisor.

» modulus is rounded, 1if necessary, toward nearest (unless a
aceding rounding instruction specified otherwise). The result
>dulus) is then checked for exponent overflow (magnitude of
sult larger than precision of destination exponent allows). A
fERIC_ERROR exception is raised 1in the presence of overflow or
the divisor is =zero, else the result 1is stored 1in the
stination location.

h operand may be 'a directly addressed floating point number,

indirectly addressed number (via a pointer to a floating point
nber in global storage or a data object of type floating
int), or a floating point component of an array or record.

ceptions:
ROGRAM_ERROR
JMERIC_ERROR

S SR e S gt B . - S dour [nsp Bty o e o i S ithade i il S 1 Sl

LA T pont e tbin 46 20 |

NEGATE INTEGER

E—

21y, D
ic: NEGI1 , |
is:

Integer to Be Negated and Negated Integer
memory (0) or stack (EXT,O0) :

on:

gative of the integer (V16 or V32) addressed by D is stored
destination location.

erand may be a directly addressed integer, an indirectly
sed integer (via a pointer to an integer in global storage

ata object of type . integer), or an integer component of an
or record.

ions:
AM_ERROR
IC_ERROR

’Q.:‘-'--.,o.:‘-.-;...‘.'r;"a..

R B
AEPEAT ORI NN, AL R ANO I AL RN

LN .’- RS e '-.:;v':..'(.:'." e =

= U NP SR ST %
O R T AL

AD-A158 120

UNCLASSIFIED

ADYANCED AYIONICS COMPUTER ARCHITECTURE YOLUME 2
INSTRUCTION SET ARCHITEC.. (U> SANDERS ASSOCIATES INC
NASHUA NH L GREENSPAN ET AL. MAY 8S
AFWAL-TR-85-10841-Y0L-2 F33615-79-C-1935 F/G 9/2

274

NL

MOPE'E g T et Wy
b F O RSP OB R WP oo u e, S ST P ot PR "SRt S8

4
f
=3
- £
g S 3 .
X¥dv 5
X
] t
hY
J

s
=

I

= :
I

Il

pusd
<
EER

FER

I

o
3
(4|
E———
-
=
==
G
(-2

L

.

|

B

NATIONAL BUREAU OF STANDARDS
MCROCOPY RESOLUTION TEST CHARY

CHA O W% 1 A ke A
KR LN e et e -_'.‘-'. PR
-}.\-\'-_' CAC A

‘e .':_\ _x_‘.‘\-
'_h‘}.‘izﬁ‘u}*. Y

5.2.13 (CONT) NEGATE INTEGER

Format: 22, S, D

Mnemonic: NEGI2

Operands:
S: Integer to Be Negated
FMT: memory (0) or stack (EXT,0)
D: . Negated Integer
FMT: memory (0) or stack (EXT,0)
Function:

The negative of the integer addressed by S is taken. Source and
destination operands may have different precisions (V16 or V32).
The result is checked for overflow (magnitude or result larger
than precision of destination allows). A NUMERIC ERROR exception
is raised in the presence of overflow, else the result is stored
in the destination location.

Each operand may be a directly addressed integer, an indirecfly
addressed integer (via a pointer to an integer in global storage

or a data object of type 1integer), or an integer component of an
array or record.:

Exceptions:

PROGRAM_ERROR
NUMERIC_ERROR

5-41

bt S IS R .*.‘. - .-'.’ T .- TR P '.~’.".-’.".~’

R N
" .'1 P."';r.. P S A A A S UL A X *‘.'-.'_‘.n._',-!_'.l';)?'.p_ \.P‘ \ .r_}.r‘ ‘.ra j‘- " Y \D\I"‘i\l\)\\}:F\ -'\‘.r"' \ \

L PL PR LFES IR ') 2 S R

-
-

P EELL

SRR

. p—
O

.
e) f

o TR
.

.

B YN ARG ASEAERAN

S TN AN S SIS T T S

h

e & W

, W i A phaaSd B4 T R Snests Teote Sectl o g
A R N N e L S e AR T R A T T R L e L L e A I o T T e e P A ST T i e &

5.2.14 NEGATE FLOATING POINT
Format: 234, D

Mnemonic: NEGF1l

Opérands:
D: Floating Point Number to Be Negated and Negated Number .
FMT: memory (0) or stack (EXT,O0)

Function:

The negative of the floating point number (V32 or V64) addressed
by D is stored in the destination location.

The operand may be a directly addressed floating point number, an
indirectly addressed number (via a pointer to a floating point
number in global - storage or a data: object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

S e L6 X WL S SN QM L i 1 G A orE I TS e AP UI LRt e AR D YDA BLAY N S e it i b i

TH SR e e ger e G TR W e o S .—s“‘EW‘T‘E“‘F‘“N’

5.2.14 (CONT) NEGATE FLOATING POQINT
Format: 24y, S, D

Mnemonic: NEGF2

Y Operands:
S: Floating Point Number to Be Negated
) FMT: memory (0) or stack (EXT,0)
D: Negated Number
FMT: memory (0) or stack (EXT,O0)
Function: '
The negative of the floating point number addressed by S is
taken. Source and destination operands may have different

precisions (V32 or V64). The fractional part of the result is
rounded, if necessary, to the precision of the destination
fraction. The result 1is then checked for exponent overflow
(magnitude of result larger than precision of destination
exponent allows). A NUMERIC_ ERROR exception 1is raised in the
presence of overflow, else the result is stored 1in the
destination location.

Each operand may be a directly addressed floating point number,
an-indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or ‘record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

B AR IR I IR S ST T AT T Rt T ottt Toat SIS T K S SOOI o 1 S T e 0 L g N T LN N TN NI RTIN AT AT T e g T e Y o Y - A A
W,\ ‘;‘. Se g A N“\. %% \.‘\.'.\'. .’ .'. .\.. < ‘(-‘ -‘ '..‘**} iy e ‘-.. AT \1-.’-' -'\n‘ .|~\|“ l.. s'..'q'\:l\;‘;}‘:;'\‘.' S ',\":',,-‘.'j

5.2.18 ABSOLUTE INTEGER

Format: 254, D

Mnemonic: ABSI1

Operands:
D: Integer and Absolute Value of Integer
FMT: memory (0) or stack (EXT,0)
Function:

The absolute value of the integer (V16 or V32) addressed by D is
stored in the destination location.,

The operand may be a directly addressed integer, an indirectly
addressed integer (via a pointer to an integer in global storage
or a data object of type integer), or an integer component of an
array or record. ,

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

oS Tem o“.-. O e o
A C R S L |

CRACERASI ENE AT S A P B B R SR B N TR T A % Brig § G0 ty Tk 28

Pt ATt B o Rl Bign P om B g B g By soge Siop 20 n o8 SR SRR ey

5.2.15 (CONT) ABSOLUTE INTEGER
Format: 26, S, D

Mnemonic: ABSI2

» Operands:
S%MT: y lﬂ&s%%%ory (0) or stack (EXT,0)
D:) Absolute Value of Integer
FMT: memory (0) or stack (EXT,0)
Function:

The absolute value of the integer addressed by S is taken.
Source and destination operands may may have different precision
(Vlié or v32). 'The result is checked for overflow (result larger
than precision of destination allows). A NUMERIC_ERROR except1on
is raised in the presence of overflow, else the result is stored
in the destination location.

Each operand may be a directly addressed integer, an indirectly
addressed integer (via a pointer to an integer in global storage

or a data object of type integer), or an integer component of an
array or record. . ‘

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

5-45

N ity ¥ --'-'-.‘ . '."-.""-‘-‘ IO O T D e o
f‘. f. f- A8 ' 'n.'fs«u'*‘:u o..'.':k"n.. 9 A_':.a. M\, um@udhwa_ .u. ;. A-.:L [L":A & \0'..-'."'1.0'..-' ".-"':."} .: '\'.

olig s’ LAty o

[SisEhuie g e g R At b S T S et Py o 0l PO TAE B Bt LSS0 i 05 06 ST e B th R e i STy

e N N L AR T A T o ITHOYDRTYUOYIwWEY vy

5.2.16 ABSOLUTE. FLOATING POINT
Format: 274, D

Mnemonic: ABSF1l

Operands:
D: Floating Point Number and Absolute Value of Number
FMT: memory (0) or stack (EXT,0) . ¢
Function:

The absolute value of the floating point number (V32 or Vé64)
addressed by D is stored in the destination location.

The operand may be directly addressed floating point number, an
indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or records.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

;'. N AEI T AN _‘),\;_'."__\‘;q‘.'. Iy gl S \}ﬁ:.'-._\'..'-‘.‘\‘_‘:- J:'::-::v:.\-,'.:.\:.'):,\."..;\'_‘. TR § 0y Y '.-;'f:'-';t-:; < 1
L0 8% S 4 f ana S MaNate ou bt g% T T T N VA Y e lin e o .

e e T ey ST AN T T e A N N ST YT NG TS e R B S8 YRR A R A SRS AR S Fol P et Red Saf il tod viad tah A Gl ot AR IR A Aa R AL S aS

5.2.16 (CONT) ABSOLUTE FLOATING POINT
Format: 284, S, D

Mnemonic: ABSF2

Operands:
S: Floating Point Number
’ FMT: memory (0) or stack (EXT,0)
D: Absolute Value of Floating Point Number
FMT: memory (0) or stack (EXT,0)
Function:
The absolute value of the- floatlng point number addressed by S is
taken. Source and destination operands may have different
precisions (V32 or V64). . The fractional part of the result is

rounded, 1if necessary, to the precision of the destination
fraction. The result is then checked for exponent overflow
(result larger than precision of destination exponent allows). A
NUMERIC ERROR exceptxon is raised in the presence of overflow,
else the result is stored in the destination locat1on.

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

5-47 _ ‘

—— T m——— T it e Ao e = e St L s s oy e = e
A LS VS L OO ER A N I N T '.'-'\’\\ N O

3 e ™ P4 v
RO R TR IR I TR

$.2.17 SQUARE ROOT INTEGER

Format: 294, D

Mnemonic: SQRTI1

Operands:

D: Integer and Square Root of Integer

FMT: memory (0) or stack (EXT,0) <
Function:

The square root of the integer (V16 or V32) addressed by D is
taken. The result 1is rounded, if necessary, toward zero. A
NUMERIC_ERROR exception is raised if the integer addressed by D
is negative, else the result 'is stored in the destination
location. '

The operand may be a directly addressed integer, an indirectly
addressed integer (via a pointer to an integer in global storage
or a data object of type integer), or an integer component of an
array or record.]

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

Ap R i e ' g A0y PG A e, LRy A S At D0 L R e Pontl G Tt el g PR L i A S i o U A i

Lt A R R o e e T A S, T e L T T o e

5.2.17 (CONT) SQUARE ROOT INTEGER
Format: 2Ag, S, D

Mnemonic: SQRTI2

Operands:
S: Integer
FMT: memory (0) or ‘stack (EXT,0)
D: Square Root of Integer
FMT: memory (0) or stack (EXT,0)
Function:

The square root of the integer addressed by S is taken. Source
and destination operands may have different precisions (V16 or
v32); the precision of the operation is V32, The result is
rounded, if necessary, toward zero. The result is then checked
for overflow (result larger than precision of destination
allows). A NUMERIC_ERROR exception is raised in the presence of
overflow or if the integer addressed by S is negative, else the
result is stored in the destination location.

Each source operand may be an immediate value, a directly
addressed integer, an indirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

T, - P - % e s, ot LR
o SR A]
; {ﬁ"_".'ri'!; P NP o I ‘J\j

[Pt 2498 2.5 0D Jh - bshoul Panaysh i g R e iRt TR R St A ey iy A gt s By Mg 10 f Vil Bl A g Sl B L0 el AL A i iy A e SIS ST i 'h.f

5.2.18 SQUARE ROOT FLOATING POINT
Format: 2By, D

Mnemonic: SQRTF1

Operands:
D: Floating Point Number and Square Root of Number
FMT: memory (0) or stack (EXT,0) >

Function:

The square root of the floating point number (V32 or V64)
addressed by D is taken. The fractional part of the result is
rounded, if necessary. A NUMERIC_ ERROR exception is raised if
the floating point number addressed by D is negative, else the
result is stored in the destination location.

The operand may be a directly addressed floating point number, an
indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

5-50

5.2.18 (CONT) SQUARE ROOT FLOATING POINT
Format: 2Cq, S, D

Mnemonic: SQRTF2

Operands:

S: Floating Point Number

FMT: memory (0) or stack (EXT,0)

D: Square Root of Floating Point Number

FMT: memory (0) or stack (EXT,0)

Function:)
The square root of the floating point number addressed by S is
taken. Source and destination operands may have different
precisions (V32 or Vé64). The precision of the operation is

sufficient to accommodate the largest result representable in an
intermediate format compatible with the accuracy rules specified
in the 1981 IEEE proposed floating point arithmetic standard.
The fractional part of the result 1is rounded, if necessary, to
the precision of the destination fraction. The result is then
checked for exponent overflow (magnitude larger than precision of
destination exponent allows). A NUMERIC_ ERROR exception is
raised in the presence of overflow. or if the floating point
number addressed by S is negative, else the result is stored in
the destination location. : :

Each operand may be a directly addressed floating point number,
an indirectly addressed number (via a pointer to a floating point
number in global storage or a data object of type floating
point), or a floating point component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

5-51

DY

AT AN Sl Nl B NI B A" a” s *An"aa"n alh

E S e ke --’-:. L N S TP S L) -‘..‘_'--“.-.'~ Ll s I e~ el o SO B) e B e s L g Wi P TR BTG T e e e e
A A OO O I R IR ._ﬁ R R R I N PR Ly ot A e e S L 5-:\\:,“:._‘-‘_’]

Vel el s Bt R A e R S R R TR R B o i S e G B B R R S LI S LR Ch B S, AL BN R b e St

5.2.19 ROUND TO NEAREST
Format: 2Dy,
Mnemonic: RNDN

Operands:
None

Function:

The next instruction is executed - with its rounding rule, for the
result of the operation, 1if any, replaced by ROUND TO NEAREST.
This instruction and the following instruction are executed as an
inseparable couplet.

Exceptions:
None
A
5-52
N N Y € BT T B U A I R SRR Sttt L e e e L R T]

—r— vy ETETYY

—vy vy v v S T -,
2 B EORE R ST BB iy SRl S IR AR P M v el i ol St 4 ot S il R YR e e R i Sl o i Fia Plia e R Sl 8 i St e SRS R S L et oo g

5.2.20 ROUND TO ZERO
Format: 2Eq
Mnemonic: RNDZ

: Operands:
None

Function:
The next instruction is executed with its rounding rule, if any,

for the result of the operation replaced by ROUND TO ZERO. This
instruction and the following instruction are executed as an

inseparable couplet.

YT Y VEEE R S S T T TN T UL P S e e

Exceptions: .
None

S
Tt v e N

Vo AT

R T TSNS SNl e b T e e e i AR A Rl o L L i i S b A e e A o B i s APt he M Sde Vog ha A AR e b Pie e YA T, SR YL VT

5.2.21 ROUND TO PLUS INFINITY
Format: 2Fy
Mnemonic: RNDP

Operands:
None

Function:

The next instruction is executed with its rounding rule, if any,
for the result of the operation replaced by ROUND TO PLUS
INFINITY. This instruction and the following instruction are
executed as an inseparable couple.

Exceptions:
None

O R RS A o L e L L L A T ,“;J;

2 ORI AL SIS AN A N

RN SCRAMM L NBAT] Tl Y5 SO it okl PP/ Yan AR R A A T S iy D JAu B A S Tt Gl B RatE By Pty Py Ty B S ey Dhy "SR CR B i ~SanF e S SR i wie gl S Se 6 S LS L

5.2.22 ROUND TO MINUS INFINITY
Format: 30y
Mnemonic: RNDM

Operands:
None

Function:

The next instruction is executed with its rounding rule, if any,
for the result of the operation replaced by ROUND TO MINUS
INFINITY. This instruction and the following instruction are
executed as an inseparable couplet.

Exceptions:
None
v
A
5-55
w , v, "‘3.'." .‘\ .-Q\q..’-\-.- SRV - 1 y S .‘.-N.\ \.s..'--'.-.~.-. o > 5 T S Dy i e
A N A O N 8 A N i A I A e AT e e A AT AT T e

T OEENET

5.2.23 CONVERT INTEGER TO FLOATING POINT

Format: 31y, S, D

Mnemonic: CONVIF

Operands:
S: Integer
i FMT: memory (0) or stack (EXT,0)
: D: Floating Point Number
; FMT: memory (0) or stack (EXT,O)
! Function:

The type conversion of the integer (V16 or V32) addressed by S to

the floating point number format (V16 _,or V64) addressed by D is
} performed. The fractional part of the result is rounded, if
. necessary, to the precision of the destination fraction and the
I result (floating point number) is stored in the destination
l location.

The source operand may be a directly addressed integer, an
indirectly addressed integer (via a pointer to an integer in
global storage or a data object of type integer), or an integer
component of an array or record. The destination operand may be
a directly addressed floating point 'number, an indirectly
addressed number (via a pointer to a floating point number in
global storage or a data object of type floating point), or a
floating point component of an array or record.

P eSS

| Exceptions:
| PROGRAM_ERROR

NGY Oh GO R ANt SU T N TR SR,

TEUARA FUm, S oy E2P., S, TR0t P P e e i/ Rl S g - e B A/ SR A S A P i R

5.2.24 CONVERT FLOATING POINT TO INTEGER

Format: 324, S, D
Mnemonic: CONVFI

Operands:
Sha Floating Point Number
FMT: memory (0) or stack (EXT,0)
D: Integer
FMT: memory (0) or stack (EXT,0)
Function:

The type conversion of the floating point number (V32 or Vé64)
addressed by S to the integer format (V16 or V32) addressed by D
is performed. The resulting integer is rounded to the nearest
integer. Note that the result will be zero if the magnitude of
the floating point number is less than 0.5 in value. The result
is checked for overflow (magnitude of result larger than
preC1S1on of destination integer allows). A NUMERIC_ERROR

exception is raised in the presence >f overflow, else the result
is stored in the destination location.

The source operand may be a directly addressed floating point
number, an .indirectly addressed number (via a pointer to a
floating point number in global storage or a data object of type
floating point), or a floating point component of an array or
record. The destination operand may be a directly addressed
integer, an indirectly addressed integer (via a pointer to an
integer in global storage or a data object of type 1nteger) or
an integer component of an array or record.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

........

@ e s e

B S e S L S 00 S S e T R D S O T oty

i FREEES DALY Al A Fris S DAl SRS A A A BRI LRSI S e AT S B o Pt el Segh, S i

5.3 LOGICAL

The logical instructions fully support Ada by including all the
well known logical operations on Booleans, mask data, and arrays
and slices of Booleans and masks. Additional logical

instructions set and clear Booleans, mask data, and arrays and
slices of Booleans and masks.

W

B T T N R R A R S B T Wi Xt n B GG By g 1 T g et A G " AU M S~ SN A e i S i A P i e i e M 8 Al St e s S8 e ve pog Lag |

§.,3:1 AND
Format: 334, S, D

Mnemonic: AND2

Operands:
S: First Logical Operand
FMT: immediate (EXT,2), memory (0) or stack (EXT,O0)
D: Second Logical Operand and Result
FMT: memory (0) or stack (EXT,0)
Function:

The AND operation between the operands specified by S and D is
performed. When corresponding bits of the operands are both 1 s,
the result bit is set to 1, else the result bit is set to 0. The
result is stored in the destination location.

The source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component. of an array or record. The destination operard may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision

(vie, V32, or Vé64). If the operand qualifier, BIT POSITION, is
present, only the selected bit position (same for both operands)
takes part 1in the. operation. All unselected bits of the
destination operand are unchanged. Note that the operation
performed on Booleans is exactly the same as the operation
performed on V16 masks (a 16-bit operation). The machine cannot
differentiate Booleans from masks since both have V16 tags.
Differentiation occurs in the use of the result, e.g., the IF
instruction tests a Boolean but when the operand qualifier, BIT
POSITION, is present, it tests the selected bit in a 16-bit mask.

Exceptions:
PROGRAM_ERROR

..... -'I J . > S " ¥ i, AR ,"".'-' .'.Al'_.: ! ;"-'-"-'.n',"—‘-'.-~ P e €, Ea W, 1
PO CrR L \‘ e PRSI P IR P "L‘...':." A R R G S e L ,z“.a L ;\.-:r '.r}.p")"‘) W,

LA AN ISR P Y et S Trpery gt S e S e Dy

5.3.1 (CONT) AND

Format: 34y, S1, s2, D

Mnemonic: AND3

Operands: :
G First Logical Operand
FMT: immediate (EXT,2), memory (0), or stack (EXT,0) d
S2:- Second Logical Operand
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
D: Result
FMT: memory (0) or stack (EXT,O0)
Function:

The AND operation between the operands specified by S1 and S2 is
performed. When corresponding bits of the source operands are
both 1 s, the result bit is set to 1, else the result bit is set
to 0. The result is stored in the destination location.

Each source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Source and destination
operands must be Booleans (V16) or mask data of the same
precision (V16, V32, or V64). If the operand qualifier, BIT
POSITION, is present, only the selected bit position (same for
each operand) takes part in the operation. all unselected bits
of the destination operand are unchanged. Note that the
operation performed on Booleans 1is exactly the same as the
operation performed on V16 masks (a 16-bit operation). The
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in the use of the result, e.gq.,
the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask.

Exceptions: |
PROGRAM_ERROR

reild y bt v i > - T
- DES S SO SLAALE- DA Fb P IAYRIFINS S0 D S S Y A SR R P/ S A PR i s S T S ST T P A i B S B B0 G TR 0 B R Tl i] £ Res B |

5.3.2 AND ARRAY
Format: 354, S, D

Mnemonic: ANDA2

Operands:
S: First Array of Logicals
FMT: memory (0) or base register (EXT, 11)
D: Second Array of Logicals and Result Arra
FMT: memory (0) or base register (EXT,11)
Function: '

The AND operation between each pair of corresponding components
of the arrays addressed by S and D is performed. The arrays must
have Boolean components or mask components of the same precision
(vlie, v32, or Vv64) and must have the same number of dimensions
and equal lengths for corresponding dimensions. The number of
dimensions and lengths are checked by the machine only when the
arrays are addressed through their headers (FMT=0). Then, the
machine computes the array size as the product of the the
outermost (highest dimensioned) 1length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), 1is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are both ls, the result bit is set to 1, else
the result bit is set to 0. The components of the result array
are stored in the destination array location. '

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

‘.

. R anpeppmm—— z T . :
...... e T A, e i Y S e s e e T a2 T e s e S S EX,
-_f.--' . \.‘.A.{....a.' LTI A R AT G A G R PO -:‘.\"-,‘,7 O I P e e S G L N el T

5.3.2 (CONT) AND ARRAY

Format: 36, S1, S2, D

Mnemonic: ANDA3

Operands:
82 First Array of Logicals
FMT: memory (0) or base register (EXT,11)
S2: Second Array of Logicals
FMT: memory (0) or base register (EXT,11)
D: Result Array
FMT: memory (0) or base register (EXT,11)
Function:

The AND operatlon between each pair of corresponding components
of the arrays addressed by S1 and 8S2 is performed. The arrays
must have Boolean components or mask components of the same
precision (V16, V32, or V64) and all arrays must have the same
number of dimensions and equal lengths for corresponding
dimensions. The number of dimensions and lengths are checked by
the machine only when the arrays are addressed through their
headers (FMT=0). Then the. machine computes the array size as the
- product of the outermost (highest dimensioned) length and SPAN
(length and component size if the number of dimensions is 1).

When an array is addressed through a base register (FMT=EXT,11l or
FMT=0 and the cell offset designates a base register - with an
AVA tag), the operand qualifier, ARRAY SIZE (ASIZ), is required

in the instruction. Alternatively, the compact format,
BI(EXT,12) or BM(EXT,13), may be wused as explained in Section
4.2.3 (page 4-8). For each pair of corresponding array

components, when corresponding bits are both 1 s, the result bit
is set to 1, else the result bit 1is set to 0. The components of
the result array are stored in the destination array location.

When addressed through a header, each array of logicals operand
may be d1rectly addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

IR RL IANG WAP

o]

5.3.3 AND SLICE

Format: 374, S D
Mnemonic: ANDS2
Operands:

Sl: First Array of Logicals and Result Array
FMT: memory (0) or base register (EXT,1l1l)

D: ~ Second Array of Logicals and Result Array
FMT: memory (0) or base register (EXT,1ll)

Function:
The AND operation between each pair of corresponding components
in slices of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions; the slice lengths must be the same but the slices
. need not be in the same dimension of the arrays. The number of
dimensions and slice lengths are checked by the machine only when
the arrays are addressed through their headers (FMT=0). 1In this
case, ARRAY SUBSCRIPT (if required) and upper and lower ARRAY
SLICE INDEX operand qualifiers are present in the instruction for
each array operand. The machine computes the address of the
beginning of each slice and the slice size. When an array is
addressed through a base register (FMT=EXT,ll or FMT=0 and the
cell offset designates a base register ~ with an AVA tag), the
operand qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE
(ASIZ), are required in the instruction. BRO gives the offset
from the array base address (contained in the base register) to
the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI(EXT,12) or BM(EXT,13), may
be used with the single operand qualifier, ASIZ, as explained in
Section 4.2.3 (page 4-8). When corresponding bits in the slices
are both 1 s, the result bit is set to 1, else the result bit is
set to 0. The result 1is stored in the destination array slice
location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

o T 5o
Mo e

LWL e W, o w . . _ . O e o g W L B e s L R L i A e e e e AEm e 4, SOl G v e VS Va5
LI S I A (ROl o {05) o e Wit B e By) LA, Ul L SRR IR S SR T R R R R, T U R R Y
- A AR e N —UEP R o 8 o B B G TR e wte ey artoale BN e leee e R SR T T 8 o 0 SN Tge T e e e e YoeBe Tos S Al iR S fle e
A Al ar AR) L LAY . . - * Sia Tia e % 8 .52 2

Y Pt W LN B AToRs A » LTI O e -’ ™
N A N L R T Y R N R e R T A R T e s v P a s e, T 2% -

5.3.3 (CONT) AND SLICE
Format: 38y, S1, S2, D

Mnemonic: ANDS3

Operands: .
S1: First Array of Logicals
FMT: memory (0) or base register (EXT,1l)
S2: Second Array of Logicals
FMT: memory (0) or base register (EXT,1l1)
D: Result Array
FMT: memory (0) or base register (EXT,1ll)
Function:

The AND operation between each pair of corresponding components
in slices of the arrays addressed by S1 and S2 is performed. The
arrays must have Boolean components or mask components of the
same precision (V16 , V32, or V64) and all arrays must have the
same number of dimensions;the slice lengths must be the same but
the slices need not be in the same dimension of the arrays. The
number of dimension and slice lengths are checked by the machine

only when the arrays are addressed through their headers (FMT=0)..

In this case, ARRAY SUBSCRIPT (if required and upper and lower
ARRAY SLICE INDEX operand <qualifiers are present in the
instruction for each array operand. The machine computes the
address of the beginning of each slice and the slice size. When
an array is addressed through a base register (FMT=EXt,ll or
FMT=0 and the cell offset designates a base register - with an
Ava Tag), the operand qualifiers, BASE RELATIVE OFFSET (BRO) and
ARRAY SIZE (ASIZ), are required in the instruction. BRO gives
the offset from the array base address (contained in the base
register) to the start of the slice and ASIZ gives the slice
size. Alternatively, the compact format BI(EXT,12) or BM
(EXT,13), may be used with the single operand qualifier, ASIZ, as
explained in Section 4.2.3 (page 4-8). When corresponding bits
in the slices are both 1 s, the result bit is set to 1), else the
result bit is set to 0. The result is stored in the destination
array slice location.

When addressed through a header, each array of logicals operands
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record. .

Exceptions: .
PROGRAM_ERROR

' o A e e Ay Sy ey A e A B SR R I AL IO L I W M e e
TR SRR S N R LTS R K "‘\-"L'r!—' PR T R R P R T \":-'\ '\-\}-'_ p ")“'h' ‘!

.-u-.-.--a_'l-i‘-i«,’-;-;-A¢~-.‘.‘?;'-‘-a

e —

TN T BN NAR I L THNLTR R el e T AT e LAY oY N N N W

MCINNETNERT P SR p g e o AR A o AR L Dun -~ g

TR - T e e |

5.3.4 OR A
Format: 394, S, D

Mnemonic: OR2

Operands:
Sl: First Logical Operand.
FMT: immediate (EXT,2), memory, (0) or stack (EXT,0)
D: Second Logical Operand and Result
FMT: . memory (0) or stack (EXT,0)
Function:
The inclusive OR operation between the operands specified by S
and D is performed. When either (both) of a pair of

corresponding bits of the operand is 1 (are 1 s), the result bit
is set to 1, else the result bit 1is set ¢to 0. The result is
stored in the destination location.

The source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or .a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be l
Booleans (V16) or mask data of the same precision (V16, V32, or

V64). If the operand qualifier, BIT POSITION, is present, only
the selected bit position (same for both operands) takes part in
the operation. All unselected bits of the destination operand
are unchanged. Note that the operation performed on Booleans is
exactly the same as the operation performed on V16 masks (a 16
bit operation). The machine cannot differentiate Booleans from
masks since both have V16 tags. Differentiation occurs in the
use of the result, e.g., the 1IF instruction tests a Boolean but
when the operand qualifier, BIT POSITION, is present, it tests
the selected bit in a 16-bit mask. ‘

Exceptions:
PROGRAM_ERROR

i \.f.:f,:.;-"f,..r,_f‘:-.'.,.:.‘_'-h-:._-’.,-'g-'.' ER TR T -.'.:-‘_*:..:..-\:._-'..-'-f.;’.g'._-:._-:._;\.-4'-{- RO T R R e i]

-

. ;..:.’;ﬁ.t.\;:_‘.:_":-';::';:-"i"i'}ﬂ

[N N Zocl T b i B T S0 2o S e s DL e A i T i e et B o - e i b N

P i g P [

5.3.4 (CONT) OR
Format: BAH’ Sl, S§2, D

Mnemonic: OR3

Operands:

§1: First Logical Operand

FMT: immediate (EXT,2), memory, (0) or stack (EXT,0)

S2: Second Logical Operand

FMT: immediate (EXT,2), memory (0) or stack (EXT,0)

D: Result

memory (0) or stack (EXT,0)

Function:
The inclusive OR operation between the operands specified by S1
and S2 1is performed. When either (both) of a pair of

corresponding bits of the source operands is 1 (are 1 s), the
result bit is set to 1, else the result bit is set to 0. The
result is stored in the destination location.

