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ABSTRACT
The analyses of visual data by stereo and motion modules have typically

been treated as separate, parallel processes which both feed a common viewer 2
centered 2.5-D sketch of the scene. When acting separately, stereo and motion
analyses are subject to certain inherent difficulties: stereo must resolve a com-
binatorial correspondence problem and is further complicated by the presence of
occluding boundaries, motion analysis involves the solution of nonlinear equations
and yields a 3-D interpretation specified up to an undetermined scale factor. -A-si , v T-
new module is described--here which unifies stereo and motion analysis in a
manner in which each helps to overcome the other's shortcomings. One impor-
tant result is a correlation between relative image flow (i.e., binocular difference - . -

flow) and stereo disparity; it points to the importance of the ratio 6/6,>rate of
change of disparity 6 to disparity 6, and its possible role in establishing stereo
correspondence. Our formulation may reflect the human perception channel
probed by Regan and Beverley (1979). --
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WAXMAN DUNCAN

// 1. INTRODUCTION

In decomposing the visual information processing task into several stages, it

is the intermediate level which is responsible for the recovery of surface shapes in

a scene.fMarr 1982)> It is often described as a set of '!shape from'modules

which, acting independently and in parallel, feed a viewer centered D

" sketch!' of the visual field. Two of the most commonly studied and closely

related modules are shape from stereo) (Koenderink and van Doorn 1076; Marr

and Poggio 1979; Mayhew and Frii3b 1981; Prazdny 1984; Pollard et al. 1985;

Eastman and Waxman 1985yand shape from monocular motion, (Koenderink and

van Doom 1975; Ullman 1979; Prazdny 1980; Longuet-Higgins and Prazdny 1980;

Longuet-Higgins 1981; Tsai and Huang 1981a,b; Waxman and Ullman 1983; Wax-

man 1984; Waxman and Wohn 1984; Wohn and Waxman 1985a,b; Subbarao and

Waxman 1985; Buxton et al. 1984). However, when acting independently, each of

*- these processes suffers from certain inherent difficulties; stereo is faced with a

. combinatorial correspondence problem plagued by the presence of occluding

boundaries (Grimson 1981; Poggio and Poggio 1984), while motion analysis

involves the solution of nonlinear equations and leaves the 3-D interpretation

*-l specified up to an arbitrary scale factor (Waxman and Ullman 1983). There is

evidence, however, for a separate channel of human visual processing in which

stereo and motion analyses may come together much earlier than at the 2.5-D

* sketch. We formulate here a theory of time-varying stereo in the context of

"binocular image flows," where stereo and motion work closely in order to over-

come each other's shortcomings. Central to our approach is the notion of relative

".



BINOCULAR IMAGE FLOWS

flow (or "binocular difference flow"), representing the difference between image

velocities of a feature as seen in the left and right images separately. Neural

organizations which perform this "computation" have already been proposed

(Regan and Beverley 1979).

The fusion of stereo and motion into a single module has been considered

recently by others as well. Richards (1983) demonstrated recovery of structure

from orthographic stereo and motion without knowledge of the fixation distance.

Jenkin (1984) considered a stereo matching process driven by the 3-D interpreta-

tion of feature point velocities. Waxman and Sinha (1984) proposed a "dynamic

stereo" technique based upon the relative flow derived from two cameras in

known relative motion, valid in the limit of negligible disparity. The question of

image motion aiding stereo in the matching process was noted by Poggio and

Poggio (1984); and as will be shown below, a correlation between binocular

difference flow and disparity may support this possibility.

We suggest a decomposition of our stereo-motion module into five steps

which begins where low-level vision ends, i.e., it follows the stage of edge and

point feature extraction (and tracking over time) in the left and right images

separately.

Step 1. Monocular image flow recovery and flow segmentation of the separate left

and right image sequences utilizing the Velocity Functional Method (Waxman and

Wohn 1984) and overlap compatibility (Waxman 1984; Wohn and Waxman

1985b). This procedure allows gross correspondence to be established between

analytic flow regions in the left and right images. It also reveals the depth and

o • -. , ° . .- % ..o O o. ' . • • .o- ° % . " .o• , " . • -• .. ... ,. w , °° .. , , -o o o3
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WAXMAN DUNCAN

orientation discontinuities that often plague stereo matching and surface recon-

struction algorithms.

Step 2. Establishing correspondence between (previously unmatched) left and

right image features according to a correlation between binocular difference flow

and stereo disparity. This process can be implemented in parallel over the bino-

cular field of view in the context of "local support" within neighborhoods

(Prazdny 1984; Pollard et al. 1985; Eastman and Waxman 1985). This correla-

tion points to the importance of the ratio 6/6, rate of change of disparity 6 to

disparity 6. A "rigidity assumption" for independently moving objects in the

scene also enters here.

Step 3: Use of disparity functionals defined in overlapping neighborhoods to

recover smooth surface structure between the discontinuities detected from the

monocular flow analyses (Koenderink and van Doom 1976; Eastman and Wax-

man 1985).

Step 4: Recovery of rigid body space motions corresponding to separate analytic

flow regions utilizing the determined surface structure and either monocular

image flow (or a cyclopean image flow). Separate surface patches can then be

* grouped into rigid objects sharing the same space motions. This process entails

solving only linear equations as a measure of its complexity.

Step 5: Use of the separate image flows to track features and discontinuities over

time. This allows refinement of disparity estimates to "sub-pixel" accuracy by

temporal interpolation. It also allows the matching process to focus attention

.-' ..- ..-... .



BINOCULAR IMAGE FLOWS

onto areas where new image features will be unveiled and old ones will disappear,

i.e., at the discontinuities and periphery of the field of view.

This last step suggests that, in the analysis of a time-varying stereo

sequence, once an initial correspondence has been determined between left and

right images, it is not necessary to establish correspondence anew for the entire

image pair at subsequent times. Most of the image features merely flow to new

locations which can be predicted. Matching need only be performed on new

features which enter the visible field from the periphery and from behind occlud-

ing boundaries.

In this paper we formulate several of these steps toward stereo-motion

fusion. Section 2 reviews the basic monocular image flow relations for rigid

bodies In motion. The importance of locally second-order flows and boundaries of

analyticity (i.e., weak and strong flow discontinuities) is stressed as it is impor-

tant for the binocular flow analysis that follows. In Section 3 we develop the

theory of binocular image flows in the context of a parallel stereo configuration,

imaging a scene of rigid objects in motion. A correlation is derived between rela-

tive flow (binocular difference flow) and stereo disparity, laying the basis for a

new kind of matching procedure. This leads us to speculate on the class of "head

motions" that are most discerning in light of this correlation. Other relations

between monocular flow and binocular flow are obtained as well. In Section 4 we

utilize an experimental data set for a short stereo sequence to obtain the meas-

ured binocular image flows at one time instant. These flows are then filtered

using the Velocity Functional Method, and a flow segmentation is derived in

• -°o - ." - ° ."% .' -' ' .".".-.. .~ # . %' '-. '. ' .' ' o -- . % o%-.- . - -' " . , - ;% . ° . .", .. . . -. .



