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- ABSTRACT {

The analyses of visual data by stereo and motion modules have typically
been treated as separate, parallel processes which both feed a common viewer-
centered 2.5-D sketch of the scene. When acting separately, stereo and motion
analyses are subject to certain inherent diﬁ'xculties:'stereo must resolve a com-
binatorial correspondence problem and is further complicated by the presence of

occluding boundaries}ﬂ'motion analysis involves the solution of nonlinear equations

and yields a 3-D interpretation specified up to an undetermined scale factor. >+ - +7 ¢

new module is described-.here-which unifies stereo and motion analysis in a
manner in which each helps to overcome the other’s shortcomings. One impor-
tant result is a correlation between relative image flow (i.e., binocular difference
flow) and stereo disparity; it points to the importance of the ratio §/6, rate of
change of disparity 6 to disparity 4, and its possible role in establishing stereo
correspondence. Our formulation may reflect the human perception channel
probed by Regan and Beverley (1979). —-
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WAXMAN | DUNCAN

Y. 1. INTRODUCTION

-~ In decomposing the visual information processing task into several stages, it
is the intermediate level which is responsible for the recovery of surface shapes in
a scene,*/{Marr 1982).> It is often described as a set of ‘i‘gilape from’ ™ modules
which, acting independently and in parallel, feed a viewer centered “ﬁfs/-D
sketch” of the visual field. Two of the most commonly studied and closely
related modules are shape from stereo )(Koenderink and van Doorn 1978; Marr
and Poggio 1979; Mayhew and Fri 1981; Prazdny 1984; Pollard et al. 1985;
Eastman and Waxman 1985)and shape from monocular motion.(Kognderink and
van Doorn 1975; Ullman 1979; Prazdny 1980; Longuet-Higgins and Prazdny 1980;
Longuet-Higgins 1981; Tsai and Huang 1981a,b; Waxman and Ullman 1983; Wax-
man 1984; Waxman and Wohn 1984; Wohn and Waxman 1985a,b; Subbarao and
Waxman 1985; Buxton et al. 1984). However, when acting independently, each of
these processes suffers from certain inherent difficulties; stereo is faced with a
combinatorial correspondence problem plagued by the presence of occluding
boundaries (Grimson 1981; Poggio and Poggio 1984), while motion analysis
involves the solution of nonlinear equations and leaves the 3-D interpretation
specified up to an arbitrary scale factor (Waxman and Ullman 1983). There is
evidence, however, for a separate channel of human visual processing in which
stereo and motion analyses may come together much earlier than at the 2.5-D
sketch. We formulate here a theory of time-varying stereo in the context of
‘““binocular image flows,’’ where stereo and motion work closely in order to over-

come each other's shortcomings. Central to our approach is the notion of relative
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BINOCULAR IMAGE FLOWS

flow (or “‘binocular difference flow’’), representing the difference between image
velocities of a feature as seen in the left and right images separately. Neural
organizations which perform this ‘‘computation’” have already been proposed

(Regan and Beverley 1979).

The fusion of stereo and motion into a single module has been considered
recently by others as well. Richards (1983) demonstrated recovery of structure
from orthographic stereo and motion without knowledge of the fixation distance.
Jenkin (1984) considered a stereo matching process driven by the 3-D interpreta-
tion of feature point velocities. Waxman and Sinha (1984) proposed a ‘“‘dynamic
stereo’’ technique based upon the relative flow derived from two cameras in
known relative motion, valid in the limit of negligible disparity. The question of
image motion aiding stereo in the matching process was noted by Poggio and
Poggio (1984); and as will be shown below, a correlation between binocular

difference flow and disparity may support this possibility.

We suggest a decomposition of our stereo-motion module into five steps

which begins where low-level vision ends, i.e., it follows the stage of edge and

point feature extraction (and tracking over time) in the left and right images

B o L caeacar

separately.

Step 1: Monocular image flow recovery and flow segmentation of the separate left
and right image sequences utilizing the Velocity Functional Method (Waxman and
Wohn 1984) and overlap compatibility (Waxman 1984; Wohn and Waxman
1985b). This procedure allows gross correspondence to be established between

analytic flow regions in the left and right images. It also reveals the depth and
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orientation discontinuities that often plague stereo matching and surface recon-

struction algorithms.

Step 2: Establishing correspondence between (previously unmatched) left and
right image features according to a correlation between binocular difference flow
and stereo disparity. This process can be implemented in parallel over the bino-
cular field of view in the context of ‘local support” within neighborhoods
(Prazdny 1984; Pollard et al. 1985; Eastman and Waxman 1985). This correla-
tion points to the importance of the ratio 5/6, rate of change of disparity 6 to
disparity 8. A ‘‘rigidity assumption” for independently moving objects in the

scene also enters here.

Step 8: Use of disparity functionals defined in overlapping neighborhoods to
recover smooth surface structure between the discontinuities detected from the
monocular flow analyses (Koenderink and van Doorn 1976; Eastman and Wax-

man 1985).

Step 4: Recovery of rigid body space motions corresponding to separate analytic
flow regions utilizing the determined surface structure and either monocular
image flow (or a cyclopean image flow). Separate surface patches can then be
grouped into rigid objects sharing the same space motions. This process entails

solving only linear equations as a measure of its complexity.

Step 5: Use of the separate image flows to track features and discontinuities over

time. This allows refinement of disparity estimates to ‘‘sub-pixel” accuracy by

temporal interpolation. It also allows the matching process to focus attention
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onto areas where new image features will be unveiled and old ones will disappear,

i.e., at the discontinuities and periphery of the field of view.

This last step suggests that, in the analysis of a time-varying stereo
sequence, once an initial correspondence has been determined between left and
right images, it is not necessary to establish correspondence anew for the entire
image pair at subsequent times. Most of the image features merely flow to new
locations which can be predicted. Matching need only be performed on new
features which enter the visible field from the periphery and from behind occlud-

ing boundaries.

In this paper we formulate several of these steps toward stereo-motion
fusion. Section 2 reviews the basic monocular image flow relations for rigid
bodies in motion. The importance of locally second-order flows and bound#ries of
analyticity (i.e., weak and strong flow discontinuities) is stressed as it is impor-
tant for the binocular flow analysis that follows. In Section 3 we develop the
theory of binocular image flows in the context of a parallel stereo configuration,
imaging a scene of rigid objects in motion. A correlation is derived between rela-
tive flow (binocular difference flow) and stereo disparity, laying the basis for a
new kind of matching procedure. This leads us to speculate on the class of ‘‘head
motions” that are most discerning in light of this correlation. Other relations
between monocular flow and binocular flow are obtained as well. In Section 4 we
utilize an experimental data set for a short stereo sequence to obtain the meas-

ured binocular image flows at one time instant. These flows are then filtered

using the Velocity Functional Method, and a flow segmentation is derived in
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order to detect depth and orientation discontinuities in the scene. This data is
then used to confirm the correlation between binocular flow and disparity
developed earlier. Section 5 describes two ways that this binocular difference
flow-disparity relation may be implemented in order to establish correspondence
in the context of ‘‘local support.” The ability to combine different matching cri-
teria is considered as well. We conclude in Section 6 with a discussion of what
remains to be done in the construction of a complete stereo-motion fusion

module.
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BINOCULAR IMAGE FLOWS

