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SECTION 1

INTRODUCTION

The purpose of this investigation is to determine the perfor-

mance payoff of post stall maneuvering (PSM), sometimes called

superaneuverability, and thrust vectoring. PSM involves

maneuvering at high angles of attack, angles greater than that for

max'mum lift coefficient. There are two potential PSM advantages.

The first is the ability to rapidly change the flight path of the

vehicle. The second is to obtain the larger pointing angles which

is important from a weapon's standpoint. Pointing will not be

addressed in this effort, but clearly it has an advantage at any

speed.

In the past, conventional maneuvers were restricted to less

than maximum lift angles of attack. If PSM has any advantage, it

must be able to develop velocity rotational rates greater than

that for conventional maneuvers. One way ot addressing the PSM

issue is by solving instantaneous turning performance and minimum

time to turn problems. That is the approach that will be taken

here. The analysis will be limited to subsonic speeds. The

reason for this is that past performance studies have shown that

if there is a performance payoff for PSM, then it occurs at low

speeds; that is speeds below the corner velocity.

The first group of problems will be instantaneous turning

performance problems. Thrust vectoring will be included. The

solution to this problem yields insight into both the effect of

thrust vectoring and high angle of attack maneuvers along the

trajectory. The last problem is the variable speed optimal con-

trol problem for minimum time turns. The significance of this

problem is that the effect of high angle of attack on drag as well

as lift during accelerated maneuvers can be addressed.
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An important difficulty with high angle of attack maneuvers

he ability to control the vehicle. This issue will not be

essed in this study. It will be assumed that the vehicle can

ontrolled anywhere between zero and ninety degrees angle of

ck. This assumption should be addressed on its own since it

tes to a critical problem area in achieving PSM capability.

Several papers (References 1-5) have tocused attention on

mum time turns for high speed aircraft. These efforts include

two and three dimensional trajectories. The former cor-

ond to constant altitude or vertical plane maneuvers, either

t-S or half loops. In the next section, the equations of

on and the control constraints are presented.
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g
WLmax - L max (50)

V

re

Lmax = qSCL  N (51)
max

The global maximum of the turning rate is obtained by maxi-

ing simultaneously with respect to both the angle of attack and

thrust vector angle. Recall Equation (15)

g 1
= - ET sin(%+6 )+L 3 (15)
V v

optimum is obtained by maximizing both terms. Thus, the angle

ittack is that for CL and the thrust vector angle is the
max

plement of the angle of attack. Hence

g
W mx - (T +L (52)max maxv

9 result can also be determined rigorously. In order for FN to

maximized, it is necessary that the following equations be

Lsfied

ON Tcos(%+& 1+ = 0 
(53)T(X- T UL~a6

- T cos(m+. 0 (54)

m the latter, the sum is ninety degrees. Substitution into the

st equation shows that

16



The optimum angle of attack for a given &V, is obtained from

Equations (15) and (24)

Tcos((x+g v )+qSC LO = Tcos (ox+6 v)+qS(C~ %cos%-C Nsina.) = 0 (45)

The optimum angle of attack is greater the cL1.The optimum

angle of attack, %. is the solution of

taA TcosSv+qSC NM(6
Ts in& V+qSC N

This equation agrees with Equation (26) when 6. 0. At low

speeds where q is small,

A
tanai cotfiv 47

The solution is

OLA (48)
2 v

A
Since Tsin(oi +6 ) dominates, from Equations (14) and (15) maximum

w is approximately

w (49
max -T(9

At high speeds where q is large, Equation (45) shows that CL

must decrease and therefore approaches stall L dominates

and

15



is achieved at the same astall" It has been observed in ex-

eriental aerodynamics that %stall varies. At low Mach numbers

here the thrust dominates, turning rate is approximately

g
w - T (44)

V

nd is insensitive to aerodynamic variations. At high Mach num-

ers where the lift dominates, the turning rate varies in a linear

anner with respect to the maximum value of the normal force

Defficient.

The explanation for this is as follows. At low speeds, L is

arge and approximately ninety degrees. Equation (28) shows that

he maximum turning rate is insensitive to variations in CN. At

igh speeds, Equation (43) shows that the maximum turning rate is

roportional to the normal force.

The optimum angle of attack is presented in Figure 13. At

Dw speeds, Equation (26) shows that x decreases with increasing

Wmax At high speeds, a approaches xstall which we assumed to

s independent of maximum CNmax for this steady state aerodynamic

iLta.

irust Angle Variations

The analysis of the influence of 6 is next. In Figures 14v

id 15 are presented the maximum turning rate and the correspond-

ig angle of attack, respectively. The thrust angles vary from

!ro to sixty degrees in ten degree increments. The maximum

irning rate is relatively insensitive to the thrust vector angle.