WAXMAN DUNCAN

order to detect depth and orientation discontinuities in the scene. This data is

then used to confirm the correlation between binocular flow and disparity

developed earlier. Section 5 describes two ways that this binocular difference

flow-disparity relation may be implemented in order to establish correspondence

in the context of "local support." The ability to combine different matching cri-

teria is considered as well. We conclude in Section 6 with a discussion of what

remains to be done in the construction of a complete stereo-motion fusion

module.
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BINOCULAR IMAGE FLOWS

2. MONOCULAR IMAGE FLOWS

Investigations into the recovery of 3-D structure and motion from time-

varying monocular imagery have proceeded along two rather distinct paths. One

approach has been concerned with the motion of discrete points moving rigidly

in space (Ullman 1979; Prazdny 1980; Longuet-Higgins 1981; Tsai and Huang

1981a,b; Adiv IJ84). The resulting 3-D interpretation is in the form of rigid body

motion parameters and relative depth of points in space. The second approach

treats the image flow field as a whole (Koenderink and van Doom 178;

Longuet-Higgins and Prazdny 1980; Waxman and Ullman 1983; Wohn 1984;

Waxman and Wohn 1985) in an attempt to recover the rigid body motion param-

eters and surface descriptions (slopes and curvatures) of entire surface patches.

Recently, work has begun on the 3-D recovery of structure from non-rigid body

motions (Ullman 1983; Koenderink, private communication). Our formulation of

binocular image flows will follow the continuous field approach developed for

monocular flows generated by textured objects in rigid body motion (Waxman

and Ullman 1983, Waxman 1984, Waxman and Wohn 1984, Wohn 1984).

We consider a scene as comprised of objects in independent rigid body

motion with respect to the observer. The individual objects are imagined as

decomposed into surface patches visible to the observer, and these surface

patches in space project into neighborhoods in the image. It is actually the sur-

face texture and shading which is observed under perspective projection in the

image. Due to the relative motion between object and observer, the projected tex-

7



WAXMAN DUNCAN

ture undergoes deformations which reflect the image flow field. The theory of

monocular image flows, developed by Waxman and collaborators (cf. References),

provides techniques for the recovery of flow fields and deformation parameters

from evolving contours, edge fragments and feature points in the imagery, and

for recovery of 3-D surface structure and rigid body motion from these deforma-

tions. As these ideas provide the starting point for binocular flow analysis, they

are reviewed in more detail here.

2.1 Image Velocity Relations

As a textured, rigid object moves through space, the evolving image

sequence registered by a monocular observer (e.g. a moving pin-hole camera) con-

tains information in the form of an image flow field. This image flow is deter-

mined by the relative rigid body motion between object and observer, as well as

the structure of the object's surface visible to the observer. Derivation of this

flow field follows that of Waxman and Ullman (1983).

We attribute the relative rigid body motion to an observer represented by

the spatial coordinate system (X, Y, Z ) in Figure 1. The origin of this system is

located at the vertex of perspective projection, and the Z-axis is directed along

the center of the instantaneous field of view. The instantaneous rigid body

motion of this coordinate system is specified in terms of the translational velocity

V = (Vx, Vy, Vz) of its origin and its rotational velocity

0 (fOx, fly, Oz). The 2-D image sequence is created by the perspective pro-

.: . :.......:-:.. :::: : ::; : :::::::::::::: ::: : . : :: :: :: ::: ::::::::: ::::: :::: : : :: : :.: ::: :::: ::::::::::::



BINOCULAR IMAGE FLOWS

jection of the object onto a planar screen oriented normal to the Z-axis. The ori-

gin of the image coordinate system (x, y ) on the screen is located in space at

(X, Y, Z)-- (0, 0, 1); that is, the image is reinverted and scaled to a focal

length of unity.

Due to the observer's motion, a point P in space (located by position vector

R ) moves with a relative velocity U = - (V + fl X R ). At each instant, point

P projects onto the screen as point p with coordinates (x, y) ( X/ Z, Y/ Z).

The corresponding image velocities of point p are (v, , vy = (i, ), obtained

by differentiating the image coordinates with respect to time and utilizing the

components of U for the time derivatives of the spatial coordinates of P. The

result is

VZ = - - _ Z +[Xy SIX -(l+X 2 ) ily + y 0i (la)

Z vZv --. i y -I} +[(l+y2) flxxyf1 yx fz]. (ib)

These equations define an instantaneous image flow field, assigning a unique

2-D image velocity v to each direction (x, y ) in the observer's field of view. For

the moment, we shall consider only a single surface patch of some object in the

field of view. A small but finite surface patch may be locally approximated by a

quadric surface in space as described by six parameters: two slopes, three curva-

tures and an overall distance scale. If the surface patch is described in this

viewer-centered spatial coordinate system by Z = (X, Y ), then it is straight-

forward to find the corresponding local representation Z = Z (z, y) as a

9
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second-order polynomial in terms of image coordinates. Of these six surface

parameters, only five can be recovered directly from the image flow field; the

overall scale factor is lost as it always appears in ratio with the translational velo-

city V (Waxman and Ullman 1983). Moreover, the remaining five surface param-

eters appear in product with the translational space motion. The kinematic

analysis developed by Waxman and Ullman (1983) leads to a set of twelve alge-

braic eqL-tions relating this 3-D structure and motion to derivatives (through

second order) of the image flow. Recovery of the S-D information requires solution

of nonlinear equations.

2.2 Second-Order Image Flows

In the recovery of surface structure and 3-D motion from image flow, it is

sufficient to describe an image flow as a locally second-order flow field. This has

implications with regard to the surfaces which generate the flow itself. For exam-

ple, a planar surface patch Z = Zo + pX + qY, may be described exactly as

Z = Z 0 (1 - px - qy )-1 in image coordinates. Substitution into the velocity

equations above yields expressions in the form of second-order polynomials. For

planar surfaces, such second-order flows are globally valid. On the other hand,

quadric surfaces generate flows which are not simple polynomials in the image

coordinates. However, they may be locally approximated as second-order flows.

The coefficients of this second-order flow then determine the slopes and (scaled)

curvatures of the quadric surface patch as well as its (scaled) space motion. In

10
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BINOCULAR IMAGE FLOWS

this context, a complex surface is viewed as a composite of overlapping planar

and quadric patches. The image flow associated with a smooth surface is, there-

fore, a slowly varying (in terms of image coordinates) second-order flow defined

over a region of the image.

In order to recover the second-order flow approximation for any neighbor-

hood in the image, it is necessary to have a sufficiently dense texture present in

that neighborhood. This texture gives rise to extended contours, edge fragments

and point features, all of which are convected along and deformed by the local

image flow. These features serve to sample components of the flow field; in par-

ticular, the contours and edges yield an estimate of the flow in the direction nor-

mal to the contours themselves. The Velocity Functional Method (Waxman and

Wohn 1984) may then be used to recover the local flow from these sampled com-

ponents.