2. MONOCULAR IMAGE FLOWS

Investigations into the recovery of 3-D structure and motion from time-
varying monocular imagery have proceeded along two rather distinct paths. One
approach has been concerned with the motion of discrete points moving rigidly
in space (Ullman 1979; Prazdny 1980; Longuet-Higgins 1981; Tsai and Huang
1981a,b; Adiv 1984). The resulting 3-D interpretation is in the form of rigid body
motion parameters and relative depth of points in space. The second approach
treats the image flow field as a whole (Koenderink and van Doorn 1976;
Longuet-Higgins and Prazdny 1980; Waxman and Ullman 1983; Wohn 1984;
Waxman and Wohn 1985) in an attempt to recover the rigid body motion param-
eters and surface descriptions (slopes and curvatures) of entire surface patches.
Recently, work has begun on the 3-D recovery of structure from non-rigid body
motions (Ullman 1983; Koenderink, private communication). Our formulation of
binocular image flows will follow the continuous field approach developed for
monocular flows generated by textured objects in rigid body motion (Waxman

and Ullman 1983, Waxman 1984, Waxman and Wohn 1984, Wohn 1984).

We consider a scene as comprised of objects in independent rigid body
motion with respect to the observer. The individual objects are imagined as
decomposed into surface patches visible to the observer, and these surface
patches in space project into neighborhoods in the image. It is actually the sur-

face texture and shading which is observed under perspective projection in the

image. Due to the relative motion between object and observer, the projected tex-
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ture undergoes deformations which reflect the image flow field. The theory of
monocular image flows, developed by Waxman and collaborators (cf. References),
provides techniques for the recovery of flow fields and deformation parameters
from evolving contours, edge fragments and feature points in the imagery, and
for recovery of 3-D surface structure and rigid body motion from these deforma-
tions. As these ideas provide the starting point for binocular flow analysis, they

are reviewed in more detail here.

2.1 Image Velocity Relations

As a textured, rigid object moves through space, the evolving image
sequence registered by a monocular observer (e.g. a moving pin-hole camera) con-
tains information in the form of an image flow field. This image flow is deter-
mined by the relative rigid body motion between object and observer, as well as
the structure of the object’s surface visible to the observer. Derivation of this

flow field follows that of Waxman and Ullman (1983).

We attribute the relative rigid body motion to an observer represented by
the spatial coordinate system (X, Y, 7 ) in Figure 1. The origin of this system is
located at the vertex of perspective projection, and the Z-axis is directed along
the center of the instantaneous field of view. The instantaneous rigid body
motion of this coordinate system is specified in terms of the translational velocity
V=(Vyx,Vy,Vz) of its origin and its rotational velocity

Q= (0Qx, 0y, Q7). The 2-D image sequence is created by the perspective pro-
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BINOCULAR IMAGE FLOWS

jection of the object onto a planar screen oriented normal to the Z -axis. The ori-
gin of the image coordinate system (z, y) on the screen is located in space at
(X,Y,Z)=(0,0,1); that is, the image is reinverted and scaled to a focal

length of unity.

Due to the observer’s motion, a point P in space (located by position vector
R ) moves with a relative velocity U = - (V + f1X R). At each instant, point
P projects onto the screen as point p with coordinates (z,y)=(X/2,Y/ Z).
The corresponding image velocities of point p are (v,, v,) = (z, ¥ ), obtained
by differentiating the image coordinates with respect to time and utilizing the

components of U for the time derivatives of the spatial coordinates of P. The

result is
\4 V.
v,={x72—-7x-}+[zyﬂx—(1+x2)ﬂy+yﬂzl, (1a)
Vs 1%
"y={y"z'"_zy'}+[(1+y2)9x-5yﬂr-$921’ (1b)

These equations define an instantaneous image flow field, assigning a unique
2-D image velocity v to each direction (z, y ) in the observer's field of view. For
the moment, we shall consider only a single surface patch of some object in the
field of view. A small but finite surface patch may be locally approximated by a
quadric surface in space as described by six parameters: two slopes, three curva-
tures and an overall distance scale. If the surface patch is described in this
viewer-centered spatial coordinate system by Z = ¢(X, Y ), then it is straight-

