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SECTION 1

INTRODUCTION

The purpose of this investigation is to determine the perfor-
mance payoff of post stall maneuvering (PSM), sometimes called
supermaneuverability, and thrust vectoring. FSM involves
maneuvering at high angles of attack, angles greater than that for
max ‘mum lift coefficient. There are two potential PSM advantages.
The first is the ability to rapidly change the flight path of the
vehicle. The second is to obtain the larger pointing angles which
is important from a weapon’s standpoint. Pointing will not be
addressed in this effort, but clearly it has an advantage at any
speed.

In the past, conventional maneuvers were restricted to less
than maximum lift angles of attack. If PSM has any advantage, it
must be able to develop velocity rotational rates greater than
that for conventional maneuvers. One way of addressing the PSM
issue 1s by solving instantaneous turning performance and minimum
time to turn problems. That is the approach that will be taken
here. The analysis will be limited to subsonic speeds. The
reason for this is that past performance studies have shown that
if there is a performance payoff for PSM, then it occurs at low
speeds; that is speeds below the corner velocity.

The first group of problems will be instantaneous turning
performance problems. Thrust vectoring will be included. The
solution to this problem yields insight into both the effect of
thrust vectoring and high angle of attack maneuvers along the
trajectory. The last problem is the variable speed optimal con-
trol problem for minimum time turns. The significance of this
problem is that the effect of high angle of attack on drag as well
as lift during accelerated maneuvers can be addressed.




An important ditficulty with high angle of attack maneuvers
he ability to control the vehicle. This issue will not be
essed in this study. It will be assumed that the vehicle can
ontrolled anywhere between zero and ninety degrees angle of
ck. This assumption should be addressed on its own since it
tes to a critical problem area in achieving PSM capability.

Several papers (References 1-5) have focused attention on
mum time turns for high speed aircraft. These efforts include
. two and three dimensional trajectories. The former cor-
ond to constant altitude or vertical plane maneuvers, either
t-S or half loops. In the next section, the equations of
on and the control constraints are presented.
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" =2 (50)
v

re

Lpag = 95C; /W (51)
max

The global maximum of the turning rate is obtained by maxi-

ing simultaneously with respect to both the angle of attack and
thrust vector angle. Recall Equation (15)

cT'sin<a+sv)+L'J (15)

E
0
< 1w

optimum is obtained by maximizing both terms. Thus, the angle

attack is that for CL and the thrust vector angle is the
max

plement of the angle of attack. Hence
LS ) 5
w = 7 (T +Lmax' (52)

3 result can also be determined rigorously. In order for FN to

saximized, it is necessary that the following equations be
[sfied

oF !

N _ 8L _ |

30 T cos(a+8vl+ 30 0 (53)
aFN .

— = T cos{(a+’s » = 0 (54)
asv v

n the latter, the sum 1s ninety degrees. Substitution into the
st equation shows that

.......................................................................
...........................................................
........
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The optimum angle of attack for a given §, is obtained from

Equations (15) and (24)

Tcos(a+8v)+qSCLa= Tcos(a+8v)+q8(CN“cosa-CNsina) = 0 (45)

The optimum angle of attack is greater the o The optimum

tall’
*
angle of attack, « , is the solution of
Tcos§_+qSC
tana* = v Nu (46)
T51n8V+qSCN

This equation agrees with Equation (26) when SV = 0, At low

speeds where g is small,
A
tana = cotsv (47)
The aolution is

- X _
oK = ) 8§ (48)

A
Since Tsin(a +Sv) dominates, from Equations (14) and (15) maximum

w is approximately
9

w = — T (49)
v

At high speeds where q is large, Equation (45) shows that CL
o

must decrease and a* therefore approaches *%ctall® L' dominates

and

15
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N is achieved at the same %otall” It has been observed in ex-
erimental aerodynamics that %etall varies. At low Mach numbers

here the thrust dominates, turning rate is approximately

(44)

€

"
<1\

Ly

nd is insensitive to aerodynamic variations. At high Mach num-
ers where the lift dominates, the turning rate varies in a linear
anner with respect to the maximum value of the normal force
pefficient.

A
The explanation for this is as follows. At low speeds, a is
arge and approximately ninety degrees. Equation (28) shows that

he maximum turning rate is insensitive to variations in CN' At

igh speeds, Equation (43) shows that the maximum turning rate is
roportional to the normal force.

The optimum angle of attack is presented in Figure 13. At
ow speeds, Equation (26) shows that m* decreases with increasing

v . At high speeds, m* approaches o tall which we assumed to
Voax sta

® independent of maximum CN for this steady state aerodynamic
max

Ata.

arust Angle Variations

The analysis of the influence of sv is next. In Figures 14

1d 15 are presented the maximum turning rate and the correspond-
19 angle of attack, respectively. The thrust angles vary from
'ro to sixty degrees in ten degree increments. The maximum
irning rate is relatively insensitive to the thrust vector angle.
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where

. N
N, - & (42)
]
¢ + ;2 .2 ,2 ’ ¢
At high speeds, CL =0, Na <= N tanaa, N >>T N »T Na , hence
o
Iy * 43
Waax * v N cosa ( )

The maximum turning rate is relatively insensitive to thrust
variations.