We model the components of the local velocity field by second-order polyno-

mials; hence, define the partial derivatives of image velocity evaluated at a local

origin as

_ +- V (2)
a9X ty o

Then the components of instantaneous velocity in the neighborhood are described

by the two functionals

2 2 ( j i y

,--(x- i)j= (3a)
i=0 j=0
(i +j <2)

11
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Note that (20) requires these combined monocular-binocular flow quantities to be

linear functional forms in the variables (x, y, 6 ). Once correspondence is esta-

blished between left and right images (as in Step 2 ), the measured disparities

may be locally fit over small analytic neighborhoods to a linear form motivated

by (14), thereby determining local surface structure (as described in Step 3 ).

Then equations (20) may be used to fit linear forms to the measured flow quanti-

ties over analytic regions (in the least-squares sense), and thus determine the

absolute rigid body motion parameters V and fl for that region. This requires

solving only linear equations. (Recall that structure and motion from monocular

flow required solution of nonlinear equations.) This corresponds to Step 4 of the

stereo-motion fusion module described in Section 1.

The obvious symmetries displayed by equations (20) suggest that they may

be written in vector notation. Corresponding to the 3-D space position vector

R = (X, Y, Z) we introduce the 3-D image position vector

r = R /Z= (x,y ,1). The 3-D image velocity is defined as u = r = (v,, v , 0)

Then, recalling that Av, 6 , we can rewrite (20) as

-- =-1{ ± + 0XrJ (21)

It is not coincidental that (21) bears a strong resemblance to the relation for 3-D

space velocity of a point induced by an observer's rigid body motion, i.e.,

U- R - (V+ 0OXR). In fact, (21) is exactly this relationship for U/Z

25



WAXMAN DUNCAN

matching: the Vz head motion using the v. component, and the !Qz head

motion using the v. component. In the experiments to be described in Section 4,

we have examined the former case while viewing a frontal plane. The possibility

of more complex head motions requires further analysis.

3.4 Monocular - Binocular Flow Relations

In addition to the correlation that exists between binocular difference flow

and disparity (13), there are some interesting relations between this binocular

flow and the monocular flow (as seen on the cyclopean image, say). The cyclo-

pean image velocity of a feature is the average of the corresponding feature velo-

cities in the left and right images for this parallel stereo configuration. Equations

(1) can be interpreted as the monocular flow in cyclopean image coordinates, with

space motion parameters and depth interpreted accordingly. Relations (13) and

(14) are valid in cyclopean coordinates as well. Replacing 11Z by 6/b in (1) and

combining with (13), find

V,-X a --- r+ Y z- , (20a)

avQ vb

vY- y L, --6 0,-Oz -x - 6 , (20b)

-- - Y- Y x --- 6  (20c)

Equations (20) have been written with "measurable" quantities on the left-

hand side and unknown motion parameters as coefficients on the right-hand side.

24
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motions for animals and machines.

For a preliminary determination of the "head motions" that are most

discriminating for matching purposes, we have examined Equation (19) for each

of the six motion components separately while viewing a planar surface sloped in

the X-direction only. In particular, we seek the motions that produce a velocity

difference field which is least sensitive to noise from the measurement of the indi-

vidual velocity fields. More precisely, a motion that facilitates matching must

have two characteristics. First, the velocity component used for matching must

be measurable. For example, for an fly head motion, the v. component is

0 (xy) while the v. component is 0 (1). Thus, the v. component cannot be

measured accurately. However, a Vz head motion produces velocity components

of equal magnitude. In order to discriminate correct from incorrect matches, we

also require that for potential matches, the error ( Av - Avj, )/v should scale

like the percentage error in the disparity. Table I contains the results of the

analysis including the x and y components of the image flow velocity for the

cyclopean system (v), the velocity differences for incorrect (Av) and correct

(Auvt) matches, and the error in the velocity difference for incorrect matches

divided by the velocity in the cyclopean image (Av - Avj, )/v. From Table I we

see that this error function is 0 (1) in four cases listed in the table: the vz com-

ponent for Vz and fOx motions, and the v. components for fly and ilz

motions. Two of these, v. for Ox motions and vy for Q y motions, will be inac-

curate because the particular velocity component is 0 (xy) compared to its com-

panion velocity component. Thus we are left with two motions that facilitate

23
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WAXMAN DUNCAN

denote them by Z, and Z,, respectively. Then it is a straightforward exercise,

following Section 3.1, to derive an expression for the ratio Av /6 in the case of

an incorrect match. In the cyclopean coordinate system we find,

A - [ J{I( +6/2)OY}

VX V b - (x+6/2) Vz/b -- (x+6/2) n ' (19)

2___ 2

where the upper/lower expressions in curly brackets refer to the x /y components

of the ratio.

There are two sets of terms which cause the ratio Av /6 to deviate from its

correct value when a false match is chosen. The first set is proportional to the

deviation from the correct disparity value, and is generated by relative rotations

between the objects and the eyes/cameras. The second set is proportional to the

depth error, which vanishes for a frontal plane (it is proportional to the X-

component of slope times disparity deviation). This second set is generated by a

combination of relative translational and rotational motions. If we consider the

case when objects in the scene are stationary and all motions are due to the

cyclopean coordinate system, then only one particular motion contributes to

every term present. This is the motion fly, corresponding to a rotation about a

vertical axis as due to a rotation of the head about the neck. (Perhaps this is

why our eyes are aligned perpendicular to our necks!) It is also interesting to note

that translation in the direction of gaze VZ , contributes to both components of

the ratio (19) as well. Both 12y and VZ are quite natural exploratory head

22

. . . .. . -. . . o . - , ° _ . ° . . . . . . . - . ° o . ° - . . . ° . . . • . . -- • . - . •



BINOCULAR IMAGE FLOWS

(zY) =-i- 6(x,y) + (Y1x- nl)bC X,y) b

which is identical with relation (13a). Thus, this correlation between relative

image flows and stereo disparity is, in fact, a relationship between disparity and

its rate of change!

3.3 Disambiguating "Head Motions"

In Section 5 below, we describe how the correlation between relative flow

and disparity (13) or (15), may be used in establishing correspondence between

left and right images. But the basic idea is that, for a set of hypothetical

matches among features in a neighborhood, the measured ratio of relative flow to

disparity should be consistent with a known functional form, i.e., a linear form as

suggested by (15). However, if this correlation is to be useful in establishing

correspondence, it must be capable of disambiguating false matches. By consid-

ering the possibility of false matches, we can examine the class of "head motions"

(or camera motions) that generate significant deviations from the derived correla-

tion.

Consider, then, the relative image flow between a feature in the left image

and some feature in the right image shifted horizontally by an angle 6 and lying

along the same epipolar line. When these features do in fact match, the shift 6

equals the "correct disparity" 6. For a correct match the depth values of the

left and right features are equal. But for an incorrect match they need not be;

21

. .- ... . .. .. . .. . ........ ..