forward to find the corresponding local representation Z =2 (z,y) as a

~~~~~~~
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second-order polynomial in terms of image coordinates. Of these six surface
parameters, only five can be recovered directly from the image flow field; the
overall scale factor is lost as it always appears in ratio with the translational velo-
city V (Waxman and Ullman 1983). Moreover, the remaining five surface param-
eters appear in product with the translational space motion. The kinematic
analysis developed by Waxman and Ullman (1983) leads to a set of twelve alge-
braic equ.tions relating this 3-D structure and motion to derivatives (through
second order) of the image flow. Recovery of the 3-D information requires solution

of nonlinear equations.

2.2 Second-Order Image Flows

In the recovery of surface structure and 3-D motion from image flow, it is
sufficient to describe an image flow as a locally second-order flow field. This has
implications with regard to the surfaces which generate the flow itself. For exam-
ple, a planar surface patch Z = Z, + pX + ¢Y, may be described exactly as
Z = Z,(1-pz -gqy)"! in image coordinates. Substitution into the velocity
equations above yields expressions in the form of second-order polynomials. For
planar surfaces, such second-order flows are globally valid. On the other hand,
quadric surfaces generate flows which are not simple polynomials in the image
coordinates. However, they may be locally approzimated as second-order flows.
The coefficients of this second-order flow then determine the slopes and (scaled)

curvatures of the quadric surface patch as well as its (scaled) space motion. In

10
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this context, a complex surface is viewed as a composite of overlapping planar
and quadric patches. The image flow associated with a smooth surface is, there-
fore, a slowly varying (in terms of image coordinates) second-order flow defined

over a region of the image.

In order to recover the second-order flow approximation for any neighbor-
hood in the image, it is necessary to have a sufficiently dense texture present in
that neighborhood. This texture gives rise to extended contours, edge fragments
and point features, all of which are convected along and deformed by the local
image flow. These features serve to sample components of the flow field; in par-
ticular, the contours and edges yield an estimate of the flow in the direction nor-
mal to the contours themselves. The Velocity Functional Method (Waxman and
Wohn 1984) may then be used to recover the local flow from these sampled com-

ponents.

We model the components of the local velocity field by second-order polyno-
mials; hence, define the partial derivatives of image velocity evaluated at a local
origin as

o'+ y

pli)= 20w |
dr'dy’ |o

(2)

Then the components of instantaneous velocity in the neighborhood are described

by the two functionals

2 2 . i J
. —_ (1) 2 _ Y
vz (I9 y) ,‘__2_;) Jgo vz 2. ' J ' ’ (33.)
(r+5 <2)

11
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BINOCULAR IMAGE FLOWS

Note that (20) requires these combined monocular-binocular flow quantities to be
linear functional forms in the variables (z, y, 6 ). Once correspondence is esta-
blished between left and right images (as in Step 2 ), the measured disparities
may be locally fit over small analytic neighborhoods to a linear form motivated
by (14), thereby determining local surface structure (as described in Step 3 ).
Then equations (20) may be used to fit linear forms to the measured flow quanti-
ties over analytic regions (in. the least-squares sense), and thus determine the
absolute rigid body motion parameters V and 2 for that region. This requires
solving only linear equations. (Recall that structure and motion from monocular
flow required solution of nonlinear equations.) This corresponds to Step 4 of the

stereo-motion fusion module deseribed in Section 1.

The obvious symmetries displayed by equations (20) suggest that they may
be written in vector notation. Corresponding to the 3-D space position vector
R =(X,Y,Z) we introduce the 3-D  image  position  vector
r=R/Z=(z,y,1). The 3-D image velocity is defined as v = r = (v,, v, 0) .

Then, recalling that Av, = &, we can rewrite (20) as

u--‘;-r=-[7"5+n><r|, (21)

It is not coincidental that (21) bears a strong reseinblance to the relation for 3-D
space velocity of a point induced by an observer’s rigid body motion, i.e.,

U=R=- (V+ QXR). In fact, (21) is exactly this relationship for U /Z !

25
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matching: the V; head motion using the v, component, and the {27 head

motion using the v, component. In the experiments to be described in Section 4,

we have examined the former case while viewing a frontal plane. The possibility

of more complex head motions requires further analysis.

3.4 Monocular - Binocular Flow Relations

In addition to the correlation that exists between binocular difference flow
and disparity (13), there are some interesting relations between this binocular
flow and the monocular flow (as seen on the cyclopean image, say). The cyclo-
pean image velocity of a feature is the average of the corresponding feature velo-
cities in the left and right images for this parallel stereo configuration. Equations
(1) can be interpreted as the monocular flow in cyciopean image coordinates, with
space motion parameters and depth interpreted accordingly. Relations (13) and
(14) are valid in cyclopean coordinates as well. Replacing 1/Z by §/b in (1) and

combining with (13), find

Av |4
v, - T 5’ =—Qy+yQZ—-—5{-6, (20a)
Av |
BoU (= ==Qx—xnz-—b’i-5, (20b)
Av V
- 6’ =1‘QY—yQX—‘b—Z'5. (20C)

Equations (20) have been written with ‘‘measurable” quantities on the left-

hand side and unknown motion parameters as coefficients on the right-hand side.

24
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motions for animals and machines.

For a preliminary determination of the ‘‘head motions” that are most
discriminating for matching purposes, we have examined Equation (19) for each
of the six motion components separately while viewing a planar surface sloped in
the X -direction only. In particular, we seek the motions that produce a velocity
difference field which is least sensitive to noise from the measurement of the indi-
vidual velocity fields. More precisely, a motion that facilitates matching must
have two characteristics. First, the velocity component used for matching must
be measurable. For example, for an {1y head motion, the v, component is
O (zy ) while the v, component is O(1). Thus, the v, component cannot be
measured accurately. However, a ¥V, head motion produces velocity components
of equal magnitude. In order to discriminate correct from incorrect matches, we
also require that for potential matches, the error ( Av - Av|, )/v should scale
like the percentage error in the disparity. Table I contains the results of the
analysis including the z and y components of the image flow velocity for the
cyclopean system (v), the velocity differences for incorrect (Av) and correct
(Av|,) matches, and the error in the velocity difference for incorrect matches
divided by the velocity in the cyclopean image (Av - Av|,)/v. From Table I we
see that this error function is O (1) in four cases listed in the table: the v, com-
ponent for Vz; and Iy motions, and the v, components for Oy and Qg
motions. Two of these, v, for 1y motions and v, for 0y motions, will be inac-
curate because the particular velocity component is O (zy ) compared to its com-

panion velocity component. Thus we are left with two motions that facilitate

23
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denote them by Z; and Z,, respectively. Then it is a straightforward exercise,
following Section 3.1, to derive an expression for the ratio Av /§ in the case of

an incorrect match. In the cyclopean coordinate system we find,

Av _ Av | [8-54 {(1"*'5/2)0)’}
5§ 6|, 5 y Oy + Qg
' Vi /b §/2) V; /b — —(z+6/2) O (19)
z,_zllsc x/b = (z+6/2) Vz /b - 5(z+6/2) Qy
3 1 1 !
Z: s VY/b"yVZ/b‘EZVQY“E"QZ

where the upper/lower expressions in curly brackets refer to the z /y components

of the ratio.

There are two sets of terms which cause the ratio Av /6 to deviate from its
correct value when a false match is chosen. The first set is proportional to the
deviation from the correct disparity value, and is generated by relative rotations
between the objects and the eyes/cameras. The second set is proportional to the