The sensitivity of the optimum angle of attack to variations

in the thrust is presented in Figure 11. At low speeds where a*
is large, Equation (26) shows that tana varies linearly with the

thrust. At high speeds, Equation (23) shows that CL approaches
(3

zero. Hence a* approaches %erall which is independent of the

thrust.

Aerodynamic Variations, Sv =0

A sensitivity analysis of the influence of the maximum value
of normal coefficient on the maximum turning rate was conducted.
The variation in the aerodynamic normal force coefficient is a

constant amultiple of the values defined earlier. CN data are
nom
the nominal values used earlier. Maximum turning rate is
presented in Figure 12. The value of CN/CN = 2.0 represents an
nom

extreme change in steady state aerodynamics. In unsteady flow, it
mAay be possible to exceed this value. It is assumed that maximum

13
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2 - 2T .
VeRIT © “psC (38)

The critical speed is independent of a. For high angles of at-
tack, sina increases, CL decreases and Equation (37) shows the
critical speed increases. Figure 9 shows that the critical speed
is approximately 0.15 Mach number. The equilibrium speed was
approximately 0.2 Mach number. The minimum turning rate is ob-
tained by substituting Equation (36) into Equation (15)

29

Woin = ;— T sino (39)

Thrust Magnitude Variations, sv = 0

A sensitivity analysis with respect to maximum thrust varia-
tions was conducted. For an altitude of 20,000 feet, maximum
turning rate is presented in Figure 10 for different thrust
levels. '1‘nom corresponds to the nominal values used in the pre-
vious calculations. At low speeds the maximum turning rate is
nearly linear with respect to the thrust. At high speeds the
turning rate is essentially insensitive to the thrust since the

1ift dominates.

This behavior can be explained by examining Equation (28).
At low speeds, a* is large, thus approximately

(40) .

€

H
< i\

s

max

Maximum turning rate varies linearly with the thrust. The situa-
tion at high speeds is explained as follows. Combining Equation
(15), (21), and (26) gives after some manipulation

gcoso 2,2, .
«T +N +T N“) (41)

. ,
max VN

12




thrust. This is not to be confused with absolute minimum turning
rate which corresponds to zero lift and zero thrust.

For a given angle of attack, Equation (15) and Figure 7 shows
that w varies with respect to V in the following manner

A
W= —+ BV (33)
v
where
B gpSCL
A = gT sina, B = (34)
2R

A and B are invariant with respect to the speed if the thrust does
not vary with respect to the speed. If the thrust can be treated
as a constant, then the minimum turning rate is determined from
the minimum of Equation (33)

A
\Y
or
Tsina = L (36)

The critical speed, VCRIT' is the solution of

2 = 2Isino
VoCRIT pSC, (37)

For low thrust, VCRIT is low. For small angles of attack, sina is

approximately o and CL is approximately CL oo. Thus Equation (37)

o
is approximately

11




Thus the angle of attack for maximum turning rate and V=0,

vy = 0 are the same whenever the maximum occurs at an angle of
attack where CN is constant. Refer to the intersection between
the two angle of attack curves as the equilibrium speed. The
reason for calling it this is that the speed will not change once
this point is reached because Vv = 0. The only way the speed can
decrease is if the angle of attack is increased creating more drag
or the thrust is reduced. It can be concluded that if the initial
speed is greater than the equilibrium speed and CN is equal to

CN the the vehicle declerates to the equilibrium speed and then
max
remains there. If the flight path angle is not zero, then from

Equations (1) and (4) the equilibrium speed is less (greater) than
the zero flight path case if the flight path angle is positive
(negative).

At higher speeds the structural limit comes into play. The
speed at which this occurs increases with increasing altitude
since the dynamic pressure decreases. Only the structural limit
for ten thousand feet is shown since the corner speed at twenty
thousand feet is greater than a Mach number of 0.6. The angle of
attack for V = 0, v = 0 is less than that for maximum turning rate
since the drag in Equation (4) increases with increasing speed.