Each sourcr operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask (via a pointer to a Boolean or mask in
global storage or a data object of type Boolean or mask), or a
Boolean or mask component of an array or record. The destination
operand may be any of these except an immediate value. Source
and destination operands must be Booleans (V16) or mask data of
the same precision (V16, V32, or V64). If the operand qualifier,
BIT POSITION, is present, only the selected bit position (same
for each operand) takes part in the operation. All unselected
bits of the destination operand are unchanged. Note that the
operation performed on Booleans 1is exactly the same as the
operation performed on V16 masks (a 16 bit operation). The
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs 1in the wuse of the result.,
e.g., the IF instruction tests a Boolean but when the oper:.nd
qualifier, BIT POSITION, is present, it tests the selected bit
in a 16-bit mask. -

Exceptions:
PROGRAM_ERROR

B e T ™ TP I Al L TN A W © NI T B oW - yiman e o) o g o . v N e e " .
DR g TN 4 DI [YT) Rl R, e e e LT TR A AR e AR B A AR LR e L RN L T AL
) TS X B 'jl‘;ﬂ\ NS N NN ::'_'A.‘:." '.".'-"‘_X"l.:_‘."_...“‘.'-x SR ';\.'n- ‘\'.\-".';":‘JLL;' ',-.:'_\-L';j_\' ! '-"L:-\ ‘.';:...‘

DR T e Fiara e Bt i i i P A g DS

- o Wia Sie Ve S Sn. GALOIRVoh N MR R T = D i D e R A T TV TS AP Sl Sl S T R e Bt B |
5.3.5 OR ARRAY
Format: 3By, S, D f
Mnemonic: ORA2
Operands: :
S First Array of Logicals
FMT: memory (0) or base register (EXT,1ll)
D: Second Array of Logicals and Result Arra
FMT: memory (0) or base register (EXT,11)
Function:

The inclusive OR operation between each pair of corresponding
components of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
outermost (highest dimensioned) 1length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT,1l1l) or FMT=0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), 1is required in the
instruction. Alternatively, the compact format, BI (EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corresponding array components, when
corresponding bits are both 1 s, or when either of the bits is 1,
the result bit is set to 1, else the result bit is set to 0. The
components of the result array are stored in the destination
array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

2 NN P A Feery : % R} 7. i i = L il i LT R S AL LR A R e A R AT

5.3.5 (CONT) OR ARRAY
Format: 3Cy, S1, s2, D

Mnemonic: ORA3

Operands: | £
LA First Array of Logicals
FMT: memory (0) or base register (EXT,11) -
S2: Second Array of Logicals
FMT: memory (0) or base register (EXT,11)
D: . Result Array
FMT: memory (0) or base register (EXT,11)
Function:

The inclusive OR operation between each pair of corresponding
components of the arrays addressed by S1 and S2 is performed.
The arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions .- and equal 1lengths for corresponding dimensions.
The number of dimensions and 1lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size.as the product of the
outermost (highest dimensioned) 1length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT,ll) or FMT=0 and
‘the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), 1is required in the
instruction. Alternatively, the compact format, BI (EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corresponding array components, when
corresponding bits are both 1 s, or when either bits is 1, the
result bit is set to 1, else the result bit is set to 0. The
components of the result array are stored in the destination
array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record. *

Exceptions:
PROGRAM_ERROR

5-68

-

O] T TN S
‘el a’ 3

ST o AN

R TR CGE A1)

T R N L 3 T O I T i T i B N T e Ve T e i e a L T T T T T T e, R R e R T R e N S S e T I Ry

5.3.6 OR SLICE

Format: 3pg, S, D

! Mnemonic: ORS2
> .
[4

‘ Operands:
St First Array of Logicals
FMT: memory (0) or base register (EXT,1ll)
X D: Second Array of Logicals and Result Array
? FMT: memory (0) or base register (EXT,1l)
Function:

The inclusive OR operation between each pair of corresponding
components of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions;the slice lengths must be the same but the slices
need not be in the same dimension of the arrays. The number of
dimensions and lengths are checked by the machine only when the
arrays are addressed through their headers (FMT=0). In this
case, ARRAY SUBSCRIPT (if required and upper and lower ARRAY
SLICE INDEX operand qualifiers are present in the instruction for
each array operand. The machine computes the address of the

P SO TIER S % T e e,

beginning of each slice and the slice size. When an array is
. addressed through a base register (FMT=EXT, 11 or FMT = 0 and the
; cell offset designates a base register =~ with an AVA tag), the

operand qualifier, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE
(AS1Z), are required in the instruction. BRO gives the offset
from the array base address (contained in the base register) to
the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI (EXT,12) or BM (EXT,13),

A may be used with the single operand qualifier, ASIZ, as explained
i in section 4.2.3 (page 4-8). When corresponding bits in the
& slices are both 1 s, or when either bit is a 1, the result bit is
i set to 1, else the result bit is set to 0. The result is stored
= in the destination array slice location.
q When addressed through a header, each array of logicals operand
ot may be directly addressed, indirectly addressed (via a pointer to
.- an array in global storage or a data object of type array), or a
| component of a record.
A Exceptions:
N PROGRAM_ERROR
;

5-69

R A S G R N L R S S T TR ST e e OIS AR A NP T AR A BT W i

- T S :
DUCCERSICIPN e vt T R 1 £ o R A B0 o Sy e B 5 D= . o o 7 o
IR G 25 R IS RN) t._. ERIONID S Dy PSRN R 1 A ':'\.' I ‘.’\.L_'.i.'.'“".s.9,m"_n\h ':‘A '.n\.s\.-.‘.q\.:\.. Y e D) \\'-\'.': ‘: ':\-.'\4

...... = e AT b S R ——
CSEHA S0 SO0 PG R AT (TG 00N G DTG NONC A Ay

5.3.6 (CONT) OR SLICE

Format: BEH, sl, 82, b

Mnemonic: ORS3

Operands:
Sl First Array of Logicals
FMT: memory (0) or base register (EXT,1ll)
S2: Second Array of Logicals
FMT: memory (0) or base register (EXT,1l)
D: Result Array
FMT: memory (0) or base register (EXT,1ll)
Function:

The AND operation between each pair of corresponding components
in slices of the arrays addressed by S1 and S2 is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions; the slice lengths must be the same but the slices
need not be in the same dimension of the arrays. The number of
dimensions and slice lengths are checked by the machine only when
the arrays are addressed through' their headers (FMT=0). 1In this
case, ARRAY SUBSCRIPT (if required) and upper and lower ARRAY
SLICE INDEX operand qualifiers are present in the instruction for
each array operand. The machine computes the address of the
beginning of each slice and the slice size. When an array is
addressed through a base register (FMT=EXt, .11 or FMT=0 and the
cell offset designates a base register - with an AVA tag), the
operand qualifiers, BASE RELATIVE OFFSET (BRO) AND array size
(AS1Z), are required in the instruction. BRO gives the offset
from the array base address (contained in the. base register) to
the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI (EXT,12) or BM (EXT,13),
may be used with the single operand qualifier, ASIZ, as explained
in section 4.2.3 (page 4-8). When corresponding bits in the
slices are both 1 s, or when either bit is a 1, the result bit is
set to 1, else the result bit is set to 0. The result is stored
in the destination array slice location.

When addressed through a header, each array of logicals operand
may be directly addressed, 1nd1rectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

=70

0y - A Y
- q Tt D . q
~ \J‘,I \I\".) _‘.‘.\‘] \'.\.\.‘\ v

RS ML SRy, P S B Bl S 0 g S i e Sl i S e e e E A i iy

5.3,7 EXCLUSIVE OR

Format: 3Fy, S, D

Mnemonic: EXOR2

Operands:
S: First Logical Operand

s FMT: immediate (EXT,2), memory (0) or stack (EXT,0)

D: Second Logical Operand and Result
FMT: memory (0) or stack (EXT,0)

Function:

The EXCLUSIVE OR operation between the operands specified by S
and D is performed. When corresponding bits of the operands are
complements of one another (1 and 0 or 0 and 1), the result bit
is set to 1, else the result bit is set to 0. The result is
stored in the destination location.

The source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a'pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
-component of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision (V16, V32, or
v64). If the operand qualifier, BIT POSITION, is present, only
the selected bit position (same for both operands) takes part in
the operation. All wunselected bits of the destination operand
are unchanged. Note that the operation performed on Booleans is
exe "tly the same as the operation performed on V16 masks (a 16
bit operation). The machine cannot differentiate Booleans from
masks since both have V16 tags. Differentiation occurs in the
use of the result, e.g., the IF instruction tests a Boolean but
when the operand qualifier, BIT POSITION, is present, it tests
the selected bit in a 16-bit mask.

Exceptions:
PROGRAM_ERROR

5-71

TR T T T R R R TR TR e N v O, U o W .

B e e N i S o L AR P beni iy inbo i et el Satis S ingit ity Jise Tt sl s it Yo d ot Tiagr Siegerie o g

5.3.7 (CONT) EXCLUSIVE OR
Format: 405, §1,82, D

Mnemonic: EXOR3

Operands:
S1: First Logical Operand
FMT: ~1mmediate (EXT,2), memory (0) or stack (EXT,0) :
S2: Second Logical Operand
FMT: immediate (EXT,2), memory (0) or stack (EXT,0)
D:
FMT: Result
memory (0) or stack (EXT,0)
Function: ~

The EXCLUSIVE OR operation between the operands specified by Sl
and S2 is performed. When corresponding bits of the operands are
complements of one another (1 and 0 or 0 and 1), the result bit
is set to 1, else the result ‘bit 1is set to 0. The result is
stored in the destination location.

Each source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
+ addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Source and Destination
operands must be Booleans (V16) or mask data of the same
precision (V16, V32, or Vé64). If the operand qualifier, BIT
POSITION, is present, only the selected bit position (same for
both operands) takes part in the operation. All unselected bits
of the destination operand are unchanged. Note that the
operation performed on Booleans 1is exactly the same as the
operation performed on V16 masks (a 16 bit operation). The
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in the use of the result, e.g.,
the IF instruction tests a Boolean but when the operand

qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask.

Exceptions:
PROGRAM_ERROR

T o T YN R A N = TR LSt e e SR e A e g g e o e e i e s e a e ey e e S R oY e G R s oy agoue
A L A ‘ SR N N A e N A A A e e e “:;1

B L R T o e e Eo a5 SR o 0™ B o/ O oA S M- e

LAON i asth SR SPSLICELICE 4 S Sl et peta Se AR ERS SRe s SERFE B

5.3.8 EXCLUSIVE OR ARRAY
Format: 41y, S, D

Mnemonic: EXORA2

Operands:
S: First Array of Logicals
FMT: memory (0) or base register (EXT,11)
D: Second Array of Logicals and Result Arra
FMT: memory (0) or base register (EXT,11)
Function:

The EXCLUSIVE OR operation between each pair of corresponding
components of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (Vv16, V32, or V64) and must have the same number
of dimensions and equal 1lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
the outermost (highest dimensioned) 1length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), 1is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are complements of one another (0 and 1 or 1
and 0),the result bit is set to 1, ‘else the result bit is set to
0. The components of the result array are stored 1in the
destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record. .

Exceptions:
PROGRAM _ERROR

LR B Pt -0 T 2 o ol Reiat v

RS e R N e P)

5.3.8 (CONT) EXCLUSIVE OR ARRAY
Format: 423, Sl, s2, D

Mnemonic: EXORA3

Operands: :
Sl: First Array of Logicals
FMT: memory (0) or base register (EXT,11) :
S2: Second Array of Logicalé
FMT: memory (0) or base register (EXT,1ll)
D: Result Array
FMT: memory (0) or base register (EXT,11)
Function:

The EXCLUSIVE OR operation between each pair of corresponding
components of the arrays addressed by S1 and S2 is performed.
The arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal 1lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the. machine computes the array size as the product of the
the outermost (highest dimensioned} 1length and SPAN (length and ‘

component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), 1is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are complements of one another (0 and 1 or 1
and 0), the result bit is set to 1, else the result bit is set to
0. The components of the result array are stored 1in the
destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record. .

Exceptions: .
PROGRAM_ERROR

- ..N ." R, a‘:;u':.(-:.-: o.z.l.' ORI OB LS

)

(RS S AL RN QTR I B o i R, T et SRR A Bt

L PRl et Sl P O AAR,

$3. 9 EXCLUSIVE OR SLICE
Format: 43, S, D

Mnemonic: EXORS2

Operands: '
Sz First Array of Logicals
FMT: memory (0) or base register (EXT,11)
D: Second Array of ngjcals and Result Arra
FMT: memory (0) or base register (EXT,11)
Function:

The EXCLUSIVE OR operation between each pair of corresponding
components in slices of the arrays addressed by S and D is
performed. The arrays must have Boolean components or mask
components of the same precision (V16, V32, or v64) and must have
the same number of dimensions; the slice lengths must be the same
but the slices need not be in the same dimensions of the arrays.
The number of dimensions and slice 1lengths are checked by the
machine only when the arrays are addressed through their headers
(FMT=0). In this case, ARRAY SUBSCRIPT (if required) and upper
and lower ARRAY SLICE INDEX operand qualifiers are present in the
instruction for each array operand. The machine computes the
address of the beginning of each slice and the slice size.
When an array is addressed through a base register (FMT=EXT, 11
or FMT = 0 and the cell offset designates a base register - with
an AVA tag), the operand qualifier, BASE RELATIVE OFFSET (BRO)
and ARRAY SIZE (ASIZ) are required in the instruction. BRO gives
the offset from the array base address (contained in the base
register)to the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI(EXT,12) or BM(EXT,13), may
be used with the single operand qualifier, ASIZ as explained in
section 4.2.3 (page 4-8). When corresponding bits in the slices
are complements of one another (0 and 1 or 1 and 0), the result
bit is set to 1, else the result bit is set to 0. The result is
stored in the destination array slice location., :

When addressed through a header, each array of logicals operand
may be directly addressed, 1indirectly addressed (via pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

G R N N i N S N I R e e e e A A A RIS Y LI § B2 el S ORIV AR B |

5.3.9 (CONT)EXCLUSIVE OR SLICE
Format: 44y, S1, S2, D

Mnemonic: EXORS3

Operands: '
Sl First Array of Logicals |
FMT: memory (0) or base register (EXT,11l) .
S2: Second Array of Logicals

FMT: memory (0) or base register (EXT,11l)
D: Result Array

FMT: memory (0) or base register (EXT,11)
Function:

The EXCLUSIVE OR operation between each pair of corresponding
components in slices of the arrays addressed by S1 and S2 is
performed. The arrays must have Boolean components or mask
components of the same precision (V16, V32, or V64) and must have
the same number of dimensions; the slice lengths must be the same
but the slices need not be 1in the same dimensions of the arrays.
The number of dimensions and slice 1lengths are checked by the
machine only when the arrays are addressed through their headers
(FMT=0). In this case, ARRAY SUBSCRIPT (if required) and upper
and lower ARRAY SLICE INDEX operand qualifiers are present in the
instruction for each array operand. The machine computes the
address of the beginning of each slice and the slice size.
When an array is addressed through a base register (FMT=EXT, 11
or FMT = 0 and the cell offset designates a base register - with
an AVA tag), the operand qualifier, BASE RELATIVE OFFSET (BRO)
and ARRAY SIZE (ASIZ) are required in the instruction. BRO gives
the offset from the array base address (contained in the base
register) to the start of the slice and ASIZ gives the slice
size. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used with the single operand qualifier, ASIZ
as explained in Section 4.2.3 (page 4-8). When corresponding
bits in the slices are complements of one another (0 and 1 or 1
and 0), the result bit is set to 1, else the result bit is set to
0. The result is stored in the destination array slice location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:

PROGRAM_ERROR

B T T R S R P T S I T T el L T T T e L R T T N T o TV S N TV T rvs o

5.3.10 EQUIVALENCE
Format: 455' S, D

Mnemonic: EQ2

Operands:
S First Logical Operand
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
D: Second Logical Operand and Result
FMT: memory (0) or stack (EXT,O0)
Function:
The EQUIVALENCE operation between the operands specified by S and
D is performed. When corresponding bits of the operands are

equal (both 0 or both 1), the ' result bit is set to 1, else the
result bit is set to 0. The result is stored in the destination
location.

The source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or
mask (via a pointer to a Boolean or mask in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision (V16, v32, or
v64). If the operand qualifier, BIT POSITION, is present, only
the selected bit position (same for both operands) takes part in
the operation. All unselected bits of the destination operand
are unchanged. Note that the operation performed on Booleans is
exactly the same as the operation performed on V16 masks (a 16-
bit operation). The machine cannot differentiate Booleans from
masks since both have V16 tags. Differentiation occurs in the
use of the result, e.g., the IF instruction tests a Boolean but
when the operand qualifier, BIT POSITION, 1is present, it tests
the selected bit in a 1l6-bit mask.

Exceptions:
PROGRAM_ERROR

R et D e YA R B Sai Sk el T AR LR R0 e, SO 1 G0 (G AR SR 10 rin) te B Gt 5T i I innbiny gvay i 40 Al il S e e poy

ARl R S NG MR P S AL RO fap i pt S ety

5.3.10 (CONT) EQUIVALENCE
Format: 463' Sl, S2, D

Mnemonic: EQ3

Operands: ' :
S1: First Logical Operand ;
FMT: immediate (EXT,2), memory (0), or stack.(EXT,0) .
S2: Second Logical Operand A
FMT: immediate (EXT,2),memory (0), or stack (EXT,0)
D: Result
Function:

The EQUIVALENCE operation between the operands specified by Sl
and S2 is performed. When corresponding bits of the operands are
equal (both 0 or both 1), the result bit is set to 1, else the

result bit is set to 0. The result is stored in the destination
location.

Each source operand may be an immediate value, interpreted as a
Boolean (V16) or a mask (V16) - depending on its use, a directly
addressed Boolean or mask, an indirectly addressed Boolean or -
mask (via a pointer to a Boolean or mask 'in global storage or a
data object of type Boolean or mask), or a Boolean or mask
component of an array or record. The destination operand may be
any of these except an immediate value. Both operands must be
Booleans (V16) or mask data of the same precision (V16, V32, or
Vv64). If the operand qualifier, BIT POSITION, is present, only
the selected bit position (same for both operands) takes part in
the operation. All unselected bits of the destination operand
are unchanged. Note that the operation performed on Booleans is
exactly the same as the operation performed on V16 masks (a 16-
bit operation). The machine cannot differentiate Booleans from
masks since both have V16 tags. Differentiation occurs in the
use of the result, e.g., the IF instruction tests a Boolean but

when the operand qualifier, BIT POSITION, is present, it tests
the selected bit in a 16-bit mask.

Exceptions: i
PROGRAM_ERROR

SO e o A e P e I A AR T T
P A A A O PG O ¢

S OB OSSO, o Ay RS OBRAC e e o T P O], MRy LR LA
R R R IO SR NS N g L

S Bl L e P U R, R R R, S S, e, 0 S A N e Wi

el
e MW

Vom Gk e Lt B Ay Sdi

9:3.11 EQUIVALENCE ARRAY
Format: 474, S, D

Mnemonic: EQA2

Operaﬁds:
S: First Array of Logicals
FMT: memory (0) or base register (EXT,11)
D: Second Array of Logicals and Result Array
FMT: memory (0) or base register (EXT,11l)
Function:

The EQUIVALENCE operation between each pair of corresponding
components of the arrays addressed by S1 and S2 is performed.
The arrays must have Boolean components or mask components of the
same precision (V16, V32, or Vé64) and must have the same number
of dimensions and equal lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
the outermost (highest dimensioned) 1length and SPAN (length and
component size if the number of dimensions is 1). When an array
is addressed through a base register (FMT=EXT, 11 or FMT = 0 .and
the cell offset designates a base Tregister - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), 1is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are equal (both 0 or both 1) the result bit is
set to 1, else the result bit is set to 0. The components of the
result array are stored in the destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

5-79

-...........: TN e At et et et e % Tt T T RE
‘s % %

fonr N & = = . "I.'.o ". TR TR T '\-.' " -.'.- AR g () ol TSI ECE N
WA ST RIS TN AT ot TR i Sty -‘*Rﬁiﬁaﬂf.ﬂ‘t.‘t‘ﬁ'}_‘.f.-ﬁ’}} (S VS

VAL R G L e R Pt et Yt Bl B e i p o)

Rl e LB e TN e kb R e G Ly M Bl S e S e i i Ml By B Sl e LS e e i 4 S il Ll e e i T

....................

5.3.11 (CONT) EQUIVALENCE ARRAY
Format: 485, Sl, 82, D

Mnemonic: EQA3

Operands:
Sl ; First Array of Logicals
FMT: memory (0) or base register (EXT,11)
$2; Second Array of Logicals
FMT: memory (0) or base register (EXT,11)
D: Result Array
FMT: memory (0) or base register (EXT,11)
Function:

The EQUIVALENCE operation between each pair of corresponding
components of the arrays addressed by S1 and S2 is performed.
The arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions and equal 1lengths for corresponding dimensions.
The number of dimensions and lengths are checked by the machine
only when the arrays are addressed through their headers (FMT=0).
Then, the machine computes the array size as the product of the
the outermost (highest dimensioned) 1length and SPAN (length and
component size if the number of dimensions is 1). When an array

is addressed through a base register (FMT=EXT, 11 or FMT = 0 and -

the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ), 1is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
For each pair of corrresponding array components, when
corresponding bits are equal (both 0 or both 1) the result bit is
set to 1, else the result bit is set to 0. The components of the
result array are stored in the destination array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

R S T s e T B ST T T e R
: §

s

e e a®0fal o],

.~ Ohiay

R R S L N N R I o e S e T T T o Y

543,12 EQUIVALENCE SLICE
Format: 494, S, D

Mnemonic: EQS2

Operands:
S: First Array of Logicals
FMT: memory (0) or base register (EXT,1ll)
D: Second Array of Logicals and Result Arra
FMT: memory (0) or base register (EXT,11)
Function:

The EQUIVALENCE operation between each pair of corresponding
components of the arrays addressed by S and D is performed. The
arrays must have Boolean components or mask components of the
same precision (V16, V32, or V64) and must have the same number
of dimensions; the slice lengths must be the same but the slices
need not be in the same dimension of the arrays. The number of
dimensions and slice lengths are checked by the machine only when
the arrays are addressed through their headers (FMT=0). In this
case, ARRAY SUBSCRIPT (if required) and upper and lower ARRAY
SLICE INDEX operand qualifiers are present in the instruction for
each array operand. The machine computes the address of the
beginning of each slice and the slice size. When an array is

. addressed through a base register (FMT=EXT, 11 or FMT = 0 and the
cell offset designates a base register - with an AVA tag), the
operand qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE
(ASIZ), are required in the instruction. BRO gives the offset
from the array base address (contained in the base register) to
the start of the slice and ASIZ gives the slice size.
Alternatively, the compact format, BI(EXT,12) or BM(EXT,13), may
be used with the single operand qualifier ASIZ, as explained in
Section 4.2.3 (page 4-8). When corrresponding bits in the slices
are equal (both 0 or both 1) the result bit is set to 1, else the
result bit is set to 0. The result is stored in the destination
array location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions: -
PROGRAM_ERROR

5-81

._-,N_“ _), _.._\‘,.,.,._\-_\ _\.

[T R T S S T T T e T S T N L Ty Y L O T O T S P T T o T e e T T I T S I T S T ST TR0 il Wl ol N6 ™ Ny

.

:..‘
N

W

.l'{'.‘. -

XX

5.3.12 (CONT) EQUIVALENCE SLICE
Format: 4AH, Sl, S2, D

Mnemonic: EQS3

PONACRAR IC

Operands: i
S: First Array of Logicals -
.. FMT: memory (0) or base register (EXT,1ll) .
Ei S2: Second Array of Logicals
X FMT: memory (0) or base register (EXT,11)
D: Result Array
FMT: memory (0) or base register (EXT,1ll)
EL Function:
b The EQUIVALENCE operation between each pair of corresponding

components in slices of the arrays addressed by S and D is
performed. The arrays must have Boolean components or mask
components of the same precision (V16, V32, or V64) and must have

bt the same number of dimensions; the slice lengths must be the same
- but the slices need not be in the same dimension of the arrays.
- The number of dimensions and slice. lengths are checked by the

machine only when the arrays are addressed through their headers
(FMT=0). In this case, ,ARRAY SUBSCRIPT (if required) and upper
3 and lower ARRAY SLICE INDEX operand qualifiers are present in the
13 instruction for each array operand. The machine computes the

- address of the beginning of each slice and the slice size. When
o an array is addressed through a base register (FMT=EXT, 1l or FMT

= 0 and the cell offset designates a base register - with an AvaA
tag), the operand qualifiers, BASE RELATIVE OFFSET (BRO) and
ARRAY SIZE (ASIZ), are required in the instruction. BRO gives
the offset from the array base address (contained in the base
register) to the start of the slice and ASIZ gives the slice
size. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used with the single operand qualifier ASIZ,
as explained in Section 4.2.3 (page 4-8). When corrresponding
bits in the slices are equal (both 0 or both 1) the result bit is
g set to 1, else the result bit is set to 0. The result is stored
. in the destination array location.

When addressed through a header, each array of logicals operand
~ may be directly addressed, indirectly addressed (via a pointer to
> an array in global storage or a data object of type array), or a
iy component of a record.

Exceptions:
PROGRAM_ERROR

5-82

D S T S R O) o e a @ G e e e G e R i @ TR S gm e ear g - -
= .: S : ‘....: S POy .: e _...,..\J'\.'\.:._. -“{'('-,1" o

) i) o o e R S (it g R R) .G L] -li‘.l --. &
AN DASEASLRS .3 N

ANETR AR P b Ea Yy e ¥ il il i P G i e i 0 i i g L " e Y ey el S G A g B i a4

PR A Bl S G R s |

5,73.03 NOT

Format: 4By, D

r

Mnemonic: NOT1

Operands:
D: Logical Operand and Result
FMT: memory (0) or stack (EXT,0)
Function:

The NOT operation is performed on the operand addressed by D.
The bit (or bits) in the operand is (are) complemented (0 to 1 or
1 to 0) and the result is stored in the destination location.

The operand may be a directly addressed Boolean (V16) or mask
(vie, v32, or v64) an indirectly addressed Boolean or mask (via a
pointer to a Boolean or mask 1in global storage or a data object
of type Boolean or mask), or a Boolean or mask component of an
array or record. If the operand qualifier, BIT POSITION, is
present, only the selected bit position is affected. All
unselected bits of the operand are unchanged. Note that the
operation performed on a Boolean 1is exactly the same as the
operation performed on a V16 mask (a 16 bit operation). The -
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in.the use of the result, e.q.,
the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask. -

Exceptions:
PROGRAM_ERROR

5-83

T R et T T A R T R R T T S T I L N T R TR R A T e N A T a e e s Ve Ve e T Y e S I Y A T A A T A T UL T L NS WG PR RE G Wi h}

5.3.13 (CONT) NOT
Format: 4Cq, S, D

Mnemonic: NOT2

Operands: .
S: Logical Operand
FMT: memory (0) or stack (EXT,0) 5
D: Result
" FMT: memory (0) or stack (EXT,0)
Function:

The NOT operation is performed on the operand addressed by S.
The bit (or bits) in the operand is (are) complemented (0 to 1 or
1 to 0) and the result is stored in the destination location.

Each operand may be a directly addressed Boolean or mask, an
indirectly addressed Boolean or mask (via a pointer to a Boolean
or mask in global storage or a data object of type Boolean or
mask), or a Boolean or mask component of an array or record.
Source and destination operands must both be Booleans (V16) or
mask data of the same precision (V16, V32, .or Vé64). 1If the
operand qualifier, BIT POSITION, 1s present, only the selected
bit position is affected. All unselected bits of the destination
operand are unchanged. Note that the operation performed on a
Boolean 1is exactly the same as the operation performed on a V16
mask (a 16 bit “operation). The machine cannot differentiate
Booleans from masks since both have V16 tags. Differentiation
occurs in the use of the result, e.g., the IF instruction tests a
Boolean but when the operand qualifier, BIT POSITION, is present,
it tests the selected bit in a 16-bit mask.

Exceptions:
PROGRAM_ERROR

5-84

LI PR LA S SV e " e y t oy ., -y . Tm %" L R DA TR LG A I AR B A
[,f\‘. \.o_ ',"\'\.'.‘\‘ N . ..,-‘. :..'\.\'. >y .-.. WNs v..'?‘_.)\ ..\.. O ._\ -.:-.\ Y ‘.S_. ..‘-.. -.~\‘.. SRRSO Y NS \‘ LSO R K l

) »°,

-'

o N (-, = - e e r
RS Y e DRI AN IR ORI TS I S S e ...1..-‘_..1_'_.:1'._..& AR ‘.r" \" s \ S -\.A\.p - et e ate e N e 'A\-\:.\:-\:L

PO

5.3.14 NOT ARRAY

Format: 4Dy, D

Mnemonic: NOTAl

bperands:
D: Array of Logicals

FMT: memory (0) or base register (EXT,11l)
Function:

The NOT operation is performed on the components of the array
addressed by D. The array must have Boolean components or mask
components. When the array is addressed through its header
(FMT=0), the machine computes the array size as the product of
the outermost (highest dimensioned)length and SPAN (length and
component size if the number of dimensions is 1). When the array
is addressed through a base register (FMT=EXT, 11 or FMT=0 and
the cell offset designates a base register - with an AVA tag),
the operand qualifier, ARRAY SIZE (ASIZ) 1is required in the
instruction. Alternatively, the compact format BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
Each bit in each component is complemented (0 to l or 1 to 0) and
the result array is stored in the destination array location.

When addressed through a header, "the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ERROR

5-85

oo (~v.-_v.."_§ e AT e e W et e

{% --------- o O T R I e e -‘-‘ N

" .

Y

R B R R0 R R RS Sk o DR Do e TR Sa it R it i b e Sran Bin Diu e Ay

T T S T RS S SR O TS T S T

5.3.14 (CONT) NOT ARRAY
Format: 4By, S, D

Mnemonic: NOTA2

Operands: k
S: Array of Logicals
FMT: memory (0) or base register (EXT,11) : :
D: Result Array -

memory (0) or base register (EXT,1ll)

Function: ,

The NOT operation is performed on the components of the array
addressed by S. Source and destination arrays must have Boolean
components or mask components of the same precision (V16, V32, or
v64) and must have the same number of dimensions and equal

lengths for corresponding dimensions. The number of dimensions
and lengths are checked by the machine only when the arrays are
addressed through their headers (FMT=0). Then, the machine

computes the array size as the product of the the outermost
(highest dimensioned) length and SPAN (length and component size
if the number of dimensions is 1). When an array is addressed
through a base register (FMT=EXT,: 11 or FMT = 0 and the cell
offset designates a base register ~ with an AVA tag), the operand
qualifier, ARRAY SIZE (ASIZ), 1is required in the instruction.
Alternatively, the compact format, BI(EXT,12) or BM(EXT,13), may
be used as explained in Section 4.2.3 (page 4-8). Each bit in
each component of the source array is complemented (0 to 1 or 1
to 0) and the result is stored in the destination array location.
precision

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ ERROR

i . . 0 L L S
PP A TONE P PO RO PR AN fk":':‘.lk.'.'L"l}-l ’.J:'.‘!'—l el LiL::Lf:;':!l';L'.!.':ﬂts_':J.ix_'fA_':;_'-ﬁ_'.x.':L LNy I:“L‘ -L.-. . ‘.:‘..1

ALK -‘x‘\ '\ \‘

5o da 15 NOT SLICE

Format: 4Fy, D

Mnemonic: NOTS1

Operands: :
D: Array of Logicals

FMT: memory (0) or base register (EXT,1l)
Function:

The NOT operation is performed on the components in a slice of
the array addressed by D. the array must have boolean components
or mask components, When the array 1is addressed through its
header, ARRAY SUBSCRIPT (if required) and upper and lower ARRAY
SLICE INDEX operand qualifiers are present in the instruction.
The machine computes the ' address of the beginning of the slice
and the slice size., When the array is addressed through a base
register (FMT=EXT,l1l or FMT=0 and the cell offset designates a
base register - with an AVA tag), the operand qualifiers, BASE

. RELATIVE OFFSET (BRO) and ARRAY SIZE (ASIZ), are required in the

instruction. BRO gives the offset from the array base address
(conta1ned in the base reglster) to the start of the slice and
ASIZ gives the slice size. Alternatively, the compact format,
BI(EXT,12) or BM(EXT,13), may be used with the single operand
qualifier, ASIZ, as explained in Section 4.2.3 (page 4-8). Each
bit in each component of the slice 1is complemented (0 to 1 or 1
to 0) and the result is stored in the destination array slice
location.

When addressed through a header, the array of logicals operand
may be d1rect1y addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM__ ERROR

5-87 .
o IO P Tl X) 37 LI '\. >
))‘ e A&’A&.i.u‘,n 1.4.') .5_}1 ‘-ﬂ\h\k.‘t\i&* .\...L.x.‘.&‘i..\&\.‘ \.\'\. L e

.1 ce o my
SORC PRl

5.3.15 (CONT) NOT ARRAY

Format: SOy, S, D

Mnemonic: NOTS2

Operands:
S Array of Logicals
FMT: memory (0) or base register (EXT,11)
D: Result Array
FMT: memory (0) or base register (EXT,11)
Function: .
The NOT operation is performed on the components in a slice of
the array addressed by S. Source and destination arrays must

have Boolean components or mask components of the same precision
(Vvié, v32, or V64) and must have the same number of dimensions;
the slice lengths must be the same but the slices need not be in
the same dimension of the arrays. The number of dimensions and
slice lengths are checked by the machine only when the arrays are
addressed through their headers (FMT=0). In this case, ARRAY
SUBSCRIPT (if required) and upper and lower ARRAY SLICE INDEX
operand qualifiers are present in the instruction for each array
operand. The machine computes the address of the beginning of

each slice and the slice size. When an array is addressed
through a base register (FMT=EXT,11 or FMT=0 and the cell offset
designates a base register - with an AVA tag), the operand

qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE (ASIZ), are
required in the instruction. BRO gives the offset from the array
base address (conta1ned in the base register) to the start of the
slice and ASIZ gives the slice size. Alternatively, the compact
format, BI(EXT,12) or BM(EXT,13), may be wused with the single
operand qualifier, ASIZ, as explained 1in Section 4.2.3 (page 4-
8). Each bit 1in each component of the source array slice is
complemented (0 to 1 or 1 to)) and the result is stored in the
destination array slice location.

When addressed through a header, each array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptlons: =
PROGRAM_ ERROR

5-88

o -“ o -‘ e ® o -." . .."' PR S y
..2.:.,:.";4 fr"u".e LRI T e e i L L o S

P e B aey ot e U R G = o T A i o i sl i ey cun i it Coaie vaiv st gk o b A S A SRR AL Sl e A S S S SRR |

5.3.16 SET

Format: S5ly D

14

Mnemonic: SET

Operands:
D: Logical Operand and Result
FMT: memory (0) or stack (EXT,11)
Function:

The SET operation is performed on the operand addressed by D.
The bit (bits) in the operand is (are) set to 1 and the result is
stored in the destination location

The operand may be a directly addressed Boolean (V16) or mask
(vlie, V32, or V64), an indirectly addressed Boolean or mask (via
a pointer to a Boolean or mask in global storage or a data object
of type Boolean or mask), or a Boolean or mask component of an
array or record. If the operand qualifier, BIT POSITION, is
present, only the selected bit position is affected. All
unselected bits of the operand are unchanged. Note that the
operation performed on a Boolean 1is exactly the same as the
operation performed on a V16 mask (a 16 bit operation). The
machine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in the use of the result, e.gq,
the IF instruction tests a Boolean but when the operand
qualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask. -

Exceptions:
PROGRAM__ ERROR

5-89

AT Fiile Biehs srsarmn e b .\.1\‘\ -+.... "9 aras s .

g . S et B e el AT {‘:'\. Tt _-,‘_-~‘.3
\d‘hu -3 - .-A:.—A .-a:’-—«.-_u._n ..P‘ —l— AN AR .l‘_L..L:.:n_ .J._l‘. _‘L..A. .-A.—A‘_-L AP LA “'_.-.1.-.‘ SIS 1."-) .'.'.."! YT AR E A GEFL L SICRL

L ip St e, il pip a e L o S S ipie et SO MU TR R B S R AT A b AL AL RO Fud fin W S A i R i A S S AR G AL S SC5H

- CA

5.3.17 SET ARRAY
Format: S2y, D

Mnemonic: SETA

Operands:

D: Array of Logicals

FMT: memory (0) or base register (EXT,11)
Function:

The SET operation is performed on the components of the array
addressed by D. The array must have Boolean components or mask
components. When the array is addressed through its headers
(FMT=0) the machine computes the array size as the product of the
the outermost (highest dimensioned) 1length and SPAN (length and
component size if the number of dimensions is 1). When the array
is addressed through a base register (FMT=EXT, 1l or. FMT = 0 and
the cell offset designates a base register - with an AVA taqg),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).
Each bit in each component is set to 1 and the result array is
stored in the destination array location.