14



where

, qSCN

N . (42)
H

,2 .z ,2

At high speeds, CL = 0, NO L N tano,N )>T N ))T N , hence

g , A
Wm -- N cosm (43)

V

The maximum turning rate is relatively insensitive to thrust

variations.

The sensitivity of the optimum angle of attack to variations

in the thrust is presented in Figure 11. At low speeds where *

is large, Equation (26) shows that tanaL varies linearly with the
thrust. At high speeds, Equation (23) shows that CLM approaches

zero. Hence oL approaches xstall which is independent of the

thrust.

Aerodynamic Variations 6v = 0

A sensitivity analysis of the influence of the maximum value
of normal coefficient on the maximum turning rate was conducted.

The variation in the aerodynamic normal force coefficient is a

constant multiple of the values defined earlier. CNnom data are

the nominal values used earlier. Maximum turning rate is

presented in Figure 12. The value of CN/CN = 2.0 represents an
nom

extreme change in steady state aerodynamics. In unsteady flow, it
may be possible to exceed this value. It is assumed that maximum

13
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V2T (38)CRIT = PSCL

The critical speed is independent of m. For high angles of at-

tack, sinm increases, CL decreases and Equation (37) shows the

critical speed increases. Figure 9 shows that the critical speed

is approximately 0.15 Mach number. The equilibrium speed was

approximately 0.2 Mach number. The minimum turning rate is ob-

tained by substituting Equation (36) into Equation (15)

2g
Wmin  - T sinx (39)

V

Thrust Magnitude Variations, 6V = 0

A sensitivity analysis with respect to maximum thrust varia-

tions was conducted. For an altitude of 20,000 feet, maximum

turning rate is presented in Figure 10 for different thrust

levels. Tnom corresponds to the nominal values used in the pre-

vious calculations. At low speeds the maximum turning rate is

nearly linear with respect to the thrust. At high speeds the

turning rate is essentially insensitive to the thrust since the

lift dominates.

This behavior can be explained by examining Equation (28).
A

At low speeds, A is large, thus approximately

g
wmax - T (40)

V

Maximum turning rate varies linearly with the thrust. The situa-

tion at high speeds is explained as follows. Combining Equation

(15), (21), and (26) gives after some manipulation

gcosx 2 ,2 ,

-a 4T +N +T N) (41)Wmax (X

12
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thrust. This Is not to be confused with absolute minimum turning

rate which corresponds to zero lift and zero thrust.

For a given angle of attack, Equation (15) and Figure 7 shows

that w varies with respect to V in the following manner

A
w= - + BV (33)

V

where

,gPSC L
A gT sina, B (34)

2H

A and B are invariant with respect to the speed if the thrust does

not vary with respect to the speed. If the thrust can be treated

as a constant, then the minimum turning rate is determined from

the minimum of Equation (33)

A
- + B = 0 (35)V2

or

Tsina = L (36)

The critical speed, VCRIT, is the solution of

V 2  2Tsin (7

CRIT PSCL

For low thrust, VCRIT is low. For small angles of attack, sin% is

approximately a and CL is approximately CL m. Thus Equation (37)

is approximately

11



8FNF a N (32)

Thus the angle of attack for maximum turning rate and V = 0,

y = 0 are the same whenever the maximum occurs at an angle of

attack where CN is constant. Refer to the intersection between

the two angle of attack curves as the equilibrium speed. The

reason for calling it this is that the speed will not change once

this point is reached because 0 a 0. The only way the speed can

decrease is if the angle of attack is increased creating more drag
or the thrust is reduced. It can be concluded that if the initial

speed is greater than the equilibrium speed and CN is equal to

CN  the the vehicle declerates to the equilibrium speed and then
maxremains there. If the flight path angle is not zero, then from

Equations (1) and (4) the equilibrium speed is less (greater) than

the zero flight path case if the flight path angle is positive

(negative).

At higher speeds the structural limit comes into play. The

speed at which this occurs increases with increasing altitude

since the dynamic pressure decreases. Only the structural limit

for ten thousand feet is shown since the corner speed at twenty

thousand feet is greater than a Mach number of 0.6. The angle of

attack for V = 0, y = 0 is less than that for maximum turning rate

since the drag in Equation (4) increases with increasing speed.

In order to satisfy V = 0, the angle of attack must decrease with

increasing speed. In Figure 9 are presented turning rates cor-

responding to the maximum, V 0 for y = 0, and the structural

limit at ten and twenty thousand feet. As the altitude increases,

the thrust decreases for a given Mach number and the dynamic

pressure decreases also. Consequently, optimum w decreases.