In order to satisfy V = 0, the angle of attack must decrease with
increasing speed. In Figure 9 are presented turning rates cor-
responding to the maximum, V = 0 for vy = 0, and the structural
limit at ten and twenty thousand feet. As the altitude increases,
the thrust decreases for a given Mach number and the dynamic
pressure decreases also. Consequently, optimum w decreases,

Critical Speed, Sv = 0

The critical speed is that speed where the turning rate is
minimum with respect to speed for a given angle of attack and
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At low speeds, q is small and a* approaches ninety degrees. At
high speeds, q is large and a* approaches %crall® This conclusion
iz deduced from comparison with Equation (24). Equation (23) can
be rewritten as follows

o
Lo,

Tcosa+L S 0 (27)
L

Solving for L and substituting into Equation (15) gives

*
9 xS *
w = — T'(sinx - —— cosx ) (28)
max A
v CL
o

In Figure 8 is illustrated the optimum angle of attack for
altitudes of ten and twenty thous:)nd feet. Also included, are the
angles of attack corresponding to zero longitudinal acceleration
and a load factor limit equal to 7.33. At speeds below the corner
speed, the structural limit can not be reached. Also, at
low speeds the maximum turning rate and the turning rate at V = 0
and zero flight path angle are the same. The reason for this is
the angle of attack is higher than that value where CN reaches its
maximum value. Since maximum turning rate corresponds to wmaximum
FN , from Equations (5) and (21)

FN = Tlsina+N'cosu (29)
aF , . ‘
EEH = T cosa-N sino+ %5 coso (30)

But the last term is zero since CN is constant. Comparison with
Equation (4)

F& = T'cosa-N'sinu (31)

shows that




location of the maximum value are sensitive to the Mach number.

In Figure 7, Q is presented as a function ot Mach number for
constant values of the angle of attack. The latter varies from 0
to 90 degrees in 5 degree increments. For constant o, w decreases
with increasing Mach number until the minimum is reached. This
minimum will be referred to as the critical speed. From there on
w increases through the subsonic region.

For a given Mach number, there is an angle of attack that
gives maximum w. At low Mach numbers the angle of attack is high
and goes to 90 degrees as the Mach number goes to zero. At high
Mach numbers the optimum angle of attack approaches that for
%SPALL® This behavior can be seen by inspection of Equations (14)
and (15). Optimization of Equation (14) with respect to the angle
of attack requires that

aL _ =
Tcosx+ 0 - Tcosa+qSCLa 0 (23)

Since the first term is positive the second term must be negative.
This can occur only for angles of attack greater than that for
O SrALL® From Equation (21)

C = CN cosa-CNsina (24)

Lo«. o

Equation (23) becomes

Tcosq.+qS(CN cosu-CNsina) =0 (25)

o

The optimum angle of attack, a*, for a given speed and altitude is
determined from

tana* = - (26)
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CN = CLcosa+CDsinm (17)

CA = CDcosa-CLsinu (18)

The steady state data correspond to subsonic Mach numbers. It
will be assumed throughout this effort that the Mach numbers are
sufficiently low that Mach number effects can be neglected. The
coefficients that correspond to .the data of Figures 2 and 3 are
presented in Figure 5. From these data, approximate relations can
be deduced for use in performance prediction

Cp = O (19)
Cy = 0.16+3.44a 0¢ o <0.44 rad
= -1.72+12.04x-9.86a® 0.44¢ & ¢0.61 rad (20)
= 1.96 0.61¢

The relations for the lift and drag coefficients reduce to

CL = CNcosq (21)

CD = CNsinu (22)
These equations are exact if CA is exactly zero. They are in good
agreement with the experimental data as can be seen by examination
of Figures 2 and 3. The approximate relations are used in all

subsequent calculations.

Angle of Attack Variations, Sv =0

For no thrust vectoring, sv = 0. For a given Mach number,
T/W, and altitude, the turning rate looks like that illustrated in
Figure 6. The turning rate has a maximum somewhere between 0 and

90 degrees angle of attack. Both the shape of the curve and the
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The maximum of Q corresponds to o = 0 and maximnum w. Minimum Q
corresponds to o = 7 and maximum w. Thus in both cases, the
- limits result from maximum w. From Equation (15) it follows that
maximum w results from maximizing FN‘ Clearly maximum thrust
maximizes FN' The rest of the section will concentrate on maxi-

mizing the turning rate function w.

Aerodynamic Relations

Typical aerodynamic data from Reference 6 are illustrated in
Figures 2 and 3, and correspond to the F15 which is a high perfor-
mance fighter. The data represent steady state aerodynamics. Non
steady, or time dependent, aerodynamic lift data are superimposed
on top of the steady state data in Figure 4. The non steady data
are only an illustration of a phenomena called dynamic overshoot
and undershoot. When the rate of change of the angle of attack is
very large, the available lift first exceeds the steady state
lift. After the stall angle of attack is reached, there is a
rapid transition from overshoot to undershot where the 1lift
decreases with angle of attack. HWhen the angle of attack is
rapidly reduced, the dynamic 1lift drops below the steady state
values. The overshoot and undershoot aerodynamics are not com-
pletely understood to say the least, therefore, there is
. uncertainty in their prediction. There is some understanding of
: the variables involved, however. The overshoot is primarily a
function of a and the final value of «. The transition from
overshoot to undershoot is time dependent and the lift may be
asymmetric, one wing may stall before the other. The undershoot
depends on the value of maximum CL in overshoot and is also time -
dependent. The drag also experiences variations from the steady
state values. The drag may lag the non steady lift. For the rest
of this effort, we will consider only steady state aerodynamics.

