
HD-A158 119

UNCLASSIFIED

ADVANCED AVIONICS COMPUTER ARCHITECTURE VOLUME 1
EXECUTIVE SUMMARV(U) SANDERS ASSOCIATES INC NASHUA NH
L GREENSPAN ET AL. HAV 85 AFWAL-TR-85-1841-V0L-1
F33615-79-C-1935 F/G 9/2

v

"' I-'I -"» i1 is •••->•'-•-•-•-•'•->-|'- " — "•—'- —'->-*^l£KS!Vr,

*

I •

I
.1

NATIONAL BUREAU OF STANDARDS
MCftOCOPY RESOLUTION TEST CHART

^^ -
- -* • » • M *

/v *.•".• *
•• .••.••.•» .•• .••.»

••r.-.v.v.v.vv.-A-rA.',

\« V '. .
\-%/V% .\A.^ A-. •• v •• «. S \ • ' «.

"• ."• -^ .>

fVfSJVqpp

i

o>

00 m
<
i

Q
<

AFWAL-TR-85-1041

ADVANCED AVIONICS COMPUTER ARCHITECTURE

VOLUME I - EXECUTIVE SUMMARY

LAWRENCE GREENSPAN

RONALD S1NGLETARY

SANDERS ASSOCIATES, INC.
95 CANAL STREET
NASHUA, NEW HAMPSHIRE 03061-2034

MAY 1985

FINAL REPORT FOR PERIOD MAY 1980 - NOVEMBER 1984

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

4s

DTiC
ELECTE
AUG 1 5 1935 "J

% A

8

" •••/>••••• .1. T.T -,|.|,| +^++,^^^^^^^^^^^^^^^^^^^^^^^4

• '•!• • ii. • ••. w-. '»-m

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

GUY A. VZNCE
Project Engineer, Information Processing
Technology Branch
Avionics Laboratory

FOP THE COMMANDER

RAY.7.0ND 0. BELLEM, COL, USAF

D^pu'y CK'ef
SyJ?" /-vicn'cs Division

-•-«'. ;,c.--;Jorv

W>

Y-I«--fe0VERT, Acting Chief
Information Processing Technology
Branch
Avionics Laboratory

"if your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notify AFWAL/AAAT72
W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

.*• ."»iTJ>i"'iV •• •>'•' v ••' v v •.
• ••if.Y^fc

L « •. * • * »_ - ;->--:^s>:-

ECURlTY CLASSIFICATION OF THIS t-AGfc

REPORT DOCUMENTATION PAGE
1, REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A
2b. OECLASSIFICATION/DOWNGRADING SCHEDULE

MA.

Approval for public release; distribution
unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWAL-TR-85-1041. Vol I
6a. NAME OF PERFORMING ORGANIZATION

SANDERS ASSOCIATES, INC.

5b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Avionics Laboratory (AFWAL/AAAT)
AF Wright Aeronautical Laboratories (AFSC)

6c. ADDRESS (Cily. Slate and /.IP Code)

95 Canal Street
Nashua NH 03061-2034

7b. AOORESS «City. State and ZIP Code)

UPA1TW OH ASA^U-ft^
•a. NAME OF FUNDING/SPONSORING

ORGANIZATION

Avionics Laboratory

8b. OFFICE SYMBOL
(If applicable I

AFWAL/AAAT

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F33615-79-C-1935
8c. AOORESS (C,!y. Stale and ZIP Code)

WPAFB OH 45433-6543

10. SOURCE OF FUNOING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security CUueiflcation)

Advanced Avionics Computer Arohiterr-iiro,. Vnl TI 62204F

PROJECT
NO.

2003

TASK
NO.

04

WORK UNIT
NO.

ii.
12. PERSONAL AUTHOR(S)

Lawrence Greenspan• Ronald fiinglf.tary
13a. TYPE OF REPORT

FTNAL

13b. TIME COVERED

FROM 5/8Q TO 11/ft4
14. DATE OF REPOHT /Yr., Mo., Day)

1985 May
15. PAGE COUNT

16
16. SUPPLEMENTARY NOTATION

COSATI CODES

FIELD

09

f

GROUP

02
SUB. GR.

18. SUBJECT It RMS (Continue on rtverte it neceuarv and identify by block number)
*> High^fcevel /Cangv ?uage Ada Machine -.