WAXMAN DUNCAN

3.2 Interpreting the Correlation

The correlation between relative flow Av and disparity 6, presented in

cyclopean coordinates in (13a,b) is simple to interpret. Recall that we are consid-

ering only a parallel stereo imaging geometry, hence, the epipolar lines are hor-

izontal (i.e., parallel to the z-axes). Now the relative flow Av represents the

rate of separation of a feature in one image, from its match in the other image.

It is the rate of change of vector disparity. As a feature and its match must

always lie along some epipolar line, its vertical disparity must remain zero in this

case. Thus, relation (13b) expresses the fact that a feature and its match must

flow perpendicular to epipolars at the same rate in order to lie on a common epi-

polar. In general, the rate of change of vertical disparity must be such as to keep

a feature and its match on an epipolar line.

For our parallel stereo configuration, we may then identify Av. with the

rate of change of (horizontal) disparity and denote it by 5. Returning to expres-

sion (14) we have

b 2 - 6 2 16- (

From U -(V+ l X R) we have Z -Vz- fIx Y+ 1yX, hence,

z Vz vz
Z = Z -(y X- ) V - -- - (y x - X y) . (17)

Combining (17) with equation (16) yields for 6/6,

20
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BINOCULAR IMAGE FLOWS

AV 6(,, ) - I vz 6( X'Y) + (Y nX - X n Y (13a)
bv (X ,Y) ; b

-- o, (13b)
6(z~y)

with image coordinates and motion parameters corresponding to the cyclopean

coordinate system.

If we consider the relative flow in a small enough neighborhood such that the

underlying surface patch may be treated as locally planar, then we have a simple

expression for the local disparity field,

b b6 (xY) 7- (1-px - qy) (14)

where Z 0 is the depth to the plane measured along the center of the cyclopean

* field of view, and p and q are the components of local slope. Substituting (14)

for the disparity on the right-hand side of (13) yields the local relative flow to

disparity relations,

AV. tz 0Y) J Z Z" ~~~ ~ F I z, ) - -Lo-" p + f y x - I-o q - i X J y (15a)

Av( X,y) 0. (15b)
6(x,y)

We see that locally, the relative flow to disparity ratio is a linear function of

image coordinates with coefficients depending on the surface structure and rela-

* tive motion between object and observer. In Section 5, we shall describe how this

correlation between relative flow and disparity can form the basis of a stereo

* matching procedure.

"ig



WAXMAN DUNCAN

*i Equations (9a,b) yield the image velocities of corresponding features in the two

cameras/eyes.

Now we define the "relative flow" (or binocular difference flow ) of features

between the left and right images as the difference between the "shifted flow

fields", the "shift" being associated with the disparity field;

(xi , yj ; 6) - v, (xi +6 [xi , yj 1, y) -, (xi , yj ).(10)

Upon expanding the coefficient matrices of (9a,b) according to equations (1),

" forming the relative flow (10) and simplifying yields the following expressions for

the components of relative flow;

.V. (XI 6) -- Vz 62 + ( y, jx - z flj) , (1a)

o : AV, (Xl ,YI; 6) --" O . (11b)

Forming the ratio of relative flow to disparity yields

Av(XI,yI; 6) -Vz6+(yIlOX - xlfy), (12a)
6 (--1, y, b

=0. (12b)

We shall interpret expressions (12a,b) momentarily. But first note that this

ratio of relative flow to disparity is linear in the variables xj, yj and 6, with

coefficients proportional to the unknown parameters of relative motion. The

reader may verify for himself that, when reexpressed in the cyclopean coordinate

system (midway between the two cameras/eyes), expressions (12) remain

unchanged! Thus, we may suppress the subscript "I" in (12) and write instead,

18
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the feature at (xi, yg) in the left image. Note that over a particular analytic flow

region, the (horizontal) disparity forms an analytic scalar field generated by the

smooth depth function Z, (zx ,yi). And since the left and right coordinate systems

are parallel, the depth function for the corresponding region in the right image

*i may be expressed as

z' (X'-, Y, ) " (X z, +6 [X , Y1 1, Y1)-I (7)
- Z1 (z1, Vi).

Let us rewrite the monocular image velocity relations (1) in terms of transla-

tion and rotation coefficient matrices,

(z y) 1 r(z,y) -V+ W(X,y)f; (8)

Z(z,y)

" these 2 X 3 matrices being functions of image coordinates alone with elements

easily obtained from relations (1). Now an expression like (8) may be associated

with each image in our stereo configuration; the coordinates, motion parameters

and depth function are, however, different. In order to relate the left and right

image flows for a given region, we shall express both flows in terms of the left

coordinate system by using expressions (5,6,7). Thus, the left image flow is given

by

V1 (:1, I) = -L. 6 (X1, VI) T(xj, YI) V +,ff(xl, Vi) II(9a)

while the right image flow is given by

Vr~ ~ (X +'Y 6 (z1 ,Y,) (X1+6'Y1) V - 01~ X bs} + Ml(xi +6,yj -1i)1 (9b)
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that the left and right cameras/eyes are in motion with respect to each other

when relative motion between object and observer is ascribed to the observer. If

according to the left coordinate system the rigid body motion parameters of a

- region are (V0, ), then in the right coordinate system that same region has

motion parameters (V,, Or), where

fir fl7  (5a)

V, = V1 -0 1X bi, (5b)

and $ is a unit vector in the common x -direction.

Thus, the image flow fields of the two eyes/cameras differ in magnitude as

well as distribution (due to stereo disparity). And as both stereo disparity and

monocular flow vary inversely with depth, we should not be surprised that bino-

cular flow and disparity are related in a simple way. In fact, we shall see that

binocular flow is synonymous with "rate-of-change of disparity."

3.1 Relative Flow - Disparity Relation

Given the parallel stereo configuration, we have the simple case of

corresponding features lying along horizontal epipolar lines. Thus, a feature

" located at position (xi, y, ) in the left image at some instant of time is located at

• (x,, y,.) in the right image, where

=,- i (6a)

(X, YO - , = b It (X 1 Y1), (6b)

6 (z, Y,) being the angular disparity between right and left image positions of

- 18



BINOCULAR IMAGE FLOWS

3. BINOCULAR IMAGE FLOWS

For simplicity, we restrict our analysis to the parallel stereo configuration

illustrated in Figure 3. The left and right image planes lie in a common plane

with the fixation point located at infinity (i.e., the "eyes" point straight ahead).

The left and right coordinates, (x, Yq) and (x,, y, ) respectively, have their ori-

gins at the centers of their respective fields of view separated by a baseline of

magnitude b along the common direction of the z-axes. Each image plane is

positioned at a focal length of unity with respect to a pin-hole located at the ver-

tex of projection for each separate camera/eye. This stereo configuration is

assumed to move rigidly with respect to other moving objects in the scene. No

allowance has been made for vergence of the eyes (known or otherwise) in the

current formulation.

