
RD-RI58 12 R NETS SYSTEh FOR GENERATING SOFTUSRE ENGINEERINGLA
EOVIRONMENTS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON
SF9 OH U L NCKNIGHT 1985 RFIT/CI/NR-85-710

UNCLSSIFIED F/G 9/2 NL

1.0 2-8! j~j~
1s 3-15 jjll !2

__ L__ ILlh

1121 ,.., - -

NATIONAL BUREAU OF STANDARDS
MSCRCOPY RESOLUMIN TEST CHART

- - -. o,- -w ------. -- . .. - -

00
In

A META SYSTEM FOR GENERATING SOFTWARE

ENGINEERING ENVIRONMENTS

BY

Walter Lee McKnight

Major, USAF

- 1985

Pages: 277

Degree : Ph.D.

The Ohio State University

C=-oppoe

This ~ 77 poe

i• ..,A.

for p ,, i, -

o.d .
" [~~~~~~~iTi b .'n ..." 1: : . p o e

Copyright by
Walter Lee McKnight

1985

....!-- .

. *

IIN I A ____

SECURITY CLASSIFICATION OF THIS PAGE (*%en Date. Entered),
REPORT DOCUMENTA.'rON PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

I. REPORT NUMBER GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 85-71D j .

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A Meta System For Generating Software /MIS TS/DISSERTATIONEngineering Environments
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(q) S. CONTRACT OR GRANT NUMBER(@)

Walter Lee McKnight

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKAREA & WORK UNIT NUMBERS

AFIT STUDENT AT: The Ohio State University

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR 1985
WPAFB OH 45433 13. NUMBER OF PAGES

277
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASS

ISa. DECL ASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if diflerent from Report)

1S. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-I ' N fE.sWOLAVER
Dean for Research and

Professional Developmenl
5 % Iffi)AFIT, Wright-Patterson AFB OH

19. KEY WORDS (Continue on reverse aide it necessary and identify by block number)

r.

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

ATTACHED

| QIAI TY
INSp Trn.

A-I
DD ,AN73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASS

86 8 13 0 8 ECURITY CLASSIFICATION OF THIS PAGE (W on Dats Entered)

8 1 1 0

85-71D

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value avd/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: A META System for Generating Software Engineering Environments

AUTHOR: Walter Lee McKnight

RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES () b. NO
2. Do you believe this research topic is significant enough that it would have been researched

(or contracted) by your organization or another agency if AFIT had not?'

() a. YES () b. NO
3. The benefits of AFIT research can often be expressed by the equivalent value that your

agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

a. MAN-YEARS () b. $

4. Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an

* equivalent value for this research (3. above), what is your estimate of its significance?

a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
* details concerning the current application, future potential, or other value of this research.

Please use the bottom part of this questionnaire for your statement(s).

* NAME GRADE POSITION

ORGANIZATION LOCATION

STATEMENT(s):

,Z..

A META SYSTEM FOR GENERATING SOFTWARE

ENGINEERING ENVIRONMENTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

BY

Walter Lee McKnight, B.S., M.S.

The Ohio State University

1985

Reading Committee: Approved By

Dr. Jayashree Ramanathan -

Dr. Sandra Mamrak
Adviser

Dr. Venkataraman Ashok Department of Computer
and Information Science

.................................. :-"...............::"/-"'-""-"'"'"' '"%-- "-::

A META SYSTEM FOR GENERATING SOFTWARE
ENGINEERING ENVIRONMENTS

BY

Walter Lee McKnight, Ph.D.

The Ohio State University, 1985

Professor Jayashree Ramanathan, Advisor

TRIAD is a generic meta environment that has a knowledge base of

methods from which a user can select a method to customize the TRIAD

environment into a specific software environment. When a method is

selected to customize the TRIAD environment, it becomes an instantiated

method which provides guidelines and enforcement policies for developing

and recording project information. The main contribution of this

dissertation is in developing a kernel tool for TRIAD. This tool called

the tuner can create method representations for the knowledge base of

methods and can transform method representations already in the

knowledge base of methods. The tuner is a parser generator like tool.

However, instead of building representations in a batch and static mode,

the tuner is able to create and transform the method representation in

an incremental and dynamic way. Even when a method is instantiated

and a part of the TRIAD environment, the method representation can be

transformed. Methods are modeled by attributed grammar forms. A

genesis grammar form was developed which can be used to generate all

other grammar forms. The tuner is built upon the model of the genesis

I1

2

I grammar form. The tuner is able to reflect expe-ience gained with using

a method back into the method by program transformation on the

method representation. The power of the tuner is illustrated by three

examples discussed in the dissertation. Problems discovered while

implementing the three examples that are associated with designing

interfaces for software environment are also discussed.

Ir

i

I

S-

S'

Sz

...

Dedicated to my wife, Carol
and to my children Sam, Heidi, and Mary.

%.-

Acknowledgement

I would like to thank my advisor, Professor Jay Ramanathan, for her

help and positive attitude during these past three years. If it wasn't for

her faith and encouragement, I would never have completed this work in

time. Many hours were spent in stimulating discussions that lead to this

research topic. I am also grateful that she encouraged me to write down

my ideas early.

I would also like to thank the other members of my reading committee,

Professors Sandy Mamrak and Venkataraman Ashok, for their suggestion.

Professor Mamrak helped me develop the ideas of canonical

representation and their applicability to operating systems. Professor

Ashok helped me with VLSI design and inspired me to look at how

VLSI methods could be supported in TRIAD.

I wish to thank members of the TRIAD project, John Rose., Steve

Demion, Merete Jordal, Ronnie Sarkar, Jim Kiper, Ed Michelini,

Thorbjorn Anderson, Bill Hochstettler, Ron Hartung. and Greg Donnells.

John is the artist and is responsible for the figures in this dissertation.

Special thanks goes to those who first worked on the TRIAD project and

who left something behind for the rest of us to work on.

I wish also to thank Dr. Chin Li work the many hours of discussion

we had as we worked together in bringing up the second version of

III

TRIAD. It was his insights that lead some of the ideas of the tuner

tool.

Last, but not least. I want to thank my dear wife, Carol, for her

understanding and support. She willingly let me stay behind and work

instead of taking her and the kids on vacation. She took on a bigger

load of raising our three children, Sam, Heidi, and Mary, so that I

would have more time to do this research.

iv

.- .. .'. -. -'> '" " . ." i " - . . . -. ."." . . ." . . .'. i. .-". .. .-°
- .' . . - . . .'

.
-

-. ..'. .

- . - .- i- - - -- .- * -: - .- .- . -. -.- . - -. - - , - - - .-- , - - •, , .

Vita

EDUCATION and EXPERIENCE

September 28, 1947 Born, St. Ignatius, Montana

June 1972 B. S. Mathematics, University of Utah
Salt Lake City, Utah

December 1973 M. S. Computer Science, University of Utah,
Salt Lake City, Utah

1974 - 1978 System Analyst, NORAD, USAF,
Colorado Springs. Colorado

1978 - 1982 System Analyst\ Programmer, NATO, USAF,

Glons, Belgium

1981 -1982 Instructor, Department of Mathematics.
City College of Chicago,
Glons, Belgium

19R2 - present Department of Computer and Informalion
Science, The Ohio State University,
Colurmbus. Ohio

Research Interests

1. Integrated Software Environments: custornizability and

extensibility of environments, integration of software and

project information, method support for all phases of a

project. automation of method support using techniques

synthesized from compiler technology, database management

systems, and operating systems.

2. Software Tool Design: integrating existing software tools into

a more useful, human-engineering environment, and

development of tools which allow engineering knowledge into

environments.

3. Specification of Data Abstractions: specification techniques,

communication in terms of abstract objects, their

automatic/semi-automatic implenentation and high level
debugging.

4. Other interests: operating systems, programming language

theory, compiler theory, and software engineering.

vi

-- .- . .- " . ? -" - - - - - .- - . ,' ,' ::-".- . .. '. .'.'-.--.'-' .': " -. " . - . ,': :' : -: -: : , -.- . , .- .- : i :: :---. --

9

" Tool Integration: Software engineers need to make a uniform

interface through which tools can access method structured

information in the project information database. This

interface must be general enough to allow easy addition of

new tools as they become available.

* Method Support: Although software engineers should not

impose any particular method in the design of a

software 'programming environment, they should build support

for the methods practiced by the intended users of the system.

Support should involve explicitly displaying method

information such as module interface specifications, instructions

for tool use or formats for various representations of the

project information. This would result in greater

standardization of software system produced and reduce the

time to educate new members in the company's design and

coding practices.

To get a further perspective (see figure 1) on the degree of support

that is possible for methods, it is useful to get another global view of

the software engineering tasks. The problem of engineering a software

product is complex because of tvo fundamental types of tasks [4, 51:

" Information handling tasks related to organizing large volumes

of information, composed of functional specification, design

documents, interface specifications, etc., for the numerous

subsvstern generated during the design process, and

* Complex problem solving tasks which consist of domain-

oriented decisions about the content of the abstractions used

,- .- , ., .= .-. __ ., _. , _ .,...... . . -.: - - . -.- 'i: . ? . . i .:

8

In this dissertation, we will look at how the TRIAD system has

addressed these problems of describing methods, of maintaining a

knowledge base of methods, and of customizing an environment. We will

see how the model we developed for describing methods allows us to

make changes to a method and to reflect these changes into the project

information database. We will also show how the TRIAD system can

easily be customized to any method.

1.2. General Requirements for Improverients

Based on a wide variety of industrial case studies and a detailed look

at examples such as the one discussed in the previous section, we have

observed that the deep differences in project types among various

industrial settings have contributed to the evolution of numerous methods

for the software engineering process. Fundamentally, a software

engineering method organizes and manipulates software-related

information (requirements., specifications, management plans, design, code.

etc.). The role of a software engineering environment is to provide

support to view this information, manipulate it, and apply tools to it

33..

Software engineers creating software/programming environments are

faced with three requirements:

e Logical organization of total project information: Methods

should suggest the logical organization of the project

information. This information should be chunked so that

meaningful queries can be asked. Software engineers should

use domain specific information about specific methods to

optimize the design of the project information.

7

the type by using an external signal port, a component can be

made externally available by defining it to be an externally-

accessible component. This eases a restriction of types in a

controlled way.

Suppose a company had built a VLSI design environment with a hard-

wired Mead-Conway type-based method r73]. Now suppose that the

company wanted to design printed circuit boards which are best designed

using a flat method. This company has the following options for

designing printed circuit boards:

1. It could develop a new VLSI design environment for a flat

method to be used in designing printed circuit boards.

2. It could develop a new VLSI design environment for the

Sheetr'Type Method and design of all its products using the

new environment.

3. It could force the printed circuit boards to be developed with

the type-based method that is already hard wired in the

current VLSI design environment.

None of these solutions are acceptable. Both solutions 1 and 2 cost

time and money which makes the designing of the printed circuit boards

neither profitable nor competitive. Solution 3 makes the design of the

printed circuit board both cumbersome and inefficient. Hard wiring a

method limits flexibilit, when dealing with new problems. If the \'LSI

design environment has a knowledge base of methods, then addirng a

method to handle the ne%% design of printed circuit boards would be as

simple as adding a ne%% method to the knowledge base.

6

is partitioned into a multi-level hierarchy of modules, each of which must

be an instance of a type. A type is a black box. All internal structures

are encapsulated in the type and the only access is through a well-

defined interface. This definition of a type provides high security. As

long as the designer does not change the interface or functionality, any

internal change desired can be made without worrying about whether the

change will adversely affect anyone else using the type.

Each type communicates only through a well-defined interface;

communication using global signal names is severly restricted. It is not

possible to describe overlapping structures. Type-based design is well

suited to a simple cell-based VLSI design. The instantiation capability

missing from flat design is exactly what is needed for regular arrays of

cells. However, the lack of global signals and sharable components

inhibits some forms of design.

One approach to overcome the disparity between the flat and the type-

based design methods is the Sheet, Type Method introduced by IBM '6 .

The two concepts of this method are:

1. A module can be either a sheet or a type. If it is a type, it

communicates only through a well-defined interface and its

components cannot generally be shared. If it is a sheet, it

communicates both through an interface and by using global

signal names. Its components can be shared by other sheets.

Types and sheets have components which can be types or

sheets, in any combination.

2. The interface concept of a type is extended to include

components. Just as a signal can be made available outside

' -" *•" ." "','" ".. -" °'.°° "'o°-.'m''o " f .' °'o . "
°

"." -'fo ", ''. ' "° " 'o" •*. .° "o " °° "" "o "o *."".. . . .,.. . .-.. . .".. .',

5

1.1. An Example: Current tProblems in Design Methods

Implementation

The general problems associated with method implementation are

illustrated with an example from the VLSI design process domain. In no

other place has the proliferation of methods had a greater impact than

in the VLSI design process domain. This proliferation has been caused

because of the many different technologies and the many interactions

between cells. With each new technology, a new and better design

system has been developed to implement that technology and its

associated method. Let us illustrate this with an example.

There are two existing classes of methods for VLSI design; flat design

and type-based design. Using the flat class, the entire design is viewed

as being a collection of sheets all at the same level. The sheets

communicate with each other by using global signal names. An

additional feature of flat design is that a component shown in one sheet

can also appear in other sheets (i.e. the connections to a component do

not have to be shown on one sheet). This feature is used frequently in

printed circuit board designs where the po%%er and ground connections

are shoNn separately from the logic flow.

The main shortcoming of flat design is that it has no special provision

for exploiting regularity in a design (i.e. where a certain circuit topologN

is used more than once). A sheet cannot have multiple instantiation,,.

Although it is possible to make copies of sheets, there is no mechanism

for ensuring that these copies remain consistent throughout the life of the

design.

T)pe-based design follows a completely different approach. The design

4

Each company would develop their own software environment system

which would enforce their methods and policies. If, after some

experience with the method and the management policies, the company

decided to change the format and placement of the comments, they had

a tremendous task of updating the software environment system to reflect

these changes.

In this dissertation, we will look at how to implement methods in a

software environment system. We will develop a model in which

methods can be added to the system, in which methods can be developed

for the system, and in which methods can be tuned for the system. In

essence, we will develop a meta environment system which has a

knowledge base of methods. From this knowledge base, a method

designed for a particular project can be selected and used to customize

the meta environment. As users of the system use this method, their

experience can be obtained and tuned back into the method itself and

reflected in the project information database as well. A software

environment system does not have to be hard wired to any particular

method.

In section 1.1 we will look at the proliferation of methods and its effect

on design systems. In section 1.2 we will look at some of the tasks that

need to be performed by methods and how they could be incorporated

into design systems. In section 1.3 we will look at the contributions I

have made to computer science as they apply to methods and meta

environment systems. We will also see how the rest of the dissertation

is organized and how it addresses the issues of methods and meta

environment systems.

3

3. a set of predictable milestones that can be reviewed at regular

intervals throughout the project life cycle and used to evaluate

the progress of the project.

Although the objectives were well understood, the implementation of a

method on a software environment system was both cumbersome and

irrelevant. Software produced by these systems became more expensive

to produce, less responsive to user demand, took longer to implement,

and was harder to maintain. One reasons for this was that the software

environment system was so tied to a particular implementation of a

method that any change in the method meant major changes to the

system. The experience gained from the use a method could not be

reflected in the software environment system without affecting every

project.

Many management policies, which are not applicable from one company

to another, were placed in the methods and supported by the software

environment system. For example, the project life cycle method says

that all code should be documented. Each company would have its own

policy on how the code was to be documented. One company might

require that comments be intermixed with the code. Its software

environment system then would enforce the policy that code would be

found in the first 40 columns, and the comments would be found in the

last 40 columns. Another company might have its system enforce the

policy that all comments be placed at the beginning of a procedure or

module and that all comments include such details as which routines are

called, what are its inputs, what are its outputs. and what side effects

are present. Still another company might have its system enforce the

policy that all comments be in the form of a flowchart.

2

As the cost of hardware became less expensive, more individuals began

to see how computers could make their work easier. These individuals

were not programmers, nor did they understand how computers worked.

They wanted the computer to do more complex tasks for which

algorithms were not clearly defined. They also wanted documentation to

show them how to use the product they had asked for. Because the

programmer who was responsible for maintaining the code was not the

same one who originally designed the code, requirement documents,

functional specification documents, and design documents became

necessary. Programmers had to communicate with one another as well

as with the users. Still, there were not any methods to help the

programmer in designing, coding, and testing of programs. Management

tried to set up some policies to manage the programmer and their

products, but these policies were often ill-placed or not well understood.

In the early 1970's, a new discipline came into existence know as

software gineerng. It was based on a model of engineering that had

been used to manage hardware development. Several methods were

developed by individuals like Jackson '49', Yourdon [1101, and

Constantine on what they considered to be good programming practices.

These practices were combined with what management considered to be

good ways of managing a programming project and formed prjoect life

accl-e methods. The objectives of these project life cycle methods were:

1. a well-defined method that addresses a project life cycle of

planning, development, and maintenance,

2. an established set of software components that documents each

step in the life cycle and shows traceability from step to step,

and

.°...-...-. ..

Chapter 1

Introduction

"There is nothing more difficult to take in hand, more

perilous to conduct or more uncertain in its success, than to

take the lead in the introduction of a new order of things..."

(Machiavelli)

Computer programmers have suffered from the perils of building a

system that does not work like the user wants it to, that was not

installed when the user wanted it, and that does not lend itself to meet

the future needs of the user. They in essence suffer the Machiavelli

syndrome mentioned above.

When computer programmers first began programming in the early

1950's, no methods were used in their programming. They wrote code

that was full of tricks to make it run efficiently, but so obscure that no

other programmer could work on it. Documentation consisted only of a

very simple user's manual, generally done as an afterthought. Although

the code may not have worked like the user wanted, at least it was

installed in time and it did not cost as much as the hardware on which

it ran. The problems that were being programmed were based on well

known algorithms and were basically numeric in nature. In a lot of

cases, the users were the programmers themselves (or at least individuals

who understood programming).

-- - ," "a'e ", - ', u • , . .- ,

- % .% •. - . %..-.............

Figure 31: Algorithmn for Intersection Set 16-1
Figure 32: Examiple of CommI!onI List Filled F'orm 1635
Figure 33- Example of Noncomotin Lst f'illed Form 166

xi

List of Figures

Figure 1: Categorization of Tasks in a Software Engineering 11
Process

Figure 2: TRIAD vs a Data Base 23
Figure 3: Concept Tree for a Book Grammar 24
Figure 4: Interpretation Tree for a Book Grammar 25
Figure 5: Blank forms for the Book Method 26
Figure 6: An Instantiation of the Book Form 27
Figure 7: Instantiation of the Chapter and Section Forms 29
Figure 8: Comparison of Programming Environments 32
Figure 9: Methods For the Project Life Cycle 47
Figure 10: Relationship Between a concept tree and its 52

interpreted concept tree
Figure 11: Derivation of (00) 63
Figure 12: Derivation trees of x x y + x 66
Figure 13: Derivation Tree of 673 80
Figure 14: Dependency Graph for Machine-Dependent Pascal 82
Figure 15: Methodology Form of the Meta Methodology 114
Figure 16: Grammar Form of the Meta Methodology 115
Figure 17: Action Form, Attribute Form, and Symbol Form 116

of the Meta Methodology
Figure 18: Production Form of the Meta Methodology 117
Figure 19: An Instantiated Methodology Form 118
Figure 20: Concept Tree for a Blank Methodology Form 124
Figure 21: Concept Tree for an Instantiated Methodology 125

Form
Figure 22: Locally Tuned Form 129
Figure 23: An Updated Fillform of the Grammar Form 143
Figure 24: Verify Name Not in Table Algorithm 144
Figure 25: Verify Name is in Table Algorithm 145
Figure 26: Diagram of VLSI Method 1418
Figure 27: PEG Blankform of the VLSI Method 152
Figure 28: EQNTOTT Blankform of the VLSI Method 153
Figure 29: Algorithm for Tool Interface 155
Figure 30: Define Domain Forms for Virtual Interface 162

x

.-. .

.-...

4.6.1. Normal Form 104
4.7. Attributed Grammar Forms 110

5. TRIAD and the Grammar Form Model 112

5.1. Description of a Method in TRIAD 113
5.2. Tuning a Method 125

5.2.1. Tree Rebinding at Method Use Time Tuning Example 127
5.2.2. Tuning Example of Concept Rebinding at Method Use 128

Time
5.3. Why Attributed Grammar Form Model 132

6. The Tuner 135
6.1. Description of the Meta Method 136
6.2. Implementation Issues of the Meta Method 138

6.2.1. Implementation Issues of Procedural Components 139
6.2.2. Implementation Issues of Attributes 142

7. Using the Tuner for a VLSI Method 147

7.1. Description of the VLSI Method 147
7.2. Implementation Issues of the VLSI Method 151

8. Using the Tuner for a Virtual Interface Method 156

8.1. Description of the Virtual Interface Method 156
8.2. Implementation Issues of the Virtual Interface Method 160

9. Conclusions and Future Work 167

9.1. Common Properties of Methods 169
9.2. Multiple Display Interfaces 170
9.3. Data Structure. For Attributes 171
9.4. Compiler For Procedural Components 173
9.5. Data Base Model 174
9.6. Generic Procedural Components 175
9.7. More General Attributed Grammar Form 176

Bibliography 178

Appendix A. Implementation of the Tuner in Tuner 189

Appendix B. Implementation of a VLSI Method 216

Appendix C. Implementation of the Virtual Interface Method 252

ix

Table of Contents

Acknowledgement iii

Vita v

Table of Contents viii

List of Figures x

1. Introduction 1

1.1. An Example: Current Problems in Design Methods 5
Implementation

1.2. General Requirements for Improvements 8
1.3. Contributions 10

1.3.1. Development of a Model for Describing Methods 12
1.3.2. Development of a Tuner Tool for the Incremental 12

Design of Methods
1.3.3. Method Transformations 14
1.3.4. Problems With Design of Interface for Software 15

Environments
1.3.5. Validation of New Ideas With Realistic Examples 16

2. Current Research 18

2.1. A Brief Introduction to TRIAD 21
2.1.1. Implementation View of TRIAL) 22
2.1.2. User's View of TRIAD 24
2.1.3. Architecture of the TRIAl) Meta System 28

2.2. Comparison with Other Systems 31

3. Methods and Methodology 44

3.1. What is a Method? 45
3.2. Steps in the Evolution of Methods and Their Tools 48

4. Attributed Grammar Forms 53

4.1. Introduction 53
6 4.2. Context Free Grammars 55

4.3. Generative Grammars 61
4.4. Attributed Grammars 73
4.5. Attributed Grammars with Right Regular Parts 8-1
4.6. Grammar Forms 88

viii

• - .. " , " ." ' . • .. --• - . - -.- -." - . - . --. • . " . -. -. " .- "-."-. - -" -. - . .- "- - • - .- -. "- - -. ' . . " .' '- - , - , - . - - - -f"l. -t

... ,*

Publications

.' 1. "A Meta System For Generating Software Engineering

Environments", submitted to Second Conference on Software

Development Tools Techni ues, and Alternatives, San

Francisco, California, December 1985, co-author:

J. Ramanathan.

2. "Opportunities and Approaches for Using Artificial Intelligence

Techniques in Practical Software Engineering Environments,"

Technical Report TRIAD-7, August 1984. Co-authors:

J. Ramanathan, S. Demion and C. Li.

3. "Uniform Support for Information Handling and Problem

Solving Required by the VLSI Design Process", ACM IEEE

21st Design Automation Conference, Albequerque, New Mexico,

June 1984, co-author: V. Ashok and J. Ramanathan.

4. "Integrated Environments For Information Management in

VLSI Design", Proceedings of the Computer Data Enaineering

Conference, Los Angeles, California, April 1984, Co-author:

V. Ashok and J. Ramanathan.

5. "A Generalized Record Parser", Master thesis, Department of

Computer Science, University of Utah, December 1973.

vii

..................--

10

to describe the subsystems and the steps needed to eventually

transform the various abstractions into code.

These two types of tasks are related (see Figure 1) because for problem

solving to be well-informed, appropriate requests for views of information

must be formated and pertinent information views must be displayed to

the user. For example, to make a well-considered decision regarding the

content of a subsystem, the designer must be presented with a view of

the information which documents the functionality of all the related

subsystems.

In this dissertation, we will see how the method support can be made

apart of the environment. We will also see how the logical organization

of project information is supported in TRIAD and how this supports

complex problem solving.

1.3. Contributions

The contributions of this dissertation are in:

e developing a model in which methods can be described,

* developing a tuner tool for the incremental design of any

method,

* expanding the ideas of method transformations,

e solving the problems associated with the design of the

interface for software environments, and

@ validating each of the above by using realistic examples from

three different domains.

The contributions are discussed below.

2. ...

Problem solving Task,
(what should t do for this application) Problem Solution

-methodsio forli T hok s in
(bo soud Ioraste cortatao

Figure1: Categotructions of agrtaskinaSfwrEgneigPocs

_Ush.d fo a.........

evalua........ an .eda

12

1.3.1. Development of a Model for Describing Methods

Early software engineering methods were characterized by a step wise

refinement process. Later, methods became more complex requiring back-

tracking, recursion, alternatives, etc. For example, many methods have

an enforcement policy that requires certain steps to be accomplished

before other steps. An attributed grammar form model is introduced

which allows a method designer to describe a method where

1. enforcement policies can be handled by using attributes and

procedural components,

2. automation of certain steps can be handled by including tools

which can be interfaced with the system by the use of global

controllers and procedural components, and

3. back-tracking, recursion, alternatives can be handled by a

context-free grammar.

The evolution of methods and how they can be described is discussed

in chapter 3. Grammar forms are discussed in chapter 4. How a

method can be described by a grammar form is discussed in chapter 5.

1.3.2. Development of a Tuner Tool for the Incremental Design of

Methods

Grammar forms themselves represent a family of grammars. I have

defined a gen sis grammar form which is powerful enough to describe the

form grammar and the allowable transformations needed to define an)

grammar form. With this genesis grammar form, I can describe any

grammar.

.......................

13

The prototype TRIAD (Tree based Information Analyzer and

Developer) is an integrated, tool-box enriched, method driven

environment designed to support the entire spectrum of software

engineering activities rather than simply programming activities. One of

the tools in its tool-box is the tuner tool. This tool creates method

representation to be included in the knowledge base of methods that

TRIAD uses to customize itself into a practical software environment.

I developed the tuner tool that uses the genesis grammar form. In the

previous version of TRIAD, all methods had to be hand coded and

compiled with TRIAD. It was difficult to implement new methods

because the method designer had to understand the code of TRIAD to

bring up a new method.

The first version of the tuner tool just eliminated this hand coding of

methods. It made the method independent of TRIAD code. This

version also introduced the grammar form model into TRIAD. The

second version of the tuner allowed attributes to be defined and semantic

routines to be executed. The semantic routines had to be hand coded

with TRIAD because there was no interpreter for them. The next

version included an interpreter for semantic routines which were

expanded to procedural components. Each of the versions of the tuner

were static versions working off of the genesis grammar form.

The last version of the tuner allowed for making dynamic changes to a

grammar form once it had been instantiated. This version allowed a

method to be incrementally built, dynamically built, and dynamically

changed and to have those changes reflected in the refinement tree of the

product being developed. This tuner allowed the user more freedom to

experiment with the development of a method. It also allowed the user

14

to reflect experience back into the method itself. Several individuals

have used this last version of the tuner and have found it easier to use

than any of the previous versions.

The genesis grammar form is defined in chapter 3. How this grammar

form is used in TRIAD is explained in chapter 5. Also included in

chapter 5 is how the tuner tool uses the grammar form model, how the

tuner tool can make changes to a method and have it reflected in the

refinement tree of the product.

1.3.3. Method Transformations

In building the tuner tool, extensions to the parser generator concept

were developed and tested out. The tuner is comparable to a parser

generator in that it builds tables to drive a generic system. A

comparison of the tuner and a parser generator follows:

e The tuner has to understand the model used to represent

methods. This model is an attributed grammar form. A

parser generator also has to understand the model used to

represent programming languages. This model is often an

attributed grammar.

* The tuner has to manipulate the method representation and

the method instantiation and keep them both consistent.

There is no way that a parser generator can manipulate the

language representation and have it reflected in the programs

using that language. For one thing the language

representation is not maintained in the program. If the

language representation is changed by the parser generator, a

":: :..-. .. . i;: .} .: ..C .i ;.:; . - . : . .: : . . ;. , , - : i ..; : .; :;- . .- ;

15

new compiler has to be generated and the program run

through the new compiler. This is a three step operation

compared to the one step operation of the tuner.

* The tuner has to work in an incremental and dynamic mode.

This allows the user of the method to make changes which

are appropriate to the project being developed and to see the

results immediately. To have the same concept work with a

parser generator would mean that we could tune a

programming language to the particular program being

developed. In essence we could change features of a

programming language to optimize the problem being solved.

Instead of having a hundred variations of a programming

language, each emphasizing a particular concept of

programming language theory along with a compiler for each

of these languages, we could have a few classes of languages

and a compiler for each class of languages. Then the user

could tune the programming language to reflect the experience

accumulated and this could be propagated to the compiler

without the user having to write a new compiler.

1.3.4. Problems With Design of Interface for Software Environments

Any method is only as powerful as its presentation to the user.

Because of the large amount of project information that must be

captured in a software environment, only a small portion of the total

project information can be presented to the user at any given time.

This has lead to several problems with the design of software

environments. Among these problems are the following:

.

16

1. How to display the project information without showing its

hierarchical nature.

2. How to engineer the grammar form production without having

to take into consideration the display interface with the user.

3. How to engineer a display interface that can develop the

underlying refinement tree without actually displaying the

underlying refinement tree.

These issues are addressed in the three examples found in chapters 6,

7, and 8.

1.3.5. Validation of New Ideas With Realistic Examples

As a software engineer, I believe that ideas are only as good as they

are useful. One of the real problems in computer science is showing that

your ideas have a practical application. I have chosen three areas to

show where the tuner tool could be used in practical application.

The first area was in the software engineering domain. The application

that I thought would best illustrate the power of the tuner tool was to

dynamically build the meta method using the tuner tool. The tuner tool

understands the meta method, so in essence I built the meta method

using the meta method. Since the tuner in many respects represents a

parser generator, this example show how the ideas of the tuner could be

expanded to compiler theory. The example is explained in detail in

chapter 6.

The second area was in the VLSI design domain. The example for

P.....................................-.-..--....-...-...........-.. ...

17

this domain was the development of a method to design finite state

machines using generic tools like a state diagram generator, a truth table

generator, PLA generators, simulators, and formatters. This method

helps the student to be more aware of what tools are available and takes

care of some of the automatic tasks associated with using the tools.
This example is detailed in chapter 7.

The last area was in interface design. Another student has designed a

method to build a virtual interface. In this method there were several

steps that could be automated. In conjunction with this student, we

used the tuner tool to implement this method and automated several of

the steps to show its feasibility. The details of this example are found

in chapter 8.

K!Ii

Chapter 2

Current Research

Research in programming environments began in the mid 1970's.

Research in software environments began in the late 1970's with the

initial work on the TRIAD project beginning in 1979. Since that time

many programmer oriented systems have been designed and implemented.

These systems range from program/structure editors systems and office

automation systems to programming environments and software

environments.

TRIAD is unique in that it is can be adapted to any or all phases of

a project life cycle. Its knowledge base of methods customizes the

system to support the structuring and manipulating of all software-

related information generated during the entire project life cycle.

In this chapter we will take a look at the TRIAD system both from an

implementation point of view and from a user's point of view. We will

then compare the TRIAD system with other programmer oriented

systems with emphasis on the contributions TRIAD has made to software

environments.

We will basically ignore office automation systems like SOFTFORM

,48 and the one proposed by Shu 90 because their emphasis is more

on office automation for a non-programming environment than support

for a programming environment. Most office automation systems have a

18

.- -.. . - . ° ,,.. . 1., - . ° . . . ° - m .' l . " . . - - - - .

19

forms base like TRIAD, but do not have a grammar or attributed

grammar model supporting them. We will also ignore interface systems

like the Box 161 and Cousin-Spice '44] because those systems address the

problems associated with building programming environments more than

being programming environments. Because of the number of other

systems, we will only look at a few. The list of systems that we will

compare with TRIAl) includes:

1. ALOE -- CMU f30, 31, 74'

2. CPS -- Cornell University '84, 85, 102, 103'

3. SUPPORT -- University of Maryland ri111

4. POE -- University of Wisconsin [32-

5. COPE -- Cornell University [3

6. SYNED -- Bell Laboratory '46,

7. PECAN -- Brown University [82, 83'

8. MAGPIE -- Tektronix '19, 89

9. ARCTURUS -- University of California '97, 98'

10. SAGA -- University of Illinois 11, 12

11. ISDE -- System Management, Ital) 11

12. MENTOR -- INRIA, France 26'

20

13. GANDALF -- CMU [36, 41, 42, 43]

These systems cover a range of support activities that should be found

in a software environment. The list includes program editor systems

(MENTOR, SYNED), a program transformation system (SUPPORT), a

program editor generator (ALOE), program development systems (CPS,

PECAN, POE, COPE, MAGPIE), and project developmcnt systems

(GANDALF, ARCTURUS, SAGA, ISDE). The comparison will be

similar to the comparison made by Kuo in 61' although our emphasis

will be more on how they support a multiplicity of method driven

activities as opposed to what they can do. We realize from the

beginning that they did not have the same design goals that TRIAD had

and so we will not attempt to evaluate the other systems with each

other.

TRIAD differs fundamentally from other programming environments

because it has a knowledge base of methods (like Jackson 149!, SADT

87, 88, etc). Basically, a method is a sequence of steps that focus on

the activity at hand. A method could be very general and could

support, for example. version control and other development-in-the-large

activities. A method could also be very domain specific and could

support coding and other programming-in-the-small activities. The more

useful methods might be a synthesis of other methods and could support

both in-the-large and in-the-small activities or even design,'development

activities in other engineering disciplines. A method representation can

be user-selected to customize the TRIAD interface. This representation

customizes the software environment for the user. A detailed discussion

of what is a method and how it has evolve can be found in chapter 3.

TRIAD's kno ledge base concept has provided some unique

21

opportunities for research into software productivity issues. Some of the

major ones are:

" What are the mechanin-i which constitute a meta

environment?

" How can one represent a method to utilize these mechanisms?

" What is a good method for a specific application domain?

" What are some relatively intelligent ways to use project

information developed using a method?

* How can one tune an existing method to reflect experience in

an application domain?

These issues will be addressed throughout this dissertation.

2.1. A Brief Introduction to TRIAD

TRIAD is a form based environment developed as a meta environment

for software development '81' Currently, there are two prototype

versions, one on a VAX' 11780 running UNIX and the other on a

IBM'4341 running VMS. In section 2.1.1, we will discuss how TRIAD

looks from a implementation point of view in order to motivate some of

the deeper architectural issues underlying TRIAD. Then in section 2.1.2.

we will discuss how the user views TRIAD. Finally, in section 2.1.3, we

will look at what is needed in order to architect a meta environment.

22

2.1.1. Implementation View of TRIAD

The model underlying TRIAl) is an attributed grammar form .72.. We

will give only a brief explanation of the model here for comparison

purposes, the formal details are explained in chapter 5.

Most of the other systems use an attributed grammar model which is

inadequate for modeling a meta system for the entire software

engineering process. An attributed grammar model does not allo the

dynamic customization and tuning of the meta environment. Those

systems which use a grammar base model are even more limited in that

all they can emphasize is the coding process.

A grammar form has a concept grammar and an infinite vocabulary.

The concept grammar generates concept trees which are hierarchically

related layers of tags on top of the data base (see figure 2). The

infinite vocabulary is the chunk of text associated with each tag in the

concept tree. Symbols of the concept grammar can be substituted with

a subset of symbols from the infinite vocabulary to derive various

interpretation trees. In fact, this process of substitution is called

interpretation. As we shall see later, the tuner tool exploits the

interpretation process.

Conceptually. the concept grammar is analogous to the data definition

language for a hierarchical database. Individual concept gramrnmar

symbols correspond to individual enti:es and concept grammar

productions rules correspond to relationships between entities. An

instance of an entity is a chunk of project information. In addition.

each tag in the concept tree serves to structure chunks of project

information according to the model on which the concept tree was

" .'--./ :-.-- :i----......"."..".......-....-... ...-.-....-............'. . -...... -.--..-..-.. :

23

H4eta Dt: t-o
(Knowled&e Base)

Attributed
G raoonr form ___

lepresenta tion
of a Kethod

Met& Data: Co cept
etree organize. I

Aecord Descriptions the logical data -

-keys, tago base,"
-forusts

Data Base Ilforaotjoo Base

Figuire 2: TRIAD vs a Data Base

designed (see figure 2). In a data definition language, there is only one

definition of an entity, which does not reflect the model upon which it

was built. In TRZIAL), we are able to capture this model with the

concept grammar.

Let us illustrate the systemn view with an example. Let us assumne we

have a method for describing a book. The concept grammar production

rules include-.

b bok':: -title author *,chapter'

37

These descriptions are used to produce tables and code to direct the

language-dependent modules of the system. The language description for

PECAN is given in four parts. The principle part describes the abstract

syntax trees which includes the semantics of each abstract syntax

production as well as information to control the parser and editor. The

remaining parts are more detailed semantic information about the use of

symbols, data types, and expressions in the language. This generator

works only in a static mode like the CPS generator.

POE is a full-screen language-based editor that knows the syntactic and

semantic rules of Pascal. POE is structured more like CPS, but its

philosophy is more like COPE in that it does not use templates. It

presents an interface in which the user moves the cursor to a prompt

symbol and types text corresponding to the prompt. Typing a single-

token prefix of a particular expansion is sufficient; an automatic syntactic

error corrector provides any added tokens which are necessary to expand

the user's input and make it syntactically correct. There is an editor-

generating system called POEGEN which creates the language-specific

characteristic of POE in a table format similar to the CPS generator.