depth error, which vanishes for a frontal plane (it is proportional to the X-
component of slope times disparity deviation). This second set is generated by a
combination of relative translational and rotational motions. If we consider the
case when objects in the scene are stationary and all motions are due to the
cyclopean coordinate system, then only one particular motion contributes to
every term present. This is the motion 2y, corresponding to a rotation about a
vertical axis as due to a rotation of the head about the neck. (Perhaps this is
why our eyes are aligned perpendicular to our necks!) It is also interesting to note
that translation in the direction of gaze V;, contributes to both components of

the ratio (19) as well. Both Qy and V, are quite natural exploratory head

22
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b(z,9) _ V2
6(z,y) b

6(z,y)+(yﬂx—zﬂy), (18)

which is identical with relation (13a). Thus, this correlation between relative
tmage flows and stereo disparity ts, in fact, a relationship between disparity and

its rate of change!

3.3 Disambiguating ‘‘Head Motions”’

In Section 5 below, we describe how the correlation between relative flow
and disparity (13) or (15), may be used in establishing correspondence between
left and right images. But the basic idea is that, for a set of hypothetical
matches among features in a neighborhood, the measured ratio of relative flow to
disparity should be consistent with a known functional form, i.e., a linear form as
suggested by (15). However, if this correlation is to be useful in establishing
correspondence, it must be capable of disambiguating false matches. By consid-
ering the possibility of false matches, we can examine the class of “head motions”
(or camera motions) that generate significant deviations from the derived correla-

tion.

Consider, then, the relative image flow between a feature in the left image
and some feature in the right image shifted horizontally by an angle § and lying
along the same epipolar line. When these features do in fact match, the shift §
equals the *‘correct disparity’ 6.. For a correct match the depth values of the

left and right features are equal. But for an incorrect match they need not be;

21
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3.2 Interpreting the Correlation

The correlation between relative flow Av and disparity 6, presented in
cyclopean coordinates in (13a,b) is simple to interpret. Recall that we are consid-
ering only a parallel stereo imaging geometry, hence, the epipolar lines are hor-
izontal (i.e., parallel to the z-axes). Now the relative flow Av represents the
rate of separation of a feature in one image, from its match in the other image.
It is the rate of change of vector disparity. As a feature and its match must
always lie along some epipolar line, its vertical disparity must remain zero in this
case. Thus, relation (13b) expresses the fact that a feature and its match must
flow perpendicular to epipolars at the same rate in order to lie on a common epi-
polar. In general, the rate of change of vertical disparity must be such as to keep

a feature and its match on an epipolar line.

For our parallel stereo configuration, we may then identify Awv, with the
rate of change of (horizontal) disparity and denote it by 8. Returning to expres-

sion (14) we have
b= 7 =-6=. 16
v (16)
From U =-(V+ 1 X R) we have Z =-Vz-Qx Y+ Qy X, hence,
Z Vs Vz
=" " Wx-2Qy)=-—=06-(yQx-20y). (17)

Combining (17) with equation (18) yields for §/6,

20
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Av,(z,y; 6

v&((:,:) )=%V25(z’y)+(ynx-zn”)’ (13a)
Av, (z,y; 6)
._‘.S!Ey_)___—_.o, (13b)

with image coordinates and motion parameters corresponding to the cyclopean

coordinate system.

If we consider the relative flow in a small enough neighborhood such that the
underlying surface patch may be treated as locally planar, then we have a simple

expression for the local disparity field,

Z(:,y) = Zbo (1-pz -qy), (14)

b(z,y)=

where Z is the depth to the plane measured along the center of the cyclopean

field of view, and p and ¢ are the components of local slope. Substituting (14)
for the disparity on the right-hand side of (13) yields the local relative flow to

disparity relations,

Av,(z,y) Vs Vg Vy

5@v) . Zo zo’“’””] ””“[70‘4"“"] v (1%3)
Av,(z,y)

it ASALUNNNY'S (15b
) )

We see that locally, the relative flow to disparity ratio is a linear function of
tmage coordinates with coefficients depending on the surface structure and rela-
tive motion between object and observer. In Section 5, we shall describe how this
correlation between relative flow and disparity can form the basis of a stereo

matching procedure.

19
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Equations (9a,b) yield the image velocities of corresponding features in the two

é cameras/eyes.
Now we define the ‘‘relative flow” (or binocular difference flow ) of features
between the left and right images as the difference between the ‘‘shifted flow

fields”, the ‘‘shift” being associated with the disparity field;

Av(z, ;)= v (5 +6 [z, wl, w) - vz, u) (10)

As

! Upon expanding the coefficient matrices of (9a,b) according to equations (1),

forming the relative flow (10) and simplifying yields the following expressions for

B R

the components of relative flow;
- 1
> Avy (zy; 8) = +V; 2+ (yQx -50y)86, (11a)
; Avy (z1,9;6)=0. (11b)
4
’fj' Forming the ratio of relative flow to disparity yields
Av (7,436 1
= =V,6+ (y 0y -17,0v), 12
5 (2.4 b 2 (v Qx 1 Qy) (12a)
Av, (z;,y;; 6
plawid _ g (12b)
6 (z.u)

We shall interpret expressions (12a,b) momentarily. But first note that this
ratio of relative flow to disparity is linear in the variables z;,  and §, with
coefficients proportional to the unknown parameters of relative motion. The
reader may verify for himself that, when reexpressed in the cyclopean coordinate
system (midway between the two cameras/eyes), expressions (12) remain

unchanged! Thus, we may suppress the subsecript /"’ in (12) and write instead,
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the feature at (z;, y; ) in the left image. Note that over a particular analytic flow
region, the (horizontal) disparity forms an analytic scalar field generated by the
smooth depth function Z;(z;,y;). And since the left and right coordinate systems
are parallel, the depth function for the corresponding region in the right image
may be expressed as

Z, (2,9 )=2.(5+6 [z, ), w)

7
=Zl(zlvyl)' ()

Let us rewrite the monocular image velocity relations (1) in terms of transia-

tion and rotation coefficient matrices,

v(z,y)=7(—1——T(x,y)-V+§(z,y)'ﬂ; 8)

z,y)
these 2 X 3 matrices being functions of image coordinates alone with elements
easily obtained from relations (1). Now an expression like (8) may be associated
with each image in our stereo configuration; the coordinates, motion parameters
and depth function are, however, different. In order to relate the left and right
image flows for a given region, we shall express both flows in terms of the left
coordinate system by using expressions (5,6,7). Thus, the left image flow is given

by
v (zu!ll)='},'5($uw) T'z,w) Vi+RB@,u) o, (9a)

while the right image flow is given by

v, (7 +0,y) = % 6 (z;,m) T (5 +6,m) { V- QX b:}"‘ E (7, +6,y;) -Q, (9b)
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that the left and right cameras/eyes are in motion with respect to each other
when relative motion between object and observer is ascribed to the observer. If
according to the left coordinate system the rigid body motion parameters of a
region are (V;, €1;), then in the right coordinate system that same region has

motion parameters (V,, 1, ), where

Q, =1 (5a)
V, =V, -, X bs, (5b)
and ¢ is a unit vector in the common z -direction.

Thus, the image flow fields of the two eyes/cameras differ in magnitude as
well as distribution (due to stereo disparity). And as both stereo disparity and
monocular flow vary inversely with depth, we should not be surprised that bino-
cular flow and disparity are related in a simple way. In fact, we shall see that

binocular flow is synonymous with “rate-of-change of disparity.”

3.1 Relative Flow - Disparity Relation

Given the parallel stereo configuration, we have the simple case of
corresponding features lying along horizontal epipolar lines. Thus, a feature
located at position (z;, ;) in the left image at some instant of time is located at

(z,, ¥, ) in the right image, where

Y =Y, (6a)
$(z,y)=z,-3 =b/2 (g, y), (6b)

6(z;, y;) being the angular disparity between right and left image positions of