Consider the monocular flow analysis of Step 1 already performed separately

on the left and right image sequences. The analytic flow regions bounded by flow

discontinuities are assumed to be brought into correspondence rather easily. This

can be accomplished essentially by matching the flow discontinuities between left

and right images. The correspondence is gross, but allows the binocular flow

analysis to focus attention on individual regions. Each such region is assumed to

correspond to a smooth surface of a rigid body. Thus, we may associate with

each region a set of relative rigid body motion parameters. However, for the sake

of analysis, if we ascribe the rigid body motion to the "monocular observer", as

in Figure 1 and equations (1), then the rigid body motion parameters for a given

region are different for the left and right cameras/eyes. This is due to the fact

" . 15
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sitates the splitting and merging of neighborhoods in order to localize this discon-

tinuity. The beginnings of a control structure governing the automatic segmenta-

tion of flow fields is presented in Section 4 below.

2.4 Monocular Analysis of Binocular Flows

In the case of a binocular image sequence, the monocular flow analysis

described above is to be applied to the left and right image sequences separately.

* But rather than going so far as the 3-D inference from monocular flow (Waxman

and Ullman 1983) for each sequence, we consider only the recovery and segmenta-

*" tion of the separate image flows. This segmentation into analytic regions (i.e.,

regions of slowly varying second-order flow) allows gross correspondence to be

established between these regions in the left and right images. It also delineates

*. the depth and orientation discontinuities which often plague stereo matching and

surface reconstruction algorithms.

This completes Step 1 of our stereo-motion fusion module. The reconstructed

flow fields for the left and right images are brought together in the stage of

"binocular flow analysis" described next.

14
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2.3 Boundaries of Analyticity

From equations (1) it is apparent that the flow field is "functionally ana-

- lytic" (i.e. twice differentiable) wherever object surfaces Z (x, y) are twice

* differentiable. The flow is non-analytic at points where Z or its first partials are

discontinuous, and where the relative space motion parameters change. Such

points occur along occluding boundaries and structural edges where surface orien-

tation changes abruptly (e.g., the edges of a polyhedron). Thus, an image flow

- field is naturally partitioned into regions of analyticity separated by singular con-

tours (i.e., boundaries of analyticity). These analytic regions are, in turn, decom-

S•.posed into neighborhoods in which the image flow is locally approximated as a

- second-order flow. It is part of a complete image flow analysis to delineate these

boundaries of analyticity so that 3-D interpretations can be assigned to the

regions within them. Figure 2 illustrates this partitioning of the image flow field.

In order to detect the presence of a boundary of analyticity in the flow field,

we try to "analytically continue" the flow from one neighborhood to the next.

* This is accomplished by requiring the separate second-order flow approximations

determined in each neighborhood to be "compatible" in an overlapping area com-

mon to both neighborhoods (Wohn 1984; Wohn and Waxman 1985b). The degree

of compatibility between neighboring flow approximations is measured relative to

the agreement between the individual approximations and the data from which

they are obtained. When neighboring flow approximations are deemed "incompa-

tible," it is assumed that a boundary of analyticity has been crossed. This neces-

13
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2 2

i=o ==o i j (3b)

(i+js2)

Now consider a contour or edge fragment embedded in the neighborhood, along

* which the normal flow has been measured; let this normal flow be given by

v, (x, y). Also, let the unit normal measured along the contour be given by

n (x , y) - (n., , n. ). Then, since vn _= v -n, it follows from (3a,b) that

2 2 Xi i r
Vn (Z,y)= E E x {n.(x,y)v¢.(",)+n(z,y)V(i,)

i=o j= o i j! (4)
(i+j <2)

Equation (4) relates the normal flow along the contour to the twelve parameters

(Taylor coefficients) that characterize the full flow in the neighborhood. For each

point along a contour at which normal flow and the unit normal are measured,

expression (4) provides another constraint on these twelve coefficients. In princi-

* pie, twelve measurements along a contour are the minimum required to obtain a

set of twelve linear equations for the twelve unknowns. In practice, it is better to

*: use many (perhaps hundreds of) measurements along a single or multiple con-

* tours and edges in a neighborhood, and let equation (4) serve as the basis of a

least-squares approach for obtaining the set of twelve linear equations. Image

velocity measurements at points can easily be incorporated into (4) by choosing

n along the direction of point motion. The Velocity Functional Method has been

extended to incorporate data from multiple frames by considering time-varying

flows (Wohn and Waxman 1985b). In this manner one can essentially smooth the

flow fields over time, thereby filtering out additional noise.

12
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3.5 Relation to Dynamic Stereo

An earlier attempt to recover depth to moving objects from relative image

flows was termed Dynamic Stereo by Waxman and Sinha (1984). The approach

was valid in the limit of negligible disparity, i.e., lim (b /Z) - 0, and required

the two cameras to translate with respect to one another in order to develop a

"* difference flow field.

From equation (8) we see that negligible disparity implies, at lowest order,

that the coefficient matrices T(x ,y ) and M(x ,y ) are the same for both cameras.

- Then, if the two cameras can translate with respect to each other by a known

amount A V, while their relative rotation is zero, a difference flow Av results

which is independent of the relative object motions in the scene, i.e.,

Av = Z-1 P (x,y ) - A V . A known relative camera motion A V and measured

relative flow Av allows determination of depth Z (x ,y).

Comparing this to the formulation in Section 3.1 of the binocular difference

flow-disparity relation, we see that equations (11) are providing us with higher

order terms in powers of (b /Z) = 6, the disparity. In our simulation studies

with Dynamic Stereo, we found that a finite baseline of one-thousandth the depth

would perturb the relative flow, resulting in a depth error of about 2%. This

perturbation can be accounted for by considering the terms in equations (11).
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4. EXPERIMENTS

A limited experimental program was undertaken to demonstrate the feasibil-

*ity of implementing the first three steps of the stereo-motion module: Step 1 (flow

recovery and segmentation), Step 2 (establishing correspondence using the binocu-

lar difference flow) and, to a limited extent, Step 3 (recovering surface structure).

Binocular image flow fields were obtained using a camera mounted on a robot

*arm, viewing scenes consisting of white objects covered by black dots. In general,

the experiments were successful insofar as they confirmed the potential of overlap

compatibility for segmentation of laboratory flow data, and verified the binocular

difference flow-disparity relations for a particular configuration. Still, much work

remains before a fully automa ic module is realized.

4.1 Apparatus and Procedures

The moving pair of stereo cameras was simulated using a single, black and

white, Sony (model DC-37) CCD-camera mounted on an American Robot, MER-

LIN robot arm. The images were digitized into 480 X 420 pixel arrays using a

Grinnell (GMR-27) display processor and memory. The angular field of view was

27.6 X 24.1 degrees (i.e., 996.7 pixels per radian). Throughout this section, all

angular measurements are given in units of pixels; time is in units of seconds.

Each image flow field was obtained from three frames taken with the camera at

three positions, equally spaced in time, on its trajectory. The trajectories and

viewing directions were chosen to simulate a pair of cameras in a parallel stereo

27
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configuration (cf. Fig. 3). The baseline between cameras was 3.0 inches.