Semantic j8apReduction;
Language-jglrected ^Architecture • —^ Eg WH

ABSTRACT /Continue on reverie if neceuary and identify by block number)

jThis exploratory development program was originally aimed at developing a computer with
features to specifically support the JOVIAL (J73) programming language with considerations
to Ada. Later, the program was redirected to modify the instruction set architecture
(ISA) to more fully support Ada and increase performance.

The new ISA supports most of the standard functions found in most ISA, but gives additional
supports in: the Ada package concept, processing arrays and records, unconstrained
arrays, dynamic storage allocation, detecting dangling references, detecting undefined
variables, Ada-like exception handling, case instructions, for-loop Instructions, Ada-like
parameter passing, Ada-like tasking instructions and IEEE-standard floating point data
types» frzuUlGloS ;

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED E SAME AS RPT. D OTIC USERS D

22a. NAME OF RESPONSIBLE INDIVIDUAL

Guy Vince

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22b TELEPHONE NUMBER
(Include Area Codet

57706

22e OFFICE SYMBOL

AFWAL/AAAT-2

11. Title - Executive Summary

nTr^ Non-Von Neumann 4&chltecture I
Object/Jriented ^chltecture >}

Capability Based ^dressing,

f

..'V--'.1-'>'• >•>'AIW.UiWWMA'.W',-.' H..i J J.9im. J.P' *^ *7 ^\ *~- V". - . -~*
» -i. ... , . „

PREFACE

The contents of the document are technically accurate,
and no sensitive items, detrimental ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the document are those of the author(s) and
do not necessarily reflect the views of the Avionics
Laboratory, the Air Force Systems Command, the united
States Air Force, or the Department of Defense.

i Ac*eGr

HUTU SRAM
1 pTIC TAB

... r-,- i a

Just IfiQI I L0' —

i By- .
\ Districti
r~~ ,", Mill r Codos

AvaU< r .•'•••' u --
rait a i4/«*

M

in

. ••. •'. -f.
^^^y»: frirfitifiiV ̂ .tf-:^^-;^;:<v. «.

».'.••.V' •*•* • -'"••' ••' •' ••* J' •-' 7TT^TT^^^^^^^^1^^^^^^'- *."*•' +."r *'- "• r. r.1 '• •. r. >•.' ».• *v

TABLE OF CONTENTS

Page
1. Review of Program 1
2. Progress 1
3. Future Work 3

Appendix

Preliminary Comparison of the HLLM vs. the 1750A....A-l

^V^^L^^-. .,.. ^sMää^äMääi^^^ää^^:^^^^^

•ww

1. Review of Program

This exploratory development program was originally aimed at
developing a computer with features to specifically support
the JOVIAL (J73/ programming language with consideration
given to Ada. Later, the program was redirected to modify
the Instruction Set Architecture (ISA) to more fully support
Ada and increase performance. This has caused a drastic
rewrite of the ISA. Further, a strong emphasis has been
placed on improving performance. Thus, variable length data,
descriptors, and instructions have been eliminated in favor
of fixed length 36-bit words, tags have been reduced in
length to 4 bits and do not contain type information, unique
names (requiring table look-up) have been removed from all
pointers except those that point to data objects when Ada
unchecked storage deallocation is programmed; a register file
has been added for saving temporaries during arithmetic
operations, base-offset addressing of array components, and
parameter passing; each activation record now has a stack for
expression evaluation;, implicit type conversion of arithmetic
data types has been dropped in favor of explicit conversion
(via instruction); a unique dual data memory system has
eliminated the need to physically move data tags and initial
values from a data template to an activation record during a
subprogram call or task creation; a 4-level pipeline design
is planned allowing instruction fetch, address computation,
operand retrieval/result storage (in a memory unit that is
separate from instruction memory), and execution to proceed
in parallel. ,

2. Progress

Support for the following features is now provided in the
ISA:

• the Ada package concept, including packages nested in
library (non-nested) packages, task programs, or
subprograms.

• processing of arrays and slices including a mode in
which the machine computes the component address and
checks indexes vs. bounds for all dimensions and a mode
in which components are referenced via "base address
plus offset" addressing (when the base address of the
array has been loaded into a register); logical and
assignment operations between whole arrays or slices are
also supported.