POE represents an open environment. This means POE can read text

files created by an) program or tool and can output text files usable by

other programs or tools.

Integrated programming environments are usually described as a set of

tools that support program creation, modification, execution and

debugging. The term integrated emphasizes the difference between the

programming environment and loosely coupled sets of tools that most

programmers typically use: an editor, compiler, assembler, linker, loader.

and debugger. The tools in an integrated programming environment

36

The COPE system is similar to CPS except it is based on an

intelligent parser. The parser is able to insert missing keywords and

tokens to get about the same affect as the templates do in the CPS.

This scheme has the advantage that the user can type in their program

as text. It has the disadvantage that the user is not shown what

templates are currently valid. The primary focus of the system is for

automatic error recovery and repair. COPE has an UNDO and a REDO

facility that allows for experimentation of coding. No additional tools

are planned to be included in the COPE system. It is based completely

on the PL,'CS language and has no method associated with it. There is

no generator for the COPE editor.

The PECAN system differs from the other program development

systems in its use of multiple views of the shared data structures. A

program is represented internally as an abstract syntax tree. The user

does not see this tree directly, but instead sees views or concrete

representations of it. Some of the views include the syntax-directed

editor view, the Nassi-Shneiderman structured flowchart view, and the

module interconnection diagram view. PECAN supports both the

template-based approach of CPS and the text-based approach of COPE.

PECAN is designed to be interactive and to eventually support graphical

programming similar to what is done in the Smalltalk system 40, 94,

the Interlisp environment 1041, the Mesa environment '37'. and more

recently, the CEDAR environment L23,. PECAN differs in its emphasis

on programming-in-the-small, interaction, the use of graphics, and on

showing the user multiple views of his program.

A PECAN program development system is generated for a particular

language from descriptions of the syntax and semantics of the language.

• .: :::..'":,:. 7 "..-- 7.[.:1-.-..-..-.---...-......-....-.--.-..-....-..-....--.-...---- '

35

modification, re-evaluates the attributes, and detects if there are data-

flow anomalies.

It is from the CPS Generator that the original ideas and models for

the TRIAD tuner were developed. Since that time the tuner has been

modified to the point where there are major differences between the

generator and the tuner. These differences include:

" The generator is based on a model of attributed grammar

where the tuner is based on a model of attributed grammar

forms. With the attributed grammar forms, the tuner can

build editors for families of grammars where the generator can

only build editors for a single grammar.

" The generator only allows the creation of semantic functions

which means that information can propagate only up and

down the tree. The tuner allows the creation of action

routines which allow information to propagate across the tree

as well as up and down the tree.

" The generator only works in a static mode. The generator

builds the appropriate tables and those tables are used by

CPS. The generator cannot work with CPS directly to

update the tables while CPS is using them. This is not true

with the tuner. The tuner can work either in a static or a

dynamic mode. In the static mode it builds the tables for

TRIAD. In the dynamic mode. it works with TRIAD and

updates the tables the same time that TRIAD is using the

tables. The tuner knows the consistency issues and is able to

handle them.

...' .-...- - . - .. - .. -..-'.:, :..... .". ,, .''..:. '. -,.. ..,.. . :.. . . . -,'. ,..- '

34

design language built into the system which is a githmic in nature.

This allows the programmer to input the des 'n of the system in an

almost English like fashion and build layers of refinement of that design

until the actual code is generated. The expansion is always closer to

Pascal source code. The user has the option of displaying the design,

the source code, or both intermixed. Actually the design becomes the

documentation for the next lower level of refinement. Like SYNEI),

SUPPORT maintains both an abstract syntax tree representation and a

text representation. SUPPORT allows both a top-down refinement and a

bottom-up development of a system. When SUPPORT gets to the

source code, it is interpreted and executed as it is inputed so that some

semantic errors can be flagged. Because SUPPORT is a program

transformation system, it is impossible for it to support more than one

language at a time. All transformations are programmed into SUPPORT

and are not input via some syntax tree. The system likewise can not be

built dynamically nor incrementally. All changes to the system would

cause a new source code to be generated for each design. All tools used

by the system must be part of the system.

The Cornell Program Synthesizer (CPS), a program development system

for PL'C. includes a syntax-directed editor and an interpreter. Its editor

is ternplate-based but provides text editing for fixed constructs like

expressions. It has been implemented as a generator so that it is

possible to create synthesizers for different block structured languages

using attributed grammars to describe the display format and semantics

for each production of the abstract syntax. All tools that interface with

CPS work off of the abstract syntax tree and must be included in CPS.

At present these tools work in an incremental mode. When a node of

the abstract syntax tree is modified, the interpreter interprets the

' -. * . ' ' . • . m . .- " . °" ". - . ° . .* - - o , .- - .. . oo o . °. • - " - - , - , • -" " " .'

° - . " " " -- . - --. - ' .
"

.' V 'r < - - . - ,d - . - .- o. - .-. . .

33

All tools that interact with the MENTOR system must understand and

use the abstract syntax tree.

SYNEI) is a grammar based program editor for the C language

programmer. It manipulates a program as if it were text; however, it

represents a program as an abstract syntax tree. The abstract syntax

tree can be unparsed back into text. Both text and abstract syntax tree

representations are maintained. Because of this desire to maintain two

representations of the program, the user can either update the text

representation and have it parsed into the abstract syntax tree

representation or the user can update the abstract syntax tree

representation and have it unparsed into the text representation.

Documentation is maintained as comments attached to certain nodes in

the abstract syntax tree. SYNED only works for the C language and

therefore we can consider the system as neither adaptable nor

customizable. No method is directly supported by SYNED, although

with the way abstract syntax trees are built, top-down refinement could

be considered the inherent method. One of the unique features of the

SYNED system is the capability to undo a command, which allows for

greater experimentation than with the MENTOR system. This feature is

not currently supported in the TRIAD system. All interfacing with

other tools is with the text representation, which is the common

representation that most tools have expected in the past.

SUPPORT is a program transformation system. It is concerned with

both the initial design. detailed design. and coding phases of a project

and with programming-in-the-small issues. The initial design must be on

a module by module basis. The inter relationships between modules can

not be a part of the designing except as comments. There is a program

.. -..-

32

6 6
0

GANDALF/ALOE _X X X X X X XiX

CPS X X X X X I X X

SUPPORT X X X X X X

POE X X X X X X X

COPE X X X _

SYNED X X X X X

PECAN X X X X X XX

MAGPIE X X X X X

ARCTURUS X X X Xi X X xxX

SAGA XX X X XX XXXXXX

ISDE XX X X X X XXIX X X

MENTOR X X X XX
TRIAD X XXX X XXXXX X XX

Figure 8: Comparison of Programming Environments

MENTOR is a grammar based system for the Pascal language

programmer. Its data is only represented as an abstract syntax tree.

The MENTOR system is built using syntax tables of Pascal.

Documentation is maintained as comments attached to certain nodes in

the abstract syntax tree. Although new procedures can be added to a

MENTOR system, the system itself cannot be built dynamically nor

incrementally. The main function of MENTOR is to make program

transformations from the input program to the final compiled program.

31

1. Development-in-the-large f221. These activities have to do

with defining the architecture of the product in terms of its

components, interfaces of the component modules, tracking

versions of code, integration testing, etc. The enormous

volume of product information (composed of both code and

documentation) makes these activities very complicated.

2. Programmi~ng-inthe-smnall. These activities have to do with

designing individual product components, using algorithms,

selecting data structures, coding in a language, etc. These

activities have been studied quite extensively and are well

understood.

3. Project management. These activities have to do with the

process of manufacturing and assembling the product

components. Specifically, cost estimation, quality control

(walk-throughs, inspections, etc.) and process monitoring play

a large role. The more complex a product becomes, the more

complex the process.

2.2. Comparison with Other Systems

In this section we will compare some of the other programming

environment systems with TRIAD. A summary comparison of these

systems is shown in figure 8. Notice, that only TRIAD has a knowledge

base of methods and binding of the method or grammar to the actual

system at execution or use time. The other systems have the grammar

definition entered at compile time, not execution time. The knowledge

base of methods and the execution time binding are two major

distinctions of the TRIAD system.

'-.-'''.-.'''-..-'k '''-.-'''.-.' .'''---''',"'.-.'''-.-.'. .,.. ..--. . ..'. .-.-.-.- -. ..-.-.. . ..,-'. ..-..-. '. ' .'"." .-'''--.''". ' .

30

o add new attributes and procedural components for

extracting views for tools (i.e. defining the tool interface),

and

o add new views for more focused queries.

The capability of manipulating tags for information, as well as

the chunks that are tagged, distinguishes the tuner from tools

provided by typical data management systems.

e Information extraction tools, which are built on top of the

information base, which is organized according to methods.

These tools essentially exploit the data abstraction consisting

of project information organized using the concept tags.

These tags are used for the querying facilities.

* Existing tools can be incorporated under TRIAD using a view

extractor (to extract the view of the information base for the

tool) and an output distributor (to deposit the output of the

tool back into the information base). For example, to

integrate an interface consistency checker tool, we could

extract the appropriate interfaces descriptions from the

database and change it to the format expected by the

interface consistency checker, have the tool do its processing of

the data, and take the output data from the tool and place it

in the appropriate places in the data base.

For a typical environment to be practical for all phases of a project life

cycle, that environment must support the three types of activities

suggested by Li in 64'. These activities are closely related to the

software engineering tasks discussed in the previous chapter and include:

I

I . . • . o . . . o .o , - o - . - . ' ° . ° o - - o . , • o . . . • . - . - o , - - ° - °

29

BOOK-FORM-2 Chapter Form-use- # i2

Title: Introduction

Introduction: History of the use of methods and their application to a
software environment system.

{3} Section [more?]: Current Problems in Design Methods
Form-use- # [I I

(3) Section [more?]: General Requirements for Improvement
Form-use-# 12 '

{3) Section [more?]: Contribution Form-use-#[13]

BOOK-FORM-3 Section Form-use-# [1 1]

Introduction: VLSI design domain have many methods. They fall into
two basic classes: flat and type-based.

Main Point [more?]: New method are based on problems with old
methods.

Main Point [more?]: Some of the management methods have nothing
to do with VLSI design.

Main Point [more?]: New methods are hard to integrate into an
existing design system.

Conclusion [more?]: Present system do not allow for easy integration
of experience learned from the use of a method.

Conclusion [more?]: If a system had a knowledge base of method, easy
integration of experience learned from the use of that method would be
possible.

Figure 7: Instantiation of the Chapter and Section Forms

r.

28

and 7. These instantiations of forms are based on the structure of this

dissertation.

Each of the instantiated filled forms has a form-use-# in the upper

right corner of the form. This number is used to link the form with an

entry in its parent form. A form with the form-use-# of I is the root

form of the form tree (see figure 6). Certain entries of a form also have

form-use-#. This number is the number of the filled form that refines

or expands the concept presented by this entry. For example, the third

entry in the Book Form (see figure 6) has a form-use-# of 2 which links

it to the Chapter Form in figure 7. Linking the forms like this allows

the user to view a single instantiation of a concept, all instantiations of

a concept, or just a subset of all the instantiations of a concept.

2.1.3. Architecture of the TRIAD Meta System

A good software environment needs three fundamental components - a

global monitor, a collection of tool fragments, and an information base

191, 541. These components take on added functionality in TRIAD's

method-based approach. In addition, there is a new unique, component

that is called the knowledge base of methods (see figure 2). The four

TRIAD components encompass the following collection of tool fragments.

* A tuner tool which allows the users to interactively create the

internal representation of the methods (i.e. attributed concept

grammar) which comprise the knowledge base of methods.

The tuner can...

0 change tags for the concept grammar (i.e. the meta-

data),

S- .7. :

27

three tags in blank form 1 namely: Title, Author, and Chapter. The

flag Imore? means that this tag and entry is repeatable. The flag {2}

means that this entry has a concept that can be further refined by using

blank form number 2.

BOOK-FORM-I Book Form-use-# 1

Title: A Meta System for Generating Software Engineering Environments

Author [more?]: Walter L. McKnight

(2} Chapter [more?]: Introduction Form-use-#[2

(2} Chapter [more?]: Current Research Form-use-#[31

(21 Chapter [more?]: Method and Methodology Form-use-#41

(2) Chapter [more?]: Attributed Grammar Forms Form-use-#151

{2) Chapter [more?]: TRIAD and the Grammar Form Model
Form-use-# 6'

(2} Chapter [more?]: Tuner Form-use-#[7V

(21 Chapter [more?]: Using the Tuner for a VLSI Method
Form-use-# [8'

{2) Chapter [more?]: Using the Tuner for a Virtual
Interface Method Form-use-#'9*

(2) Chapter [more?]: Conclusions and Future Work Form-use-# 10

Figure 6: An Instantiation of the Book Form

After selecting a set of project oriented blank forms the user then edits

instances of the blank forms to create filled forms which creates a

hierarchically organized document called the form tree. A sample of

filled forms using our example concept grammar is shown in figures 6

S

26

BOOK-FORM-1 Book Form-use-#[]

Title:

Author [more?]:

(2) Chapter [more?]: Form-use-# jr

BOOK-FORM-2 Chapter Form-use-#"

Title:

Introduction:

{3) Section [more?]: Form-use-#]

BOOK-FORM-3 Section Form-use-#['

Introduction:

Main Point [more?]:

Conclusion [more?]:

Figure 5: Blank forms for the Book Method

-..- Z. .~. -

25

Thesis

Title Student Chapter 1 Chapter 2 Chapter 3

i Chapter

Number Proposal Option I Option 2 Option 3

Option

Hypothesis Claim 1 Claim 2 Result 1 Result 2

Figure 4: Interpretation Tree for a Book Grammar

A set of blank forms are designed (perhaps by the project manager) to

guide the user into following certain methods. Each blank form

represents related concepts (productions) of the underlying concept

grammar form. A form contains tags which generally describe what is to

be in the blanks. The annotations underneath some blanks (called help

information) provides information on how to fill in the blank. The text

used to fill in a blank is called an entry. The entries in a form must

be filled in using some notation, be it English language text,

programming language source code, compiled code, or graphical symbols.

The form based approach is independent of any specific language. The

blank forms which correspond to the concept grammar of our previous

example are shown in Figure 5.

Notice that each forin has a number in the upper left corner of the

form. This number is used for selecting a form. For example, the form

number for the Book blank form is number 1 (see figure 5). There are

S 1'

24

2. (chapter)::: (,tf (introduction\ (section)'

3. (section):::= (introduction, (main-points) *(conclusions

The concept tree would be as shown in figure 3. One interpretation of

the concept tree could be the interpretation tree shown in figure 4.

book

title author apter

chapter

title introduction section

section

introduction main-points conclusions

Figure 3: Concept Tree for a Book Grammar

2.1.2. User's View of TRIAD

The user's primary interest is in developing. viewing, and manipulating

integrated project information. As far as the user is concerned, the

project information base contains hierarchies of forms - blank forms and

filled forms 60'. The model underlying the hierarchically related forms

is an attributed grammar form, though this is not apparent to the user.

The user fills in the blank forms (which become filled forms). Tools can

be invoked which will manipulate project information contained in the

filled forms. The user can also browse through the filled forms that

make up the project information tree.

38

usually share a common intermediate representation of the program and

present a consistent user interface. The goal of integrating a

programming environment is to build a tool that does not require the

programmer to perform mental context switches, for example, between

modifying a program and debugging it. MAGPIE has used as its

primary goal, this idea of an integrated programming environment.

MAGPIE addresses only the coding and testing phases of the project

life cycle. The coding and testing phases are so much interwound that

users are not aware that they are even in the testing phase. In

MAGPIE, the user does not need to control, or even initiate the

compilation process. Static errors are detected and highlighted in the

source code as the program is edited; code generation occurs in the

background and is initiated automatically after a portion of the code is

modified. MAGPIE supports the Pascal programming language. It uses

multiple windows to give different views of the project, but not in the

same sense that PECAN does. There is no generator for MAGPIE

because the programming environment is for only one language. Because

the user is not supposed to make context switches, new tools are rare for

MAGPIE and would have to be integrated into the code of MAGPIE

directly.

ALOE editors are subsystems of the GANDALF system. ALOE editors

are built using a structured editor called ALOEGEN. ALOE is a

template based editor in that it provides templates for all productions in

the abstract syntax tree and does not automatically allow parsing. CPS

provides templates down to the expression level and parses anything

lower. It is possible, however, for users to write their own parsers and

to use it for limited text editing. Since ALOE is a subsystem, we can

-
tI r :. ,a ,,, .2, . -,, .r,. ,.s 2d t,., . "q .",": ,. . _ . ' ., "_. . .- . •"

6

L

39

discuss what phases it handles in the project life cycle because other

subsystems take care of the phases not covered by ALOE. Of most

concern to us is the ALOEGEN system., as our tuner can be viewed as

an ALOEGEN system.

ALOEGEN takes a language description for actual language which some

ALOE will use to structurally manipulate an abstract syntax tree. Each

description contains:

* the description of the abstract syntax of the language,

* the display interface called the unparsing schemes.,

* the database interface, and

o the interface to action routines.

Originally, their action routines were very general in nature which caused

consistency problems with the database. One action routine could undo

what another action routine had done and there was no control on the

order in which these action routines were called. In their latest version
'2' , they have gone to more restricted action routines which are more

like our procedural components.

As with the generator for CPS, our tuner has taken some ideas from

ALOEGEN. However, there are major differences which include:

* In ALOEGEN, the attributes can only be referenced through

the node extension. In the tuner. attributes are referenced

one of three ways with each way given a priority. The

highest priority is given through the current node; the next is

h

• 5, ,-' "...-"....-'-....--...,........."...",...."..'....."........".................."......."............ _'...... ",

40

given through direct links with the attribute; and the lowest is

through the root node of the tree. All global attributes are

attached to the root node.

* In ALOEGEN, the action routines must take care of the firing

condition. In the tuner, the firing condition is attached to

the action name. All actions under a certain firing condition

must be included in the same procedural component.

* In ALOEGEN, the action routines are compiled with the

language description. In the tuner, the procedural components

are not interpreted until they are needed so that binding to

the attributes can be delayed to the lastest possible time.

GANDALF is a project development system that addresses some of the

issues of programming-in-the-large. Some of the support that it provides

is:

* System Version Control support which helps describe the

interfaces and composition of subsystems in order to permit

automatic generation of system versions.

- Project Management support which helps control the

development process so that programmers can make changes

to a project in an orderly fashion.

* Incremental Program Construction support which helps the

individual programmer develop a single program in relative

isolation from other programmers.

At present, complete support for the project life cycle is not available, as

.... ,. •..,•-

41

the requirements and design phases are not supported. However, the

GANDALF system has done a better job in the support of the other

phases of the project life cycle than any other system. TRIAD gives a

more management oriented approach to project management than

GANDALF in that GANDALF project management control is only

controlled message passing. Each of the support systems of GANDALF

is controlled by an ALOE system which has already been addressed.

ARCTURUS is an Ada project development system. Its main emphasis

is on the tight coupling of tools, effective command and editing concepts,

and the combined use of interpretive and compiled execution.

ARCTURUS is not complete however. Practical, mature environments

for a language like Ada must also support development, analysis, testing,

and debugging of concurrent programs. ARCTURUS is like the

SUPPORT system in that it has a design language and uses stepwise

refinement of the design to come up with the executable code.

ARCTURUS is driven by one method and appears to lack any

management method. Because ARCTURUS has only one language, a

generator is not in the system. All new features must be compiled and

integrated directly into the system. ARCTURUS has the following

features:

o templated based with three ways to fill in the holes, another

template, known identifiers with completion capability, and

normal text,

o interactive techniques such as breakpoints, tracing. interruption

and resumption of computations, queries, and pretty-printing,

o tight integration - in the form of sharing a few large. complex

S

I-.

% "%

i". 7

42

data structures between the tools - reducing the conceptual

overhead in tool-switching and execution efficiency,

* catalogue powerful user-interface techniques and move them

out of individual tool interfaces into a common interface.

SAGA is a project development system that is addressing the issues

associated with managing the project life cycle for small to medium sized

software development project involving a team of up to twenty members.

Each phase of the project life cycle is described by a machine-

recognizable language which does not necessarily have to be executable.

These languages are generated by a language generator that is similar to

a parser-generator. Any parser generating system may be used if the

resulting parser and its tables can support the functions required by the

interface to the editors. Input to the parser generator consists of the

formal description of the grammar of the language, the formal description

of the lexical representations of the tokens, and the semantic evaluation

information in the form of executable code fragments. The parser

generator produces parse tables and associated information which is

combined with the parser generator dependent library routines and the

common editor object code to produce an editor for a particular

language. Unlike the tuner, which uses one parser generator, SAGA

could use a different parser generator for each phase of the project life

cycle.

Also included in the SAGA project is a source code control subsystem

that records the modifications made to parse trees and the associated

information maintained by the language-oriented tools. It also includes

the Notesfile system which is used to document the system as well as

technical discussions, product reviews, hardware and software bugs and

b
°
.. . . .o. .- . o . . . - . . o, . . • -

43

fixes, agendas and minutes, design and specification documents,

appointments, news, and mail.

Another project development system that is similar to TRIAD is the

ISI)E system. The principle distinguishing features of their approach are:

* the derivation of an environment for a specific language as an

instantiation of a language-independent meta-environment,

* the definition and implementation of a unique internal

representation of programs to allow a complete integration

among the tools, and

* a high degree of interaction to allow the user to incrementally

define and analyze programs.

Their approach is similar to TRIAD in the sense that each environment

is built from a generic environment. However, they have gone with tight

tool integration where TRIAD has basically gone with loose tool

integration. They do address issues of programming-in-the-large and

most phases of the project life cycle. They have a generator for their

system but no information was available to compare it with the tuner.

A summary comparison of these systems is shown in figure 8. Not

included in this comparison are some unique systems which have taken

different approaches to programming environments. The OMEGA system

'79, 65, 66 implements a programming environment on a relational

database. The IDEOSY system 38' is a graph-oriented language

programming environment.

I l t . G = o o = o . . ° , . ° . . . , • . .

Chapter 3

Methods and Methodology

Examination of a wide variety of industrial case studies has shown that

the evolution of numerous software engineering methods is based on deep

differences among various project types in various industrial settings.

Fundamentally, a software engineering method organizes and manipulates

software-related information (requirements, specifications, management

plans, design, code, etc.). The automation and enforcement of a software

engineering method could be handled by a software engineering

environment. The role of a software engineering environment is to

provide support to view the software-related information, manipulate it,

and apply tools to it '33 .

Methods have evolved for producing software within specific domains or

project types. These methods have been based on experience gained

from working with projects in those domains. Experience often suggests

changes for the method. This has motivated research in meta software

environments which provide support for an environment that is not hard

wired to the details of a specific. pre-determined method. Rather, the

meta environment gets customized to any method from a collection of

methods prescribed by the project manager and provides more focused

support for the needs of a particular user community.

The unique power of the TRIAD meta environment is attributable to a

separate knowledge base of methods. Each method is represented using

44

45

an extended attributed grammar form. Anyone of these representations

can drive the meta environment. This provides the following

functionality

" The ability to select a method most appropriate for the

project and to use the method description to customize the

meta environment and, thus, the sL,-port it provides for the

project.

" The ability to add new, judiciously designed methods to the

knowledge base which provide integrated support for a wide

spectrum of software engineering tasks.

" The ability to tune methods to adapt to changing user needs.

A method can be modified to reflect a user group's experience

with a method in a project.

In this chapter we will look at methods and how they have evolved. In

section 3.1 we will define a method. We will also see how some of the

current methods support various phases of the project life cycle. Not all

methods need to support the project life cycle. In section 3.2 we will

discuss the evolution of a method. We will also discuss in that section

how tools to automate parts of a method can evolve.

3.1. What is a Method?

Method consists entirely in properly ordering
and arranging the things to which we

should pay attention. Descartes

According to the dictionary, a method is "an orderly procedure or way

of accomplishing a task". We define a component method to be a

°- - " '. ° '. "° " °b °' . ° • . . . ° . . .' " . _ _ . o ." .'. . * . o , .. -• . , - • .. .- . • .° - - %

46

procedural way to implement some technology, to enforce some design

practice, or to enforce some management constraint. Then our definition

of a method consists of component methods, techniques for managing the

application of the component methods, and tools for automating the

support of these component methods. A component method is what

others have referred to as a methodology. Technically, the dictionary

meaning of methodology would suggest the study of methods and how

they evolve. For example, Jackson methodology [491 would be called the

Jackson method by our definition.

The Jackson method suggests, among other things, that the first task is

identifying the input and output structures of the files, keeping in mind

the steps required to solve the problem. It also describes the next task,

which is to develop the program body itself. Whereas the Jackson

method is oriented towards the product (the program), other methods

like the Mead Conway method I731 are oriented towards the process of

developing the product. Typically, a phased process like the software

engineering process, with tasks and schedules for each phase, is used with

appropriate checkpoints, walk-throughs and reviews. Note process tasks

(development-in-the-large tasks and project management tasks) dominate

in larger projects. Currently used methods are oriented towards a

limited subset of software engineering tasks. They do not provide

uniform, integrated support for developing the product using a systematic

process to the degree that is possible.

A method should not be a collection of instructions in which the user's

success depends on his choosing the right set of instructions. Instead, a

method should provide the user with precise guidelines as to when and

how to apply each instruction. This will allow the user to follow a

. -. - - -. -- -. ---- -: - - --. -- • - -

47

systematic approach to solving the problem. Most of the software

engineering methods are imprecisely described and can not be used to

enforce systematic problem solving.

Many methods have been developed. Some of the methods associated

with various phases of the project life cycle are shown in figure 9.

Other methods have been developed for designing VLSI chips. These

methods all provide good design techniques based on some principles or

experience. They are all described using natural languages, but not

necessarily procedural languages. It is important that a method be

precisely described so that different users apply the method in a standard

way.

* Planning Phase

- Determine Scope of Project
PERT and CMP - 11081

- Requirements Definition and Analysis
SADT - (87, 88
PSL/PSA - 101'
SREM - [18'

* Development Phase
Preliminary Design

Jackson - [49'
Structured design - 110

Detail Design
HIPO - t99'

Coding
Data abstraction - 67

Testing
DAVE - 1771
DISSECT - 471

* Maintenance Phase
- Enhancements

Problem Correction

Figure 9: Methods For the Project Life Cycle

L'', m- '-' ,, ,.,,,,,,,--.... e- - ,.t , . -. .- - ,-,. *'1 : -.- -. ,

48

Methods are problem domain dependent. For example, the Jackson

method works nicely for the database processing domain but is totally

impractical in the real-time processing domain. A method is usually

designed based on the understanding of a problem domain, the experience

accumulated in the past in solving problems in that domain, and the

algorithms available. When a problem domain becomes more specific,

problems in that domain are better understood and therefore a more

detailed and precise method can evolve.

3.2. Steps in the Evolution of Methods and Their Tools

Each problem that I solve becomes a rule which
served afterwards to solve other

problems. Descartes

Methods and their related tools are not created overnight; an

evolutionary process is entailed. Take for example, the Jackson method.

It was developed in the early 1970's for the data processing domain.

Logrippo designed an automatic tool for generating skeletal code based

on the Jackson method in the early 1980's [68. This automatic tool

used an attributed grammar to capture the structure of the files to

generate the control structure of code. In 1984, Shubra designed a more

comprehensive system of seventeen templates based on Jackson method

[92'. Each template provides more detailed support for a sub-class of

data processing problems. Each of the above enhancements was built on

previous experience with the Jackson method and with its associated

tools.

There are two related ways in which this evolution takes place. One is

the degree of automated support for the method and the other is the

further refinement of the method itself to reflect domain experience. The

- ' .:. ,-.' ''.-,'' .'''-.- '......,: ..- '-'...-'- .- "-...:. . -. -" ,"- -"- - ." ." ."...- "- - ,- -.: " . ----.. *

49

degrees of automated information handling support made possible by

enhancing a method are indicated below:

1. A method could provide guidelines and/or notation for

organizing information so that appropriate information is

extractable and visible using simple data base techniques.

2. In addition to the above, a method could provide guidelines

for analyzing and correlating information in a more global

way.

3. Finally, in addition to 1 and 2 above, a method could also

simplify problem solving by regulating and monitoring tasks.

Degree 1 is accomplished by chunking project information '1071. Often,

chunking takes on the form of a hierarchical organization of information

to reflect the refinement process. Continuing with the Jackson method,

the viewing of this information could be accomplished by providing a

form interface to a data base. Forms could display the meta-data; the

record description (keys, format, etc.), and serve as an interface to

formulate queries. For example, a key called (input file(s), could tag the

chunk of information containing all the input files. A query could then

be designed to extract information tagged by (input file(s) . Information

could be extracted by doing some sort of incremental search through the

data base described by the meta-data.

Degree 2 is accomplished when tags are used moru effctivcl\. The'

semantic content of tags and the relationships be,,,teen the tags could

convey certain concepts underlying a method for organizing information.

This layer built on top of a data base allows the user to formulate more

50

effective queries. With the Jackson method, in an example suggested by

Soni [96:, we could define a concept (based on tags and the relations

between them) for (input:. This concept could include a structure as

shown in figure 10. This concept is...

(file'. ::-- (structure)*

(structure) ::= (structure)

I(null)

An interpretation of this concept (also shown in figure 10) would produce

the following grammar:

(transaction file) ::= (customer *

(customer) ::= (matched customer)° (unmatched customer)0

(matched customer) ::= (valid transactio.. *

(unmatched customer' ::= 'valid transactions)*

(valid transactions', ::= (transaction record),

This concept could provide the capability of accessing any view by very

simple queries like:

" Display 'input

" Display file structure' of 'input,

To do the same without the concept based use of tags, we would have

to have the following queries:

* Display (then list the fields of 'input

" Display (then list the fields of the 'file structure of (input')

. ::. _ - -- ,. .., d . - - . ..-, .,

51

Even for more complex examples, concept based queries remain fairly

simple, as compared with the queries on a data base (such as a

relational one) which become very tedious.

Degree 3 is accomplished when views are extracted under control logic

external to the concept based information base. Such logic, called global

controller Ig ic, can extract views for tools supporting the method. can

take the output of tools and place it back in the concept information

base, can invoke different tools and execute different queries to automate

tasks suggested by the method. Furthermore, procedures and attributes

can be associated with the concept tags. These procedural components

can also be fired by the global control logic in a systematic way. For

example, using the Jackson method again, if we incorporate the ideas

presented by Kiper [57], we can integrate a Cobol compiler that is fed a

view of the concept information base consisting of the Cobol program

string. The global controller has knowledge of the method and can

systematically fire procedures, attached to tags, to extract the code from

the chunk of text associated with the tag. Furthermore, a global

controller can also ensure (using attributes) that the body ef a program

does not get developed until the input and output structures are defined

according to the Jackson method.

As experience with a method builds up, the method support can be

progressively automated from 1 to 3 above. It is possible to modify the

method in systematic ways as it is being applied.

. I ,,,r -- . ,,.- ', ',t.:.t,,,. ,;, " - ' , " - - " - ' " > - - " . "- . ". " , , " " " " - . " , ' " .

65

Let us suppose that we have a context-free grammar G. A context-free

grammar is ambiguous if there is some string w C L(G) (where L(G) is

the language generated by G) that has at least two distinct derivation

trees. Ambiguity is a property of natural interest in the study of

context-free grammars, since if a string can be derived in two different

ways the intended meaning of the string may be in doubt. An example

of an ambiguous context-free grammar is the following:

G (v, 0, P, a) where

v = {expression, term, x, y. -- , x}

0 = {x, Y, , X }

(v- 0) = {expression, term}

P {PI (expression ::! ,term)

P2 : (expression\ : (expression) ,-) (expression)

P 3 : (expression) :: (expression) x)(expression,

P4 :(terrn ::\I,

P5 : (term) ::- (y) }

a (expression,

For example, xxy-x has the two distinct derivation trees shown in

Figure 12. The reason this grammar would be impractical (as a way of

describing even a subset of the arithmetic expressions of a real

programming language) is that it gives no clue as to the intended way of

computing an expression such as i y-x: should we multiple x y first or

add y-x first?

Unfortunately. as desirable as the lack of ambiguity might seem to be,

64

Ix

A

is a derivation tree; its root is the node labeled A, its only

leaf is the node labeled \, and its yield is A.

3. If

YA Yn

are derivation trees (n>l) with roots labeled A A, ... , An,

respectively, and with yields yl. , Yn, and Pi: A ::-- A n

is a production in P, then

Y I Yn

is a derivation tree. Its root is the new node labeled A. its

leaves are the leaves of T 1 T. , and its yield is Y V ..., Yn"

4. Nothing else is a derivation tree.

Now that we have defined what a derivation and a derivation tree are

we can now look at some properties of context-free grammars. The first

property we want to look at is ambiguity.

.. .- ..+ .. .- .. +,2 .- .., .-.-.-, + -.. - " ', ,--. ., , .

63

S

S)

A A

Figure 11: Derivation of (0)

More generally, for any context-free grammar G (v, 0, P, a). we

define its derivation trees and their roots, leaves, and yield, as follows.

1. *A

This is a derivation tree for each A - t. The single node of

this parse tree is the root and a leaf. The yield of this

derivation tree is A.

2. If P.: A A is a production in P, then

62

For an example of a derivation let us use the example of the balanced

parenthesis and see what the derivation of (00) would be:

G = (v, 0, P, eT) where

V {S, (,)}

o {(,)}

(V- 0) - {s}

P {P 1 : (S)::=(

P2 (5) ::= (S)(S)

P 3 : (S) :: : ((, ,S , () }

A derivation of (0)is

S , (S) = (SS) = ((S)S) = (OS) - ((s)) (())

Notice that the derivation of (()()) could also have been,

S => (s) = (SS) -> (S(S)) (SO) : ((S)()) = (()())

In fact there are a total of six possible ways of deriving (()()). However,

these six derivations are, in a sense, the same. The rules used are the

same, and they are applied at the same places in the intermediate string.

The only difference is in the order in which the occurrences of the non-

terminal S are replaced. All the derivations can be pictured as in Figure

11.

We call such a picture a derivation tree. The points are called nodes-

the topmost node is called the root. and the nodes along the bottom are

called leaves. By concatenating the labels of the leaves from left to

right, we obtain the derived string, which is called the yield of the

derivation tree.

61

v {sentence, (,)}

e {(,)}

(v- 0) = {sentence}

P {P 1 (sentence) (A)

P (sentence) (sentence) (sentence)

P 3 (sentence) (()sentence)()) }

o =(sentence)

4.3. Generative Grammars

Now that we have defined context-free grammars, we want to

investigate some of their properties. In order to do so we need to first

define a derivation. Then we will look at a representation of a

derivation called a derivation tree. Next we will look at two properties

of grammars namely, ambiguity and non-determinism. Finally, we will

look at three ways that context-free grammars are used and what

problems are associated with each of these uses.

Let G be a formal grammar. A string of symbols in t,* uj A is known

as a sentential form. If a - 3 is a production of G and ,., = b6a and

w' = 60, are sentential forms, we say that w'is immediately derived from

w in G, and we indicate this relation by writing w ==> . If "'l w2, ",

Ln is a sequence of sentential forms such that , 1 => W 2 ==> ... > LCn, we

say that wn, is derivable from ,c, and indicate this relation by writing "

SW ,1. The sequence . A2...... n is called a derivation of ,:n from 1

according to G.

.-- - - - - - - -.

60

Right hand expressions for context-free grammars are called phrases.

Like with regular grammars the symbol A in the left hand expressions

can only be a generating symbol. Both 6 and 0 must be empty strings.

This class of grammars gets its name because replacing the non-termiinal

A in the left hand expression is independent of any adjacent symbols;

that is, it is independent of the context.

Formally, a context-free grammar G is a quadruple (v, 0, P, a) where

" v C V is a vocabulary.

" 0 c v is the terminal vocabulary (where 0 C 0).

" (v - 8) is the non-terminal vocabulary (where (v - 8) C (V -

E)).

* P C (v - 8) x v* is a finite set of production rules such that

for each Pi C P, Pi has the form:

Pi : A ::2 BiB2 ... Bn

with finite n) 0, where A C (v- 0) and each Bi E v. Pi is

the production number, A is the left-hand side of the

production, and each Bj is a member of the right-hand side of

the production.

" a is a distinguished member of (v - 0) called the start symbol.

For an example of a context-free grammar, let's take the grammar that

determines if the parenthesis in a sentence are balanced. The grammar

for this problem is:

G (v, 8, P, a) where

59

1. concatenation: al a 2 -- an

2. alternative: a 1 a2 an

3. repetition of an expression: a

An example of a regular grammar is the following grammar which

verifies that a string is a real number:

A {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, -,., digit, decimal point,

sign, number}

0 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -,

(A- 0) = {digit, decimal point, sign, number}

P {(number) ::= (sign (digit' (digit) *(decimal point)(digit) *

(sign (digit, (digit)*

i(digit, (digit' *>decirnal point) (digit',*

(digit) (digit',*

(digit', ::: 0 1 12 314 5i67 i1819

(sign) ::= + I -

(decimal point, ::.

a = (number,

A less restrictive class of grammars is the context-free grammar class.

In this grammar the general format of productions are:

A => w where
A (V-) {a}

V- - JA

58

e Right hand expression. The right hand expression is a

collection of symbols which will be generated by the grammar

when the symbol A of the left hand expression is reduced or

generated. Its format is &y4'. The collection of symbols -y is

called the reduced or generated string depending on the class

of the grammar.