Critical Speed, 6v = 0

The critical speed is that speed where the turning rate is

minimum with respect to speed for a given angle of attack and

10
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At low speeds, q is small and m approaches ninety degrees. At

high speeds, q is large and m approaches mstall* This conclusion

is deduced from comparison with Equation (24). Equation (23) can

be rewritten as follows

CL

Tcosm+L L = 0 (27)
CL

Solving for L and substituting into Equation (15) gives

wma = - T(sinm CL os (28)
V C

In Figure 8 is illustrated the optimum angle of attack for

altitudes of ten and twenty thousond feet. Also included, are the

angles of attack corresponding to zero longitudinal acceleration

and a load factor limit equal to 7.33. At speeds below the corner

speed, the structural limit can not be reached. Also, at

low speeds the maximum turning rate and the turning rate at V 0

and zero flight path angle are the same. The reason for this is

the angle of attack is higher than that value where CN reaches its

maximum value. Since maximum turning rate corresponds to maximum

FN , from Equations (5) and (21)

FN = T sin+N cosm (29)

aF -TNcos-Nsin+ cos% (30)

But the last term is zero since CN is constant. Comparison with

Equation (4)

FT a T cosm-N sin (31)

shows that

9



location of the maximum value are sensitive to the Mach number.

In Figure 7, w is presented as a function of Mach number for

constant values of the angle of attack. The latter varies from 0

to 90 degrees in 5 degree increments. For constant m, w decreases

with increasing Mach number until the minimum is reached. This

minimum will be referred to as the critical speed. From there on

w increases through the subsonic region.

For a given Mach number, there is an angle of attack that

gives maximum w. At low Mach numbers the angle of attack is high

and goes to 90 degrees as the Mach number goes to zero. At high

Mach numbers the optimum angle of attack approaches that for

OSTALL This behavior can be seen by inspection of Equations (14)

and (15). Optimization of Equation (14) with respect to the angle

of attack requires that

TcosaL+ ! = Tcos +qSC = 0 (23)

Since the first term is positive the second term must be negative.

This can occur only for angles of attack greater than that for

MSTALL" From Equation (21)

C - CN cos-C sine (24)

Equation (23) becomes

Tcosa.+qS(CN cosm-CNsinx) = 0 (25)

The optimum angle of attack, a , for a given speed and altitude is

determined from

tan = T+qSC N_ (26)qSCN

8
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CN = CLCOS+CDsinx (17)

CA = CDCOSO-CLSino (18)

The steady state data correspond to subsonic Mach numbers. It

will be assumed throughout this effort that the Mach numbers are

sufficiently low that Mach number effects can be neglected. The

coefficients that correspond to .the data of Figures 2 and 3 are

presented in Figure 5. From these data, approximate relations can

be deduced for use in performance prediction

C A = 0 (19)

CN = 0.16+3.44x 0( c. (0.44 rad

= -1.72+12.04(.-9.862 0.44< (x <0.61 rad (20)

= 1.96 0.61<(x

The relations for the lift and drag coefficients reduce to

CL = CNCOSM (21)

CD = CNsinL (22)

These equations are exact if CA is exactly zero. They are in good

agreement with the experimental data as can be seen by examination

of Figures 2 and 3. The approximate relations are used in all

subsequent calculations.

Angle of Attack Variations, 6v = 0

For no thrust vectoring, 6 = 0. For a given Mach number,v
T/, and altitude, the turning rate looks like that illustrated in
Figure 6. The turning rate has a maximum somewhere between 0 and

90 degrees angle of attack. Both the shape of the curve and the

7



The maximum of y corresponds to a = 0 and maximum w. Minimum

* corresponds to a = w and maximum w. Thus in both cases, the

* limits result from maximum w. From Equation (15) it follows that

maximum w results from maximizing FN. Clearly maximum thrust

* maximizes F The rest of the section will concentrate on maxi-

mizing the turning rate function w.

Aerodynamic Relations

Typical aerodynamic data from Reference 6 are illustrated in
Figures 2 and 3, and correspond to the F15 which is a high perfor-
mance fighter. The data represent steady state aerodynamics. Non

steady, or time dependent, aerodynamic lift data are superimposed

on top of the steady state data in Figure 4. The non steady data
are only an illustration of a phenomena called dynamic overshoot
and undershoot. When the rate of change of the angle of attack is

very large, the available lift first exceeds the steady state
lift. After the stall angle of attack is reached, there is a

rapid transition from overshoot to undershot where the lift

-* decreases with angle of attack. When the angle of attack is

rapidly reduced, the dynamic lift drops below the steady state
-. values. The overshoot and undershoot aerodynamics are not com-
*' pletely understood to say the least, therefore, there is
- uncertainty in their prediction. There is some understanding of

"* the variables involved, however. The overshoot is primarily a

function of & and the final value of %. The transition from
* overshoot to undershoot is time dependent and the lift may be

- asymmetric, one wing may stall before the other. The undershoot

depends on the value of maximum CL in overshoot and is also time
* dependent. The drag also experiences variations from the steady

state values. The drag may lag the non steady lift. For the rest
of this effort, we will consider only steady state aerodynamics.