;•>-••: •^ ^.,.,.-. ..•.•••..,*.<•••. ••.•-...••. ••-•,•:.•.•-•--.--,•..•..-,•, ,,.„,. . ,,,,, .,..,,. ,j

1 •••••• • • ^•^-^^^^^^^^^^^^^^^^m^ i in i•,. ..
1 » i. »'. » i' . • m • i •

• unconstrained arrays and records with unconstrained
array components (array bounds supplied at run time).

• dynamic storage allocation for the creation of data
objects and task objects in support of the evaluation of
allocators in Ada.

• detection of dangling references when data objects are
explicitly destroyed (possible if the Ada generic
library procedure, UNCHECKED DEALLOCATION, is called).

• detection of undefined variables.

• Ada exception handling mechanism, including proper
handling of exceptions during task creation, activation,
and rendezvous; predefined Ada exceptions and user-
defined exceptions are detected and processed.

• zero, one, two, and three-operand instructions with
immediate, memory, stack, or register operands.

• initial data values set by compiler without sacrificing
properties of recursion/reentrancy of subprograms.

• case and for-loop instructions.

• up-level addressing via d'splay registers.

• Ada in, out, and in-out parameters passed via register
or memory-memory transfer.

• creation, activation, scheduling, rendezvous,
termination, and dependency rules of tasks.

• Ada context clause (USE/WITH) implemented via pointers
to global data areas of external packages (pointers
contain access rights).

• predefined language attributes (image, value, upper and
lower array bounds, array length, array size, task
callable, calling task count).

• 32 and 64-bit IEEE-standard floating point.

• Ada-standard I/O modes (direct, sequential, and text
I/O.).

a&^ä&ä^^

A'.[J, • iv j>.i,w>,vmii»j^tvm'm\w^^^WHW^^^^^f^9^m i HI n.m.nii i
•-•• -.»••

A preliminary comparison was made of the performance of the
low level features of the new ISA and the 1750A (see
Appendix). The results of the comparison showed that the
1750A required 52% more instruction fetches and 79% more data
transfers than the new ISA.

The following sections of the ISA have been written (168
pages total):

Table of Contents (5 pages)
Section 1.4- ISA Summary (4 pages)
Section 2 - Storage Objects (10 pages)
Section 3 - Data Formats (19 pages)
Section 4 - Instruction Formats (13 pages)
Section 6 - Subprograms (18 pages)
Section 7 - Packages (13 pages)
Section 8 - Dynamic Storage Allocation/Deallocation

(5 pages)
Section 9 - Tasks (47 pages)
Section 10 - Pointers (11 pages)
Appendix A - Examples of Arrays (15 pages)
Appendix B - Task Dependencies (8 pages)

Except for Section 14 (input-output) which now adheres to Ada
more closely than the old ISA (dated 19 March 1982) and a few
changes such as no implicit type conversion performed in
arithmetic instructions, the instructions not yet described
in the new ISA Specification are essentially the same as
described in the old ISA Specification. The major
differences between the ISAs are reflected in the sections
that have been written.

3. Future Work

Although not yet incorporated into the ISA Specification, the
following modifications are planned:

(a) more efficient support for Ada character strings.

Strings will be handled as arrays of data type V32, each word
containing four characters. Characters in a string will be
accessible by the usual methods of addressing a component in
an array: (1) via addressing the array header with
subscripts and an operand qualifier following in the
instruction stream (the operand qualifier selects 1 of 4
characters), (2) via directly addressing the word containing
the desired character followed by an operand qualifier that
selects the character, (3) via array base register-offset
addressing, including full size and compact instruction
formats in which the offset "number of bytes".

•"•.,"• ->j'sj-"- •%L-**!>"-!*'• V-ii'«"."•'"-" "•" •>' V5VW! vHW •." •."•-% V- \-'- -"• •"• '"• -"• -" •*. *".'• t V V aasa

^^^^^^^^^^^^^^"T^»^*^!. •.••_• » • i,• • • »;• »;

(b) revised format (FMT) codes to significantly improve
performance, especially of looping and array processing via
registers.