The scenes consisted of white surfaces covered with a distribution of 0.125

. inch diameter black dots. From the typical viewing distance of 40 inches the

dots appeared in the image with a diameter of 3 pixels. To obtain the position of

the dots in each image, individual images were thresholded and centroids of black

regions were found according to:

XC = N

N Y (22)
Y= E

where (xi , yi) are the image coordinates of the N black pixels in each region.

The centroids of the dots were tracked for three frames and velocities at the cen-

troids in the central frame in time were computed according to

X: (t +At)- x (t-at)
"- ' x(t), y,(t) = 2At , (23a)

Y (t +/At ) - Y, (t- t (
Vj z,(t), ,(t) = 2~At (23b)

which is a central-difference accurate to O(At2). The routine that tracks the

centroids from frame to frame assumes that the distance from the centroid in the

second frame, to the corresponding centroid in the first or third frame, is smaller

than the distance to any neighboring feature points. In addition, to insure rea-

* sonably accurate velocity measurements, the centroid displacements from frame

to frame must be 10 or more pixels. This simple approach limits the density of

feature points allowed in any one image. We have used images with about 200

28
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* feature points for analysis.

4.2 Image Flow Segmentation

We have analyzed the scene shown in Figure 4, which consists of a planar

background with two connected planar surfaces in the foreground. The effective

-- camera motions, also shown in the figure, were 0.25 inches/sec in the viewing

direction (toward the scene) and 0.25 inches/second in the X-direction (parallel

to the scene). At the central frame the cameras were about 40 inches from the

foreground surfaces. Pictures of the image flows obtained in this way are shown

- in Figure 5. Each velocity field consists of about 260 points.

The current segmentation program reveals the potential locations of flow

discontinuities, but does not refine them nor link them into global boundaries of

analyticity. The program first divides the image into N 2 equal-sized rectangles;

"- in this case, a 5 X 5 rectangular grid on each 480 X 420 pixel image. Each rec-

*tangle contained an average of about 10 feature points. The velocity data in

• .each rectangle was then fit to a pair of second-order polynomials (cf. equations 3)

using a linear least squares approach. The error per point between the data and

the second order fit, defined as

N I
err = (N I v.,, I)-' , ,"I poly - ,1,I Meas + Vi1 poly - vI meas (24)

- i=1I

* was typically 0.02.

In an attempt to see if the polynomial flow fields from adjacent rectangles

were compatible, i.e., belonged to the same analytic flow region, the velocities
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were compared in overlapping neighborhoods. Specifically, at vertical boundaries

between left and right rectangles and at horizontal boundaries between upper and

lower rectangles, an overlap compatibility measure (C, and Cl,, respectively) was

computed,

C (rrt .0crr) (vr-V1)2dxdy / (25a)

CA- (err2+rr0 ) ,(vr-v)2dzdy 1/2 (25b)

where the areas AV and Ah are shown in Figure 6. After computing the compa-

tibility for the original 5 X 5 rectangular grid, the calculations were repeated

twice with the grid shifted to the right in each case by one-third the rectangle

width (approximately the distance between feature points). The three horizontal

grid positions were then repeated with the grid shifted down by one-half the rec-

tangle height. Thus, the overlap error was computed for the boundaries of 6 rec-

tangular grids with 25 rectangles in each grid. A plot of the overlap compatibility

o. function is shown in Figures 7 and 8 for the vertical boundaries of the left and

right images, respectively. Similar plots for the horizontal boundaries appear in

Figures 9 and 10. Consider the compatibility across vertical boundaries first, Fig-

ures 7 and 8. Note that the contours with C, = 4 (i.e., four times the error in

fitting the polynomials) do not correspond to any structural feature of the scene.

*Thus, the noise level appears to be about 4. In Figure 7, both the vertical

- occluding boundary and the vertical structural edge appear in the contours with

compatability errors as high .s 10, i.e., 2.5 times the noise level. For the struc-
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tural edge (i.e., the slope discontinuity) the largest values appear slightly to the

right of the feature. In Figure 8 similar contour shapes are seen, but the vertical

- occluding boundary is only one rectangle width away from the left side of the

picture and is therefore not fully revealed by the contours. Note that these con-

*tours also indicate, to some extent, the position of the horizontal occluding boun-

dary. This horizontal boundary is seen more clearly in the compatibility of

upper-lower pairs of rectangles, Figures 9 and 10. The compatibility function is

*again typically 8 to 10 at the boundary.

The flow field segmentation results indicate that the overlap compatibility

method can sucessfully locate occluding boundaries (i.e., depth discontinuities)

and to some extent structural edges (i.e., slope discontinuities) in real data. How-

ever, the noise level and resolution of the results need to be improved. It is

- believed that both of these problems can be remedied by increasing the density of

data points in the images. For small numbers of data points in a neighborhood,

the residual between the measured data and the polynomial fit does not reach a

stable mean. Thus, both the coefficients of the polynomials and the residual

change significantly as data points are added or subtracted from the fit. In the

- present examples, since only 10 data points were used to fit each polynomial, the

results were not statistically stable and random errors contributed to both the

residuals in adjacent neighborhoods and the velocity difference in the overlap

regions. Thus, the noise level in C, and Ch was high. The resolution (or localiza-

tion) problem is controlled by the size of the rectangles and the magnitude of

the shift in the grid position. In the present case the rectangles were large (1/5

31
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the image size) but still only contained about 10 data points. The smallest mean-

ingful shift in the grid position is the average distance between data points, in

this case about 1/15 the image size. Thus, the low feature point density resulted

in low resolution. The low density of feature points in the present example was

necessitated by the simple method used to find feature point velocities from three

successive frames. This will be modified in future work to remedy the present

noise and resolution problems.

4.3 Binocular Flow Field Experiments

In this section we describe a preliminary experimental exploration of the

binocular flow equations (11). In particular, a Vz motion was chosen for the cam-

era pair and the equations were verified. It was pointed out in Section 3.3 that

the VZ motion is one of the two single component motions that will allow accu-

rate discrimination between correctly and incorrectly matched features. The

experiment used the camera set-up described earlier to simulate a pair of cameras

" separated by a 3 inch baseline. The cameras viewed a planar surface perpendicu-

lar to the viewing direction (i.e., a frontal plane). The velocity fields were

-. obtained with the cameras at 43.5, 45.0 and 46.5 inches from the surface. The

velocity fields obtained in this manner are shown in Figure 11. These velocity

* fields show the usual pattern with a focus of expansion near the center of the

"" image. Due to problems with the camera mount, it was not possible to align the

camera viewing direction with the direction of motion to better than 0.5 degrees.

32
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With the simple motion and scenes used here, it was possible to correct for this

misalignment. In future experiments a pair of cameras aligned with a specially

designed stereo mount will be used to alleviate this problem.

The binocular flow equations (11) were verified by two techniques: one using

the individual data points and the other using the polynomial fits to the velocity

fields; the space motion being known in both cases here (which is not generally

true). Feature matching using the individual data points will be discussed first.