The normal and axial force coefficients are related to the
lift and drag coefficients and the angle of attack in the follow-
ing way

........
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SECTION III

INSTANTANEOUS TURNING PERFORMANCE

Instantaneous turning performance corresponds to point per-
. formance analysis. Each point in the flight envelope can be
studied independently of every other point. In Section IV where
continuous turning performance is studied, it is proven that for
minimum time turns the optimal trajectory is in the vertical
plane. Therefore, this section will consider only vertical plane
trajectories. The appropriate turning rate equation is the time
rate of change of the flight path angle

. g
Y = -(FNcoso-cosy) (13)
v

where

’

FN =T sin(a+sv)+L (14)
o
The bank angle o is zero or 1B0 degrees (0 corresponds to a pull
-]
up and 180 corresponds to a pull down). Introduce the turning
rate function w defined by

g F (15)
w = -
v N

The actual flight path angular rate is related to w as follows

. g
Y = wWCOS0~- — COSYy (16)

v

At any point on the trajectory, that is given the speed, flight
path angle, and the altitude, the objective is to determine the
propulsive and aerodynamic controls that optimize the flight path
angular rate. This includes both maximizing and minimizing Q.
This is accomplished by optimizing the turning rate function w.

.........
.....
......
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‘g = Vsiny (9)

The change in the mass will be neglected. The constraints for
- these equations are

nsn (10)

Tmin £TK Tmax (11)

" For this study minimum thrust is zero. There are four controls
for this situation. The propulsion controls are the thrust mag-
nitude, T, and thrust vector angle, § . The aerodynamic controls
are the aerodynamic angle of attack, o, and bank angle, o. Since
the study has application to post stall maneuvering, the angle of
attack is limited only by the maximum value of the structural load
factor and ninety dearees. In previous studies it was limited to
the stall angle of attack, %etall® If the speed is greater than
the corner speed, then the angle of attack is limited by the

. maximum value of the load factor. The corner speed occurs at the

juncture between the CL and n limits. It is determined from
max max

1 2
=~ pSC V. = n W (12)
2 L - C max

In the next section, instantaneous turning performance
problems are addressed.
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SECTION I1I

PROBLEM FORMULATION

The coordinate system selected for the trajectory problems is
. a velocity coordinate frame. The definition of the velocity
vector using a velocity coordinate frame includes the magnitude of
. the velocity, the heading angle, and the flight path angle. The
rate equation for these variables are

Vv = g(FT-siny) (1)

. g

Y = —(FNcoso-cosyl (2)
v

= - F, 8in0 (3)
v N siny

where

FT =T cos(a+8v)—D (4)

FN = T sin(m+8v)+L (S)

T =T/W, D =D/W, L =L/W =n (6)

The aerodynamic and propulsive forces are illustrated in Figure 1.
The thrust is a function of throttle setting, Mach number, and
altitude. The lift and drag are functions of Mach number, al-
titude, and the angle of attack. The position of the vehicle is
determined from the kinematic relations

]
[}

Vcosvycosy (7

% L
"

Vcosysiny (8)




(55)

which occurs at “stall‘

In Figures 16 and 17, sustained turning rate and the cor-
responding angle of attack are presented. Comparison of Figures
14 and 16 shows that the angle of attack at low speeds is the same
for maximum turning race. 8Since CN is nearly constant, Equation

(45) reduces to Equation (4). Thus for zero flight path angle,
the solution for maximum and sustained turns are the same. At
high speeds, maximum turning occurs simultaneously with lon-
gitudinal deceleration. Thus, thrust vectoring will result in
faster decelerations relative to the zero vector angle case.
There is no equilibrium speed if thrust vectcring is used because
for maximum turning rate a+8v is ninety degrees and therefore Fb

is the negative of the drag and V<O0.
SM rsu u Vecto

In Figure 18, maximum turning rate is presented for optimal
PSM and thrust vector maneuvers. In general, thrust vectoring
gives slightly higher turning rates. The corresponding optimal
angles of attack are presented in Figure 19. For thrust vector-
ing, % rall is approximately 31.6 degrees and Sv is 58.4 degrees.

Longitudinal decelerations at zero flight path angle are presented
in Figure 20. Thrust vectoring produces greater decelerations
since the thrust component in Equation (4) is zero. Figures 18
and 20 illustrate that comparable turing performance can be
achieved through PSM maneuvers or thrust vectoring.