16
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3. BINOCULAR IMAGE FLOWS

For simplicity, we restrict our analysis to the parallel stereo configuration
i illustrated in Figure 3. The left and right image planes lie in a common plane
& with the fixation point located at infinity (i.e., the “eyes” point straight ahead).
-
[

The left and right coordinates, (z;, y;) and (z,, y, ) respectively, have their ori-

gins at the centers of their respective fields of view separated by a baseline of
magnitude b along the common direction of the z-axes. Each image plane is
positioned at a focal length of unity with respect to a pin-hole located at the ver-
tex of projection for each separate camera/eye. This stereo configuration is
assumed to move rigidly with respect to other moving objects in the scene. No
allowance has been made for vergence of the eyes (known or otherwise) in the

current formulation.

Consider the monocular flow analysis of Step 1 already performed separately
on the left and right image sequences. The analytic flow regions bounded by flow
discontinuities are assumed to be brought into correspondence rather easily. This
can be accomplished essentially by matching the flow discontinuities between left
and right images. The correspondence is gross, but allows the binocular flow
analysis to focus attention on individual regions. Each such region is assumed to
correspond to a smooth surface of a rigid body. Thus, we may associate with
each region a set of relative rigid body motion parameters. However, for the sake
of analysis, if we ascribe the rigid body motion to the ‘‘monocular observer’, as
in Figure 1 and equations (1), then the rigid body motion parameters for a given

region are different for the left and right cameras/eyes. This is due to the fact
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sitates the splitting and merging of neighborhoods in order to localize this discon-
tinuity. The beginnings of a control structure governing the automatic segmenta-

tion of flow fields is presented in Section 4 below.

2.4 Monocular Analysis of Binocular Flows

In the case of a binocular image sequence, the monocular flow analysis
described above is to be applied to the left and right image sequences separately.
But rather than going so far as the 3-D inference from monocular flow (Waxman
and Ullman 1983) for each sequence, we consider only the recovery and segmenta-
tion of the separate image flows. This segmentation into analytic regions (i.e.,
regions of slowly varying second-order flow) allows gross correspondence to be
established between these regions in the [eft and right images. It also delineates
the depth and orientation discontinuities which often plague stereo matching and

surface reconstruction algorithms.

This completes Step 1 of our stereo-motion fusion module. The reconstructed
flow fields for the left and right images are brought together in the stage of

‘““binocular flow analysis’’ described next.

14
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2.3 Boundaries of Analyticity

From equations (1) it is apparent that the flow field is ‘“‘functionally ana-
lytic”” (i.e. twice differentiable) wherever object surfaces Z (z,y) are twice
differentiable. The flow is non-analytic at points where Z or its first partials are
discontinuous, and where the relative space motion parameters change. Such
points occur along occluding boundaries and structural edges where surface orien-
tation changes abruptly (e.g., the edges of a polyhedron). Thus, an image flow
field is naturally partitioned into regions of analyticity separated by singular con-
tours (i.e., boundaries of analyticity). These analytic regions are, in turn, decom-
posed into neighborhoods in which the image flow is locally approximated as a
second-order flow. It is part of a complete image flow analysis to delineate these
boundaries of analyticity so that 3-D interpretations can be assigned to the

regions within them. Figure 2 illustrates this partitioning of the image flow field.

In order to detect the presence of a boundary of analyticity in the flow field,
we try to ‘“‘analytically continue’ the flow from one neighborhood to the next.
This is accomplished by requiring the separate second-order flow approximations
determined in each neighborhood to be ‘‘compatible’ in an overlapping area com-
mon to both neighborhoods (Wohn 1984; Wohn and Waxman 1985b). The degree
of compatibility between neighboring flow approximations is measured relative to
the agreement between the individual approximations and the data from which
they are obtained. When neighboring flow approximations are deemed “incompa-

tible,” it is assumed that a boundary of analyticity has been crossed. This neces-

13
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2 2 .. i J
= (1) 2 ¥
(@)= % ,.§0 ST T (3b)
(1+5<2)

Now consider a contour or edge fragment embedded in the neighborhood, along
which the normal flow has been measured; let this normal flow be given by
v, (z,y). Also, let the unit normal measured along the contour be given by

n (z,y)=(n;,ny). Then,since v, = v n, it follows from (3a,b) that

2 2 § J .. ..
w@= % DI n e nt a6 y00] .,

i=0 j=0'° J°

(1+5<2)

Equation (4) relates the normal flow along the contour to the twelve parameters
(Taylor coefficients) that characterize the full flow in the neighborhood. For each
point along a contour at which normal flow and the unit normal are measured,
expression (4) provides another constraint on these twelve coefficients. In princi-
ple, twelve measurements along a contour are the minimum required to obtain a
set of twelve linear equations for the twelve unknowns. In practice, it is better to
use many (perhaps hundreds of) measurements along a single or multiple con-
tours and edges in a neighborhood, and let equation (4) serve as the basis of a
least-squares approach for obtaining the set of twelve linear equations. Image
velocity measurements at points can easily be incorporated into (4) by choosing
n along the direction of point motion. The Velocity Functional Method has been
extended to incorporate data from multiple frames by considering time-varying
flows (Wohn and Waxman 1985b). In this manner one can essentially smooth the

flow fields over time, thereby filtering out additional noise.

12




DUNCAN

3.5 Relation to Dynamic Stereo

An earlier attempt to recover depth to moving objects from relative image
flows was termed Dynamic Stereo by Waxman and Sinha (1984). The approach
was valid in the limit of negligible disparity, i.e., lim (4 /Z) — 0, and required
the two cameras to translate with respect to one another in order to develop a

difference flow field.

From equation (8) we see that negligible disparity implies, at lowest order,
that the coefficient matrices T (z,y) and £ (z,¥) are the same for both cameras.
Then, if the two cameras can translate with respect to each other by a known
amount AV, while their relative rotation is zero, a difference flow Av results
which is independent of the relative object motions in the scene, i.e.,
Ay = Z7! ?(z,y) - AV. A known relative camera motion AV and measured

relative flow Av allows determination of depth Z (z,y ).

Comparing this to the formulation in Section 3.1 of the binocular difference
flow-disparity relation, we see that equations (11) are providing us with higher
order terms in powers of (b /Z) =6, the disparity. In our simulation studies
with Dynamic Stereo, we found that a finite baseline of one-thousandth the depth

would perturb the relative flow, resulting in a depth error of about 2%. This

perturbation can be accounted for by considering the terms in equations (11).
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4. EXPERIMENTS

A limited experimental program was undertaken to demonstrate the feasibil-
ity of implementing the first three steps of the stereo-motion module: Step 1 (low
recovery and segmentation), Step 2 (establishing correspondence using the binocu-
lar difference flow) and, to a limited extent, Step 3 (recovering surface structure).
Binocular image flow fields were obtained using a camera mounted on a robot
arm, viewing scenes consisting of white objects covered by black dots. In general,
the experiments were successful insofar as they confirmed the potential of overlap
compatibility for segmentation of laboratory flow data, and verified the binocular
difference flow-disparity relations for a particular configuration. Still, much work

remains before a fully automa‘ic module is realized.