*The normal and axial force coefficients are related to the
lift and drag coefficients and the angle of attack in the follow-

ing way

6
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SECTION III

INSTANTANEOUS TURNING PERFORMANCE

Instantaneous turning performance corresponds to point per-

formance analysis. Each point in the flight envelope can be

studied independently of every other point. In Section IV where

continuous turning performance is studied, it is proven that for
minimum time turns the optimal trajectory is in the vertical

plane. Therefore, this section will consider only vertical plane

trajectories. The appropriate turning rate equation is the time

rate of change of the flight path angle

g
= -(FNCosa-cosy) (13)

where

FN = T sin(L+8V+ )+L (14)

0

The bank angle a is zero or 180 degrees (0 corresponds to a pull
a

up and 180 corresponds to a pull down). Introduce the turning

rate function w defined by

g
w =- FN (15)

V

The actual flight path angular rate is related to w as follows

• g
= wcosa- -cosy (16)

V

At any point on the trajectory, that is given the speed, flight

path angle, and the altitude, the objective is to determine the

propulsive and aerodynamic controls that optimize the flight path

angular rate. This includes both maximizing and minimizing 4.

This is accomplished by optimizing the turning rate function w.

5
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z = Vsin-y (9)

The change in the mass will be neglected. The constraints for

these equations are

n i nma x  (10)

T <(T(<T(1
mi n  max

For this study minimum thrust is zero. There are four controls

for this situation. The propulsion controls are the thrust mag-
nitude, T, and thrust vector angle, 6. The aerodynamic controls

are the aerodynamic angle of attack, %, and bank angle, a. Since

the study has application to post stall maneuvering, the angle of
attack is limited only by the maximum value of the structural load

factor and ninety degrees. In previous studies it was limited to
the stall angle of attack, xstall' If the speed is greater than

the corner speed, then the angle of attack is limited by the

maximum value of the load factor. The corner speed occurs at the
juncture between the CmL and nmax limits. It is determined from

! pSC~mmax
1 PSC = n H (12)

maax

In the next section, instantaneous turning performance

problems are addressed.

4
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SECTION II

PROBLEM FORMULATION

The coordinate system selected for the trajectory problems is
a velocity coordinate frame. The definition of the velocity
vector using a velocity coordinate frame includes the magnitude of
the velocity, the heading angle, and the flight path angle. The
rate equation for these variables are

V= gFT-siny) (1)

y z -(FNcosa-cosy) (2)
V

F -(3)

V sny

where

FT = T cos(oL+6 )-D (4)

FN = T sin(oL+S )+L (5)
N #

T =T/W, D = DIW, L L/W =n (6)

The aerodynamic and propulsive forces are illustrated in Figure 1.
The thrust is a function of throttle setting, Mach number, and
altitude. The lift and drag are functions of Mach number, al-
titude, and the angle of attack. The position of the vehicle is

determined from the kinematic relations

x = Vcosycos* (7)

y = Vcosysin* (8)

3



ii. L! 0 (55)

which occurs at (stall*

In Figures 16 and 17, sustained turning rate and the cor-

responding angle of attack are presented. Comparison of Figures

14 and 16 shows that the angle of attack at low speeds is the same

for maximum turning rate. Since CN is nearly constant, Equation

(45) reduces to Equation (4). Thus for zero flight path angle,

the solution for maximum and sustained turns are the same. At

high speeds, maximum turning occurs simultaneously with lon-

gitudinal deceleration. Thus, thrust vectoring will result in

faster decelerations relative to the zero vector angle case.

There is no equilibrium speed if thrust vectoring is used because

for maximum turning rate L+Sv is ninety degrees and therefore FT

is the negative of the drag and <(10.

PSM Versus Thrust Vectoring

In Figure 18, maximum turning rate is presented for optimal

PSM and thrust vector maneuvers. In general, thrust vectoring

gives slightly higher turning rates. The corresponding optimal

angles of attack are presented in Figure 19. For thrust vector-

ing, a stall is approximately 31.6 degrees and &v is 58.4 degrees.

Longitudinal decelerations at zero flight path angle are presented

in Figure 20. Thrust vectoring produces greater decelerations

since the thrust component in Equation (4) is zero. Figures 18

and 20 illustrate that comparable turing performance can be

achieved through PSM maneuvers or thrust vectoring.