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM_ ERROR

5-90

n',\"l'i.‘ SRR e N

R SN AT I AR AR w;:i.gmﬂ:;t:ﬁ;

h‘ili *" -‘h. \7. ‘h? \.-J

RRCR ORI R el
e O) ..1»L.\ '(g " O

o

R GO e R e R e g ey R i R B e e e by i ey e 2 o el LR et e e R i s

5.3.18 SET.SLICE
Format: 53y, D

Mnemonic: SETS

Operands:

D: Array of Logicals

FMT: memory (0) or base register (EXT,1ll)
Function:
The SET operation is performed on the components in a slice of
the arrays addressed by D. The arrays must have Boolean
components or mask components. When the array is addressed

through its header, ARRAY SUBSCRIPT, (if required) and upper and
lower ARRAY SLICE INDEX operand qualifiers are present in the
instruction. The machine computes the address of the beginning
of each slice and the slice size, When the array is addressed
through a base register (FMT=EXT,ll or FMT=0 and the cell offset
designates a base register - with an AVA tag), the operand
qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE (ASIZ), are
required in the instruction. BRO gives the offset from the array
base address (contained in the base register) to the start of the

slice. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used with the single operand quallfler, AS1Z,
as explalned in Section 4.2.3 (page 4-8). Each bit in each

component of the slice is set to 1 and the result is stored in
the destination slice location.

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to

an array in global storage or a data object of type array), or a
component of a record.

Exceptions:
PROGRAM _ ERROR

e A e A Y A e e e ¥ Ve T T T e R o AT e W S iar o e e aa e E s e e '.- ‘.‘_ o8
ey *Lm Y 5 G T S S O A S O G G L S

b ot M el - e - - i —— S g o W R A T T
AR saia ST L e P e) SRR A A A S e e i A P A R R R : . B 0 R i e A S

’.3.19 CLEAR
‘ormat: 5S4y, D

fnemonic: CLR

Jperands:
D: Logical Operand and Results

FMT: memory -(0) or stack (EXT,1ll) .
*function:

fhe CLEAR operation is performed on the operand addressed by D.
fhe bits (bits) in the operand is (are) reset to 0 and the result
is stored in the destination location.

fhe operand may be a directly addressed Boolean (V16) or mask
(Vi6, V32, or V64) an indirectly addressed Boolean or mask (via a
>ointer to a Boolean or mask in global storage or a data object
>f type Boolean or mask), or a Boolean or mask component of an
array or record. If the operand qualifier, BIT POSITION, is
present, only the selected bit position is affected. All
anselected bits of the operand are unchanged. Note that the
operation performed on a Boolean 1is exactly the same as the
operation performed on a V16 mask (a 16 bit operation). The
nachine cannot differentiate Booleans from masks since both have
V16 tags. Differentiation occurs in the use of the result, e.qg.,
the IF instruction tests a Boolean but when the operand
jualifier, BIT POSITION, is present, it tests the selected bit in
a 16-bit mask.

Exceptions:
PROGRAM_ ERROR

s S i
RN A

.
...r.‘i ._L\.A ‘.'.4 . e et .‘,_-,- ..,

TR T T i SN fo Wla SUo e ke %o Bhe Bio W LN TR SR Rl e TR e W R R T AT T L R e T G T e R T T T T T T T

5.3.20 CLEAR ARRAY
Format: 55y, D

Mnemonic: CLRA

Operands:
D: Array of Logicals
FMT: memory (0) or base register (EXT,1l1)
Function:

The CLEAR operation is performed on the components of the array
addressed by D. The array must have Boolean components or mask
components. When the array is addressed through its header
(FMT=0), the machine computes the array size as the product of
the outermost (highest dimensioned)length and SPAN (length and
component size if the number of dimensions is 1). When the array
is addressed through a base register (FMT=EXT, 11 or FMT=0 and
the cell offset designates a base register - with an AVA taq),
the operand qualifier, ARRAY SIZE (ASIZ), is required in the
instruction. Alternatively, the compact format, BI(EXT,12) or
BM(EXT,13), may be used as explained in Section 4.2.3 (page 4- 8).
Each bit in each component is reset to 0 and the result array is
stored in the destination array location.

When addressed through a header, the array of logicals operand
may be directly addressed, indirectly addressed (via a pointer to
an array in global storage or a data object of type array), or a
component of a record.
Exceptions:

PROGRAM_ ERROR

PR

‘l

e SIS AT A \\\5" N PR R A0 IORAL IO P o O i P AR ol A '."."."."-'0'.'.'.'-‘-'.
.. YR RGNS, St '.- "'“..- %° "“ oy ot S '0'\‘ -'\ """ i v ’,_1-" -_. _.":.' :.\'.;':A ; .r\.' '.n\:n")

fo e n A e e e e D g B A e e s S s S S e e Ty S g e T s i g R S L e bR o T B o e R 1

»3.22 CLEAR SLICE
ormat: 56y, D

nemonic: CLRS

perands:

D: Array of Logicals .

FMT: memory (0) or base register (EXT,11))
unction:
'he CLEAR operation is performed on the components in a slice of

he array of the array addressed by D. The array must have
loolean components or mask components. When the array is

ddressed through its header ARRAY SUBSCRIPT (if required) and
ppper and lower ARRAY SLICE INDEX operand qualifiers are present
n the instruction. The machine computes the address of the
)eginning of the slice and the slice size. When the array is
ddressed through a base register (FMT=EXT,ll1 or FMT=0 and the
ell offset designates a base register - with an AVA tag), the
jperand qualifiers, BASE RELATIVE OFFSET (BRO) and ARRAY SIZE
ASIZ), are required in the instruction. BRO gives the offset
‘rom the array base address (contained in the base register) to
:he start of the slice. Alternatively, the compact format,
}I1 (EXT,12) or BM(EXT,13), may be used with the single operand
jualifier, ASIZ, as explaired in Section 4.2.3 (page 4-8). Each
>it in each component of the slice 1is set to 0 and the result is
stored in the destination array location.

then addressed through a header, the array of logicals operand
nay be directly addressed, indirectly addressed (via a pointer to
in array in global storage or a data object of type array), or a
:omponent of a record.

ixceptions

PROGRAM_ERROR

o TR B i T i e . O = ro - g W Vv v v gy
R S e e L L e T e R LT T T P, T Ve T T T T v e e Y ey

5.4 Branch

The branch instructions support the Ada IF statement (if Boolean-
expression then, else), the CASE statement, the LOOP statement
(for-loop), and the GOTO statement. Note that Ada WHILE LOOP
statements are supported by the HLLM IF and GOTO instructions as
shown below:

ol . MORFRFRFRS e bl SR

>

AR ASUINE M

v

LABEL A: IF (RELATIONAL), LABEL B SEQUENCE OF
INSTRUCTIONS GOTO LABEL A

T
-

LABEL B:

v
| 3
.3
b
b!
b".
re
P:
P:

5-95

AR~ |+ SCUIABCRCII (

CRR R L B A R N AR S T DA i Sy R SN O N R PR § Ve B A e A S e ot O £

5.4.1 IF
Format: 57y S, D

Mnemonic: IF

Operands: .
S: Logical Operand
FMT: memory (0) or stack (EXT,0) .
D: Label
FMT: immediate (EXT,2), interpreted as a label operand
Function:

The state of the operand addressed by S is tested; if 1 (true),
no action is taken but if 0 (false), a branch is made to the
address of the current instruction - plus the value of the label
operand (displacement, in words). The source operand must be a
Boolean (V16) or mask data (V16, V32, or Vv64). If mask data, the
operand qualifier, BIT POSITION, must be present 1in the
instruction to select the bit of the mask to be tested..

The source operand may be a directly addressed Boolean or a mask,
an indirectly addressed Boolean or mask via a pointer to a
Boolean or mask in global storage ‘or a data object of type

Boolean or mask), or a Boolean or mask component of an array or
record

Exceptions:
PROGRAM_ERROR

5-96

™ ‘.\-.\-}'\ ?$‘_'--,'-.-.\..\‘.'.- ',:-‘.'-..":.-'.\:' -.._ : SeE

LR AT e A Wt 0 #R0Fda S TPria 3 0 Sy e B AL R o SN R S B A WA B P L i B 0 At S i g N S - e S - R B G e et Pt S S i o i |

5.4.2 IF EQUAL
Format: 58y S1, S2, D

Mnemonic: IF=

Operands:
Sl: Comparand 1
FMT: immediate (EXT,2), memory (0), stack (EXT,0),
or base register (EXT,1ll)
S2; Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),
or base register (EXT,11)
D: Label
© FMT: immediate (EXT,2), interpreted as a label operand
Function:

The operands specified by S1 and S2 are compared for equality.
If the values are equal, no action is taken but if the values are
not equal, a branch 'is made to the address of the current
instruction plus the value of the label operand (displacement, in
words). The source.operands may be numeric or logical (vV16, V32,
or Vé4), pointers (PTR), components .of arrays or records, or
whole arrays or records. Immediate source operands are
interpreted as having a V32 tag with sign extend. Equal pointers
are both undefined (null) or both defined with identical absolute
address and unique names (checked if unique name flags = 1).
Equal arrays have the same number of dimensions, the same lengths
for corresponding dimensions, and equal corresponding components.
Equal records have equal corresponding components.

Note that in this instruction (and in the IF NOT EQUAL
instruction), when S1 and S2 address pointers, the pointers, not
the pointed to data entities, are compared for equality. Also
note, as usual, when arrays are addressed via base registers, the
operand qualifier, ARRAY SIZE (AS1Z), 1is required in the
instruction; alternatively, the compact format, BI(EXT,12) or BM
(EXT,13), may be used as explained in Section 4.2.3 (page 4-8).

EXCEPTIONS:
PROGRAM_ERROR

5=97

R N T T O ;
PRV -".p\ ST '\-L') ')"'.~ i}"* ':r".-"'.b '_u"'l\l" ‘_h\

et AN e U _7.\;.’-_'.","..'-,‘\;
S ERE AN LECHER A DA TR DR TN

5.4.3 IF NOT EQUAL

Format: 59y S1, S2, D

Mnemonic: IF <>

Operands:
Sl: Comparand 1
FMT: immediate (EXT,2), memory (0), stack (EXT,0),
or base register (EXT,1l)
S2: Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),
or base register (EXT,11)
D: Label
FMT: immediate (EXT,2), interpreted as a label operand
Function:

The operands specified by S1 and S2 are compared for inequality.
If the values are not equal, no action is taken but if the values
are equal, a branch is made to .the address of the current
instruction plus the value of the label operand (displacement, in
words). The source operands may be numeric or logical (v1ié, V32,
or V64), pointers (PTR), components of arrays or records, or
whole arrays or records. Immediate source operands are
interpreted as having a V32 tag with sign extend. Source
operands are not equal if they do not meet the equality
definitions specified in the IF EQUAL instruction.

Note that in this instruction (and in the IF EQUAL instruction),
when S1 and S2 address pointers, the pointers, not the pointed-to
data entities, are compared for equality. Also note, as usual,
when arrays are addressed via base registers, the operand
qualifier, ARRAY SIZE (ASIZ), 1is required in the instruction;
alternatively, the compact format, BI(EXT,12) or BM (EXT,13), may
be used as explained in Section 4.2.3 (page 4-8).

EXCEPTIONS:
PROGRAM_ERROR

LG sl e L e tid ps i dt o S S e T R, BT P e T A ek LECATEE R B U P LU S e e e Bl AR et S S B s ey o i eeie g oD ped il ot prd s bl gla maa miip

5.4.4 IF LESS THAN INTEGER
Format: SAg-S1, S2, D

Mnemonic: IFI«

Operands:
Sl: Comparand 1
FMT: immediate (EXT,2), memory (0), stack (EXT,0),
or base register (EXT,1ll)
S2: Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),
or base register (EXT,11)
D: Label
FMT: immediate (EXT,2), 'interpreted as a label operand
Function:

The operands specified by S1 and S2 are compared; if the former
value (S1) is less than the latter value (S2) no action is taken,
else a branch is made to the address of the current instruction
plus the value of the 1label operand (displacement, in words).
Both source operands must be integers (V16 or V32) or single
dimension arrays of 1integers. If arrays, lower bounds and .
‘lengths need not match. The value of the array operand addressed
by S1 is less than the value of the array operand addressed by S2
if the former value lexicographically precedes the latter value,
using the collating sequence of the component type. Formally
stated, let k be the largest integer such that

k<=length of S1 array operand

and
k<=length of S2 array operand

and let the first k components of the Sl and S2 array -operands be
equal (k>=0). Then array operand S1 is less than array operand

S2 if and only if k is 1less than the length of array operand S2
and either

1. k=length of array operand Sl1l, or

2. k=length of array operand S1 and |
the k+1S component of -array
operand S1 is less than the k+1S
component of array operand S2.

ot o L e L Bl e L o s e e Tt L R S S s Bl S SR S e R L B s e TR R |

Note that a source operand may be an integer component of an

array or record. As usual, when an array component is addressed

via a base register, the operand qualifier, BASE RELATIVE OFFSET

(BRO) is required in the instruction to locate the component.

when a whole array of integers 1is addressed via a base register,

the operand qualifier, ARRAY SIZE (ASIZ) 1is required in the
instruction. In both cases, the compact format, BI(EXT,12) OR
BM(EXT,13) may be used as explained in Section 4.2.3 9 (page 4-

8). Note, also, that immediate source operands are interpreted .
as having a V32 tag with sign extend.

Exceptions:
PROGRAM_ERROR

Ui G PV, PR T g S - oy e P A e U P T P P TRl T P N P Pl R O B R R R e it Bt G e S U o B Pl ey i B Bt i o |
5.4.5 IF LESS THAN FLOATING POINT
Format: 5By S1, S2, D
Mnemonic: IFF<
Operands:
S1: Comparand 1
FMT: memory (0) or stack (EXT,0)
S2: Comparand 2 |
FMT: memory (0) or stack (EXT,0)
D: Label
FMT: immediate (EXT,2), interpreted as a label operand
Function:

The operands specified by S1 and §S2 are compared; if the former
value (S1) is 1less than the latter value (S2), no action is
taken, else a branch is. made to the address of the current
instruction plus the value of the label operand (displacement, in
words); Both source operands must be floating point numbers (V32
or V64).

Exceptions: .
PROGRAM_ERROR

5-101

e Y e % ~ T T L T T L T e N) Sl A Ras

AP N AL S Pl S I A ATy a7 T ™ i
XA A0S OO LA PN '\‘:\';'-:A‘-:..If.i.\lﬂ'a‘&,{;ﬁ}_f‘r S..{".. ..‘-,‘1. u:u.ML ,L\L PRGN R A A A AL SR A SR

b e 2 e T G PR UL S L A A DI T i U RO R B S DA T SR ANy A (I F-G BB i €A, T 2 A A g O S BT W A T - Il A I i if

5.4.6 IF GREATER THAN INTEGER
Format: .5Cyxg S1, S2, D

Mnemonic: IFI<

Operands:
Sl: Comparand FMT: immediate (EXT,2), memory (0), stack
(EXT,0), or base register (EXT,1l1) r
S2: Comparand 2 '
FMT: immediate (EXT,2), memory (0), stack EXT,0),
or base register (EXT,1ll)
D: Label
FMT: 1mmed1ate (EXT,2), interpreted as a label operand
Function:

The operands specified by S1 and S2 are compared; if the former
value (S1) is greater than the latter value (S2) no.action is
taken, else a - branch 1is made to the address of the current
instruction plus the value of the label operand (displacement, in
words). Both source operands must be 1integers (V16 or V32) or
single dimension arrays of integers. If arrays, lower bounds and
lengths need not match.. The value of the array operand addressed
by S1 is less than the value of the array operand addressed by S2
if the latter value 1is 1less than the former value as formally
defined in the IF LESS THAN INTEGER instruction (Section 5.4.4.).

Note that a source operand may be an integer component of an
array or record. As usual, when an array component is addressed
via a base register, the operand qualifier, BASE RELATIVE. OFFSET
(BRO) is required in the instruction to locate the component.
When a whole array of integers is addressed via a base register,
the operand qualifier, ARRAY SIZE (ASIZ) 1is required in the
instruction. In both cases, the compact format, BI(EXT,12) OR
BM(EXT,13) may be used as explained 1in Section 4.2.3 9 (page 4-
8). Note, also, that immediate source operands are interpreted
as having a V32 tag with sign extend.]

Exceptions: %
PROGRAM_ERROR

5-102 |

"y .‘ -‘ ‘.‘ .r.'b_f.h.p"), .e_'O')\ ‘("g..'&\i \::.{"'::‘;im

b F T R R Lt i S S e S o b S B e s e s e e e A i e i e emtent o L

5.4.7 IF GREATER THAN FLOATING POINT
Format: 5Dy S1, s2, D

Mnemonic: IFF>

Operands:
Sl: Comparand 1
FMT: memory (0) or stack (EXT,O0)
S2: Comparand 2
FMT: memory (0) or stack (EXT,0)
D: Label
FMT: immediate (EXT,2), interpreted as a label operand
Function:

The operands specified by S1 and S2 are compared; if the former
value (Sl) is greater than the latter value (S2), no action is
taken, else a branch is made to the address of the current
instruction plus the value of the label operand (displacement, in
words); Both source operands must be floating point numbers (V32
or V64).

Exceptions:
PROGRAM_ERROR

5-103

e Ty

N L S T e R e S N Vo P P e e R Y Y e T N N N T AL e T e rws

.4.8 IF GREATER THAN OR EQUAL TO INTEGER
ormat: SEy S1, S2, D

nemonic: IFI>=

perands:
Sl: Comparand 1
FMT: immediate (EXT,2), memory (0), stack EXT,0),
or base register (EXT,11)
S2: Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),
or base register (EXT,1l) :
D¢ Label
FMT: immediate (EXT,2), interpreted as a label operand
'unction:

"he operands specified by S1 and S2 are compared; if the former
ralue (S1) is greater than or equal to the latter value (S2), no
iction is taken, else a branch 1is made to the address of the
:urrent instruction plus the value of the 1label operand
{displacement, in words). Both source operands must be integers
(V16 or V32) or single dimension arrays of integers. If arrays,
lower bounds and lengths need not match. The value of the array
perand specified by S1 is greater than or equal to the value of
:he array operand specified by S2 if the former value is not less
:han the latter value as formally deflned in the IF LESS THAN
[NTEGER instruction (Section 5.4.4).

Jote that a source operand may be an integer component of an
array or record. As usual, when an array component is addressed
7ia a base register, the operand qualifier, BASE RELATIVE OFFSET
(BRO) is required in the instruction to locate the component.
vhen a whole array of integers 1is addressed via a base register,
the operand qualifier, ARRAY SIZE (ASIZ) 1is required in the
instruction. In both cases, the compact format, BI(EXT,12) OR
3M(EXT,13) may be used as explained in Section 4.2.3 9 (page &-
3). Note, also, that immediate source operands are interpreted
as having a V32 tag with sign extend.

Exceptions:
PROGRAM_ERROR

BA TR Sre T S f Ve ben S S Gk (5N 2 R S st D ant it A Yty it

5.4.9 IF GREATER THAN OR EQUAL TO FLOATING POINT
Format: SFyg S1, S2, D

Mnemonic: IFF>=

Operands:
§1; Comparand 1
FMT: memory (0) or stack (EXT,O0)
S2: Comparand 2
FMT: memory (0) or stack (EXT,0)
D: Label :
FMT: Immediate (EXT,2), interpreted as a label operand
Function:

The operands specified by S1 and S2 are compared; if the former
value (S1) is greater than or equal to the latter value (S2), no
action is taken, else a branch is made to the address of the
current instruction plus the value of the label operand
(displacement, in words). Both source operands must be floating
point numbers (V32 or Vé64).

Exceptions:
PROGRAM_ERROR

Shiciai'zh

4.10 IF LESS THAN OR EQUAL TO INTEGER
rmat: 60y S1, S2, D

emonic: IFI<=

)erands:
b U6 Comparand 1
FMT: . immediate (EXT,2), memory (0), stack EXT,0),
or base register (EXT,1l1)
122 Comparand 2
FMT: immediate (EXT,2), memory (0), stack (EXT,0),
or base register (EXT 11)
): Label
FMT: immediate (EXT,2), interpreted as a label operand
inctions

1@ operands specified by S1 and S2 are compared; if the former
1lue (S1) is greater than or equal to the latter value (S2), no
stion is taken, else a branch 1is made to the address of the
irrent instruction plus the value of the 1label operand
lisplacement, in words). Both source operands must be integers
716 or V32) or single dimension arrays of integers. If arrays,
>wer bounds and lengths need not match. The value of the array

serand specified by S1 is less than or equal to the value of the:

rray operand specified by S2 if the latter value is not less
ran the former value as formally defined 1in the IF LESS THAN
NTEGER instruction (Section 5.4.4).

>te that a source operand may be an integer component of an
rray or record. As usual, when an array component is addressed
ia a base register, the operand qualifier, BASE RELATIVE OFFSET
BRO) is required in the instruction to locate the component.
hen a whole array of integers 1is addressed via a base register,
he operand qualifier, ARRAY SIZE (ASIZ) 1is required in the
nstruction. In both cases, the compact format, BI(EXT,12) OR
M(EXT,14) may be used as explained 1in Section 4.2.3 9 (page 4-
). Note, also, that immediate source operands are interpreted
s having a V32 tag with sign extend.

xceptions:
PROGRAM_ERROR

" e T 4t g T . g
0 I~ e, b OIS I T I B e -.-.-.

~ 3 v gm0 v erT =
oL PO R A L) RN . EoRM T S D L ooy KD pomtEoRk N
Eﬂ:":'::‘—\[—.-u‘—-—-—\ iy \)\ \) DRSS SO N SR R '.-") '.ﬁ}l DN} .-.'_.l.'..n_. 4 .‘J\ A\J '.-_n -j ‘\ ava’

e R PR g VY Fe BV HGLY & R SR T AR st gie gy RS B TR O ST ET T

.

S.4.11 IF LESS THAN OR EQUAL TO FLOATING POINT

Format: 6ly S1, s2, D

Mnemonic: IFF<=

Operands: .
Sl: Comparand 1
FMT: memory (0) or stack (EXT,0)
S2: Comparand 2
FMT: memory (0) or stack (EXT,0)
D: Label
FMT: immediate (EXT,2), interpreted as a label operand
Function:

The operands spec1f1ed by S1 and 82 are compared; if the former
value (Sl) is less than or equal to the

latter value (S2), no action is taken, else a branch is made to
the address of the current instruction plus the value of the
label operand (displacement, in words). Both source operar-s
must be floating point numbers (V32 or Vé64).

Exceptions:
PROGRAM_ERROR

S

T
Do - 5
ORGSO G NG L"‘.L('._ e ’L ._\".--u.n.n '{

- }_::_.::-]

LRl Lo A iy i - b T e S Ay S s R o Bl M S i e Sl e b il P it il e R e A e el e A L S e S |

.12 IF DEFINED
nat: 62y S, D

monic: IFD

rands: - I
Data Entity to Be Tested
MT: memory (0), stack (EXT,0), or base register N
(EXT,11)
Label
MT: immediate (EXT,2), interpreted as a label operand
ction:

undefined bit in the tag of the operand addressed by S is
ted; if 0 (data defined),. no action 1is taken but if 1 (data
efined), a branch is made to the address of the current
truction plus the value of the label operand (displacement, in
ds). The source operand may be any data type including a
nter, formal reference parameter, an array or record
ponent, or a whole array or . record. A pointer is defined if
undefined flag=0; however, if the pointed -to entity is a
a object (ENT=010) with a true (1) wunique name flag, the
nter is defined only if the addressed data object still
sts, i.e., if the pointer is not a "dangling reference”. A
le array or record 1is defined only if every component is
ined. :

e that if S addressed an array component via a base register,
 operand qualifier, BASE RELATIVE OFFSET (BRO) is required in
' instruction to locate the component. If S addresses a whole
‘ay via a base register, the operand qualifier, ARRAY SIZE
IZ) is required in the instruction. In both cases, the
ipact format, BI(EXT,12) or BM(EXT,13) may be used as exp1a1ned
Section 4.2.3 (page 4-8).

‘eptions:
OGRAM_ERROR

I N S I ST S Laln
RN SRS S LN ".&.A.

e Y B B R TR NG e e Y L TR N ETNE N T L e Y

5.4.13 IF IN RANGER INTEGER
Format: 63y S1, S2, s3, D

Mnemonic: IFIRNG

p . Operands:

Sl: Test Integer

FMT: memory (0) or stack (EXT,0)
S2: Upper Limit Integer

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
S3: Lower Limit Integer

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
D: . . Label .

FMT: immediate (EXT,2), interpreted as a label operand
Function:

An in-range test is performed on the operand addressed by s1. If
that operand is less than or equal to the operand addressed by S2
and greater than or equal to the ~operand addressed by S3, no
action is taken; otherwise, a branch is made to the address of
the current instruction plus the value of the label operand
(displacement, in words). All" source operands must be integers
(V16 or Vv32). Any source operand may be an integer component of
an array or record. Immediate source operands are interpreted as
having as V32 tag with sign extend. '

Exceptions:
PROGRAM_ERROR

> . > g Sach Wt S € Tl R IO A Attt I U LA G S AT\ R AT A SUL AT T S B S L CNUR SELSEC] Xy o IS R SRRl Ts W
Al \jﬂ.'\ -_’ '\ A T e AR LR REERR TR R O 2SO OO “'"'{:. -_c__.;!:fs}.'

et
R,

5.4.14
Format:
Mnemonic:
Operands:
Sl:
FMT:

S2:
FMT:_

S3:
FMT:

D:
FMT:

Function:

An in-range test is performed on the operand addressed by Sl1.
that operand is less than or equal to the operand addressed by S2
operand addressed by S3,
made to the address of
the label operand
source operands must be floating
Any source operand may be a floating

and greater than or
action is taken;
the current
(displacement,
point numbers (V32 or Vé4).

IF IN RANGE FLOATING POINT

64y S1, s2, S3, D

IFFRNG

Test Floating Point Numbers

memory (0) or stack (EXT,0)

Upper Limit Floating'Point Number
memory (0) or stack (EXT,

Lower Limit Floating Point Number
memory (0) or stack (EXT,0)

Label
immediate (EXT,?2),

equal to the
otherwise, a branch is
instruction plus the value
in words). All

point component of an array or record.

Exceptions:
PROGRAM_ERROR

v’-o

- R T T e e, S R
PO -..u."u. BN s.f..a ot ,.:_.4.':\.{_\ ROBNCAC -"a."° _ths_‘;. "L_C...

interpreted as a label operand

'. '- '. Li‘i 'i.rk‘.h.gi-.h.-l.;l \n

[SLEEACHL LA SER G FSL LA R RS e R S e R, R S AR Dl i el R i A il VS S Y g O el e e e i N i b g

5.4.15 GOTO
Format: 654, D
Mnemonic: GOTO
Operands:

D: Label
FMT: immediate (EXT,2), interpreted as a label operand

Function:
A branch is made to the address of the current instruction plus
the value of the label operand (displacement, in words).

Exceptions:
NONE
1
{
=111
IR G ORR (A B, SR B S A NS N T AN e T

b3, RS R O S G SR ol o e s R AR R W, MM P TN IR TR e SR e PN D R T i SR el R B LB AR S T :T

5.4.16
Format:
Mnemonic:
Operands:
Sl:
FMT:

S2:
FMT:

S3:
FMT:

Function:

2 a

CASE
66y S1, S2, S* Dg, . . . Dy
CASE

Case Selector
immediate (EXT,2), memory (0), or stack (EXT,0)

Lower Limit of Case Selector Range
immediate (EXT,2), memory (0), or stack (EXT,0)

Upper Limit of Label Subscripts
immediate (EXT,2)

1st Label
immediate (EXT,2), interpreted as a label operand

nth Label (n=S3)
immediate (EXT,2), interpreted as a label operand

The operand spec1f1ed by S2 (lower limit of case selector range)
is subtracted from operand S1 (case selector) to produce an

unbiased
range 0..

(base 0) label subscript, called k. If k is in the
S3, where S§3 is an immediate operand, a branch is made

to the address of the current instruction plus the value of the
label operand, Dk. If k is greater 83, a branch is made to the
address of the current instruction plus the value of the label

operand,

subscripts).

D, where n=83 (value of wupper limit of label

All source operands must be integers (V16 or V32). Immediate
source operands are interpreted as having a V32 tag with sign

extend.
directly
pointers
integer),

Source operands, S1 and S2, may be immediate values,
addressed integers, indirectly addressed integers (via
to integers in global storage or data objects of type
or integer components of an array or record.

Exceptions:

PROGRAM _

ERROR

o=lide

----- --'-- . \ -\ B RATE SRR 1A 5% B J SRR Y &‘.\ Ca \\L‘\~
N xS ‘_ AR "-'-"L-_L-.u'f_.s. R L_AL:.;f;.

AN

[&

A P C Y

5.4.17 SET LOOP CONTROL VARIABLE

Format: 674, S, D

Mnemonic: SETLCV

Operands:
S: Initial Value of Loop Control Variable
FMT: immediate (EXT,2), memory (C), or stack (EXT,0)
D: Label
FMT: immediate (EXT,2), interpreted as a label operand
Function:

The operand specified by S is used as the initial value of the
loop control variable in the 1instruction, LOOP UP or LOOP DOWN.
Hence, this instruction and LOOP UP or LOOP DOWN form an
inseparable execution couplet. The source operand must be an
integer (V16 or V32). The instruction at an address equal to the
current instruction address plus the value of the label operand

(displacement, in words) is next executed and must be LOOP UP or
LOOP DOWN. :

The source operand may be an immediate value, a directly
addressed integer, an ihdirectly addressed integer (via a pointer
to an integer in global storage or a data object of type
integer), or an integer component of an array or record. An
immediate source operand is interpreted as having a V32 tag with
sign extend. :

PROGRAM_ERROR

$=113
O PN G PO BT R NP0 O A A I S M A R R

=

R S - - "o e LW PR P i e
e ‘p. . . Y -- LY L) ‘. 3 » -: .nq
B e s A T L A N

5.4.18 LOOP UP

Format: 68y S1, s2, S3, D

Mnemonic: LOOPUP

Operands:

Sl: Loop Control Variable

FMT: memory (0) or stack (EXT,0)

S2: Increment Amount

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

S3: Upper Limit

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)

D: Label '

FMT: immediate (EXT,2), interpreted as a label operand
Function: = oy
This 1instruction, compiled from the Ada FOR LOOP iteration
scheme, controls program looping. If this instruction is the

branch target of a SET LOOP CONTROL VARIABLE instruction, the
operand addressed by S1 (loop control variable) 1is set to the
value of the operand specified by S in the SET LOOP CONTROL
VARIABLE instruction. Since these are integer operands with V16
or V32 tags, a check is made for overflow (magnitude of operand S
from SET LOOP CONTROL VARIABLE instruction larger than precision
of operand S1 in LOOP UP instruction allows). A NUMERIC_ERROR
exception is raised in the presence of overflow, else the
instruction proceeds. When this instruction is not the branch
target of a SET LOOP CONTROL VARIABLE instruction, the loop
control variable is incremented by the value of the operand
specified by S2 (increment amount), The incremented value is
checked for overflow (magnitude larger than precision of loop
control variable allows; a NUMERIC_ ERROR exception is raised in
the presence of overflow else the instruction proceeds. The
incremented (or preset) value of the loop control variable is
next checked against the operand specified by S3 (upper limit of
loop control variable). If less than or equal to the limit
value, a branch is made to the address of the current instruction
plus the value of the 1label operand (displacement, in words); if
greater than the limit value, no further action is taken.

All source operands must be integers. Source operands specified
by S2 and S3 may be immediate values, directly addressed
integers, indirectly addressed integers (via pointers to.integers
in global storage or data objects of type integer), or integer
components of an array or records. Source operands Sl may be any
of these except an immediate value. An immediate source operand
is interpreted as having a V32 tag with sign extend.