Fewer (23 vs 28) and more powerful instruction formats are
planned. An important change will be to designate a stack
operand by "cell offset=0" (similar to designating register
operands by cell offsets in the range I..31;; this replaces
numerous FMT codes that designate a stack operand in
combination with other memory, register, and stack operands.
In the following summary of format modes, any operand
designated as "memory" can be in memory, on the stack, or in
a register, depending on the value of the cell offset:

• 3-operand memory-memory-memory, immediate-memory-memory,
immediate-memory-immediate, memory-memory-immediate, and
memory-immediate-memory formats (9-bit cell offset and 8-
bit immediate value). All memory operands are located in
the local environment (address space is implicitly equal
to the current nesting depth).

• 2-operand memory-memory, memory-immediate, immediate-
memory, and immediate-immediate formats (12-bit cell
offset and 12-bit immediate value). Again, memory
operands are in the local environment.

• full-size single memory operand format (4-bit address
space and 20-bit cell offset).

• full size single immediate operand (20 bits).

• 4-operand register-register-register-immediate format (5-
bit register specifiers and 8-bit immediate value). This
important mode can be used for complete loop control in
which the three registers contain the loop control
variable, the increment (decrement) amount, and the limit
value; the immediate operand is the label (branch amount
relative to the location of the loop-up or loop-down
instruction). Another use for this mode is with the new
"relational/increment" instructions (refer to item c) in
which one register contains an array base address, another
register contains the value to be compared with the
addressed array component, and the third register contains
the increment amount; as before, the immediate operand is
the branch amount.

• 2-operand base register-offset-memory and memory-base
register-offset formats (9-bit cell offset, 3-bit base
register specifier, 8-bit offset value). The memory
operand is in the local environment. These modes are used

;/£2&tää>&^^

"*^^^^^«"^l
• v-'.-. •

in instructions that operate on au array component
(referenced by base + offset addressing) and a memory
operand.

• 2-operand base register-memory-immediate and immediate-
base register-memory formats (9-bit cell offset, 3-bit
base register specifier, 8-bit immediate value). The
memory operand is in the local environment. These modes
are used in instructions that operate on an array
component (referenced by base + index addressing) and an
immediate operand. The index value is the memory operand.

• 2-operand base register-offset-immediate and immediate-
base register offset formats (3-bit base register
specifier, 8-bit offset and immediate values). This mode
is used in instructions that operate on an array component
(referenced by base + offset addressing) and an immediate
operand.

• single operand base register-offset format (16-bit offset
value and 3-bit base register specifier). This mode is
used in instructions that operate on an array component
(referenced by base + offset addressing).

• 2-operand base register-index-base register-index format
(3-bit base register specifiers and 5-bit index register
specifiers). This mode is used in instructions that
operate on two array components (each referenced by base +
index register addressing).

• 2-operand base regiser-index-memory and memory-base
register-index formats (3-bit base register specifier
fields 5-bit index register specifiers, and 9-bit cell
offset). Memory operands are in the local environment.
This mode is used in instructions that operate on an array
component (referenced by base + index register addressing)
and a memory operand.

• single operand base register-memory format (3-bit base
register and 12-bit cell offset). The memory operand is
in tho local environment. This mode is used in
instructions that operate on an array component
(referenced by base + index addressing). The index value
is the memory operand.

Note that array offsets are non-modifiable immediate values
whereas indexes are variables in memory or registers.

•-' •. .'•.»"• - - V- *."• *". *%./• •'."- •'."•".'»'. -"*•"."•• V ".• ".-""«*"•.•"".-"•'.•".•"• -"•>"• >v »*• >'* •"* «"• '."*.

^mwrvmvmmmfi^mv^m^mr^rm^^^m****.,*, , ß ^ ,,_, , ,,,,,.,_, t , ^..i^,.......,

(c) new group of relational instructions (IF+).

These instructions compare the value of the irray component
(comparand 1) addressed by an array base register with the
value in another register (comparand 2) for equality, non-
equality, less than, greater than, less than or equal to, or
greater than or equal to. The base address is incremented
and a branch is taken if the test is false but the program
falls through to the next instruction if the test is true.
The 4-operand register-register-register-immediate format can
be used with these instructions. Here, the registers
designated in the instruction contain the array base address
(that is incremented), the increment amount, and the value of
comparand 2. If the result of the relational test between
the comparands is false, the base register is incremented by
the increment amount and a branch is taken to the location
which is the sum of the current instruction location and the
value of the immediate operand; otherwise (test true), the
next instruction is executed.