17
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Based strictly upon steady state aerodynamics, subsonic Mach
numbers less than 0.6, and instantaneous point performance con-
siderations, very high angles of attack (beyond stall) turns
should be employed only at low speeds where the thrust dominates
the lift. The situation is reversed at high Mach numbers where

* the angle of attack approaches the stall value. Increasing thrust
gives higher turning rates particularly at low Mach numbers and
increasing normal force coefficients increases the turning rates
at high Mach numbers. The equilibrium Mach number (Mach number

,. where maximum turning and zero rate deceleration at zero flight
path angle are equal) is approximately 0.2. For pull ups the
equilibrium speed decreases and it increases for pull down

. maneuvers. With thrust vectoring, the optimal angle of attack is

-. Ostall and the optimal thrust vector angle is the complement of
the angle of attack. This holds for all speeds. Hence post stall
maneuvering tPSM) is not necessary for turning if thrust vectoring
is available. Either optimal PSM maneuvers or thrust vectoring

- yield comparable turning performance.

Future studies should include the following aspects:

I. Unsteady aerodynamics

2. Analysis of aircraft pointing

3. Compare turning versus pointing

4. Air combat analysis MvN

18
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SECTION IV

OPTIMAL VARIABLE SPEED MANEUVERING PERFORMANCE

It was demonstrated in the previous section on instantaneous

turning performance that high angle of attack maneuvers have a
performance payoff only at very low speeds. This occurs because
the thrust force dominates the lift at low speed because the
dynamic pressure is low. As the speed increases, the aerodynamic

lift dominates over the thrust and the maximum turning rates tend

to be near astall* In this section, the impact of both aero-

dynamic and thrust control will be addressed. The latter includes
both thrust magnitude and vector angle variations. It will be
assumed throughout that the thrust magnitude does not vary with
angle of attack or thrust angle. The equations of motion are

Equations (1) through (3)

V g(FT-siny) (1)

g
r = - CFcosa-cosy) (2)

V

= g sina
F4 c 'osy- (3)

where FT and FN are defined by Equations (4) through (6)

FT a T cos(m+6V)-D (4)

FN = T sin(o+6v)+L (5)

T =T/W, D D/W, L =L/W (6)

19
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The altitude variation will be assumed to be negligible.

The optimal control problem is the minimum time to turn from

V(o) * V0, Y(o) = 0 (56)

to

ytf) 0 (57)

where V is specified. If the motion is in the vertical plane,
0

then the final flight path angle can be taken to be ± v. The

final speed may be free or it may be specified. If V0 is free,

the optimal trajectory is free to go to low speeds if this is

optimum. The final heading is free.

There are four controls; the thrust magnitude, the thrust

vector angle, the aerodynamic angle of attack, and the bank angle.

Optimal controls will be determined for all four. Then the case

where the thrust angle is fixed and set equal to zero will be

addressed. The contraints on the structural load factor and

"- thrust magnitude, Relations (10) and (11), must hold everywhere

"" along the trajectory. The problem with aerodynamic control at

* high angles of attack will not be addressed. It will be assumed

that there is sufficient control to fly anywhere between zero and

• . ninety degrees.

,' Nondimensional Transformations

Before developing the optimal controls, it will be useful to

introduce nondimensional variables that are the order of one.

*. Let

U = V/Vo , T = gt/V (58)
0 0

20

• .,. . ... .,-,-.'. ,., * , -. ', *. ~ - .. ... ......,_.' .' ; ,,'. , ,- . -. , ,,. .. ., . '.. 2 . . .'.- ,-'



-N - ~ *~- -. - -U - UTIZ

The transformed differential equations are

" T co (o+ ) -N siniL-siny (59)d-r v

-~{[Tsino(x+8, )+N Cos CLosav-cosyJ (60)

E T'sin(oL+& )+N'cosoL A2 (61)
dr u v cosy

Consider next the development of the optimal controls.

Optiai Controls

The optimal controls are determined from the maximization of
the Hamiltonian defined by

H =P dM+P 4X+P (62)

where P U I P N, P *are costate variables that must satisfy along the

optimal trajectory

dl' aH
-T - (63)

-f a (64)

dr (65)

Since H is Independent of the heading angle 4,P is a constant

everywhere along the optimal trajectory. Since the final heading

is free

21



P =0 (66)

The boundary condition on the costate variable corresponding to

the flight path angle y is

PY(tf) = p.f (67)

If final speed is free, from the transversality condition

P u(tf) = 0 (68)

If the final speed is prescribed

P (t f) =Pu (69)

The optimal angle of attack schedule as a function of time will be

different for the free and specified final speed cases. Hereafter

we will only consider the case where the final speed is free. The

boundary conditions in Equations (66), (67), and (68) must be such

that the boundary condition in Equation (57) is satisfied. The

final time is free and H does not contain the time, therefore

H = C0  (70)

everywhere along the optimal trajectory.