Exceptions:
PROGRAM_ERROR
NUMERIC_ERROR

'

S <

R G e

)

= SniniyA

LIS SRR LS T RIPOR S AL B0 G0 S A, G SN S . S el e e e S i

LS o R R i e S DR AR e Sl S R e O B o L e Lt |

5.4.19 LOOP DOWN |
Format: 694 S1, s2, s3, D

Mnemonic: LOOPDN

Operands:
Sl: Loop Control Variable
FMT: memory (0} or stack (EXT,0)
S2: Decrement Amount
FMT: immediate {(EXT,2), memory (0), or stack (EXT,0)
S3: Lower Limit
FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
D: Label
FMT: immediate (EXT,2), interpreted as a label operand
Function: s
This instruction, compiled from the Ada FOR LOOP iteration
scheme, CONTROLS PROGRAM LOOPING. If this instruction is the

branch target of a SET LOOP CONTROL VARIABLE) instruction, the
operand addressed by S1 (loop control variable) 'is set to the
value of the operand specified by S 1in the SET LOOP CONTROL
VARIABLE instruction. Since there are "integer operands with V16
or V32 tags, a check is made for overflow (magnitude of operand S
from SET LOOP CONTROL VARIABLE instruction larger than precision
of operand S1 in LOOP UP instruction allows). A NUMERIC_ERROR
exception 1is raised in the presence of overflow, else the
instruction proceeds. When this instruction 1is not the branch
target of a SET LOOP CONTROL VARIABLE instruction, the loop
control variable is decremented by the wvalue of the operand
specified by S2 (decrement amount). The decremented value is
checked for overflow (magnitude larger than precision of loop
control variable allows); a NUMERIC_ERROR except1on is raised in
the presence of overflow, else the instruction proceeds. The
decremented (or preset) value of the loop control variable is
next checked against the operand specified by S3 (lower limit of
loop control variable). If greater than or equal to the limit
value, a branch is made to the address of the current instruction
plus the value of the 1label operand (displacement, in words); if
less than the limit value, no further action is taken.

All source operands must be integers. Source operands specified
by 82 and S3 may be immediate values, directly addressed
integers,indirectly addressed integers (via pointers to integers
in global storage or data objects of type integer), or integer
components of an array or record. Source operand S1 may be any
of these except an immediate value. An immediate source operand
is interpreted as having a V32 tag with sign extend.

Exceptions: |
PROGRAM_ERROR |
NUMERIC_ERROR |

O IS e B i R S i o G |

6 SUBPROGRAMS

Any visible subprogram in the 1local package, i.e., enclosing,
immediately enclosed, sibling, or self (as determined by the
compiler) can be called. In addition, any non-nested subprogram
in an external package can be called. (Nested subprograms in
external packages cannot be called because their environments are
not visible.) The 1instructions which call a subprogram, pass

parameters, and return to the calling environment are described
in this section.

=1

e L A o o S ey D U (°§ LSS SR O ORI K (O N A
AAEIE IO AL as el o P DA TS R Iy) .::'i..'gfl‘.r".c_'.'t:'.-_

et o pmadon i s i s ot o S ey

CALL SUBPROGRAM.
mat: 6Ay, S1, S2,...

monic: CALL

rands:
3 Subprogram Identification
MT: immediate (EXT,2) or memory (0)

Immediate: Sl spec1f1es an offset to a subprogram
component in the local package header.

Memory: S1 addresses a pointer to a program
(subprogram) in a external package.

ote:If no parameters are passed via memory transfer,
hen no additional operands are present in this
nstruction. :

resst Actual Parameters
'MT: immediate (EXT,2) or memory (0)

lote:Any number of parameters may be passed via memory

.ransfer. Any two may be combined in a 2-operand compact
‘ormat.

............

-

e W fa TR g SRR SN ORI RAR A S s T SRR RIS R S SR e Re AR D e 0 te)t A Ny

2 v e -
[S il o of i b i gl o i e e Sl o g S v U S el et i 7 i e LRy S-Sy St PosnCiibain 6 0 Gt B St T o "y S

Function: :

This instruction calls a visible subprogram in the local package
(offset to subprogram component in local package header given by
immediate value of operand S1) or calls a non-nested subprogram
in an external package (offset to subprogram component in
external package header contained in the pointer addressed by
S1). The pointer must have READ authority for the called
subprogram.

The CALL instruction is processed only up to the actual parameter
operands; thus, the value in the program counter addresses the
word following operand S1 (subprogram identification). The value
in the program counter is saved 1in the administrative data area
of the caller and becomes the return address when the number of
memory parameters 1is zero. If, however, one or more parameters
are passed via memory transfer, they are bound during execution
of the BIND PARAMETERS instruction (first instruction of the
called subprogram) which requires access to both actual and
formal parameters. BIND PARAMETERS completes the processing of
the operands in the CALL instruction and the last value in the
program counter (return address) 1is saved in the administrative

data area of the caller. (In addition to saving the return
address, the following quantities are saved 1in the caller's
administrative data area: address of first 1instruction of

calling subprogram, address of last instruction of «calling
subprogram, caller's stack index, all general purpose registers
that correspond to "1ls" 1in the «caller's Temporaries Mask,
caller's nesting depth, and caller's exception mode.) See.
Section 6.2.2 for more details on passing parameters via memory.

Parameters that are passed via registers are loaded into
parameter registers (16..31) at some points during the caller's
execution and no further action 1is required. BIND PARAMETERS is
not present in the called subprogram if all parameters are
passed via register, Parameter placement in registers is checked
by the machine. A PROGRAM_ERROR exception is raised if the "1ls"
in the formal parameter mask retrieved from the called subprogram
component in the package header (set by the compiler) do not
match "1ls" in the Valid Parameter Mask (set by the machine as the
actual parameters are loaded into registers). See Section 6.2.1
for more details on passing parameters via registers.

When a subprogram in the local package is called, the offset to
the subprogram component in the local package header, given by
operand S1, is an immediate value. The base address of the local
package header is the value 1in display register 0 that addresses
the base of the package variable global data template -1. ("One"

LT T T Ty T MR VL TR T e T E T e P o S MW

- o) A P 0O b e e e i T SR PO T) T el ey Tl SN o el e W e e e e R o L T L e p
\-'.-."’T“\- i .. R IO o WPt et o - o -._ h..- -, -» - e o - ‘.. -j

NG LY

hoc o oo e B T R i FE DR e i i e e T S T S Tl S e T

e pe A i -;"-ﬁ.t-r.-.'.-_‘"-:--"-'T

btracted because the header is displaced by 1 word from the
ble global data template - see Figure 2-1). When a
ogram in an external package 1is called, the offset to the
ogram component in the external package header is retrieved
word 1 of the pointer to the subprogram, addressed by
nd S1. The base address of the external package header is
alue retrieved from word 2 of the pointer. 1In both cases, i
ffset is subtracted from the base address of the header to
ce the subprogram component address. ‘This is the start of a
d packet of information pertinent to the called subprogram
Figure 2.2). The following information is extracted:

e size of activation record, in words (28 bits) - The
size includes immediate and separate array values and
the stack. This value is passed to the memory manager
which allocates space for the activation record plus
the fixed size administrative data area and returns
the base address of the activation record. The base
address is loaded in one of the pair of local display
registers. (See discussion below on adjusting display
registers.) '

e nesting depth of called subprogram (4 bits) - The
nesting depth is used in the determination of which
display registers are saved. (See discussion below).

o address of first and last instruction of called sub- H
program (each 32 bits) - Program control is-
transferred to the first instruction; instruction
addressing and branching is confined to be within
the specified limits.

e address of automatic data template (32 bits) - This '
address is loaded in one of the pair of local display
registers (see discussion below on adjusting display
registers).

e formal parameter mask (16 bits) - The "1ls" in the
formal parameter mask must match "1s"™ in the Valid
Parameter Mask register and the former is loaded into
the valid Parameter Mask register.

e exception mode (4 bits) - This field specifies the
initial exception mode (ELABORATION or NORMAL) of the
called subprogram. The called subprogram enters the ’
ELABORATION exception mode if, at the Ada program
level, the subprogram has a declarative part that
requires creation of objects and/or subcomputations
for initialization of declared objects; the NORMAL
exception mode is entered otherwise.

6-4

e e AT o Ao oy T A R,
IS A A G S A G, S AR QORI S L L AR AR O R O PR

S B e ke G S ey st b o O il b o Rts St R S S R il S S R S v s T R e

t, the stack index 1is set to "0", the Temporaries Mask is
ared for the called subprogram, and display registers are
isted. When the called subprogram 1is in.the local package,
rules for adjusting display registers depend on. the nesting
ths of the called and calling subprograms as follows:

(a) nesting depth (ND) of called subprogram = ND of calling
subprogram +1 - The base address of the called
subprogram's automatic data template 1is loaded into one
of the pair of the display registers corresponding to
the ND of the called subprogram.

(b) NDs of called and calling subprograms are equal - The
contents of the 1local display register pair (of the
calling subprogram) are saved 1in the calling sub-
program's administrative data area and the base address
of the called subprogram's data template is loaded into
one register of that display register pair.

(c) ND of called subprogram 1is 1less than ND of calling
subprogram - The contents of the local display register
pair (of the calling subprogram) and of each display
register pair corresponding to NDs less than that of the
calling subprogram but greater than and equal to that of .
the called subprogram are saved in the administrative
data area of the calling subprogram. The base address
of the called subprogram's data .template does not have
to be loaded into one of the registers of the display
register pair corresponding to the nesting depth of the
called subprogram since it is already resident.

n the called subprogram is in an external package, all display
lister pairs corresponding to NDs less than and equal to the ND
the calling subprogram (including ND = 0 and 15 for global
.a) are saved in the caller's administrative data area. The
;e addresses of the external package header in data template
lory and the external package administrative data in data value
lory are retrieved from words 2 and 3 of the pointer to the
yprogram; these addresses are incremented by "1" so that they
.nt to the variable global data in data template and data value
lory, respectively. They are then loaded into display register
.r 0 (corresponding to ND = 0). Next, the size of the variable
)bal data is retrieved from the package header descriptor (PKG)
.ng an offset of -1 from the base address of the variable
)bal data template (see Figure 2.2). The base address of the
istant global data is computed as the sum of the base address |
the variable global data's template and the size of the i
‘iable global data. This value is loaded into display register

...-._..'. .-. ,: i .: o .-_'.: DO YNSRI ‘.,:;'..'- : ‘.-_:.: ’J'\'.“\'.‘.:.-_:.:\'.\:_I:‘:!- S " .{_. -‘\~_'. R J._‘\ ;_‘.'\ PRIy _)._.'-'.3 ':.'.;':. d

rresponding to ND = 15). Finally, the base address of the
subprogram's and 1its automatic data template is loaded
ne of the pair of display registers corresponding to ND =

bove operations take place concurrently with storage
tion. When space for the called subprogram's activation

and administrative data has been allocated, the base
s of the activation record 1is loaded into the second -
er of the display register pair that corresponds to the
g depth of the called subprogram. (Recall that for both
and external subprogram calls, the base address of the

subprogram's automatic data template is already in place -
other register of the display register pair). In addition
usting the display register, the following information is
n into the called subprogram's administrative data area:

lynamic link to base of calling subprogram's
dministrative data.

itatic Save Flag which is set to "0".

.ate of the Static Save Flag designates whether the static
lents of the. machine state (priority level, addresses of

and last subprogram instructions, nesting deépth of
)gram, and display registers of nesting depths < = nesting

of subprogram) need to be saved in the subprogram's
istrative data area when the "subprogram 1is executing in
ice of a task switch. A "0" means the information must be
and a "1" means it does not have to be saved because it is
ly in the administrative data area (previously saved). Note
:he dynamic components -0of the machine. state (registers
sponding to "1s" in the Temporaries and Valid Parameter
, stack 1index, exception mode, and execution resumption
3s) are always saved when tasks are switched.

:ions:
RAM_ERROR
\GE_ERROR

PSS R R P T S e S Ry, I i Sitie e SR G RS ARG A A N CRIRS ShE M RSt G O Ui S G e R ST e T R A e e n e R R L

Parameter Association. Actual parameters may be passed
value or by reference via the register file or via memory-
ory transfer. Performance advantages accrue from using the
ister file. If the number of words taken by the parameters
eeds sixteen, however, some parameters must be passed by
lory-memory transfer.

.1 Passing via Register File. Registers 16 through 31 of
» register file are dedicated to passing parameters. Bits
.31 of register 0 comprise the Valid Parameter Mask. Each bit
this mask corresponds to a parameter register in the following
's bit 16 corresponds to register 16; bit 17 corresponds to
jister 17; ...; bit 31 corresponds to register 31. The bits in
» Valid Parameter Mask specify which registers are to be saved
the current task 1is (asynchronously) switched out. These
jisters hold valid parameters. The Valid Parameter Mask also
icifies which registers hold passed parameters when a
yprogram is entered.

'!n a parameter is to be passed, it 1is loaded into one of the
jisters (range 16..31) and the corresponding bit in the Valid
‘ameter Mask is automatically set to 1. As with the general
‘pose registers (registers 0..15), a PROGRAM_ERROR is raised if

attempt is made to read a parameter register when the
‘responding bit in the Valid Parameter Mask is not "1". 1If
ssing a parameter by value, any instruction may be used (e.q.,
/JE) with the destination being the register. If passing by
‘erence, three 1instructions (executed by the caller) are
1ilable: -

LOAD RO REFERENCE PARAMETER
LOAD WO REFERENCE PARAMETER
LOAD RW REFERENCE PARAMETER.

T i B At it et ey Sl 20 2GR Jen Jbre St e b an 4 b s T T S AT i S Al i i il s P i e e e e e
w e g o e e b i e e e Lt T o, ol B dcobe ey i cabioa Dig B s s |

These instructions load a Formal Reference Parameter (FRP) into a
register (See Section 3.5 for a description of the format of an
FRP). RO designates that the called subprogram has read-only
authority to the actual parameter, WO designates write-only
authority, and RW designates that the subprogram has both read
and write authorities to the actual parameter., As with pointers,

initial values are not permitted in FRPs; hence, FRPs are set to ~
UNDEFINED by the machine when the containing package is loaded.
An FRP contains a path to the actual parameter (absolute’ P

addresses of parameter in data template memory and in data value
memory) and specifies the rights which the called subprogram has
to the actual parameter. The subprogram uses the FRP like a
pointer to the actual parameter, 1i.e., it references the actual
parameter indirectly via the FRP. An actual parameter could be
an array, a slice, or- a component thereof. (In these cases,
additional descriptors and/or operand qualifiers follow.) Hence,
arrays, slices, and components’ can be passed by reference. If
the actual parameter is a pointer, the called subprogram,
executing the appropriate 1instruction, can indirectly reference
any of the entities which a pointer can point to (See Table 3.6).
For example, if the entity is a task object, the subprogram can
call an 2atry of the task by referencing the pointer parameter
indirectly through an FRP, Similarly, if the pointed-to entity
is a non-nested subprogram in an external package, the called
subprogram can call the external subprogram by referencing the
pointer parameter indirectly through an FRP. When any entity is
thus accessed through an FRP-pointer pair, the subprogram's
rights to the target entity are the most restrictive rights
present in the FRP-pointer. (As discussed earlier, the rights of
the called subprogram to an actual parameter can be controlled.)

[f the source operand of a Load Reference Parameter instruction
(an actual parameter) is an FRP, all fields of the actual FRP are
moved to the FRP in the register, in a one-to-one correspondence.
This eliminates a level of indirection when the subprogram
references the FRP., The effect is that of passing the actual FRP
by value. '

The use of registers 16..31 to pass parameters may be summarized
as follows:

i Whenever a parameter is loaded into a register, a
corresponding bit is automatically set in the Valid
Parameter Mask. Parameters may be values (pass by
value) or FRPs (pass by reference). Only registers
corresponding to "1s" in the Val1d Parameter Mask may
be read.

2. In presence of a task switch, those parameters in
registers corresponding to "1ls" in the Valid Parameter
Mask, including register 0, are automatically saved in
the administrative data area of the current task object
or subprogram, depending on which is executing; the
parameters are restored when the task program or
.subprogram is again scheduled to run.

3. During the CALL instruction, the following steps
relating to passing parameters via registers are taken:

" ® The Formal Parameter Mask for the called subprogram
(read from the called subprogram component in the
package header) has a "1" corresponding to each
formal parameter. Correspondlng "ls" must be present
in the Valid Parameter Mask register to indicate that
expected actual parameters were indeed passed. If an
expected "1" is missing in the Valid Parameter Mask
register, a PROGRAM ERROR exception is raised. Note
that additional "1s™ may be present in the Valid
Parameter Mask register; these would correspond to
parameters that were passed to the caller. They
present no problem since the Valid Parameter Mask
1s regenerated at each CALL.

e The Formal Parameter Mask (retrieved from the called
subprogram's header) is loaded into the valid
Parameter Mask register.

4. During execution of the RETURN FROM SUBPROGRAM or END
RENDEZVOUS instruction, the Valid Parameter Mask is
cleared.

Finally, an instruction, CLEAR VALID PARAMETER MASK, is provided
to allow compiles optimization. (There is no reason, during task
switching, to save/restore parameter registers that contain data
which is no longer needed.)

YN
-l——-.!—ML.

6.2.2 Passing via Memory Transfer. As with registers,
parameters can be passed by value or by reference. When passing
by wvalue, the actual parameter(s) addressed in the CALL
instruction (immediate or memory operands) are retrieved and
stored in the formal parameter location(s) specified by the BIND
PARAMETERS instruction. This instruction must be the first in
the called subprogram. The tags of corresponding actual and
formal parameters must match according to the rules of the MOVE,
MOVE POINTER, MOVE ARRAY, or MOVE ARRAY SLICE instruction. When
passing a parameter by reference, the CALL instruction addresses
the actual parameter- (cannot be an immediate operand) and the
BIND PARAMETERS instruction in the called subprogram addresses
and FRP (which must be 1in the called subprogram's activation
record). Then, as discussed 1in Section 6.2.1, the following
values are stored in the FRP: :

® Absolute address of actual parameter in data template
memory. :

® Absolute address of actual parameter in data value
memory.

The comments in Section 6.2.1 on FRPs applies here, as well,
except for the method of restricting rights to the actual
parameters. When reference parameters are passed via registers,
the instructions that load the registers restrict rights to read-
only, write-only, or read-write. However, when passing reference
parameters via memory transfer, the compiler stores the rights
(READ, WRITE, or READ and WRITE) directly into the FRP.

Note that pass by value parameters and pass by reference
parameters with read-only authority support Ada in parameters,
pass by reference parameters with write-only authority support
Ada out parameters, and pass by reference parameters with read-
write authority support Ada in-out parameters.

6.2.3 LOAD RO REFERENCE PARAMETER.

Format: 6By, S, D

Mnemonic: LDRO

Operands:

S: Data Entity (Actual Parameter)
FMT: memory (0)

D: Register Address
FMT: memory (0)

Function:

This instruction loads registers addressed by D, D+1, and D+2
with a formal reference parameter that points to the actual

parameter addressed by S. The cell offset in D can only
designate registers 16..29. The rights given to the formal
reference parameter are READ only. The following values are

loaded into the formal reference parameter:
(a) when ADS of data entity is not 0 or 15

WORD1 - ENT <= 110 (actual parameter in an activation).
‘- RIGHTS <= READ.

WORD2 -- Absolute address of actual parameter in the
automatic data template corresponding to the
nesting depth (ND) specified by ADS (base address

of template in display register #ND + cell offset
specified by S).

WORD3 - Absolute address of actual parameter in
activation record corresponding to nesting
depth (ND) specified by ADS (base address of
activation record in display register #ND + cell
offset specified by S).

(b) when ADS of data entity = 0

WORD1 - ENT <= 011 (actual parameter in variable global
data area).

- RIGHTS <= READ.

6-11

BRTHENA S S nein s T b e, [e 40 S TN Y, X‘ _\.-‘_-\ Sgitas ir-' * LY T
S .s."-c ";._{ AR Loy -.q..\}:\".m.\" RN NS -'kq- :(\,a..:\)‘ ‘f!. Wty -..' -.."'\. }g\'nﬂ":d-. !

RIS

RN

| BEEITE_ O 8 T T S hind e ST S e A il i AR RS 5> AR Bl i

WORD2 -

WORD3 -

'c) when ADS of

WORD1

WORD?2

WORD3

ixceptions:
PROGRAM_ERROR
CONSTRAINT_ERROR

Absolute address of actual parameter in the
variable global data template of the enclosing
package (base address of template in display
register #0 + cell offset specified by S).

Absolute address of actual parameter in the
variable global data area of the enclosing
package (base address of data values in
disp}ay register #0 + cell offset specified
by S).

data entity = 15

ENT <= 100.(actua1 parameter in constant global
data area). '

RIGHTS <= READ.

Absolute address of actual parameter 'in the
constant global data area of the enclosing
package (base address in display register
#15 + cell offset specified by S).

Not used.

i i A S PV S St g 7D S B Y T N TR A At g Lo —F
e N L T AR AT N A i Ve DR ARSI P - SR LI L SPGB PE o S P G i S/ A Db T e -t

6.2.4 LOAD WO REFERENCE PARAMETER.
Format: 6Cyg, S, D

Mnemonic: LDWO

Operands:
S: Data Entity (Actual Parameter)
FMT: memory (0)
D: Register Address
FMT: memory (0)
Function:

This instruction loads registers addressed by D, D+1, and D+2
with a formal reference parameter that points to the actual

parameter addressed by S.. The cell offset in D can only
designate a register in the range 16..29. The rights given to
the formal reference parameter are WRITE only. The detail

functions performed by this instruction are the same as described
for LOAD RO REFERENCE PARAMETER except that the ass1gned rights
are WRITE ONLY.

Exceptions:
PROGRAM_ERROR
CONSTRAINT_ERROR

6-13

"‘\ 1 !' P R ‘e) =

[N APy 2 o s LR R e T SOV P T e e e
PR AL Y, 5 (5 LA GO X P -.'i\.\--‘\.' EROOATOS .;a': AR AR B AW RN X

UL R R ey

e L

S s L e

2.5 LOAD RW REFERENCE PARAMETER.

rmat: 6Dy, S, D

emonic: LDRW

erands:

: Data Entity (Actual Parameter)

FMT: memory (0) .
: Register Address

FMT: memory (0)

nction:

is instruction loads registers addressed by D, D+l, and D+2
th a formal reference parameter that points to the actual
rameter addressed by S. The cell offset in D can only
signate a register in the range 16..29. The rights given to
e formal reference parameter are READ and WRITE. The detail
nctions performed by this instruction are the same as described
r LOAD RO REFERENCE PARAMETER except that the assigned rights
e READ and WRITE.

ceptions:
ROGRAM_ERROR
ONSTRAINT ERROR

R R R e

(Il Trtn S fArl F i by Sl IR IR AR ST I, YT i D piiint v S a0 EaR I S0 A e A SR I v Y - R ettt B ~ 0 el uhuit I NB bl R SR S RUn A U Beln Doy g P e a0 2

5.2.6 CLEAR VALID PARAMETER MASK.
format: 6Ey
dnemonic: CLRVPM

Operands:
None

Function: 7
The Valid Parameter Mask, bits 16..31 of register 0, is cleared.

Exceptions:
None

6-15

o R T TR RO ST R o i S B T it Rt g B e it g BT B8 At s gt Byt Byt Bt KT Bet SR SRR "'ﬂ"’e'ﬂ’a:#"‘“"'*ﬁ‘1
B R TR G & 54 0% S e LU GO G AL ST G LR 1, GU LA TN O CH DR Gt 1 U L SRR R ¥

R R e e LSS T e T,

' BIND PARAMETERS.
1it: 6Fyx, D1, D2, D3,...
ynic: BIND

inds:

Formal Parameter
s memory (0)

:ion:
is the first instruction of a called subprogram (or an
T body) when parameters are to be passed via memory-memory
sfer. Any number of formal memory parameters can be
ified as operands. Formal and actual parameters have a one-
1@ correspondence. It is the responsibility of the compiler
1eck that the number of formals and actuals match. Before
ieving the actual parameters, the caller's execution
nption address (saved program counter value) must be read
the caller's administrative data area at a location which is
own (fixed) offset relative to the dynamic 1link to the
or's administrative data area. This is the address in the
SUBPROGRAM instruction (or one of the CALL ENTRY
ructions) where execution was halted (at the address of the
and which is the first actual parameter). To compute the
lute addresses of- the actual .parameters (each as a cell
et + base address of activation or package global data), the
er's display register environment, saved in the caller's
nistrative data area, 1is required. A display register is
ssed using a known offset from the dynamic link, indexed by
actual parameter's nesting depth (given by ADS). One-by-one,
al parameters are retrieved and stored in corresponding

al parameters, addressed by Di. All formal parameters must:

n the local activation record of the called subprogram (or
er task). Parameters that are passed by value (Di addresses
ta cell which is not a formal reference parameter) must obey
rules of the MOVE, MOVE POINTER, MOVE ARRAY or MOVE ARRAY
E instruction. If an array component, array, or slice is
ed by value, the actual parameter expands to a group of
rmation (descriptors and/or operand qualifiers) that defines
array or compcnent. The compiler must ensure that sufficient
e has been allocated in the activation record of the called
rogram (or server task). Parameters that are passed by

6-16

R T e S T g T e N

By e . Cha i e T e M e BT
B S 2 S TR S S S Wb Y S b PO U (LS i e ROt LRGP P SR L RS R SR A T R S ORI M A e e YW WA v, P e ¥ e "da

* PNV LT .‘."‘Q.‘\‘.'" LR B T IR Ol RS SRR S
R PRI T L GIOR SRR % TR ;;b;mh’f'gl'_-‘;ﬁ:;-.f,s % TR TR .'."xj

-"«"u

:ference (Di addresses a formal reference parameter) are not
1wysically moved; rather, the absolute addresses of an actual
irameter in data template memory and in data value memory are
:ored in words 2 and 3 of the formal reference parameter. These
idresses are derived from the cell offset and display register
1ir of the actual parameter. When all parameters have been
issed (new instruction detected in place of another actual
irameter), the address of this next instruction is stored in the
i1ller's execution resumption address (return address for
lbprogram calls) in the caller's administrative data area.

xceptions:
PROGRAM_ERROR

e e I N T I T T T T

T

RETURN FROM SUBPROGRAM.

: 70y
ic: RETSUB

is:

on: : ;
nstruction completes the execution of the subprogram. 1If
ependent tasks are extant, the activation record and
strative data storage cannot be immediately reclaimed. The
of the subprogram (same as the state of the task to which
bprogram 1is dynamically 1linked, through any number of
) is changed from RUNNING to SUSPENDED. The only
ents of the machine state that need to be saved in the
gram's -administrative data area are priority 1level and
ion resumption address. The latter is the address of this
FROM SUBPROGRAM instruction. The task scheduler schedules
r task to run. At some later time, when the last dependent
s TERMINATED, the state of the subprogram is changed to
and the subprogram is put on the ready queue corresponding
saved priority level. When the subprogram is scheduled to
he RETURN FROM SUBPROGRAM instruction is again executed,
ime without any non-terminated dependent tasks. Storage
w be reclaimed for any data objects that designated this
gram in the CREATE DATA OBJECT or CREATE UNCHECKED DATA
instruction. (Designation of the subprogram means, at the
rogram level, that the data object's access type was
ed in the subprogram.) The dynamic 1link to the
strative data area of the calling subprogram or task is
ved from the called subprogram's administrative data area;
alled subprogram's activation record/administrative data
e are then deallocated. . Finally, the dynamic link is used
rieve the machine state (dynamic and static components) of
lling subprogram, completing the return.

10Nns:
P PP P A S T T T e SRt . - e e P R i s
A CR AR, ﬂhﬂ?*“ﬂﬂﬂﬂbhbbbb;bﬁubﬁﬁbuﬂhﬁb%ﬁJ

e e PN LB T DA i I e DA gl M B e A B B A BAK S 08 Sl T SR AR MG S S 5 A SRt KA S TS S e R e S |

7 PACKAGES

ickage objects and the 1loading of packages were introduced
1\ Section 2.1 and 2.5.1. Packages reside 1in three
mories: (1) data template memory, which contains headers,
snstant global data, variable global data template (initial
1lues), and automatic data templates of subprograms and
isk programs, (2) data value memory, which contains
iministrative data and modified values of variable global
ita, and (3) instruction memory, which contains
1structions of subprograms and task programs contained in
1e package (see Figure 2-1). Note that variable global
ita requires a template because subprograms that declare
ested packages support reentrancy and recursion, Non-
asted (library) packages may contain nested packages that
ere declared in the Ada package body or in subprograms or
asks that were themselves declared in the non-nested
ackage. The location in data template memory and
astruction memory of each nested package (its
eader/variable global data template, constant global data,
utomatic data templates, and instructions) is specified in
5-word comporent of the non-nested package'’'s header (see
igure 2-2). In the external representation of a non-nested
ackage header, all locations are specified as offsets from
he base of the non-nested package in data template memory
nd from the base of instructions 1in instruction memory.
hen a non-nested package 1is loaded, these offsets are
onverted to absolute addresses.

ackages are compiled to machine code 1in the following
eneral way:

(a) Data declared 1in an Ada package specification is
placed in the package's global data area {(constants
in the constant global data area and variables with
initial values in the variable global data area).

(b) Data declared in an Ada package body is located in
the global data area if any subprograms or task
programs in tne package body reference the data.
Data declared 1in the package body <hat is only
referen-ed by subprograms 0 (that elaborates the

-declarative part of the package) is located in the
automatic data template of subprogram 0. It is the
responsibility of the compiler to " enforce
visibility rules. .

CEAAS b e SR SR ANt - S (A DA 2T JHa S SR S Rt IV A i e QP (e Yt Se b aek il b ot e

(c) Packages declared in the specification part of an
Ada non-nested package are merged with the non-
nested package, i.e., data 1is merged with the non-
nested package's global data and subprograms and
task programs are included with those of the non-
nested package. This has the effect of creating a
single larger package.

(d) Packages declared in the body of a non-nested
package are not merged as in (c); rather, they are
nested packages, created 1in subprogram O of the
non-nested package and elaborated via calls to
subprogram 0 of the nested packages. Each nested
package becomes dependent on the non-nested package
that created it.

(e) Tasks and subprograms declared 1in an Ada package
are defined in the package header, each as a 5-word
component of the header, as shown in Figure 2-2.
Tasks declared in the Ada package body are created
and activated (see Sections- 9.4.1], 9.4.2, and
9.4.6) in subprogram 0 of the package; tasks
declared in the Ada package specification may be
created/activated in subprogram 0 or in an external
program, (Tasks created in subprogram 0 become
dependent on the enclosing non-nested package.)
The instructions and automatic data of the task
programs and subprograms are 1included 1in the
package, as shown in Figure 2-1,.

(f) The sequence of statements, if any, 1in an Ada
package body compile to instructions in subprogram
0.

that packages that are declared in tasks or subprograms
nested in these programs and, therefore, are created and
orated within them and become dependent on them (package
al and administrative data areas not reciaimed until the
is TERMINATED or subprogram returns). In general, a
ed package depends on the environment in which it is
ared (created, at the machine level). The instructions

automatic data of programs 1in a nested package declared -

task or subprogram are located in the enclosing non-

ed package (see Figure 2-1). Non-nested (library)
ages do not depend on any objects and their global
age lives "forever." Finally, note that some Ada
ages may not include a body. These packages contain
declared data entities which, at the machine level,

ar in the giobal data area of the package. No further

:n \“31’ﬁ’j.’\)\ ‘-..\ ,‘-."b'.‘h..‘-.’\‘ 3

A A A s i T A

S IRNTELIRTTONTY

S PR R R
’ ; .A.':ll,.F.l.I Lﬁ‘-‘\ J

L it e R Bl PR T el il R e By 1 N S PRl Rt S Prin LR A L Sa A A, St it Sl Rl S, apel v aatt Sefi e S Ireth il Wit Wi Gl ddeid TRk | Dea SSel at

boration of such a package is required, i.e., there is no
1 to subprogram 0.