4.1 Apparatus and Procedures

The moving pair of stereo cameras was simulated using a single, black and
white, Sony (model DC-37) CCD-camera mounted on an American Robot, MER-
LIN robot arm. The images were digitized into 480 X 420 pixel arrays using a
Grinnell (GMR-27) display processor and memory. The angular field of view was
27.6 X 24.1 degrees (i.e., 996.7 pixels per radian). Throughout this section, all
angular measurements are given in units of pixels; time is in units of seconds.
Each image flow field was obtained from three frames taken with the camera at
three positions, equally spaced in time, on its trajectory. The trajectories and

viewing directions were chosen to simulate a pair of cameras in a parallel stereo

27




WAXMAN DUNCAN

configuration (cf. Fig. 3). The baseline between cameras was 3.0 inches.

The scenes consisted of white surfaces covered with a distribution of 0.125
inch diameter black dots. From the typical viewing distance of 40 inches the
dots appeared in the image with a diameter of 3 pixels. To obtain the position of
the dots in each image, individual images were thresholded and centroids of black

regions were found according to:

-

(22)

Y.

-

1= 1Mz

z|= s

where (z;, y;) are the image coordinates of the N black pixels in each region.
The centroids of the dots were tracked for three frames and velocities at the cen-

troids in the central frame in time were computed according to

T, (t+At) -z, (t-At)

Vel 2,(e), v.(t) = N : (232)
v (t+AL) - y . (t-At)
vyl z.(t) y.(t) = 2A¢ - ’ (23b)

which is a central-difference accurate to O (At?). The routine that tracks the
centroids from frame to frame assumes that the distance from the centroid in the
second frame, to the corresponding centroid in the first or third frame, is smaller
than the distance to any neighboring feature points. In addition, to insure rea-
sonably accurate velocity measurements, the centroid displacements from frame
to frame must be 10 or more pixels. This simple approach limits the density of

feature points allowed in any one image. We have used images with about 200
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feature points for analysis.

4.2 Image Flow Segmentation

We have analyzed the scene shown in Figure 4, which consists of a planar
background with two connected planar surfaces in the foreground. The effective
camera motions, also shown in the figure, were 0.25 inches/sec in the viewing
direction (toward the scene) and 0.25 inches/second in the X -direction (parallel
to the scene). At the central frame the cameras were about 40 inches from the
foreground surfaces. Pictures of the image flows obtained in this way are shown

in Figure 5. Each velocity field consists of about 260 points.

The current segmentation program reveals the potential locations of flow
discontinuities, but does not refine them nor link them into global boundaries of
- analyticity. The program first divides the image into N? equal-sized rectangles;
in this case, a 5 X 5 rectangular grid on each 480 X 420 pixel image. Each rec-
tangle contained an average of about 10 feature points. The velocity data in
each rectangle was then fit to a pair of second-order polynomials (cf. equations 3)
using a linear least squares approach. The error per point between the data and

the second order fit, defined as

N . ,
err = (N | Vaug I )-1 MR poly ~ V7| meas

=1

+ \ vg” poly ~— v; meas (24)
was typically 0.02 .

In an attempt to see if the polynomial flow fields from adjacent rectangles

were compatible, i.e., belonged to the same analytic flow region, the velocities
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were compared in overlapping neighborhoods. Specifically, at vertical boundaries
between left and right rectangles and at horizontal boundaries between upper and

lower rectangles, an overlap compatibility measure (C, and C}, respectively) was

computed,
[ 1/2
20 1 o
¢ = (err, +err;) | A, ffA.(v' v) dz‘dy} ’ (25a)
[ 1/2
20 1 g
G = (err, +err;) | Ay ffA.(v' ) dzdy} ’ (25b)

where the areas A, and A, are shown in Figure 8. After computing the compa-

tibility for the original 5 X 5 rectangular grid, the calculations were repeated
twice with the grid shifted to the right in each case by one-third the rectangle
width (approximately the distance between feature points). The three horizontal
grid positions were then repeated with the grid shifted down by one-half the rec-
tangle height. Thus, the overlap error was computed for the boundaries of 6 rec-
tangular grids with 25 re‘ctangles in each grid. A plot of the overlap compatibility
function is shown in Figures 7 and 8 for the vertical boundaries of the left and
right images, respectively. Similar plots for the horizontal boundaries appear in
Figures 9 and 10. Consider the compatibility across vertical boundaries first, Fig-
ures 7 and 8. Note that the contours with C, = 4 (i.e., four times the error in
fitting the polynomials) do not correspond to any structural feature of the scene.
Thus, the noise level appears to be about 4. In Figure 7, both the vertical
occluding boundary and the vertical structural edge appear in the contours with

compatability errors as high as 10, i.e., 2.5 times the noise level. For the struc-
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tural edge (i.e., the slope discontinuity) the largest values appear slightly to the
right of the feature. In Figure 8 similar contour shapes are seen, but the vertical
occluding boundary is only one rectangle width away from the left side of the
picture and is therefore not fully revealed by the contours. Note that these con-
tours also indicate, to some extent, the position of the horizontal occluding boun-
dary. This horizontal boundary is seen more clearly in the compatibility of
upper-lower pairs of rectangles, Figures 9 and 10. The compatibility function is

again typically 8 to 10 at the boundary.

The flow field segmentation results indicate that the overlap compatibility
method can sucessfully locate occluding boundaries (i.e., depth discontinuities)
and to some extent structural edges (i.e., slope discontinuities) in real data. How-
ever, the noise level and resolution of the results need to be improved. It is
believed that both of these problems can be remedied by increasing the density of
data points in the images. For small numbers of data points in a neighborhood,
the residual between the measured data and the polynomial fit does not reach a
stable mean. Thus, both the coefficients of the polynomials and the residual
change significantly as data points are added or subtracted from the fit. In the
present examples, since only 10 data points were used to fit each polynomial, the
results were not statistically stable and random errors contributed to both the
residuals in adjacent neighborhoods and the velocity difference in the overlap
regions. Thus, the noise level in C, and C; was high. The resolution (or localiza-
tion) problem is controlled by the size of the rectangles and the magnitude of

the shift in the grid position. In the present case the rectangles were large (1/5
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the image size) but still only contained about 10 data points. The smallest mean-
ingful shift in the grid position is the average distance between data points, in
this case about 1/15 the image size. Thus, the low feature point density resulted
in low resolution. The low density of feature points in the present example was
necessitated by the simple method used to find feature point velocities from three
successive frames. This will be modified in future work to remedy the present

noise and resolution problems.

4.3 Binocular Flow Field Experiments

In this section we describe a preliminary experimental exploration of the
binocular flow equations (11). In particular, a V; motion was chosen for the cam-
era pair and the equations were verified. It was pointed out in Section 3.3 that
the V; motion is one of the two single component motions that will allow accu-
rate discrimination between correctly and incdrrectly matched features. The
experiment used the camera set-up described earlier to simulate a pair of cameras
separated by a 3 inch baseline. The cameras viewed a planar surface perpendicu-
lar to the viewing direction (i.e., a frontal plane). The velocity fields were
obtained with the cameras at 43.5, 45.0 and 46.5 inches from the surface. The
velocity fields obtained in this manner are shown in Figure 11. These velocity
fields show the usual pattern with a focus of expansion near the center of the