Summary

Based strictly upon steady state aerodynamics, subsonic Mach
numbers less than 0.6, and instantaneous point performance con-
siderations, very high angles of attack (beyond stall) turns
should be employed only at low speeds where the thrust dominates
the lift. The situation is reversed at high Mach numbers where
the angle of attack approaches the stall value. Increasing thrust
gives higher turning rates particularly at low Mach numbers and
increasing normal force coefficients increases the turning rates
at high Mach numbers. The equilibrium Mach number (Mach number
where maximum turning and zero rate deceleration at zero flight
path angle are equal) is approximately 0.2. For pull ups the
equilibrium speed decreases and it increases for pull down
maneuvers. HWith thrust vectoring, the optimal angle of attack is
®%stall and the optimal thrust vector angle is the complement of

the angle of attack. This holds for all speeds. Hence post stall
maneuvering (PSM) is not necessary for turning if thrust vectoring
is available. Either optimal PSM maneuvers or thrust vectoring
yield comparable turning performance.
Future studies should include the following aspects:
1. Unsteady aerodynamics
2. Analysis of aircraft pointing

3. Compare turning versus pointing

4. Air combat analysis MvN
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SECTION IV

OPTIMAL VARIABLE SPEED MANEUVERING PERFORMANCE

It was demonstrated in the previous section on instantaneous
turning performance that high angle of attack maneuvers have a
performance payoff only at very low speeds. This occurs because
the thrust force dominates the lift at low speed because the
dynamic pressure is low. As the speed increases, the aerodynamic
lift dominates over the thrust and the maximum turning rates tend
to be near %etall® In this section, the impact of both aero-

dynamic and thrust control will be addressed. The latter includes
both thrust magnitude and vector angle variations. It will be
assumed throughout that the thrust magnitude does not vary with
angle of attack or thrust angle. The equations of motion are
Equations (1) through (3)

<
"

g(FT-siny) (1)

ol o
L]

g
—\F"coso-c05y) (2)
v

g sino

_F—-—-—_
7 N cosy

€
1]

(3)

where FT and F" are defined by Equations (4) through (6)

.

FT = T cos(a+8v)-D (4)
FN =T ain(m+6v)+L (S)
T =T/W, D=D/W, L = L/W (6)
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The altitude variation will be assumed to be negligible.
The optimal control problem is the minimum time to turn from

V(o) = VO' v(o) = 0 (56)

to

Y(tf) =0 (57)

where Vo is specified. If the motion is in the vertical plane,

then the final flight path angle can be taken to be + #. The
final speed may be free or it may be specified. If Vo is free,

the optimal trajectory is free to go to low speeds if this is
optimum. The final heading is free.

There are four controls; the thrust magnitude, the thrust
vector angle, the aerodynamic angle of attack, and the bank angle.
Optimai controls will be determined for all four. Then the case
where the thrust angle is fixed and set equa! to zero will be
addressed. The contraints on the structural load factor and
thrust magnitude, Relations (10) and (11), must hold everywhere
along the trajectory. The problem with aerodynamic control at
high angles of attack will not be addressed. It will be assumed
that there is sufficient control to fly anywhere between zero and
ninety degrees.

Nondimensjonal Transformations .

Before developing the optimal controls, it will be useful to
introduce nondimensional variables that are the order of one.

Let

u = V/Vo, T = gt/Vo (58)
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The transformed differential equations are

u o -N -
at T cos(a+8v) N sino-siny (59)
- g¥ = & {[T'sin(a+6v)+ﬂ.cosa]coso-cosy} (60) +
aw _ 1 o ' sino
dt = u LT sin(a+8 )+N cosal cosy (61)

Consider next the development of the optimal controls.
optimal Controls

The optimal controls are determined from the maximization of
the Hamiltonian defined by

! - du dy de
: H=P,ar +Py dx +P¢ dt (62)

where Pu' Py, P¢ are costate variables that must satisfy along the

l optimal trajectory
: dP aH
. - _ _
R at 3u (63)
)
dp aH
P
S dP aH
. .- (65)
: d~ W

Since H 1is independent of the heading angle ¢, PW is a constant

everywhere along the optimal trajectory. Since the final heading
. is free

: 21
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The boundary condition on the costate variable corresponding to
the flight path angle vy is

Py(tf) = PYf (67)

If final speed is free, from the transversality condition

Pu(tf) = 0 (68)

If the final speed is prescribed

Pu(tf) = Pu (69)

£

The optimal angle of attack schedule as a function of time will be
different for the free and specified final speed cases. Hereafter
we will only consider the case where the final speed is free. The
boundary conditions in Equations (66), (67), and (68) must be such
that the boundary condition in Equation (57) is satisfied. The
final time is free and H does not contain the time, therefore

H = Co (70)

everywhere along the optimal trajectory.

Substituting Equations (59) through (b6l) and (66) into
Equation (62) gives .