I-nested packages, including all nested package
lponents, are loaded via a User Console interface card
:IC) that contains a bootstrap loader (see Section 2.5.1).
» first package loaded, called the loader-linker, contains
)grams which load other packages and link programs and
;a in those packages. The loader-linker is loaded under
itrol of the bootstrap 1loader microcode which relies on
mands and responses from the User Conscle. The loading
)ycedure commences when the User Console sends an- "initiate
iId" command to the UCIC. This immediately puts the HLLM
the User console (highest) priority level. The UCIC then
ids a request to thé User Console for the storage size of .
3 package to be loaded. The User Console responds by
1ding the sizes required in data template and instruction
rories. The UCIC, which contains a 2K x 36 bit buffer
irge enough to accommodate any package header), sends a
juest to the User Console for the package header. At the
ne time, it requests storage allocation for data and
structions from the memory manager.. Note that the UCIC
st buffer individual 16-bit or 32-bit words from the User
1sole before storing standard HLLM 36-bit words in the 2K
ffer (nine 16-bit words form four 36-bit. words or nine 32-
t words form eight 36-bit words). When the hea’er has
en loaded into the 2K buffer and the base addresses in |
ta template and instruction memories are known (returned -
om the memory manager in the form of a pointer cell -- see
ction 3.4), the UCIC converts all address offsets in the
n-nested package header to absolute addresses. Next, it
ansfers the contents of the 2K buffer to the allocated
orage in data template memory in the HLLM. At this point,
>wing the size of the header, the UCIC modifies word 2 of
e pointer (address of the package in data template memory)
subtracting the header size; the result is the address of
e base of the header, 1i.e., the package descriptor, PKG
ee Figure 2-2). This address 1is needed later, when the
ckage is created. The UCIC then requests the next data
ock (equal or less than 2K x 36 bits in size) from the
er Ccnsole. When stored in the buffer, the UCIC scans the
ta, nulling all pointers (setting UNDEFINED bits to 1) and
tting all array value addresses (AVAs) and . formal
ference parameters (FRP's) to UNDEFINED. The buffer
ntents are then transferred to the HLLM. This process is
ntinued until the data template memory load is complete.
e UCIC then requests a block of instructions from the User
nsole. When loaded, the UCIC transfers the contents of
e 2K buffer to the instruction memory in the HLLM. When
e entire 'non-nested package (loader-linker) is resident in
e HLLM, the UCIC sends a "load complete" response to the
er Console. The User Console then, normally, sends a

7-3

_AD-A158 1280 ADYANCED AYIONICS COMPUTER ARCHITECTURE YOLUME 2 374
INSTRUCTION SET ARCHITEC. . (U)> SANDERS ASSOCIATES INC
NASHUA NH L GREENSPAN ET AL. MAY 85
UNCLASSIFIED AFHAL-TR-85-1041-Y0L-2 F33615-79-C-1935 F/G 972 NL

14

|

N o e cov o 8

I

o
N
2]

FEEERRR
FEER

bas
>

L
®

1-6

NATIONAL BUREAU OF STANDARDS
MIGROCOPY RESOLUTION TEST CHART

q~ - \ '
\:" .: .N..x"\\
ERAN DN,

e Y Aol % Yol Wi v =
ST 2B A DR e iy R L A A e e P B S AR A SRR N S - a5 i i i et e i et i o e B s e s 2o |

i

command to the UCIC which directs it to create the loader-

linker package in data value memory (simulating a CREATE
NON-NESTED PACKAGE OBJECT instruction). The UCIC extracts

the size of the variable global data from the package
descriptor (PKG) and requests the memory manager to allocate

storage in data value memory for the variable global data .
and fixed size administrative data (a single allocation).
The memory manager returns the address of the variable
global data and the UCIC sends a "package created" response
to the User Console. The User Console next sends a command
to elaborate the created package. The UCIC interprets this
command as a request to invoke subprogram 0. The following
preliminary steps are taken:

o Extract machine state information from the subprogram
0 component in the package header (a 5-word packet of
information pertinent to subprogram 0, as shown in
Figure 2-2). Note that the Formal Parameter Mask
contains all zeros since no parameters are passed, the
exception mode is ELABORATION, and the nesting depth
Ty 1M, ‘

e Set stack index to "0" and clear Temporaries Mask.

e Load display register 0 and 15 for package global
data. ! : .

® Request memory manager to allocate 'storage for
subprogram 0's -activation record and fixed size-
administrative data. When the base address of the
activation record is known, proceed to next step.

e Load display register pair corresponding to nesting
depth = 1 (local display registers for subprogram 0).
These registers are loaded with the base addresses of
the subprogram's activation record and automatic data
template.

® The dynamic 1link and Status Save Flag are ignored
(need not be saved in subprogram 0's administrative
data area as in a normal call).

In the above, the 1last operation performed is to load the
first instruction of subprogram 0 (gotten from the .
subprogram 0 component in the package header) into the
program counter, starting the execution of subprogram 0.
When the loader-linker package is being elaborated,

P e e R e A I e s P e L. R T Ty

S N T LR S T R Aac i ke B T S e P Tt T A T - G 820 ba " Phan S Rn Tea 3

subprogram 0 must create and activate at least one task
(which is put on a ready queue that corresponds to the
task's priority level). All created/activated tasks are
placed on ready queues; none gets scheduled to run because
subprogram 0 executes at the User Console priority level -
highest in the system. . The last instruction of subprogram 0

‘ is RETURN FROM PACKAGE ELABORATION. This instruction
deallocates subprogram 0's activation record/administrative

> data storage. It then "wipes out" the User console priority
and invokes the task scheduler which schedules a task in the
loader-linker package to run. This task will be the one at
the head of the highest priority ready queue. (Note that
there is no requirement to create/activate tasks during
execution of subprogram 0 in subsequently loaded non-nested
packages; when RETURN FROM PACKAGE ELABORATION is executed,
previously activated tasks in other packages will compete to
be scheduled to run).

Task programs and/or . subprograms in the loader-linker
package load other non-nested packages (which may contain
nested packages) and link data and subprograms in different
packages. The latter is accomplished by assigning values to
pointers to data and/or non-nested subprograms and moving
the. pointers to the variable global data areas of
appropriate packages. Loading of -any non-nested package
other than the loader-linker is accomplished by a program in
the loader-linker package. First, the instruction, ALLOCATE
PACKAGE STORAGE, 1is executed which reguests. the memory
manager to allocate storage for the package in data template
and instruction memories. The required storage sizes are
operands of this instruction. When storage allocation is
complete, the base addresses in data template and
instruction memories are returned in the form of a pointer,
The loader-linker program then executes an INITIATE LOAD
instruction which passes a "load command" together with the
pointer and the package number (of the non-nested package to
be loaded) to the UCIC. - The UCIC sends a request to the
User Console to load the header of the package identified by
the package number. Loading proceeds, as described earlier,
under control of the User Console. When' the non-nested
package is loaded, the UCIC returns a "load complete” signal
. to the HLLM. This completes the INITIATE LOAD instruction.
The loader-linker program next executes a CREATE NON-NESTED
PACKAGE instruction which, after extracting the size of the
package variable global data from the package descriptor,
requests storage allocation in data value memory for the
variable global dara and fixed size administrative data fa
single allocation). When the base address is returned from
the memory - manager, e pointer to

7~5

AR) ‘.‘

R B N A R A

'\(

the package 1is generated. This yointer contains the
absolute addresses of the variable global data in data
template and data value memories. To elaborate the package,
a call to its subprogram 0 must be programmed. First, a
pointer to subprogram 0 is assigned (see Section 10.4);
then, the CALL SUBPROGRAM instruction 1is executed in which
operand S1 (see Section 6.1) addresses a pointer to a
subprogram in an external package (subprogram 0 in the non-
nested package being elaborated). Tasks created in 5
subprogram 0 are made dependent on the non-nested package.
(These tasks were declared in this package 1in the Ada
program.) The last instruction in subprogram 0 is RETURN
FROM PACKAGE ELABORATION which deallocates the activation
record/administrative data, removes the User Console
priortty, and invokes the task scheduler which schedules a
task to run.

Nested packages, declared in Ada tasks, subprograms, or non-

nested package bodies must also be created and elaborated.

This is accomplished within the respective task program,

subprogram, or non-nested package (more precisely, within
subprogram 0 of the non-nested package) that declared the
nested package. The process of creating and elaborating a

nested package is similar to that for non-nested packages,

described earlier. However, the CREATE NESTED PACKAGE
instruction, 1in addition to allocating storage for the
variable global data and administrative data and returning a
pointer to the created package, must convert all offsets in
the nested package header to absolute addresses (see Section
7.3). The created nested package is made dependent on the
task, subprogram, or non-nested package that created it.

Dependency of a nested package means that reclamation of its
variable global data and administrative data storage in data
value memory is delayed until the destruction of the object

that created the nested package. When this happens, any
dependent data objects (whose access types were declared in
the nested package) are also destroyed. The nested package
is elaborated, as before, by calling its subprogram 0 (if it

exists). When the nested package is declared in the body of

a non-nested package, subprogram 0 of the non-nested package’
calls subprogram 0 of the nested package. Note that the
User Console priority is in effect even while subprogram 0

of the nested package 1is executing. The completion of

subprogram 0 of any nested package 1is marked by the normal .
RETURN FROM SUBPROGRAM instruction. '

Tasks that are created and activated in subprogram 0 of any
nested package will not get a chance to be scheduled to run
until the instruction, RETURN FROM PACKAGE ELABORATION, is i

....... R —_— . . B T, Do e R oL BT A
e A T A T T N T T A N g T

executed in subprogram 0 of the non-nested package. (As
stated earlier, this instruction removes the User Console
priority from the system; it represents the completion of
the elaboration of the enclosing non-nested package.) A
task created and activated in subprogram 0 of a nested
package is made dependent ¢~ the task, subprogram, or non-
nested package in which the nested package was created.
(Nested packages cannot be masters.)

7.1 INITIATE LOAD.

Format: 71y, S1, s2, S3

Mnemonic: INTLD

Operands: . .
Sl: Pointer Containing Package Load Addresses
FMT: memory (0) 3
S2: Package Number
FMT: immediate (EXT,2)
S3: Delay Amount
FMT: memory (0) or immediate (EXT,2)
Function:

This instruction initiates loading of a non-nested package.
A "load command” is sent to the User Console via the User
Console Interface Card. Accompanying this command are the
pointer addressed by S1 and the package identification
number, equal to the immediate value of operand S2. Words 2
and 3 of the pointer contain the absolute (base) addresses
of the storage allocated in data template and instruction
memories for the package load. Simultaneously with emitting
the "load command”, timing of the delay specified by S3
begins. (See Section 9.4.12 for an explanation of how the
delay amount is expressed.) The INITIATE LOAD instruction
is not completed until a "load complete” message is received
from the user Console Interface Card or the delay times out.
In the latter case, a PROGRAM_ERROR exception is raised.

Exceptions:
PROGRAM_ERROR

7-8

a1] '*‘\. > .‘)\'.\': \;;n !.\' '..',’_\ 3 ‘b’$:.'\-.-'.\;g‘\..~'.\;'.'- "-:.'. ;_!,} A\ 5 0,‘...\'. \':.J\t.-_:: "'..' R

S0 R P IR T st g

b

72 CREATE NON-NESTED PACKAGE OBJECT.
Format: 724, S, D

Mnemonic: CRPO

Operands:

S: Pointer to Loaded Package
FMT: memory (0)

D: Pointer to Createdlpackagg
FMT: memory (0)

Function:

This instruction requests allocation of storage 1in data
value memory for the package variable global data and fixed
size administrative data. The size of the variable global
data, in words, is extracted from the package descriptor
(PKG) addressed by the contents of word 2 of the pointer
addressed by S. When storage has been allocated, the
absolute address of the variable global data in data value
memory is stored in word 3 of the pointer to the created
package and the absolute address of the variable global data
in data template memory is stored in word 2. (The former
address is the address of the allocated storage + size of
administrative data and the latter address is the address of
the package header + 1.) The rights assigned to the pointer
are READ and WRITE. The ENTITY (ENT) field is set to 000.

Exceptions:
STORAGE_ERROR

N It T S S e p Y n e
TP TS RO CXAN TR O

G IO O S N A SR L S, L

LARNAAY Sl e o 0 G TRAR Tl R 3 B Sl T i ot Sl ol T G & Gl A AT Dol A BT AT S il P50 L Al vl widh vt et

e N T " e e T % B e S T e M AN Y
. 1 f.\;-.*.i'rl\,.‘\..'-';'rl\}-{'-E.‘v-l\'\.\\s\\'.\‘.\\\‘t&

R R N T o S R e L B N e e Y e P NV R ok 20 Lt S0 50 00 o S92 & i 2B sl 8o P O 8 8 S S I AT TSNS TF I .‘J?T

7.3 CREATE NESTED PACKAGE OBJECT.
Format: 734, S1, 82, S3, D

Mnemonic: CRNPO

Operands: ¥
Sl: Pointer to Containing Non-Nested Package
FMT: memory (0) X
S2: Offset to Nested Package Component
FMT: : immediate (EXT,2)
S3: Creator

FMT: immediate (EXT,2)
S3 specifies, via nesting depth (ADS), the
task, subprogram, or non-nested package on
which the created package depends.

D: Pointer to Created Package
FMT: memory (0)
Function:

This instruction allocates storage 1in data value memory for

the nested package's variable global data and administrative

data. To extract the variable global data size, the package -

program descriptor (PPGM) in the nested package component in

the containing non-nested package header must be addressed

(see Figure 2-2). The base address of the non-nested

package header 1is retrieved from word 2 of the pointer

addressed by S1. The offset, given by S2, subtracted from

this base is the address of the package program descriptor

that contains the size, 1in words, of the variable global

data of the nested package. Storage allocation in data

value memory for the variable global data and fixed size
administrative data is requested. While the memory manager

is allocating storage, the offsets in the nested package

header are converted to absolute addresses using the

absolute addresses in the 5-word nested package program

component. The word at an offset of -1 from the package

program descriptor contains the absolute (base) address of

the nested package header. Each $S-word program component in -
the nested header contains an offset to the program's
automatic data template. Each offset 1is added to the base
address of the nested package header; the resulting absolute
addresses are written into the components of the nested
package header. Similarly, the word at an offset of -3 from
the package program descriptor contains the absolute (base)
address of the nested package instructions. This is added
to the offset to the first instruction and the offset to the |

[5 o SR T e b e s e e i e e i et S s e Z e o

P T T T NG G (TR LG A et O ST S S L e e ey S

last instruction in each program component of the nested
package header; again, the resulting absolute addresses are
written into the components of the nested package header.

When the address of the allocated storage is returned by the
memory manager, the pointer to the created nested package,
addressed by D, can be formed. The absolute address of the
variable global data in data value memory is stored in word
3 of the pointer and the absolute address of the variable
global data in data template memory 1is stored in word 2.
(The former address is the address of the allocated storage
+ size of administrative data and the latter address is the
address of the nested package header + 1), The rights
assigned to the pointer are READ and WRITE. The ENTITY
(ENT) field is set to 000.

S3 specifies the task or -subprogram in the non-nested
package or the non-nested package itself on which the
created nested package depends. This dependency is
specified by the nesting depth (or address space, ADS) of
the task, subprogram, or non-nested package. Nesting depth
designates the display register pair which contains the base
addresses of the task, subprogram, or non-nested package in
data template memory and data value memory. (For tasks and
subprograms, this would be the addresses of the activation
record and corresponding automatic data template; for the
non-nested package that corresponds to a nesting depth of 0,
this would be the addresses of the variable global data and
variable global data template).

Exceptions:
STORAGE_ERROR

.'".h'f.h "}'p] _"-‘h‘ﬁ__\.’ .‘-* " -;r;y'_-..'_ s:.:. ..'. o :. 0 .:. l"_‘.‘.‘- 2. . .':-\

oS Tt By

7.4 ALLOCATE PACKAGE STORAGE.

Format: 74y, S1, S2, D

Mnemonic: ALLOCP

Operands:
S1: Size of Allocation in Data Template Memory
"FMT: memory (0) or immediate (EXT,2)
S2: Size of Allocation in Instruction Memory
FMT: memory (0) or i1mmediate (EXT,2)
D: Pointer to Allocated Package
FMT: memory (0) ‘
Function:

This instruction requests allocation of storage

in data

template memory and instruction memory for the non-nested
package to be subsequently loaded. S1 and S2 address or
directly specify the sizes, in words, required for storage
allocation of the package in data template memory and

instruction memory, respectively. Note that

immediate

values restrict the allocation size to 220 word whereas

memory operands have an upper limit of 232 words.

The base

addresses in -data template memory and instruction memory
returned by the memory manager are stored in words 2 and 3,
respectively, of the pointer addressed by D. The ENTITY
(ENT) field is set to 110; other fields 1in word 1 of the

pointer are ignored.

Exception:
STORAGE_ERROR

BN e - g b ek e e n
SIS C RO SN AL AT ' $

. ST e w N
\\\\\\\\\\\\\

T TRV 4TV T YT T 4§ e T s Sl 3 i e L el sl s R b i e B oA St Tl g Bl B el moag - -
o Do 2 gl o ot 0 e B o B2 RO DTS i L i A eI L il S it g T e MM R S T 2, ST AL B SLA-EL B S A SR8 i SR Q4 N T S At 4L i & AN el SRtS ARG

y RETURN FROM PACKAGE ELABORATION.
Format: 754

Mnemonic: RETPE

Operands:
None
Function:
This instruction marks the completion of subprogram 0 of a
non-nested package. The activation record and

administrative data of the subprogram are deallocated
immediately since no objects are dependent on it. The User
Console priority is removed ' from the system and the task
scheduler is invoked. ' .

Exceptions:
None

......

8 DYNAMIC STORAGE ALLOCATION/DEALLOCATION

Data objects are allocated space in data value memory at run
time. Their creation corresponds to the evaluation of
allocators in Ada when the objects created are any type
other than a task. (Evaluation of an allocator that creates
a task object is supported with the EVALUATE ALLOCATED TASK
OBJECT instruction, described in Section 9.4.6.) Access
values, returned when an allocator is evaluated in Ada, are
represented in the HLLM by pointers. Data templates for
data objects are placed 1in the enclosing package's constant
global data area.

Deallocation of space 1in data value memory normally takes
place when the subprogram, task, or package in which the
access type was declared is destroyed (per the Ada
CONTROLLED pragma). The data object is said to be dependent
on the subprogram, task object, or package object. Data
objects can be explicitly destroyed (storage in data value
memory reclaimed) when the instantiated generic library
procedure, UNCHECKED DEALLOCATION, 1is called at the Ada
program level. Dangling references caused by
UNCHECKED DEALLOCATION are detected 1in the HLLM. This is
accomplished by creating a data object with the instruction,
CREATE UNCHECKED DATA OBJECT, that assigns a 24-bit unique
name to the data object, stores it into the pointer, and
sets the unique name flag (see pointer format in Section
3.4). A unique name will not be reassigned until 224
different names have been assigned to data objects that are
to be explicitly destroyed. Whern assigned, a unique name is
stored in a system-wide Unique Name Table; when the pointed-
to data object is destroyed (via the DESTROY DATA OBJECT
instruction), its unique name is deleted from the table,
never, in principle, to reappear. Any reference via a
pointer to a data object 1in which the unique name flag is
set requires a check for the existence of the unique name in
the table. If the unique name is not 1in the table, a
CONSTRAINT_ERROR exception is raised. '

The template of a data object can specify any supported data
type except pointers and formal reference parameters; arrays
and records should be most common., Arrays may be
constrained or unconstrained (see Appendix B). Data objects
may be used as I/0 buffers. -

T I I TG o N I 3 SUR AR AT S AL NELH
PR ELLE CORGEN LS CA RO AL R G

Sl N G A vl S SGad SN T S R A o B R i S R S A £, A A A T T S S e s A P R S i S e it

o e = s 2 O ot :'1':.':'1
8.1 CREATE DATA OBJECT.
Format: 76y, S1, S2, D
Mr.emonic: CRDO
Operands: "
Sl: Data Object Type (Data Template)
FMT: memory (0) . d
S2: Object on which Data Object Depends
FMT: immediate (EXT,2) or memory (0)

Immediate: S2 specifies, via address space (ADS), the
subprogram, task object, or enclosing package
object on which the data object depends.

Memory: S2 addresses a pointer to a subprogram or task
object in an external package or to an
external package object on which the data
object depends. :

D: Pointer to Created Data Object
FMT: memory (0)

Function:

This instruction allocates storage in data value memory for

the data object and returns a pointer to the data object.

Sl is the address of the data object template in the

constant global data area of the-enclosing package; hence,

the address space (ADS) must be equal to 15. The first word

in the template is a Data Object Descriptor (see Section

3.8) which specifies the total size of storage in data value

memory to be allocated for the data object when the data

object is not an unconstrained array or a record with one or

more unconstrained array components. If the data object is

an unconstrained array or a record with unconstrained array
components, index constraints (which supply the array

bounds) follow the CREATE DATA OBJECT instruction in the
instruction stream. The order of unconstrained bounds in

the data object description corresponds to the order of the

index constraints (see Section 4.4.5) 1in the instruction

stream. When array bounds are unconstrained, the total size -
of the data object in data value memory 1is computed as
described in Section 3.8.2 and 1illustrated in example 4 of
Appendix B. When storage. has been allocated (two
allocations for unconstrained arrays), the pointer addressed
by D is assigned values as follows:

Word 1
unique name flag <= 0
ENT <= 010
RIGHTS <= read, write.
8-2
PSS Tt et e S, LEETSI TS ST SR STENIE B B SIS NN e L v e e s R AN, e SR S B O WS Wb L0 ol M LI B B SO, M S S) v\
PP, P St P LIS e, T S i i 0 S e T St T S A S e S O TR R S TR) : &

Word 2

Receives absolute address of data object template
(address of Data Object Descriptor).

Word 3
Receives absolute address of data object values
.(address in data value memory that corresponds to

the Data Object Descriptor in data template
memory) .

S2 specifies the subprogram (via 1its activation record),
task object, or package object on which the lifetime of the
data object depends. It will be called a "dependee" in this
instruction, If 82 1is an immediate operand, its value is
the address space (nesting depth) of the dependee. The
display register pair corresponding to this nesting depth
contains the dependee's absolute (base) addresses in data
value and data template memories. If S2 addresses a pointer
- “to the dependee, the base addresses are contained in the
pointer. Having the address of the administrative data of
x the dependee, a doubly linked list of dependent data objects
originating at the dependee can be maintained as follows:

™

)
-
~
N

s

o (a) In the dependee's administrative data is a link to
N the former most recent data object. This link is

moved to the created data object and the address of
i the administrative data of the created data object
replaces the link in the dependee.

l'."‘r.l '.' ..

(b) The address of the created data object 1is also
stored in the administrative data area of the former
most recent data object and the latter's address is
stored in the administrative data area of the
created data object.

L=

2 (c) 1f there is no "former most recent data object," the

. link in the dependee will contain a NULL. . Then, the

address of the created data object replaces the NULL

link and the address of the dependee is stored in

2 the administrative data area of the created data
object.

When a dependee is destroyed (storage in data value memory .

reclaimed), all data objects in the 1linked 1list are

- deallocated in data value memory. Note that the links are
\ in place to support explicit destruction (via the DESTROY
N DATA OBJECT instruction) of a data object at any location in
e the linked list.

% Exceptions:

- STORAGE_ERROR

-,

J‘!

) 8-3

E

A R A R R e T T B T e e R e

S e i R (SR e L TR e 0 S W L i A S S S MO A 05 G A0 AT i R LA A S M A - e SO AL (Y I i 2 R Ry A A A T A0

o8 to

4

-~

o

<

2

: 8.2 CREATE UNCHECKED DATA- OBJECT.

5 Format: 774, S1, 82, D

% Mnemonic: CRUNDO

) “

- Operands:

Sl: Data Object Type (Data Template)

o FMT: memory (0) :

~ §2: Object on which Data Object Depends:

E FMT: immediate (EXT,2) or memory (0)

’ Immediate: S2 specifies, via address space (ADS), the
subprogram, task object, or enclosing package
object on which the data object depends.

Memory: S2 address a pointer to a subprogram or task

N ' object 1in an external package or to an

! external package object on which the data
object depends.

< D: Pointer to Created Data Object

1 FMT: memory (0)

Function: ‘

This instruction performs the same function as CREATE DATA

OBJECT and, in addition, assigns' a unique name to the data
¢ object for the purpose of detecting dangling referenc«s that
< may result 1if the created data object is explicitly

destroyed (allowed when the UNCHECKED_ DEAL_UCATION library

4 procedure is called). Prior to assigning values to word 1

of the pointer addressed by D, a request is made to the

g memory manager to assign a unique name to the data object.

] Then, word 1 of the pointer is assigned values as follows:

: unique name flag <= 1

: ENT <= 010

= RIGHTS <= read, write, destroy

bits 0..23 <= unique name.
Exceptions:
STORAGE_ERROR)

A .

<

(4

04

¢

1

“.e a”z n €

8-4

el o

Ey

N I O S SRS ¥ & AR AT NS B S R ETEAT AL % LAY § LIy R

A
ST,

F T T PSP T F T

o

RS AE DR A S N SO AN e

FEVINETATTN I 5.‘..&:‘:11:?.':-.;:@_-\1

8.3 DESTROY DATA OBJECT.
Format: 781, S

Mnemonic: DSTROY

Operands:
S: Pointer to Data Object to be Destroyed
FMT: memory (0)
Function:

The data object pointed-to by the pointer addressed by S is
destroyed, i.e., storage occupied in data value memory
(values and administrative data) 1is reclaimed. The pointer
must have DESTROY author1ty. The data object is removed
from the list of data objects dependent on some task object,
subprogram, or package obJect. The unique name ass1gned to
the data object (found in word 1 of the poxnter) is deleted
from the unique name table. :

Exceptions:
CONSTRAINT_ERROR

Ta®a e e a8, @ R B ¥ S = PR X oo N LS N oD BTN X e N ST PSSy T mg;
o PN A PP AN SRR GO U AN 2R P AT SN O
. . i o .

}_-_1_:‘;

TN IR TRV

9. Tasks

The support for tasking provided. in the HLLM is firmly based on
the concept of tasking described in Section 9 of MIL-STD-1815A.
A When a task object is created, it can spawn a dynamically linked
chain of activation records through successive subprogram calls,
. Any subprogram can create new tasks which spawn other dynamically
linked chains of activation records, and so forth. 1In addition,
any task can create other tasks each of which may parent a
dynamic chain. The resulting structure is a cactus stack of task
and subprogram activations. The rules of tasking specify certain
lifetime dependencies of tasks on other tasks and subprograms
within the cactus stack and on library packages. The manner in

which the HLLM supports task dependencies 1is described in
Appendix C.

To assist in the understanding of the tasking instructions, the

following important terms are defined in accordance with their
use in this ISA:

TASK OBJECT - A task object is a created. storage object
comprising the entries, data values (template
and activation record), and instructions of the
task unit. '

TASK PROGRAM - A task program is the instructions compiled

from the task body statements.

COMPLETED TASK

A COMPLETED task is one that has executed all
its instructions (end of task program reached)
or one in which a TASKING ERROR was raised
during its activation. AIthough no
instructions are executed in a COMPLETED task,
the task's local data is still accessible to
other tasks and subprograms.

SUSPENDED TASK

A SUSPENDED task is one that has been activated
but is neither executing instructions nor ready
to be scheduled; it is temporarily blocked on
an entry queue or at an accept, delay, or

wait instruction. SUSPENDED tasks are

normally resumed when the suspending condition
is removed.

ABNORMAL TASK

An ABNORMAL task is one that has been aborted.
Although an ABNORMAL task is allowed to execute
until it reaches a synchronization point, it
will immediately become a COMPLETED task in the
HLLM and will be TERMINATED when dependency
conditions permit.

9-1

L C ;:: Py Al) NIRRT .{" . }\ }3':‘.-“_-"':-“-:’;-:'_jo:.';-":-‘:-' .'.'_.\'._5'.’\:‘-.:.\'- RCR

ke g ;..f “.h ‘v" AENCY f ".‘-" '."'n 'v '1

TERMINATED TASK

CUSTOMER TASK

SERVER TASK

DEPENDENT TASK

MASTER

ACCEPT BODY

Refer to the
definitions and

R Sufh Sudl DA i dh-wi e e it o
(RO e Sl PPN oA A T e i

TERMINATED tasks are destroyed with storage
reclaimed in the HLLM. COMPLETED tasks with
all termination conditions met are TERMINATED.

A customer task is one that partakes in a
rendezvous by calling an entry of another
(server) task.

A server task is one that partakes in a v
rendezvous by accepting an entry call of
another (customer) task.

A dependent task is one that affects the
lifetime (activation to termination) of

another task designated as its master and,
under certain conditions, whose own lifetime

is affected by the state of the master and its
dependent tasks. In the latter case, the
master could be a subprogram or library package
as well as a task.

- A master may be a task, a subprogram (which
includes a block statement in the HLLM
implementation), or a library package. A
completed master is not destroyed until all its
dependent tasks are TERMINATED.

An ACCEPT body is a group of instructions that
immediately follows an ACCEPT ENTRY or SELECT
ACCEPT instruction and is terminated with the
END RENDEZVOUS instruction. The ACCEPT body
corresponds to the sequence of statements that
follows an ACCEPT statement in Ada.

Glossary and to MIL-STD-1815A for further
explanations. '

g T, ®._ % W TR . e T, B Y TR W § e ’ b o AP S <3 YA Y I Lk Al ad
e R R Rt B St B A R A SO LB AN S SR ANC R S DA A 5 WIS U ve S A b e G Salt Al Pl et b R AR W R L T P e ETLYIT A

9.1 Task Scheduling. The HLLM task scheduler deals with two
categories of tasks:

1.RUNNING TASK- A RUNNING task is one that has been activated !
(created and started) and is executing on a |
processor. :

2 .READY TASK - A READY task is one that has been activated
(created and started), is neither SUSPENDED nor
COMPLETED, and is waiting on a ready queue to
be scheduled for execution.:

When tasks compete for access to a processor, the scheduling
algorithm ensures that no READY task 1is waiting to be scheduled
while a lower priority task is RUNNING. Each task waiting to be
scheduled is put on a ready queue corresponding to the task's
priority level. When two or more tasks of the same priority are
ready to be scheduled, the order of scheduling is FIFO. In this
case, when the scheduler is invoked, the task at the head of the
highest priority ready queue 1is scheduled for a specified
execution time period and the executing task is moved to the tail
of the ready queue. When the time quantum expires, an interrupt
is generated that again invokes the scheduler. If an executing
task becomes SUSPENDED or COMPLETED or if a higher priority task
becomes READY before this interrupt occurs, a new task is

scheduled, resetting the execution time quantum. A different
time quantum may be specified for each ready queue. . One choice
is "infinite"™ duration. If a task scheduled with "infinite"

duration is at the highest priority level, only suspension or
completion of the task will cause it to relinquish the processor.
(However, if a lower priority task 1s scheduied with an
"infinite" time quantum, it could get "bumped” if a SUSPENDED
higher priority task becomes READY.) Tasks not assigned any
priority are relegated to the lowest priority level (priority 0).
When a task is activated or when some event removes a task from a
state of suspension, the task becomes READY and is appended to
the tail of its ready queue. If, however, it is the only task at
the highest priority level, it will be scheduled to run with a
fresh execution time quantum. Tasks 1in rendezvous assume a
priority which is the higher of that of the customer and server
tasks. Since a <customer task 1in rendezvous is SUSPENDED, its
priority level need not be modified 1if lower than that of the
server task. However, if the server has the lower priority, its
priority is raised to that of the customer for the duration of
the rendezvous ACCEPT body.

£ o Pl e Bl A e R R R P S i

9.2 Task Switching. Tasks exist in one of five states:
RUNNING, READY, COMPLETED, SUSPENDED, or TERMINATED. A
scheduling decision 1is made whenever any task changes state.
Following is a list of actions that cause a change of state,
hence invocation of the task scheduler:

(a) a task is activated (through execution of the END
ACTIVATION or END ELABORATION AND ACTIVATION instruction)
and becomes READY or RUNNING. 1

(b) a task is suspended (when, for example, a task calls an
entry or tries to accept an entry call when there is no
caller) and becomes SUSPENDED (another task is
scheduled to run).

(c) a task is removed from the state of suspension (when, for
example, a delay expires or a rendezvous is completed)
and becomes READY or RUNNING.

(d) a task is completed for any reason and becomes COMPLETED
(another task is scheduled to run).

(e) a task is directly terminated for any reason and becomes
TERMINATED (another task is scheduled to run).

Note: A task may be directly terminated only when (1) it
becomes COMPLETED and all its dependent tasks, :if any,
are already TERMINATED or (2) it executes a SELECT
TERMINATE instruction and its master is in a COMPLETED
state and all tasks that depend on that master are
TERMINATED or waiting at SELECT TERMINATE instructions.

(f) an interrupt from the clock manager signals that an
execution time quantum has expired (another task is
scheduled to run).

In the discussion that follows, when reference is made to a "task-
or subprogram”, the subprogram belongs to the task to which it is
dynamically linked (through any number of levels); hence, the
subprogram executes at +hat task's priority level. Priority
level is a static component of the machine state for subprograms
as well as tasks. Its value must be known when tasks are
switched and when a rendezvous takes place (server's priority "
level can be affected by customer's level). The task scheduler
keeps track of the address of the activation record and the
priority level of the. current task or subprogram. During %task
switching, the scheduler manages the <hange <¢f environments,
i.e., it changes the state of tasks, manages delay and entry
queues, and saves/restores the states of switched-out and
switched-in tasks and subprograms. In particular, if a rask

9-4

L TO WA TR SO LN A SO S » 37 = e e R S =
t!-flhsuk' RSN A NN "v"ih.- R e S e o 'Is_':‘zi\;_.{.' e ": AT O AR N :“.\'”f}:lj

-,

program is executing when the scheduler switches tasks, only the
dynamic components of the switched-out task's machine state
(stack index, exception mode, registers corresponding to "1ls" in
the Temporaries and valid Parameter Masks, and execution
resumption address) are saved in the task's administrative data
area. The static components of the state (nesting depth of task
program, priority level, display registers of nesting depths < =
nesting depth of task program, and addresses of first and last
instructions of the task- program) are not saved since they are
stored in the task's administrative data area when the task is
created. If a subprogram is executing when tasks are switched,
the above listed static components of the subprogram's machine
state are saved in the administrative data area of the subprogram
if the Static Save Flag (see Section 6.1) 1is "0". The Static

"Save Flag is set to "1" when these components are first saved
g p

and, thereafter, the static components are not saved in the
presence of a task switch. The above listed dynamic components
are always saved for the switched-out subprogram. Further, all
components of the machine state (static and dynamxc) are restored
for the switched-in task or subprogram.