Based on tne very positive preliminary results of performance
comparisons between the 1750A and the low level features of
the new ISA and the fact that the high level features of the
new ISA support the many unique language characteristics of
Ada more strongly than any existing military computer, it is
recommended that this program be continued. The following
tasks need to be done:

• complete the ISA Specification
• thoroughly evaluate the new ISA.

>;>;;:v>>;-:::v^^

P.'..J.'*19.V. •• •ll"»'T"^^^»^^^^^^^^«^^^^«^ ^*—-r . ,~"^^~T

Appendix

.'

i Preliminary Comparison
of the HLLM vs. the 1750A

A-l

1 ." . • J"l"l Ml ^^^••P^" ^^***mm* T*r

i

.',

The High Level Language Machine (HLLM) has been tailored
specifically to the programming language Ada with high level
support for packages, activation records, task objects, access
types, arrays and records. In addition, conventional low level
support for compiler optimizations (i.e. general purpose
registers and stacks for evaluating expressions) has been
included.

The following analysis compares the low level features of the
1750 with the low level features of the HLLM. As a basis for
comparison, four segments of Ada statements are compiled into
1750 instructions and HLLM instructions. The four segments of
Ada statements were taken from a document written by Boeing
entitled: "Technical Requirements Description for VAX-Hosted
Ada/1750A Cross Compiler". For each segment of Ada statements,
1750A code of the expected quality from the phase 2 compiler was
presented. The first segment of Ada code in example #1 was
extracted from a QUICKSORT program and illustrates scanning of an
array for a value that is equal to or greater than some base
value. The second segment of Ada statements in example #2
illustrates an iterative search of a two-dimension array which
locates the largest absolute value. The third segment of Ada
statements in example #3 represents a complex expression
requiring index checking, subscript calculations and expression
evaluation to determine the value to be assigned. Finally,
example #4 contains a segment of Ada statements illustrating an
inline function which returns the largest value of two numbers.

Each example includes the segment of Ada statements, 1750 code,
HLLM code and a comparison of the number of instruction words and
data words transferred to and from memory during execution of the
segment of code. A summary of the results of the four examples
is shown below.

of Instruction Wds Fetched
1750A HLLM

of Data Wds Transferred
1750A HLLM EXAMPLE*

T
7

26
_5
41

1
2
3
4

Total

1
4

20
2

37

l
2

20
2

-25

1
1

10
_2
14

As a whole the 1750A requires 52% more
79% more data transfers than the HLLM.

instruction fetches and

A-3

.«.-•."«.-. '.•"!. *i

1. 1.1.1.1.1.1.1 ^m^ma^m^m^m*^mm^^m^m^m^mmmmma^m^m^m^9Fm^^'v ^'K^I^IK1.''-';•.'.-.;.!•• .--:••.-.-••- .-. • •. —

EXAMPLE

#1

ADA:

loop
I :* 1+1;
exit when A(I)>»V;

end loop;

-Constraint check suppressed
-V is a Floating Point Number

1

1750A: $0 inc R12,2
fcb R12,0
bit $0

HLLM:

-Assume R12 contains A(I-l) address
-R0,R1 contain the value V

$0 ifi>+ BR1,R1,R2,$0 -Assume BRI contains A(I) address
-R2 contains the increment value
-Rl contains the value V

.•

i

A-4

'*»*• m" a •» * ."" .*^ «"• *"* a * *"• •*• .*• •*•

läZti •v-::^vv tftftf

.'• "l.'-A.l.i'WfPPPP^P!^^

EXAMPLE

#2

ADA:

S :=0.0;
for J in 1..M
loop
T := ABS(A(I,J));
if T>S then S := T;
end i f;

end loop;

-bounds of A are STATIC
-straint checks are suppressed

1750A: $0 lb R12,0 -Assume R12 contains A(I-l) address
fabs R2,R2 -R2 contains the value T
er R2,R3 -R3 contains the value S
bge $1 -R4 contains the remaining count
lr R3,R2