Substituting Equations t59) through (61) and (66) into

Equation (62) gives

H = xTT +yN -Pusiny- P_.Y cosy (71)
u

where

22
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XT= Pucos(O+6 )+ P cososin(o+6 v ) (72)
U U U'f V

AN-P sina+1 P cosacosm (73)
N u u -y

Consider first that part of the Hamiltonian that contains the

bank angle

H(o) a P cosciCT sin(mL+8 )+N cosJ (74)

There are only two choices that maximize H

A
a a 0 if P >0 (75)

A
a • w if P ( 0 (76)

The final flight path angle is

Yttf) = w if a = 0

(77)

Yt I = -W if a I

The optimal path is in the vertical plane. If the final speed is

free, the optimum is a half loop or split-S both of which are

illustrated in Figure 21. If the final speed is specified, then

an additional maneuver must be considered. This third maneuver is

a pull up to stall, a rotation to a nose down attitude, and then a

pull up to zero flight path angle and specified speed. In the

numerical examples to be examined later, we will consider only

free final speed. The only time that a can be different from 0

or w is when there is an altitude constraint or the final heading

23
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is not v. These possibilities will not be addressed in this

effort.

Ne can now drop Equation (61). Equations (72) and (73)

become

P 6
TPucos(l&+6v )+ -'Y sin(ax+6v) (78)

P &
AN = Pu siln + u coso (79)

where

6 z +1 for a pull up (80)

6 = -1 for a pull down (81)

Consider next optimal thrust magnitude control.

The thrust appears linearly in the Hamiltonian, therefore,

for optimal thrust magnitude control

T - Tmax if AT > 0 (82)

T = 0 if ATS 0 (83)

and may be interior if AT= 0 for a finite time. This situation

will be examined later in this section.

Next consider optimization with respect to the thrust vector

angle, 6v . Let H(6,v denote that part of the Hamiltonian that

contains 6 terms

24
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H =v- ATT (84)

Maxisization with respect to & v requires that

a - - 0 
(85)

Substitution of Equation (78) gives

P &
-P sin(oL+6 )+ Y cos(a+ ) = 0 (86)

U V U V

The solution may be in any quadrant, therefore, the sum is com-

puted from

P68 P
sin +6v) =+ -U- cosl.+6v) + (87)v -up v -P

where

P X2 1P ) (88)

Substitution of Equations (87) into Equation (78) gives

AT  + P (89)

Maximum H(S v ) corresponds to maximum AT, therefore, the positive

sign holds and

AT - P (90)

Hk6&) - PT (91)

25



PG Pu
sin a.+6 : = , cost%+& p =-- (92)v UP v P

Intermediate thrust can be ruled out since this would require P to

be zero which requires Pu and P both to be zero according to

Equation (88). This can not hold for a trajectory optimization

problem, the costate variables cannot all be zero. Thus, maximum

thrust magnitude is applied throughout the trajectory.

The optimal angle of attack is determined next. Let H(m)

denote that part of the Hamiltonian that contains (. terms

H m) - ATT +kNN (93)

The necessary condition for optimum a Is

aHim , A , aN
= T + -) N +A N  =0 (94)

Since

0 (95)6v

Equation (94) becomes

P y8 P8Y
(-Pucosm- 

-u sins.)N +(-Pusinm+ u  cosN = 0 (96)

This is a transcendental equation in m. Solving for tan gives

26
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CH  P 6

tana V C (97)

CN P y6

This equation can be solved for the costate function

UP= (~ 98)
PR P (98

'Y

as a function of the optimal angle of attack. Figure 22 presents

the optimal angle of attack as a function of the costate function

P If the final speed is free, then the final value of PR is

zero. Equation (97) reduces to

tanoL -L (99)
CN

Differentiating Equation (21) gives

C L C% cosu.-C Nsn (100)

Substituting Equation (99) gives C = 0. Thus, at the final time

the optimal angle of attack is the stall angle. Also at the final

time, Equation t92) gives

O 6v a 1 (101)v 2

Recall for the instantaneous turning problem the optimum angle of

attack was astall and the thrust vector angle was the complement
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astall which is the same as the final condition for the problem

,re.

From Equations t92)

cote A PR (102)

iere

e A A +6( 103)
v

Lbstituting this into Equation (97) results in a relation between

and ao that must be satisfied everywhere along the optimal

ajectory

C NO
- tanLLN

cote = (104)

1 + - tana

e relationship between the optimal angle of attack and optimal

silon is presented in Figure 23. Given the optimal angle of

tack, the optimal thrust vector angle can be determined. The

stribution is presented in Figure 24. At high angles of attack

ere CN a 0, Equation (104) reduces to

cote a -tana. (105)

e solution of this equation is

-- =-+a (106)2
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The solution for optimal 6v is therefore

* T
6v = (107)

This holds whenever CN = 0. For small angles of attack, CN is

approximately CN x. Equation (104) is approximately
Ox

AtA
E= 2a (108)

The optimal thrust vector angle at low angles of attack is

approximately

6 = (109)

For free final speed, the final optimal angle of attack is the

stall angle of attack. The only way that higher angles of attack

can be reached is if the costate function PR is less than zero.