’ P
H ATT +A"N Pusiny Gx cosy (71)

where

22
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&r- Pucos(a+8v)+ ﬁ Pycosasin(a+8v) (72)

_ 1
AN- Pusina+u PYcosocosa (73)

Consider first that part of the Hamiltonian that contains the
bank angle

H(g) = & pycoaotr"sin(a+sv)+u'coau1 (74)

There are only two choices that maximize H
A ‘
o = 0 if PY > 0 (75)

o = % if P <0 (76)
The final flight path angle is

y\tf) = 5 if o* =0
(77)

y\tf) = -x if o* = x

The optimal path is in the vertical plane. If the final speed is
free, the optimum is a half loop or split-S both of which are
illustrated in Figure 21. If the final speed is specified, then
an additional maneuver must be considered. This third maneuver is
a pull up to stall, a rotation to a nose down attitude, and then a
pull up to zero flight path angle and specified speed. In the
numerical examples to be examined later, we will consider only

free final speed. The only time that o* can be different from 0
or ¥ is when there is an altitude constraint or the final heading

23




is not ¥. These possibilities will not be addressed in this
effort.

We can now drop Equation (61). Equations (72) and (73)

become
P §
AT = Pucos(a+8v)+ —ﬁ— sin(u+8v) (78)
P §

AN = Pusina+ —g— coso (79)
where

8§ = 41 for a pull up (80)

8§ = -1 for a pull down (81)

Consider next optimal thrust magnitude control.

The thrust appears linearly in the Hamiltonian, therefore,
for optimal thrust magnitude control

T=T if A, > O (82)

T 0 (83)

and may be interior if Ap= 0 for a finite time. This situation

will be examined later in this section.

Next consider optimization with respect to the thrust vector
angle, sv. Let H(sv) denote that part of the Hamiltonian that

contains sv terms




DRV AN

H\Sv) = ATT (84)

Maximization with respect to Sv requires that

9
_A.I = Q (85)

asv

Substitution of Equation (78) gives

P §
- X =
Pusin(a+sv)+ X cos(a+6v) 0 (86)

The solution may be in any quadrant, therefore, the sum is com-

puted from
F & Pu
sin(a+6v) = % G%_ ’ cos(u+8v) =9 (87)
where
2 p 2112
Pa["u»fla—iJ] (88)

Substitution of Equations (87) into Equation (78) gives

Ap = % P (89)

Maximum H(sv) corresponds to maximum Ape therefore, the positive

sign holds and

Ap *® P (90)

H\Sv) = PT (91)
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§ P
y o= X e Y
sin(a+6v; aP ! cos(a+8v) P (92)

Intermediate thrust can be ruled out since this would require P to
be zero which requires Pu and PY both to be zero according to

Equation (88). This can not hold for a trajectory optimization
problem, the costate variables cannot all be zero. Thus, maximsum
thrust magnitude is applied throughout the trajectory.

The optimal angle of attack is determined next. Let H(w)
denote that part of the Hamiltonian that contains o terms

Hio) = x.rr'ﬂnu (93)

The necessary condition for optimum « is

oHia) OAT , aA" , oN

o alirve T + Ev R N +AN I 0 (94)

, .
b e A (95)

Equation (94) becomes

P § P § .
- - X ’ - X
( Pucosa u sina)N +( Pusinm+ u coaa)N“

L]
o

(96)

This is a transcendental equation in a. Solving for tana gives
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tanx = —4——— Y (97)

R P s (98)

as a function of the optimal angle of attack. Figure 22 presents
the optimal angle of attack as a function of the costate function

PR. If the final speed is free, then the final value of PR is

zero. Equation (97) reduces to

C

N
tano = z & (99)
N
Differentiating Equation (21) gives
C = O, cosa-C_ sino (100)
La Na N
Substituting Equation (99) gives CL = 0. Thus, at the final time
o

the optimal angle of attack is the stall angle. Also at the final
time, Equation 192) gives

ats, = % (101)

Recall for the instantaneous turning problem the optimum angle of
attack was Oetall and the thrust vector angle was the complement
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: %gtall which is the same as the final condition for the problem

re.

From Equations (92)

cotc* = PR (102)

ere
e’ = a+s? (103)
v
bstituting this into Equation (97) results in a relation between

! *
and o« that must be satisfied everywhere along the optimal
ajectory

cote = = (104)

e relationship between the optimal angle of attack and optimal
silon is presented in Figure 23. Given the optimal angle of
tack, the optimal thrust vector angle can be determined. The
stribution is presented in Figure 24. At high angles of attack

ere CN = 0, Equation (104) reduces to
o

cote = -tana (105)

e solution of this equation is

A w A
€ =3 +o. (106)




RAC AN

= X
8, = 2 (107)

This holds whenever CN = 0., For small angles of attack, C, is

o N

approximately CN o. Equation (104) is approximately
o

e = 20" (108)

The optimal thrust vector angle at low angles of attack is
approximately

8§ = o (109)

For free final speed, the final optimal angle of attack is the
stall angle of attack. The only way that higher angles of attack
can be reached is if the costate function PR is less than zero.