By restricting the format that productions of a grammar are permitted

to take, we can divide grammars into classes of grammars. The class of

grammars with the most restricted format for its productions is called

regular grammars. The general form of productions for regular

grammars are either:

A>aB
A => a where

A E (V- O) 1 {a}
Bc (V-)
ace

or

A => Ba
A => a where

Ac (V- O) j {}
Bc (v- 0)
ace

Right hand expressions for regular grammars are called reular

expressions. The symbol A in the left hand expression for regular

grammars can only be a generating symbol. Both 6 and) must be

empty strings. Regular expressions are formed from the non-terminal

and terminal symbols of the grammar, as well as the empty string A. by

applying the following formation rules recursively any number of times:

57

(object) ::= (man) 'girl' ;(ballIhat)

and that our start symbol is the non-terminal symbol {sentence}. A few

of the syntactically correct sentences that we could generate are:

man hit ball

girl throw hat

hat throw man

ball hit girl

ball throw man

As one can readily see, what might be syntactically correct might not be

semantically correct.

Formally, a granmar is a quadruple (A, 0, P, a) where

* A C V is a vocabulary.

* 0 C A (0 C 0) is the terminal vocabulary.

* (A - 0) C (V - 0) is the non-terminal vocabulary.

* P is a finite set of production rules.

* a is a distinguished member of (A - 0) called the starting

symbol.

Production rules have two basic parts, namely;

* Left hand expression. The left hand expression is a collection

of symbols already generated by the grammar. Its format is

6A'. The symbol A is called the reducing or generating

symbol depending on the class of the grammar.

".. .'.".'......... ".".. ".". """"..'.."."...""."""..."-.-""-.""".-'.'"."".. " "" ' "."". -'" .'".... .".."."...-""..'". .

- ,. . . -r- - - -.. . _ u.'. r r. . . -. .. . , ? ° . ! o . - . - _ , ., . . " -. |

°

56

vocabulary 0. Note that 0 can only be a subset of V since

0 is finite and V is infinite.

2. Non-terminal ymbols. Non-terminal symbols are a collection

I of phrase denoting symbols of the grammar. These symbols

never appear in the generated sentences but are used as

intermediate phrases for the final generation of the sentences

of the language. We will call this vocabulary . Note again

that 0 can only be a subset of V and that 0 and 4 have to

be disjoint.

3. Production rules. Productions rules are a collection of

grammatical rules which tell how to go from one intermediate

phrase to a collection of phrases dnd/or a collection of

terminal symbols. We will call this collection of production

rules 9l.

4. Starting symbol. The starting symbol is the starting point for

applying the productions. We will call this symbol a. Note

that , does not necessarily have to be element of 0, but it

could be.

To continue with our example of the English language, let us suppose

that our set of terminal symbols is {man, hit, ball, throw, girl, hat},

that our set of non-terminal symbols is {sentence, subject, verb, object},

and that our collection of productions is:

(sentence) :: (subject) 'verb' object)

(subject) :: (man, '(girl')'ball) (hat)

(verb' :: (hit,throw,

• I o " ° " " " " " ° o " " .. .

.. .. . , . . , I . . . , .-' - ..." ." -l l . . .' - ., . ..• ' -" .-.-. -' . ." ." --. .- . . .

55

introducing the concept of families of grammars known as gramnar

forms. In section 4.7 we will add semantic meaning to our grammar

forms by introducing attributed grammar forms. For those who have a

good foundation in grammar theory, they can skip the material up to

section 4.6 without any problem.

4.2. Context Free Grammars

In the last section we informally introduced the concept of a grammar.

In this section we will formally define a grammar. We will look at the

various parts of a grammar. Finally, we will introduce two classes of

grammars; regular grammars and context-free grammars.

An @aphabet E is a finite non-empty set of symbols or letters. A

string x over E is a finite, possibly empty, sequence of symbols from E.

The emp ty sting is denoted by A. A vocabulary V is an infinite set of

symbols or letters. For example, in the English language the alphabet

consist of 71 symbols (26 small letters, 26 capital letters, 10 numeral

symbols, and 9 punctuation symbols). A subset of the vocabulary for

the English language is what is typically found in an unabridged English
dictionary. Throughout this chapter we will use the notion of vocabulary

instead of what is typically used, the alphabet.

A grammar has four major components:

1. Terminal symbols. Terminal symbols constitute the vocabulary

from which sentences of the described language are

constructed. The generation of a sentence through the

application of grammatical rules must terminate in a string

containing only these terminal symbols. We will call this

Ii

• •." "- -'"-.". .-'--' "'..".- .''.=................................-..-....."...-.---..-..-..-.'-.-.-.."....--.....--...-,..-..'

54

programming language is usually considered to be any string of these

symbols that represent a complete program. A satisfactory grammar for

a programming language should permit one to determine by a mechanical

procedure whether an arbitrary sequence of symbols is a "well-formed"

program.

Again, according to the dictionary, a grammar is "the system of rules

implicit in a language viewed as a mechanism for generating all sentences

possible in that language." From a computer science point of view, we

would call this definition of grammar "the syntax of a language." A

considerable amount of research has been conducted regarding the

structure of programming languages. Several mathematical models have

been defined and many programming languages have been built on top of

these models. Also inherent in grammars is the notion of the meaning

given to a syntactically correct sentence of the language. Only recently

has there been any concentrated effort on studying programming

language semantics.

In this chapter we will look at a class of languages called context-free

languages. In section 4.2 we will formally define what a grammar is and

then discuss a class of grammars called context-free grammars. In

section 4.3 we will look at the problems associated with a subclass of the

context-free grammar called context-free generative grammars. In section

4.4i we will extend our notion of grammar by including semantics.

Semantics will be introduced by allowing attributes to be defined with

the syntax of the grammar. In this section we will define what an

attributed grammar is. In section 4.5 we will discuss the simplicity

gained with the introduction of attributed grammars with right regular

parts. In section 4.6 we will extend our notion of grammars by

.. .

i .°

- - - ----- ---- - - .

Chapter 4

Attributed Grammar Forms

4.1. Introduction

According to the dictionary, a language is "a historically established

pattern of words and symbols that offers substantial communication only

to the individuals within the culture it was defined." This statement is

hardly specific enough to serve as an adequate mathematical description

of the term language. Language experts agree that any adequate

formalism for natural language must cope with both the structure of the

language, known as syntax, and the meaning given to sentences in the

language, known as semantics. One can not hope to exhaustively list all

possible sentences in a language, for each user of a language is able to

speak sentences that have never previously been spoken. Likewise, one

cannot hope to understand every sentence uttered or written. Similarly,

one cannot hope to write down all possible Pascal or Cobol computer

programs, for any user is able to write programs never before written

that will run perfectly well on a computer. Thus, the central problem of

describing a language is to provide a finite specification for an essentially

infinite class of objects.

Given an alphabet V, the set I* is the totality of all possible strings

on V, and a language L on V is an arbitrary subset of V*. For a

computer programming language, the alphabet is the collection of all

nondivisible symbols that may appear in a program. A sentence in a

53

U - i o -' -' ° * -" -" % o ... ° .m ° ° . , o i * . - ° -° ° -, -. .-. - - o ., ° - . ' - o ° . . .

52

- ----- File-

[- (
I (Structure* --- -S

[" I

(Structure - ~ - -Trnato Reor4(Transact ion RcrA- tutr,

*"I I

I I

I ndi.cSTransates the i o

* a

0 0

e Concep•• t Grma Symbo

(Structure0)- . Matched Customer0) (Unmatched Customer°4 -(Structure /

I ,,"* I
FStructure)0 Ration (alid treandit i(Str reed

I : tree(Structure - - Transaction Record) (Transaction Record) - - Structure;.

Concept Tree
• ,°Interpreted Concept Tree

- -- Indicates the interpretation of the

[- Concept Grammar Symbol

[-I-Figure 10: Relationship Between a concept tree and its interpreted
I concept tree

[.

66

E E

A x

E E E E

x A+

E E T T E E

T T X X T T

I-i-y y I

where E (expression) and T (term)

Figure 12: Derivation trees of x x y - x

there is no general procedure for telling whether a grammar enjoys this

property.

Theorem 1: There is no effective procedure for deciding,

given any context-free grammar G, whether G is ambiguous or

not.

See '2 1 ' for proof of this theorem.

Now that we have seen the problem with ambiguity, let us now turn

our attention to our second property: non-determinism. In order to

properly define non-determinism, we need to first correlate our ideas of a

grammar with that of a computing machine. A computing machine is

made up of three parts, namely:

67

1. finite controller which is often called the central processing

unit,

2. input/output device, and

3. memory.

The machine picks up one symbol from the input device and, based on

the current state of the finite controller and what is contained in

memory, determines what the next state of the finite controller is going

to be and what symbol is going to be output on the output device (the

output may be nothing at all). The production rules of a grammar tell

us how to go from one state of the finite controller to the next. The

next input symbol corresponds to the next symbol in the current

production being processed. With this symbol and the current

production, we are able to determine which production is the next one to

be processed.

Non-determinism is essentially the ability to change states in the

machine in a way that is only partially determined by the current state

and the input symbol. Several possible next states, for a given

combination of current state and input symbol, are permitted. In the

grammar sense it means we have several choices for the refinement of a

symbol. Let us illustrate this with an example common to most

programming languages. Let us suppose that our language allows both

if-then and if-then-else statements. Then our grammar would include the

following production rules:

,statement, ::= 'if-then statement

(if-then-else statement'

L

68

(if-then statement) (IF) (boolean exp) (THEN) (statements'

(if-then-else statement) ::= (IF) (boolean exp'(THEN) (statements)
(ELSE) (statements,

If we are in the state called "statement" and our input symbol is IF.

there is no way that we can uniquely determine whether that our next

state should be "if-then statement" or "if-then-else statement". We have

to make a non-deterministic choice on which state we will go to next.

Unfortunately, though it is desirable to guarantee that a grammar is

deterministic, there is no general procedure for telling whether a

grammar enjoys this property.

Theorem 2: There is no effective procedure for determining

whether a given context-free grammar is deterministic.

See 1211 for proof of this theorem.

Now that we have looked at two important properties of context-free

grammars and found out what problems they create, let us now turn our

attention to three uses of context-free grammars.

These three uses are as acceptors, as transducers, and as generators.

In order to discuss these uses we first need to define what a push-down

automata is and show its relation to context-free grammars.

Informally, push-down automaton is one of our computing machines we

mentioned earlier. This computing machine has unbounded memory in

the form of a stack in which we are only allowed to use the top-most

element of the stack and the current input symbol in our decision on

which state we can next enter. The input device is generally considered

to be an input tape where each symbol read takes one place and after

I

69

its read, it can not be read again (i.e. the tape only moves in one

direction). The output device also is a tape which can hold one symbol

in each place on the tape and the tape can only move in one direction.

Formally, a push-down automaton is a sextuple M (K, E, F, A, s.

F) where

e K is a finite set of states,

* E is an alphabet (the input synmbols),

* F is an alphabet (the stack symbols),

* s E K is the initial state,

* F C K is the set of final states, and

* A, the transition function, is a finite subset of

(K E x r*) x (K x F)

Intuitively, if ((p, u, /).(q, y)) C A, then M, whenever it is in state p

with j3 at the top of the stack, may read u for the input tape, replacing

/3 by -y on the top of the stack, and enter state q. Such a pair ((p, u,

/3),(q, "y)) is called a transition of M.

A well known theorem of push-down automata theory is:

Theoreiii 3: The class of languages accepted by push-down

automata is exactly the class of context-free languages.

The proof of this theorem can be found in [631. This means we can

think of push-down automata as the physical machine defined by the

context-free grammar. Push-down automata and context-free grammars

can be used synonymously.

..

• .. . -.-. - -..-..-...-.....-.-.-- ...--.. . -....-. '. - '.... '...' .-.-..
• •• .',.- - it * " " " " -" *" ." o" , . . -_ , ," " q q , ," o" " ," r

70

The first use of push-down automata(context-free grammar), is as an

acceptor. Basically, a push-down acceptor determines whether an input

string to the acceptor is a string in the language described by the push-

down acceptor. The push-down acceptor works just like the push-down

automaton we described except that the only output is y if the string is

accepted and n if the string is not accepted. The properties of

ambiguity and non-determinism create problems for acceptors. However,

attempts have been made to try to overcome these problems.

When used in a compiler to perform syntax analysis, acceptors are

generally called parsers. The problem of ambiguity for arithmetic

expressions is partially overcome with precedence rules, but precedence

rules are not really a part of the grammar (from a context-free grammar

point of view). They are more of a semantic issue and should not be a

part of the parser.

One possible way to partially overcome the problem of non-determinism

is with a look-ahead parser. In a look-ahead parser, when a symbol is

read from the input tape and the parser has several options of which

productions to use to refine this symbol, the parser will look ahead up

to a certain number of symbols to resolve which production to use. The

other possibility is with a back-tracking parser. In this case, the parser

arbitrarily picks one production to refine the symbol read in from the

input tape and continues execution until either the string is accepted or

rejected. If the string is rejected, the parser backs up to the point

where it had to make the arbitrary choice and makes another choice.

Only after all the choices have been exhausted will the parser indicate

that the string is not accepted.

The second use of push-down automata is as a transducer. A push-

""" " ' """' " "' ' ". .. - "" "'- ' " "''' "•-:- .. :'...: . ":-...,i

71

down transducer will take the input string and translate it into another

string that could be accepted by another push-down automata. A good

example of the use of a transducer is the code generator of a compiler.

Again the properties of ambiguity and non-determinism create problems

for the transducer, even though we do not see these issues addressed

with a code generator. The reason these issues are not addressed with

code generator is that the string input to the code generator has already

been accepted by a parser before it was sent to the code generator.

Another example of a transducer is a parser that outputs a history of

what it has done, or one that outputs an intermediate representation of

the input string. In either case the same solutions to the problems of

ambiguity and non-determinism that were inherent in acceptors are also

inherent here. The same approach to overcome these problems are also

used.

The third use of push-down automata is as a generator. A push-dlown

generator, basically, generates strings for a context-free language that will

always be accepted by a push-down acceptor for that same language.

The generator begins in the initial state of the finite controller and keeps

generating symbols of the string until it comes to a point in the

generation where a choice has to be made. At that point it reads a

symbol from the input tape which indicates what choice to make. The

output tape contains the generated string which would be accepted by a

push-down acceptor for that same language. The properties of ambiguity

and non-determinisrn do not create a problem for the generator.

Generators are not used in compilers. Only with the recent

development of programming environments has there been a need or a

use for a generator. Generators have been used in some of the

-. - -. -. S . - p - -* .. . - -. S - . - -. - - -... . *-q t R *~ . -

72

programming environments like ALOE [74], CPS [84, 85], PECAN

[82, 831, and Arcturus [98]. All of these systems are template based.

When a choice needs to be made to continue the generator, the user is

presented with the possibilities via a template or menu. Once the user

makes the choice. the system can continue. Other programming

environments like COPE '3', POE [32], and MAGPIE [19, 89] use an

intelligent parser which also uses a generator for error detection and

repair.

Ambiguity is not a problem because the user uniquely defines the

derivation tree. Going back to our expression example in Figure 12, we

see that deciding whether xxy is multiplied first or y+x is added first is

totally determined by users who know what they wanted in the first

place. Notice that this solution does not add anything to the grammar,

unlike the solution proposed for acceptors.

Non-determinism is not a problem. When a choice has to be made,

the users make the choice. They are presented options, and based on

their own logic and the problem they is trying to solve, they make the

correct choice the first time. Going back to the example with the if-

then-else, there is no question which production to use because the users

know whether they want the if-then statement or the if-then-else

statement. Notice again that an ad hoc solution, like looking ahead or

back tracking is not needed.

With a generative system the desires of users are recorded in the

program that they are developing as opposed to being discerned as in

the acceptor or translator system. Because of this capability, the

generative systems are more powerful and useful than acceptor or

translator systems.

• " " " -' ' "- " " ," "- " '-' '? ': -' '- " " ' ' V - " " ." ": .' .' " ' " ' " -" ". . . " " -" ." ". - . ", g

73

4.4. Attributed Grammars

Context-free grammars were found not to be powerful enough to handle

all aspects of any of the popular programming languages. There were

semantic issues that had to be addressed which the context-free language

could not. Included in these issues are such things as

" the scope rules of variables,

* the machine dependent constraints on the language like the

size of an integer, and

" the context-sensitive issue of variables being declared before

they are used.

Knuth [58, 591 introduced a more powerful grammar based on the

context-free grammar that could handle some of these issues. This

grammar was called an attributed grammar. It has since been proven

that attributed grammars have the same power as a turing machine

1109'.

In this section we will define what attributes and semantic functions

are. Then we will define what an attributed grammar is and give an

example of it. We will look at some properties of the attributed

grammar, and finally we will define what a time-varying attributed

grammar is.

Attributes are place holders which are associated with symbols in a

grammar and which take on values from different, possibly infinite sets.

Each attribute is of type either synthesized or inherited. Synthesized

attributes of a symbol derive their values from attributes of symbols that

74

are immediate descendants of the symbol in some derivation tree

permitting information to flow up the tree. Inherited attributes of a

grammar symbol derive their values from direct ancestors and sibling

nodes in some derivation tree permitting information to flow down the

tree.

Semantic functions determine how information flows up and down the

derivation tree. Each function is used to define the computation of an

attribute value of a symbol in the production in terms of other attribute

values of symbols in the same production. The function for an attribute

of the left-hand side symbol of a production computes a value for a

synthesized attribute, and a function for an attribute of a symbol on the

right-side of a production computes a value for an inherited attribute.

A specification of attributes AG for a grammar G = (v, 0, P, a) is a

quintuple (S, I, A, F. M) where

" S is a finite set of synthesized attribute symbols disjoint from

v but still a subset of V.

" I is a finite set of inherited attribute symbols disjoint from

both v and S.

" A is a collection of domain sets of allowable attribute values.

" F = {f: n=0 dk - d 1 n > O} is a collection of functions

defined over domain sets in A.

" M is a mapping from S u I to A and is called the range

function.

-:-'-:-;::- :'::.'-:-.:--. :. :-: ,- - - :- . - -- - .- ._ . .: - - .-' . .- .?:- . . . : , . . .--.:- .- : - : :; . :•-:- :'.;

75

An attribute associator for a grammar G and a specification of

attributes A G is a mapping A from v to 2 S U I such that S E (V - v)

and I E (V - v). The set A(Y) is called the set of attributes associated

with Y. For every Y in v, the set A(Y) n S, denoted by S(Y), is the set

of synthesized attributes associated with Y and the set A(Y) I,

denoted by I(Y), is the set of inherited attributes associated with Y.

So that we can properly identify the attributes with their occurrence in

productions, let us redefine production rules to have the following format:

P i : C (i, o) :: B (i,) B (i, 2) ... B (i, 1(i))

where n(i) is the number of symbols on the right hand side of

production Pi.

We say that a production rule Pi has an attribute occurrence (a, j) if

0 < n(i) and a E A(B(i ' j)). The set of attribute occurrences of Pi will

be denoted by AO(i). A semantic function for p'(a, j) for attribute

occurrence (a, j) in production Pi is an (i + 2)-tuple

pi(a, j) = ((a, j). fi(a, j), (bp, kt), (b2 , k2), I (bni , kinI))

where

1. (a, j) - AO(i),

2. (bl, k1) AO(i), for each 1, 1 < I < m,

3. f0(a, j) C F is an m-ary semantic function for attribute a with

m > 0, and

4. domain(f) =) iM(b.

The value of (a, j) is to be evaluated using 0i(a, j) and the values of

76

(b1, k1). The set of (b1 , k,) is often called the dependency set D' j) for

the attribute occurrence (a, j). A set of semantic functions for a

production Pi is said to be valid if and only if it has one and only one

rule to evaluate every attribute occurrence in the production.

We are now in a position to formally define an attributed grammar.

An attributed grammar is a quadruple G = (G O, AG, A, sem) where

* G o = (v, 0, P, a) is a context-free grammar,

" AG is a specification of attributes,

" A is an attribute associator for G and AG , and

" sem is a semantic function associator for productions in Go

such that sem(i) is a valid collection of semantic functions for

production Pi in P.

As an example let us suppose we are defining a machine-dependent

dialect of Pascal for use on a computer with 18-bit word and that, as a

consequence, an unsigned integer constant is to be considered

syntactically invalid if its value exceeds 217 - 1 (= 131,071). While the

set of all unsigned numerals can easily be defined by

G (v, 0. P, a) where

v = {O, 1, 2, 3, 4, 5, 6, 7, 8, 9, digit. numeral}

0 ={0. 1, 2, 3, 4, 5, 6, 7, 8, 9}

(v- 0) = {digit. numeral}

P = {PI :numeral) '(digit" numeral' digit)

77

P2 : (digit) ::=-0 :1 2 3 14 5 16 17 18 19}

o {numeral},

the set of numerals {0, 1, ..., 131070. 131071} is difficult to define

without an attributed grammar. Let us use an attributed granmmar with

attributes Val and Condition. Val corresponds to the domain of integers

and is associated with both symbols (numeral, and (digitr. Our

attributed grammar is then defined by

G (GO, AG , A, sem) where

G o = (v, 0, P, a) where

v = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, digit, numeral}

0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

(v- 0) {digit, numeral}

P {P (numeral)::= (digit)/ (numeral' (digit)

P2 : (digit' ::0 1 2 3 14 5 6 I7 8 9 }

- {numeral}

AG = (S. I, A, F, M) when

S {Val, Condition}

I: {O}

A - {true, false, 0. 1, 2, ... }

F {Val(new) value(from terminal string)

Val(new) Val(old) -- the copy rule

Val(new) 10 Val(right most child)

. .%A.-'-.......

78

+ Val(left most child)

Condition true if Val(new) (131,071

Condition false if Val(new) > 131,071}

M {Val E: {0, 1, 2, ... 1

Condition r- {true, false)

A {S(Y), I(Y)} where

S((numeral') ={Val, Condition}

S((digit)) ={Val}

I(Knumeral)= {0}

sem ={sem(1), sem(2)} where

sem(1) =P 1 (numeral), ::(digit)

(numeral) 2 'digit)

Val(',numeral') 10 x Val(',numeral 2)

Condition ~-Val(numneral < 131,071

sem(2) =P 2 (digit' 0

Val(,digit,) 0

.9

79

Val('digit)) q- 9

A derivation for an attributed grammar is the same as a derivation for

an ordinary context-free grammar. A derivation tree for an attributed

grammar G = (GO , AG, A, sem) is a derivation tree for G o , in which

the nodes are labeled with (x. 7) where x C v and r is a mapping from

A(x) to (A i(J(a V A(X))%I(a))) (A is the undefined function) for each a

V A(x) and each r(a) V {A L& M(a)}. In other words, (x, r) is an

assignment of values to attributes of node x in the derivation tree for an

attributed grammar. This assignment of values is said to be valid if

attributes associated with the nodes are either undefined (A) or have

values consistent with the semantic functions of the grammar. That is,

for each node (Xj, r) and a € A(Xj), either r((a, j)) = A, or

r((a, j)) = f(a, j)((b1 , kj), (b2 , k2), ..., (bn, k..)) where

((a. j).(bl, kj), (b,, k2). . , k,, .))

is a valid semantic function for (a, j) in sem(i).

In a derivation tree, an attribute instance (a, j) is said to be available

if it is not undefined. A semantic function p'(a. j) is said to be

applicable if all the attribute instances in D'(a, j) are availabl2 or defined.

Let us continue with our example of the machine-dependent dialect of

Pascal. We will use the string 673 for our example. Substituting N for

numeral and D for digit. a derivation of 673 is

Ncr>NI) >NDD >DDD >61)1) >671)>673

The derivation tree and the values of the attributes Vai and Condition

are shown in figure 13.

7 -RIS 12 A ET SYSTEM FOR GENERTING
SOFTURE ENGINEERING

v
ENYIRONNENTSMU AIR FORCE INST OF TECH URIGHT-PATTERSON

UINCLRSS6FED AFB OH W L NCKNIGHT 1985 RFIT/CI/NR-85-71D FG92 N
UNLSIIDF0 /

1.0

3lls 11111220

11 5 11-• 11111"' 1111- J111"--

NATIONAL BUREAU OF STANDARDS
MICRCOPY RESOLUTION TEST CHART

0 0 -
~ .* *"

. . .. • . .a a a a a a

a .a* .a- .

- - . . - ~ -"

80

(numeral)
Val: 673

Condition: true

(numeral) (digit)
Val: 67 Val: 3
Condition: true

(numeral) (digit) 3
Val: 6 Val: 7

S(digit)I
Val: 6

6

Figure 13: Derivation Tree of 673

The evaluated semantic tree for a derivation tree T of G is the tree

obtained from T by the following algorithm, which is called the defining

evaluator.

epeat

choose an applicable attribute instance (a, j) in T;

evaluate the value of (a, j);

until no choice of (a, j) is possible;

Several evaluators have been proposed and analyzed in the literature

8, 10, 15, 20, 27, 28, 29, 35, 50, 52, 55, 56, 80, 84

"- 81

A grammar G is said to be locally circular if there exist two attribute

occurrences (a, j) and (b, k) in a production such that the evaluation of

one is dependent on the availability of the other. In other words, (a, j)

E Di(b, k(b, k) E D'(a, j). Bochmann [10 has shown that, for a

grammar which is known to be locally non-circular, it is easy to find, for

each production Pi, an equivalent set of semantic functions which uses

only the inherited attributes of the left symbol and the synthesized

attributes of the symbols on the right hand side of the production.

They satisfy the property

DI(aj) c I(A) U (UP(i) 1S(Bj))

for k = 0 and a C S(X 0) as well as k 1, ... , i and a E I(Xk).

An attribute grammar G is well-formed or non-circular if there does

not exist any derivation tree T, such that the evaluated semantic tree for

T would have an attribute instance (a, j) whose value is undefined. A

grammar that does have an evaluated semantic tree with attribute

instances whose values are undefined are said to be malformed or

circular. Note that a grammar can be locally non-circular and still be

globally circular. It is decidable whether any attribute grammar G is

circular 1581. The circularity problem is also known to be NP-complete

Going back again to our attributed grammar for the machine-dependent

dialect of Pascal, we can see that our attributed grammar is well formed.

The dependency graph shown in figure 14 is acyclic. Notice also that

the derivation tree shown in figure 13 does not have an attribute

instance with an undefined value.

A type of attribute called the time vaing attribute was introduced by

*- - - - - - - .

. . - " . - . " - . . . - -. .- .- - "- ' . -- ° . ' : : P q ' -.. _ ,

82

(numeral)
Condition

r Val

(numeral) (digit'
Condition Val
Val

(numeral) (digit)

Val Val

(digit)
Val

Figure 14: Dependency Graph for Machine-Dependent Pascal

Skedzeleski [93]. Although the idea is quite powerful and gets rid of

some of the problems with regular attributes, the idea has not really

taken hold in the computer field. A time-varying attributed grammar is

an attributed grammar in which each attribute occurrence may be given

an initial value that can be changed during the course of the evaluation.

The evaluator for time'varying attributes is more complicated than

previous evaluators since it must schedule both initial and iterative

evaluations of attributes. It must also be able to remember attribute

dependencies after the initial evaluation has taken place so that changes

in attribute values will propagate around the parse tree in accordance

with the attribute definitions. An example of the specification of a time-

varying attributed grammar is given by a time-varying attributed

grammar which includes the following production with its associated

semantic functions:

,, . _ . ,, ,, ,, ,. ,, ' ,J . 7 1. .

83

Pi: (S) (A) (B)

Span((S)) -- Len((A)) + Len((B))

Len(A)) +-15

if Len((A)) 10 then Len((B)) -- 2

Let us suppose that the only attribute that symbol (S' has is a

synthesized attribute called Span, the only attribute that symbol (A) has

is a synthesized attribute called Len, and the only attribute that symbol

(B) has is an inherited attribute called Len which is initially set to 1.

In the reevaluation process, the attribute Len((B)) will be changed to 2

and the attribute Span(,S/) will be set to 17.

In a regular attributed grammar, circularity was a problem basically

because of the undefined state of an attribute. In time-varying

attributed grammar this is not a problem because all attributes can have

an initial value. The hazards of using time-varying attributes include:

1. Non-terminating algorithms can be specified.

2. Results may depend on the initial values of the attributes.

3. Results may depend on the evaluation order of the semantic

rules.

These problems already exist in regular attributed grammars. The first

two problems were hidden in the functions used in attribute definitions;

the last problem was implicit in the evaluation mechanisms used.

?.-.,.--'.'-- ..-.- i'-..'--, .- y-......-......-.-........,3'I..._..-.... -.... -

h.7

84

4.5. Attributed Grammars with Right Regular Parts

A special case of the attributed grammar is the attributed grammar
with right regular parts. In this section we will look at what changes

need to be made to the semantics of a grammar so that the attributed

grammar and the attributed grammar with right regular parts can be

equivalent. For a more detailed discussion of this topic, see [91.

Normally, the grammar for an attributed grammar is specified in BNF.

This is the format that we have been using in this presentation.

However, extensions to include regular expressions have been used for the

syntactic specification of programming languages with the advantage of

better readability. This is best illustrated with an example.

Let us consider a typical programming language construct of an

arithmetic expression which consists of a sequence of terms separated by

addition operators:

(expr) - (term) + (term) + ... + (term)

Let us associate some semantics with this expression. Let us first define

the type of the expression as being real if any term of the expression is

real, otherwise it is integer. This can be accomplished if we formulate

the following semantic rule: The (expr) is real, if the (expr) contains a

(term) which is real, otherwise it is integer.

Notice that the order in which the terms are evaluated has no bearing

on the type of expression. Next let us define the arithmetic value of the

expression. Again, let us associate an attribute with the expression and

the terms which represent their arithmetic values. We define the value

of the expression by a successive addition of the values of the terms

using the concept of a variable which holds the intermediate results and

85

has the initial value zero. Notice this time the order in which the terms

are considered is important if arithmetic overflow is possible. In BNF

notation we would have the following:

(expr)::=(term list)

value ((exp,) +- value (<term list))

type ((exp)) - type ((term list))

(term list) 0:: =/term + (term list , 1

value ((term list)o) ,-- value ((term)) + value('term list',))

if (type ((term)) == type ((term list) ,) then

type ((term list) 0) - type ((term))

else

type ('term list) 0) - real

m(term)

value ((term list; 0) - value ((term:)

type ((term list"'0) +- type ((term))

For our particular example, the production rule of this expression

would be

exp\ :: (term) ! - (term'

In order to be able to do attribute evaluation on regular expressions

some modifications need to be made to the attribute evaluation

mechanisms:

1. With each occurrence of a repeated subexpression, a*. within

," ~~~~. .. | l %' "... ...-. .".".....•............ ..--- "....".'."-.-.

86

the right side of a production rule, a set of so called local

attributes are associated with the production. Each local

attribute represents an intermediate result which is reevaluated

for each occurrence of a within the derivation tree.

2. For each local attribute of a repeated subexpression, a , there

is

a. a semantic function for initialization, which specifies the

initial attribute value as a function of the values of other

attributes, except those which are associated with a or

subexpressions of a.

b. a semantic function for redefinition, which specifies a new

attribute value as a function of previous local attribute

values of a, and values of attributes which are associated

with a or subexpressions of a.

3. An order is specified in which the different repetitions of a

within the derivation tree are considered for semantic

evaluation (redefinition of local attributes).

4. The values of the local attributes of a* (before redefinition)

can be used by semantic functions for the evaluation of

attributes associated with a or subexpressions of a.

5. The final values of the local attributes of a.* can be used by

semantic functions for the evaluation of attributes, except

those which are associated with a or subexpressions of a.

Using our example again, let us see how this mechanism can be used

• - -... . -.-..- .. . :.. • . .- - . . . -.

87

to describe the evaluation of the type and the value of expression. Thi-

can be done as follows:

'expr)::=(term) 0 '- (term'z

(initializing local attributes)

interm-type - type ((term' 0)

interm-value - value ('term"0)

(redefining local ittributes)

if (interm-type € type ((term),)) then

interm-type ,- real

interm-value -- interm-value -t value ((term) i)

(defining non-local attributes)

type ('exp\) -- interm-type

value ((exp\,) interm-value

(order for considering the repetition of I termr 1] for

semantic evaluation)

from left to right

The formalism of attributed grammars with right regular parts is more

complex than those of attributed grammars. However, the power of both

are the same. The biggest merit of the attributed grammar with right

regular parts is that it is more comprehensible and concise. We also

observe that the depth of the derivation tree can be considerable reduced

with attributed grammars with right, regular parts. Another advantage

of these grammars is that regular expressions represent an alternative to

"." .' ' "v q ' '
',

.- " -o' -% : .¢p o" '°. *' .°- - o . ' . % .° q - . . , - - °. .1
%

, -. '.. .'. - % -iw '.,'to' "% .. , '° ° .-. '.

88

left recursion and can thus be used in top-down syntax analysis. Also,

because the relative order of evaluation for the different repetitions of a

subexpression must be specified explicitly, the type of attribute evaluation

could be picked to lessen the number of passes needed by the attribute

evaluator.

4.6. Grammar Forms

Although grammar forms have been around for sometime, our use as

models for systems is new. In this section we will informally introduce

what we mean by grammar forms. We will then build up the

terminology needed to formally define grammar forms. We will discuss

some techniques used in grammar forms. We will then define the

grammar form needed to define the class of context-free grammars in

Chomsky Normal Form. We will extend our grammar forms to allow

context-free grammars with right regular parts and show what problems

we would have had.

In order for grammar forms to have any meaning at all, we first need

to introduce the notion of grammar similarity or equivalence. This will

lead us into the notions of families of grarnmars.

Intuitively, we would think that two grammars were similar or

equivalent if the language generated by those two grammars were equal.

Let us use an example to illustrate what we mean. For simplicity, when

we define a grammar, we will only list the production rules where it is

apparent what the vocabulary, terminal symbols, non-terminal symbol.

and start symbols are from the production rules themselves. Let G1 be

defined as

S Sol

89

S 1

and G2 be defined as

T TOT

T I

Clearly, both grammars generate the language L 1(01)*. However, G.

is ambiguous, whereas GI is not. We do not wish to consider G 1 and

G 2 to be structurally equivalent, because G 2 associates many distinct

derivation trees with sentences of L, whereas G provides a unique

derivation tree for each sentence. We will however, define this type of

equivalence as a weak equivalence. Therefore, given any two grammars

G t and G2, we say the) are weakly equivalent if L(G 1) = L(G 2).

It appears then, the only way we can have equivalence or strong

equivalence, is to require that if sentences in one grammar are

ambiguous, they must also be in the other grammar. This can be met

by requiring that the derivations of the two grammars have a one-to-one

correspondence for each sentence generated. Yet this criterion may be to

strict, for one form of structural ambiguity is trivial and easy to remove.

For example let grammar G, be defined as

S Sol

S 1

and grammar G 2 be defined as

S S

S :: Sol

S I

Grammar G, has all the productions of G 1 plus the production rule S

90

S. Since this rule may be applied an arbitrary number of times to

any sentential form containing S, any string generated by G 2 has an

infinity of derivations. In contrast, G1 generates each string by a unique

derivation. Although G2 is very ambiguous, the only difference between

the structural descriptions of any sentence according to the two

granmars is the number of repetitions of certain sentential forrris in each

derivation. Therefore, we will define a minimal derivation to be a

derivation in which no sentential form is repeated in the derivation.

With the definition of minimal derivation, we can now define what we

mean by strong equivalence. Let G1 and G2 be two grammars. They

are said to be stronguy equivalent, if they are weakly equivalent and, for

each terminal string w, the minimal derivation of w permitted by G, can

be replaced in a one-to-one correspondence with those permitted by G 2.

Another concept that needs to be introduced is the notion of grammar

morphism. Let G I (v l , 01. P1 . c,) and C.2 = (v2, 02, P 2, a 2) be two

grammars and h: t' 1 -t' 2 be a homomorphism such that:

1. h(r, - 01) - - 02.

2. h(0 1) '= 02 ,

3. for all A, , t in PI h(Al > 01) = A2
-> 4 0 2 in G2

where h(A 1) A2 and h(, 1) - o and

4. h(crl) - u .

We say that h is a grammar morphism because h maps G 1 to G2.

Grammar morphisms are the most systematic notions of grammar

91

equivalence. The grammar form concepts are based on two special kinds

of grammar morphisins. We say that a grammar morphism h: G1 -

G2 . where G 1 Sc (tl, 01, P1 , o,) and C 2 : (v 2, 02, P2; 02) is

1. fine if h(A 1 S- 01) is in P 2 for all A1 => o1 in P,,

2. length preserving if h(v 1) C t.2, and

3. very fine if h is fine and length preserving.

The notion of grammar morphisms are going to help us in determining

grammar equivalence. As we shall see latter, whether one grammar is a

strict interpretation of another is equivalent to whether there exists a

very fine grammar morphism between thern.

Informally, a grammar form is a grammar that can be used to generate

a family of grammars. Let G be a grarnmar form; then for each
grammar G1 in G, each production rule in G1 is an image of some

production rule in G. If terminals are ignored, there is a very fine

grammar morphism from G i to G. Each G i in G can be systematically

derived by a process of substitutions called i nterpretation. For restricted

versions of interpretations, the question of equivalence between tw-o

grammars is decidable. We will use a restricted version of interpretation

to model tuning.

Two types of interpretations have been studied in the literature, the g-

(or general) interpretation 17 first introduced by Ginsburg. and s-

(strict) interpretation 71 first introduced by Salomaa. The

s-interpretation is more general than the g-interpretation and since we

are interested in representing trees and not languages, we will work

mo-stly with the s-interpretation.

. .

105

A context-free grammar G =(v, 0, P, c) is in standard form if each

production has one of the followking formats:

A aB or A ::- a where

Ac v-O

B C v and

a C0

This canonical form is called Greibach normal form.

Theoreni 11: Every context-free language without A can be

constructed by a strongly equivalent grammar in Greibach

normal form.

See '45 for the proof of this theorem.

Now let take a couple of examples of grammar forms and see what

classes of context-free grammars can be generated from them. First, let

us use a grammar form G 1 where it has two productions, narnely,

S ::- SS and

S a

Any s-interpretation on GC will give us a grammar in Chomsky normal

form, and thus G 1 can be used to generate all context-free grammars.