<o -'-..'. --"-" e’ --' Q-" R g
o™, DR AR e

ST R YRR EA T ENTIT

9.3 Exception Modes. Tasks and subprograms exist in one of four
exception modes, managed by the machine. Errors are handled
differently in .each mode as described below:

ELABORATION mode - This corresponds to the elaboration of a
declarative part in Ada. An error causes termination of all
created but not yet activated subcomponent tasks and
abandonment of the executing task or subprogram. If the
executing program is a task, it is marked as COMPLETED and

a TASKING_ERROR exception is raised at the point of its
activation. If the executing program is a subprogram, the
same error exception is raised at the point of call. (If the
subprogram is a main program, it is abandoned without error
propagat1on)

ACTIVATION mode - This corresponds to the parallel activation
of tasks that are subcomponents of declared objects in Ada.
(In the HLLM, tasks are activated sequentially.) An error
causes the task being activated to be marked as COMPLETED.
Activation of other subcomponent tasks (successfully or not)
is not affected. When each of these tasks has been activated
(or marked as COMPLETED), a TASKING_ERROR is raised in the
environment of the task or subprogram whose declarative part
is be1ng elaborated, i.e., the task or subprogram that is .
executing the ACTIVATE.TASK 1nstruct10ns.

ACCEPT BODY mode - This corresponds to the sequence of
statements following the ACCEPT statement in Ada. While
executing an ACCEPT body, an error that is not handled by
a local exception handler causes the following to occur:

(a) ACCEPT body is abandoned.

(b) the same exception is raised again in the server task's
environment at a point immediately following the ACCEPT
ENTRY or SELECT ACCEPT instruction.

(c) the customer task is marked with TASKING ERROR pending
and its state is changed from SUSPENDED (in rendezvous)
to READY; when it next becomes RUNNING, a TASKING_ERROR
is raised at the point of entry call.

If the ACCEPT body is executing when the server task is
destroyed (aborted), the server task is marked as COMPLETED
and the customer task is marked with TASKING_ERROR pending
(raised when the customer task is again RUNNING, as
described in (c) above).

NORMAL mode - This mode corresponds to the statement between
"begin® and "end" in Ada. The handlxng of except1ons in the
NORMAL mode is descr1bed in Section 11 on Exceptions and, in
a few special cases, is included in the description of an

P R N TN R T IR AN ST

lnstruct 10”.
2]
i B = . . e . -8 '_ .-. - .‘ \ A - '_ .' “ % . x - I k I.' I.".l 2 - - . - . - ..‘ .h- l- -I.'-..< -.. .‘ . - - \ . . X "
P R N S AR e ity PO N St St a2 AT O A T A AR RNy IR X ey NI NN :‘_-_'.-..L.;-J

e e R R N S AR AL S aiw S sASIC A SR N R /G oY s S~ nr 2 et hag B A o~ Dl o~ i oot usie |

Error modes are entered as the result of executing certain
instructions, as explained below:

(a) When a subprogram or task program executes a CALL
instruction, the called subprogram enters the ELABORATION
mode or NORMAL mode, depending on whether or not the
called subprogram has a declarative part that requires
creation of objects and/or subcomputations for
initialization of declared objects. Within the area of
the package header that corresponds. to the subprogram is
a bit that specifies which of these two modes is entered.

(b) When a subprogram or task program executes an END
ELABORATE instruction, that subprogram or task enters the
ACTIVATION mode.

(c) When a subprogram or task program executes an ACTIVATE
TASK instruction, the named task enters the ELABORATION
mode.

(d) Wwhen a subprogram or task program executes an EVALUATE
ALLOCATED TASK instruction, the named task, when created,
enters the ELABORATION mode.

(e) When a subprogram or task program executes an END
ACTIVATE or END ELABORATE AND ACTIVATE instruction, that
subprogram or task enters the NORMAL mode.

(f) When a server task program executes an ACCEPT ENTRY or
SELECT ACCEPT instruction and a customer task 1is queued
on the accepted entry, the exception mode is changed to
ACCEPT BODY for the duration of the ACCEPT body.

y=7

" LI g i ."‘.‘_. [. f(’{’, % 2 e - - _-_-,J
RO DR TR L O AT aale) A A S At L ST G el K AR ALY R COTOeR

T R e T L TN e, AT hat T e e A
" « " . Sk S e o L 0 (R

o S A S B B L R R AT e AT A e DA B S AT TR A S L S SO L P o

3.4 Tasking Instructions. The group of instructions described
>n the following pages supports Ada tasking as outlined in
jections 9.0 through 9.4. These instructions implement task

sreation, activation, rendezvous, and termination.

OO At Tt T TP LS K i R i e et ¥ L B S S P ope o vy S . -y
et e S e O o e e YR U e s e SN T S O ‘.‘:‘-‘:-‘..‘.'»':.‘-.v.'j.' PR S I A0 ST B o s i B St i o !

9.4.1 CREATE TASK OBJECT.
Format: 794, S1, S2, D

Mnemonic: CRTO

Operands:
Sl: Task Program Identification
FMT: immediate (EXT,2) or memory (0)

Immediate: S1 specifies an offset to a task program
component in the local package header.

Memory: S1 addresses a pointer to a program (task
program) in an external package.

S2: Master _
FMT: immediate (EXT,2) or memory (0)

Immediate: S2 specifies a local master via its
nesting depth (ADS).

Memory: S2 addresses a pointer (no specific
authority required) to an external
package master (library package).

D: Pointer to Created Task Object
FMT: . memory (0)
D addresses a pointer in the local
package that is assigned to point to
the created task object (ENT = 100).

Py % BTe STUPH T S0, S A e e oV

e
- . -
e Pty e s L SN N AR S) - e e

—y A L el i ang e srul erd wef mivi el aiA ahe sed sl St SFLIE LR g Nt
(o b SR S O i AR BT MU CA ORISR RS S QAR SRS ST n R RS S D e S

inction: .

1is instruction creates (but does . not activate) a task object.
1e offset to the task program component (S1) is an immediate
1lue or is contained in the pointer to the external task
rogram. (this pointer must have READ authority for the task
rogram.) The offset is subtracted from the base address of the
2ader of the local or external package, the former derived from
isplay register 0, the latter retrieved from the pointer to the
isk program. The result 1is the address of a 5-word packet of
1formation pertinent to the task, from which the size of the
isk’'s activation record, the absolute address of the task's
jtomatic data template, the task's nesting depth, priority
avel, and number of entries, and the addresses of the first and
i3st instructions of the task program are retrieved. Space for
1e activation record and the administrative data. area are
llocated in data value memory. The size of administrative data
rea is a fixed value + 16*number of entries, thus allowing a
aximum of 16 customer tasks to be queued on each entry. All the
jantities retrieved from the package header (except the first
vo listed) are now saved 1in the created task's administrative
ata area for subsequent easy access. In addition, the following

isplay registers are saved, completing the state of the created
ask: -

(a) when the task program is in the local package

e all display registers corresponding to nesting depths
< nesting depth of created task.

e local display register pair corresponding to created
task's nesting depth (address of task's activation
record and address of task's automatic data template).

(b) when the task program is in an external package (hence,
at nesting depth = 1)

e display register 0 of external package (addresses
contained in display register pair gotten from words 2
and 3 of the pointer to the task program).

9-10

AR T AT AT

......
‘‘‘‘‘‘‘‘‘‘‘

i i .
............

e display register 15 of external package (address
contained in display register = contents of word 2 of
the pointer + size of variable global data + 1).

e local display register pair corresponding to nesting
depth = 1 (address of task's activation record and
address of task's automatic data template).

S2 specifies the package, task, or subprogram that is the created-
task's master. It may be any enclosing activation, the enclosing

package, or an external (library) package. The number of

entries, Ng, restricts any rendezvous with this task to entry
numbers 0..Ng-1. The pointer addressed by D 1is given READ,

WRITE, and DESTROY authorities. The absolute addresses of the

task's automatic data template and activation record are loaded
into words 2 and 3 of the pointer, respectively. This is now the

pointer to the created task object (ENT = 001).

If an exception is raised during this instruction (the
ELABORATION mode is extant), creation of this task is abandoned
and all tasks ~oreviously created but not yet activated during
this elaboration are terminated. Hence, a chain of tasks must be
maintained as tasks are successively created. When a task is
created, a link to the previously created task (null, if no
previous task) is retrieved from a location, L, 1in the
administrative data area of the task or subprogram being
elaborated and stored in the created task's administrative data
area. A link to the newly created task 1is stored in L. This
process is repeated for all created tasks (illustrated below for
three tasks).

-
NN A L Dy

I | .
| v
I GND »
I
{ e H)
I TO |
I |
I
I
] 20N
| T1 |
I |
I
|
| th
I T2 I
I I
I
| iy |
--------- | B |
J K

T ————
S RN OO AR LG (O

(b ar S Ea ’.,‘.,'-,‘. i i P A S IR Pl Sl i . S i Pt AR BB B TRl 5 Tt A o

Any instruction executed in the ELABORATION exception mode has
access to L so that, in the event of an error, all linked tasks
can be located and terminated. Further, an error in the
ELABORATION mode causes a return to the point of call if a
subprogram is executing or completion of the task and a return to
its point of activation if a task program is executing. In the
former case, the exception is raised in the caller's environment
while in the latter case, a TASKING_ERROR pending condition is

: set at the point of activation of the task. (For continuity of
discussion, see the description of errors in the ACTIVATE TASK
instruction.)

Exceptions:
PROGRAM_ERROR
STORAGE_ERROR

L —— . .
LR L L aEay Ssan R L-,n_.-.v-.v_--.-.- BRI ATS ASL PR NS P AR S UL NG O I Tt T S S S SRt RAT P R ST RlecwEs il < il Sy
''''' AT A A I ST MRS S DR o . ONCREY R S S R S L S LT DS TR COCRRAIEN N

L

o
L

v o m» o

- e—

9.4.2 ACTIVATE TASK.
Format: 7Ag, D

Mnemonic: ACTV

Operands:
D: Pointer to Task Being Activated
FMT: memory (0)
D addresses a pointer to the task
being activated.
Function:

This instruction causes the activation of a previously created
task by executing what corresponds to the declarative part of the
task body in Ada. Prior to transferring program control to the
created task's task program for activation, the following
administrative steps are performed:

e A link to the administrative data area of the activating
current task or subprogram is stored in the administrative data
area of the created task; this allows a return to the environmert
of the activating task or subprogram when the created task has
been successfully activated or if an error occurs during its
activation. '

e If a task 1is executing (activating the pointed-to task), the
executing task's dynamic machine state components are saved in
the executing task's administrative data area. If a subprogram
is executing, the dynamic components are saved in the
subprogram's administrative data area; the static components of
the machine state are saved only if the Static Save Flag is "0"
(see Section 9.2). These actions permit proper resumption of
execution of the activating task or subprogram when the created
task has been successfully activated or if an error occurs during
its activation.

LN SN TS e

T e s M M, T N N S e R N R N L T A U S e N T e T T T T T T T T -

The initial machine state for the task to be activated is next
established. This involves retrieving information stored in the
pointed-to task's administrative data area when the task was
created (see CREATE TASK OBJECT instruction, Section 9.4.1).
Included are the task priority 1level, nesting depth, display
registers corresponding to nesting depths < = nesting depth of
task to be activated, and the addresses of the first and last
instructions of the task program. Further, the Temporaries and
Valid Parameter Masks (register 0) are cleared, the stack index
is set to zero, and the exception mode of the task is set to
ELABORATION. This completes the transfer of program control to
the task to be activated. The task program starts with a group
of instructions that activates (elaborates the declarative part
of) the created task. The 1instruction, END ACTIVATION or END
ELABORATION -AND ACTIVATION, returns control to the activating
task or subprogram.

If a return to the activating task or subprogram is made because
an error occurred during the activation of the created task (or
if an error occurs during the execution of the ACTIVATE TASK
instruction prior to transfer of control to the task program for
activation), the created task becomes COMPLETED and TASKING_ERRCR
pending is set in the activating task or subprogram. When all
the created subcomponent tasks have been activated, the END
ACTIVATION instruction is executed.’ The ensuing action depends
on whether a task or subprogram is executing and is described in
the END ACTIVATION instruction (see Section 9.4.4).

Exceptions:
PROGRAM_ERROR
CONSTRAINT_ERRCR

(R ROTUE TR o Ol T2 s or s
e 2 e et e BT

&

9.4.3 END ELABORATION,

_Format: 7By
Mnemonic: NELAB

Operands:
None

Function: g i

This instruction marks the end of elaboration of the declarative
part of a task or subprogram. The exception mode is changed from
ELABORATION to ACTIVATION. Subcomponent tasks created during the
elaboration (with no errors) are now ready to be. activated.

Exceptions:
None

AP R ST N
‘.&u:-_‘f-";"_haﬂﬁi“'

jol e 2%] LRt V0, Wi [Snf e gty TrAnb Sp i G R i iy ot Sy e - itind PRy~ Selar Stk i Wit dan i i Pl 2 o e e e PR T e R e G L s L M gl el hd) Aandl el e shefl et s "‘-I“
9.4.4 END ACTIVATION.
Format: 7Cy
Mnemonic: NACTV
Operands:
None
Function: ;
This instruction marks the end of a series of one or more
ACTIVATE TASK instructions. If TASKING_ ERROR pending in the

executing subprogram or task is not true (no errors), the
instruction proceeds as follows:

(a) If a subprogram is executing, its exception mode is changed
from ACTIVATION to NORMAL and execution continues.

(b) 1f a task program 1is executing, the task has been properly
activated. The exception mode is changed from ACTIVATION to-
NORMAL and the dynamic components of the machine state (see
Section 9.2) are saved in the activated task's administrative
data area, allowing proper resumption of execution when the
activated task is scheduled to run, Prior to invoking the
scheduler, a few additional administrative functions are
performed to return control to the task or subprogram that

activated this task. The link to the administrative data area of

the task or subprogram that activated this task (saved in the

activated task's administrative data area by the ACTIVATE TASK or

the EVALUATE ALLOCATED TASK instruction) 1is retrieved and used,

in turn, to retrieve the machine state (dynamic and static

components) of the task or subprogram (see Section 9.2). The

scheduler is then invoked. i

Note: The scheduler will assign the READY state to the activated
task and append it to the tail of the ready queue that
corresponds to its priority level. On the queue, the task is
identified by the address of its administrative data area.

If TASKING_ERROR pending 1is true (an error occurred during the
activation of a subcomponent task), then a TASKING_ERROR is
raised if a Subprogram is execut1ng. If a task is executing
(call it task A), -it is COMPLETED since an error occurred during

9-17 |

T - e - 2 p——— s
LS fpiian o ks oot i sl e e e o g e o e b e SR i e et et gl T M e = et

the elaboration of its declarative part. A return is made to
task A's point of activation in another task program oOr
subprogram (call it program B). The return 1is effected by
restoring the state of program B, known via the link to its
administrative data area (that had been saved in the
administrative data area of task A when task A was activated).
TASKING_ERROR pending is set in program B; then, other
subcomponent tasks of program B, if any, are activated followed
by END ACTIVATION, etc.

Exceptions:
PROGRAM_ERROR

S N R R T O N S R R A R R Y R Y R T N O R N R T N N S A A Y Y A S R S N R N I R R T D T T e v

9.4.5 END ELABORATION AND ACTIVATION.
Format: 7Dy
Mnemonic: NELACT

Operands:
None

Function: .
This instruction is used at the end of the elaboration of the
declarative part of a task or subprogram when no subcomponent
tasks were created, 1i.e., when there 1is no activation of
subcomponent tasks. Hence, the end of elaboration and activation
are coincident. The instruction proceeds as follows:

(a) If a subprogram is executing, the exception mode is changed
from ELABORATION to NORMAL and execution continues.

(b) If a task is executing, it has been properly activated. The
exception mode is changed from ELABORATION to NORMAL and the
dynamic components of the machine state (see Section 9.2) are
saved in the activated task's administrative data area, allowing
proper resumption of execution when the activated task is
scheduled to run. Prior to 1invoking the scheduler, a few
additional administrative functions are performed to return
control to the task or subprogram that activated this task. The
link to the administrative data area of the task or subprogram
that activated this task (saved in this task's administrative
data area by the ACTIVATE TASK or EVALUATE ALLOCATED TASK
instruction) is retrieved and wused, in turn, to retrieve the
machine state (dynamic and static components) of the task or
subprogram (see Section 9.2). The scheduler is then invoked.

Note: The scheduler will assign the READY state to the activated
task and append it to the tail of the ready queue that
corresponds to its priority level. On the queue, the task is
identified by the address of its administrative data area.

Exceptions:
PROGRAM_ERROR

[= oty =

i" \ T \ SRS &,
o J‘ \.‘\. L.- L";_.;_A_._‘:-_'._';!-uf-«':}: | Y W, --"? SN

TETT TR

R R L T T T R T e T L N L e S s A N e e e T T r e e e R T T N TP TR NN SN AV WS A wLa

9.4.6 EVALUATE ALLOCATED TASK OBJECT.
Format: 7By, S1, S2, D

Mnemonic: EVALTO

Operands:
Sl Task Program Identification
FMT: immediate (EXT,2) or memory (0) %

Immediate: S1 specifies an offset to a .task program
component in the local package header.

Memory: S1 addresses a pointer to a program (task
program) in an external package.

S2: Master . .
FMT: immediate (EXT,2) or memory (0)

Immediate: S2 specifies a local master via its
nesting depth (ADS).
Memory: S2 addresses a pointer (no 'specific
’ authority required) to an external
package master (library package).

D: Pointer to Created Task Object
FMT: memory (0)
D addresses a pointer in the local
package that is assigned to point to
the created task object

Function: ' :

This instruction creates and causes the activation of a task
object. The offset to the task program component (Sl) is an
immediate value or is contained in the pointer to the external

task program. (This pointer must have READ authority for the

task program.) The offset is subtracted from the base address of

the header of the local or external package, the former derived

from display register 0, the latter retrieved from the pointer to

the task program. The result 1is the address of a 5-word packet

of information pertinent to the task, from which the size of the

task's activation record, the absolute address of the task's
automatic data template, the addresses of the first and last
instructions of the task program, and the task's nesting depth,
priority level, and number of entries are retrieved. Space for -
the activation record and the administrative data area are
allocated in data value memory-. The size . of the administrative
data area is a fixed value + 16* number of entries, thus allowing
a maximum of 16 customer tasks to be queued on each entry. All
the quantities retrieved from the package header (except the
first two listed) are now saved in the created task's
administrative data area for easy access when the task is
scheduled. In addition, the display register environment of the

R ORTN Y

o WS TS SO RO R ks b D S RS M e e SR S i S A e i s Bia B

created task's task program is established and saved as described
in detail for the CREATE TASK OBJECT instruction (see Section
9.4.1). S2 specifies the package, task, or subprogram that is
the created task's master. It may be any enclosing activation,
the enclosing package, or an external (library) package. The
number of entries, Ng, restricts any rendezvous with this task
to entry numbers 0..Ng-1. The pointer addressed by D is given
READ, WRITE, and DESTROY authorities. The absolute addresses of
the task's automatic data template and activation record are
loaded into words 2 and 3 of the pointer, respectively. This is
now the pointer to the created task object (ENT = 101).

Following these actions associated with creating the task, the
task is activated by executing what corresponds to the
declarative part of the task body 1in Ada. Prior to transferring
program control to the created task's task program for
activation, the following administrative steps are performed:

e A link to the administrative data area of the activating task
or subprogram is stored in the administrative data area of the
created task; this allows a return to the environment of the
activating task or subprogram when the created task has been
successfully activated or if an error occurs during its
activation,

e If a task is executing, the dynamic machine state components
are saved in the executing task's administrative data area. 1If a
subprogram is executing, the dynamic components of the machine
state are saved in the subprogram's administrative data area; the
static components are saved only if the Static Save Flag is "0"
(see Section 9.2). .These actions permit proper resumption of
execution of the activating task or subprogram when the created
task has been successfully activated.

The initial machine state of the task to be activated is next
established. Since the quantities retrieved from the package
header are available (i.e., do not have to be read from the
administrative data area as in the ACTIVATE TASK instruction) and

9=21

OO O)
RO XS S I

'."“WWT‘TWT'TWW?Q?7-’ L A A (A N s St

..

the display register environment was established earlier, all
that remains to be done to complete the transfer of program
control to the task being activated 1is to clear the Temporaries
and Valid Parameter Masks (register 0), set the stack index to
zero, and set the execution mode of the created task to

ELABORATION. The task program starts .with a group of -
instructions that activates (elaborates the declarative part of)
the created task. The 1instruction, END ACTIVATION or END

ELABORATION and ACTIVATION, returns control to the activating 4
task or subprogram.

Response to an error depends on the exception mode existing when
the EVALUATE ALLOCATED TASK instruction 1is executed and on
whether this instruction 1is contained in a task program or a
subprogram.

(a) ELABORATION mode, subprogram executing

If an error occurs while the task is being created, creation is
abandoned and all tasks previously created during this
elaboration but not yet activated are terminated. Hence, this
instruction (as any instruction executing in the ELABORATION
mode) has access to the chain of tasks created but not activated,
as described in the CREATE TASK OBJECT instruction. The
subprogram returns to its point of call where the exception is
raised. ~ .

If the task was successfully created but a return from its
activation is made with a TASKING_ERROR pending, the created task
becomes COMPLETED, all tasks previously created during this .
elaboration but not yet activated are terminated as discussed
above, and the subprogram returns with a TASKING_ERROR raised at
the point of call.

(b) ELABORATION mode, task executing

Handling of errors is the same as (a) except that the executing
task is marked as COMPLETED and a TASKING_ERROR pending condition
is returned to the executing task's point of activation.

(c) NORMAL mode
Response to errors again depends on whether a subprogram or task
program is executing as described in Section 1l on Exceptions.

Exceptions:
PROGRAM_ERROR . |
STORAGE_ERROR .

P ¢ e o
[P N

AR P LR POy
RS ANNE SIS PSS IORN

-

R e N e e e e R T T T T T T T

9.4.7 CALL ENTRY.

Format: T S, "8R . S3 .,

Mnemonic:
Operands:
Sl: Pointer to Server Task
FMT: . memory (0)
S1 addresses- a pointer to the server
task. :
S2: Entry Number of Server Task
FMT: memory (0) or Immediate (EXT,2)

Note: 1If no parameters are passed via memory transfer,
then no additional operands are present in this
‘instruction.

S3,...: Actual Parameters
FMT: memory (0) or immediate (EXT,2)

Note: Any number of parameters may be passed via memory
transfer. Any two may be combined in a 2-operand compact
format. :

Function: _ !
This instruction calls the entry, given by S2, of the server task
identified by the pointer addressed by Sl. The pointer must have
READ authority for the server task. The number of entries, Ng,
is retrieved from the server task's administrative data area and
the following condition must be met (else a CONSTRAINT_ERROR is
raised): i
0<=S2<=Ng-1.

As with the CALL instruction, CALL ENTRY is processed only up to
the actual parameter operands; thus, the execution resumption
address (value in the program counter) that 1is saved in the
customer task’'s administrative data area when the customer is
SUSPENDED addresses the word following operand S2 (entry number
of server task). Parameters that are to be passed by memory are
bound during execution of the BIND PARAMETERS instruction (first
instruction of the ACCEPT body) which requires access to both
actual and formal parameters. BIND PARAMETERS completes the
processing of the operands in the CALL ENTRY instruction,

9-23

irameters that are passed by registers are loaded into parameter
igisters (16..31) at some points during execution of the
istomer task program. During CALL ENTRY, the registers
ecified in the Valid Parameter Mask (see Section 6.2.1) are
ived (as part of the dynamic machine state) in the customer
1isk's administrative data area. These values are restored in
1@ registers by the server task when the instruction, ACCEPT
ITRY or SELECT ACCEPT, is executed provided that a customer task
5 queued on the accepted entry.)

axt, actions (a) and (b)), actions (a) and (c), or action (d)
ikes place with the assistance of the task scheduler:

1) The customer (executing) task's state is changed from RUNNING
> SUSPENDED and the customer task 1is placed at the tail of the
1try queue for entry S2 of the pointed-to task. All dynamic
omponents of the machine state are saved in the administrative
ata area of the queued 'customer task. (Note that if a
sbprogram had executed the CALL ENTRY instruction, the static
omponents of the state would also be saved if the Static Save
lag is "zero".)

b) If the server task is SUSPENDED and marked as waiting for a
all of entry S2 (it had executed an ACCEPT ENTRY instruction but
o task had called that entry or 1it. had executed a WAIT
nstruction after being marked during a SELECT ACCEPT instruction
s waiting for a call of entry S2), its state is changed to READY
nd it is placed at the tail of the ready queue corresponding to
he higher priority of the customer and server tasks. If an Ada
elective Wait statement had been programmed, several SELECT
CCEPT instructions could have been executed prior to WAIT. In
rder for the server to resume execution at the proper SELECT
CCEPT instruction (when the server 1is next scheduled to run),
he SELECT ACCEPT instruction must save 1its own address in a
edicated location in the server's administrative data area.
ach such location corresponds to the accepted entry number.
During execution of ACCEPT ENTRY, the address of the ACCEPT
NTRY instruction is also saved in a location corresponding to
he entry number.) Then, during execution of CALL ENTRY, after
t is determined that the server task 1s marked as waiting for a
all of this entry (S2), the address of SELECT ACCEPT (or ACCEPT
NTRY) that corresponds to S2 1is transferred to the location that
ontains the "execution resumption address" of the server task.
his ensures that when the server task 1is scheduled to run, it
ill resume execution at the proper SELECT ACCEPT (or ACCEPT
NTRY) instruction and a rendezvous will successfully begin. The
erver task ceases to be marked as waiting for any entry to be
alled or delay to expire. Then, all subsequent calls are placed
n the proper entry queue without <changing the server task's
xecution resumption address.

» & @1 e ——— —
PEAiR P S o e i e i o R i i i e i i b o T i

...... o Tt~ T el i sl e St e B i e o S

Note: When the server task 1is scheduled to run, the rendezvous
will proceed (parameters passed to ACCEPT body which is then
executed).

(c) If the server is READY and is marked as waiting for a call of
entry S2 (it had executed a SELECT ACCEPT instruction but no
customer task had called the entry), the address of SELECT ACCEPT
is moved to the 1location that contains the server's execution
resumption address as described above and the server task ceases
to be marked as waiting for any entry to be called or delay to
expire. The server task is moved to the ready queue
corresponding to the customer task's priority if that priority
level is higher than the server task's level. The rendezvous
proceeds as described in the Note under (b) above.

(d) 1f the server task is not SUSPENDED on entry S2 nor READY and
marked as waiting for a call of entry S2, only the actions
described in (a) above take place.

If the server task 1is COMPLETED when one of 1its entries is
called, a TASKING ERROR is vraised 1in the customer task at the
point of call. If <customer tasks are SUSPENDED on entry queues
of a server task which becomes COMPLETED before accepting any
call, the task scheduler removes the customer tasks from the

queues and changes their state to READY. In each of these
customer tasks, TASKING_ERROR pending is set. (The exception is-
raised as each task is scheduled to run.) If an exception is

raised while the ACCEPT body 1is executing, the local exception
handler is entered. If, however, no local handler is defined for
the ACCEPT body, the exception 1is raised 1in the server task
following the ACCEPT ENTRY or SELECT ACCEPT 1instruction.
Further, the scheduler 1is 1invoked which changes the customer
task's state to READY. TASKING_ ERROR pending 1is set. If the
customer task is SUSPENDED 1in rendezvous (ACCEPT body executing)
when the server task becomes abnormally COMPLETED, the scheduler
changes the state of the customer task to READY and TASKING_ERRCR
pending is set in the customer task. If the customer task 1is
SUSPENDED on an entry queue when it becomes ABNORMAL, the
scheduler removes it from the queue and immediately changes its
state to CCMPLETED. 1f, however, the customer task becomes
ABNORMAL during a rendezvous, the rendezvous is finished and then
the scheduler changes the customer task's state to COMPLETED.

Exceptions:
PROGRAM_ERROR
CONSTRAINT_ERROR
TASKING_ERROR

TR AT S SR S 100 S SR S e YAV T b’
E LA

O 45 - AT Rl o T i i < g T 0T,

9.4.8 CALL ENTRY CONDITIONALLY.
Format: 80y, S1, S2, S3, s4,...

Mnemonic: CALENC

Operands:
Sl: Pointer to Server Task :
FMT: memory (0) ' h
S1 addresses a pointer to the server
task.
S2: Entry Number of Server Task
= FMT: memory (0) or immediate (EXT,2)
? S3: Label
; FMT: immediate (EXT,2), interpreted as a label operand

Note: If no parameters are passed via memory transfer,
then no additional operands are present in this
instruction. . -

- S4,...: Actual Parameters
% FMT: memory (0) or 1mmed1ate (EXT, 2)

Note: Any number of parameters may be passed via memory
transfer. Any two may be combined in a 2-operand compact
format. : :

Function: :

This instruction attempts to call the entry, given by S2, of the -
server task identified by the pointer addressed by Sl. The

pointer must have READ authority for the server task. The number

of entries, Ng, is retrieved from the server task's

administrative data area and the following condition must be met

(else a CONSTRAINT_ERROR is raised):

SN N

0<=S2<=Ng-1.

- As with the CALL instruction, when parameters are passed via
3 memory, CALL ENTRY CONDITIONALLY 1is processed only up to the
i actual parameter operands; thus, the execution resumption address .
(value in the program counter) that 1is saved in the customer
task's administrative data area when the customer is SUSPENDED J

e e MRl T) . Fun g e sl e S i B e o il e .
s T The Ta Tl R e e TR I® s st it s al b o et m e crs St D e T N RV, ST

T W B W Vs W VI TS W TN

addresses the word following operand S3 (label). Parameters that
are to be passed by memory are bound during execution of the BIND |
PARAMETERS instruction , (first 1instruction of the ACCEPT body) i
which requires access to both actual and formal parameters. BIND
PARAMETERS completes the processing of the operands of the CALL
ENTRY CONDITIONALLY instruction.

Parameters that are passed by registers are loaded into parameter
registers (16..31) at some points during execution of the
customer task program, During CALL ENTRY CONDITIONALLY, the
registers specified in the Valid Parameter Mask (See Section
6.2.1) are saved (as part of the dynamic machine state) in the
customer task’'s administrative data area. These values are
restored in the registers by the server task when the
instruction, ACCEPT ENTRY or SELECT.ACCEPT, is executed provided
that a customer task is queued on the accepted entry.

Program control 1is immediately transferred to the absolute
address of the first instruction of the customer task program +
the label offset, S3, if either of the following conditions is
true: :

(a) One or more customer tasks are élready queued (waiting for
service) at entry S2 of the server task.

B R s

(b) The server task is not marked as waiting for a call of entry
82.

. . E—

If neither of the above conditions 1is true, a rendezvous is
: possible. The task scheduler is 1invoked and actions (a) and (b)
i or (a) and (c) take place:

(a) The customer (executing) task's state is changed from RUNNING
to SUSPENDED and the customer task 1is placed at the head of the
entry queue for entry S2 of the pointed-to server. All dynamic
; components of the machine state are saved in the administrative
i data area of the queued customer task. (Note that if a
7 subprogram had executed the CALL ENTRY CONDITIONALLY instruction,
the static components of the state would also be saved if the
Static Save Flag is "zero".) ' :

(b) If the server task is SUSPENDED and marked as waiting for a

call of entry S2 (it had executed an ACCEPT ENTRY instruction but

no task had called that entry or it had executed a WAIT
instruction after being marked during a SELECT ACCEPT instruction

as waiting for a call of entry S2), .its state is changed to READY

and it is placed at the tail of the ready queue corresponding to

the -higher priority of the customer and server tasks. As l
described for the CALL ENTRY instruction, the address of the

—— - B @ awm— e

RSB el S ST S e R 5 Sl S e % o AL g i i B i N T i i s il A e e T sk i Bk e Rl A 4 -
e i i SRS s S S Y & P v R A A A ST B SR A A i e S i o i TR S At e T Sl T o it Sttt S

SELECT ACCEPT (or ACCEPT ENTRY) instruction corresponding to
entry S2 is transferred to the location in the administrative
data area of the server task that contains the "execution
resumption address" of the server, The server task, when
scheduled to run, will resume execution at the proper SELECT
ACCEPT (or ACCEPT ENTRY) instruction. The server task ceases to
be marked as waiting for any entry to be called or delay to
expire.

Note: When the server task 1is scheduled to run, the rendezvous
will proceed (parameters passed to ACCEPT body which is then
executed). : W

(c) If the server task is READY and 1is marked as waiting for a
call of entry S2 (it had executed a SELECT ACCEPT instruction but
no customer task had called the entry), the address of SELECT
ACCEPT of entry S2 is moved to the location that contains the
server's execution resumption address as described above and the
server task ceases to be marked as waiting for any entry to be
called or delay to expire. The server task is moved to the ready
queue corresponding to the customer task's priority 1if that
priority level is higher than the server task's level. The
rendezvous proceeds as described in the Note under (b) above.

