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I. INTRODUCTION

The direct or forward problem in acoustics is the prediction of the

propagation of sound based on specified source, scatterer, and medium

conditions. The inverse problem is the deduction of properties of the

source, scatterer, and medium from the propagated field. This relationship

can be described with the mapping of one function into another, AX=Y,

where X represents the specified source, scatterer, and medium properties

and Y represents the results of the propagated field. The operator A

provides the mapping from X to Y for the direct problem. Inversion of A

leads to the solution of the inverse problem.

Although the inverse problem has been the subject of much study, 1

most of the work in acoustics has been devoted to the forward problem.

Since Lord Rayleigh predicted the scattered field from a sinusoidal surface _-_

in 1896, 5 the study of rough surface scattering in particular has resulted in

an almost uncountable number of publications and about as many

theoretical developments.6 - 2 1 This concentration of study has been no

less intense in underwater acoustics where theories have been developed to

understand the scattering from the ocean surface and seafloor. A concise

review of work accomplished in this area before 1970 was compiled by

Fortuin 6 and Horton.7

The theories used in these studies have been separated into two basic

. . . .~. . " ..
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categories according to the mathematical approach. The first approach is

to model the scattering with a distribution of point scatterers, each with

its own impulse response and directivity. Mliddleton 8 is regarded as the

originator of this rather straightforward approach, often called the

quasiphenomenalogical approach. The second approach, called the

optical-acoustic or physical approach, was formulated by Eckart. 9 In this Kj-:

method the scattered field is described by Helmholtz's theorem and

evaluated with Kirchhoff's boundary conditions resulting in integral

equations convergent for directional sources.

This latter approach has been widely used by underwater

acousticians. At Applied Research Laboratories, The University of Texas at

Austin (ARL:UT), a group of investigators have successfully applied Eckart's

theory to yield theoretical models which follow experimental data very

well. 11-14 These studies, which began in the 1960's, have produced one

thesis15 and two dissertations 16,17 at The University of Texas. Clay and

Medwin 18 ,19  and others 20 .2 1 have also verified Eckart's theory with

experimentation.

In these studies of the forward problem the incident acoustic wave

and the acoustical and statistical properties of the scattering medium were "

assumed in an attempt to predict the scattered field. The inverse problem

presented in the current work differs in that a limited knowledge of both

incident and scattered pressure is assumed in efforts to infer the

scatterer's characteristics. In particular, the statistical properties of

randomly rough surfaces are the parameters which are of interest. -

2



Experimental studies of the forward problem at ARL:UT were

accomplished with model surfaces constructed from aeromagnetic maps of

the Canadian Shield, 22 which have been measured for a par ticular root mean

square (rms) surface height and correlation length. These surfaces are also .

used in the inverse scattering problem, the subject of this thesis. An

overview of the acoustical theory supporting the inverse problem is

discussed, and solutions are proposed for obtaining estimates of the rms •

height and correlation length. An experiment was conducted to check the

validity of the inverse theory and results from each of the surfaces are

compared with each other as well as with the expected results. e

3
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place on the data to reduce the leakage. 28

2. Bojarsky-Lewis Method

Sometimes even with the proper choice of a data window it is still

not practical to use the DFT technique to estimate an FT or an inverse FT.

For instance, if the data record is so short that leakage cannot be corrected

(i.e., through deconvolution), other high resolution spectral estimation

techniques must be invoked to estimate the Fourier transform. One method

is the Bojarsky-Lewis method (BL), 2 9 which has been applied in

three-dimensional image reconstruction of electromagnetic wave -

scattering, extrapolation of bandlimited functions, and spectral

estimation.