For our second example, let us use a grammar form G, where it has

two productions, namely.

S "aS and

S a

Any s-interpretation on G %%ill give us a grammar in Greibach normal

form, and thus G, can be used to generate all context-free grammars.

i" "' ' l "' l ' " " _
%

.', " " -_ ." , ." " ° " :. * .' .'.-,_ ,' ' - . *"l, - . " . . * . o '.. _

10-

4.6.1. Normal Form

One of advantages of using grammar forms is that so many classes of

context-free grammars can be generated from a very few grammar forms.

In order to illustrate this we first need to discuss context-free grammar

canonical forms. There are two canonical forms that are used and

studied quite frequently in programming language studies, namely normal

form and standard form. Canonical forms for context-free grammars are

useful for two reasons:

1. it is often easier to establish some property for canonical-form

grammars than for context-free grammars in general, and

2. representing context-free languages by canonical-form grammars

may make it easier to devise methods of syntax analysis for

the languages.

A context-free grammar G =(v, 0, P, a) is in normal form if each

production has one of the following formats:

A ::= BC or A ::- a where

A, B, C, E v- 0 and

af0

This canonical form is also called Choniskv normal form.

Theorerii 10: Any context-free language without A can be

constructed by a strongly equivalent grammar in Chomsky

normal forni.

See 45 for the proof of this theorem.

103

0 {a, b, c, d}

P={P 1 :T :: S

P 2 :T ::- R

P 3 S ::= aSb

P 4 S ::= ab

P 5 R cRd

P6 R cd}

a = {T}

Our final technique is the intersection of two grammar forms. Given

two grammar forms G 1 and G 2, one can construct a grammar form G

such that G,(G) D G,(G) - G,(G,) and Gh,(G) D Gh,(GC) Ghs(G2)

as follows:

-((x 0) x (V 2 -02) -; (01 x 02).

0 (01 x 02),

1 ' and

P consists of the following productions:

for each Pi.i: A ::=X 1 ... Xn in P, and

for each P 2 i: B ::Y Yn in P 2 such that

for each 'Xi, Y.i in v, I < i < n,

A,, B - X1" Y ... :X, Y is in P.

Furthermore, G ' G 1 and G G)'

...

102

P {P 1 S RSb

P2 S Rb

P 3 R cRd

P 4 R cd }

The technique of union combines the alphabets and productions of two

grammar forms. Let G 1 = (Vl, 01, P1 ' a) and G 2 =(2 , 2 02 , Pa 2) be

two grammar forms. Also, let G = (t, 0. P, a) be the union of G1 and

G 2 where

v {v 1 J V2 J {U}},

a {1J 02}, and

P {P U P2
j { u :: a, a 2)}}.

Clearly if G, and G 2 have disjoint alphabets, Gs(G) = G,(GI) - Gs(G 2)

and Gh,(G) = Ghs(Gl) U Gh,(G2). If the two alphabets are not disjoint,

then all we can prove is that G(G) D G(GI) I G,(G 2) and Gh(G) P

Gh-(Gl) J Gh,(G 2).

Let us illustrate the technique of union by an example. Let GI be

defined with two production rules (S :: aSb and S ::- ab) and G 2 also

be defined with two production rules (R ::- cRd and R ::c d) where

{a, b} and {c, d} are the terminal symbols of the respective grammar

forms. If we do the union, we need to introduce a new non-terriinal

which we will let be {T}. Then our new grammar would be G (r. 0.

P. a) where,

v {b, c, d, R. S, T}

101

The replacement technique is a generalization of isolation. This

technique replaces a subgramrnar form of the grammar form by its

interpretation grammar form. Clearly, the resultant grammar form is an

interpretation grammar form of the original.

The technique of substitution combines two grammar forms G1 and G 2

in such a way that a leaf node representing a terminal in G 1 is

substituted by a tree derived by G 2. Given G 1 = (v,, 01, P1, 7,) and

G 2 = (v2 , 02, P21 a2) with disjoint alphabets. Let the new grammar

form be G = (t, 0, P, a) where

0 v {(v 1 - {a}) U V21,

* 9 {(01 - {a}) U 02}.

* P {r(PI) u P 2} where a is in 0 and r(P 1) is in P, in

which a is replaced by a 2, and

0 a - a 1 .

Intuitively a primitive in G1 is further expanded by G 2.

Let us illustrate the technique of substitution by an example. Let G

be defined with two production rules (S ::= aSb and S ::== ab) and G,

also be defined with two production rules (R ::= cRd and R :: cd)

where {a, b} and {c, d} are the terminal symbols of the respective

grammar forms. If we make the substitution of the terminal {a} with

the tree generated with G,, then it would be the same as if we have

defined G = (v, 0, P. a) as follows:

t, = {b, c, d, R, S}

0 {b. c, d}

.., -..:.: .: . .--.. -. -,*...- -- , .- - .- . .

100

There are various techniques for manipulating grammar forms in order

to generate grammar forms like we have just discussed. The techniques

we will look at are isolation, replacement, substitution, union, and

intersection. We will begin with isolation.

Sometimes it may be desirable to isolate derivations from a non-

terminal in the interpretation grammar form. We want to restrict the

derivation trees that may be generated by a non-terminal. This is

usually the case when experience has proven the merit of one derivation

with respect to another. Let us consider a grammar form G (v, 0, P.

a) and terminating derivation A = + a i where a i C 0* for 1< i < n,

for some n > 1 and some A E v- 0. We can derive either G1 s G or

G I 2 hs G, such that

1. G1 = (t, , 0, P 1, a) with v Cv 1,

2. all productions in P whose left hand side is not A are taken

into P1 unchanged, and

3. the remaining productions in P1 only serve to derive the a i

from A and nothing else.

We then say the the derivations A =:* a i, 1 < i < n in G have been

isolated in G1. Notice that any derivation from A must always go

through one of the ai's. G1 can be constructed by using extra non-

terminals which are used in only one production. Since we have already

shown that we can restrict derivations from a non-terminal by either an

s-interpretation or hs-interpretation, we will avoid generating this

grammar form all together and use other means to restrict the

derivations.

.-. o................. o -. .-... - o -............-

99

Theorem 8: Let G1 (v, 01, P 1, or) and G 2 (v2, 02,

P 2, 02) be two grammars. Then

1. G2 :s Gj(pu) iff - 1 : G2 - G, is a very fine grammar

morphism, and

2. G2 2hs Gl(p) iff A-1: G2 --, G1 is a length preserving

grammar morphism.

See [109; for the proof of this theorem.

It can clearly be seen that two systematic techniques of generating

similar grammars are tied to the concept of grammar morphisms

preserving structural properties. There is also a relationship between the

derivation of the s- and hs-interpretation grammar and derivations of its

form grammar.

Theorem 9: Let G1 - (t 1, 0, P1 , 01) and G2 = (v2, 02, P2,

02) be two grammars such that G 2 " hs G (and because of

preserving properties G 2 s G l)" Then for every derivation 30

1 => "'"=> 3n in G 2 for some 3i in v2 , 0 < i < n and n

0, there is a derivation o -> a I ,> ... = ani such that 3 i is in

P(o) for 0 < i < m and n m. When G 2 zhs G1 1 then a i

(00, 0 < i < m.

See !109' for the proof of this theorem.

This theorem states that for each derivation tree -2 in G, there is

exactly one derivation tree r, in G I. Clearly, 7- and r2 can be obtained

from each other by simply relabeling their nodes.

, ..°. . • . -... .. .-. ..- ... *°.- 0 b * .,* * * *- * * * . . * * * *; • °o. .- - -.- o -. . .*
•

. .. • • •° . o ... •* • ° " ° . ° o•. % % ° -" ° o" •" % ° .%% % % ", ° . "-' ," ° °° '%, , .° ' ' . ".

" 98

I hs-grammar family of a grammar form G, denoted by Ghs(G), properly

includes the s-grammar family of G, while the hs-grammatical family of

G, denoted by Lhs(G), is the same as the s-grammatical family of G.

Let G 1 = (vl, 01, PI, a,) and G2 = (v2 , 02, P2 , G2) be two grammars.

G 2 is called an hs-interpretation grammar modulo p of G 1 if there exists

a dfl-substitution p on v, such that

1. p(A) C V2 - 02, for all A in v 1 - 01,

2. pi(a) C 02, for all a in Op

3. P 2 C p(D(G1)), where 1L(D(G,)) {p(A = a): A " a in

D(G1)}, where D(G,) is the set of derivations of G 1 and ps(A

=t* a) = p(A) =z,* p(a), and

4. 2 is in l(O),

and is denoted by G G(P)

The hs-interpretation is similar to the s-interpretation except that the

productions of the target grammar are images of source grammar

derivations. The hs-grammar family and hs-grammatical family can also

be defined analogous to s-grammar family and the s-grammatical family.

Likewise, we can define hs-form equivalent and strong hs-form equival ent

as having the same properties as s'form equivalent and strong s'form

equivalent. Also, the decidability problem and its NP-completeness can

be proved similar to the s-interpretation proofs. Clearly, an

s-interpretation is an hs-interpretation, therefore, for any grammar form

G, then the following also holds. namely: Gs(G) - Gh,(G) and L.(G)

Lhs(G). The hs-interpretation is needed in modeling the tuning process

of a derivation tree and its underlying grammar.

U. -, ..: .: : : .. ; : ---....-.7: .: .: ...: .. .:: .:?

7 -

97

Theorem 4: Let G (v, 0, P, a) be a grammar form. For

every two grammar forms F 1 and F 2 which are s-interpretations

of G and are production minimal, symbol tight and strongly

s'form equivalent to G, F1 and F2 are isomorphic (or minimal).

See 109: for the proof of this theorem.

Theorem 5: _- is decidable for grammar forms.

See '1091 for the proof of this theorem.

Theorem 6: The decidability of z for grammar forms is an

NP-complete problem.

See '109, for the proof of this theorem.

In fact, for grammar forms, we do not need to restrict ourselves to

s-interpretations. Blattner has given us a more powerful theorem.

Theorem 7: The equivalence of context-free grammar forms is

decidable.

See 71 for the proof of this theorem.

In general, the problem of deciding whether L(G 1) = L(G,) for

arbitrary context-free grammars G 1 and G 2 is unsolvable [21, 45'. This

is why a systematic procedure to generate similar grammars is superior

to a procedure for checking if two arbitrary grammars are similar.

Before discussing different techniques for systematically modifying

grammars, we will define a new type of interpretation called the

homomorphic strict-interpretation (or hs-interpretation). This

interpretation is more general than strict-interpretation in that the

77

96

P2 R 2.1 (C) (D)c)

P 2.2 (D: (D)'c)

2 3 (D) (D ,)

P2 4 (D) (d) }

It should be fairly easy to see that G2 generates all strings of the form

d(d u c)*c.

The collection of s-interpretation grammars derived from the grammar

form G of the form grammar F is referred to as the s-grammar family of

F and is denoted by Gs(G). Similarly, the collection of languages

obtained from G is referred to as the s:.grammatical family of G and is

denoted by L(G). It is defined by Ls(G) {L(Gi) : Gi ;s G}. As we

had equivalence relationships for context-free grammars, likewise we can

define similar equivalence relationships for grammar forms. Two

grammar forms F1 and F 2 are s-form equivalent if L(F i)= L(F.) and

strong s-form equLivalent if Gs(FI) = Gs(F.). Notice how the s'form

equivalence corresponds to weak equivalence and strong s'form

equivalence corresponds to strong equivalence.

In our earlier discussion of equivalence, we defined a minimal derivation

in order to come up with our strong equivalence definition. Minimal

derivation also allows us to define a minimal grammar for a language.

The same concepts also apply to grammar forms. A grammar form G

is production minimal if there is no grammar form G 2 such that G I ;-s

G2 and G2 ;:z G and G2 has fewer productions than G 1 . Similarly G1

is sayrbol minimal if there is no grammar form G such that G 1 .
(

and G2 G, G1 and G., has fewer symbols than G1 . Finally, G, is

"yilbol tkht if G has no useless symbols in its vocabulary.

95

P.2: (A) ::= (a) }

(A)

{c, d, C, D}

{c, d}

is the A. interpretation that performs the following mapping

P s(a) {c, d}

S(A) {C, D}

/.s(P 1) {P 1 . (C)::= (C)(c,

P (C) (C)(d

P 1 3 (C) ::= (c)

P,, (C) (D)(c)

P 1.5 C) (D (d,

F1.

P1.7 (D, (U '(c)

P1. : (D, ::= (C) (d}

P. (D19 : (c)

P .10 : (D): (D ,(c)

P 1 1 (D D,(d\

P ., : (D' :: (d,

,(0) - {C}

Then we define another form grammar G2 such that G 2 .G where C 2

has the following set of productions:

.. §

94

* V is an infinite vocabulary,

* ?. € V is an infinite vocabulary of terminal symbols, and

* q is the allowable set of interpretations of G using the symbols

in the two vocabulary sets.

F represents the family of grammars that are interpretations of the form

grammar G and the process of interpretations is a systematic technique

for generating them.

A grammar form F. - (G2, V2 , 2' q2) is called s-interpretation

grammar form of a grammar form F1 = (G 1 , V1 , 01, l) if G 2 2. G I,

V2 -* VI, i2 - ?I, and q2 -* 1"

As an example of a grammar form, let us use the family of grammars

called the left linear grammars. By definition, left linear grammars are

regular grammars which have productions of the following format:

A -> Ba
A => a where

A E (V- o)i {o}
B (v-0)

Let F1 = (G 1 , 1. tl" qj) where

GI = (1 .' O" P 1. a1) where

V, {A. a}.

{a}.

"- 0I {}.

P1 {P 1 .1 : 'A ::> A ia

93

to be infinite, if that vocabulary is bounded we will have no problems.

The productions are obtained by takin, images of productions in the

source grammar. The starting symbol is an image of ar The

g-interpretation can also be similarly obtained.

Clearly, s-interpretations are length preserving while g-interpretations

are not. Also, every s-interpretation is a g-interpretation while the

converse is not true.

Whenever P2 = t(P 1), we say that G2 is a full s-interpretation of G,

if we are doing s-interpretations, or a full g-interpretation of G if we

are doing g-interpretations. Full s-interpretation is denoted by G 2 tf, G 1.

Full g-interpretation is denoted by G2 f G

Let us illustrate an s-interpretation with a very simple form grammar.

Let G1 be a grammar with one production

P 1. 1 : S ::= a

and let G 2 be a grammar with two productions, namely

P2.1 T b

P T c" P~2.2 :T :

Let p(S) =- {T}, p(a) = {b, c}, and p(S - a) = {T -- b, T -- c}.

Then we can say that G2 2s G1* In fact, we can even say that G2 " fs

G P

We are now in a position to formally define a grammar form. A

"grammar form F is a quadruple (G, , 0,) where

" G (r, 0. P. a) is a context-free grammar. often referred to

as the form gammar of F,

o.. .

92

Both interpretations use the notion of a disjoint-finite-letter substitution

(dfl-substitution). Let U. V be two alphabets and p be a letter

substitution from U to 2 V". Then p is a dfl-substitution if for all X, Y

in U, p(X) n p(Y) = 0 when X -i Y.

No" let us define what a s-interpretation is. Let C1 (G" 0. P1. a1)

and G2 - (v2 , 02, P2, C2) be two grammars. G2 is called an

s-interpretation grammar modulo p of G1 (denoted by G 2 Gs C1) if there

exists a dfl-substitution p on t, 1 such that

1. p(A) C v2 - 02, for all A in v- Ol

2. p(a) C 02, for all a in 01,

3. P 2 C P(P,), where p(P 1) -{p(A -- a): A - a in Pi},

where u,(A -, a) = p(A) -- p(a), and

4. C2 is in p(a).

The substitution p is referred to as an s-interpretation of Gr The

substitution must be disjoint in order to preserve the structural

properties of the grammar. The definitions of g-interpretation and

g-interpretation grammars are similar except that terminals can be

replaced by sets of terminal words rather than' just by sets of terminal

letters. For both interpretations, G is known as the source, naster or

form grammar. and G2 is the image. target or inter)retation grammar.

The s-interpretation is obtained for the source grammar by mapping

distinct terminals into disjoint sets of terminals and distinct non-

terminak into disjoint set, of non-terminals. Although the vocabular.

making up the set of terminals and the set of non-terminals is supposed

". o" -.. . . -.- --. ... - °-. -. . o. ...-.. °-. N °.° "- %%.'•

106

For our third example, let us use a grammar form G 3 where it has

three productions, namely,

S aSS

S aS

S ::= a

Any s-interpretation on G 3 will give us a grammar in what is know as

Greibach 2-standard normal form which is also known to be able to

generate all context-free languages. Thus, G3 can be used to generate all

context-free grammars.

For our final example, let us use a grammar form G where all the

productions of the grammar form have the following format:

S ::= aiSaJSak where i + j + k = 9

This grammar has the appearance of being in some type of normal form.

Wood in '109 has proved that any grammar form in normal form will

generate all context-free languages. Again, any s-interpretation on G

can be used to generate all context-free grammars.

In the tuner, we want to be able to generate any context-free

grammar. So it appears that any grammar form, in normal form, will

serve our purpose. Ho%ever, remember that any s-interpretation is

length preserving. Therefore, we are not able to use any of the

grammar forms presented thus far.

As we were able to find an equivalent attributed grammar from an

attributed grammar with right regular parts. we can also find an

equivalent grammar form which also uses right regular parts. With right

regular parts, we would not have to worry about the length preserving

.

Qo " - ° -.. °

107

nature of s-interpretation because if we need a production rule whose

length was longer than what we already had, we could increase our

productions in the grammar form.

We call our ultimate grammar form genesis. Let this grammar form

be G = (v, 0, P, a) where P has the following format:

S ::= (a*S*)*

It is easy to illustrate that any of the grammar forms that we have

defined, can be defined by G. Let us take a couple of them and

illustrate what we mean. All we have to do is show that they are

strongly equivalent or that there is a grammar morphism h: G1 -,

G. Clearly, we have

T ::= TT E S ::W (a'S*)*

T ::z b C S ::- (a*S*)*

h(T) {S}

h(b) {a} which implies that h(vl) v

G is both fine and length preserving: therefore the two grammars are

strongly equivalent.

Let us take our more complicated example of grammar form G4.

Again all that we need to do is show that the two grammars are

strongly equivalent or that there is a grammar morphism h: G 4

G. Again, we clearly have

T ::> TTb _ S ::- (a'S*)"

T ::= TbTb8 ;E S :: (aS*)

.,.-...

108

T ::= bTbTb 7 E S (a*S*)*

T b9TT E S ::z- (a*S*)*

h(T) {S}

" h(b) {a} which implies that h(v 4) v

G is both fine and length preserving; therefore the two grammars are

strongly equivalent.

Theorem 12: Every grammar form can be generated by the

"genesis" grammar form.

Proof: The "genesis" grammar rule represents a collection of grammar

rules. Since we already know that we can make the vocabulary

substitution, we will concern ourselves with only making sure that all

grammar rules of two letters can be represented by the genesis grammar

rule. Let our vocabulary be

* v {a, S},

* 0 = {a}, and

We will prove the theorem by induction. We will first show that the

genesis grammar will produce all grammars where the length of the right

expression of all the production rules in that grammar are one. We will

then assume that the genesis grammar will produce all grammars where

the length of the right expression of all the production rules in that

grammar are less than or equal to n. Then we will prove it for length
- n - 1.

/-n

..

109

For k - 1. For grammar rules with right expression of length one

the grammar rules must look like:

S:: S or

S : a

Clearly both of these rules are in the set (a *)*

For k n. Assume it is true.

For k n + 1. For grammar rules with right expressions of length

n + I the grammar rules will look like grammar rules of length n with

one additional symbol.

S ::= BS or

S ::= Ba where

B is the right expression of a grammar rule of length n.

Since B is already known to be in the set (a*S*)*, all we need to show

is that BS and Ba are also in the same set. For simplicity, we will

assume that for each symbol in B that we use exactly one symbol in

a*S *. Therefore. B is in the set (a*S*). BS is then in the set (a*S*)nS

which is in the set (a*S*)n -1 which is in the set (a*S*)*. Likewise, Ba

is in the set (a*S*)na which is in the set (aS)' 1 which is in the set

(a'S*)*. End of proof.

We can see that our genesis grammar form can generate any of the

grammar forms that in turn can generate all of the context-free

grammars. This genesis grammar form will be used as our model for

the generation of programming environments and also for the tuning of

these environments.

| ..- . - .. -
.

4.7. Attributed Grammar Forms

The natural extension to our model should be the addition of attributes

and semantic functions to grammar forms. This extension has been

addressed by Soni in [96' and Kuo in [61. However, their definition of

an attributed grammar form requires that we have equivalence classes for

both attributes and semantic function. These equivalence classes have

not been studied and the inherent properties have not yet been

addressed. Soni mentioned that we could have characteristic attributes

and a constraining function that would do the mapping of attributes to

semantic functions. However, for the present time we want to take a

more restrictive notion of attributed grammar forms.

So our definition of an attributed grammar form is a grammar form

where the context-free grammar is an attributed grammar.

In other words we are going to allow the set of attributes, their

domain sets, and their evaluation rules to remain the same for each

interpretation symbol and production. An issue for further research

would be developing a model of attributed grammar form based on the

definitions given by Soni.

With our simpler notion of attributed grammar form, we will formally

define an attributed grammar form to be a quadruple AGF = (G, V, g.

) where

SG = (G O , A0 . A, sem) is an attributed grammar, often

referred to as the form attributed grammar of AGF,

e V is an infinite vocabulary.

t.*• " "--+. ";----.......................................-"-.•-""•--" ."--.--...-...."--"-

[t¢ C V is an infinite vocabulary of terminal symbols,

e is the allowable set of interpretations of G using the symbols

in the two vocabulary sets.

With this definition, the set of attributes associated with the form

grammar symbol pass directly to the interpreted symbol. The same is

true with the set of semantic functions.

. . . .-..

Chapter 5

TRIAD and the Grammar Form Model

The tuner is a TRIAD tool that takes a specific grammar form and

creates a method representation to be used to customize TRIAD. The

tuner itself is method driven with the meta method. The tuner works in

one of two modes; static mode or dynamic mode.

In the static mode, the user builds a form tree using the meta method.

This form tree is then sent to the method compiler, a part of the tuner,

which creates the data structure representation needed by the new

•O ,method. With this new method, the user can then customize the

TRIAD system.

In dynamic mode, users use a partially defined method to customize

the TRIAD system and instantiates a form tree from that method.

Users then change mode from editing to tuning. In tuning mode. users

are allowed to make changes to the structure of either the blank forms

or the filled forms by manipulating the tags, the form representation, the

attributes and the procedural components. When users have finished

making changes deemed necessary, they signal TRIAD by leaving the

tuning mode and moving back into editing mode. At this time TRIAD

calls the method compiler again to verify the consistency of the method.

If users like, at this point they can also specify that this is a new

method and have it stored in the method database.

1

• . 112

• '. ' '-"-'''.. ,,"' ".'-'-'''. .'.'., .' , - - .".' . . .'. ". '.' .., '.". ".I

113

In this chapter we will discuss the relationship between the grammar

form and the meta method and how the tuner uses this meta method to

build methods for TRIAD. In section 5.1 we will look at how a method

is described. Then in section 5.2 we will look at how the tuner is able

to manipulate the tags, form representations, the attributes, and

procedural components. Finally in section 5.3, we will see why the

grammar form model is the best model for representing methods.

5.1. Description of a Method in TRIAD

As we have seen with other software environments, the description of

the environment had two parts; the description of the grammar or

attributed grammar and some type of display interface. Since TRIAD is

method driven, it should come as no surprise that a method should be

described by two parts; the description of the attributed grammar form

and the description of a forms interface.

Formally, we then can define a software method (SM) as a triple

(AGF, DSP, FI) where

" AGF = (G, V, 0,) is an attributed grammar form,

" DSP is display representation of the symbols of G, and

" Fl is a mapping of the grammar rules of G to a forms

interface.

The best way to describe a method in TRIAD is to use an example.

The example we will use is the meta method which is the method used

by the tuner. The forms of the meta method are shown in figures 15.

16. 17, and 18. These forms are all blank forms. Project information is

.* .- .-.- .- .-. ° ° -.- .- ° .* ,° o o. _-.. ° ..._...........-.................-..-...-.-......-........-...............................-. °° -°

°°...•.'. . . , o.°..°..... -. o °...-...• .. o. - .-. °.-

114

META-FORM-1 Methodology Form-use- #:

Methodology Name:

(21 Grammar Definition: Form-use- j

Form Definition [more?]:

Form Number:

Production Number:

Figure 15: Methodology Form of the Meta Methodology

chunked according to the underlying concept grammar productions with

associated attributes and procedural components. For example,

underlying the Methodology Form (see figure 15), we have the following

concept grammar production rules:

(method :::= name

granimar

,form interface,'

(form interface,::-- 'forri number,

root node

Several concept grammar production rules are grouped together to

constitute a "form* in TRIAD. A form presents a primary method

concept to the user. Each production in the form then presents a

subconcept of the method or a refinement of the primary concept. For

example, using our Nlethodolog Form again, the concept that is

presented by the form is that a method has three parts - a unique

name, a concept grammar description, and a form interface description.

META-FORM-2 Grammar Deinition Form-use-#

Grammar Name:

Action Set:

(3) Action [more?]: Forrn-use-#[I -

Attributes:

()At tribute Set: Synthesized Local Formn-use-. '

(41 Attribute Set: Inherited Local Formn-use-#[[

(4) Attribute Set: Global Form- use-#~

Symbols:

Start Symbol:

- 5) Symbol: Forrm-use-#Vj

Heading:

Displayable Help Informnat ion:

Terminal Symbol:

- ~-(5} Symbol [more?]: Forin- use- #

Non-t erimmiual Sytmbol:

(5) Symibol [miore?': Formn-use-#

Prod uct ion Set:

(6) Prodluct ion RIule [mhore?] : Formi-use- : t

Figure 16: Grammiar Formn of the M4eta MethodologN

116

META-FORM-3 Action Form-use-

Action Namie:

Action Procedure:

META-FORTN-4 Attribute Set Forrn-use-,,

Attribute [more?]:

Name:

Type:

Default Value:

META-FORM-5 Symbol Forxni-use-#

Symbol Name:

Attributes [more?]: _

Name:

Default Value:

Action Name [more?]:

Figure 17: Action Formy, Attribute Forin, and Symibol Formi of the
Meta Methodology-

117

META-FORM-6 Production Rule Forrn-use-1-1

Production Number:

Left Hand Symbol:

Right Hand Symbol (more?]: (given in left to right order)

Na me:

Operation:

Kicene Star:

0/1:

Form Representation:

Heading:

Displayable Help Information:

Prefilled Entry:

Entry Updatable:

Number of lines:

Semantic Functions:

Name [more?]:

Figure 18: Production Forin of the Meta Nietflodologx

118

This corresponds to the definition of a software method. For human

engineering reasons, the display representation of a symbol is made a

part of the grammar definition. Each of these parts of the method can

be interpreted.

For example, in figure 19 we have an instantiated filled form for the

meta method. Here the method name is "test.md". The concept

grammar description is further refined in a grammar form which has a

use number of 2. A subconcept in the method form would be - the

form interface description. The form interface description says that there

are two forms in this method. The first form begins with production 1

and the second form begins with production 3. The concepts do not

change from one instantiation of the method to another, just the

interpretations.

META-FORM-1 Methodology Form-use- -'1'

Methodology Name: test.rod

(21 Grammar Definition: Form-use- 2'

Fori,, Definition [more?]:

Form Number: 1

Production Number: I

Formi Definiition [more?':

Form Number: 2

Production Number: 3

Figure 19: An Instantiated %Iethodolog\ Form

- - - - . 4 .. ., .4,.: . . . ". , C. . ..',_e . . . - .,

119

Now recall that we defined a grammar form F as a

quadruple (G, V, ,, s) where

" G (t'. 0. P, c) is a context-free grammar.,

" V is an infinite vocabulary,

* C V is an infinite vocabulary of terminal symbols, and

e ; is the allowable set of interpretations of G using the symbols

in the two vocabulary sets.

The genesis grammar form has the following context-free grammar:

t , - {a, S},

o 0 {a}.

• P { 1 'S ::- ('a,'$) }' and

That grammar is not shov, n in the meta method but is inherent in the

tuner tool. The set of symbols shown in the Grammar Definition Form

(see figure 16) is the infinite vocabulary V. This infinite vocabulary is

defined by the start symbol, the set of terminal symbols, and the set of

non-terminal symbols. The set of terminal symbols is also the infinite

vocabulary of terminal symbol ti. The set of productions shown in the

Gramnnar Definition Form is the allowable set of interpretations of P of

G using the s mbol set: the set of productions is

An attributed graimnar was defined as a quadruple G (C;O A ..

seri) where

133

The second model is the attributed grammar model. Several

programming environments had been built on this model as is shown in

figure 8. One problem with this model was that all the project related

information is only at the leaf nodes. Thus, the project related

information string itself is not structured. This structure is maintained

separately from the project information. When attempting to structure

this information according to method concepts, the information must also

be at the internal nodes. For example, suppose that in a method there

was a concept of a meeting where:

(meeting' ::= (participants, (action items'

In the attributed grammar form model, the minutes of the meeting could

be associated with the 'meeting' node, the list of attendees with the

'participants' node, and the follow up items with the 'action items' node.

In the attributed grammar model, another terminal symbol, 'minutes',

would have to be added to the grammar to be associated with the

minutes of the meeting. The relationship between minutes of the

meeting and the follow up items would have a different connotation in

the attributed grammar model than in the attributed grammar form

model. In the attributed grammar form model, the follow up items

comes from the minutes of the meetings, where in the attributed

grammar model, the follow up items are independent of the minutes of

the meeting. Another problem has to do with grammar transformation.

It cannot be done in the attributed grammar model. There is no

procedure for deciding what to do with the information that is associated

at a leaf node when that node is changed to an internal node and a

subtree is attached to the node. In the attributed grammar form model.

the inforniation associated at a leaf node does not change if that node is

changed to an internal node or expanded.

., . . - . -. ,-<, , , . ,

132

5.3. Why Attributed Grammar Form Model

We have illustrated the power of the tuner which is based on the

attributed grammar form model. A logical question that could be asked

is "Could we have the same power if the tuner had used sonic other

model?" The answer is no. In this section we will look at some of the

other models and see why we could not have used them for the tuner.

The first model is the relational model. Several systems have been

built on the relational model "65, 69, 79, 107. One problem with the

relational model was that context information had to be reconstructed

when the project related information was stored as tuples. For example,

Linton illustrated in his work that in order to reconstruct this

information, the context information had to be known in the first place.

The context information could be stored in the tuples which would make

the retrieval of the information more efficient, but the size of the

database would increase without giving an increase in power. Access to

the database can only be done through cross products, joins, and

projections. Another problem with the relational model was the

propagation of synthesized and inherited attributed values. In the

relational model numerous queries over the whole database have to be

generated to accompiish the same propagation of attributed values that is

inherent in the attributed grammar form model. The propagation of

attributed values is not a part of the relational model. Another problem

was the dynamic creation and modification of tuple definitions. Although

the tuple definitions can be changed, they only can be done in a batch

and off-line mode. A special program has to be written each time a

tuple definition is changed to transform the database to reflect the new

tuple definitions. The same program can not be used for any arbitrary

change to the tuple definitions.

................-- "------ -"- .- "-" -"-

131

The global controller for the change history tool is a small routine as

follows:

begin

set mode = change history generator

open change history file

visit tree in depth first order

call change history routine

set mode = change history output

open change history record file

visit tree in depth first order

close change history record file

close change history file

end

At the symbol "change history" the following action routine is added:

if (mode == change history output) then

begin

while (change history request number request number)

begin

copy line of data to the buffer

end

end

r . .
•
. o m . , o . - o o , O . , - . . , • o

130

We add a new symbol called "change history" and add it to the

documentation concept production rule as follows:

(documentation ::- (user manual>

,progranimer's manual;

,functional specification,

'change history/

Now suppose that the module production rule reads as follows:

(module,'::= (input specifications) *

(output specifications *

(variable specifications'

Oline of code'*

To each of the s nibols "input specifications", "output specifications",
"variable specification", and "line of code", we add a new attribute called

change number". Also to each of these symbols we add the following

procedural component:

if (mode =- editing update) then

syrnbol.change number - current change request number

if (mode - change history generator) then

begin

place symbol.change number in change history file

copy the data in the buffer to the change history file

end

129

META-FORNI-2 Grammnar Definition Form-use-:9,

Grammar Namie:

Action Set:

(3) Test.create: Forrii-use-# j

(3) Test.visit: Form-use- #

(3) Test.enter: Form-use-#']1

{31 Test.update: Form- use-#J

Attributes:

{4) Attribute Set: Synthesized Local Form-use-#

(4) Attribute Set: Inherited Local Form-use.-#'l

{4) At tribute Set: Global Form- use-

Symibols:

Terminal Symbol:

{5) Symbol [more?]: Form-use-$

Non-terminal Symbol:

- -(5) Symbol [more?]: Forni-use-#

Production Set:

(61 Production Ruile [rmore?]: Forrn-use-~

Figiire 22: Locallx Tuned Form

128

This change does not change the concept grammar production underlying

the form, only its representation to the user.

If the tag of a refinement organizer is updated, the tag of the

refinement form is also updated. As a result, we now have four new

forms titled, Test.create, Test.visit, Test.enter, and Test.update. We

could then use more tailored queries. Instead of a traditional query

like...

Find an action form with action name = Test.create

We could use a more focused query like...

Find a form = Test.create

5.2.2. Tuning Example of Concept Rebinding at Method Use Time

Suppose we have just developed a new tool that will take a listing of

lines of code with a change number and output a sorted list based on

change numbers. For each change number, the output will show which

modules were changed and what lines in those modules were changed.

Management has decided that this tool is valuable and wants it to be

integrated into the system. Let us also suppose that in the past that

there had been no concern about a change history report, and so there

was nothing in the current system to handle this request.

The current documentation section is set up with the following concept

grammar production rule:

(documentation ::--',user manual,

,programmer's manual

Ifunctional specification)

,, .- ..-......

127

* the adding or deleting of the tag display representations and

the forms interface with the concept grammar production

rules.

The genesis grammar form allows the tuner to make these rebindings

dynamically. All the changes to the bindings are local changes which, if

they do have to be propagated over the interpreted tree, the tuner, with

the aid of TRIAD, has access to. For example, let us suppose that we

decided to the change the number of lines on the screen for the tag

"Displayable Help Information" in form Production Rule Form (see figure

18).

Since TRIAD stores both the grammar symbol and the production

number with each node, there is no problem going through a form tree

to find all the nodes with the grammar symbol 'displayable help

information' and production rule number 'x'. Every time such a node is

found in the form tree, that node display attributes are updated to the

new value. If the change is to occur to only one node, the user can

place the cursor at that node and tell the system to update the display

attribute of just that node.

5.2.1. Tree Rebinding at Method Use Time Tuning Example

Suppose we want to make the Grammar Definition Form (see figure

16) more meaningful. Instead of just having "Action" show up as a tag

on this form, we would like to have the actual "action name" show up

as is shown in figure 22. We can do this by placing the cursor at the

tag "Action" and using the tuning command of "change-node-heading".

By restricting the application of this command to the current tag and

doing it four times, we could get the tuned form shown in figure 22.

126

An even more powerful concept of evolution is supported by the tuner's

ability to modify method descriptions. Tuning rebinds concepts to

interpretation related attributes, procedural components, and tags. There

are two types of method use time rebindings: tree rebinding and concept

rebinding,

Tree rebinding is done when changes are made to the interpreted tree

that do not affect the underlying concept grammar. These changes

include:

* the changing of a tag for a chunk of project information in

the interpreted tree,

* the adding or deleting of a procedural component for a tag in

the interpreted tree,

* the adding or deleting of attributes for a tag in the

interpreted tree, and

e the changing of the display representation and the forms

interface for the interpreted tree.

Concept rebinding is done when changes are made to the underlying

concept grammar. These changes include:

* the adding or deleting of a concept grammar symbol.

* the adding or deleting of concept grammar production rules.

" the adding or deleting of attributes and, or procedural

components for the concept grammar, and

..................-.

125

Methodology

Form Definition Form Definition

Methodology Name Grammar Definition

Form Number Production Number

Form Number Production Number

Figure 21: Concept Tree for an Instantiated Methodology Form

Notice that the two concepts trees are different. In essence, we can

say that the concept grammar production rules have changed.

An interpreted concept tree is the filled form with all interpretable

entries present. The Methodology Form in figure 19 is an example of an

interpreted concept tree.

5.2. Tuning a Method

To contrast TRIAD with other systems (like ALOEGEN [74, or a

parser generator [1), it is useful to define two binding times; method

define time, and method use time. A meta system like a parser

generator is used to generate internal data structures which are

interpreted by a generic parser. The language for the generated compiler

is thus bound at grammar (language) define time. In contrast, the

TRIAD meta system tools are bound to the description at method use

time.

124

(Production Number) }

The associations of procedural components and attributes always stay

with the concept grammar symbol. The interpretation of them is always

one for one with the interpretation of the concept grammar symbols and

the concept production rules.

The next level of interpretation is the interpretation from the tag to

the entry. This interpretation is not as clear.

The tuner makes the interpretation from the genesis grammar to the

concept grammar and from the concept grammar to the blank form

grammar. TRIAD helps the user make the interpretation from the blank

form grammar to the project information database.

In order to keep definitions straight, let us tie the definition to what is

shown to the user by the forms. A concept tree is a blank form when

it is first instantiated. Notice that the concept tree is based on the

blank form grammar and not directly on the concept grammar. The

concept tree may change if an entry is repeated.

For example the blank Methodology Form in figure 15 has a concept

tree which is shown in figure 20. The instantiated Methodology Form in

figure 19 has a concept tree which is shown in figure 21.