If the server task 1s COMPLETED when one of 1its entries is
called, a TASKING _ERROR is raised in the customer task at the
point of call. 1If an exception 1is raised while the ACCEPT body
is executing, the local exception handler 1is entered. If,
however, no local handler 1is defined for the ACCEPT body, the
exception is raised in the server task following the ACCEPT ENTRY
or SELECT ACCEPT instruction. Further, the scheduler is invoked
which changes the customer task's state to READY. TASKING_ERROR
pending is set. If the customer task is SUSPENDED in rendezvous
(ACCEPT body executing) when the server task becomes abnormally
COMPLETED, the scheduler changes the state of the customer task
to READY and TASKING ERROR pending 1is set in the customer task.
If the customer task becomes ABNORMAL during a rendezvous, the
rendezvous is finished and then the scheduler changes the
customer task's state to COMPLETED.

Exceptions:

PROGRAM_ERROR .

CONSTRAINT ERROR

TASKING_ERROR .
ERPL

o o 3 -I .'- - el .‘ - T -'. ‘l L3 't &
ERRLHIRRNET, LTt X 0K, 08 DG G O

e AT T R 7 L R Vb i P il

9.4.9
Format:
Mnemonic:
Operands:

Sl:
FMT:

S2:
FMT:

S3:
FMT:

S4:
FMT:

Note:

~ o PR et

ER L SR S ety A i i g B By BT ~a e B R e i va i o0

CALL ENTRY WITH TIMEOUT
81y, S1, S2, s3, S4, S5,...
CALENT

Pointer to Server Task
memory (0)
" S1 addresses a pointer to the server
task.

Entry Number of Server Task

memory (0) or immediate (EXT,2)

Label
immediate (EXT,2), interpreted as a label operand

Delay Amount

memory (0) or immediate (EXT,2)

If no parameters are passed via memory transfer,

then no additional operands are present in this
instruction.

Ss,...:
FMT:

Note:

Actual Parameters

memory (0) or 1mmed1ate (EXT, 2)

Any number of parameters may be passed via memory

transfer. Any two may be combined in a 2-operand compact

format.

'n’-‘o’fb
0

P et . . ve 2 ‘ . THC T (TSR RO R T3 b
'J'J'J.'J'J'I}J‘.f:V}‘}fnf -f x‘.ﬂf' .'- t-' . -\ rah g sty Jte

9-29

v.--.v.r-.' .-

CR e I e R Sa" Rt RN .TK-T

T e e e A N R A TN SO SR e IR e L e s T s At iia ine e B des Mo m i B ram s la? i 8 B e e TR T A s R R T

5! 3 o* .i‘.o .n'o.o '.-‘_. - oS " ..'- . T T o L e - - - . e .. - ~ - -
T TP S e R A L L L AR A AT AN

Function:

This instruction attempts to call the entry, given by S2, of the
server task identified by the pointer addressed by S1. The
pointer must have READ authority for the server task. The number
of entries, Ng, is retrieved from the server task's
administrative data area and the following condition must be met
(else a CONSTRAINT_ERROR is raised):

0<=S2<=Ng-1.

As with the CALL 1instruction, CALL ENTRY WITH TIMEOUT is
processed only up to the actual parameter operands; thus, the
execution resumption address (value in the program counter) that
is saved in the customer task's administrative data area when the
customer is SUSPENDED addresses the word following operand S4
(delay amount). Parameters that are to be passed by memory are
bound during execution of the BIND PARAMETERS instruction (first
instruction of the ACCEPT body) which requires access to both
actual and formal. parameters. BIND PARAMETERS completes the
processing. of the operands of the CALL ENTRY WITH TIMEOUT
instruction. '

......

Parameters that are passed by registers are loaded into parameter .

registers (16..31) at some points during execution of the
customer task program. . During CALL . ENTRY WITH TIMEOUT, the
registers specified in the Valid Parameter Mask (See Section
6.2.1) are saved (as part of the dynamic machine state) in the
customer task's administrative data. area. These values are
restored in the registers by the server task when the
instruction, ACCEPT ENTRY or SELECT ACCEPT, is executed provided
that a customer task is queued on the accepted entry.

The delay amount, S4, is specified in units of 50 micro-seconds.
If the delay is zero or negative, execution of this instruction
is the same as CALL ENTRY CONDITIONALLY. If the delay is
positive, the task scheduler changes the state of this (customer)
task to SUSPENDED and puts it on the entry queue for entry S2 of
the pointed-to server; timing of the delay begins. All dynamic
components of the machine state are saved in the administrative
data area of the queued customer task. (Note that if a
subprogram had executed the CALL ENTRY WITH TIMEOUT instruction,
the static components of the state would also be saved if the
Static Save Flag is "zero".) -If the pointed-to server task is
not marked as waiting for a call of entry S2 and does not execute
a SELECT ACCEPT or ACCEPT ENTRY instruction before the delay
expires and/or if other customer tasks are queued on entry S2 up
to the time the delay expires, then no rendezvous takes place.

‘.
»

LIRS
W Ve

A ™
NS,

P el il e AR Sl 3 B

The scheduler changes the state of the customer task to READY and
removes 1t from the entry queue. The execution resumption
address stored in the administrative data area of the customer
task becomes "address of first instruction of customer task +
label offset, S3".

When conditions do permit a rendezvous, the task scheduler is
invoked and the actions in (a), (b), or (c) take place:

(a) If the server task is SUSPENDED and marked as waiting for a
call of entry S2 (it had executed an ACCEPT ENTRY instruction but
no task had called that entry or it had executed a WAIT
instruction after being marked during a SELECT ACCEPT instruction
as waiting for a call of entry S2), its state is changed to READY

“et.®".elimn

and it is placed at the tail of the ready queue corresponding to

the higher priority of the customer and server tasks. As
described for the CALL ENTRY instruction, the address of the
SELECT ACCEPT (or ACCEPT ENTRY) instruction corresponding to
entry S2 is transferred to the 1location in the administrative
data area of the server task that contains the "execution
resumption address" of the server. The server task, when
scheduled to run, will resume execution .at the proper SELECT
ACCEPT (or ACCEPT ENTRY) instruction. The server task ceases to
be marked as waiting for any entry to be called or delay to
expire. : .

Note: When the server task 1is scheduled to run, the rendezvous
will proceed (parameters passed to ACCEPT body which is then
executed).

(b) If the server task is READY and 1is marked as waiting for a
call of entry S2 (it had executed a SELECT ACCEPT instruction but
no customer task had called the entry), the address of SELECT
ACCEPT of entry S2 is moved to the location that contains the
server's execution resumption address as described above and the
server task ceases to be marked as waiting for any entry to be
called or delay to expire. The server task is moved to the ready
queue corresponding to the customer task's priority if that
priority level is higher than the server task's level. The
rendezvous proceeds as described in the Note under (a) above.

(c) If the server task executes a SELECT ACCEPT or ACCEPT ENTRY
instruction for entry S2 while the delay is being timed, the
delay is reset and a rendezvous ensues as described in the Note
under (a). :

If the server task is COMPLETED or becomes COMPLETED before the
delay expires when one of 1its entries is called, a TASKING_ERROR
is raised in the <customer task at the point of call. ¢ an
exception is raised while the ACCEPT body is executing, the local
exception handler is entered. [f, however, no local handler is

e S L) g
= iy b g M= e L T

SR B BRSO E R LR = e e R e i e o i o e g o P e e e M i i e e o B T o Sy i o T S M T i e S s

defined for the ACCEPT body, the exception 1is raised in

the

server task following the ACCEPT ENTRY or SELECT ACCEPT

instruction. Further, the scheduler is invoked which changes

the

customer task's state to READY. TASKING_ERROR pending is set.
If the customer task 1is SUSPENDED in rendezvous (ACCEPT body
the
and
the
the
the

executing) when the server task becomes abnormally COMPLETED,
scheduler changes the state of the customer task to READY
TASKING_ERROR pending is set in the customer task. 8
customer - task becomes ABNORMAL during a rendezvous,
rendezvous 1is finished and then the scheduler changes
customer task's state to COMPLETED.

Exceptions:
PROGRAM_ERROR
CONSTRAINT ERROR
TASKING_ERROR

R R
b % SSRS e b e
AL/ AT

ML) e 2 il W Sh i N S A S i R B R B B |

B RE RN SEN g

9.4.10 ACCEPT ENTRY.
Format: 82y, S1, Ss2

Mnemonic: ACCEPT

Operands:

Sl: Entry Number of Server Task
FMT: memory (0) or immediate (EXT,2)
S2: Formal Parameter Mask
FMT: immediate (EXT,2)

Function:

This instruction attempts to accept, on behalf of the executing
server task, a customer task's call of the entry given by S1. 1If
one or more customer tasks are SUSPENDED on the entry queue for
entry S1, the customer task at the head of the queue is taken off
the queue (still SUSPENDED) and a rendezvous takes place. Values
in parameter registers saved in ‘the administrative data area of
the customer task during CALL ENTRY, CALL ENTRY CONDITIONALLY, or
CALL ENTRY WITH TIMEOUT are now restored in the registers. Only
those registers, if any, designated by the Valid Parameter Mask
are restored. As in the CALL SUBPROGRAM instruction, the "ls" in
the Formal Parameter Mask (operand S2) must be matched by "1s" in
the Valid Parameter Mask, else a PROGRAM ERROR exception is
raised. The instruction follow1ng ACCEPT ENTRY is the start of
the ACCEPT body; 1if parameters are passed via memory, this
instruction is BIND PARAMETERS. The exception mode of the server
task is changed from NORMAL to ACCEPT BODY. The instruction, END
RENDEZVOUS, marks the end of the ACCEPT body.

9-33

(5% 3t 3 ‘-“ \ AR AN A SRR RS ALY EoE R TR RSAT7 850" oit mEAy Sl \‘. ‘e “~ PR ~' 503 A AR SRy ®
3 3 . ~: . i B -
hC TR ET: O G SRR Cota s .L...x{&_x_:."\ P tz. 1 -{.\ OGN {""' "- ;Ln. 1."'-'.-" e ‘:‘t-'.v:_::)

b el] T e a el e T a iR il L ' N AN T t Sl \am I
e 1 o P e e DN E4 T TP, i 5 Wiy < Na L e el ah o St s e T = S e R 5 F i AP g 6 e B R

If no customer task is present on the entry queue for entry Sl1,
the server task is marked as waiting for a call to entry S1 and
the address of the ACCEPT ENTRY 1instruction 1is stored in a
location in the administrative data area of the server task
corresponding to entry S1 (to be moved to the location that
contains the "execution resumption address" of the server by the
first CALL ENTRY, CALL ENTRY CONDITIONALLY, or CALL ENTRY WITH
TIMEOUT instruction that «calls entry S1 of this server task).
The dynamic components of the machine state are saved in the F
administrative data area of the server task. The scheduler then
changes the state of the server task to SUSPENDED.

Exceptions:
PROGRAM_ERROR
STORAGE_ERROR

o 'I'. - - -
RIS IR

R R N T Y e e e o T N T T s e L o

e el N T Y Y T Ty oA e e

9.4.11 END RENDEZVOUS.
Format: 83, D

Mnemonic: ENDRNV

Operands:
D: Label Offset
FMT: immediate (EXT,2), interpreted as a
label operand.
Function: '
This instruction marks the end of the ACCEPT body and the end of
the rendezvous. The Valid Parameter Mask 1is cleared, the

priority level of the server task is 1lowered to 1its pre-
rendezvous value (if it had been raised to the customer's level
during rendezvous), the exception mode of the server task is
changed from ACCEPT BODY to NORMAL, and the "execution resumption
address" of the server task (value in program counter) is changed
to "address of first instruction 1in server task program + label
offset"” (done to handle the case when the ACCEPT body follows a
SELECT ACCEPT instruction and other SELECT alternatives must be
skipped over). Then, the task scheduler is invoked which changes
the state of the customer task from SUSPENDED to READY and places
it on its ready qQueue. A task is scheduled to run (server task
unless another task, e.g., the customer, is extant on a higher
priority ready queue).

Exceptions:
None

A G

LI L T LA j -_.-\

it e A i Sl D, S, DAR S48 65D 0 it~ Rabarbey Thin v Sty o el S) Gh AL Sl et L e i e e S i S S L M S/ bt Pl Do/l Ak agih st st Sadh @ ® 29

.32 DELAY.
mat: 84y, S

monic: DELAY

rands:

Delay Amount
MT: memory (0) or immediate (EXT,2) g
iction:

s instruction delays execution of the RUNNING task by an
wunt specified by operand S. The delay amount is expressed in
ber of seconds, up to the maximum representable by the
hine. The_quantization used 1is 50 micro-seconds. (In one
r, 1,728*106 "ticks" would occur, counting off a delay of
,400.00000 seconds.) ‘Floating point is needed to represent
itiples of .00005 seconds. If S 1is an immediate operand,
lays in units of whole seconds are represented. Negative delay
lues are interpreted as zero delay. If the delay is negative
zero, this instruction is a NO-OP. If the delay is positive,
» task is marked as waiting for a delay to expire. The task
reduler 1is invoked and the task's state 1is changed to.
SPENDED. When the delay expires, the scheduler changes the
sk's state to READY and puts it at the tail of its ready queue.
e task ceases to be marked as waiting for a delay to expire. W

ceptions:
ROGRAM_ERROR

A — "l il L
% o L- ey RS R TR LV IDR O ST
A AT T L A A N N 2 S I N AT RN A RN 3

P S L I N IR S v v e T TR e Tl e o = R N T N T X T I T T T T T UV T OV TR TR IR TR

.4.13 SELECT ACCEPT.
ormat: 85y, S1l, S2, S3

nemonic: SACCPT

perands:
S1l: Entry Number of Server Task
FMT: memory (0) or immediate (EXT,2)
S2: Formal Parameter Mask
FMT: immediate (EXT,2)
S3: Label Offset
FMT: immediate (EXT,2), interpreted as a
label operand.
unction:

Fhis instruction executes an open ACCEPT alternative of the Ada
SELECT statement. If one or more customer tasks are SUSPENDED on
an entry queue for entry S1, the customer task at the head of the
jueue 1is removed from the queue (still SUSPENDED) and a
rendezvous takes place. The server task ceases to be marked as
waiting ‘for any entry calls. Values in parameter registers saved
in the administrative data area of the customer task during CALL
ENTRY, CALL ENTRY CONDITIONALLY, or CALL ENTRY WITH TIMEOUT are
now restored in the registers. Only those registers, if any,
designated by the Valid Parameter Mask are restored. As in the
CALL SUBPROGRAM instruction, the "1ls" in the Formal Parameter
Mask (operand S2) must be matched by "1s" in the Valid Parameter
Mask, else a PROGRAM ERROR exception is raised. The instruction
following SELECT ACCEPT is the start of the ACCEPT body; if
parameters are passed via memory, this instruction 1is BIND®
PARAMETERS. The exception mode of the server task is changed
from NORMAL to ACCEPT BODY,. The instruction, END RENDEZVOUS,
marks the end of the ACCEPT body.

o R A e e

A O G SO

no customer task is present on the entry queue for entry S1,
» server task is marked as waiting for a call to entry Sl, the
lress of the SELECT ACCEPT instruction is stored in a location
the administrative data area of the server task corresponding
entry S1 (to be moved to the location that contains the
cecution resumption address” of the server by the first CALL
(RY, CALL ENTRY CONDITIONALLY, or CALL ENTRY WITH TIMEOUT
struction that calls entry S1 of this server task). Then,
>gram control is transferred to the address of the first
struction of the server task program + label offset. (In this
se, other SELECT alternatives should be evaluated or, if none
1 there are no instructions corresponding to an ELSE part, the
[T instruction should be executed.)

zeptions:
ROGRAM_ERROR
FORAGE_ERROR

e W e -
e

Ml S R S G e B P R TR S Sde SR PR e SR

.4.14 WAIT,
ormat: 86y
nemonic: WAIT

peraﬁds:
None

unction: ;
'his instruction 1is executed when one or more open ACCEPT

lternatives were selected by the executing (server) task but no
ustomer tasks were queued on entries and no other open SELECT
ilternatives or an ELSE part were present. The server task,
wreviously marked as waiting for a call of an entry corresponding
0 each ACCEPT alternative, 1is now SUSPENDED by the task
,cheduler. When one of the entries 1is called, the scheduler
‘hanges the server task's state to READY, the task ceases to be
\arked as waiting for any entry call, and a rendezvous with the
:aller (customer task) ensues as soon as the server task is
sjcheduled to run. If the server task is not marked as waiting
‘or any entry call, the PROGRAM_ERROR exception is raised.

ixceptions:
PROGRAM_ERROR

R AR L S LR AR i U AC B DD e SIS IO RRE S e g A S A, PO ISR, Y S R e e v B T A T Pt e B O 0 € T, Tt s T 50 S g e i PRSP e ‘1

TITE C o o
e

9.4.15 SELECT DELAY.
Format: 874, S

Mnemonic: SDELAY

Operands: :
S: Delay Amount
Y FMT: memory (0) or immediate (EXT,2) .
i Function: :

This instruction executes an open DELAY alternative of the Ada
SELECT statement. Execution of the RUNNING task is delayed by an
amount specified by operand S. The delay amount is expressed in
number of seconds, up to the maximum representable by the
machine. The quantlzatlon used 1is 50 micro-seconds. (In one
‘ day, 1, 728*10% "ticks" would occur, counting off a delay of
1 86,400.00000 seconds.) Floating point is needed to represent

mu1t1p1es of .00005 seconds. If S is an immediate operand,
delays in units of whole seconds are represented. Negative delay
values are interpreted as zero delay. If the delay is negative

or zero, the instruction immediately following SELECT DELAY is
executed. If the delay is positive, the task. is marked as
waiting for a delay to expire and the dynamic components of the
machine state are saved 1in the administrative data area of the
task. The task scheduler is then invoked and the task’s state is
changed to SUSPENDED. The task may also have been marked as
waiting for a call of one or more of is entries. The task
scheduler is again invoked when an entry of this task is called
or the delay expires, whichever occurs first. Then, the state of
the task is changed to READY, the task ceases to be marked as
waiting for any delay expirations or entry calls, and, when the
task is scheduled to run, the machine state is restored and the
task either enters a rendezvous with a caller (customer) or
continues execution at the instruction immediately following
SELECT DELAY. (A GOTO instruction can be used at the end of the
sequence of instructions following SELECT DELAY to skip over
other SELECT alternatives.)

: Exceptions:
PROGRAM_ERROR

- 9'40

e -\-

1 Y ’l' . [= o T T N N R RN Rt AN T Ty S Y e N O BT L S TRy TR S Y
8 A R PO -‘-."-."-.' PO GO L IS -"'“"”-. s'\‘\'-s L S R R AR LA T T SR LRGNy

9.4.16

Format:
Mnemonic:

Operands:
None

Function:
This

executed.

Exceptions:

None

instruction
alternatives were selected but no
and no other SELECT alternatives

to be marked as
corresponding to the ELSE sequence

SELECT ELSE.
88y
SELSE

is executed when one or more open ACCEPT
callers were queued on entries
were present. The task ceases
entry call., The instructions

of statements in Ada are next

waiting - for any

B T T L ST LT T P o I Tr e R T SR e S S SR Sy G
- - - . L) 2. a"% * - ., %o - g - e RIS O el X s - o°% o e et T e te e e Lt e,
PPN N, R 16 AP OR O R KT OO T L S I R0 G P & T E I A AT L L ot Lo el Tt I R TR A e s '-‘:ﬂ

[o-sa foatl —op ok PO il A et

. ‘;.- Y \‘\\'

9.4.17 SELECT TERMINATE.
Format: 89y
Mnemonic: STERM

Operands:
None

Function:

This instruction executes an open TERMINATE alternative of the
Ada SELECT statement. If the termination conditions .as described
in Appendix C are met, the task becomes TERMINATED. Storage for
the task object's activation record 1is reclaimed. Further,
storage is reclaimed for any data object that designated this
task in a CREATE DATA OBJECT instruction. (Designation of the
task in the CREATE DATA OBJECT instruction means, at the Ada
program level, that the data object's access type was declared in
the task program.) If any customer tasks are queued on entries
of this server task, the scheduler removes them from the entry
queues, changes their state from SUSPENDED to READY, and sets
TASKING_ERROR pend1ng in each. If the termination conditions are
not met, the task is marked as potentially terminated and the
task scheduler is invoked which changes the state of the task to
SUSPENDED. This (server) task may also be marked as waiting for
entry calls (if it had previously executed SELECT-ACCEPT
instructions with no queued customer tasks). Then, if a call to
one of the marked (ACCEPTed) entries arrives before the
termination conditions are met, the scheduler changes the task's
state from SUSPENDED to READY, the task ceases to be marked as
potentially terminated and waiting for any entry call, and a
rendezvous ensues as soon as this server task is scheduled to
run. If the termination conditions are met before a call to a
marked entry arrives, the task is TERMINATED by the task
scheduler and any customer task queued on an .unmarked (not
ACCEPTed) entry of this server task 1is removed from the queue
with its state changed to READY and TASKING_ERROR pending set.

Exceptions:
None

9-42

-J.'\.\‘\.\,‘-".“*'h)\".'-’.\‘,c.‘-,-"\-.\ > \J"’.' \. W \...., .7.\‘ -

Al Sefl o § A TS B8 i d w8 b S P B S e i

9.4.18 RETURN from TASK.

Format: 8AK{
Mnemonic: RETTSK

Operands:
None

Function:

This instruction s1gnals the normal complet1on of a task program.
The task becomes COMPLETED but must wait to be TERMINATED until
each of its dependent tasks, if any, becomes TERMINATED. When
TERMINATED, storage for the task object's activation record is
reclaimed. Further, storage 1is ‘reclaimed for any data object
that designated this task in a CREATE DATA OBJECT instruction.
(Designation of the task in the CREATE DATA OBJECT instruction
means, at the Ada program level, that the data object's access

type was declared in the task program.) The task scheduler is
invoked to schedule another task.