The Bojarsky-Lewis PDF estimate is derived in Appendix A and is

represented with the summation

j Si

( 0= v(t,), ,(1.j(2T.mma x,  .ma>

j=0

x(2j+l)S( ) Oj(2Tr-m.max , CI.max)/2 111.6

where the inner product <...> is defined by j
.+(max

<a, b> =a((,) b(,) d(, 11.7"

-(max "11

17 !7 .-:i:}i 'S



(j) = A Q*(I.) expI-i2rlj/M j , j = 11 ..... M-I , 1.5
.=0

where Q(1) represents the sampled vet sion of Q consisting of M samples,

denotes complex conjugate, A& denotes the even sampling increment on

Q, and A.=I/MA&. The sampled version of w, w(j_), will consist of M-

samples corresponding to harmonically fixed values of (=jA,. Both Q and

w are by definition periodic functions of period MA, and I/A.

respectively. Proper sampling of Q will therefore result if the Nyquist

criterion of I/A&-2( max is followed, where (max represents the maximum

value of the surface relief (or co(()=O for -(max<_5max , a c-Iimited (CL)

function). Otherwise aliasing of w will occur, and (j,) will not

accurately represent w.

A major problem which is encountered in application of the DFT is-.

the phenomenon of leakage, which occurs due to the finite extent of the

data. The leakage results from the multiplication of Q with a rectangular

window function which in the .domain correspondswith a convolution of

w with sin(2nT m)/Tt, (a sinc(,) function), where &m=(&max+"min)/2.

As the observation window &m approaches infinity the sinc function

approximates a delta function and leakage contributes very little to the

error in the OFT. However, it is not practical at times to extend the data to
6

infinity, and so an optimal window can be chosen to place on the data to

16
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estimates of the PDF of heights. In most practical situations Q is not

known for all values of . A study for which the characteristic function is

known for various values of frequency (discrete values of ,) is presented in

Reference 19. The objective of the current study is to vary the angles of .

incidence and reflection only over a modest range of observation to

establish measurements of the characteristic function. So the

characteristic function is sampled over a c-limited (CL) range,

_min~s.<5.max . The limits are selected so that Q is bounded, or so that the

image solution does not approach zero (due to the finite beamwidth of the

directional source).

These limitations of the sampling of the characteristic function

indicate that there may likely be a resolution problem in obtaining accurate

estimates of the probability density function The following discussion

outlines the discrete Fourier transform and two techniques used in high

resolution spectral estimation of the Fourier transform. A

1. Discrete Fourier Transform

The Fourier transform theory can then be extended to include sampled

functions through the sampling theorem and the discrete Fourier transform .

(DFT). 2 7 The definition of the DFT pair follows

M-1

( ) = AA w(jt,) exp[-i2Tlrj/M] , 1 0, ... , M-I 111.4

j=v

and

15
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image solution, Eq. 11.20 becomes "

(.,) = (Ps>/PR i11.1

or

[+00

Q() = J (() exp[-i2"Tr&] d, 111.2

where the surface wave number _=?S/X is a function of the angles of

incidence and reflection and frequency. If the characteristic function Q is

known for all values of (all angles and all frequencies), w0, the probability

density function, is determined by the inverse FT

~+00

( QM expii2"T ( d, 111.3

A sufficient condition for the validity of Eqs. 111.2 and 111.3 is found

in Papoulis.26 If the absolute integral of w(() is bounded and finite

(absolute integrability), then its FT Q(&) exists and must satisfy the

inverse FT. Since the PDF of surface heights is bounded for a finite

surface, its integral will also be bounded, and Eqs. 111.2 and 111.3 hold.

Thus the inversion of the Fourier transform operator will yield

14
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III. INVERSE TECHNIQUES

Much can be inferred about the scattering surface from the two

stochastic quantities derived for the scattered pressure field. In

particular, the rms surface height and correlation length can be extracted

from measurements of the mean scattered pressure and covariance, 

respectively. The rms surface height is the square root of the mean

squared height of the surface profile and can be obtained from the

probability density function of surface heights. The correlation length is a -

measure of the distance one must move along a rough surface to lose all

knowledge of one's previous position and can be directly obtained from the

correlation function of surface heights. The signal processing methods 7

used to estimate these parameters are the subject of this chapter.