Methodology

Met hod ogy Name Grammar Definition Form Definition

Form Number Production Number

Figure 20: Concept Tree for a Blank Methodology Form

...

123

There are several levels of interpretation going on here. The first level

of interpretation is from the genesis grammar to the concept grammar.

There is also a level of interpretation going from the concept grammar to

the grammar actually displayed in the blank forms. Let us illustrate this

with the Methodology Form. The concept grammar production rule for

the Methodology Form is:

(method)::= (name,

(grammar,

(form interface,,'

(form interface ::-form number)

(root node,

The following interpretations are used to come up with the blank form

grammar:

,i(method) = {Methodology}

p (name) = {Methodology Name}

p(grammar) = {Grammar Definition}

g(form interface) = {Form Definition}

p(form number) = {Form Number}

g(root node) = {Production Number}

p(of the first production) { {'Methodology, :: 'Methodology Name

Grammar Definition'

Form Definition }

p(of the second production) {,Form Definition' ::/- Form Number

,:....

122

figure 18) the values of "Number of lines" and "Entry Updatable" would

be stored as attributes for the display interface of the form. The

concept presented in this form is..

* actual production description.

e display interface.

How this form is presented on different terminals may vary, but

concepts inherent in the presentation have at least two subconcepts; how

much space does it take on the screen, and whether or not the user can

change the interpretation. The values of "Number of lines" and "Entry

Updatable" would be stored as attributes with the concept grammar

symbols and each terminal type would access its appropriate attribute

values.

Also associated with each production are procedural components.

These procedural components could be fired by a global controller for a

particular tool or fired based on the state of the system. For example,

when the system is in editing mode, one set of procedural components

could be fired when a node in the interpreted tree is visited or updated.

Another set of procedural components could be fired when the system is

in compile mode and the compiler interface (a global controller) is

traversing the interpreted tree.

Procedural components can be used to enforce method constraints. For

example, with the Jackson method. we could have a procedural

component attached to the program body that would check that the

input and output concepts have been developed before th. .,grarn body

concept is developed.

i .. .- ..-.. .. .

121

The collection of procedural components are the action sets shown in

the Grammar Definition Form. Sem, the semantic function associator for

the grammar, is done in both the Symbol Form (see figure 17) and the

Production Rule Form (see figure 18). The reason that procedural

components are associated with symbols is because we allow some

analysis to be performed on the interpretation of nodes. Non-terminal

nodes can have interpretations just like terminal nodes. The associator

was placed in the Symbol Form and the Production Rule Form for

human engineering reasons only.

The display representation of the symbols is defined in the Production

Rule Form (see figure 18). Each symbol has a 'heading' or 'tag'. This

really can be thought of as an interpretation of the grammar symbol.

There might be an interpretation already assigned to this tag in which

case the interpretation is a prefilled entry. The 'displayable help

information' provides for having help information appear in the panel of

the form to aid users with filling the forms. If a tag is not to be

interpreted or the preassigned interpretation is not to be changed, then

the entry is flagged not to be updated. The 'number of lines' is the

amount of screen space allowed for this symbol in the form. It does not

mean that all the data has to fit into this amount of space, the entry

can be scrolled.

We have allowed for right regular parts in our context-free grammar.

For this reason the Operation Set has to be determined in the

Production Rule Form. Only one of the operations may be assigned to

the symbol in that production.

Although we have not shown attributes, they do play an important role

in a method description. For example. in the Production Form (see

. , ,,. . ..•...: :• .,, , : ,- , . ,... . . " , , ...,.. , , , ,- ,-. ,... .,-. ...

120

• G o (v, 0, P, a) is a context-free grammar,

- AG is a specification of attributes,

e A is an attribute associator for G and AG, and

e sem is a semantic function associator for productions in Go

such that sem(i) is a valid collection of semantic functions for

production Pi in P.

The context-free grammar we have already identified. The set of

attributes shown in the Grammar Definition Form is AG the specification

of attributes. For human engineering reasons, we allow global attributes.

Global attributes are attributes assigned to the root node of the tree

that all nodes throughout the tree want to have access to. Instead of

making this collection of attributes a part of each node and using the

copying function to move the values around the tree, they are assigned

to a specific spot that all the nodes know about. Also, since we are

using time-varying attributes, they must be allowed to have initial

values. The definition of the attribute sets are shown in the Attribute

Set Form (see figure 17). The concept 'type' shown in the Attribute Set

Form is an implementation detail and is there so that the computer can

interpret the default value.

The attribute associator A is done in the Symbol Form (see figure 17).

It was placed in this form for human engineering reasons. Recall that

the attribute associator assigns attributes to symbol. Again we are using

time-varying attributes and so the default value of the attribute must be

specified.

._

"''°' ''- ' :''' ,'--' ''', ''' " "'-' '-'°Z '_- - -_'J_.. . .,'.. . . -. . .'".. . " " - " -? ' " - _ . .

• ..,.. . ,.•

134

The last model is the frame model [861. This model is used in

artificial intelligence systems. Although project related information can

be stored in the internal nodes (called slots), there are no grammar

symbols associated with the slots. All that can be stored in a slot is

project related information and attributed values. It is difficult to build

generic queries without some type of generic tags or symbols on the

slots. In this model there are only inherited attributes; there are no

synthesized attributes. The propagation of attributed values down the

tree can only be stopped explicitly in the frame model. Attributes for

method concepts need to be more flexible than what the frame model

allows. Attributed values in the frame model can not flow across the

tree like they can in the attributed grammar form model and which is

need for representing method concepts. Like with the other two models,

dynamic transformation of instantiations of the model are impossible.

Since the slots only have a value and not a tag, a generalized program

to manipulate the slots can not be written.

Based on these four models, the best model to model the concepts of a

method is the attributed grammar form model. This is because

• The attributed grammar form can have grammar

transformation which is need in order to reflect experience

gained with the use of the method.

* The attributed grammar form can have information stored in

the internal nodes which allows the modeling of stepwise

refinement.

* The attributed grammar form can attribites that are not

forced to pass information completely up and down the tree.

Chapter 6

The Tuner

One of the best techniques to test out the meta method is to use the

meta method and bootstrap the representation of the meta method. We

therefore decided that we would use the tuner to generate the meta

method. We did this by manually generating the grammar symbols and

productions and a forms interface that the static tuner would understand.

We could not use the previous version of TRIAD as that version did not

have a data structure for procedural components and attributes. With

this manually generated version of the meta method, we brought up the

first tuner. Then with this tuner we brought up the static tuner with

its capability to define attributes and procedural components. With this

tuner we could now do the consistency checks that will be explained

later. With this new tuner, we brought up the next version of the meta

method. This version of the meta method was still without attributes

and procedural components. The dynamic tuner was then developed.

With the dynamic tuner, we then brought up the final version of the

meta method which included attributes and procedural components. The

details of the grammar production. attributes, blankforms, and procedural

components can be found in Appendix A.

In section 6.1, we will discuss the meta method. We have already

discussed the model on which the meta method is built, but we still

need to discuss the steps involved in the method. Then in section 6.2.

we will discuss some of the implementation issues involved in bringing up

the meta method using the dynamic tuner.

135

. .

136

Three terms that are closely related need to be defined. Semantic

function was formally defined in section 4.4. Procedural components are

similar to semantic function except they can be used to update more

than the local attributes. A procedural component can update an

attribute in the derivation tree as well as provide an interface for tools.

Action set is a collection of procedural components and the name used in

the actual TRIAD implementation. These three terms will be used

interchangeably where the distinction between the terms is not important.

6.1. Description of the Meta Method

The meta method is a procedural way of defining the attributed

grammar form and display interface for TRIAD. Although there are

steps in this method, these steps do not need to be followed in exact

order because of the incremental design of the tuner. We will first

present the steps of the method and then present a brief discussion on

how to build a method using the meta method.

The meta method is broken up into two parts: a definition part and a

compilation part. The definition part has five steps and the compilation

part has one step.

1. Define Symbol Set. In defining the symbol set, we are really

defining the vocabulary t' and start symbol o of the grammar

form. Recall that the vocabulary is broken up into two sets,

namely the terminal vocabulary and the non-terminal

vocabulary. The non-terminal vocabulary could be an empty

set. From here on in, we will use the terms vocabulary and

symbol interchangeably. In defining the symbol, we give it a

name and use the attribute associator to give it its set of

. .

137

attributes and the semantic function associator to give it its

set of procedural components. If a symbol has a set of

attributes and/or procedural components, they must be defined

before they are associated with the symbol.

2. Define Production Rule Set. In defining the production rule

set, we really are defining the tt functions of the genesis

grammar form to transform to the new grammar form. Each

symbol in a production has a flag indicating its repetition

status and a display interface. The repetition status is our

use of the right regular grammars. In defining the display

interface, we must specify what the symbol will be known as

in the form, what help information is needed for interpreting

the node represented by the symbol, what prefilled value the

interpretation of the symbol may have, a flag to indicate if we

can change the prefilled interpretation, and the space on the

actual screen this symbol with its interpretation will be

allowed to have. Each symbol in the production must be

defined before it is referenced, and each left hand symbol of

the production must be from the non-terminal set of symbols.

3. Define Attribute Set. The attribute set for the genesis

grammar form is mapped one-to-one to the attribute set of

the generated grammar form. There are three classes of

attributes that need to be defined, namely, global attributes,

synthesized attributes, and inherited attributes. Each attribute

has a name, a type, and a default value. The type is the

data structure associated with the attribute. Default values

for global attributes must be defined at this time. The

o . e -

138

default values of the other two classes of attributes can be

delayed until they are associated with a grammar symbol.

4. Define Action Set. The action set for the genesis grammar

form is mapped one-to-one to the action set of the generated

grammar form. Therefore, in order to define this set, the user

simply defines unique action names and the associated action

procedure.

5. Define Blankform Set. This step is involved in defining the

forms interface. A blankform has a form number and a

production number of the root production of the form. The

boundaries of the form do not need to be defined. The

boundaries of the forms are calculated by the system when all

of the forms have been defined.

6. Compile Method Description. This is an automatic step done

when the user indicates that the description of the method is

complete. In this step, the method description is checked for

consistency, like "have all the productions been assigned to a

forms interface (although they do not need to be assigned as

a root production of a form)" and "are there any recursive

productions in a form".

6.2. Implementation Issues of the Meta Method

The meta method was the first example to be brought up. In section

6.2.1 we will discuss the issues associated with procedural components in

general as well as those with the meta method. In section 6.2.2 we will

discuss the issues associated with attributes in general as well as those

.

.

139

with the meta method. The issues associated with symbols, production

rules, and display interface are not unique to TRIAD and have been

discussed with such systems as CPS and ALOE. For that reason we

will not rediscuss them in this dissertation.

6.2.1. Implementation Issues of Procedural Components

Each procedural component has three parts; a name, a procedure, and

a set of criteria for when the procedural component is executed. The

user specifies an unique name. Normally, a procedure should have a set

of arguments associated with it. However, we found that the only

argument that we could allow was the current node. This was because

there was no way for the procedural component firing routine to know

which procedural components have arguments and where their arguments

are stored. If a procedural component needs any arguments, they have

to be stored as attributes accessible from the current node. The

implementation and referencing of attributes will be discussed in section

6.2.2.

A language for defining the procedure had to be selected. Since we

were only building a prototype, it was decided to use an interpretative

language which could be brought up quickly. A lisp like language was

developed and several elementary functions were defined so that the user

could get to the node structure and the attributes. Two of the more

advance functions were the GetNodeAtb and SetNodeAtb function which

allows the user to retrieve and store attributes for any node in the tree.

Given the node-id and the attribute name at the requested node, these

routines would access the address of the attribute and preform the

appropriate operation. The disadvantage of using a lisp like language is

that whenever the procedural component is fired, the procedure has to be

140

interpreted again. An area for future research is the development of a

compiler for our lisp like language which can delay the binding of the

attributes until execution time.

The next issue had to do the set of criteria for when the procedural

component is executed. This is called the firing mechanism. In

ALOEGEN, the action routines were fired each time the node was

accessed. Then, within the action routine, a decision was made on why

the node was accessed and an appropriate portion of the action routine

was executed. We decided that it might be more appropriate to make

the firing mechanism associated with the attribute name. In this way,

we would not have to interpret a procedural component if it did not

have to be fired. The firing mechanism then became an extension to the

procedural component name, which a local controller checks to see if the

procedural component needs to be fired. We selected six condition under

which a procedural component could be fired.

1. Create a Node. A procedural component could be fired when

a non-terminal symbol was expanded by a production rule.

Under this condition certain attributes could receive initial

values based on the attribute of the parent node.

2. Delete a Node. A procedural component could be fired when

a node is about to be deleted from the form tree. Under this

condition certain attributes of the parent node could be

updated to reflect the deletion of this child.

3. Repeat a Node. A procedural component could be fired when

a node is repeated in the form tree. What happens is the

grammar symbol of a node is repeated and a new node is

..... , l .: ,bui .. i

141

created. Under this condition both the parent node attributes

could be updated as well as the sibling node attributes being

allowed to set up links the his sibling.

4. Enter a Node. A procedural component could be fired each

time the node is entered. Upon entry, the node could access

attributes of other nodes and set up the environment in which

the node could be interpreted.

5. Update a Node. A procedural component could be fired when

the user leaves the node and the entry has been modified

causing a new interpretation to be generated. Attributes

which store status information could be updated.

6. Leave a Node. A procedural component could be fired when

the user leaves the node and the entry has not been modified

during this visit. If the node interpretation is not modifiable,

then firing upon exit would have the same affect as firing

upon entry.

Another issue is what to do when a procedural component detects an

error. For example, suppose that an entry is to contain an integer but

the procedural component has determined that it doesn't. The

procedural component needs to signal the TRIAD system what it wants

to do with this error. It could let the error stand as is or it could

require that the error be corrected before it continues on. To

accommodate this signaling requirement two exiting functions were

developed. The function Return allows the system to continue regardless

of the error while the function Quit requires the user to correct the error

before continuing on.

"i::::.:: -. :-' -:-.---':.'-.--:'. -: .-. :- . .:: : - - - - -: -: '" "-:'% : : . -: . .:""-:

142

Another issue is how to display summary information to the user in

the form. The easiest way to handle this issue is to have functions in

the lisp like language that allow the user access to the interpretation of

certain nodes. This feature became very handy when we wanted to

place information in the parent form that is in the child form. For

example, when a symbol name was defined in the Symbol Form we want

that same name to appear in the Grammar form in the entry where the

Symbol Form was refined. This is illustrated in figure 23.

Procedural components for the meta method take on the form of a

consistency checker. There are two types of consistency checkers: one

verifies that a name does not appear in a table and the other verifies

that a name does appear in a table. An example of the first type of

consistency checker is when a new symbol name is input, the procedural

component, symbol-name.update, checks the list of symbols to verify that

no other symbol has that name. This algorithm is shown in figure 24.

An example of the seco;id type of consistency checker is when a semantic

function is associated with a production, the procedural component,

saction.update, checks the list of actions to verify that an action with

this name has been defined. This algorithm is shown in figure 25.

The actual details of the procedural component for the meta method

are given in the listing found in Appendix A.

6.2.2. Implementation Issues of Attributes

Each attribute has a name. a class, a type. and a value. The name

must be unique but it could be the same name as a symbol. We allow

..:......... -...:.. :-...

143

META-FORM-2 Grammar Definition Form-use- Yf[2

Grammar Naine:book.grm

Terminal Symbol:

(51 Symbol [more?]:titlc Form-use- # 4'

(1Symbol [more?] :author Form- use- 1 5[

{51 Symbol [more?] :introd uc tion Form-use- #6[

{ 5) Symabol [more?]:mairont Form-use- 7

(51 Symbol [more?]:conclusions Form- use- # '8)

Non-terminal Symbol:

{5) Symbol [rnore?]:chapter Form-use-# '9'

(51 Symbol [more?]:chapter'form Form-use-#'10

(5) Symbol [more?] :sect ion FormT-use- #f[1

(5) Symbol [more?]:sectionor Form-use-if 12[

Production Set:

{6) Product ion Rule [more?] :1 Form-use- #13'

[6) Product ion Rule [more?] :2 Form-use-;4'14'

(6) Product ion Rule [more?] :3 Form-use-#,f13,

(6) Product ion Rulv [morv?]:4 Formi-use-#,'16,

Figure 23: An Updated Filiform of the Grammar Form

144

Get the value of the entry
If (value is not proper type)
begin

Tell user what the problem is
Allow the user to make correction

end

Find the corresponding table
If (the table is empty)
begin

Add this value to the table
Return

end
For (each entry in the table)
begin

If (this node did not create this table entry)
begin

If (value == entry.name)
begin

Tell user what the problem is
Allow the user to make correction

end
end
else

Change the entry.name to value
end

Figure 24: Verify Name Not in Table Algorithm

this because the data structure for the attribute is different than for a

symbol and the user has already identified which is which. We have

already discussed the three classes earlier. We currently allow three

types of attributes, namely, integer, string, and a list or table of integers.

This table of integers was created so that we could access a collection of

something. Our first use was to store node-ids of where symbols,

actions, productions, forms, and attributes were defined. The types of

attributes allowed must be consistent with the types of data structure

allowed in our lisp like language. If we add a new attribute type, we

also need to add that data structure type to our lisp like language.

).' ;T.' ")'.....-....)..'...."-.."...--...-"...."."."---"-.'-".-.'.".....Y..-"-"-.-...-...".".-...-. -'

145

Get the value of the entry
If (value is not proper type)

begin
Tell user what the problem is
Allow the user to make correction

end
Find the corresponding table

If (the table is empty)
begin

Clear the entry
Tell the user what the problem is
Return

end
For (each entry in the table)

begin
If (entry.name == value)

Set a flag that says the name was found

end
If (the name was not found)
begin

Clear the entry
Tell user what the problem is
Return

end

Figure 25: Verify Name is in Table Algorithm

Our first issue was how to access the attribute in our procedural

components. We wanted to be able to get to the attributes of the

current node. the parent of the current node, the children of the current

node and the global attributes. We decided that one way to access

these attributes was to have the attribute name as an extension to a

symbol name. For example, if we want to get to the attribute, whose

name is time, of the parent node, whose symbol name is schedule. we

would reference it as schedule.time. Then it was the responsibility of the

local controller to verify that indeed the parent of the current node was

schedule and it did have an attribute named time. Global attributes

146

would be reference only by the attribute name. Doing this required that

our lisp like language then had to have all of its temporary variables

declared. Any attribute that was not a global attribute or an attribute

associated with the current node, the parent node, or the children node,

had to be accessed through the two functions GetNodeAtb and

SetNodeAtb.

Another issue was which node was going to have the global attributes.

They had to be tied to a node so that the interface would be simple,

but which node do you tie it to? If it was tied to the root node of the

form tree, it would be difficult to differentiate between the global

attributes and the attribute that we.re really associated with that node.

We decided that we would create a global node not a part of the fori

tree but associate with the form tree. All the global attributes would

then be associated with this global node. This node would not have an

id or any procedural component or a symboi _-sociated with it.

Another issue was how to go about assigning default values to

attributes. An attribute is a place holder for a node. In other words it

had to be allocated space with each node. This is unlike the symbol

name associated with each node. A node could simply have a pointer to

the symbol because the node never updates the symbol data structure.

When defining an attribute, we could give it a default value which would

be its initial value. When the attribute was associated with a symbol,

that default value could be changed by the user. Therefore, we had to

copy the attribute when we associated it with a symbol, instead of just

saving a pointer to it. \When the attribute became a part of the node,

we had to copy it again becawse each node needs to change the value of

the attribute as the procedural components were executed.

S -, .--- -- .'. .. '. " -: "" . . " '. ." ' •- " . -•-.. - , " - -

Chapter 7

Using the Tuner for a VLSI Method

The VLSI domain has developed several well defined, highly evolved

methods 1106, 13, 100. 95, 391. Many of these methods have been

developed for a specific technology. Some have even been built around

the tools that were available. The VLSI method that we developed was

based on experience gained from the use of a set of CAD tools from the

University of California at Berkeley. These tools included a graphics

editor :78', a circuit extractor, programmable logic array generation tools,

switch level simulators, plotters, design rule checkers, and analyzers

running under VAX-UNIX. The VLSI method is illustrated in figure 26.

In section 7.1 we will briefly describe the steps of the method. Then

in section 7.2 we will discuss ho% the tuner was used to dynamically

build the representation of this method.

7.1.)escription of the VLSI Method

The VLSI method provides a way for recording the inputs to various

CAD tools and propagating the files from one CAD tool to another.

This method was designed for student use to get them acquainted with

the CAD tools. Therefore only a portion of the total CAD tools was

included in the method design. The method consisted of de-cribing some

state diagrams and using those diagrams to drive the CAD tools until a

logic level simulation was conpleted.

147

.: :. -' .", + ..(.::- . - .7-: ,i :---. :.;- . . .-¢ . - . -, - .- - : -- - ;. - . :- ... i : -. - -:'- ::

161

" determine the functions provided by that member,

" and define the conceptual objects and operations for that

member...,

and then work with the next another member of the domain. Therefore,

steps 1, 2, and 3 were done in order once for each member of the

domain. The blankforms associated with this are shown in figure 30.

Another problem had to do with the attribute data types that were

available. TRIAD currently only allows three types of attributes,

namely: integer, string, and a list of integers. Although these types are

powerful to express most attributes, it became difficult to compute the

intersection set of all the object/operation sets. It was impossible to

calculate the union set of all the object,'operation sets because a list of

strings was needed to store this set. Without the union set, we could

not calculate the difference set.

A powerful idea that was used in this implementation was the ability

to access attributes that were not tied to nodes that were immediate

ancestors or descendants of the node or global attributes. This was best

illustrated with the calculation of the intersection set. The attribute set

for the domain consisted of an attribute of type "table of integers" where

the integers represented the node-ids of each of the domain members.

The attribute set for the domain member-, consisted of an attribute of

type string containing the domain member name and an attribute of

type table of integers where the integers represented the node-ids of each

of the object operation sets that were included in that domain. The

attribute set for the object'operation set consisted of an attribute of type

string containing the object name arid an attribute of type table of

S. .:

160

15. Perform Test. Using the test designed in step 8.1, perform

the verification test for the virtual interface. This step can be

automated.

16. Prep are Documentation. Prepare the necessary documentation.

If each step has been properly documented, this step can be

automated.

8.2. Implementation Issues of the Virtual Interface Method

The implementation details of the virtual interface method are found in

Appendix C. It includes such details as the concept production rules,

the blankforms, and some of the procedural components. The discussion

in this part of the dissertation concerns conceptual details of the

implementation.

The virtual interface method was brought up in 100 person hours.

The static tuner was used to create the first production and the first

blankform. The rest of the method was brought up using the dynamic

tuner. This allowed the method designer to visually see the changes that

she was making.

The implementation of the virtual interface method was not as straight

forward as the method might indicate. One of the first problems wa.

how to present the forms to the user so that meaningful chunks could be

viewed at a time. With the size of the terminal screen available, it was

decided that smaller chunks of data were better to present to the user.

So instead of doing steps 1. 2, and 3 in that order, it was decided to...

* ideritif) a member of the domain.

159
9. Speciy the Interface. Each function which is to be included

in the virtual interface must be specified by the selected

specification technique. This step can be automated.

10. Design Test. Design a test to verify the virtual interface.

This is a test of the interface and not a test of whether the

individual packages work. This step can not be automated.

11. Split Interface. Split the interface into two parts - target

independent and target dependent. The target independent

part includes functions of a domain member which will be

included in the interface. The target dependent part includes

functions (which have to be supplied) to be included in the

interface. This step can be automated.

12. Choose Implementation Languages. Choice of the language or

languages for the implementation must be considered in terms

of the programming environment and the goals of the project.

This step can not be automated, but if the programming

environment has a transformation system some of the following

steps could be automated.

13. Implement Target Independent Part. Implement the target

independent part of the interface so that it can be easily

extended. This step can be automated.

14. Generate Target Dependent Part. Generate the modules

needed to implement the target dependent parts. Although

this step can not be totally automated, it is possible to assist

the user in developing the code for these modules.

158

which objects and operations are available for all members of

the domain. This step can be automated and is basically an

intersection of all the objects and operations of the members

of the domain.

5. Determine Extent of Mismatch. Using the definition of the

conceptual objects and operations, determine which objects and

operations are not available in all members of the domain.

This step can be automated and is basically the difference

between the union of all the objects and operations of the

members of the domain and the intersection of all the objects

and operations.

6. Evaluate Effort to Implement. Evaluate the effort required to

implement the virtual interface. The effort to implement the

common objects and operations is easy to calculate. The

effort to implement the non-common objects and operation is

not so easy. This step can be automated for the common

objects and operations.

7. Select Obiects and Qperations to Include. Based on the

amount of effort that can be expended, determine the objects

and operations to be included in in the virtual interface.

Although this step is rather easy to do. it can not be

automated.

8. Select Specification Technique. Select a specification technique

or method for describing the objects and operations in a

formal manner. This step can not be automated, but if the

specification technique is rigorous, the following steps could be

automated easily.

157

The method itself is a two part procedure. The first part consists of

six steps which analyze the domain and provides an evaluation of the

magnitude of the project. This is basically an informal approach since

most packages are not based on formal definitions of the abstract objects.

The second part consists of ten steps which define a more exact

specification and implementation of the virtual interface. We will briefly

look at each step and at how they could be automated.

1. Identify Domain. Identify all the application packages that

should be included in the domain. This could be a difficult

task. Making the domain too broad could make the

implementation of the interface too costly. Making the

domain too specific could make the implementation totally

redundant. This step can not be automated.

2. Determine Functions Provided. Determine all the functions

provided by the individual members of the domain. Care

must be taken to insure that the functions are only identified,

not how they are implemented. This step can not be

automated.

3. Define Conceptual Obiects and Operations Informally. Define

all the conceptual objects and the operations on those objects

informally, indicating which domain members contain them.

This task could be difficult if the domain does not have an

agreed upon set of objects and operations. This step can not

be automated.

4. Identify Common Objects and 0perations. Using the

definition of the conceptual objects and operations, determine

Chapter 8

Using the Tuner for a Virtual Interface Method

Many methods have been developed over the years. One area where

methods seem to be more clearly specified is in the defining of interfaces

to existing systems. Some of these methods include a method for the

Box [161, a method for Cousin-Spice [441, and a virtual interface method

[24, 25 . We decided a good test case would be to implement an

interface method. We selected the virtual interface method to use the

tuner on because the method itself was well described and we were

already familiar with it.

In section 8.1 we will briefly describe the steps of the method. Then

in section 8.2 we will discuss how the tuner was used to dynamically

build the representation of this method.

8.1. Description of the Virtual Interface Method

Many computer systems have packages that perform similar functions.

A virtual interface presents to the user a uniform view of a function

which is independent of individual packages. These virtual interfaces

attempt to include all the necessary and desirable functions of the

equivalent packages and to present the best possible view to users of the

interface within the constraints of the environment. The virtual interface

method is a scientific approach in describing what is to be included in

the interface and how that interface is to be built.

156

155

If (no flags have been changed since last time)
Return

If (the node is not being refined)
begin

Clear output file type flags
Return

end
Translate the flags to appropriate command option for execution
Store that option in the shell command string
Determine which refinement form is being selected
Store the appropriate command option in the shell command string
Execute the shell command string

Figure 29: Algorithm for Tool Interface

-.. :..:.-2. :, -, , - .-... .-. - .-.. - :. ..- -.- ---...-.... .- .- : ., -

154

(mextralI(

(mextra2 ,

(mextra3

(mextra4)

(esini I)

16. (type)::--mextra)

19. (cif)::=(mextra)

Since we could not know for sure what the symbol name of the parent

node, we needed to again add a new function to our lisp like language

to get to the attributes of the parent node. A pointer to the parent

node is maintained in the node structure. Once we find the node-id of

the parent node then we can use the GetNodeAtb and SetNodeAtb to

access and store the attribute values of the parent.

Most of the procedural components set flags that were passed to the

node that was doing the actual interface to the CAD tools. The nodes

that interfaced with the CAD tools had the algorithm shown in figure 29

implemented as a procedural component.

• "- "= "".-" -s1 - ir -d 1i= ' "......."-"....".-................'.-."...".

153

VLSI-FORM-3 EQNTOTT Form-use-#[]

Input Filename:

Output Filename:

Output Truth Table:

Allow Input Names To Be Same As Output:

Output Variables May be Used in Expressions:

Reduce Truth Table:

No Redundant Miniterms:

Human Readable Truth Table:

Output Number of Inputs:

Output Number of Product Terms:

Output Number of Outputs:

{4,5) Options:
4. Generate truth tables for TPLA
5. Compile EQNTOTT and pipe through TPLA with standard options

Form-use-#r

Figure 28: EQNTOTT Blankform of the VLSI Method

the parent node. For example, there are three possible symbol names of

the root node of the MEXTRA Form as is shown in the subset of the

production rules of the VLSI method:

12. (output,::= (mextra

13. mextra ::-(4mextra-input

(mextra-output.

• •' ' -" " ' '-' .' . - '. '' . '. '" . . A ."".""," " ."". . "' - '... - . - . . " ." " . ".

152

node. To overcome this problem we had to introduce pseudo-production

rules to simply define new attribute values. In production rule part of

Appendix B, there are several examples of these pseudo-production rules.

VLSI-FORM-2 PEG Form-use- #j

Program:

Output Filename:

Opt ions:

Truth table filename:

(3,4,5) Output:
3. Generate equations for EQNTOTT
4. Compile PEG and pipe through EQNTOTT with standard options
5. Compile PEG and pipe through EQNTOTT and TPLA with standard

options
Form-use-#,L

Figure 27: PEG Blankform of the VLSI Method

The next implementation problem had to do with finding out what

choice the user had made on these nodes that had alternatives as

refinement forms. For example, in the PEG Form with the "Output"

node, how could a procedural component know which of 3, 4, or 5 the

user had selected. The information is not stored in the interpretation.

TRIAD stores the production number of refining productions in the node

that is being refined. New functions then had to be added to the lisp

like language to retrieve this production number from the node and make

it availabl- to the user. The use of this function is shown in procedural

component output.v*,it in Appendix B.

Another in, 1-etto problem had to do with the symbol name of

151

7.2. Implementation Issues of the VLSI Method

The implementation details of the VLSI method are found in Appendix

B. It includes such details as the concept production rules, the

blankforms, and some of the procedural components. The discussion in

this part of the dissertation concerns conceptual details of the

implementation.

The VLSI method was brought up in 30 person hours. The static

tuner was used to create the first production and the first blankform.

The rest of the method was brought up using the dynamic tuner. This

allowed the method designer to visually see the changes he was making.

One of the first problems encountered had to do with the form

interface. In the meta method all nodes that could be refined had only

one form to refine them. Therefore the display attributes of that node

could also be the display attributes of the first node of the refining form.

For example, in the Grammar Definition Form (see figure 16) the three

types of symbols that are refined by the Symbol Form (see figure 17)

have the tag "Symbol". These nodes cannot be reinterpreted and have a

display height attribute of two. In the Symbol Form the tag is

"Symbol", it cannot be reinterpreted, and its display height is two. This

was not the case with the VLSI method.

For example, in the PEG Form (see figure 27), the node "Output" can

be refined by one of three forms. Even though the node cannot be

reinterpreted, it does have a display height of eight. One of the forms

that can be used to refine it is EQNTOTT form (see figure 28). Its tag

is different and its display height is only two. Therefore, we could not

have the node's display attribute passed directly to the refining form root

2 - . * %.'.'-% - ". . . a "-*' *" ' " .' *%*' *"..- '..° .°- " "." b'.*' '." S"" ° .*"SA .. AL"• ",° -*L
"

° .b h , M
•

r
°

* °

150

designed circuits. After the design rule check is completed,

send the final circuit to MEXTRA to create the circuit

description.

5. Create a Circuit DesQcrption. Using MEXTRA read the

circuit layout description and create the circuit description.

From this circuit description, various electrical checks can be

performed. MEXTRA allows the user to specify circuit scaling

and capacitance capabilities.

6. Perform Electrical Checks. Using ESIM perform logic level

simulation. ESIM is an event-driven switch level simulator for

nMOS transistor circuits. From the result of this simulation,

specify the changes that need to be made to the state diagram

and go back and make the change.

This method does not force the user go from step 1 to step 6 in order.

If the user has already defined some files that are appropriate for other

than step 1, he could begin at the step in which his files are appropriate

input files. Also, if users simply want to use the default options, they

could at the appropriate step specify that they are using the default

option for that next step and the method will take them automatically

through that step to the next after that. Four additional steps could

have been added to the method to take care of the SPICE program, the

ERC program, the POWVEST program, and the CRYSTAL program.

The students were not expected to use those tools and so they were not

included in this version of the XL 1ri method.

2..-..

149

We will briefly look at each step of the method and the tool associated

with that step.

1. Describe State Diaaram. Describe the machine using the

Moore model for finite state machines. This description

consists of a list of the input signals, a list of the output

signals, and a list of the state definitions. Then specify the

options for the PEG program. The PEG program will

generate a set of equations in the "eqn" format for the

EQNTOTT.

2. Generate Truth Table Equations. EQNTOTT generates a

truth table suitable for PLA programming from a set of

Boolean equations which define the PLA outputs in terms of

its inputs. In this step the user specifies the desired outputs

and the restrictions on the truth table entries. This is done

by specify the options for the EQNTOTT program.

3. Generate Progyarmable Logic Array. From the output of

EQNTOTT, TPLA generates PLAs in several different styles

and technologies. The user is allowed to specify the style and

technology and the restrictions for the AND and OR planes.

The user also specify whether the generate output can go to

CAESAR for merging with other circuits or to MEXTRA to

create the circuit description.

4. Merge and Qptimize PLAs. Specify the PLAs that are to be

included in the final circuit and connect those PLAs using the

CAESAR editor. Then run LYRA on the final circuit.

LYRA performs hierarchical layout rule checks on CAESAR

148

1 system
definition

function j logic circuit I
I level SLANG I and some blocks j
I simulation < ------ I with function I
I result I specified I

___ ___ II __ _ _ _ _

CAESAR I state diagram
+ I for some circuits I

AED512 _ __

PEG

I ckt.ca I TPLA I ckt.eqn

LYRA I layout in I<------------- state equations
1< ----- I caesar form I CIF2CA ISI I I" I I

., I EQNTOTTI_ _ _ _ _ I _ _ I _ _ _ I _ _

I layout design I :CIF I ckt.cif ... I ckt.tbl
I rule violation . > layout in I TPLA I truth table for

result I I cif form j< ------ I state equations
_ _ _ _ _ _ _ I I I I_ _ _ _ _ _

CIFPLOT IFTT
____ ____I I __ _ _ _ _ __ _ _ _ _ _

PMAEXTRA

" hard copy of I Ickt.node I
I mask layouts I ckt.sim I"_ _ _ _ _ _ _ I I I

____.__]IIII______
I II I I

PSPICE ERC POWEST CRYSTAL ESIM_ _I_ _ I _ _ _I I _ _ _ I _
I ckt.spice I I electrical l power I I timing "JI I"-ogic leve- I
I ckt.names I violation I I estimate I I analysis I I simulstion I

I I result I I result I I result I I result II _____I ___ I I ___ I li ____ I
SPICE

-circuit
level to mask house then
sismulation to wafer fabrication line
result I

I __ __ _ __ I__ _ _ __ _

I.C. chip I

Figure 26: Diagram of VLSI Method

r

So

p. .

162

VIMETH-FORM-2 Identify domain Formn-use-# '1

Name of Domain:

(3} Domain member (more?]: Form-use- #:

VIMIETH-FOR.M-3 Functions Available Formn-use-, #i'

Member name:

(22) Function Set: -Form- use-#

(4) Object /Operat ion Set [more?]: Forrn-use-#1]-

VIMETII-FOR-N-22 Fuinction Set Form- use-#

Member Name:

Function [more?]:

VIMETH-FORMI-4 Define Object and Operations Forrn-use-#,

Member Name:

Object name:

Operation naxme [more?]:

Figure 30: Define Doiain FormTS for Virtual Interface

163

integers where the integers represented the node-ids of each of the

operations associated with this object. The attribute set for the

operation is an attribute of type string containing the operation name.

To calculate the intersection set of all the object/operations sets, an

attribute of type integer was added to both the attribute sets of

object/operation and operation. This attribute kept the count of the

number of other sets that either had the same operation name or object

name. By using the table of integers and the tree traversal routine of

TRIAD, we can get or set any attribute value.

The procedural components for the virtual interface method were more

of the analysis type, as compared with the tool interface type of the

VLSI method or the consistency checking of the meta method. Typical

of these analysis type procedural components is the calculation of the

intersection set shown in figure 31. The actual code is found in

Appendix C in the routine named identify-common.enter.

Two print procedural components were also written. The first was to

print the list of all object/operations that were common. Because of the

enforcement policy that was designed into this method, it was impossible

to print the common list until after the intersection set had been

calculated. To print this list, the algorithm simply selected one of the

domain members and printed out all the object/operation names where

their counts were equal to the number of domain members. An example

of this is shown in figure 32. The actual code is found in Appendix C

in the routine named common.enter. The other print procedural

component written was the list of object 'operations that were not

common in all the object /operation sets. To print this list, the

algorithm went through each list and checked the counts of the object

164

For (A each object/operation set)
begin

For (B = each object/operation set after A)
begin

If (object name of A .. object name of B)
begin

Increment counts of both object names of A and B

For (C = each operation in A)
begin

For (D = each operation in B)
begin

If (operation name of C = operation name of D)
Increment counts of C and D operation names

end
end

end
end

end

Figure 31: Algorithm for Intersection Set

names and operation names. If those counts were not equal to the

number of domain members, then the names were printed out. An

example of this is shown in figure 33. The actual code is found in

Appendix C in the routine named noncommon.enter.

The other procedural components written for this method were to

extract data from an entry to build the object/operation sets, to

propagate the attributes around the form tree and to store function name

and domain member name into appropriate entries.