Because of the low density of data points and the fact that matches lie along hor-

izontal epipolars, the pointwise matching problem for this example can be done

rather easily. Here we present an example of matching points in the left and

right images by trying the various combinations. Table II contains the coordi-

nates and velocities of four points in the right and left images with y = 98.0 ±

1.5 pixels. The potential disparities (xi - z,), the difference in the v., and

V. tP/b are given for each of the possible sixteen combinations of the two sets of

four points. There are two constraints on the correct matches besides satisfying

equations (11). First, the disparity must be positive. This is a consequence of the

relative positions of the cameras. Second, the velocity difference Av. must be

positive, as can be seen from equation (11a) with positive b and Vz . Eight of

the sixteen combinations have these two properties. Of the surviving eight com-

binations, only three have nearly equal values of Av, and V,6 2/b; they

correspond to correct matches. These are:

3
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combination 6 AVX Vz 62/b

1r-21 71.5 3.1 2.6
2r-31 71.0 2.9 2.5
4r-41 70.2 3.2 2.5

The average disparity of 71.4 pixels corresponds to a distance of 41.9 inches, close

to the correct value of 45 inches. Below we shall see that this error is due to cam-

era misalignment.

We now turn our attention to matching using the velocity fields derived

from the polynomial fits. Using these polynomials and the known space motion,

it is possible to obtain an expression for 6 as a continuous function of image coor-

dinates. For this example, each image has been divided into 16 rectangular

regions with dimensions of 86.4 X g4.4 pixels each. Second-order polynomials

have been fit to the velocity data in each region. The polynomials have the form

(v,),= Bo 1t +B 1 x +B 21 Y +B 31 x1
2 +B 41 y 2 +B 5 x y , (2)

(Vz)r =B 0 , +BIx, +B 2, y +B 3 , Xr 2 + 4, y 2 +B s x (y

Defining the potential disparity as 6 = (xr - x,), the velocity difference can be

expressed as

Av. = (Bor -Bo ) + (BI, -B, )i + (B 2 -B 2 1 )y + (B 3 , -B 31 )X 2

+ (B4, -B41 )y 2 + (B 5 r -B51 )XI Y + (Bir +B 5 r y +2B 3 r XI )6 +B 3r 62 .

When 6 is chosen correctly, this polynomial expression will equal Vz 62/b. Thus,

we obtain a second-order polynomial in 6 whose solution gives the correct dispar-

ity value:

34
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(B 3 r- Vz/b)6' 2 +(Blr+BSry+2B 3 rZX)6+P(i,y)-=0, (28)

where P corresponds to the terms in (27) that are independent of 6.

This polynomial in 6 has been solved in each of the rectangles at a point 25

pixels to the right of each rectangle's center in the left image (thus, its match in

the right image will be to the left of center in the corresponding rectangle). The

disparity should be the same everywhere in the image. The result, averaged over

the sixteen rectangles is 78.8 pixels with a standard deviation of 4.0. This

corresponds to Z = 38.0 ± 2.0 inches, compared to the correct value of 45.0

inches.

The source of the error is the misalignment of the cameras, as can be seen

from the velocity fields below. Because the cameras are moving toward a frontal

plane, the focus of expansion of the velocity field should be at the center of the

image and the velocity components should be anti-symmetric. The velocity com-

ponent v. at the center of each rectangle, averaged over the four rectangles in

each of the four columns is given below for the left and right images.

Average Horizontal Velocity (v,)

x = -177 x=-59 x=50 x=177

(v 1 I I -5.7 -1.8 2.2 6.0

(v ), I aq9 -6.2 -2.3 1.6 5.6

Note that, adding 0.3 to the values of the right image and subtracting 0.15 from

the values of the left image would leave both velocity distributions nearly anti-
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symmetric. The deviations from anti-symmetry correspond to camera misalign-

ments of about 0.5 degrees. These corrections can also be applied to the velocity

difference calculations by adding 0.45 to the calculated value. The corrected

disparity, averaged over the sixteen rectangles as above, is 66.3 ± 4.5 pixels or

45.1 ± 3.0 inches, which is the correct value. Also subtracting 0.45 from the velo-

city differences for the individual point combinations in Table II brings the Av.

and V, 62/b values into very close agreement at the correct matches.
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5. MATCHING VIA LOCAL SUPPORT

In the case of a static stereo pair of images, many algorithms have been sug-

gested for establishing correspondence between features (i.e., edges and points) in

the left and right images. Knowledge of the stereo geometry constrains matches

to lie along known epipolar lines (horizontal in the case of our parallel

configuration). Recently, several algorithms have emerged which are based on

the notion of local support of disparity (Prazdny 1984; Pollard, Mayhew and

Frisby 1985; Eastman and Waxman 1985). Prazdny's algorithm attempts to

embody the concept of "coherence" in the local disparity distribution, by assign-

ing a weight to each potential match of a feature based on a measure of similar-

ity between that disparity and potential disparities of other nearby features. Pol-

lard et al. have developed a matching algorithm which is driven by "local con-

sistency with a prescribed disparity gradient limit" of unity (selected on the basis

of psychophysical experiments). Again, potential matches of features are found,

and the potential disparities of nearby points are tested for compliance with the

disparity gradient limit. The approach of Eastman and Waxman is based on the

notion of "analytic disparity fields" in overlapping neighborhoods. Potential

matches between contours (i.e., extended edges) in the left and right images are

established. Then, motivated by (14) the implied disparities are fit to a linear

functional form (in the least-squares sense) for potentially matched contours in a

neighborhood, thereby yielding a locally planar interpretation along with the

average residual (measuring goodness of fit). A match is then selected on the
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basis of minimizing this residual (and so maximizing local support) subject to the

disparity gradient (derived from the functional) being less than a limit of unity.

Our use of locally analytic disparity fields is, in fact, a mathematical realization

of "coherence." All of these "local support" algorithms may be implemented in a

local and parallel manner.

For our case of time-varying stereo, we suggest the use of the binocular

difference flow-disparity relation (15) to establish correspondence in our neighbor-

hoods. Of course, the static matching algorithms based on disparity alone may

be used as well, but here we explore the additional exploitation of flow to drive

the matching procedure. We can implement the matching procedure in either of

two ways, both of which embody the concept of "local support" for matching a

neighborhood.

Upon considering (15b) first, we see that a feature and its corresponding

match along the epipolar should have the same image velocity perpendicular to

the epipolar. This may seem to establish correspondence directly, however, it is

not very selective since the velocities themselves do not vary greatly. The prob-

lem is that (15b) does not describe a trend of variation over a neighborhood,

though it does constrain the matching. On the other hand, (15a) is well suited

for matching with local support. If in a small neighborhood we approximate the

underlying surface as planar, then (15a) suggests that 6/ is locally a linear func-

tion of the cyclopean image coordinates. Thus, we seek local support for the ana-

lytic form
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BINOCULAR IMAGE FLOWS

Y) = C. + C., + C,y , (29)

where the left hand side consists of measurements A V, and 6 for potential

matches, and the coefficients C,, C,, C. are determined in the least squares

sense. This approach is appropriate for matching whole contours, where the

many disparity measurements implied can be used in the least squares procedure.