This can be seen from examination of Equation (97) or Figure 22.

In addition to satisfying Equation (96), it is necessary for

a relative maximum that H() satisfy

a H() " 0 (110)
X2

Substitution gives

a ZH W N 2 lkN 8N a 2N

z, _TT .ANN +2-dX -- +XN -(11)
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e kT>0, it follows that N>O. Also, N >0, N (0, T >0, N >0

substitution does verify that Relation (110) is satisfied.

Since the optimal maneuvers are in the vertical plane, the

ectories are either a half-loop or a split-S. For a half-

, a = 0, 6 = 1, and Y(tf) = v. For a split-S, a = v,

-1, and y(tf) = -w. These terminal conditions replace

tion (57). The optimal trajectory is the maneuver that given

minimum time to rotate through 180 degrees in the flight path

e. This can only be determined by numerically integrating the

opriate differential equations and comparing times for a half-

and a split-S.

The differential equations that must be solved simultaneously

the differential equations for u, N, PUP and P . Since the

mal controls are a function of PR" the differential equations

Pu and P Y can be replaced with a single differential equation

pR" Differentiating the logarithm of PR gives.

d PR du PR dPu P (PR R + R R Y(112)
dT u dT P dT P dt

tituting Equation (59) for du/d and expanding Equations (63)

(64) for dP /d and dP /dT gives after some manipulation

U Y

SI T (P COSE+sinE)+ I N (P sinm-cos)
d u R u

(113)

- -U 6(1+pz)cosy

tituting Equations (92) for e gives

30



= - T tI+, + N (P sin%-cosow- 6(1+Pz)cosy 11141

dr u Ru R u

The right side is a function of the costate variable PRO the state

variables u and -, and the control variables T and %. The dif-

ferential equations for u and y are a function of the state and

control variables. The control variable % is a function of the

costate variable and the thrust is maximum. Thus, three ditferen-

tial equations result, one each for PR' u, and y. The only

unknown is the initial value for PR' But the final value is known

from Equation (68). Thus, a single parameter search on the ini-

tial value of P is required. An initial estimate is made, the

three differential equations are integrated forward in time, and

the optimal trajectory is that trajectory that gives P = 0.

Later on in this section, we will develop some numerical results.

Consider next the problem where the thrust vector angle is fixed

at zero.

Zero Thrust Vector Angle

Equations (92) do not apply. Equation (94) for optimal (

becomes upon substitution of Equations (78) and (79) with 6 v 0v

aN

NT  ' +>' N 8 (X t115)

This equation is different from Equation (94) because of the xNT
)N

term. Equation (110) becomes

.2 H M. a 2N )(16
k TX -NN 2X T ) +XN L2
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Solving Equation ti15) for A and substituting gives

z
T [T .4.2 +t4 TJ +.Nj l)

006j dOLZ

Since the first derivative of N is non negative and the second

S-derivative is non positive, the bracket sum is non negative and it

follows that if Relation (117) is satisfied, then

A 0 k 118)T

The thrust magnitude is maximum except for possible interior

. thrust. Consider this possibility. For interior thrust, AT = 0

' for a finite time, thus Equation (115) reduces to

it O dNX

- The only possibility is

= 0 %120)

. If both A and AT are zero, then Equations 78) and (79) reduce to

P6
P coso+ - sina = 0 (121)u

P6
cos0-P sinx = 0 (122)U U

These two equations combined together give
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--

P) 123)

This can hold if and only if

Pu =Py 0 124)

This can not hold for the optimal solution. Therefore AT 0 for a

finite time and maximum thrust is applied everywhere along the

optimal trajectory.

The optimal angle of attack is the solution of Equation

(115). Substituting Equations (78) and (79) gives

PS PS
q-P sinx+ 'Y cosau(T +N )-(P cosoL+ _V_ sino)N = 0 (125)U U U U

Since the optimal angle of attack is between zero and ninety

degrees, Equation t125) can be rewritten as

T + N - PRN

tanx = N126)
PReT + N) + N

The optimal angle of attack is the solution of Equation (126).

At the final time, PUN 0 from Equation (64). Substitution

into Equation (126) gives

T +N
tan = t127)

N

Comparison with Equation t26) shows that the final value of the

optimal angle of attack is equal to the optimal instantaneous

value. Thus, if the final speed is higher than the critical
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speed, the final angle of attack is close to ostall" The only

time that high angle of attack could occur is at speeds less than
the critical speed. In air combat, this situation is to be

avoided since the engangement is similar to that between helicop-

ters and fighters. But from strictly a single vehicle minimum

time turn problem, the angle of attack could attain large values
if the speed is very low.