--..

165

VIMETH-FORM-5 Common Object/Operations Form-use-# [8]

object / operations:
(spreadsheet)

create

(cell)
lock
change value

(row)
insert

(column)
insert

Figure 32: Example of Common List Filled Form

166

VIMETH-FORM-6 Noncommon Object /Operations Form-use-# [211

member / object /operations:
SAP3

(region,
color
lock

(col u in
sort

SAP2
(region'/

color
(cell)

absolute value

SANi
(cell)

absolute value
(column)

sort
00

Figure 33: Example of Noncommon List Filled Form

..

Chapter 9

Conclusions and Future Work

The goal of this dissertation was to define and implement a model for

a tuner tool to be used in TRAD. This tool went beyond what other

parser generator like tools had done. Several things are expected of the

tuner, some of which are similar to what is expected of a parser

generator.

" The tuner has to understand the model used to represent

methods. This model is an attributed grammar form. A

parser generator also has to understand the model used to

represent programming languages. This model is often an

attributed grammar.

* The tuner has to manipulate the method representation and

the method instantiation and keep them both consistent.

There is no way that a parser generator can manipulate the

language representation and have it reflected in the programs

using that language. For one thing the language

representation is not maintained in the program. If the

language representation is changed by the parser generator, a

new compiler has to be generated and the program run

through the new compiler. This is a three step operation

compared to the one step operation of the tuner.

167

.......................... ;..-..........................

168

* The tuner has to work in an interactive dynamic mode. This

allows the user of the method to make changes which are

appropriate to the project under development and see the

changes immediately. To have the same concept work with a

parser generator would mean that we could tune a

programming language to the particular program being

developed. In essence we could change a feature of a

programming language to optimize the problem being solved.

Instead of having a hundred variations of a programming

language, each emphasizing a particular concept of

programming language theory (along with a compiler for each

of these languages), we could have a few classes of languages

and a compiler for each class of languages. Then the user

could tune the programming language to reflect the experience

accumulated and this could be propagated to the compiler

with the user having to write a new compiler.

The tuner tool could be made more powerful when the following issues

have been address and solved:

1. What are some common property of methods and how do

they relate to properties of programming languages?

2. How can we define multiple display interfaces which display

pieces of the project information base that are not related b)

a concept production rule?

3. How do we define data structures for attributes so that both

TRIAD and the procedural components understand them?

,. ., .. .- . -... ..- , .,. .. .-.-.... -,.-,-. . ,..,- ... ,., .- ...-. : -. .. :. -. , ., . .. ,-.. .? ,.,.... .'. ,...-

169

4. How can we develop a compiler for procedural components

and still take care of late binding of the attributes?

5. What data base model will efficiently store and retrieve the

tree structure with the variable length data stored in it?

6. Is there a way to build generic procedural components that

can have parameters other than attributes passed to them?

7. How should the attributed grammar form be modeled where

the attributes and procedural components are not a one-to-one

transformation?

These issues are described in the following sections to specify some future

research direction.

9.1. Common Properties of Methods

Tennent in his book "Principles of Programming Languages" [1051 gives

a detailed summary of the properties of programming languages. He has

addressed the following issues of programming languages:

1. the syntactic structure of the language,

2. the data representation, storage, and binding.

3. the control flo'. of programming structures, and

4. the levels of abstraction used in the language.

A similar study needs to be done with methods. In this dissertation we

have developed a tuner tool that uses some of the syntactic structure of

methods. The tool could be even more effective when a more detailed

,"_ ° . o ° o , o ° . . o " . . - ° o o . ° - o . . - o . o.- -.. - . - ° , ', - . ". .
.. • .° • . .• . % °° . ° i -°,° • . * ° ° . °° ° °° o° - ° - . . q . ° . o ° . % . ° . ° %

170

study of the syntactic structure of existing methods is performed and the

structure is broken up into structure classes like what has been done

with programming languages. In comparison, the tuner is like the first

compiler/assembler developed for programming languages.

Methods have been around for years. People have broken up methods

into to domain classes, but no study has been made of the common

elements in methods and what are good ways of describing methods. In

finding these common elements, a level of abstraction needs to be

developed for methods.

One of the inherent problems with methods is that they are imprecisdy

defined. The same problem was present with semantics not to long ago.

Several models for defining semantics were developed which has made the

definition of semantics more precise. No single model for semantics has

taken hold as the best model. Each model is powerful enough to

capture a certain aspect of semantic definition. We have presented one

model for defining methods which is closer to a syntax model than a

semantic model. Some other models need to be developed which capture

more of the semantic meaning in methods. These new models will be

more effective if we can characterize the properties of methods.

9.2. Multiple Display Interfaces

Any display interface can show the project information according to the

concept productions rules. This is the typical way that project

information is built and displayed. What is more challenging is to

display the information according to a user profile. For example, the

documentation clerk might be only interested in that portion of the

project data base where the manuals are developed from. Documentation

171

is normally intermixed with the code, management information, and the

test data and result. The documentation clerk is not interested in

viewing all this other information while he is browsing through the

documentation. A user profile and an accompanying display interface

needs to be developed so that the clerk would view that portion of the

project information of interest to him.

The issue is how to define this interface and allow the tuner to

manipulate it. If new concept production rules are added to a method,

how does the tuner decide what affect these rules have on each of the

display interfaces.

Another issue is when to display the tags and when not to. At some

point in the project information data base, the display of the tags may

clutter up the screen. For example, if we are in the section of the

grammar form that defines a grammar for a particular programming

language, at what point do we just print the input source code without

the tags. Do we do this at a module level or do we do it at the

statement level? How do we define the interface if we are not going to

display the tags? Is there a time when we want to sometimes display

the tags and other times not display the tags?

9.3. Data Structures For Attributes

The only data structures that are currently available in TRIAD are

integer, string, and a list of integers. They were powerful enough to

handle most of the attributes for the examples that we used. However,

we did reach our limitation in the virtual interface method example.

Each of the three types of attrib-.tes were hard wired into TRIAD. If

each new attribute type has to be hard wired into TRIAD, the power of

172

TRIAD will be limited. Therefore there needs to be a way of describing

data structures to TRIAD. This capability should also be added to the

lisp like language as the language is going to need to access elements of

the data structure.

ALOE only allows tree structures as data structures for attributes.

The same tree traversal routines used in traversing abstract syntax trees

can be used to access attributes in TRIAD. This allows for a simple

interface, but not all data structures are easy to visualize as trees. For

example, doubly linked lists can not be represented as trees, nor can any

network type data structure.

The primary elements of a data structure should be integer, real,

string, and pointer. There are special problems with pointers. In

programs that use pointers, the pointers are given a relative address that

is updated when the program is loaded. This is not so with attributes.

Because of the dynamic nature of the nodes with which attributes are

associated, there is no guarantee that the nodes and its associated

attributes will be loaded in the same relative location each time the node

is accessed. Each node has to be uniquely identified. A table then has

to be set up with the unique node id and its relative location in

memory. Then to resolve a pointer you use the node id stored in the

pointer and, using the table, find the node. If the pointer attribute

points to some other entity than a node (like another attribute), then

there must be something in that entity that will uniquely identify itself.

173

9.4. Compiler For Procedural Components

We have built a lisp like language with an associated interpreter. An

interpreter is easy to write and to expand, but it is inherently slow.

The amount of overhead associated with processing each command is

generally more than the actual execution. If the procedural components

are small, then this overhead is not noticed. However, if the procedural

components are, for instance... "find all the common objects and

operation for the virtual interface method", then the delay is more than

what the user finds tolerable. In one example of using the virtual

interface method to define the spreadsheet domain interface, it took

about 10 minutes to calculate the commons.

To overcome this problem, the procedural components need to be

compiled. There are two opportunities to compile the procedural

components, when they are defined, or when they are read in. If

delayed until read in, then only the source code need to be maintained

with the method and no linking of the program is needed. If compiled

when defined, then a linker needs to be developed and both the source

code and the object code needs to be maintained with the method.

Another problem associated with a compiled version is the linking of

the attributes at execute time. The attributes would be similar to input

data to a normal program. Reading in attributes should be transparent

to the user. There is also the problem that the attributes at one node

which uses this procedural component might not have the attributes in

the same order as another node which uses this procedural component.

Reading in data is generally done sequentially. The same problem is

associated with saving the new values of the attributes. This

corresponds to outputting data which again needs to be transparent to

the user.

174

9.5. Data Base Model

Supporting the voluminous information developed during all phases of a

project requires the use of a data base management system. A relational

data base system has the ability to model many kinds of information

and has a powerful query language which allows easy access to the

information data base 1107'. The use of a relational data base has the

following advantages for TRIAD:

• efficient handling of large volumes of information,

* ability to model the attributed grammar form underlying the

project information generated by a method,

* efficient query language that extracts information using the

concept symbols of the method,

" some generic global semantic functions (i.e. aggregate

operators) like average, total, number, etc., and

" ability to dynamically add new relations to the data base for

when new attributes and symbols are added to a method.

There are drawbacks to using a relational data base. Some of these

are:

e There has not been found an efficient way to store variable

length data. Several individuals have addressed the issue for

different domains, but no general solution has yet been

proposed 79, 69, 70, 34

175

" The query language is designed to only handle unanticipated

factual queries. Although the aggregate operators present the

ability to answer some deductive questions, these are limited

to some simple operations like find the average or get the

maximum value.

* Mapping the tree structure of the attributed grammar form to

the relational model does not take into consideration the

anticipation of the next piece of information for efficient

management of memory. The constraint mechanism of the

attributed grammar form can not be enforced by the relational

model.

Another possible data base model that could be used is the entity

relationship model. Some research has been done for the software

engineering and CAD/CAM domains '76, 75, 53, 62j. A study of how

this could be used in a meta environment still needs to be done.

9.6. Generic Procedural Components

In coding the procedural components for the three test cases it became

apparent that certain procedural components were repeating themselves

with the only difference being the name of an attribute. This lead to

asking some interesting questions, like:

" can we have a procedural component that has the same form

as a program. where the program has access to a library of

functions.

" can we have procedural components that pass parameters?

'""''"''""''...................................... t"dr " " '"

A'D-A158 102 A NETA SYSTEM FOR GENERATING SOFTNARE ENGINEERING 3i
ENYIRONME NTSU) AIR FORCE INST OF TECH NRIGHT-PATTERSON

FB OH N L CKNIHT 195 FIT/CI/R-05-71D

7UNCLAS6SIFIED F/G 9/2 NL

S1-0 ~ j2-8 j~
31 5 2-

1*51 *

1111=1-

NATIONIAL BUREAU OF STANDARDS
MiIOCOPY ESOLUTION TEST CHART

wr
L

.1.-. . . .

. .
°. .o

176

9 can we have macro type procedural components?

One wonders why these questions have not been asked earlier, since the

concept of procedural components have been around for some time.

Another interesting question that needs answering is where we draw the

line between developing a procedural component to do a function and

developing an interface to a tool to do that function. This is an

instrumentation issue that will take some experience with procedural

components before it can be answered.

9.7. More General Attributed Grammar Form

Our current definition of attributed grammar form is not attractive

enough for the following reasons:

e The names and types of attributes associated with the symbols

in the form grammar may not make sense when associated

with the interpreted symbols. For example, the value of

currency may be expressed in different denominations in

different countries.

e Just as symbols in the original grammar represents a family of

symbols, we would like an attribute to represent a family of

attributes and a semantic rule to represent a family of

semantic rules. This way, many similar attributes and

semantic rules could be added without essentially changing the

method of semantic evaluation.

* Quite often, interpreted grammar symbols are, in some sense,

a specialization of the original grammar symbol. We would

S P - .** ~

177

like to restrict the values some attributes of the interpreted

symbol are allowed to have based on this specialization.

q *.S

Bibliography

.1. Aho, A. V. and J. D. Ullman. Automatic Computations. Volume I
and II: The Theory of Parsing, Translation and Compiling. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1972.

2. Ambriola, V., G. E. Kaiser, and R. J. Ellison. An Action Routine
Model for ALOE. Technical Report CMU-CS-84-158, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
August, 1984.

3. krcher, J. E. Jr. and R. Conway. COPE: A Cooperative
Programming Environment. Technical Report TR 81-459, Department of
Computer Science, Cornell University, Ithaca, New York, 14853, June,
1981.

4. Ashok, V., W. L. McKnight, and J. Ramanathan. Integrated
Environment For Information Management In VLSI Design. Proceedings
of the Computer Data Engineering Conference, IEEE Computer Society,
Los Angeles, California, April, 1984, pp. 12-19.

5. Ashok, V., W. L. McKnight, and J. Ramanathan. Uniform Support
for Information Handling and Problem Solving Requried by the VLSI
Design Process. ACM IEEE 21st Design Automation Conference, IEEE
Computer Society, Albuquerque, New Mexicao, June, 1984, pp. 694-695.

6. Beetem, J. and A. Nigam. VLSI Design Using Sheets and Types.
Technical Report RC 9854, IBM Thomas J. Watson Research Center,
Yorktown Heights. New York, February, 1983.

7. Blattner. M. The Decidability of the Equivalence of Context-free
Grammar Forms. 20th Annual Symposium on Foundations of Computer
Science, IEEE Computer Society, Puerto Rico, October, 1979, pp. 91-96.

8. Bochmann, G. V. Attribute Grammars and Compilation: Program
L Evaluation in Several Phases. 54. University of Montreal, Montreal,

Canada, August, 1974.

178

I.

L'

I-'--'. ..-; , .- " ,-. -. --. ,-." % -.-- :'''i-"": '.'i . -.- ;.. -'''-. . .: -. '- - . . -

179

9. Bochmann, G. V. Semantic Attributes for Grammars with Regular
Expressions. 195, University of Montreal, Montreal, Canada, 1975.

10. Bochmann, G. V. "Semantic Evaluation From Left to Right".
Communications of the ACM 19, 2 (February 1976), 55-62.

11. Campbell, R. H. and P. C. Richards. SAGA: A System to
Automata the Management of Software Productions. Technical Report
UIUCDCS-R-81-1048. Department of Computer Science, University of
Illinois at Urband-Champaign, January, 1981.

12. Campbell, R. H. and P. A. Kirslis. The SAGA Project: A System
for Software Development. Proceedings of the ACM SIGSOFT/'SIGPLAN
Software Engineering Symposium on Practical Software Development
Environments, ACM, Pittsburgh, Pennsylvania, April, 1984, pp. 73-80.

13. Canepa, M., E. Weber, and H. Talley. "VLSI in FOCUS:
Designing a 32-bit CPU Chip". VLSI Design , (January/February 1983),
20-24.

14. Chesi, M., E. Dameri, M. P. Franceschi, M. G. Gatti, and
C. Simonelli. ISDE: An Interactive Software Development Environment.
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, ACM,
Pittsburgh, Pennsylvania, April, 1984, pp. 81-88.

15. Cohen, R. and E. Harry. Automatic Generation of Near-Optimal
Linear-time Translators for Non-Circular Attribute Grammars.
Conference Record of the Sixth Annual ACM Symposium on Principles of
Programming Languages, ACM, San Antonio, Texas, January, 1979, pp.
121-134.

16. Coutaz, J. The Box, A Layout Abstraction For User Interface
Toolkits. Technical Report CMU-CS-84-167., Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, December,
1984.

17. Cremers, A. and S. Ginsburg. "The Structure of Context-Free
Grammatical Families". Journal of Compkuter and sstem Sciences 15, 3
(December 1977), 262-279.

18. Davis, C. and C. Vick. "The Software Development System".
IEEE Transactions on Software Epgineer6ng SE-3, 1 (January 1977).
69-84.

180

19. Delisle, N. M., D. E. Menicosy, and M. D. Schwartz. Viewing a
Programming Environment as a Single Tool. Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, ACM, Pittsburgh, Pennsylvania,
April, 1984, pp. 49-56.

20. Demers, A., T. Reps, and T. Teitelbaum. Incremental Evaluation
for Attribute Grammars with Application to Syntax-Directed Editors.
Conference Record of the Eighth Annual ACM Symposium on Principles
of Programming Languages, ACM, Williamsburg, Virginia, January, 1981,
pp. 105-116.

21. Denning, P. J., J. B. Dennis, and J. E. Qualitz. Machines
Languages, and Computation. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1978.

22. DeRemer, F. and H. H. Kron. "Programming-in-the-Large Versus
Programming-in-the-Small". IEEE Transactions on Software Engneering
SE-2 (June 1976), 80-86.

23. Deutsch, L. P. and E. A. Taft. Requirements for an Experimental
Programming Environment. CSL-80-10, Xerox Palo Alto Research
Center, Palo Alto, California, June, 1980.

24. Dobbs, V. and S. A. Mamrak. A Methodology for the Design and
Implementation of Virtual Interfaces.

25. Dobbs, V. An Automated Methodology for the Design and
Implementation of Virtual Interfaces. Ph.D. Th., The Ohio State
University, Columbus, Ohio, July 1985.

26. Donzeau-Gouge, V., G. Huet, G. Kahn, and B. Lang. Programming
Environments Based on Structured Editors: the Mentor Experience.
Inria, May, 1980.

27. Farrow, R. Experience With an Attribute Grammar-Based
Compiler. Conference Record of the Ninth Annual ACM Symposium on
Principles of Programming Languages, ACM, Albuquerque. New Mexico,
January, 1982, pp. 95-107.

28. Farrow, R. LINGUIST-86 Yet Another Translator Writing System
Based On Attribute Grammars. Proceedings of the SIGPLAN'82
Symposium on Compiler Construction, ACM, Boston, Massachusetts,
June, 1982. pp. 160-171.

Ui

S"

..

181
9

29. Farrow, R. Sub-Protocol-Evaluators for Attribute Grammars.
Proceedings of the SIGPLAN '84 Symposium on Compiler Construction,
ACM, Montreal, Canada, June, 1984, pp. 70-80.

30. Feiler, P. H. and R. Medina-Mora. An Incremental Programming
Environment. Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, April, 1980.

31. Feiler, P. H. and R. Medina-Mora. "An Incremental Programming
Environment". IEEE Transactions on Software Enginering SE-7, 7
(September 1981), 472-481.

32. Fischer, C. N., G. F. Johnson, J. Mauney, A. Pal, and D. L. Stock.
The Poe Language-Based Editor Project. Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, ACM, Pittsburgh, Pennsylvania.
April, 1984, pp. 21-29.

33. Tutorial on Software Design Techniques, Long Beach, California,

1980.

34. Gajski, D., W. Kim, and S. Fushimi. A Parallel Pipelined
Relational Query Processor: An Architectural Overview. Report RJ 4087,
IBM Research Division, San Jose, California, October, 1983.

35. Ganzinger, H., R. Giegerich, U. Moncke, and R. Wilhelm. A Truly
Generative Semantic-Directed Compiler Generator. Proceedings of the
SIGPLAN'82 Symposium on Compiler Construction, ACM, Boston.
Massachusetts, June, 1982, pp. 172-184.

36. Garlan, D. B. and P. L. Miller. GNOME: An Introductory
Programming Environment Based on a Family of Structure Editors.
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, ACM,
Pittsburgh. Pennsylvania, April, 1984, pp. 65-72.

37. Geschke, C. M., J. H. Morris Jr., and E. H. Satterwaite. "Early
Experience with MESA". Communication of the ACM 20, 8 (August
1977), 540-553.

38. Giacalone. A., M. C. Rinard., and T. W. Doeppner Jr. IDEOSY
An [deographic and Interactive Program Description System. Proceedings
of the ACM SIGSOFT, SIGPLAN Software Engineering Symposium on
Practical Software Development Environments. ACM, Pittsburgh,
Pennsylvania, April, 1984, pp. 15-20.

i:-..-•.•. -. '-.'- ". '.. -.' - ., --- • " -L -' -... ".. . ." -".".. . .".- ... •. .- '.-'-.-".-.. . '-.-..-.'

182

39. Goates, G. B., T. R. Harris, R. E. Oettel, and H. M. Waldron IIl.
"Storage/Logic Array Design: Reducing Theory to Practice". VLSI
Design 3, 4 (July/August 1982), 56-62.

40. Goldberg, A. The Influence of an Object-oriented Language on the
Programming Environment. Proceedings of the ACM Computer Science
Conference, ACM, Orlando, Floriad, February, 1983, pp. 35-54.

41. Habermann, A. N. An Overview of the Gandalf Project.
Department of Computer Science, Carnegie-Mellon, Pittsburgh,
Pennsylvania, 1979.

42. Habermann, A. N. The Gandalf Project. Department of Computer
Science, Carnegie-Mellon, Pittsburgh, Pennsylvania, 1981.

43. Habermann, A. N. and D. S. Notkin. The Gandalf Software
Development Environment. Department of Computer Science, Carnegie-
Mellon, Pittsburgh, Pennsylvania, 1982.

44. Hayes, P. J. Executable Interface Definitions using Form-Based
Interface Abstraction. Technical Report CMU-CS-84-110, Carriege-Mellon
University, Pittsburgh, Pennsylvania, March, 198-1.

45. Hopcroft, J. E. and J. D. Ullman. Introduction to Automata
Theory Languages, and Computation. Addison-Wesley Publishing Co.,
Reading, Massachusetts, 1979.

46. Horgan, J. R. and D. J. Moore. Techniques for Improving
Language-Based Editors. Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development
Environments, ACM, Pittsburgh, Pennsylvania, April, 1984, pp. 7-14.

47. Howden, W. "DISSECT - A Symbolic Evaluation and Program
Testing System". IEEE Transactions on Software En.neering SE-4, 1
(January 1978). 70-73.

48. Huang, K. T. and C. C. Wang. Form Design by Form-Filling.
Report RC 10805, IBM T. J. Watson Research Center, Yorktown
Heights, New York, August, 198-1.

49. Jackson. M. A.. Principles of Program Design. Academic Press,
New York, 1975.

• .-.. .. .: .. ,.. ,, ,,. ; .- , . ' . , :.- - .,,. .- .- .. .-.- .: .' .. - ,..- .: .) - ... - -. , . -. :-:

183

50. Jazayeri, M. and K. G. Walter. Alternating Semantic Evaluator.

Proceedings of the Annual Conference, ACM, Minneapolis, Minnesota,

October, 1975, pp. 230-234.

51. Jazayeri, M., W. F. Ogden, and W. C. Rounds. On the

Complexity of the Circularity Test for Attribute Grammars. Conference

Record of the Second ACM Symposium on Principles of Programming

Languages, ACM, Palo Alto, California, January, 1975, pp. 119-129.

52. Jazayeri, M. and D. Pozefsky. "Space-Efficient Storage

Management in an Attribute Grammar Evaluator. ACM Transactions
on Pggramnming Lang uages and Systems 3, 4 (October 1981), 388-404.

53. Johnson, H. R., J. E. Schweitzer, and E. R. Warkentine. A DBMS

Facility for Handiing Structured Engineering Entities. Proceedings of

Annual Meeting of Engineering Design Applications, IEEE, San Jose,

California, May, 1983, pp. 3-11.

54. Jordal, M. The Architecture of a Meta Environment for

Supporting Methods. Master Th., The Ohio State University, Columbus,
Ohio,May 1985.

55. Jourdan, M. Strongly Non-Circular Attribute Grammars and Their
Recursive Evaluation. Proceedings of the ACM SIGPLAN '84
Symposium on Compiler Construction, ACM, Montreal, Canada, June,

1984, pp. 81-93.

56. Jullig. R. K. and F. DeRemer. Regular Right-Part Attribute

Grammars. Proceedings of the ACM SIGPLAN '84 Symposium on

Compiler Construction, ACM, Montreal, Canada, June, 1984, pp. 171-179.

57. Kiper, J. and J. Ramanathan. An Approach to Human Engineering

Existing Compilers and Other Tools. Triad-84-5, The Ohio State
University, Columbus, Ohio. November, 1984.

58. Knuth, D. E. "Semantics of Context-Free Languages".

Mathematical Systems Theory 2. 1 (1968). 127-145.

59. Knuth. D. E. "Semantics of Context-Free Languages: Correction".

Mathematical Systems Theory 5. 1 (1971), 95-96.

60. Kuo, J. C.. C. Li, and J. Ramanathan. A Form-Based Approach

to Human Engineering Methodologies. Proceeding of the 6th

International Conference on Software Engineering. IEEE Computer
Society, Tokyo, Japan, September, 1982, pp. 254-263.

184

61. Kuo, J. C. Design and Implementation of a Form-Based Software
Environment. Ph.D. Th., The Ohio State University, Columbus, Ohio,
August 1983.

62. Kutay. A. R. and C. M. Eastman. Transaction Management in
Engineering Databases. Proceedings of Annual Meeting of Engineering
Design Applications, IEEE, San Jose, California, May, 1983, pp. 37-80.

63. Lewis, H. R. and C. H. Papadimitriou. Elements of the Theory of
Computation. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

64. Li, C. H. Extensions to the Attribute Grammar Form Model to
Model Meta Software Engineering Enviromments. Ph.D. Th., The Ohio
State University, Columbus, Ohio, February 1985.

65. Linton, M. A. Queries and Views of Programs Using a Relational
Database System. Ph.D. Th., University of California, Berkeley,
California, December 1983.

66. Linton, M. A. Implementing Relational Views of Programs.
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, ACM,
Pittsburgh, Pennsylvania, April, 1984, pp. 132-140.

67. Liskov, B. and S. Zilles. An Introduction to Formal Specifications
of Data Abstraction. Prentice-Hall Inc., Englewood Cliffs, New Jersey,
1977.

68. Logrippo, L. and D. R. Skuce. "File Structures, Program
Structures, and Attribute Grammars". IEEE Transactions on Software
Engmeering May, 3 (SE-9 1983), 260-266.

69. Lorie, R. and W. Plouffe. Relational Databases for Engineering
Data. Research Report RJ 3847, IBM Research Laboratory, San Jose,
California, April, 1983.

70. Lorie, R. and N. Plouffe. Complex Objects and Their Use in
Design Transactions. Proceedings of Annual Meeting of Engineering
Design Applications, IEEE, San Jose, California, May, 1983, pp. 115-121.

71. Maurer, H. A., A. Solomaa, and D. Wood. Strict Context-Free
Grammar Forms: Completeness and Decidability. 78-CS-19, McMaster
University, 1978.

185

72. McKnight, W. L. and J. Ramanathan. A Meta System For
Generating Software Engineering Environments.

73. Mead, C. and L. Conway. Introduction to VLSI Systems
Addison-Wesley Publishing Co., Reading, Massachusetts, 1980.

74. Medina-Mora, R., D. S. Notkin, and R. J. Ellison. ALOE Users'
and Implementors' Guide. Second edition, Department of Computer
Science, Pittsburgh, Pennsylvania, 1982.

75. Neumann, T. On Representing the Design Information in a
Common Database. Proceedings of Annual Meeting of Engineering
Design Applications, IEEE, San Jose, California, May, 1983, pp. 81-87.

76. Olumi, M., G. Wiederhold, C. Hauser, P. Lucas, and J. Mehl.
Software Project Databases. Research Report RJ 3862, IBM San Jose
Research Laboratory, San Jose, California, April, 1983.

77. Osterweil, L. J. and L. D. Fosdick. "DAVE - A Validation Error
Detection and Documentation System for Fortran Programs". Software -

Practice and Experience 6, 4 (October - December 1976), 473-486.

78. Ousterhout, J. K. "Caesar: An Interactive Editor for VLSI
Layouts". VLSI Design I (Fourth Quarter 1981), .

79. Powell, M. L. and M. A. Linton. Database Support for
Programming Environments. Proceedings of Annual Meeting of
Engineering Design Applications, IEEE, San Jose, California, May, 1983,
pp. 63-70.

80. Raiha, K. On Attribute Grammars and Their Use in a Compiler
Writing System. Report A-1977-4, Department of Computer Science,
University of Helsinki, Helsinki, Finland, August, 1977.

81. Ramanathan, J. and D. Soni. "Design and Implementation of an
Adaptable Software Environment". Cormputer anguages 8, 34 (1983).

139-159.

82. Reiss, S. P. PECAN: Program Development Systems That
Supports Multiple Views. 7th International Conference on Software
Engineering. IEEE Computer Society, Orlando, Florida, March. 1984. pp.
324-333.

.. :. . ..?, . .? .:, -, . .- - . . ,, . . • . ..-.

186

83. Reiss, S. P. Graphical Program Development with PECAN
Program Development Systems. Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, ACM, Pittsburgh, Pennsylvania.
April, 1984, pp. 30-11.

84. Reps, T. W. Generatin Lnguage-Based Environments. Ph.D.
Th., Cornell University, Ithaca, New York, August 1982.

85. Reps, T. W. and T. Teitelbaum. "The Synthesizer Generator".
SIGPLAN Notices 19, 5 (May 1984), 42-48.

86. Roberts, R. B. and 1. P. Goldstein. The FRL, Manual. MIT
Artificial Intelligence Laboratory, 1977.

87. Ross, D. T. and K. E. Schoman. "Structured Analysis for
Requirements Definition". IEEE T ransactions on Software Engineering
SE-3, 1 (January 1977). 6-15.

88. Ross, D. T. Structured Analysis(SA): A Language for
Communicating Ideas. In Tutorial on Software Design Techniques. Peter

Freeman and Anthony I. Wasserman, Eds., IEEE Computer Society.
1980, pp. 107-125.

89. Schwartz, M. D., N. M. Delisle, and V. S. Begwani. Incremental
Compilation in Magpie. Proceedings of the ACM SIGPIAN '84i
Symposium on Compiler Construction, ACM, Montreal, Canada, June,
1981, pp. 122-131.

90. Shu, N. C., V, Y. Lum, F. C. Tung, and C. L. Chang.
"Specification of Forms Processing and Business Procedures for Office
Automation". IEEE Transactions on Software Engine-ering SE-8. 5
(September 1982), 499-512.

91. Shubra, C. and J. Ramanathan. Template Based Software Design
and Manufacture.

92. Shubra, C. J. Jr. The Identification of Semantics For the
File._DataBase Problem Domain and Their Use in Template-Based
Environment. Ph.D. Th.. The Ohio State University. Columbus. Ohio.
August 1981.

. ". Z :;:_:. .,,............ -t ,.-,.,-..-....,...

187

93. Skedzeleski, S. K. Defintion and Use of Attribute Reevaluation in
Attributed Grammars. Ph.D. Th., University of Wisconsin-Madison,
Madison, Wisconsin, October 1978.

94. The Smalltalk8O System: A User Guide and Reference Manual,
Xerox Palo Alto Research Center, Palo Alto, California, 1982.

95. Sobol. R. "The Universal Synchronous Machine". VLSI Design 4,
7 (November 1983), 60-66.

96. Soni, D. A. Design and Modeling of TRIAD - An Adaptable,
Integrated Software Environment. Ph.D. Th., The Ohio State University,
Columbus, Ohio, June 1983.

97. Standish, T. A. A Preliminary Philosophy for ARCTURUS.
Computer Science Department, University of California, Irvine, California,
1980.

98. Standish, T. A. and R. N. Taylor. Arcturus: a Prototype
Advanced Ada Prgoramming Environment. Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, ACM, Pittsburgh, Pennsylvania.
April, 1984, pp. 57-64.

99. Stay, J. F. HIPO and Interactive Program Design. In Tutorial on
Software Design Techn iges, Peter Freeman and Anthony I. Wasserman,
Eds., IEEE Computer Society, 1980, pp. 253-257.

100. Stoll, P. A. "How to Avoid Synchronization Problems". VLSI
Design 3, 6 (November'I)ecember 1982). 56-59.

101. Teichroew, D. and E. A. Hershey, Ill. "PSL, PSA: A Computer-
Aided Technique for Structured Documentation and Analysis for
Information Processing Systems". IEEE Transactions on Software
Engineering SE-3, 1 (January 1977), 41-48.

102. Teitelbaum, T. and T. W. Reps. The Cornell Synthesizer: A
S,,ntax-Directed Programming Environment. Cornell University, 1980.

103. Teitelbaum, T., T. W. Reps. and S. Hortwitz. -The Why and
Wherefore of the Cornell Program Synthesizer". SIGPLAN Notices 16. 6
(June 1981), 8-16.

{setq count I count}}}}}}
{setq attribs { add-itemn-to- list attribs attribute.node-number}}

type.updlate
{char sstring I
{setq sstring (buffer- to-string I
{setq attribute.type 0 }
{if {string-comipare sstring "int"}

{setql attribute.type 1 } I
{if {string-compare sstring "str"

{setq attribute.type 2 } }
{if {string-compare sstring "list" I

{setq attribute.type 3}}
{if {! attribute.type I
{begin

{message "Legal values are int1 str'lIist"}
{quit) I I

d efaidlt -v aIu e. upd at e
{char sstring)
{setq sstring f buffer-to-string}}
{if {&{=I attribute.type }{!{integer-test sstring}}}
{begini

{message "This value miust be an integer"}
{quit 1 } }

{setq attribute.value sst ring}

action delete
{setqI actions { delete-iterni-frori-list actions {node-number}}}

action ~enter
{setqI act ion ~node-n umiber { node-number}}

att ributedelete
setqI attrilbs {delete- item-frovi-list att ribs {node-number}}}

200

{if {string-compare cstring "1'"
{setq attribute-set-formi.c lass 2}}

{if {string-compare cstring "C" I
{setq attribute-set-formr.c lass 3}}

attribute-set .en ter
(setq att ribute-set.c lass att rib ute-set-forin.c lass}

attribute.enter
{setq attribute.ciass at trib ute-set.c lass}
{setq attribut.node-numiber (node-number }

attribute-name.update
{char sstring}
{char bniame}

int lien I
{ mt count}
{ mt anode}
{setq sstring {buffer- to-st ring}}
{if (! { name-test sstring}}
{begin

{message "This entr) does not contain a legal name"}
{quit I I I

{setq attribute.aname sstring}
{setq lien (size-of-list attribs }
{ if f '=v 0 lien }
{begin

{setq count I}
A hile {zcount lHen}

{begin
{setq anodle f get-next-itemn-fromi-list att ribs count}}

if f !-x anode attribute.node-n umber}
{begin

{setq bniarne (get-at trib-at-node anode "~aniamne' "
{if (string-comnpare sstring bnamne}
{begin

{message "This attribute namne is already defined-
{quit } } } }

199

method-name.visit
{ if { string-compare method-name "" }
{ begin

{ message "Methodology Name must be specified first" }
{ quit } } }

action-procedure.update
{ setq action-procedure.define 0 }
{ if { != 0 { length { buffer-to-string } } }

{ setq action-procedure.define 1 } }

action.visit
{ if { != 0 { length action-name.aname } }
{ begin

{ if { 0 action-procedure.define }
{ message "Action procedure not yet defined" } } } }

{ setq action.aname action-name.aname }

action-form.enter
{ if { = 0 { node-child-form } }
{ begin

{ erase-buffer }
{ insert-string " Form-use-# " }
{ set-dot 17 } }

{ begin
{ erase-buffer }
{ insert-string action.aname }
{ insert-string " Form-use-#" }
{ insert-string { int-to-string { node-child-fori } } }
{ insert-string " }
{ set-dot { buffer-size } } } }

attribute-set-form.en ter
{ char cstring }
{ setq cstring { substr { buffer-to-string } 1 1 } }
{ if { string-compare cstring -S' }

{ setq attribute-set-forni.class 1 } }

:.-.-.- -.-...--:.. _... .-- . .:...?.:..- ..-....-...--.....-. . . .-. .. .-....-..... :.-.-?

198

form-number. update
{ char sstring }
{ char bnane }
{ int lien }
{ int count }
{ int fvalue }
{ int bvalue }
{ int anode }
{ setq sstring { buffer-to-string } }
{ if { ! { integer-test sstring } }
{ begin

{ message "This entry must contain an integer" -
{ quit } } }

{ setq fvalue { string-to-int sstring } }
{ if { = 0 fvalue }
{ begin

{ message "Form number of 0 is not allowed" }
{ quit } } }

{ setq lien { size-of-list bforms } }
{ if { != 0 lien }
{ begin

{ setq count I }
{ while { count lien }
{ begin

{ setq anode { get-next-item-from-list bforms count } }
{ if { != anode form-definition.node-number }
{ begin

{ setq bvalue { get-attrib-at-node anode "value" } }
{ if { = bvalue fvalue }
{ begin

{ message "This form number already used" }
{ quit } } } } }

{ setq count { - 1 count } } } } } }
{ setq bforms { add-item-to-list bforms form-definition.node-number } }
{ setq form-definition.value fvalue }

grammar-name.enter
{ erase-buffer }
{ insert-string grammar-name }

197

{begin
{setq count I}
{while { =count lien}
{begin

{setq anode (get- next- iten- from-lIist actions count}}
{if { != anode action. node-number}
{begin

{setq bname { get- at trib-at- node anode "anarne"}}
{if { string-compare sstring bname}
{begin

{message "This action name already, used"}
{quit I I I I I

f setq count { + 1 countj I III}}
{setq actions { add-item-to-list actions action. node-number}}

method-name.update
{char name I
{char subnarne}
{ mt sdot}
{ mt pos
{ mt slen}
{setq name (buffer-to-string }
{setq sdot { string-to-char "."}}

{setq pos (find-char-in-string name sdot}}
{if (= p05 0}
{begin

{message "This entry does not have an extension"}
{quit I I I

{setq slen (length name}}
{setq subname { substr name pos { + 1I slen pos}}}}
{if f ! (string-compare subname ".md"}}
{begin

{message "This entry- does not have .md extension"}
{quit I I I

{setq method-name name}
{setq subname (substr name I { o I 0

{setq grammar-name {concat subnarne ".grm'}}
{setq method-interp {concat subname %-FORM-"}}

196

Finally, we present the set of procedural components that was

implemented. The first part of each name indicates the symbol to which

the procedural component is tied to. The last part of each name

indicates under which condition this procedural component will be fired.

action-name.update
{ char sstring }
{ char sbstring }
{ char bname }
{ int slen }
{ int pos }
{ int sdot }
{ int lien }
{ int count }
{ int anode }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char "." } }
{ setq pos { find-char-in-string sstring sdot } }
{ if { = pos o }
{ begin

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { + 1 { - slen pos } } } }
{ if { & { ! { string-compare sbstring ".visit" } }

{ & { ! { string-compare sbstring ".enter" } }
{ & { ! { string-compare sbstring ".update" } }
{ & { ! { string-compare sbstring ".repeat" } }
{ & { ! { string-compare sbstring ".delete" } }

{ ! { string-compare sbstring ".create" } } } } } } }
{ begin

{ message "This entry does not have a proper extension" }
{ quit } } }

{ setq action-name.aname sstring }
{ setq lien { size-of-list actions } }
{ if { !: 0 lien }

:-.;-: , - - ::-:. :- -:--::::7::7-3.- -:-' -:-: :... ..-.-.--.-.---.-.-.:-:.:- :-.-:-:, .-:-:-:-:-- ,.:: :: .