Exceptions:
None
9-43
..'f'-‘~.-’ ::.‘-'_ [P a e il o R OR -" ."_'. OSSR e T TR AL el ~ o T e ~
' 1) Y R S eI L R S S R Y .Il 'm‘,x‘.x'.&'*-‘s A


~~~~~~~~~

N R A N W o N N L Y L N e e L T L s R A T,

9.4.19 SCHEDULE TASK.
Format: 8By, D

Mnemonic: SCHDL

Operands: -
D: Pointer to Task
FMT: memory (0)
D addresses a pointer to the next task to
be scheduled.
Function:

The pointer, which must have WRITE authority, designates the next
task to be scheduled. ' This task is placed at the head of the
highest priority ready queue. Individual task priority, if any,
that was assigned by the compiler and written in the package
header for the task, is ignored. If the designated task is not
READY, a PROGRAM_ERROR exception is raised.

Comment:

This instruction, which explicitly schedules a task regardless of
task priority, is meant to be part of a user scheduler task that
replaces the standard Ada-specific microcode scheduler. This
microcode reduces to a single function: whenever a task changes
state and the microcode is entered (meaning that a scheduling
decision must be made, per Section 9.2), the user scheduler task
is always scheduled for execution; the state of the scheduler is
changed from SUSPENDED to RUNNING. To exit, .the user scheduler
executes a DELAY instruction, suspending itself for an "infinite"
duration. (As indicated above, this state is overridden when the
microcode schedules the scheduler task.)

Exceptions:
PROGRAM_ERROR

gate Bk Zap Ay 0 T2 TIAY e i T2 P8, T e e N oA > =6 0, ey .
PGP T PN AR | LfL".'fg'::':L"fL.".. phl e "n.._"'L" ‘-".- AL, s._f_-.": '.Q:{L'k‘g:'.L"A_'-A_'..'_'.-' _:.:;_'.,'_._f_._",;_' 2.2 4% " a0




b

s Wig ¥ RSyt Gl n N 6 | Sp 8 Ra B AL S vt Tt Spil sl Bt S0y, il b S Sl SR AR B Uil e A7 e AT S S S S A i e Sl A e e

ce e lele Tet s CLE N TE T T T WL RS WD

9.4.20 SET TASK DURATION.
Format: 8Cy, S1, s2

Mnemonic: SETDUR

Operands:
Sl: Time Quantum
FMT: memory (0) or immediate (EXT,2)

Immediate: Sl spec1f1es a time quantum in units of
50 micro-seconds.

Memory: Sl addresses an 1nteger that is
interpreted as the time quantum in
units of 50 micro-seconds.

S2: Priority Level of Ready Queue
FMT: memory (0) or immediate (EXT,2)
Immediate: S2 specifies a ready queue by priority
level.
Memory: S2 addresses an integer that is
] 1nterpreted as a ready queue
priority level,

Function:

The operand designated by S1 is a positive.integer representing

the assigned time quantum for execution of tasks on the ready
queue identified by 82 via priority level. The operand
designated by S2 is an integer of value >=0. If an activated
task is not explicitly assigned a task duration, infinite
duration is assumed when the task is scheduled to run. Tasks
scheduled to run with this time quantum relinquish the processor
only when they become SUSPENDED or COMPLETED or when the state of
a higher priority task changes from SUSPENDED to READY.

Exceptions:
PROGRAM_ERROR

. (A 3 w e LT : - AN LN S S OTR AT R S RS AN
\;.é.ﬁ-~5.4-ﬁi&~t;'.ﬂ...u."; L4 L EATALLEAC

DON




[ R A N R O i L T S R R W T N N R s e T e T O P T N L WL AU S T WO 0 L WA S0 AR & e o w7 e oy

4.21 ABORT TASK.
rmat: 8Dy, D

1emonic: ABORT

perands:

D: Pointer to Task to Be Aborted

FMT: memory (0) .
unction: i &

perand D addresses the pointer to the task to be aborted; the

pinter must have DESTROY authority. If the task's state is

EADY, it is changed to COMPLETED. (However, if the task has

een created but not yet activated, it is TERMINATED.) The
ask's state is also changed to COMPLETED if the task is
USPENDED on an ACCEPT ENTRY, SELECT ACCEPT, DELAY, or SELECT
ELAY instruction. Further, if the task is a customer SUSPENDED
n an entry queue, it is removed from the queue and its state is
hanged to COMPLETED. If the task is a customer in rendezvous,
ts state is changed to ABNORMAL and the rendezvous goes to
ompletion; then, the task's state is changed to COMPLETED. In
11 cases described, when a task is aborted, every dependent task
ecomes COMPLETED or ABNORMAL, the latter only if the task is a
ustomer in rendezvous. COMPLETED tasks immediately become
'ERMINATED when all dependent tasks, if any, are TERMINATED.

f a customer calls an entry of an aborted (COMPLETED) task, a
'ASKING_ERROR exception is raised at the point of call. If a
'ustomer is SUSPENDED on an entry queue or is SUSPENDED in

9-46

..
CINPC I

e e O A R A OO
LRI NS '.LL\:-le" \ \.- .;.P’_g\ \"; .‘»'L\'L\ \.\ g\ -\ \ x\‘L\ Ld



P av i Ve ' o Ve BT WLV, aVave e vy e LYY — d Aol Wad — ~ur
[t S s T Ty R e e e i e PR R R G el e g ot S Pl e B Ll o e e B et e R g e S o e e g i i s |

rendezvous when the server task is aborted, the customer's state
is changed to READY, the customer 1is placed on its ready queue,
and TASKING_ERROR pending is set. " )

Exceptions:
PROGRAM_ERROR




Dl TIPS ST R KA DR R LR B A S Tar o g | Sa 4 G 60 940 X0 A0 A Ua Sas AL R T RN A o e s ears e S e T T T TR

10 POINTERS

A pointer can designate a storage object, a data entity in the
variable or constant global-area of ‘a package, or a subprogram,
Read, write, and destroy authorities for the pointed-to entity
are specified in the pointer. A pointer to a storage object is
returned by each instruction that creates a storage object. The
base addresses of the storage object in data template memory and
in data value memory are contained in the pointer. Table 10.1
shows the contents of the pointers returned by each "create"
instruction.

Table 10.1 Pointers to storage object.

| <==-memmm - POINTER------=--=-==—-—- > |

{Instructionl Addresses T Rights |

| i i |

| CREATE 11.---- | R, W, D |

| TASK |2.absolute address of task'sl| I

| OBJECT | automatic data template I I

| |3.absolute address of task'sl |

I | AR 3 I I

I | : | I

| CREATE [1.---- : | R, W I

| PACKAGE | 2.absolute address of VGD I |

| OBJECT | template R I

I :3.absolute address of VGD : i

|

| CREATE j1,-=--- - | R, W I

| DATA |2.absolute address of DO | I

| OBJECT | template I I

I :3.absolute address of DO I :

| . |

| CREATE |1.unique name | R, W, D |

| UNCHECKED |2.absolute address of DO I |

| DATA | template | |

| OBJECT :3.absolute address of DO | =

| |
In Table 10.1, AR = Activation Record, VGD = Variable Global
Data, DO = Data Object, R = Read authority, W = Write authority,
and D = Destroy authority. Note, 1in Table 10.1, that CREATE

PACKAGE OBJECT represents the two instructions, CREATE NON-NESTED
PACKAGE OBJECT and . CREATE NESTED PACKAGE OBJECT; both
instructions return the same pointer format. :

R RS RTINS S 50 AT e S S R R S R I o A T o . e SN L Y, Mg e W i e 0
CLOL GO AR V0 A 3 AP NN, R e D T DR KRR N N NN R RN |



..... Wi

w MR AP | 3 = T e ey - i Tl il o N Bk T i i Y
s S £ Talin g oy CENRINR A TR (R Sy T (R _ S s e i - o b i Al i b ads T o o ¥ o

o

pointer to a task object, the absolute address of the
vation record in data value memory can be used to access
es in the adjacent task administrative data. (Base address
dministrative data = absolute address of activation record

) In a pointer to a package object, the absolute address of
variable global data template can be used to access values in
adjacent package header. (Base address of header = absolute
ess of variable global data template -1.) The absolute
ess of the variable global data 1in data value memory can be
to access values 1in the adjacent package administrative
. (Base address of administrative data = absolute address of
able global data -1.) Finally, in a pointer to a data
ct, the absolute address of the data object in data value
ry can also be used to access values in the adjacent data
ct administrative data. (Base address of administrative data
solute address of data object -1.)

ecked storage deallocation, programmed at the Ada Level,
ws explicit deallocation of dynamically allocated data
cts. Execution of the 1instruction, DESTROY DATA OBJECT,
d leave dangling references (pointers to objects that no
er exist). To detect dangling references, data objects can

reated with the CREATE UNCHECKED DATA OBJECT instruction that .

gns a 24-bit unique name to the data object, stores it into
pointer, and sets the unique name flag (see pointer format 52
ion 3.4). A unique name will not be reassigned until 2
erent names have been assigned to data objects that are to be
.icitly destroyed. (Note that the normal procedure for
.roying a data object is to wait for the destruction of the
‘age object in which the Ada access type was declared.) When
i1ique name is assigned, it 1is stored in a system-wide Unique
» Table; when the pointed-to data object is destroyed, its
ue name is deleted from the table, never, in principle, to
pear. Any reference via a pointer to a data object in which
unique name flag is set requires a check for the existence. of
unique name in the table. If the unique name is not in the
.e, a CONSTRAINT_ERROR is raised.

.ructions are provided which assign values to pointers to data
.ties in the variable and constant global data of local and
'rnal packages and to non-nested subprograms in external
tages. These pointers support the Ada context clause
'H/USE). Table 10.2 shows their contents.




}

T N T T M G o s T T N T N T S T s Y . N L T T T s TS T e T s Uy Y~y s -y

Table 10.2 Explicitly assigned pointers.

fs=aensr=—nrn===5 EOMNBER: == = =i scic > |
| INSTRUCTION | ADDRESSES RIGHTS |
I ! r
|ASSIGN POINTER |1l.----

| TO GLOBAL DATA |2.absolute address of data R, W
| entity in VGD (or. CGD) (see note)
| template
|3.absolute address of data
| entity in VGD (not used for
| CGD)
| .
ASSIGN POINTER |l.---- R, W
TO EXTERNAL VGD|2.absolute address of data (see note)

|
I
I
|
|
|
|
I
|
I
I
I
| entity in VGD template of I
| external package I
| 3.absolute address of data I

| entity in VGD of external |
: package |
I
ASSIGN POINTER |1.---- :
|
I
I
I
|
|
I
I
I
I
I
I

TO EXTERNAL CGD|2.absolute address of data
| entity in CGD template of

external package

|

|3.----

|
ASSIGN POINTER |l.offset to program component R
TO EXTERNAL | in external package header
PROGRAM |2.absolute address of

| external package header

| 3.absolute address of

| external package adminis-
I trative data

x
—

In Table 10.2, VGD = Variable Global Data, CGD = Constant Global
Data, R = Read authority, and W = Write authority.

Note: The rights indicated may be further restricted by certain
conditions existing when a particular instruction that
assigns a value to a pointer is executed (see Sections
10.1 and 10.2). '

In a pointer to an external 'program (subprogram or task program
in an external package), the offset to the program component in
the package header gives the relative 1location, in number of




is, of a five-word packet of information pertinent to the
jram.

1 a data entity in the variable global data area of a local or
arnal package is referenced via a pointer, the residency bit
acts the address in data template memory (pointer word 2) or
jata value memory (word 3). When a data entity in the
stant global data area is referenced, the address in template
>ry (pointer word 2) is always used.

iters can be moved to any visible location in the local
tage and to the global data area of an external package (to
ieve linking). Pointers can be passed as parameters and can
2 their rights restricted. For security, initial values of
nters, preset by the compiler, are not permitted. Only the
nine can load values into pointers. When packages are loaded,
nter values are set to NULL (undefined bit = 1 interpreted as
L). NULL pointers designate no entity.

D and WRITE authorities for data entities simply allow the
nted-to data to be examined and modified, respectively.
ever, when these authorities appear in a pointer to a task
ect or a subprogram, their meaning depends on the particular
truction in which the pointer 1is an operand and is described
ividually for each such instruction. DESTROY authority allows
explicit destruction of certain storage objects. Present in
pointer which is an operand of a DESTROY DATA OBJECT
truction, it permits the destruction of the pointed-to data
ect. Present in a pointer which 1is an operand of an ABORT
K instruction, it permits the destruction of the TASK OBJECT
suming dependency conditions permit the COMPLETED task to
ome TERMINATED). Note that packages and activation records
never destroyed explicitly.

Section 4.4 for a description of the pointer format.

10-4
R AR RN Lt R L AN T e L R T NS A Y s et : e e e st s e et e e OO T
[ EC R N AR ST A ORICA AP VR IA SR P 2 0 s "™ sl e A - 5 CN
o0 2R A D RO L S A T A I S TR L S TR SN N IS (R I R S G L S S T R




[ s ¥om ¥y i " A0y’ $ T “Siy Ml W, R il AP Redd

1 ASSIGN POINTER TO GLOBAL DATA.
rmat e 8By, S1, D

aqmonic: ASNGPD

arands: |
bz Data Entity in Global Data Area {
FMT: memory (0)

3 Assigned Pointer

FMT: memory (0)

nction:

is instruction generates a pointer to a data entity located 1in
e variable or constant global data area of the enclosing
ocal) package. S1 is the address of the data entity. The
dress space, ADS, must be 0 or 15, designating either display
gister 0 (that contains the base addresses of the package
riable global data and its template) or display register 15
hat contains the base address of the package constant global
ta in template memory). The absolute addresses of the data
tity are computed as follows:

(a) ADS = 0

@ Address in data template memory = base address of
variable global data template + cell offset.

® Address in data value memory = base address of variable
global data + cell offset.

(b) ADS = 15

@ Address in data template memory = base address of
constant global data + cell offset. :

i@ following values are assigned to the pointer addressed by D:
(a) ADS = 0

@ WORD 1 - ENT <= 0l1 (data entity in variable global data
area).

- RIGHTS <= READ, WRITE (see Note).

® WORD 2 - Absolute address of data entity in variable
global data template.

10-5

AR IR R R LR SR S T T IL AL Y S S RO SN T R L T T T S AN L R I S L e - S =
EORIRASASRAS LR S SO L G O S S G (TR P LT LU A O A SRR AR




® WORD 3 - Absolute address of data entity in variable
global data area in data value memory.

ADS = 15

@ WORD 1 - ENT <= 100 (data entity in constant global data
area).

- RIGHTS <= READ.

® WORD .2 - Absolute address of data entity in constant
global data area.

® WORD 3 - Not used.

» If S1 addresses a pointer or a formal reference parameter,
the values in the three words of the pointer or formal
reference parameter are copied 1into the pointer addressed
by D. Hence, the rights to a data entity in the variable
global data area may be restricted <(i.e., not READ and
WRITE). If a formal reference parameter is addressed by
S1, it must have an ENT field or 011l or 100 (global data).

a pointer to a data entity in the variable global data area
:ferenced (ENT = 011), the residency bit selects the absolute
»ss in word 2 or word 3 of the pointer. When the data entity
' the constant global data (ENT = 100), the absolute address
ord 2 is always used.

»tions:
5RAM_ERROR




P i N e T T S T B T S e T T N R T e L R R e T s e e W Ty Y N T W L N L TN . W W Ly L o S W L W oW o W S 5w & W icw & .

10.2 ASSIGN POINTER TO EXTERNAL VGD.
Format: 8Fy, S1, S2, D

Mnemonic: ASNPXV

. Operands:
Sl: Pointer to External Package
BS a FMT: memory (0)
: S2: Offset to Data Entity in Var1able Global Data
: FMT: immediate (EXT,2)
| D: Assigned Pointer
] memory (0)
Function:

This instruction generates a pointer to a data entity located in
the variable global data area of an external package. Sl is the
l address of a pointer to the external package. S2 is the offset
i to the data entity in question 1in the variable global data area
of this package. The absolute addresses of the data entity are
computed as follows:

0 Address in data template memory = base of variable global
data template (retrieved from word 2 of the pointer to the
external package) + cell offset (operand S2).

o Address in data value memory = base address of variable
global data (retrieved from word 3 of the pointer to the
external package) + cell offset (operand S2).

The following values are assigned to the pointer addressed by D:

o WORD 1 - ENT <= 011 (data entity in variable global data

area).

ENE 2 008 0 0 VN ST S AL T

- RIGHTS <= READ, WRITE (See Note).

AN SRS

o WORD 2 Absolute address of data ent1ty in variable

global data template.

o WORD 3 Absolute address of data entity in variable

global data area in data value memory.

Note: The rights to the data entity are READ and WRITE only if
the pointer to the package has these rights. Lesser
rights in this pointer restrict the rights given to the
generated pointer. :

8T e T o aTIEE s 4" s ATAT L AWER,. %7,

I'J PARLE by g




RSl a et SO e

When the generated poiﬂter is referenced, the residency bit
selects the absolute address in word 2 or word 3.

Exceptions:
PROGRAM_ERROR




awe - s, S [y W T, — -
e R N A T TN I R A st s T N R iRl

S O (e i ity iy Pt Wiy i J0% P Yoo A B Srel B 4R S SR S Tl B G AAr B § g B S oY
10.3 ASSIGN POINTER TO EXTERNAL CGD.
Format: 90y, S1, S2, D
Mnemonic: ASNPXC
Operands:
Sl: Pointer to External Package
FMT:" memory (0)
S2: Offset to Data Entity in Constant Global Data
FMT: immediate (EXT,2)
D: Assigned Pointer
FMT: memory (0)
Function:

This instruction generates a pointer to a data entity located in
the constant global data area of an external package. S1 is the
address of a pointer to the external package. S2 is the offset
to the data entity in question in the constant global data area
of this package. The absolute address of the data entity is
computed as follows:

@ Address in template memory = base address of variable global
data template (retrieved from word 2 of the pointer to the
external package) + size of variable global data area
(retrieved from the package descriptor located at the address
in word 2 of the pointer to the external package -1) + cell
offset (operand S2).

The following values are assigned to the pointer addressed by D:

e WORD 1 - ENT <= 100 (data entity in constant global data
area). :
- RIGHTS <= READ.,
@ WORD 2 - Absolute address of data entity in constant

global data area.

e WORD 3 - Not used. ‘

Note: The rights in the pointer to the external package must
include READ.

Exceptions:
PROGRAM_ERROR

10-9

b-,.:l -‘ .‘.“'-.'.-.-' l.'Ih.}.'-'...~I~ -' .---.i" e ™ - 3 - S L RS B B B A N I, -\.ﬁ-\ \.\ ‘\'" al " T wm Pl I
SO I P A T VAT A'J!t'- £ A S S o R IR *'\*'3"\".". "'.(- ‘L-A\.i}_-‘.'ai";:\i\i‘{":\.ﬁ';‘ i '-':.\'L'.Q'.!.':\1\."':\1:‘\.{'.{\‘\.]




T - -
RO S St S S Sy iy 4 Ut G R L S S S B RS S T B SA R I S R e T S A, SR B A L I R L £ R B S5 AP R S i A e L P SN

10.4 ASSIGN POINTER TO EXTERNAL PROGRAM.
Format: 91y, S1, S2, D

Mnemonic: ASNPXP

Operands:
Sl: Pointer to External Package
FMT: memory (0)
- S2: Offset to Program Component in Package Header
FMT: immediate (EXT,2)
D: Assigned Pointer
FMT: memory (0)
Function:

This instruction generates a pointer to a non-nested program
(subprogram or task program) in an external package. Sl is the
address of a pointer to the external package. S2 is the offset
in the external package header to the subprogram or task program
component (a 5-word packet of information pertinent to the
program) . The following values are assigned to the pointer
addressed by D: "

® WORD 1

ENT <= 101 (prodram in external package).
- RIGHTS <= READ.,

- Offset, in number of words, to program component
in package header (operand S2).

e WORD 2 Absolute address of external package header
(address in word 2 of the pointer to the

external package - 1).

® WORD 3

Absolute address of externai package
administrative data area (address in word 3 of
the pointer to the external package -1).

Note: The rights in the pointer to the external package must 3
include READ, \ .

Exceptions: ' s
PROGRAM_ERROR




10.5 RESTRICT ACCESS RIGHTS.

Format: 92y, S1, D

Mnemonic: RSTRCT

Operands:
Sl: Access Rights Restrictions
FMT: immediate (EXT,2)
D: Pointer Whose Rights Are Restr1cted
FMT: memory (0)
Function:
This instruction lowers one or more of the authorities of the
pointer addressed by D. S1 is a 3-bit immediate operand that

controls the rights of the pointer as follows:

BIT 0: 1 - READ authority removed.

0 - no restriction imposed.
BIT 1l: 1 - WRITE authority removed.
0 - no restriction imposed.
BIT 2: 1 - DESTROY authority removed.
0 - no restriction imposed.
Exceptions:
None
10-11
‘-}-:-':-' ::.:-{: L{\‘.&;‘\ Lik’t::«:x..' -L.j. 1 L‘. mi_‘-ﬂ’ .f..l...‘ ‘.L..L_A j.f,l ‘{.‘ ..J'.N_‘ A'_‘[ c~ "’Qx ".h". ‘:h..-‘. .'. 2

[N Y

T S A :.Pr\r"j




(A AT B . L G TR AT AT e et L e N N N T N TN S I  TARTRITE TY RO TV W IS T T T Tw 11*1

11 Exceptions

An exception is an 1indication that an erroneous condition has
occurred in the execution of a program. When an exception occurs
(is "raised"), normal execution of the program unit in which the
exception occurred is abandoned and is replaced by execution of
an exception handler (see below). It is not possible to continue
or resume execution at the point at which the exception occurred.

Exceptions may be predefined or user-defined. Predefined
exceptions (see Table 11.I) are raised automatically by the
machine when the corresponding erroneous condition is detected.
User-defined exceptions may only be explicitly raised by the
RAISE instruction; the RAISE instruction can also be used with
predefined except1ons. 1/0 devices can only raise predefined
exceptions. .

An exception handler can be defined for an activation record (of
a subprogram or task program) by execution of the INITIALIZE
HANDLER instruction that specifies the address of the first
instruction of the exception handler 1in the corresponding
subprogram or task program. S

When an exception is raised during an instruction, execution of
that instruction 1is abandoned  after completing any operations
required to maintain the integrity of the machine, e.g. linking
into a queue). If a handler is defined in the current
environment (subprogram or task program), execution continues at
the first instruction of the handler; otherwise, the current
environment is terminated (after waiting for the termination of
any dependent tasks, as in the RETURN FROM SUBPROGRAM
instruction) and the exception 1is "propagated"”. 1If the current
environment is an activation record resulting from a subprogram
call, the exception is raised in the dynamically linked (calling)
environment. If the current environment is activation record of
a task program (sever task) when an ACCEPT body is executing
RENDEZVOUS extant), the exception 1s raised 1in the server task
and the customer task enters the ready state with TASKING_ERROR 1
pending is set. Special cases of except1ons corresponding to the

different exception modes are covered in detail in the text.

The exception handler can obtain the exception which occurred by
executing the RETRIEVE EXCEPTION instruction. The handler can
execute any instruction which 1is otherwise legal,including
raising the same or another exception, or any RETURN instruction.

1i=1

A S S S D G L RN AN A OIS A A SO N SNER RN A aSa 10

b S A WSO RO T i W TN N T et WO NG )
At gty "'\','.Q.'\:.{:..;"'\"_‘:z':sLl' St j



Table 1l1.I Predefined Exceptions.

-

Number Name Raised by Machine When

CONSTRAINT_

1. operand falls outside range
- ERROR

of values specified in
ASSERT RANGE INTEGER or
ASSERT RANGE FLOATING POINT
instruction.

2. array subscript falls
outside bounds of
corresponding dimension
when an array component or
slice is referenced through
the array header.

3. instruction addresses a data
object but its unique name
is unknown to the machine
(not in unique name table).

attempt made to reference an
entity via a Null pointer.

NUMERIC_ 1. arithmetic overflow occurs.
ERROR
2, division by zero is

attempted.

3. taking square root of
negative number is
attempted.

1. 1nvalid i1nstruction
- operation code or format
(FMT) detected.

PROGRAM_
ERROR

2. end of subprogram's or task
program's instruction space
encountered during fetching
of an instruction.

3. stack overflow/underflow
occurs.

———————————-————————-——J———————-—-———.—-—-—-———————————1
o>
.




BN e P T S T o R TR ATS LN ST TN

(R REA PRI SL Saa i bt et Aiga i o R borgn 6 - 2 b o B e ERR BRE LS

Table 11.1 Predefined Exceptions. (continued)

Number Name Raised by Machine When

4. operand tag not compatible.
with instruction.

PROGRAM_
ERROR

5. value of a label operand
would cause a branch outside
the current subprogram's or
task program's instruction
space.

6. executing WAIT instruction
and there are no open SELECT
alternatives (task not
marked as waiting for any
entry call).

7. program attempts to operate
on an entity via a pointer
or formal reference
parameter and lacks the
appropriate authority.

Do ool MR em L e Sl

insufficlient storage 1is
available in data value
memory for creation of an
activation ‘record and
associated administrative
data, the variable global
data of a package and
associated administrative
data, (or a data object.
and associated
administrative data

2, insufficient storage is
available in data template
memory and/or in instruction
memory when space is to be
allocated for a non-nested
package (in the ALLOCATE
PACKAGE STORAGE
instruction).

O

S

2
__——_———_-——_————————j——-———-————————————————-——.—

11=3

. e T T T A T T T e T LT I e TRer PN
15 I\'-'n‘ B A AN - Sop.2, i ;

. ' P A e e B . ] ., ” - : > . a_ nwyoe @
AR AT AR L an T, e .’.‘:!.. B e T e e T i P TN T B4




Table 11.1 Predefined Excéptions. (continued)

— —— L . W— ——— — — — — — — — — — — — c—

|la result of performing
|operations on I/0 devices.

I | ~
Number | Name | Raised by Machine When
| | ~
I ' |
4 | TASKING_ I Any of several conditions

| ERROR i arise during task creation,
! | activation, and rendezvous
l | (see Section 9).
| I ;
i [

5-7 | RESERVED I
| I
oy "

8-31 | 1/0 |See Table 11.2, these exceptions
| lare raised automatically only as
I
I
|

11-4

NN v\-}\"'.'s:.-..,w._ﬁ__;\._-. ';:- :.:,-:.*.:,;\‘ '."'\:.-,:;g:\.




LPeet 7 Thgh 0 o T Fae B Ry -ag e Qe

AR oe § AL R TTH.A Sl N LS S 1 el R AP R TS

Table 11.2 Predefined 1/0 Exceptions.

Number Name Raised by Device When

NAME ERROR 1. a file with the specified
file name cannot be created
(e.g., because a file with

that named already exists).

2. a file with the specified
file name does not exist or
access to the file is
prohibited.

an operation is incompatible
with the properties of the
specified file (e.g., an
attempt is made to write to a
protected file). :

USE ERROR

]

+

T
I
I
|
I
I
I
I
I
I
I
I
I
I
r
I
I
I
I
I
I
T
I

10 STATUS ERROR

an operation cannot be

performed on a file in 1its
present state (e.g., an attempt
1s made to read a file which is
not open).

+

11 DATA ERROR

-
.

input data has the
undefined value.

N
]

input data is not of the

|
|
|
I
|
T
|
I
|
I
l required type.

i3 .
DEVICE ERROR

-

12 an operation cannot be
completed because of a mal-
function of the underlying
system (e.g., printer runs out

|

.

| 2
I

= of paper).

- Te oY L e 4 u

o R T R T N P T A T T T
It A G T S T LR S0 S G A GO TR C R GG G CORG SR o



- [ cgm P A s A ] - AR S —r T
F8as LBl SRR o ST MR/ R PR B TR R BRI RO i A P Y

Table 11.2 Predefined 1/0 Exceptions. (continued)

[ I I8 |
| Number = Name : Raised by Device When | }
| ' i
[ | | I -
} 13 | END ERROR | an attempt is made to read |
| : : beyond the end of a file. |
| |
| | | |
| | i I
| 14 | LAYOUT ERROR | an operation is incompatible |
l | | with the layout of the |
| | | specified file. |
I | | |
| I | : |
I L | MODE ERROR | an attempt is made to read |
| | | an OUT_FILE or write to an |
| | | IN_FILE. |
| | | |
| ] : I |
| 16-31 | RESERVED | |
| | | |
| | | |
- |
11-6

QA-.-'-.-_.‘- O e e o ¥
i o ) X

R
o @
Slata ;.Af;.;&‘;{;_'.-'n':;.,_\_.q_n..-'. 'P '

T e R L T T e
LY

L e %
PR PPN B R A s T S g B S L_L.LLL.L N




Lipeil s o i B B R LS T i Sl o S T i B T B T T i P 1 i S SO e s e et A Sy i e st o e s g

l.1 RAISE
rmat: 934, S

1emonic: RAISE

perands:

£ E Exception Number

FMT: immediate (EXT,2), memory (0), or stack (EXT,0)
unction:

he exception speéified by operand § is raised. . operand S must
e a position integer (V16 or V32). The correspondence between
he exception raised and the value of the integer is shown below:

integer exception

0-7 machine predefined
8-31 : 1/0 device predefined
31-Limit - user-defined

f S is an immediate value, it is interpreted as having a V32 tag
ith sign (zero) extend. '

xceptions:
PROGRAM_ERROR.

=7

= \}“

. A BT R AR fo gt N G
0 ". {km‘f: \—\s t&\.&....\' L&ﬁi‘ . i A V-S U ANE NP .(_.l . N k ‘_b '(Su '!f-'} 'I;"J"_p J'J\.J LN |



ASSERT RANGE INTEGER

t: 94y, S1, S2, S3

nic: ASRTRI

nds:
Upper Limit cf Range )

s ‘1mmediate (EXT,2), memory (0), or stack (EXT,0)
Lower Limit of Range

Vg immediate (EXT,2), memory (0), or stack (EXT,0)
Variable to Be Range Checked

I3 memory (0) or stack (EXT,0)

.ion:

le value of the operand addressed by S3 is greater than or
. to the value of the operand specified by S2 and less than
[ual to the value of the operand specified by S1, no action
tken, else a CONSTRAINT ERROR exceptions 1is raised. All
inds must be integers (V16 or V32). Immediate operands are
rpreted as having a V32 tag with sign extend.

>tions:

SRAM_ERROR
STRATNT_ERROR

11-8

I e e e

ey \.4

B e




3 ASSERT RANGE FLOATING POINT
‘mat: 954, S1, S2, S3

monic: ASRTRF

:rands: ~
ks Upper Limit of Range

"MT: memory (0) or stack (EXT,0)
2: Lower Limit of Range

TMT: . memory (0) or stack (EXT,0)
3 Variable to Be Range Checked
FMT: memory (0) or stack (EXT,0)
nction:

the value of the "operand addressed by S3 is greater than or
val to the value of the operand specified by S2 and less than
equal to the value of the operand specified by S1, no action
taken, else a CONSTRAINT _ERROR exceptions 1is raised. All
erands must be floating point numbers (V16 or V64).

ceptions:
'ROGRAM_ERROR
'ONSTRAINT_ERROR

11=9

......

B R G T TR e T L < g Lo
R ) A A e e
e e e e e e L o e e e e e

o
) -._. o '.. > .. -;..14...\ o ‘e
NI A ‘j" S e




11.4 INITIALIZE HANDLER

Format: %N, S
Mnemonic: IHNDLR

Operands:
Shs Label .
FMT: immediate (EXT,2),interpreted as a label operand

Function:

If the operand specified by S is non-zero, the exception handler
located at the address of the current instruction plus the value
of the label operand is enabled (handler enable bit set to 1 and
address of handler written into administrative data area of the
local activation). The 1instruction data at the address of the
handler musz be RETRIEVE EXCEPTION. If the operand specified by
S is zero, the current 1local exception handler 1is disabled
(handle enable bit reset to 0),

Exceptions:
PROGRAM_ERROR
CONSTRAINT_ERROR




R EE LR S R A R L SR SR 0 M B AR S ST AN St PN MO0 A A e P Al DA U TN TV TP AV R TR B A s T Jis It B, St St TR o B S

11.5 RETRIEVE EXCEPTION

Format: 974, S, D
Mnemonic: RTRVXC

. Operands: . |
S: Label
FMT: immediate {&XT,2), interpreted as a label operand
D: Exception Number Location
FMT: memory (0)
Function:

This is the first instruction of the exception handler. The
exception number of the exception that occurred prior to entering
this handler (automatically written into the administrative data
area of the activation containing the enabled handler) is made
available to the program by storing it in the location specified
by operand D. Operand D must be an integer (V16 or V32). The
handler for subsequent exceptions 1is set to the address of the
currrent instruction plus the value of the 1label operand and
enabled (if the label is no =zero) as in the INITIALIZE HANDLER
instruction.

Exceptions:
PROGRAM_ERROR

11-11

LB G e R G W T A e A O A S B T R it e oy
.b\‘.‘.."‘:'-*."‘:‘.s* L -\.u"_ut-'.; (Bt .7 -"\\?.'-. AR Y

N R RO AN |




~ ~ e,
.AI‘O‘L‘L“,W ._{M‘(A{- Lol

bl BN o R PP T e L ol g R ELES A AL e S I S R SR R SR L

-------------

12 User Console

The User Console is a small computer - based "workstation" used
to control all’ phases of program debugging, maintenance, and
loading of the HLLM. The computer may be a small DEC model such
as the PDP11/34a or the PDP1l1l/24, The User Console has two
interfaces: a general purpose parallel interface (e.g., DR11-C)
with the HLLM (which requires a User Console Interface Card) and
a serial modem - controlled 1interface (e.g., DL1l1l) with VAX
mainframe. User Console software is partitioned into three
functional area: (1) user interface, (2) HLLM interface, and (3)
mainframe interface.

1. User Interface - All interactions between the User
Console, the HLLM, and the mainframe are a direct or indirect
result of user commands. These include the following categories:

e console control commands (initialize, terminate, show
console status, execute commands in file, etc.)

e memory commands. (inspection and alteration of HLLM
memory words or of an image of the HLLM memory stored
in a file.

e storage object related commands (display of
administrative data, list of task objects, cell
displays, instruction displays, etc.).

e HLLM control commands (set/report machine state,
control instruction execution, control trace options,
report execution history).

e breakpoint control commands (set, clear, list
breakpoints).

e symbolic definition commands (create, delete, list
symbols which may be used in command parameters).

e HLLM I/O commmands (create input data files, display
output data files, connect files to logical simulated
1/0 device).

e save/restore commands (save HLLM memory block contents
in files, restore HLLM memory blocks from files,
compare memory blocks to files). '

e commands to effect transfer of files (in either
directions) between the User Console and the VAX
mainframe. :

et

- e =a Ty




— —— — - o bl et ol Padl S S g e
N T S T TR L S T o e R S e e O A S i Y i atra e s A n e m o o i e e T T e e T o™

2. HLLM Interface - The User Console (PDPll) may issue
commands to the HLLM and the HLLM may issue request and responses
to the User Console across this interface. The former (user
Console command) comprise the following:

® reset

e read status

e read register

e write register

i read block

e write block

e run
e halt
® step

e set breakpoint

e interrupt (raised for a simulated I/0 device)
e take input data (for a simulated 1/0 device)

e send output data (from a simulated I/0 device)
e send trace data

The 1latter (requests and responses to User Console)
include the following:

e status

® register data

e memory data

e HLLM output data (from simulated I/0 device)
e trace data

® request "send input data”

® request "receive output data"

12-2

S A N s

o R g S ® e T e P Tt e TN " A e
o \q’\-'\ ' -"\-. .\_-' -",.- ; _.-‘\-‘. e




N T D P L = P D e T T N R TR T D T T

3. Mainframe (VAX) Interface - -user commands effect the '
transfer of files between the User Console and the VAX mainframe.
The user's terminal (on the (User Console) appears as a normal
"dumb" terminal to the VAX until file transfers are initiated.

The hardware configuration of the User Console is the
following:

® 64K word memory (minimum).

e disk drive, e.g., RLOl drive.

® general purpose parallel interface, e.g., DR11-C.

® general purpose video terminal, e.g., VT-52 or VT-100.
e serial interface with modem (e.g., DL1l1-E).

The User Console hardware and software are described in
more detail in the following documents:

1. Functional Design for an Advanced Avionics Computer
Architecture (interim report for period 22 Nov. 1980
to 18 Feb. 1982), 19 March 1982, pages 65-73.

2. Theory of Operation HLLM Hardware, 19 Nov., 1982,
pages 25-32, pages 73 to 80, and pages 90 to 95.

3. HLLM User Console Software Functional Requirements
(supplement to third interim report), 19 March 1982.

12-3 {
O A R R R G G TR TR T S AR g et g g R T R 1
CPCRENENE I I N RS AT A I T e A I N S A R I W G SRS LR OO ARG SN



s

-
=t Q." .

A R N A A A I A N R 5 A s sam S L T,

13 Traps

A trap is an automatically generated entry call to a task called
the trap handler. A trap occurs at predetermined times as a
result of executing certain instructions. Traps can occur in the
following situations (at most one trap is generated per
instruction):

trap type when trap occurs
instruction trace every instruction (excluding

those generating other traps)

branch trace every IF 1instruction in which
the branch is actually taken or
the GOTO instruction

no branch trace . every IF type instruction in
. which the branch is not taken

call trace every procedure call
instruction

exception trace every time an exception 1is

. raised either by the machine or

explicitly by the  RAISE
instruction

TRACE instruction every time the TRACE

instruction is executed

Each type of trap may be independently enabled or disabled by the
CONTROL TRACE .instruction. A trap of a particular type is
ignored if it has not been enabled. The task entry which is
called as a result of a trap 1is identified to the machine by a
call to entry zero of the trap mechanism, a predefined pointer
which is available to the machine. The call must have two output
parameters: a pointer to the trap handler, and an integer
specifying the trap handler task entry number. If no entry has
been so identified, all traps are ignored. Traps may also be

handled by the User Console in an implementation dependent
manner.

Tt e %% % T T T e T o R I T B P TR e A R B o
TP AP Lk O A A, S NP N N A R 1‘?1&'. e ORI AT I S

- i s b e e A e s ol S e i i A B PUE . |




len a trap occurs, six read-only parameters are passed to the
lentified entry of the trap handler task. The first is a
>inter with no authority to the package causing the trap. The
:cond is an integer specifying the subprogram number in which
1e trap occurred. The third 1is an 1integer specifying the
ibprogram number in which the trap occurred. The third is an
1teger specifying the instruction address of the instruction
1ich caused the trap. The fourth is an integer specifying the
race type. The (fifth 1is an integer whose value is (1) the
wmber of the called subprogram for call trace, (2) the number of
ne exception for an exception trace, (3) the immediate operand
>ntained (S2) in the TRACE TRAP instruction, or UNDEFINED.
therwise. The sixth is (1) a pointer with no authority to the
ackage containing the subprogram called for a call trace, (2) a
>inter with READ authority to the data entity addressed by the
RACE TRAP instruction, or a "null" pointer otherwise.

hen a trap occurs, execution of the instruction causing the trap
s blocked until the corresponding entry call is processed.




13.1 CONTROL TRACE
Format: 98y, S1, S2, D

Mnemonic: CTRACE

Operands:
Sl: On/0Off Control for all Trace Functions
FMT: “1mmediate (EXT,2),
S2: Trace Functions
FMT: ~1mmediate (EXT,2), memory (0), or stack (EXT,0)
D: Pointer to Package Be1ng Traced
FMT: memory (0)
Function:

The trace function indicated by the operand specified by S2 for
the package pointed-to by the pointer addressed by D are turned
"on" if S1 is a 1 or "off" if Sl is a 0. The immediate value of
operand S1 is interpreted as a Boolean (V16) and the operand
specified by S2 is mask data (V16), 'interpreted as follows:

Bit Position in Mask Trace Function

6-15 ' reserved

exception trace
no-branch trace
branch trace

call trace
instruction trace
explicit TRACE TRAP
instruction

OFFNWeEeWM

For each bit (in the range 0..5) in the mask that is a 1, the
corresponding trace function is turned on or off by Sl1. Trace
functions corresponding to the bits in the mask which are 0 are
unaffected.

Exceptions:
PROGRAM_ERROR

13-3

RS

RS A AR R K SR LA
E AR A A

o ., L .
A e e T A K e - & .
% _..{._\.:.;:.n DERATIOTIROE 8 PO A

LR GO R . .
.-'\,“,~__..... e
. . %e »

- q‘

G

F g S R Gy Sr




B G B Y 6 i AT VL A AT P Yy P S g v T ° AP BRI N Al i

2 TRACE TRAP

mat: 99y, S1, S2, S3

monic: TRAP

'3 Trace Trap Control

MT: immediate (EXT,2), memory (0), or stack (EXT,0)
'y Type of Trace '

MT: immediate (EXT,2)

F Additional Trace Information

"MT: memory (0)

iction:

explicit tracing is "on" (see CONTROL TRACE instruction) and
¢ operand specified by Sl is 1, a Trace Trap occurs; otherwise,
action is taken. The operand specified by Sl is a Boolean
L6) and the immediate value of operand S2 is mask data (V16),
terpreted as a code to identify the type of trace trace. TRACE
AP instructions may be 'selectively inserted after any
struction and identified by S2. Additional information
juired on the trace-function may be passed to the trap handler
sk via the operand specified by S3 (a p01nter to a data entity
ntaining the information).

ceptions:
ROGRAM_ERROR

-~ _— SIETR— : T . -
U _. o ST A AT Qe TN T O A N e T T R PR T O TR TR
o o o i e e Y e N A e BN T N N T e T T




B i N o M N o N o N e a  a ¥ af ¢ N O R A cokt e @@ T W a8 e . Vo T v v s

APPENDIX A - EXAMPLES OF ARRAYS*

tes 1: In each example, all values are expressed in decimal
unless otherwise indicated.

2: Values in the Data Template Memory (DTM) can only be
read.

3: In general, data in data value memory (DVM) can be read
and written to. In the following examples, these
locations are indicated by 0, 1 in the column under
residency bit and by the assignment symbol (=)
following the data type in the column under DVM. When
data is first written into one of these locations, the
residency bit is changed from 0 (data accessed from
DTM) to 1 (data accessed from DVM). Certain locations
in DVM, however, are never written to. These
correspond to descriptors in DTM of constrained arrays
and records and to initial values of scalar and record
components of arrays with separate values. A "0" in
the column under residency bit designates such a
location in DVM. Note that the type of descriptor
(e.g., LB/UB) and tag (e.g., V32) are indicated for
clarity of reading the examples.

A-1

KR LA AN o e Lo AT

% CE TR OO SN




-
[

Type REC) is
record
BIG_NUM:LONG INTEGER:=5000;

ARR>

0..2=> 100.1,

sarray (0..2) of FLOAT:

end record;

1000.1,

10000 L)g

ARRj:array (1..2) of RECy;

:he type definition of REC),
a3y with two REC) components.

s (ARR7p)
(ARRz}

D™
~--AVO1=8
I LBl/UBl*l,Z
rogram | REC;=2,6
3! = v32=5000
matic | LB2/UB2=0,2
ata | v32=100.1
| Vv32=1000.1

t' [ ALY

Subprogram
1

- Vv32=10000.1

Activation

Recordp

AN
L %X kL;LLth.fn-L}\‘aahisakl&lgls.&@Li&khnuiLALA

has separate values
has immediate values

co
--32
34
36
40

44

8
0
2
4
6
8
0
2
4
6

|
|
|
|
|
|
|
| 4
| 5
| 5
-1 5
| 5
| 5
| 6
| 6
| 6
| 6
I

68

38.

-70"

the variable name ARR; defines
In this example, the array of
and the array component of the

(See Figure A-1).

DVM

AVO,)

LB1/UB)

REC)
V32
LB/UB)
v32
v32
V32

REC) <---

V32 =
LB,/UB2
V32 =
v32 =
V32
REC)
V32
LBz/UBz
V32
v32
v32

Figure A-1

FS Sig) el o di aw

"-. 2
.

™
5..‘._.‘.!.

RESIDENCY BIT

OCO0OO0O0O0O0O0O0O0O0OODODOODOOO0O0OO
- - Wm W -
= HEe

- W=
=

i PR

A“LJ‘HLJ“Lmbkl.

. A - ta)
L.L.AL

A

Lf Sty ta

Ry 4

Y

l.‘_




o TR g e R S S F e S U S B e L S e P A e e e gl FenSRoael S B T i PR M S o2 Bed e e R i L

ference data at a cell offset (CO) of 70 halfwords, AVO;
be addressed first; the address space (ADS) determines the
ute base addresses of the containing activation record and
emplate. A cell offset of 32 halfwords added to the
ate base produces.the base address of the ARR] header (AvVOj)
» the same offset added to the base of the activation record
ices the base address of the array in data value memory. The
wing addi