A. Probability Density Function

The probability density function (PDF) describes the distribution of .

the surface heights and can be derived from the mean scattered pressure

(Section II.B). The PDF is the inverse Fourier transform of the

characteristic function; the conjugate Fourier transform variables are

surface height {, and surface wave number . In the surface wave number a
domain, the characteristic function is defined as the mean scattered

pressure divided by the image solution, PR, of scattering from a planar

surface. So the development is picked up from Eq. 11.20 and, for a non-zero

13



It can be shown that for a suitable random rough surface (i e.,

homogeneous, isotropic) the covariance is dependent only upon the77

difference jr-r' J while for the autocovariance, the peak of the function

occurs at a zero-spatial difference (rir') and corresponds with the 4
scattered pressure intensity. The covariance decreases rapidly as the lag

value (spatial difference) increases, the rate of decrease of the function K

being greater for a larger roughness ((.rms/X increasing). Clay and Medwin.

have shown that for a time varying rough surface, the spatial covariance

reaches a maximum at a predictable spatial lag value if the pressures for

which the covariance is calculated are fixed time-delay versions of the

pressure field. In other words, the pressure is being scattered from the

same type of roughness (i.e., a traveling wave or surface structure) at

different times into different spatial positions. From calculations of the

correlation function of the scattered pressure field, Clay and tiedwin were

able to predict the wave velocity of a traveling surface wave. .
For scattering from a stationary rough surface, the surface

correlation is retrieved by spatially correlating the scattered pressure

from separately insonified areas on the surface. The value of the

correlation function for a particular surf ace displacement is the peak value

of the spatial correlation function. Thus a surface correlation function can

be approximated by plotting this peak value versus the insonified area 0

separation.

12
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assuming el to be directed along R1. The bracketed term ({...} ) is just the

pressure field scattered from a plane surface corresponding to the image

solution PR, which is evaluated with a stationary phase integral. The term

(exp[-ik*6(,> represents the Fourier transform (FT) of the PDF of surface

heights or the characteristic function (CF).

C. Covariance of Scattered Pressure
=.5

The covariance of the pressure field can be derived with a

simplification of Eq. 11.17. Since we have already assumed a sufficiently

directional source, we can write Eq. 11.17 as

• U

Ps(r) = [ik/(27"r) J'f D0(x,y) ({explik(r+s)])/[rsl) exp[-ik.]

x[.xex+, ye+ez].eI dx dy 11.24 .

where r=IrI and s=JsJ. If we assume that the slopes are negligible the

covarianceof the pressure becomes

<Ps(r) Ps(r')N> =<exp[ik( 6- "6.,')]> [k/(2TrrS)]2  -: :~

xfJfs 0 .(xy) D0 (x,)" ('Ze) (ez.,') dx dy dx' dy' .11.25

However, the integral does not simplify much further (but can be evaluated

numerically) and at this point it is necessary to reflect upon the work of '

Reference 18 and the results relating the covariance to the correlation

function of the surface. .-.-

• . . . , . . .. . . . . . - . . . - • . - . . . -. . . . . ., . . , .. . ,, - , ,, .. , , .. . ...- , , . .
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quantities we will be concerned with are the so-called mean scattered

pressure and the covarianceof the pressure field.

B. Mean Scattered Pressure

The ensemble average of the pressure field, or mean scattered

pressure, expressed in Eq. 11.17 is defined with

<Ps >  f f f Ps W((, d( dCx d( 11.18 ,

for ., the three-dimensional probability density function (PDF) of surface
IU

heights and slopes. The ensemble average represents the average over the

variation of the total area Insonif led on the surface. For a time varying 71
surf ace ( a function of time) this is a time average, and for a fixed surface

(t, a function of x and y) this is an average over a number of insonified -i]
surface areas. if t,, , and are uncorrelated, then Eq. 11.17 becomes

yI

<Ps(r)>= [ik/(2'rr)] J'J D0(x.y) ((exp[ik(R0 +R1)])/[R0 R11) <exp[-ikt]>
p.° -I

x<(txex+y e +ezi.el> dx dy , 11.19

and with the(, and ., zero mean processes,

<Ps(r)> <exp[-ik t]> ([ik/(2T()] JJ D0(x,y) ((exp[ik(R0.R)]}/[R 0 R,])

F9 rsin O dx dy , 11.20

10
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and for a source concentrating the incident energy within a small region

about the directional axis (a directional source of finite beamwidth),

sin +0 " sin 81 and sin +1 2 sin er 11.15 .