image. Due to problems with the camera mount, it was not possible to align the

camera viewing direction with the direction of motion to better than 0.5 degrees.
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With the simple motion and scenes used here, it was possible to correct for this
misalignment. In future experiments a pair of cameras aligned with a specially

designed stereo mount will be used to alleviate this problem.

The binocular flow equations (11) were verified by two techniques: one using
the individual data points and the other using the polynomial fits to the velocity
fields; the space motion being known in both cases here (which is not generally

‘ true). Feature matching using the individual data points will be discussed first.
Because of the low density of data points and the fact that matches lie along hor-

izontal epipolars, the pointwise matching problem for this example can be done

- rather easily. Here we present an example of matching points in the left and
. right images by trying the various combinations. Table II contains the coordi-
i nates and velocities of four points in the right and left images with y = 98.0 +

1.5 pixels. The potential disparities (z; - z, ), the difference in the v,, and
V,58/b are given for each of the possible sixteen combinations of the two sets of
four points. There are two constraints on the correct matches besides satisfying
equations (11). First, the disparity must be positive. This is a consequence of the
Y relative positions of the cameras. Second, the velocity difference Av, must be

positive, as can be seen from equation (11a) with positive 4 and V,. Eight of

the sixteen combinations have these two properties. Of the surviving eight com-

y binations, only three have nearly equal values of Av, and V,é/b; they
Iy correspond to correct matches. These are:
g
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combination 6 Av, V,8/b
1r-2l 715 3.1 2.6
2r-3l 71.0 2.9 2.5
4r-41 70.2 3.2 2.5

The average disparity of 71.4 pixels corresponds to a distance of 41.9 inches, close
to the correct value of 45 inches. Below we shall see that this error is due to cam-

era misalignment.

We now turn our attention to matching using the velocity fields derived
from the polynomial fits. Using these polynomials and the known space motion,
it is possible to obtain an expression for 6 as a continuous function of image coor-
dinates. For this example, each image has been divided into 16 rectangular
regions with dimensions of 86.4 X 94.4 pixels each. Second-order polynomials
have been fit to the velocity data in each region. The polynomials have the form

(v, =By +Byz +Byy + By 52+ Byy?+ Byny ,

(v,), = By, + B By, y + B3, 1,2+ B, y2+ B 29
vz)r— 0r+ lrzr+ 2ry+ 3r I + 4r Y + 502, Y -

Defining the potential disparity as § = (z, - z;), the velocity difference can be
expressed as

Av, = (Bo,-Bg) + (B1,-By )z + (Bye-Byy )y + (B3, -By )3 ?

(27)
+ (B4 -By)y*+ (Bs,~-Bs;)z;y + (B, +Bs, y +2B3, 3, )8 +Bg, & .

When § is chosen correctly, this polynomial expression will equal V, 62/ b. Thus,
we obtain a second-order polynomial in § whose solution gives the correct dispar-

ity value:
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(B3r— Vz/b) 8 + (By+ Bs,y+2B3, 1) 6+ P(z,y) =0, (28)
where P corresponds to the terms in (27) that are independent of 8.

This polynomial in é has been solved in each of the rectangles at a point 25
pixels to the right of each rectangle’s center in the left image (thus, its match in
the right image will be to the left of center in the corresponding rectangle). The
disparity should be the same everywhere in the image. The result, averaged over
the sixteen rectangles is 78.8 pixels with a standard deviation of 4.0. This
corresponds to Z = 38.0 + 2.0 inches, compared to the correct value of 45.0

inches.

The source of the error is the misalignment of the cameras, as can be seen
from the velocity fields below. Because the cameras are moving toward a frontal
plane, the focus of expansion of the velocity field should be at the center of the
image and the velocity components should be anti-symmetric. The velocity com-
ponent v, at the center of each rectangle, averaged over the four rectangles in

each of the four columns is given below for the left and right images.

Average Horizontal Velocity (v, )

x = -177 x==-59 x=>59 x=177
(V2 i | avy -5.7 -1.8 2.2 8.0
(vz )r I aug '6-2 '2-3 1-6 5-6

Note that, adding 0.3 to the values of the right image and subtracting 0.15 from

the values of the left image would leave both velocity distributions nearly anti-
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symmetric. The deviations from anti-symmetry correspond to camera misalign-
ments of about 0.5 degrees. These corrections can also be applied to the velocity
difference calculations by adding 0.45 to the calculated value. The corrected
disparity, averaged over the sixteen rectangles as above, is 66.3 + 4.5 pixels or
45.1 £ 3.0 inches, which is the correct value. Also subtracting 0.45 from the velo-
city differences for the individual point combinations in Table II brings the Av,

and V, #/b values into very close agreement at the correct matches.
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5. MATCHING V1A LOCAL SUPPORT

In the case of a static stereo pair of images, many algorithms have been sug-
gested for establishing correspondence between features (i.e., edges and points) in
the left and right images. Knowledge of the stereo geometry constrains matches
to lie along known epipolar lines (horizontal in the case of our parallel
configuration). Recently, several algorithms have emerged which are based on
the notion of local support of disparity (Prazdny 1984; Pollard, Mayhew and
Frisby 1985; Eastman and Waxman 1985). Prazdny’s algorithm attempts to
embody the concept of ‘‘coherence’ in the local disparity distribution, by assign-
ing a weight to each potential match of a feature based on a measure of similar-
ity between that disparity and potential disparities of other nearby features. Pol-
lard et al. have developed a matching algorithm which is driven by ‘“local con-
sistency with a prescribed disparity gradient limit” of unity (selected on the basis
of psychophysical experiments). Again, potential matches of features are found,
and the potential disparities of nearby points are tested for compliance with the
disparity gradient limit. The approach of Eastman and Waxman is based on the
notion of ‘“‘analytic disparity fields’” in overlapping neighborhoods. Potential
matches between contours (i.e., extended edges) in the left and right images are
established. Then, motivated by (14) the implied disparities are fit to a linear
functional form (in the least-squares sense) for potentially matched contours in a
neighborhood, thereby yielding a locally planar interpretation along with the

average residual (measuring goodness of fit). A match is then selected on the
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basis of minimizing this residual (and so maximizing local support) subject to the
disparity gradient (derived from the functional) being less than a limit of unity.
Our use of locally analytic disparity fields is, in fact, a mathematical realization
of ‘“‘coherence.” All of these ‘‘local support’ algorithms may be implemented in a

local and parallel manner.

For our case of time-varying stereo, we suggest the use of the binocular
difference flow-disparity relation (15) to establish correspondence in our neighbor-
hoods. Of course, the static matching algorithms based on disparity alone may
be used as well, but here we explore the additional exploitation of flow to drive
the matching procedure. We can implement the matching procedure in either of
two ways, both of which embody the concept of ‘‘local support’” for matching a

neighborhood.

Upon considering (15b) first, we see that a feature and its corresponding
match along the epipolar should have the same image velocity perpendicular to
the epipolar. This may seem to establish correspondence directly, however, it is
not very selective since the velocities themselves do not vary greatly. The prob-
lem is that (15b) does not describe a trend of variation over a neighborhood,
though it does constrain the matching. On the other hand, (15a) is well suited
for matching with local support. If in a small neighborhood we approximate the
underlying surface as planar, then (15a) suzgests that 5/5 is locally a linear func-