This can be seen from examination of Equation (97) or Figure 22.

In addition to satisfying Equation (96), it is necessary for
a relative maximum that H(a) satisfy

2
9 Hie) (110)

o’

Substitution gives

’

2 _ . oA,; oN 2
gHla) ., p . N +2 N — 4y 2N

(111)
ao'.z T N oA Am N oda
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e xT>0, it follows that AN>0. Also, Nago, Namio' T >0, N >0
substitution does verify that Relation (110) is satisfied.

Since the optimal maneuvers are in the vertical plane, the
ectories are either a half-loop or a split-S. For a half-
»,0=0, § =1, and y(tf) = %, For a split-S8, o = w,

-1, and v(t_,) = -n. These terminal conditions replace

f
tion (57). The optimal trajectory is the maneuver that gives

ainimum time to rotate through 180 degrees in the flight path

e. This can only be determined by numerically integrating the
opriate differential equations and comparing times for a half-
and a split-S.

The differential equations that must be solved simultaneously

the differential equations for u, v, Pu, and Py. Since the

mal controls are a function of PR’ the differential equations
Pu and PY can be replaced with a single differential equation

R" Differentiating the logarithm of PR gives.

R dPu

—_—= = == — 4 == -

dr u de Pu dt (112)

<'U|W'U
Al
A

tituting Equation (59) for du/dt and expanding Equations (63)
(64) for dPu/dT and dpyldT gives after some manipulation

dpP
_R _ 14 P -
a u T (PRcose+sine)+ " N (PRsina coso)

(113)

. 2
U 6(1+PR)cosy

tituting Equations (92) for e gives

........................................
...........

..........
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dp
dx

kR .2 142

= 1 i N _ 4 2
U T \1+ER, + u N (PR51na cosm) " 6(1+PR)cosy (114)

The right side is a function of the costate variable PR’ the state

variables u and y, and the control variables T and o. The dif-
ferential equations for u and y are a function of the state and
control variables. ‘The control variable o is a function of the
costate variable and the thrust is maximum. Thus, three ditferen-

tial equations result, one each for PR' u, and y. The only

unknown is the initial value for PR’ But the final value is known

from Equation (68). Thus, a single parameter search on the ini-

tial value of PR is required. An initial estimate is made, the

three differential equations are integrated forward in time, and
the optimal trajectory is that trajectory that gives PR(Tf) = 0.

Later on in this section, we will develop some numerical results.
Consider next the problem where the thrust vector angle is fixed
at zero.

Zero Thrust Vector Angle

Equations (92) do not apply. Equation (94) for optimal «
becomes upon substitution of Equations (78) and (79) with Svs 0

oH(o) _ _— oN _
300 ANJ. A,l.N +}\N v 0 1115)

This equation is different from Equation (94) because of the ANT‘
term. Equation (110) becomes

o “Hia) aN a’N

= -XTT -»\NN -ZAT Yy +AN — V] (lle)

o I




Solving Equation (115, for Ay and substituting gives

| . 2, ’
P T T L (Y
SEb s oapfT 2 5 +lu mzj

le
T oo,

Since the first derivative of N

is non negative and the second
derivative is non positive, the bracket sum is non negative and it
.

" follows that if Relation (117) is satisfied, then
r Ap 7 0 1118)

The thrust magnitude is maximum except for possible interior

thrust. Consider this possibility. For interior thrust, Ap = 0

for a finite time, thus Equation (115) reduces to

afiie)

: rraa ‘N(T + -3%:] = 0 (119)
o The only possibility is
*N = 9 1120)

If both A and AT are zero, then Equations (78) and (79) reduce to

P §
Pucosa+ sina = 0 (121)
P &
—ﬁ— cosa-?usina = 9 (122)

These two equations combined together give




This can hold if and only if

Pu = PY =0 (124)

This can not hold for the optimal solution. Therefore ATf 0 for a

finite time and maximum thrust is applied everywhere along the
optimal trajectory.

The optimal angle of attack is the solution of Equation
(115). Substituting Equations (78) and (79) gives

P & P &

- ~ - ik A i
\ Pusinm+ U cosx) (T +Na) (Pucosm+ u sina)N 0 (125)

Since the optimal angle of attack is between zero and ninety
degrees, Equation (125) can be rewritten as

T+ N - PN
tana = & R 1126)

PR\T + Na) + N

The optimal angle of attack is the solution of Equation (126).