. Numerical Examples

Optimal controls tor zero thrust vectoring will not be em-

phasized since it was shown in the last section that high angle of
attack maneuvers can result. With thrust vectoring there is

uncertainty as to whether or not PSM is optimal. At this point

all that we know is that the final value of the optimal angle of

attack equals the stall value.

Optimal and nominal trajectories were developed for initial

conditions corresponding to 0.6 Mach Number and 20,000 feet

altitude. The nominal trajectories correspond to constant angle

of attack and thrust vector angle. The angle of attack was

C stall' Optimal trajectories were in the vertical plane. The

pull up maneuver required less time to rotate through 180 degrees
than did a split-S maneuver.

The numerical results are presented in Table 1. Six dif-

ferent cases are presented. The thrust to weight ratio of 0.6 is
a typical value for the F15 at 20,000 feet and 0.6 Mach Number.

Higher values of T' were introduced to determine the effect of
increasing thrust. The first two cases were nominal trajectories

flown at CLa, i.e., sx The difference was in the thrust
L max"stall'

vector angle. Thrust vectoring reduced the time by approximately

three and one half seconds. The last four cases are optimal

results. The third and fourth cases show the difference between a

rull up and a split-S maneuver. The pull up is better.

34
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Comparison of the third, tifth, and last case shows that the time

decreases as the thrust to weight increases. This is consistent

with the results from the previous section. There the turning

rate increased with increasing thrust to weight ratio. The angle

of attack did reach values where CN= CNmax* The thrust vector

angle went to ninety degrees.

TABLE 1

TIME TO TURN RESULTS

T/N MANEUVER MAX a (Deg) MAX 6v (Deg) TIME (SEC)

0.6 PULL UP Xstall 90-%stall 10.8

0.6 PULL UP (stall 0 14.5

0.6 PULL UP 50 90 9.6

0.6 SPLIT-S 30 60 12.3

1.0 PULL UP 55 90 7.9

1.2 PULL UP 60 90 7.3

Based upon the limited number of numerical results examined

here, the conclusion is that for minimum time turns, post stall

maneuvering is optimal. This holds for both thrust vectoring and

nonvectoring.

In Figures 25 through 29, u, X, PR' x' and 6v are presented

as a function of the nondimensional time and for initial values of

PR equal to 0.3, 0.4, 0.5, 0.6, and 0.7. These results correspond

to the third case in Table 1. The trajectories for PR (0) = 0.3
and 0.4 do not generate enough lift to fly through Lhe vertical,

thus the heading can not change by 180 degrees. The optimal

trajectory corresponds approximately to PR 10) = 0.5. In Figure

28 it can be seen that the maximum angle of attack is ap-

proximately 50 degrees. From Figure 25 it can be observed that
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the final speed is very low. These results demonstrate that high

angle of attack maneuvers are optimal with thrust vectoring.

Summary

Minimum time turns in the subsonic region require maximum

thrust throughout the maneuver. This holds for both vectored and

nonvectored thrust. For the vectored thrust case the final angle

of attack equals xstall which matches the instantaneous problem

which holds everywhere. For nonvectored thrust the final angle of

attack equals that for maximum instantaneous turning rate.

Optimal maneuvers employ PSM. As the thrust to weight ratio

increases so does the maximum angle of attack along the

trajectory.
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SECTION V

CONCLUSIONS

,"The purpose of this effort was to determine whether or not

there are any apparent performance improvements through Post Stall

Maneuvers tPSM) or thrust vectoring. PSM is a result of high

angles of attack, greater than the stall value. Two different

prob±ems were addressed. The first examined instantaneous turning

performance. The second focused on minimum time turn problems.

The impact of both vectored and nonvectored thrust was considered.

It was proven that minimum time turns fall in the vertical plane.

For maximum instantaneous turning rate and nonvectored thrust

high angle of attack results if the speed is less than the criti-

cal speed which is approximately Mach 0.2. The optimal angle of

attack approaches ninety degrees as the speed approaches zero.

For vectored thrust, the stall angle of attack is optimum and the

thrust vector angle is the complement of the angle of attack. PSM

is not optimal if thrust vectoring is available.

For minimum time turning performance, maximum thrust is

optimal. At the end of the trajectory, the optimal angle of

attack equals that tor maximum instantaneous performance. PSM is

optimal. As the thrust to weight ratio increases, the maximum

angle of attack increases./,

Future studies should address the following aspects:

1. Unsteady aerodynamics

2. Analysis of aircraft pointing

3. Compare turning versus pointing

4. Air combat analysis MvN
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