195

Next, we will show the list of attribute types that were used in the meta

method. These attribute types are assigned to the grammar symbols.

Name Class Type
aname Synth str
symbols Global list
products G lobal list
attribs Global list
actions Global list
ter-symbols G lobal list
bforms Global list
method-name Global str
method-interp Global str
grammar-name Global str
method-help Global str
start-form Global int
start-symbol Global str

define Synth int
class Inherit int
node-number Inherit int
type Synth int
value Synth str
start Inherit int
node Synth int

,-

194

15. (production-rule-form):: (prod uction-rule)

(action-procedure)

17. (attribute-set)::=(attribute)

18. (attribute)..- 'attribute-name)
(type)
(defaulIt-value',

19. (sy mbol):: (symbol- name)
(sat tribute' *

(sac tion-namie/

20. (sattribute) ::= (sattribute-namne\
(sdefault-value)

21. (prod uc tion-ru le,: :>(prod uction-nurnber\)
(left- han d-sy mbol)
(right-hand-symbol',
(smantic-functions)i

22. (right-hand-symbol'/::= (handle-name)
(ope rat ion'
(form- representation)

23. (operation, :: /kleene-star'
(plus)
(zero-one

24. (form-representat ion': ',heading\
(\display able-hel p-informat ion"
(p refilled-entry
(entry-updatable)
(number-of-linres,

25. (semantic-funct ions):: isaction-nanw,

193

1. (methodology):: (methodology-name)
(grammar-definition-form)
(form-definition) +

2. (grammar-definition-form:: (grammar-definition)

3. (form-definition)::= (form-number)
(root-number)

4. (grammar-definition) ::= (grammar-name)
(action-set)
(attributes)
(symbols)
(production-set)

5. (action-set) :: = (act ion-form)*

6. (action-form',:: = (action)

7. (attributes)::= (attribute-set-form)
(attribute-set-form)
(attri bu te-set-form)

8. (attribute-set-form) ::= (at tribute-set)

9. (symbols)::= (start-symbol
(terminal-symbol,
(non-terminal-symbol)

10. (start-symbol):: = (symbol-form)
(heading)
(displayable-help-informat ion)

11. (sy mbol-form):: =(symbol;

12. (terminal-symbol) ::= (symbol-form) +

13. non-terminal-symbol':: =- 'symbol-form'.

14. (production-set):: (production-rule-form'

192

META-FORM-6 Production Rule Form-use-# [

Production Number:

Left Hand Symbol:

Right Hand Symbol [more?]: (given in left to right order)

Name:

Operation:

Kieene Star:

0/1:

Form Representation:

Heading:

Displayable Help Information:

Prefilled Entry:

Entry Updatable:

Number of lines:

Semantic Functions:

Name [more?]:

Next, the list of all the grammar production rules are presented.

represents the kleene star; and + is the plus function. The productions

rules are presented using grammars with right regular parts.

. olo o o ~ ~ a .. ' 4" .'q U~ 1 m .° . . . - - . °o o . ° o o. o . - . . o ° .- '

META-FORM-3 Action Form-use-#[!

Action Name:

Action Procedure:

META-FORM-4 At tribute Set Form-use- #[1

Attribute [more?]:

Name:

Type:

Default Value:

META-FORM-5 Symbol Form-use- #]

Symbol Name:

Attributes [more?]:

Name:

Default Value:

Action Name [more?]:

190

META-FORM-2 Grammar Definition Form-use- #,

Grammar Name:

Action Set:

(3) Act ion [mnore?]: Form-use- #'

Attributes:

(4) Attribute Set: Synthesized Local Formn-use-#[

(4) Attribute Set: Inherited Local Form-use-#j]

(4) Attribute Set: Global Form-use-#'l

Symbols:

Start Symbol:

(5) Symbol: Forrn-use-#11}

Heading:

Displayable Help Information:

Terminal Symbol:

{5) Symbol [mnore?]: Form-use- # K

Non-terminal. Symbol:

(5) Symbol [mnore?]: Forrn-use-~

Production Set:

(6) Product ion Rule [miore?': Formn-use-i '

Appei~dix A

Jmplementation of the Tuner in Tuner

In this appendix, the blankforms, the attributed grammar production

rules, and the procedural components for the meta method are presented.

This is a small method with 6 blankforms, 25 production rules, 20

attribute types, and 46 procedural components. First, we will show the

blankforms.

META-FORM-1 Methodology Form- use-#]

Methodology Name:

{2) Grammar Definition: Form-use-#[]

Form Definition [more?]:

Form Number:

Production Number:

189

..

188

104. Teitelman, W. and L. Masinter. "The Interlisp Programming
Environment". Computer 14, 4 (April 1981), 25-33.

105. Tennent, R. D.. Principles of Programing Laguages. Prentice-

Hall Inc., Englewood Cliffs, New Jersey, 1981.

106. Tucker, M. and L. Scheffer. "A Constrained Design Methodology
for VLSI". VLSI Design , (May/June 1982), 60-65.

107. Ullman, J. D.. Principles of Database Systems. Computer Science

Press, Inc., Rockville, Maryland, 1980.

108. Wiest, J. and F. Levy. A Management Guide to PERT/C.MP.
Prentice-Hall Inc., Englewoood Cliffs, New Jersey, 1977.

109. Wood, D.. Lecture Notes in Computer Science. Volume
Grammar and L-Forms: An Introduction. Springer-Verlag, New York,
New York, 1980.

110. Yourdon, E. and L. L. Constalitine. Structured Design:_
Fundamentals of a Discipline of Computer Program and Systems Design.
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.

111. Zelkowitz, M. V. A Small Contribution To Editing With a
Syntax Directed Editor. Proceedings of the ACM SIGSOFTiSIGPLAN
Software Engineering Symposium on Practical Software Development
Environments, ACM, Pittsburgh, Pennsylvania, April, 1984, pp. 1-6.

- ", %" ° . . .% -%% .• o. - .%%' " .°"

202

start-symbol .enter
{setq start-symbol.c lass 1I
{setq start-symbol.start 1}

termin al-symbol.en ter
{setq terminal-symbolclass 2}
{setq terminal-symbol.start 2}

non- terminal-symbol .enter
{setq non-termin al-sy mboc lass I}
{setq non-terminal-syrnibolstart 2}

symbol-form.enter
{setq sy mbol-form.c lass {get-attrib-at-node {node-parent }"class"}}
{setq symbol-form.start {get-attrib-at-node {node-parent }"start"}}
{if { 0 (node-child-form}}
{begin

{erase-buffer}
{insert-string " Form-use-#L "}
{set-dot 17}}

{begin
{erase-buffer}
{insert-string symbol.aname}
{insert-string " Form-use-#'}
{insert-string { mt-to-string { node-child-form }}
{insert-string "

{set-dot { buffer-size}}
{setq symbol.class symbol-formixclass}
{setq symbolstart symbol-forrn.start}}}

symbol. visit
{setq symbol.aname symbol-name.ananw

symbol.enter
{setq symbol. node-n umber f node-number}}
{setq symbol.class s)-mbol-formi.c lass}

203

{ setq symbol.start symbol-form.start }

symbol .delete
{ setq symbols { delete-item-from-list symbols { node-number } } }
{ if {= 2 symbol-form.class }

{ setq ter-symbols { delete-item-from-list ter-symbols
{ node-number } } } }

symbol-name.update
{ char sstring }
{ char bname }
{ int lien }
{ int count }
{ int anode }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq symbol.aname sstring }
{ setq lien { size-of-list symbols } }
{ if { != 0 lien }
{ begin

{ setq count I }
{ while { (= count lien }
{ begin

{ setq anode { get-next-item-from-list symbois count } }
{ if { != anode symbol.node-number }
{ begin

{ setq bname { get-attrib-at-node anode "aname" } }
{ if { string-compare sstring bname }
{ begin

{ message "This symbol name is already defined" }
{ quit } } } } }

{ setq count { -I I count } } } } } }
{ setq symbols { add-item-to-list symbols symbol.node-number } }
{ if { 2 symbol.class }

{ setq ter-symbols { add-item-to-list ter-symbols
symbol.node-number } } }

.l

_________ . -9 -, -'--. -I

204

{ if { 1 symbol.start }
{ setq start-symbol sstring } }

{ setq symbol-name.aname sstring }

sattribute.enter
{ setq sattribute.node-number { node-number }

sattribute-name.update
{ char sstring }
{ char bname }
{ int lien }
{ int count }
{ int anode }

int cnode }
{ int cclass }
{ setq cnode 0 }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq lien { size-of-list attribs } }
{ if { = 0 lien }
{ begin

{ erase-buffer }
{ error-message "No attributes yet defined"} } }

{ setq count 1 }
{ while { (= count lien }
{ begin

{ setq anode { get-next-item-from-list attribs count } }
{ setq bname { get-attrib-at-node anode "aname" } }
{ if { string-compare sstring bnarne }

{ setq cnode anode } }
{ setq count { + 1 count } } } }

{ if {= 0 cnode }
{ begin

{ erase-buffer }
{ error-message

"No attribute by that name found in the grammar" } } }

.. .. " .**..t . .-

20.5

{setq cclass {get-at trib-at- node cnode "class"}}
{if { 3 cclass}
{begin

{erase-buffer}
{error-message "This a global attribute"}}}

{setq sattribute-name.anamc sstring}
{setq sattribute~aname sstring}
{setq sattribute.define 1I
{setq sattribute.node cnodc

sdefaulIt-value. update
{char sstring}
{ mt atype)
{setq sstring {buffer-to-string}}
{if f 1 sattribute.define}
{begin

{setq atype { get-attrib- at- node sattribute.node "type"}}
{if { & I atype }{ integer-test sstring}}}
{begin

{message "This value must be an integer"}
{quit}}}

{setq sattribute.value sstring}}}

sac tion-name. update
{char sstring}
{char sbstring}
{char bname}
{ mt slen}
{ nt pos
{ mt sdot}
{ mt lien}
{ mt count}
{ mt anode}
{ mt cnode}
{setq sstring {buffer- to-st ring}}
{if {!{name-test sstring}}
{begin

{message "This entry does not contain a legal name"}
{quit}}

206

{ setq slen { length sstring } }
{ setq sdot { string-to-char "," } }
{ setq pos { find-char-in-string sstring sdot } }
{ if { - 0 pos }
{ begin

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { + 1 { - slen pos } } } }
(if { & { ! { string-compare sbstring ".visit" } }

{ & { ! { string-compare sbstring ".enter" } }
{ & { ! { string-compare sbstring ".update" } }
{ & { ! { string-compare sbstring ".repeat"
{ & { ! { string-compare sbstring ".delete" } }

{ ! { string-compare sbstring ".create" } } } } } } }
{ begin

{ message "This entry does not have a proper extension" }
{ quit } } }

{ setq lien { size-of-list actions } }
{ if { 0 lien }
{ begin

{ erase-buffer }
{ error-message "No actions have been defined" } } }

{setq count I}
{ while { (= count lien }
{ begin

{ setq anode { get-next-item-from-list actions count } }
{ setq bname { get-attrib-at-node anode "aname" } }
{ if { string-compare sstring bname }

{setq cnode anode } }
{ setq count { + 1 count } } } }

{ if {= 0 cnode }
{ begin

{ erase-buffer }
{ error-message "No action by this name in the grammar" } } }

production-rule-form .enter
{ if { 0 { node-child-form } }
{ begin

{ erase-buffer }
{ insert-string " Form-use-# ' ' }

..

.*, . .
.,

207

{ set-dot 17 } }
{ begin

{ erase-buffer }
{ insert-string production-rule.aname }
{ insert-string " Form-use-# " }
{ insert-string { int-to-string { node-child-form } } }
{ insert-string "]" }
{ set-dot { buffer-size } } } }

prod uction-rule.visit
{ setq production-rule.aname production-number.aname }

production-rule.delete
{ setq products { delete-item-from-list products { node-number } }

prod uc tion- ru le.en ter
{ setq production-rule.node-number { node-number } }

production-number.update
{ char sstring }
{ char bname }
{ int lien }
{ it count }
{ int anode }
{ setq sstring { buffer-to-string } }
{ if { ! { integer-test sstring } }
{ begin

{ message "This entry must be an integer" }
{ quit } } }

{ setq count { string-to-int sstring } }
{ if { = 0 count }
{ begin

{ message "Production number of 0 is not allowed }
{ quit } } }

{ setq lien { size-of-list products } }
{ if (!= 0 lien }
{ begin

208

{ setq count 1 }
(while { (count lien }
{ begin

{ setq anode { get-next-item-from-list products count } }
{ if { != anode production-rule.node-number }
{ begin

{ setq bname { get-attrib-at-node anode "aname" } }
{ if { string-compare sstring bname }
{ begin

{ message
"A production by this number already defined" }

{ quit } } } } }
{ setq count { - 1 count } } } } } }

{ setq products { add-item-to-list products
production-rule.node-number} }

{ setq production-rule.aname sstring }
{ setq production-number.aname sstring }

left-hand-symbol .update
{ char sstring }
{ char bname }
{ nt anode }
{ int cnode }
{int count }
{ int lien }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq cnode 0 }
{ setq lien { size-of-list symbols } }
{ if { = 0 lien }
{ begin

{ erase-buffer }
{ error-message "No Symbols defined yet" } } }

{ setq count 1 }
{ while { count lien }
{ begin

{ setq anode { get-next-item-from-list sy mbols count } }

• I - - % o o .i " % . --° .° 4 o .-% . o ° -. o % -. .. " ° ° , • --. - " - '

209

{ setq bname { get-attrib-at-node anode "aname" } }
{ if { string-compare sstring bnane }

{ setq cnode anode } }
{ setq count { + 1 count } } } }

{ if {= 0 cnode }
{ begin

{ erase-buffer }
{ error-message "No symbol by that name in the grammar" } } }

{ setq cnode 0 }
{ setq lien { size-of-list ter-symbols } }
{ if { != 0 lien }
{ begin

{ setq count 1 }
{ while { = count lien}
{ begin

{ setq anode { get-next-item-from-list ter-symbols count } }
{ setq bname { get-attrib-at-node anode "aname" } }
{ if { string-compare bname sstring }

{ setq cnode anode } }
{ setq count { + 1 count } } } }

{ if { != 0 cnode }
{ begin

{ erase-buffer }
{ error-message "This symbol is a terminal symbol" } } } } }

{ setq left-hand-symbol.aname sstring }

handle-name.update
{ char sstring }
{ char bname }
{ int anode }
{ int cnode }
{ int count }
{ int lien {
{ setq sstring { buffer-to-string } }
{ setq cnode 0 }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
quit } } }

{ setq lien { size-of-list symbols } }

,' - ' - - • - - ., -. . - - : - -. _ , , , . - ., . :. - -- _ ' .." - , " . . -. *-.- - . ," -, I

210

{ if { 0 lien
{ begin

{ erase-buffer }
{ error-message "No symbols defined in the grammar" } } }

{ setq count 1 }
{ while { (- count lien }
{ begin

{ setq anode { get-next-item-from-list symbols count } }
{ setq bname { get-attrib-at-node anode "aname" } }
{ if { string-compare bname sstring }

{ setq cnode anode } }
{ setq count { 1 count } } } }

{ if {= 0 cnode }
{ begin

{ erase-buffer }
{ error-message

"No symbol by this name defined in the grammar" } } }
{ setq handle-name.aname sstring }

kleene-star.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 0 }
{ if { string-compare sstring "y" }

{ setq count 1 } }
{ if { string-compare sstring "n" }

{ setq count 2 } }
{ if { string-compare sstring .. }

i setq count 2 } }
{ { 0 count }
{ begin

{ message "Values of y or n or "blank, are only allowed" }
{ quit } } }

{ if { & { I count } { ! { 1 operation.type }
{ = 0 operation.type } } }

{ begin
{ setq operation.type I }
{ return } } }

{ if { & { 2 count } { I operation.type } }

::. :.---2.-. .:-i :-.. .- -:- :. - .2 •.- _ . _ : --. .2.: .; .- .. :: . :; ...

211

{ begin
{ setq operation.type 0 }
{ return } } }

{ if { 1 count }
{ begin

{ message "More than one operation defined" }
{ quit } } }

plus.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 0 }
{ if { string-compare sstring "y" }

{ setq count 1 } }
{ if { string-compare sstring "n" }

{ setq count 2 } }
{ if { string-compare sstring "" }

{ setq count 2 } }
{ if {= 0 count }
{ begin

{ message "Values of y or n or blank), are only allowed" }
{ quit } } }

{ if { & { 1 count } { { 0 operation.type }
{ : 2 operation.type } } }

{ begin
{ setq operation.type 2 }
{ return } } }

{if { & { = 2 count } { 2 operation.type } }
{ begin

{ setq operation.type 0 }
{ return } } }

{ if { I count }
{ begin

{ message "More than one operation defined" }
{ quit } } }

zero-one.update
{ char sstring }

.. . .'.........'.. ...-.. (....,...-..-,.. -.........-.....~. --.,

212

{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 0 }
{ if { string-compare sstring "y" }

{ setq count I } }
{ if { string-compare sstring "n" }

{ setq count 2 } }
{ if{ string-compare sstring "" }

{ setq count 2 } }
{ if {= 0 count }
{ begin

{ message "Values of y or n or 'blank' are only allowed" }
{ quit } } }

{if {&{ -1count}{ { 0 operation.type}

{ = 3 operation.type } } }
{ begin

{ setq operation.type 3 }
{ return } } }

{ if { & { = 2 count } { - 3 operation.type } }
{ begin

{ setq operation.type 0 }
{ return } } }

{ if { I count }
{ begin

{ message "More than one operation defined" }
{ quit } } }

heading.update
{ char sstring }
{ setq sstring { buffer-to-string } }
{ if { 50 { length sstring } }
{ begin

{ message "Heading cannot exceed 50 characters in length" }
{ quit } } }

number-of-lines.update
{ char sstring }
{ setq sstring { buffer-to-string } }
{ if { ! { integer-test sstring } }

213

{ begin
{ message "This entry must contain an integer" }
{ quit } } }

{ if { ' 2 { string-to-int sstring } }
{ begin

{ message "Must have at least 2 lines for the display" }
{ quit }) }

entry-updat able.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 0 }
{ if { string-compare sstring "y" }

{ setq count I } }
{ if { string-compare sstring " n" }

{ setq count 2 } }
{ if { string-compare sstring "" }

{ setq count 2 } }
{ if {= 0 count }
{ begin

{ message "Values of y or n or (blank) are only allowed" }
{ quit } } }

root-number.update
{ char sstring }
{ char bname }
{ int lien }
{ int count }
{ int anode }
{ int cnode }
{ setq sstring { buffer-to-string } }
{ if { ' { integer-test sstring } }
{ begin

{ message "This entry must be an integer" }
{ quit } } }

{ setq count { string-to-int sstring } }
{ if { = 0 count }
{ begin

, ...% ,% .- ."." -.. ..".... .. -.....- .- . ' " -.. .-

214

{ message "Productiont number of 0 is not allowed" }
{ quit } } }

{ setq lien { size-of-list products } }
{ if { = 0 lien }
{ begin

{ erase-buffer }
{ error-message "No production rules have been defined" } } }

{ setq count 1 }
{ while { (- count lien }
{ begin

{ setq anode { get-next-item-from-list products count } }
{ setq bname { get-attrib-at-riode anode "aname" } }
{ if { string-compare bname sstring }

{ setq cnode anode } }
{ setq count { - 1 count } } } }

{ if = 0 cnode }
{ begin

{ erase-buffer }
error-message

"No production by this number defined in the grammar" } } }
{ setq lien { size-of-list bforms } }
{ if { : 0 lien }
{ begin

{ erase-buffer }
{ error-message "No blankforms have been defined" } } }

{ setq count I }
{ while { (= count lien }
{ begin

{ setq anode { get-next-item-from-list bforms count } }
{ if { != anode form-definition.node-number }
{ begin

{ setq bname { get-attrib-at-node anode "aname" } }
{ if { string-compare bname sstring }
{ begin

{ message
"A form beginning with this production already defined" }

{ quit } } } } }
{ setq count { - 1 count } } } }

{ setq form-definition.aname sstring }

215

form- defin it ion .enter
{ setq form-defin ition.node- nu mber {node-number}}

form-defin it ion. repeat
{ setq forrni-definition. node-n urnber { node-number}}

form- definition. del[ete
{setq bforrns {delete-Item-from-list bforms node-number }

229

{ mt slen}
{ mt sdot}
{ mt p05
{setq sstring {butfer-to-st ring}}
{if f string-compare sstring "

{begin
{Setq eqn-output '

{setq eqn-namc "

{sctq eqn-namei-updated 1I
{return) I)

{if {!{name-test sstring}}
{begin

{message "This entry does not contain a legal name"}
{quit}}}

{setq slen {length sstring}}
{setq sdot {string-to-char".}}
{setq pos {find-char-in-st ring sstring sdot}}

(if { !1.- 0 p05

{begin
{message "The extension will be put on by the system"}
{quit}}}

{setq eqn-narne sstring}
{setq eqn-nanie-updated 1I

eoptl1.update
{char sstring}
{ mt count)
{setq sstring {buffer-to-string}}
{setq count 2 }
{if {string-compare sstring "y"}

{setq Count 1 I I
{if {st ring-comnpare sst ring " n"}

{setq count 0))
{if {st ring-comnpare sst ring '

{setq count 0}}
{if - 2 count}
{begin

{message '"Values of N- or n or)are only allowed"}
{quit }}

{setq eqntott.truth cout

*.

228

eqn-input.update
{ char sstring }
{ char sbstring }
{ int slen }
{ int sdot }
{ int pos }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does riot contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char " } }
{ setq pos { find-char-in-string sstring sdot } }

if { -- 0 pos }
{ begin

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { + I {- slen pos } } } }
{ if { ! { string-compare sbstring ".eqn" } }
{ begin

{ message "This entry does not have the .eqn extension" }
{ quit } } }

{ sctq eqntott-input sstring }

eqntott-input.enter
{ erase-buffer }
{ insert-string eqntott-input }

eqntott-out put .visit

{ if { =1 eqn-name-updated }
{ begin

{ erase-buffer }
{ insert-string eqn-output }
{ setq eqn-narne-updated 0 } } }

eqntott-output.update

{ char sstring }

:: - . "- . - - - ,- , ,- ... - :. :- : .i ..2: : .. : - ,,:

227

{ setq peg-options.updated 0 }
{ if { string-compare peg-output .. }

{ return } }
{ setq peg-output "" }
{ setq peg-name-updated I }
{ return } } }

{ setq sstring "Executing - peg " }
{ if { ! { string-compare peg-options.truth-table-name "" } }

{ setq sstring { concat sstring "-t " } } }
{ setq sstring { concat sstring peg-input } }
{ if { = 5 prod }
{ begin

{ setq peg-output { concat peg-name ".eqn" } }
{ setq eqntott-input peg-output }
{ setq peg-name-updated 1 }
{ setq sstring { concat sstring ") peg-output } }
{ message sstring }
{ setq peg-options.updated 0 }
{ return } } }

{ if { 8 prod }
{ begin

{ setq peg-output { concat peg-name ".tbl" } }
{ setq peg-name-updated 1 }
{ setq tpla-input peg-output }
{ setq sstring { concat sstring " eqntott " peg-output } }
{ message sstring }
{ setq peg-options.updated 0 }
{ return } } }

{ if {= 12 prod }
{ begin

{ setq peg-output { concat peg-name ".cir' } }
{ setq mextra-input peg-output }
{ setq peg-name-updated I }
{ setq sstring { concat sstring

I eqntott tpla -c -s Bcis -I -0 -o
peg-output } }

{ message sstring }
{ setq peg-options.updated 0 }
{ return } } }

:-'.. .-.. --. ..---- -. .-. ..."..-"-.-.--..-..-.-..*'-'...*.. -.... .---*-%-..,.-.

226

{begin
{setq peg-output "

{setq peg-name ""}

{setq peg-name-updated 1I
{return I I)

{if {! I name-test sstring}}
{begin

{message "This entry does not contain a legal name"}
{quit I I)

{setq slen {length sstring}}
{setq sdlot {string-to-char""}}
{setq pos {find-char-in-string sstring sdot}}
{if { != 0 p05
{begin

{message "The extension will be put on by the system"}
{quit I } }

{setq peg-name sstring}
{setq peg- name- updated 1}

peg-input.visit
f setq pegs.updated 0}

prograrn.visit
(setq peg.updated 0}

peg-options.enter
{setq peg-options. updated { get-attrib-at-node {node-parent}

"updated"}}

output .visit
{char sstring}
{ mt prod I
{if = 0 peg-opt ions. updated}

{return I I
{setq prod f node-production}}
{if ({ 0 prod}
{begi n

225

Finally, we present the set of procedural components that was

implemented. The first part of each name indicates the symbol to which

the procedural component is tied to. The last part of each name

indicates under which condition this procedural component will be fired.

tt-filename.update
{ char sstring }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq peg-options.truth-table-name sstring }

peg-input .update
{ setq peg-input { buffer-to-string } }
{ setq pegs.updated 1 }

program.update
{ setq peg-input .. }
{ setq peg.updated 1 }

output-file.visit
{ if { 1 peg-name-updated }
{ begin

{ erase-buffer }
{ insert-string peg-output }
{ setq peg-name-updated 0 } } }

output-file. update
{ char sstring }
{ int slen }
{ int sdot }
{ int pos }
{ setq sstring { buffer-to-string } }
{ if { string-compare sstring .. }

224

Name Class Type

truth Synth int

truth-table-name Synth str
peg-input Global str

peg-name- updated Global int
peg-output Global str

peg-name Global str

updated Inherit int
eqntott-input Global str

eqn-name Global str

eqn-output Global str

eqn-name-updated Global int

synch Synth int
express Synth int

reduce Synth int
redundant Synth int
human Synth int

ninputs Synth int

products Synth int
noutputs Synth int
tpla-input Global str
tpla-name Global str
tpla-output Global str
tpla-name-updated Global int

ground Synth int
stretch Synth int
verbose Synth int

style Synth str
lambda Synth int
template Synth str

mextra-input Global str
mextra-output Global str

mextra-name Global str
mextra-name-updated Global int

scale-a Synth int
scale-b Synth int
capacitance Synth int

input Synth list

output Synth str

patch Synth str

name Inherit str

223

(mextra3)
(mextra4)
(esimi)

14. (eqntott-options):: (tpla)

15. (eqntott-options):: (mextra)

16. (type) (mextra)

17. (type' :: (merge)

18. (merge):: (minput +

(moutput)
(drc)
(cif)

19. (c if):: =(mext ra)/

20. (communication)::= (merge)

21. (esiml)::=(esim)

22. (esim)::= (patchfile)
(input)+
(outputs)
(modify)

23. (fsm-specific at ion :: =(pegs)

24. pegs'::=peg-input)
(output-file)
(peg-options)

Next, we will show the list of attribute types that were used in the

VLSI method. These attribute types are assigned to the grammar

symbols.

;,." -'..- --. '- " -?-- .:..-.'.- ':: .--. .: . .. -: -.- ? -. :'- .- " --..-. % -*. . '., --.*-- ..* - -..-

222

6. (eqntott):: (eqntott-input)

(eqntott-output)
(eopti)
(eopt2)
(ept3/)
(eopt4',
(eop t5l,
*ept6,'
(eopt7)
(eopt8)
(eoptg)
(eqn tot t-opt ions,

'tpla-output)

10. (tpla-output): (filename)
(t pla2,
(tp1a3
(tpla-l,'
(tpla5b)
(tpla6',
(tp 1a7)
(tpla8a,'
(tpla8b,'
(tpla9',
(tplaO'

11. tplalj stpla'

12. output:= 'mextra

13. mext ra',:: =mext ra-input'
(mextra-out put'
(nwxtral,
(mextra2

221

VLSI-FORM-8 PEG With Input File Form-use-#1]

PEG Input Filename:

Output Filename:

Options:

Truth table filename:

f3,4,5) Output:
3. Generate equations for EQNTOTT
4. Compile PEG and pipe through EQNTOTT with standard options
5. Compile PEG and pipe through EQNTOTT and TPLA with standard

options
Form-use-#-,

Next, the list of all the grammar production rules are presented. *

represents the kleene star; and -+ is the plus function. The production

rules are presented using grammars with right regular parts.

1. (overall-specification):: :--(fsm-specification)
(eqn-input)
(eqntott 1)
(tpla-input-file)
(tplal)
(communication)

2. (fsm-specification' ::= (peg

3. (peg ::=<'program
(output-file',
(peg-options;

4. peg-options(:: (truth-table-filename
!output)

5. output,,::= (eqntot t,

I

I

220

VLSI-FORM-5 MEXTRA Form-use-#[I

Input File:

Output Filename:

Scale Numerator:

Scale Denominator:

Supress Calculation of Capacitance:

Append Unique Suffixes to Names:

(71 ESIM: Form-use-#[!,

VLSI-FORM-6 MERGE Form-use-#-

Input Filename [more?]:

Output Filename:

DRC:

(5) CIF: Form-use-# 1

VLSI-FORM-7 ESIM Form- use-#

Patchfile name:

Input Filename [more?]:

Output Filenanie:

Modify:

219

VLSI-FORM-4 TPLA Form-use-#]

Input File:

Options:

Output File:

Clock the Inputs to the PLA:

Clock the Outputs to the PLA:

Insert Extra Ground at n Rows and Columns:

Stretch Power and Ground by n Lambda:

Show How PLA was Constructed:

Show what TPLA is Doing:

Styles of PLAs Available:
1. Buried contacts, nMOS, cis version
2. Buried contacts, nMOS, trans version
3. Mead Conway design rules, butting contacts, nMOS, cis version
4. Mead Conway design rules, butting contacts, nMOS, trans version
5. Buried contacts, nMOS, cis version, protection frames and terminals
6. Buried contacts, nMOS, trans version, protection frames and terminals

Select Style of PLA:

Lambda in Centimicrons:

Name of Template to use:

(5,6) Output Format:
5. Generate PLA for TPLA and go to MEXTRA
6. Generate PLA for TPLA and go to CEASAR for further refinement

Form-use-# H

218

VLSJ-FORM-3 EQNTOTT Form-use-#!]

Input Filename:

Output Filename:

Output Truth Table:

Allow Input Names To Be Same As Output:

Output Variables May be Used in Expressions:

Reduce Truth Table:

No Redundant Miniterms:

Human Readible Truth Table:

Output Numrber of Inputs:

Output Number of Product Terms:

Output Number of Outputs:

(4,5) Options:
4. Generate truth tables for TPLA
5. Compile EQNTOTT and pipe through TPLA with standard options

Formr- use-#,l

...

217

VLSI-FORM-2 PEG Form-usc-# ,!

Program:

Output Filename:

Options:

Truth table filename:

(3,4,5) Output:
3. Generate equations for EQNTOTT
4. Compile PEG and pipe through EQNTOTT with standard options
5. Compile PEG and pipe through EQNTOTT and TPLA with standard

options
Form-use-# L

.

Appendix B

Implementation of a VLSI Method

In this appendix, the blankforms, the attributed grammar production

rules, and the procedural components for the VLSI method are presented.

This is a small method with 8 blankforms, 24 production rules, 40

attribute types, and 56 procedural components. First, we will show the

blankforms.

VLSI-FORM-I Overall Specification Formn- use- #I

{2,8) Finite State Machine Specification:
2. PEG input via the programmer
8. PEG input via an input file

Form-use-#[j

EQNTOTT Input Filenarne:

(3) EQNTOTT: Form-use-#,,

TPLA Input Filename:

{4) TPLA: Formr-use-rI

(lCommiunication: Form-use-#

216

230

{setq eqntott-updated 1I

eopt2.update
{char sstring}
{ mt count}
{setq sstring {buffer-to-string}}
{setq count 2}
{if' string-compare sstring "y"}

{setq count I
{if {string-compare sstring "n"}

{setq count 0 } }
{if {string-compare sstring "

{setq count 0}}
{if = 2 count}
{begin

{message "Values of (y or ,n or ()are only allowed"}
{quit}}}

{setq eqntott.synch count}
{setq eqntott-updated 1I

eopt3.update
{char sstring}
{ mt count}
{setq sstring {buffer-to-string}}
{setq count 2}
{if {string-compare sstring "y"}

{setq count 1 I I
{if {string-compare sstring "n"}

{setq count 0}}
{if {string-compare sstring "

{setq count 0}}
{if = 2 count}
{begin

{message "Values of 'y) or ',n) or ()are only allowed"}
{quit}}}

{setq eqntott.express count}
i. setq eqntott.updated 1I

231

eopt4 .update

{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 2 }
{ if { string-compare sstring "y" }

{ setq count 1 } }
{ if { string-compare sstring "n" }

{ setq count 0 } }
{ if { string-compare sstring .. }

{ setq count 0 } }
{ if { 2 count }
{ begin

{ message "Values of (y) or (n) or , are only allowed" }
{ quit } } }

{ setq eqntott.reduce count }
{ setq eqntott.updated I }

eopt5.update

{ char sstring }
{ it count }
{ setq sstring { buffer-to-string } }
{ setq count 2 }
{ if { string-compare sstring "y" }

{ setq count 1 } }
{ if { string-compare sstring "n" }

{ etq count 0 } }
{ if { string-compare sstring ". }

{ setq count 0 } }
{ if { 2 count }
{ begin

{ message "Values of (y) or (n; or are only allowed" }
{ quit } } }

{ setq eqntott.redundant count }
{ setq eqntott.updated 1 }

eopt6.update

{ char sstring }
{ it count }

Uo

S

7........................ . . .