$1 inc R12,2
soj R4,$0

HLLM:
-Assume BR1 contains A(I,i L)address

$0 absf2 BR1: XR5 ,R2 -R2 contains the value T
ifi>R2,R3, $1 -R3 contains the value S
move R2,R3 -Rl contains size - array component

$1 loopup Rl, R5SR4, $0 -R5 contains loop control value
-R4 contains limit value

1750 Instruction Wds Fetched = 7
1750 Data Words Read/Written = 2

HLLM Instruction Wds Fetched * 4
HLLM Data Words Read/Written - 1

-The 1750 requires 75% more instruction words fetch than the HLLM.
-The 1750 requires 100% more data words transfer than the HLLM.

A-5

.'•... j _^±

^^^^^^i^^^^^m wßmmmm .•»• r»••••«•. •.». •. •.".". v

EXAMPLE

#3

ADA:

1750A:

•Constraint checking is not
suppressed
A3(I,J,K) :« (A3(I,J,K-1)
A3(I,J,K+1) + A3(I,J-1,K)
A3(I,J+1,K) + A3(I-1,J,K)
A3(I+l,J,K))/6.0;

Cbl R14.D0 -Assume R12 contains address o f A3
bnz $0 -A3 array is static
cbl R6,D0 .
bnz $0
cbl R8,D0 -R14 contains the value I
bnz $0 -R6 contains the value J
mim R14,2 -R8 contains the value K
mim R6,10
mim R8,40
aim R14,118
ar R14,R6
ar R14,R8
ar R14,R12
dlb R14,-40
ab R14,+40
ab R14,-10
ab R14.+10
ab Rl4,-2
ab R14,+2
dim R14,6 *

stb R14,0
$0 equ $

A-6

k&&&&&jiv^^

.i II 9 fi ii ii •i«Map^pp^ani^m •v^- WTT-

EXAMPLE
#3
(continued)

HLLM:

astri R14,CO,CO -Assume BR1 contains address o f A3
astri R6,C0,C0 -R14 contains the value I
astri R8,C0,C0 -R6 contains the value J
muli3 2,R14,Stack -R8 contains the value K
muli3 10,R6,Stack -BR2 will contain address of
muli3 40,R8,Stack A3(I,J,K)
addi2 118,Stack
addi2 Stack,Stack
addi2 Stack,Stack
incb3 Stack,BR1,BR2
addf3 BR2:-40,BR2: 40 rStack
addf3 BR2:-10,BR2: 40 fStack
addf3 BR2:-2,BR:2, Stack
addf2 Stack,Stack
addf2 Stack,Stack
divf3 Stack,6,BR2: 0

1750 Instruction Wds Fetched =26
1750 Data Words Read/Written =20

HLLM Instruction Wds Fetched =20
HLLM Data Words Read/Written =10

-The 1750 requires 30% more instruction words fetch than the HLLM.
-The 1750 requires 100% more data words transfer than the HLLM.

A-7

L>v

. A 'A 'A » W A AI •- 'A '.' A,,^^l^^^^p^^ ' » » »

EXAMPLE

#4

ADA:

function MAX (A, B: INTEGER) return INTEGRER is
begin

if A>B then Return A;
else Return B;

end if;
end MAX;
pragma INLINE(MAX);

I :» MAX(0,I);
PROC;

1750A:

HLLM:
ifi> 0,C0,$0
move 0,C0

$0 equ $

1750 Instruction Wds Fetched =5 HLLM Instruction Wds Fetched =2
1750 Data Words Read/Written »2 HLLM Data Words Read/Written «2

-The 1750 requires 150% more instructions words fetched than HLLM,
-The data transfer rate is the same for both machines.

A-8

ü&tätiteÜ££^

a^j^^^^^u^^^.^

END

FILMED

9-85

DTIC
rere.ra.^7rew^ • m •

•'-•

/

•~. ««-i^v*";-*: *". »'. • •

A-1

V.-..M.-
*> - • - -

\vV-i".>V/.'.-V.< ^«^o^>>:

[Total 41 77 ^o

As a whole the 1750A requires 52% more instruction fetches and
79% more data transfers than the HLLM.

A-3

V- sVVV.vl
,v..*- -'• ••'•". *-j