The matches which minimize the average residual are considered as having max-

imum local support.

Alternatively, one can seek matches which maximize local support in light of

Prazdny's (1984) approach. We first establish all potential matches along epipo-

lars and note the value of /6 corresponding to each potential match for each

feature. We then consider, for each feature i, each of its neighbors j over some

small area around it. Then choose those matches with values of (6/6)i and (/6)j

which are closest. As (29) implies that 6/6 varies linearly with angular separa-

tion, this suggests forming the quantity

S--[ (6/6), -(6/6), I / 5.., (30)

where si 2 = (X, - X* )2 + (y, - y, )2 . Pairs of potential matches which support

(29) will generate a value for wij 0 (C,, Cy) , whereas pairs of matches

which don't support (29) lead to - 0 (C,/s ij ) >>C, or CY. Aswi has

units of inverse time, we must adopt a local time constant r, and consider the

dimensionless quantity r, wi as the primary variable measuring similarity. A rea-

sonable choice for r is (6/6),i '0 (C -1). Hence, we wish to create a support

function which is 0 (1) when (r, w,, )2 is small, and then drops to zero as (7, W7 )2

3.
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Left Image Right Image

Figure 5 Velocity Fields from Left and Right Images -

Segmentation Experiment
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TABLE H
POINTWISE MATCHING WITH

THE BINOCULAR FLOW RELATIONS

Right Image Data Points

point z Y Vs VY

Ir -44.0 118.7 -1.0 3.8
2r -122.0 117.7 -3.7 3.7
3r -163.7 118.0 -5.2 3.7
4r -0.8 116.8 0.4 3.7

Left Image Data Points

point z V v 1

11 190.0 118.3 6.2 3.4
21 -115.5 118.5 -4.1 3.4
31 -193.0 117.3 -6.6 3.4
41 -71.0 116.5 -2.8 3.4

Velocity Difference Data

pair 6 AV, VZb /b

Ir-l1 -234.0 -7.2 27.5
lr-21 71.5 3.1 2.6 match
lr-31 149.0 5.6 11.1
Ir-41 27.0 1.8 0.4

2r-11 -312.0 -9.9 48.8
2r-21 -6.5 0.4 0.0
2r-31 71.0 2.9 2.5 match
2r-41 -51.0 -0.9 1.3

3r-1l -353.7 -11.4 62.7
3r-21 -48.2 -1.1 1.2
3r-31 29.3 1.4 0.4
3r-41 -92.7 -2.4 4.3

4r-1l -190.8 -5.8 18.2
4r-21 114.7 4.5 6.6
4r-31 192.2 7.0 18.5
4r-41 70.2 3.2 2.5 match
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Still, much work remains to be done before a complete module of this type

can be constructed. The control structure for the flow segmentation procedure

requires further development. This segmentation procedure should be iterative,

with subsequent refinements occurring near detected flow discontinuities. The

discontinuities in left and right images must also be matched in order to establish

gross correspondence among analytic regions. The binocular difference flow-

disparity relation, derived in Section 3, requires further testing in order to insure

its validity under more general classes of motion than tried here. It should also

be generalized to incorporate vergence effects. The matching techniques

described in Section 5 need to be implemented and tested in a variety of cases.

The ability to combine evidence in establishing correspondence is an appealing

aspect of the approach and needs to be implemented as well.

The possible role of a combined stereo-motion module, such as this one, in

the human visual processing task raises some interesting questions. How does the

brain utilize disparity estimates and binocular flow-disparity cues in establishing

correspondence? Does one take priority over the other, or are they combined?

What happens when structure from binocular flow conflicts with structure from

static stereo (Mayhew and Frisby, private communication)? Does one percept

dominate or do we see illusions? Are there certain kinds of "head motions" pre-

ferred for disambiguating false matches? Is there a "gradient limit" effett associ-

ated with the coefficients of the linear terms in equation (15a)? Is it possible to

fuse a dynamic stereogram which is beyond the static disparity gradient limit of

unity? Perhaps psychophysical experiments can resolve some of these questions.
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6. CONCLUSIONS

In this paper we have outlined a set of five steps toward the development of

a stereo-motion fusion module. The successful development of a complete

module of this type has enormous potential for robotics in a dynamic environ-

ment. It may also shed some light on the nature of the processing going on in

the human visual pathway. In this respect, the work of Regan and Beverley

(1979) is most relevant, for their own psychophysical and neurophysiological stu-

dies have led them to suggest the existence of neural organizations which may

-: "compute" the binocular difference flow (or relative flow between the eyes) which

" is so basic to our own theory.

The basic advantages this module offers over static stereo are: monocular

o. detection of the depth and orientation discontinuities (before matching is

*" attempted), use of a correlation between binocular difference flow and disparity

to drive the matching process (either independent of, or in conjunction with

:. matching based on disparity alone), the ability to refine disparity estimates to

• -sub-pixel accuracy by considering the smooth orbits of features through the left

and right image space-times, and the potential to focus attention of the matching

* process to the areas where new features enter the field of view. The advantages

of this module over structure from monocular motion are: the ability to recover

* absolute structure and rigid body motions (without scalf" . 'or ambiguities), and

*. that only linear equations need be solved to recover rigid body motion parame-

ters.

42
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above. One can require either independent confirmation of a match (both

processes running in parallel lead to the same conclusion), or combined evidence

of a match based on redundant support (using the product of independent sup-

port functions, hence the logical "AND") or complementary support (using the

sum of independent support functions, hence the logical "OR"). This method of

combining evidence for matching awaits implementation as well.

41
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grows. The function should seek support over only a local neighborhood around
feature i. Denoting this function by W (ri wi ), we form W (ri wi3 ) over the

j.

neighborhood and select the match for feature i with value (6/6)i that generated

the largest percentage of the sum; it is most similar to its neighbors in a manner

consistent with the linear form (29).

This is essentially Prazdny's algorithm, adapted to the variable 6/6

Clearly, it is applicable to any variable which can be locally approximated as a

linear form, including disparity itself. Such a matching strategy leads naturally

to a preference for small gradients in the matching variable. Thus, a kind of

"gradient limit" emerges. This is well known for disparity alone in static stereo-

grams (Burt and Julesz 1980). But does such a gradient limit exist for dynamic

stereograms? Could fusion be achieved with a dynamic stereogram for which the

disparity gradient limit is exceeded?

We have yet to implement our matching strategy and so cannot comment on

its possible strengths or weaknesses. But in keeping with Step 5 of Section 1, we

expect that once correspondence is initially established, new features emerging

from behind occluding boundaries and the periphery are easily matched. They

are entrained into the local disparity field by a spreading of local support from

previously matched features in the neighborhood.

Finally, we can consider the possibility of combining multiple matching cri-

teria. For example, disparity 6 and the ratio 6/6 may both be used to establish

correspondence, and can both be implemented in the same fashion as outlined

40
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Left Image Right Image

Figure 11 Velocity Fields from Left and Right Images-
Cameras Moving Toward a Frontal Plane
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