tion of the cyclopean image coordinates. Thus, we seek local support for the ana-

lytic form
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-g%%)l=00+0,x+0yy, (29)
where the left hand side consists of measurements § = Av, and 6 for potential
matches, and the coefficients C,, C,, C, are determined in the least squares
sense. This approach is appropriate for matching whole contours, where the
many disparity measurements implied can be used in the least squares procedure.

The matches which minimize the average residual are considered as having max-

imum local support.

Alternatively, one can seek matches which maximize local support in light of
Prazdny’s (1984) approach. We first establish all potential matches along epipo-
lars and note the value of 5/6 corresponding to each potential match for each
feature. We then consider, for each feature 7, each of its neighbors ; over some
small area around it. Then choose those matches with values of (§/6); and (5/6)j
which are closest. As (29) implies that 5/6 varies linearly with angular separa-

tion, this suggests forming the quantity

wij = [ (6/6); - (8/8); 1/ sij (30)

where s,~j2 = (7; - 3 2 + (v - Y; ) . Pairs of potential matches which support

(29) will generate a value for w; ~ O(C,, C;) , whereas pairs of matches
which don’t support (29) lead to w;; ~ O (C,/s;) >>C, or C;. As w;; has
units of inverse time, we must adopt a local time constant r; and consider the
dimensionless quantity 7; w;; as the primary variable measuring similarity. A rea-

sonable choice for 7 is (§/8), ' ~ O(C, ). Hence, we wish to create a support

function which is O (1) when (r;w;; )? is small, and then drops to zero as (riwy )2
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Left Image Right Image

Figure 5 Velocity Fields from Left and Right Images -
Segmentation Experiment
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the Segmentation Experiments
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TABLE I
POINTWISE MATCHING WITH
THE BINOCULAR FLOW RELATIONS

Right Image Data Points

point z y v, vy

Ir -44.0 118.7 -1.0 3.8
2r -122.0 117.7 -3.7 3.7
3r -163.7 118.0 -5.2 3.7
4r -0.8 116.8 0.4 3.7

Left Image Data Points

point z ¥ v, vy

11 190.0 118.3 6.2 3.4
21 -115.5 118.5 -4.1 34
3l -193.0 1173 -6.6 34
4] -71.0 116.5 -2.8 34

Velocity Difference Data

pair ) Av, V,82/b

1r-11 -234.0 -7.2 275

1r-2] 71.5 3.1 2.6 match
1r-31 149.0 5.6 11.1

1r-4] 27.0 1.8 0.4

2r-11 -312.0 -9.9 48.8

2r-21 -8.5 0.4 0.0

2r-31 71.0 2.9 25 match
2r-41 -51.0 -0.9 1.3

3r-1l -353.7 -11.4 62.7

3r-21 -48.2 -1.1 1.2

3r-31 29.3 1.4 0.4

3r-4] -92.7 -2.4 4.3

4r-11 -190.8 -5.8 18.2

4r-21 114.7 4.5 6.6

4r-31 192.2 7.0 18.5

4r-41 70.2 3.2 2.5 match
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Still, much work remains to be done before a complete module of this type
can be constructed. The control structure for the flow segmentation procedure
requires further development. This segmentation procedure should be iterative,
with subsequent refinements occurring near detected flow discontinuities. The
discontinuities in left and right images must also be matched in order to establish
gross correspondence among analytic regions. The binocular difference flow-
disparity relation, derived in Section 3, requires further testing in order to insure
its validity under more general classes of motion than tried here. It should also
be generalized to incorporate vergence effects. The matching techniques
described in Section 5 need to be implemented and tested in a variety of cases.
The ability to combine evidence in establishing correspondence is an appealing

aspect of the approach and needs to be implemented as well.

The possible role of a combined stereo-motion module, such as this one, in
the human visual processing task raises some interesting questions. How does the
brain utilize disparity estimates and binocular flow-disparity cues in establishing
correspondence?! Does one take priority over the other, or are they combined?
What happens when structure from binocular flow conflicts with structure from
static stereo (Mayhew and Frisby, private communication)? Does one percept
dominate or do we see illusions? Are there certain kinds of ‘‘head motions’ pre-
ferred for disambiguating false matches? Is there a ‘‘gradient limit" effect associ-
ated with the coefficients of the linear terms in equation (15a)? Is it possible to
fuse a dynamic stereogram which is beyond the static disparity gradient limit of

- unity? Perhaps psychophysical experiments can resolve some of these questions.

- 43
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6. CONCLUSIONS

L]

In this paper we have outlined a set of five steps toward the development of
a stereo-motion fusion module. The successful development of a complete
module of this type has enormous potential for robotics in a dynamic environ-
ment. [t may also shed some light on the nature of the processing going on in
the human visual pathway. In this respect, the work of Regan and Beverley
(1979) is most relevant, for their own psychophysical and neurophysiological stu-
dies have led them to suggest the existence of neural organizations which may
‘“compute’’ the binocular difference flow (or relative flow between the eyes) which

is so basic to our own theory.

The basic advantages this module offers over static stereo are: monocular
detection of the depth and orientation discontinuities (before matching is
attempted), use of a correlation between binocular difference flow and disparity
to drive the matching process (either independent of, or in conjunction with
matching based on disparity alone), the ability to refine disparity estimates to
sub-pixel accuracy by considering the smooth orbits of features through the left
and right image space-times, and the potential to focus attention of the matching
process to the areas where new features enter the field of view. The advantages
of this module over structure from monocular motion are: the ability to recover
absolute structure and rigid body motions (without scale "« ‘or ambiguities), and
that only linear equations need be solved to recover rigid body motion parame-

ters.
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BINOCULAR IMAGE FLOWS

above. One can require either independent confirmation of a match (both
processes running in parallel lead to the same conclusion), or combined evidence
of a match based on redundant support (using the product of independent sup-
port functions, hence the logical “AND") or complementary support (using the
sum of independent support functions, hence the logical “OR™). This method of

combining evidence for matching awaits implementation as well.
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grows. The function should seek support over only a local neighborhood around

feature ¢. Denoting this function by W (r;w;;), we form Y5 W (r;w;;) over the
J

neighborhood and select the match for feature ¢+ with value (6/ 5); that generated
the largest percentage of the sum; it is most similar to its neighbors in a manner

consistent with the linear form (29).

This is essentially Prazdny’s algorithm, adapted to the wvariable 6/ 5 .
Clearly, it is applicable to any variable which can be locally approximated as a
linear form, including disparity itself. Such a matching strategy leads naturally
to a preference for small gradients in the matching variable. Thus, a kind of
‘“‘gradient limit”’ emerges. This is well known for disparity alone in static stereo-
grams (Burt and Julesz 1980). But does such a gradient limit exist for dynamic
stereograms? Could fusion be achieved with a dynamic stereogram for which the

disparity gradient limit is exceeded?

We have yet to implement our matching strategy and so cannot comment on
its possible strengths or weaknesses. But in keeping with Step 5 of Section 1, we
expect that once correspondence is initially established, new features emerging
from behind occluding boundaries and the periphery are easily matched. They
are entrained into the local disparity field by a spreading of local support from

previously matched features in the neighborhood.

Finally, we can consider the possibility of combining multiple matching cri-
teria. For example, disparity 6 and the ratio 6/5 may both be used to establish

correspondence, and can both be implemented in the same fashion as outlined

40
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Figure 11  Velocity Fields from Left and Right Images -
Cameras Moving Toward a Frontal Plane
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