At the final time, Pus 0 from Equation (64). Substitution
into Equation (126) gives

T +N'
tana = S—_

N

t127)

comparison with Equation (26) shows that the final value of the
optimal angle of attack is equal to the optimal instantaneous
value. Thus, if the final speed is higher than the critical
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speed, the final angle of attack is close to %etall® The only

time that high angle of attack could occur is at speeds less than
the critical speed. 1In air combat, this situation is to be
avoided since the engangement is similar to that between helicop-
ters and fighters. But from strictly a single vehicle ainimum
time turn problem, the angle of attack could attain large values .
if the speed is very low. |

ric 1

uptimal controls tor zero thrust vectoring will not be em-
phasized since it was shown in the last section that high angle of
attack maneuvers can result. HWith thrust vectoring there is
uncertainty as to whether or not PSM is optimal. At this point
all that we know is that the final value of the optimal angle of
attack equals the stall value.

Uptimal and nominal trajectories were developed for initial
conditions corresponding to 0.6 Mach Number and 20,000 feet
altitude. The nominal trajectories correspond to constant angle
of attack and thrust vector angle. The angle of attack was

® tall® Optimal trajectories were in the vertical plane. The

pull up maneuver required less time to rotate through 180 degrees
than did a split-S$S maneuver.

The numerical results are presented in Table 1. 8Six dif-
ferent cases are presented. The thrust to weight ratio of 0.6 is
a typical value for the F15 at 20,000 feet and 0.6 Mach Number.
Higher values of T' were introduced to determine the effect of
increasing thrust. The first two cases were nominal trajectories

flown at LLmax' 1.e., “stall' The difference was in the thrust

vector angle. Thrust vectoring reduced the time by approximately
three and one half seconds. The last four cases are optimal
results. The third and fourth cases show the difference between a
rull up and a split-s maneuver. The pull up is better.
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Comparison of the third, fifth, and last case shows that the time
decreases as the thrust to weight increases. This is consistent
with the results from the previous section. There the turning
rate increased with increasing thrust to weight ratio. The angle

of attack did reach values where C,= C . The thrust vector
N Nnax

angle went to ninety degrees.

TABLE 1
TIME TO TURN RESULTS

T/W MANEUVER MAX o (Deg) @ MAX Gv (Deqg) TIME (SEC)
0.6 PULL UP *%erall 90-0tstall 10.8
0.6 PULL UP %erall v 14.5
0.6 PULL UP 50 90 9.6
0.6 SPLIT-8 30 60 12.3
1.0 PULL UP 55 90 7.9
1.2 PULL UP 60 90 7.3

Based upon the limited number of numerical results examined
here, the conclusion is that for minimum time turns, post stall
maneuvering is optimal. This holds for both thrust vectoring and
nonvectoring.

In Figures 25 through 29, u, v, PR' o, and Sv are presented
as a function of the nondimensional time and for initial values of
PR equal to 0.3, 0.4, v.5, 0.6, and 0.7. These results correspond
to the third case in Table 1. The trajectories for PR (0) = 0.3
and 0.4 do not generate enough lift to fly through Lhe vertical,
thus the heading can not change by 180 degrees. The optimal
trajectory corresponds approximately to PR t0) = 0.5. In Figure
28 it can be seen that the maximum angle of attack is ap-
proximately 50 degrees. From Figure 25 it can be observed that
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the final speed is very low. These results demonstrate that high
angle of attack maneuvers are optimal with thrust vectoring.

Summary

Minimum time turns in the subsonic region require maximum
thrust throughout the maneuver. This holds for both vectored and
nonvectored thrust. For the vectored thrust case the final angle

of attack equals o which matdhes'the instantaneous problem

stall

which holds everywhere. For nonvectored thrust the final angle of
attack equals that for maximum instantaneous turning rate.

Optimal maneuvers employ PSM. As the thrust to weight ratio
increases so does the maximum angle of attack along the
trajectory.




SECTION V

CONCLUSIONS

- "7 The purpose of this effort was to determine whether or not
there are any apparent performance improvements through Post Stall
Maneuvers (PSM) or thrust vectoring. PSM is a result of high
angles of attack, greater than the stall value. Two different
probiems were addressed. The first examined instantaneous turning
performance. The second focused on minimum time turn problems.
The impact of both vectored and nonvectored thrust was considered.
It was proven that minimum time turns fall in the vertical plane.

For maximum instantaneous turning rate and nonvectored thrust
high angle of attack results if the speed is less than the criti-
cal speed which is approximately Mach 0.2. The optimal angle of
attack approaches ninety degrees as the speed approaches zero.

For vectored thrust, the stall angle of attack is optimum and the
thrust vector angle is the complement of the angle of attack. PSM
is not optimal if thrust vectoring is available.

For minimum time turning performance, maximum thrust is
optimal. At the end of the trajectory, the optimal angle of
attack equals that ror maximum instantaneous performance. PSM is
optimal. As the thrust to weight ratio increases, the maximum
angle of attack increases./ﬂ

Future studies should address the following aspects:

1. Unsteady aerodynamics
2. Analysis of aircraft pointing

3. Compare turning versus pointing

4. Air combat analysis MvN
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