S- ..°

232

{ setq sstring { buffer-to-string } }
{ setq count 2 }
{ if { string-compare sstring "y" }

{ setq count 1 } }
{ if { string-compare sstring "n" }

{ setq count 0 } }
{ if { string-compare sstring "" }

{ setq count 0 } }
{ if { 2 count }
{ begin

{ message "Values of Ky) or (n) or) are only allowed" }
{ quit } } }

{ setq eqntott.human count }
{ setq eqntott.updated 1 }

eopt7.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 2 }
{ if { string-compare sstring "y" }

{setq count 1 } }
{ if { string-compare sstring "n" }

{ setq count 0 } }
{ if { string-compare sstring "" }

{ setq count 0 } }
{ if { = 2 count }
{ begin

{ message "Values of (y) or (n) or K) are only allowed" }
{ quit } } }

{ setq eqntott.ninputs count }
{ setq eqntott.updated 1 }

eopt8.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 2 }
{ if { string-compare sstring "y" }

233

{setq count 1I
{if {string-compare sstring "n"}

{setq count 0 } I
{if {string-compare sstring "

{setq count 0}}
{if 2 count}
{begin

{message "Values of or (n', or ()are only allowed"}
{quit I } I

{setq eqntott.products count}
{setq eqntott.updated 1I

eopt9.update
{char sstring}
{ mt count }
{setq sstring {buffer-to-st ring}}
{setq count 2}
{if {string-compare sstring "y"}

{setq count 1I
{if {string-compare sstring "n"}

{setq count 0}}
{if {string-compare sstring "

{setq count 0}}
% if { 2 count}

{begin
{message "Values of (y) or 'n' or ()are only allowed"}
{quit I) I

{setq eqntott.nout puts count}
{setq eqntott.updated I}

eqntot t-opt ions. visit
{char sstring}
{ mt prod}
{if { 0 eqntott.updated}

{return}}
setq prod {node-production}}

r if 0 prod}
{begin

{setq eqntott.updated 0}

234

{if {string-compare eqn-output "

{return}}
{setq eqn-output "

{setq eqn- name- updated 1I
{return I I I

{setq sstring "Executing -eqntott"}

{if I eqntott.truth}
{setq sstring { concat sstring "-I "}}}

{if = 1 eqntott.synch I
{setq sstring { concat sstring "-f "}}}

{If I eqntott.express}
{setq sstring { concat sstring "-s "}}}

{if I eqntott.reduce}
{setq sstring { concat sstring "-r"}}}

{if I eqntott.redundant}
{setq sstring f concat sstring "-R"}}}

{if I eqntott.human}
{setq sstring { concat sstring "-h }}}

{if I eqntott.ninputs}
{setq sstring { concat sstring "-.i"}}}

{if I eqntott.products}
{setq sstring (concat sstring "-.p"}}

{if {: 1 eqntott.noutputs I
{setq sstring { concat sstring "-.o"}}}

{setq sstring { concat sstring eqntott-input}}
{if { 14 prod}
{begin

{setq eqn-output f concat eqn-name "l.tbl"}}
{setq tpla-input eqn-output}
{setq eqn-name-updated 1}
{setq sstring f concat sstring ") eqn-output}}
{message sstring I
{setq eqntott.updated 0}
{return}}}

{if {=15 prod}
{begin

{setq eqn-output (concat eqn-narne ".ciF }
{setq mextra-input eqn-output}
{setq eqn-name-updated 1I
{setq sstring { concat sstring tpla -c -s Bcis -1 -0 -o

* eqn-output}}

235

{ message sstring }
{ setq eqntott.updated 0 }
{ return } } }

tpla-input-file. update
{ char sstring }
{ char sbstring }
{ int slen }
{ int sdot }
{ int pos }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char "." } }
{ setq pos { find-char-in-string sstring sdot } }
{ if { = 0 pos }
{ begin

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { { - slen pos } } } }
{ if { ! { string-compare sbstring ".eqn" } }
{ begin

{ message "This entry does not have the .tbl extension" }
{ quit } } }

{ setq tpla-input sstring }

tpla-input.enter
{ erase-buffer }
{ insert-string tpla-input }

filename.visit
{ if { = 1 tpla-name-updated }
{ begin

{ erase-buffer }
{ insert-string tpla-output }

- .-.?> : - '-- .- .' - -", . - .-- -i- . - .. -. ,: -) - ,. . i. , ./ ;- . "

236

{ setq tpla-name-updated 0 } } }

filename.update
{ char sstring }
{ int slen }
{ int sdot }
{ int pos }
{ setq sstring { buffer-to-string } }
{ if { string-compare sstring .. }
{ begin

{ setq tpla-output .. }
{ setq tpla-name "" }
{ setq tpla-name-updated 1 }
{ return } } }

{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char . } }
{ setq pos { find-char-in-string sstring sdot } }
{if { !- 0 pos }
{ begin

{ message "The extension will be put. on by the system" }
{ quit } } }

{ setq tpla-name sstring }
{ setq tpla-name-updated I }

type.visit
{ char sstring }
{ int prod }
{ if {= 0 tpla-output.updated }

{ return } }
{ setq prod { node-production } }
{ if { = 0 prod }
{ begin

{ setq tpla-output.updated 0 }
{ if { string-compare tpla-output . }

{ return } }

237

{setq tpla-output "

{setq tpla-name-updated 1I
{return I I I

{setq sstring "Executing - tpla '

{if = 1 tpla-output.ninputs}
{setq sstring (concat sstring "-I"}}}

{if = 1 tpla-output.noutputs I
{set q sstring f concat sstring "-0"}}}

{if {!= 0 tpla-output.ground I
{setq sstrinig { concat sstring "-G

{ int-to-string tpla-output.ground}""}}}
{if { z0 tpla-output.stretch I

{setq sstring { concat sstring "-S
{ int-to-string tpla-output.stretch}""}}}

{if { I tpla-output.verbose I
{setq sstring { concat sstring "-v }}}

if = 1 tpla-output.express I
{setq sstring { concat. sstring "-V"}}}

{if {! (string-compare tpla-output.style "

{setq sstring { concat sstring "-s"
tpla-output.style " " I } I

{if {!= 0 tpla-output.Iainbda I
{setq sstring (concat sstring "-I

{ mnt-to-string tpla-output.Iambda}""}}}
{if {!{ string-compare tpla-output.template "

{setq sstring { concat sstring " -t
tpla-out p ut.temnplate " " I)

{setq sstring { concat sstring tpla-input}}
{if f{ 16 prod}
{begin

{setq tpla-output f concat tpla-name ".ciF }
{setq mextra-input tpla-output}
{setq tpla- namne-updated 1 }
{setq sstring { concat sstring "-c "tpfa-name}}
{message sstring I
{setq tpla-output.updated 0}
{return I I)

{if = 17 prod}
{begin

{setq tpla-output (concat tpla-narne ".ca"
{setq tpla-name-updated 1I

238

{ setq sstring { concat sstring " -a " tpla-name } }
{ message sstring }
{ setq tpla-output.updated 0 }
{ return } } }

tpla2.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 2 }
{ if { string-compare sstring "y" }

{ setq count 1 } }
{ if { string-compare sstring "n" }

{ setq count 0 } }
{ if { string-compare sstring "" }

{ setq count 0 } }
{ if {= 2 count }
{ begin

{ message "Values of .',y) or (n) or (are only allowed" }
{ quit } } }

{ setq tpla-output.ninputs count }
{ setq tpla-output.updated I }

tpla3.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 2 }
{ if { string-compare sstring "y" }

{ setq count I } }
{ if { string-compare sstring "n" }

{ setq count 0 } }
{ if { string-compare sstring .. }

{ setq count 0 } }
{ if {= 2 count }
{ begin

{ message "Values of ,y or n' or are only allowed" }
{ quit } } }

{ setq tpla-output.noutputs count }

..*- , - .-.....* .-. --:...: . ..,..... .*..-...:: ... :.:. ... *-. .*...: --'... .. *.- .

239

{ setq tpla-output.updated 1 }

tpla4.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ if { ! { integer-test sstring } }
{ begin

{ message "This entry must contain an integer" }
{ quit } } }

{ setq count { string-to-int sstring } }
{ if { = 0 count }
{ begin

{ message "Value of 0 is not meaningful" }
{ quit } } }

{ setq tpla-output.ground count }
{ setq tpla-output.updated 1 }

tpla5.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ if { ! { integer-test sstring } }
{ begin

{ message "This entry must contain an integer" }
{ quit } } }

{ setq count { string-to-int sstring } }
{ if { = 0 count }
{ begin

{ message "Value of 0 is not meaningful" }
{ quit } } }

{ setq tpla-output.stretch count }
{ setq tpla-output.updated 1 }

tpla6.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }

240

(setq count 2 }
{ if { string-compare sstring "y" }

{ setq count I } }
{ if { string-compare sstring "n" }

{ setq count 0 } }
{ if { string-compare sstring "" }

{ setq count 0 } }
{ if {= 2 count }
{ begin

{ message "Values of (y' or (n) or are only allowed" }
{ quit } } }

{ setq tpla-output.verbose count }
{ setq tpla-output.updated I }

tpla7.update
{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ setq count 2 }
{ if { string-compare sstring "y" }

{ setq count 1 } }
(if { string-compare sstring "n" }

{ setq count 0 } }
{ if { string-compare sstring ." }

{ setq count 0 } }
{ if {= 2 count }
{ begin

{ message "Values of (y' or 'n\ or are only allowed" }
{ quit } } }

{ setq tpla-output.express count }
{ setq tpla-output.updated 1 }

tpla8b.update

{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ if { ! { integer-test sstring } }
{ begin

{ message "This entry must contain an integer" }

241

{quit}}}
{setq count {string-to-mnt sstring}}
{if{ { (= 0count}{count 6}
{begi n

{message " Value not in range"}
{quit I))

{setq tpla-output.updated I}
{if { 1 count)

{setq tpla-output.st)-le "Bc is"}}
{if = 2 count)

{setq tpla-output.st-lc "Btrans"}}
{if { 2 3 count)

{setq tpla-output.style "Nik"}}
{if = 4 count I

{setq tpla-output.style "Mtrans"}}
{if = 5 count I

{setq tpla-output.style "Tcis"}}
{if = 6 count I

{setq tpla-output.style "Ttrans"}}

tpl ag.update
{char sstring}
{ mt count I
{setq sstring {buffer-to-string }
{if ({ { integer-test sstring}}
{begin

{message "This entry must contain an integer"}
{quit}}}

{setq count {string-to-mnt sstring}}
{if { = 0 count}
{begin

{message "Value of 0 is not meaningful"}
{quit I I I

{setq tpla-output.lambda count}
{setq tpla-output.updated I}

t plaO. update
{char sstring}
{setq sstring {buffer-to-string}}

242

{if {!{name-test sstring}}
{begin

{message "This entry does not contain a legal name"}
{quit I } I

{setq tpla-output.ternplate sstring}
{setq tpla-output.updated 1I

mextra-input .enter
{erase-buffer}
{insert-string mextra-input}

rnextra-output. update
{char sstring}
{ mt sien}
{ mt sdot}
{ mt pos}
{setq sstring (buffer- to-st ring}}
{if I string-compare sstring "

{beg in
{setq mextra-output "

{setq mextra-rinme "

{sctq mextra-namc- updated 1I
{return I I I

{if {!{nanie-test sstring
{begin

{ messagre "This entry does not contain a legal name"}
{quit}}}

{setq slen {length sstring}}
{setq sdlot {string-to-char .

{setq pos {finid-c har-i n-string sstring sdlot}}
{if { z0 pos}
{begin

{message "'[he extension will be put on by the system"}
{quit}}}

{setq mextra-namne sstring}
{setq niextra-narnie-updared I

niextral update

243

{ char sstring }
{ int count }
{ setq sstring { buffer-to-string } }
{ if { ! { integer-test sstring } }
{ begin

{ message "This entry must contain an integer" }
{ quit } } }

{ setq count { string-to-int sstring } }
{ if { = 0 count }
{ begin

{ message "Value of 0 is not meaningful" }
{ quit } } }

{ setq mextra.scale-a count }
{ setq mextra.updated 1 }

mextra2.update
{ char sstring }
{ int count }
{ if { = 0 mextra.scale-a }
{ begin

{ erase-buffer }
{ message

"Scale Denominator cannot be set with out Scale Numerator" }
{ return } } }

{ setq sstring { buffer-to-string } }
{ if { ! { integer-test sstring } }
{ begin

{ message "This entry must ,ontain an integer" }
{ quit } } }

{ setq count { string-to-int sstring } }
{ if { = 0 count }
{ begin

{ message "Value of 0 is not meaningful" }
{ quit } } }

{ setq mextra.scale-b count }
{ setq mextra.updated I }

mextra3.update
{ char sstring }

.7 ,

257

VIMETH-FORM-13 VI Function Specification Formn-use- # [

Function:

VI Command Name:

Common?:

Argument [more?]:

Argument Name:

Type:I1-integer,R- real,C-charac ter,S-charac ter string,B1- boolean

Valid Value or Range [more?]:

Range:yes-y, no-n

Value:if range, lowerbound..upporhound

Defin it ion:

Description:

256

VIMETH-FORM-11 How to Provide Fo rm- use-~/

Object:

Operat ion:

Domain member:

How provided:
1-mapping
2-new operation
3-saved state
4-new object
5-not possible

Response:

VIMETH-FORM-12 Included Object /Operation Form-use-# [1

Object /Operat ion:

Yes-y /No-n ?:

VIMETH-FORM-7 Effort to Provide Form-use-#]

(11) Providing Operation [more?]: Form-use- # [

(23) Summary of How Operations Provided: Form-use-#11

VIMETH-FORM-8 Object s/Operations to be in VI Forrn-use-#r

(12) Object /Operati!on [more?]: Form- use-#

(15) VI Summary: Formi-use-~

VIMETH-FORM-9 Functional Specs of VI Funcs Form-use-#r'

(13) VI Function [more?]: Form- use-~f

VIMETH-FORM- 10 Implemientat ion Form- use-

(18) Design test: Form-use-*

(10) Generate target independent part: Forrm-use-* 4

(17) Complete Target Dependent Modules: Form-use-#

{20) Results of Test: Forrr-use-4 i

(21) Prepare Documentation: Form-use- it

254

VIMETH-FORM-5 Common Object/Operations Form-use-#[l

object / operations:

VIMETH-FORM-6 Noncommon Object/Operations Form-use-#[]

member / object / operations:

253

VIMETH-FORM-2 Identify Domain Form- use-#

Name of Domain:

{(3) Domain member [more?]: Forrn-use-#,

VIMETH-FORM-3 Domain Member Functions Formn-use-#'

Member name:

(22) Function Set: Form-use- #j

(4) Object /Operation Set [more?]: Forni-use-# :J

VIMETH-FORM-4 Define Object /Operat ions F o rm- use -#

Member Name:

Object name:

Operation name [more?]:

Appendix C

Implementation of the Virtual Interface Method

In this appendix, the blankforms, the attributed grammar production

rules, and the procedural components for the virtual interface method are

presented. This is a medium size method with 22 blankforms, 47

production rules, 15 attribute types, and 19 procedural components.

First, we will show the blankforms.

VIMETH-FORM-1 Creation of a Virtual Interface Form-use-#t]

{2) Identify Domain: Form-use-#.,

{5} Identify Common Object/Operations: Form-use- #

(61 Identify Noncommon Object /Operations: Form-use-#

(7) Evaluate Effort: Forri-use-#[I

(8) Identify VI Objects/Operations: Form-use-#[

{191 Select Specification Technique: Form-use-#[]

{9 Specify Virtual Interface: Forrn-use-k#V

(10) Implement Virtual Interface: Form-use-# V

252

251

{message '.ca files have been changed to .cif files"

tpla8a.enter
{set-dot 1I

250

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { + 1 { - slen pos } } } }
{ if { ! { string-compare sbstring ".ca" } }
{ begin

{ message "This entry does not have the .ca extension" }
{ quit } } }

moutput.update
{ char sstring }
{ char sbstring }
{ int slen }
{ int sdot }
{ int pos }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char "." } }
{ setq pos { find-char-in-string sstring sdot } }
{ if { = 0 pos }
{ begin

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { - 1 { - slen pos } } } }
{ if { ! { string-compare sbstring ".cif" } }
{ begin

{ message "This entry does not have the .cif extension" }
{ quit } } }

{ setq merge.name sstring }

drc.enter
{ message "Executing - lyra " }

cif.visit
{ setq mextra-input merge.name }

---- 77-7-77-7--7-1

249

minput.update
{ char sstring }
{ char sbstring }
{ int slen }
{ int sdot }
{ int pos }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char "." } }
{ setq pos { find-char-in-string sstring sdot } }
{ if { : 0 pos }
{ begin

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { + 1 { - slen pos } } } }
{ if { ! { string-compare sbstring ".ca" } }
{ begin

{ message "This entry does not have the .ca extension" }
{ quit } } }

minput.repeat
{ char sstring}
{ char sbstring }
{ int slen }
{ int sdot }
{ int pos }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char '. } }
{ setq pos { find-char-in-string sstring sdot } }
{ if { =- 0 pos }
{ begin

...

248

{begin
{message "This entry does not have an extension"}
{quit}}}

{setq sbstring {substr sstring pos + 1I slen pos}}}}
{if {!{string-compare sbstring ".out"}}
{begin

{message "This entry does not have the .out extension"}
{quit I I I

{setq esim.output sstring}
{setq esim.updated 1I

modify .en ter
{char sstring
{ mt count}
{ mt len}
{ mt anode}
{char bname}
{if { 0 esim.updated}

{return}}
{setq sstring "Executing -esim"}

{if { ! { string-compare esim.patch "

{setq sstring { concat sstring esim.patch" }}}
{setq len (size-of-list esim.input}}
{setq count 1}
{while { zcount len}
{begin

{setq anode {get-next-item-from-list esim.input count}}
{setq bname {get- at trib-at- node anode "name" }}
{if {!{string-compare bname ~~

f setq sstring I concat sstring bname""}}}
{setq count { 1 count I I I I

{if {! f string-comrpare esim.output "" } I
{setq sstring {concat sstring "-" esim.output""}}}

{message sstring}
{setq esim.updated 0}

input.delete
{setq esim.input {delete- item-fromn-list esimi.input {node-number}}}

IA

247

{ char sbstring }
{ int slen }
{ int sdot }
{ int pos }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char "." } }
{ setq pos { find-char-in-string sstring sdot } }
{ if { = 0 pos }
{ begin

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { + 1 { - slen pos } } } }
{ if { ! { string-compare sbstring ".sim" } }
{ begin

{ message "This entry does not have the .sim extension" }
{ quit } } }

{ setq input.name sstring }
{ setq esim.input { add-item-to-list esim.input { node-number } } }
{ setq esim.updated 1 }

outputs.update
char sstring

{ char sbstring }
{ int slen }
{ int sdot }
{ nt pos }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal narie" }
{ quit } } }

*. { setq slen { length sstring } }
{ setq sdot { string-to-char "." } }
{ setq pos { find-char-in-string sstring sdot } }
{ if{ 0 pos }

o

S%

... .

246

{ message "This entry does not have an extension" }
{ quit } }

{ setq sbstring { substr sstring pos { + 1 {- slen pos } } } }
{ if { ! { string-compare sbstring ".sim" } }
{ begin

{ message "This entry does not have the .sim extension" }
{ quit } } }

{ setq esim.patch sstring }
- { setq esim,updated I

input.update
{ char sstring }
{ char sbstring }
{ int slen }
{ int sdot }
{ nt pos }
{ setq sstring { buffer-to-string } }
{ if { ! { name-test sstring } }
{ begin

{ message "This entry does not contain a legal name" }
{ quit } } }

{ setq slen { length sstring } }
{ setq sdot { string-to-char "." } }
{ setq pos { find-char-in-string sstring sdot } }
{ if { 0 pos }
{ begin

{ message "This entry does not have an extension" }
{ quit } } }

{ setq sbstring { substr sstring pos { - 1 { - slen pos } } } }
{if { ! { string-compare sbstring ".sim" } }
{ begin

{ message "This entry does not have the .sir extension" }
{ quit } } }

{ setq input.name sstring }
{ setq esim.input { add-item-to-list esim.input { node-number } } }
{ setq esim.updated I }

input .repeat
{ char sstring }

.

7 .

245

{setq prod {node-production}}
{if { 0 prod}
{begin

{setq mextra.updated 0}
{if {string-compare mextra-output ."

{return}}
{setq mextra-output "

{setq mextra-naine-updated 1I
{return I I I

{setq sstring "Executing -mextra }
{if { ~0 mextra.scale-a}

{setq sstring { concat sstring "-u
{ t-to-string mextra.scale-a }"'
{ mt-to-string mextra.scale-b}""}}}

{if { 1 mextra.capacitance}
{setq sstring { concat sstring -o

{if { 1 mextra.synch I
{setq sstrirng { concat sstring "-g"}}}

{setq sstring f concat sstring mextra-name}}
{setq mextra-output { concat. mextra-name " .sim"}}
{setq mext ra-n ame- updated 1I
{message sstring}
{setq mextra.updated 0}

patc hfi le. update
{char sstring }
{char sbstring}
{ mt slen}
{ mt sdot}
{ mt pos}
{setq sstring (buffer-to-string}}
{if {!{name-test sstring}}
{begin

{message "This entry does not contain a legal name"}
{quit}}}

{setq slen {length sstring4}
{setq sdot {string-to-char'.}}
{setq p05 find-char-in-string sstring sdlot}}
{if { 0 pos4
{begin

244

{ mt count}
{setq sstring {buffer- to-st ring}}
{setq count 2}
{if {string-compare sstring "y"}

{setq count 1}}
{if {string-compare sstring "n"}

{setq count 0 } }
{if {string-compare sstring "

{ setq count 0}}
{if { =2 count}
{begin

{message "Values of (y) or In) or ()are only allowed"}
{quit I I)

{setq mextra.capacitance count}
{setq mextra.updated 1I

mextra4.update
{char sstring}
{ mt count I
{setq sstring {buffer-to-string}}
{setq count 2 }
{if {string-compare sstring "y"}

{setq count 1I
{if {string-compare sstring "n"}

{setq count 0 } }
{if {string-compare sstring "

{setq count 0}}
j~if { 2 count}
{begi n

{message "Values of (y) or (n) or C)are only allowed"}
{quit}}}

{setq mextra.synch count}
{setq mextra.updated 1I

esimil.visit
* { char sstring}

{ mt prod}
{if { 0 mextra.updated}

{return}}

258

VIMETH-FORM-15 Virtual Interface Functions Form-use-# !

Virtual Interface:

Object /Operat ion Sets:

Completeness Properties:

..

259

VIMETH-FORM-16 Target Independent Part Form-use- #

Target Independent Skeleton:

Target Independent Code:

VIMETH-FORM-17 Target Dependent Modules Form-use-# '!

Target Dependent Skeleton:

Target Dependent Code:

-" - " .i i .i. ., .. •.: . -,.-. i.. i i.......-.. ,.,.............,...,.,...i-i "i.--.i.- ., 2-i.

260

VIMETH-FORM-18 Test Description Forrn-use-# H

Test Description:

VIMETH-FORM- 19 Specification Technique Form-use-#,,

Select Specification Tec hn ique: Choose Functional Specification to
continue.

VIMETH-FORM-20 Test Results Forin-use-#

Test Results:

%

261

FVIMETH-FORM-21 Documentation Form-use- #

Documentation:

*VIMETH-FORM-22 Function Set Form-use-#[]

Member Name:

Function [more?]:

VIMETH-FORM-23 Method of Providing Funcs Forrn-usc-#"

Method of Providingr:

262

Next, the list of all the production rules are presented.

1. (vi)::= identify-domain)
(identify-comnion)
(identify-noncommnon',
(evaluate-effort',
(iden tify-vi-ops)
(select-spec-tech1/
(specify-interface,
(implementation)

92. (operat ion-seth 1: (obj ec ts-ope ratio ns\

101. (identify-domain)::r (domain)

102. (domain'::= (domain- name/
(domain- member)'*

201. (domain- member):: =(metafunction)

202. (metafunction)::z (member-narne)
(func tion-set)
(operation-set)

203. (function-set)::=z func)

213. (func):: =(mem- name'

301. (objec ts-operat ions,:: ('mem-name),
,object)
,operation)/

401. (common) :: = (common-list)

402. (identify-common):: (common',,

404. (summary;.:: =:prov)

414. (prov)::-:provided-chart

501. (noncommon)::>z'noncommon- list)

263

502. (ident ify- noncom mon): ::--'noncom mon)

601. (evaluate,\::>(effort) t--
(summary)

602. (evaluate-effort)::= (evaluate"

603. leffort)::=-'eval-effort)

613. (eval-effort):: =(object)
(operation)
(member-name),
(how-provided)
(response)

701. (identify):: = include-set"*
(completeness)

702. (identify-vi-ops):: (identify)

70-1. (completeness',:: zz metacompleteness)

705. (yes-set) ::= (vi-include-chart)

706. (comp-prop) ::-(corrmplete-chart;'

713. (inc-set) :: =(object-operat ion:,
(include),

714. (metacompleteness\::=-)yes-sct
co mp-propl\

801. (spec-tech)::= tech nique,'

802. (select-spec-tech):: =(spec-tech\,

901. (,specify)::>zIvi-function,

902. lspec ify- interface (specify)

264

903. (vi-function) ::=(vi-func)

904. (argumnent) :(argument-name)
(type)
(values'

913. (vi-func)::(object-operation),
(vi-nane)
(combool)

(argument,"
(description\

914. (values)::zzz(rangebool\,
(value)
(definition)

1001. (metai mplemen t)::::- (design- test)
(generate-tar-ind)
(complete-tar-dep)
(perform-test)
(prepare-documentation)

1002. 'implementationi: (meta imp lernent)

1003. generate-tar-ind):: =(tar-ind,'

1004. (complete-tar-dep):: = (tar-dep)

1006. 'perform- test):: = ptest'

1007. 'prepare-docurnentation\:: = (doc,'

1013. $tar-ind,:: (iskeleton',
(icode'

1014. tar-dep,\:: (dskeleton'

101. 'tet,: tstdecde on

265

1016. ptest) ::= (test- resu Its)

1017. (doc)::=(docurents)

Next, we show the list of attribute types that was used in the virtual

interface method. These attribute types are assigned to the grammar

symbols.

Name Class Type
domain-name Global str
function-name Synth str
object-name Synth str
operation-name Synth str
member-name Synth str
function-set Synth list
operation-set Inherit list
object-set Inherit list
node-number Synth int
object-sets Global list
common-set Global list
valid Global int
common Synth int
flag Synth int
object-length Global int

Finally, we present the set of procedural components that was

implemented. The first part of each name indicates the symbol to which

the procedural component is tied to. The last part of each name

indicates under which condition this procedural component will be fired.

domain .update
{ setq domain-name { buffer-to-string } }

function.update
{ char sstring }
{ char bname }
{ int lien }
{ int count }

266

{ mt anode}
{setq sstring {buffer-to-st ring}}
{setq function -function-name sstring}
{setq lien I size-of-list func.function-set}}
i f (!=r 0 lien }

{begin
{setq count 1I
{while { ~count Ileh}
{begin

{setq anode (get- next-ite m-from- list func.function-set count}}
{setq bname { get-att rib-at- node anode "function-name"}}
{if (string-compare sstring bname}
{begin

{message "This function is already defined"}
{quit } I I

{setq count { 4 - 1 count}}}}}}
{setq func.function-set { add-item-to-list func.function-set

(node-number} I

object.update
{char sstring}
{setq sstring {buffer- to-st ring}}
{setq objec ts-operat ions.object-set {add- item-to-list
obj ec ts-ope rations. obj ec t-set objec ts-operations. node- n umber}}

{setq obj ec ts-operat ion s.obj ect- name sstring}
{setq valid 0}

operation. .upd ate
{char sstring}
{char bnarne}
{ mt lien }
{ mt count}
{ mt anode}
{setq sstring {buffer-to-st ring}}
{setq lien { size-of-list objects-operatioisoperation-set}}
{if (!= 0 lien}
{begin

{setq count 1I
{while {(zcount lien}

777 - _74

267

{begin
{setq anode {get-next-item-fromn-list

objects-operations.operation-set count}}
i f { ~anode { node-number}}

{begin
{setq bnarye { get- att ri b-at- node anode

"1operation-name"}}

{if { string-compare sstring bniame}
{begin

{message "This operation has already been used"}
{quit I } I } I

{setq count {+lIcount}}}
{setq objects-operations.operation-set {add- item-to- list

obj ec ts-operat ions. opera t ion-set {node-number}}}
{setq operation.operat ion- name sstring}
{setq valid 0 }

me mber- name. update
{ setq metafunction.member-name f b uffer- to-st ring}}

metafu nct ion .visit
{ setq metafunction.function-set function-set.function-set}

function-set .enter
{setq fu nct ion-set.member- name metafunc tion. member-name}
{if {!=, 0 { node-child-form })

f setq function-setffunction-set func.function-set}}

func.enter

f setq func.member-name function-set.member-name}

mern-name. enter
{erase-buffer I
{insert-string {get-attrib-at-node {node-parent }"member-name"}

268

objec: ts-operat ions.en ter
{setq obj ec ts-operat ions. member- name operation-set. member-name}
{setq objects-operations.node-number {node-number}}

operation-set .enter
{setq operat ion-set. member- name rnet afunc tion .merrber-name}
{if' = 0 { node-child-form}}

{begin
{erase-buffer}
{insert-string " Form-use-# i"}
{set-dot 17 }
{setq operation-set.object-set c create-item- list}}
{if f 1 operation-set. flag}
{begin

{setq operat ion-set. flag 0}
{setq metafunction.object-set { delete-item-from-list

metafunction.object-set {node-nuniber}}}}}}
{begin

{erase-buffer}
{insert-string objects-operations.object-nanw
{insert-string " Form-use-#' I
{insert-string { mt-to-string f node-child-form}}}
{insert-string "}

{set-dot { buffer-size}}
{setq operation-set .object-set objects-operations.object-set}
{setq operation-setfflag 1I
{setq metafunction object-set {add-item-to- list

metafunction.object-set {node-number}}}}}

operation. repeat
{char sstring}
{char bname}
{ mt lien)
{ mt count}
{ mt anode}
{setq sstring {buffer-to-string a
{setq lien {size-of-list obj ec ts-ope rations.operat ion-set}}
{if { != 0 lien}
{begin

269

{ setq count 1 }
{ while { (z count lien }
{ begin

{ setq anode { get-next-item-from-list
objects-operations.operation-set count } }

{ if { != anode { node-number } }
{begin

{ setq bname { get-attrib-at-node anode
"operation-name" } }

{ if { string-compare sstring bname }
{ begin

{ message "This operation has already been used" }
{ quit } } I } }

{ setq count { + 1 count } } } } } }
{ setq objec ts-operations.operation-set { add-item-to- list

objects-operations.operation-set { node-number } } }
{ setq operation.operation-name sstring }
{ setq valid 0 }

objects-operations.delete
{ setq objects-operations.object-set { delete-item-from-list

objects-operations.object-set { node-number } } }
{ setq valid 0 }

domain-member.en ter
{ if { = 0 { node-child-form } }
{ begin

{ erase-buffer }
{ insert-string " Form-use-#" }
{ set-dot 17 }
{ if { 1 domain-member.flag }

{ setq object-sets { delete-item-from-list object-sets

{ node-number } } } }
{ setq domain-member.flag 0 }
{ setq domain-member.object-set { create-item-list } } }

{ begin

{ erase-buffer }
{ insert-string metafunction.member-nane }
{ insert-string ' Form-use- }

.

270

{insert-string { mt-to-string {node-child-form}}}
{insert-string I~" I
{set-dot { buffer-size}}
{setq domain-member.flag 1}
{setq domai n- member. mrnmber-narne metafunction .member-name}
{setq domain-member.object-set metafunction .object-sct
{setq object-sets { add-item-to-list object-sets

{ node-number I I I I I
{setq object-length { size-of-list object-sets}}

iden tify-dornai n.en ter
{if { 0 { node-child-form }
{begin

{erase-buffer}
{insert-string " Form-use-#1" I
{set-dot 17}}

{begin
{erase-buffer}
{insert-string domain-name}
{insert-string Form-use-ir
{insert-string { mt-to-string {node-child-form}}}
{insert-string C,"
{set-dot { buffer-size}}}}

identify-common .en ter
{ mt count}
{ mt anode}
{ list alist}
{list blist}
{ mt bcount}
{ mt blen I
{ mt objcount}
{ mt obillen)
{ mt comcount}
{ mt comrillen}
{ mt comnodp
{char comname}
{list. comlist}
{list objlist}

271

{ mt objnode}
{char objname}
{list coplist}
{list ooplist}
{ mt coplen}
{ mt ooplen}
{ mt copcount}
{ mt oopcount}
{char copname}
{char oopnarne}
{ mt temp}
{ mt bnode}
{ mt cnode}
{if (1 valid}
{ return I I

{if { =0 object-length}
I return I I

{setq anode I get- next- item-from-lIist object-sets I}}
{setq comnmon-set { get-attrib-at-noie anode "object-set"}}
{setq comlien { size-of-list common-set}}
{if ({ 0 comfilen
{ return I I

{setq count I}
{while {(=count object-length}
{begin

{setq anode {get-next-item-fromi- list object-sets count} I
{setq blist {get- attrib-at- node anode "object-set"}}
{setq blen {size-of-list blist}}
{setq bcount 1 I
{while { -bcount blen}
{begin

{setq anode { get-next-itemn-from-list blist bcount}}
{ setq alist (get-att ri b-at-fnode anode "object-set"}}
{setqi anode (get-next-itemn-from-list alist 1I
{set-at tri b-at- node anode "common" 1 I
{setq coplist {get-attrib-at-node anode "operation-ser}
{setq copien {size-of-list coplist}}
{setq copcount I I
{While { copcount coplen}
{begin

{setq anode {get-next-item-frorm-list coplist copcount}}

RD Ri 59 12 R ETR S YTE M FOR GENERRT NG $OFTURRE NG NEER NG 4 4

ENVIRONNENTS(U) RIR FORCE INST OF TECH NRIGHT-PRTTERSON

AFB OH W L ACKNIGHT 1985 RFIT/CI/NR-95-7iD
UNCLRSSIFIED F/G 9/2 NLmL....

-2

--
I*=

11 11 sofi-~S 2

So

. mN IIIII!,-

'-4
I

NAIO A B RAU O SA DA D
MI-ROCOP RESL ES OAR

' S
'

4.-1
1 1 -

......l... *. *. *. *. **

272

{ set-attrib-at-node anode "common" 1
setq copcount { + 1 copcount } } } }

{ setq bcount { + 1 bcount } } } }
{ setq count { + 1 count } } } }

{ setq count 1 }
{ while { (count object-length }
{ begin

{ setq anode { get-next-item-from-list object-sets count } }
{ setq blist { get-attrib-at-node anode "object-set" } }
{ setq comlien { size-of-list blist } }
{ setq bcount { + 1 count } }
{ while { (- bcount object-length }
{ begin

{ setq anode { get-next-item-from-list object-sets bcount } }
{ setq alist { get-attrib-at-node anode "object-set" } }
{ setq objilen { size-of-list alist } }
{ setq comcount I }
{ while { (= comcount comilen }
{ begin

{ setq anode { get-next-item-from-list blist comcount } }
{ setq comlist { get-attrib-at-node anode "object-set" } }
{ setq anode { get-next-item-from-list comlist I } }
{ setq comname { get-attrib-at-node anode

"object-name" } }
{ setq objcount I }
{ while { (= objcount objIlen }
{ begin

{ setq bnode { get-next-item-from-list alist objcount } }
{ setq objlist { get-attrib-at-node bnode "object-set" } }
{ setq bnode { get-next-item-from-list objlist I } }
{ setq objname { get-attrib-at-node bnode

"object-name" } }
{ if { string-compare objname comnane }
{ begin

{ setq temp { get-attrib-at-node anode
"common" } }

{ setq temp { I 1 temp } }
{ set-attrib-at-node anode "common" temp }
{ setq temp { get-att rib-at-node bnode

"common" } }
{ setq temp { I temp } }

273

{set-attrib-at-node bnode "common" temp}
{setq anode {get- next- item-from-lIist comlist 1}}
{setq coplist {get-attrib-at-node anode

"operation-set" I)
{setq copleii size-of-list coplist}}
{setq anode {get-next-item-from-list objlist 1}}
{setq ooplist {get-attrib-at-node anode

"operation-set")}
{setq ooplen { size-of-list ooplist}}
{setq copcount, 1 }
{while { ~copcount coplen}
{begin

{setq cnode { get-next-item-from- list coplist
copcount}}

{setq copname (get-attrib-at-node cnode
"operation-name"}}

{setq oopcount 1I
{while { =oopcount ooplen}
{begin

{setq anode { get-next-item-from-list
ooplist oopcount) I

{setq oopname (get-attrib-at-node anode
"1operation-name" I }

{if { string-compare oopname copname}
{begin

{setq temp { get-att rib- at- node anode
"1common"))

{setq temp (+ 1 temp}}
{set-at trib-at- node anode

"1common" tempJ

{setq temp I get- att ri b-at- node cnode

" common" I)
{setq temp { + I temp}}
{set-attrib-at-node cnode

"common" temp}}}
{setq oopcount { -, 1 oopcount}}}}

{setq copcount (+ I copcount}}}}}}
{setq objcount {-- I objcount} }}

{setq comcount {- 1 comcount}}}}
{setq bcount { +t 1 bcount}}}}

{setq count I - count}}}}

274

{ setq valid 1 }

common .enter
{ char comname }
{ list comlist }
{ int comlen }
{ int anode }
{ int comcount }
{ int comflag }
{ list coplist }
{ it coplen }
{ int copcount }
{ int cnode }
{ erase-buffer }
{ setq comlen { size-of-list common-set } }
{if {=0 comlen}

{ begin
{ insert-string "There are no common objects and operations!" }
{ return } } }

{ setq comcount 1 }
{ while { (= comcount comlen }
{ begin

{ setq anode { get-next-item-from-list common-set comcount } }
{ setq comlist { get-attrib-at-node anode "object-set" } }
{ setq anode { get-next-item-from-list comlist 1 } }
{ setq comflag { get-attrib-at-node anode "common" } }
{ if { = object-length comflag }
{ begin

{ setq comname { get-attrib-at-node anode "object-name" } }
{ insert-string

<(-}

{ insert-string comname }
{ insert-string ">

{ setq coplist { get-attrib-at-node anode "operation-set" } }
{ setq coplen { size-of-list coplist } }
{ if { != 0 coplen }
{ begin

{ setq copcount 1 }
{ while { (= copcount coplen }

*,

- : : ' ':- *5-*. ' . % ' . ' ,.......... .. ,:> .,.... , . . .,. -.

27,5

{begin
{setq cnode {get-next-item-from-list coplist

copcount}}
{setq comflag f get-at trib-at- node cnode "common"}
{if I = object-length comflag}
{begin

{setq comname { get-at trib-at- node cnode
"operat ion- name"}}

{insert-string""}
{insert-string comname
{insert-string

{setq copcount (+ 1 copcount}}}}}}}}
{ setq comcount { + 1 comcount}}}}

operation .delete
{setq obj ects-operat ions.operat ion- set {delete- item-from-list

objects-operations.operation-set {node-number}}}
{setq valid 0}

noncommon .enter
{char aname}
{ mt count}
{ mt aflag}
{list alist}
{char comname
{list comlist}
{ mt comlen}
{ mt anode)
{ mt comcount}
{ mt comflag}
{list coplist}
{ mt coplen}
{ mt copcount}

ir mt cnode)
{erase-buffer}
{if { = 0 object-length}
{begin

{insert-string "There are no noncommon objects and operations!"

276

{ return } } }
{ setq count 1 }
{ while { (= count object-length }
{ begin

{ setq anode { get-next-item-from-list object-sets count } }
{ setq alist { get-attrib-at-node anode "object-set" } }
{ setq comlen { size-of-list alist } }
{ setq comname { get-attrib-at-node anode "member-name" } }
{ insert-string

{ insert-string comname }
{ insert-string

{ setq comcount 1 }
{ while { (= comcount comlen }
{ begin

{ setq anode { get-next-item-from-list alist comcount } }
{ setq comlist { get-attrib-at-node anode "object-set" } }
{ setq anode { get-next-item-from-list comlist I } }
{ setq aname { get-attrib-at-node anode "object-name" } }
{ setq coplist { get-attrib-at-node anode "operation-set" } }
{ setq coplen { size-of-list coplist } }
{ setq aflag 0 }
{ if { != 0 coplen }
{ begin

{ setq copcount 1 }
{ while { (= copcount coplen }
{ begin

{ setq cnode { get-next-item-from-list coplist
copcount } }

{ setq comflag { get-attrib-at-node cnode "common" } }
{ if (!= object-length comflag }
{ begin

{ if { 0 aflag }
{ begin

{ setq aflag 1 }
{ insert-string " }
{ insert-string aname }
{ insert-string "'

"}}n { setq comname { get-attrib-at-node cnode

277

"operation-name"}}
insert-string"}

{insert-string comname}
{insert-string

{setq copcount f + I copcount}}}}}}
{setq comcount { + 1 comcount}}}}

{setq count {- 1 count}}}}

FILMED

10-85

DTIC