Approximat ions for r and r, then follow:

r0 R0- . sin e i  and r, R -t.sinr 11.16

r

Now the exponential in Eq. 11.13 is greatly simplified and can be

broken down into a term dependent upon the plane surface geometry and a

term dependent upon the surface heights. Also it should be noted that the

denominator r0r, varies slowly with respect to the exponential and can be .

replaced with R0RI. Therefore, for receiver points far from the surface and

near normal incidence (with negligible shadowing) Eq. 11.13 becomes -. ,.

Ps(r) = [ik/(2"'r)] 55 D0(x,y) ({exp[ik(R0+R)])/[R0 R1]) exp(-ik,]-

x ( e +e.Z]. e dx dy 11.17

for *= sin e i + siner. .

Suppose that the surface heights ((xy) can be described with a

two-dimensional zero mean random variable. This allows us to define

various statistical properties of the pressure field. The two particular

90



(&/Sn) (Iexp(ikr1)]/rj) =ik(n-e1) ([exp(ikr1)1/r1) 11.10

Also. an expression for the unit normal vector and surface element can be

derived using differential geometry,

n w-,/ V( I ( e + 11.11( .)4Y 1 11

and

d rZ tx 24~)1 dx dy ,11.12

where V is the dif ferential operator, (x and are the surface slopes with

respect to x and y, and ex e~ and eare the Cartesian coordinate system

unit vectors.

* Equation 11.6 nowbecomes

iL Ps(r) [ ik/(21T)l fJf DO(x,y) ((exDfik(r 0~r1)])/[rO r11)

xf(xex+( e +eI.et dx dy .11.13

3~ @1

According to Spetner,2 the surface roughness is assumed smaller than

both the source and receiver distances, or

(2t,/R0)sin +0 ( 1 and (2 /R1)sin 4'< 1 ,11.14

8



another result is that multiple scattering and shadowing are neglected.'"

From Eq. 11.5, the Green's function solution simplifies to

Ps(r) = [i/(2r) fJf Pi(rs) {(8/Sn) ([exp(ikr,)l/ri)) d . 11.6 .

For a directional acoustic source emitting spherically radiating

wavefronts, the incident pressure is

Pi = D0(x,g) ([exp(ikr 0)]/r0 ) 11.7

in the farfield. where Do is the pressure density proportional to the

directivity pattern of the source and r0 the distance from dZ to the source. .

The partial derivative of the integrand in Eq. 11.6 can be evaluated as

(8/Sn) ([exp(ikrl)1/rl) = ik(n.el) (1-[1/(ikrl)]) ([exp(ikr)1/r) 11.8

for a unit normal vector n pointing into the surface and el a unit vector

pointing along ri. At this point, the Fresnel-Kirchhoff approximation can be .

easily applied such that

kr, 1 11.9 1

which is equivalent to assuming that the observation range is longer than

the wavelength of the source. Equation 11.8 then becomes

7
. . .'..,........,

:. .- -** ~ ~ .- =" '.-



The scattered pressure Ps satisfies the wave equation

(V2 k2 ) P 0 , 11.2-2

where V2 is the Laplacian operator and k=21T/X is the wave number for

wavelength X A solution to Eq. 11.2 is

Ps(r) = [1/(4"nT)] ff Pi(rs) {(S/Sn) G(r,rs)} dZ 11.3

where Pi is the incident pressure, (S/Sn) the partial derivative with respect

to the normal to the surface n, dZ the surface element, and G the Green's

function which satisfies

+V2 + k2) 6 = -4T 8(r - rs ) 11.4
4 .-

for 6 vanishing on the surface.2 3 The observation point is at r with dZ at

r.. However, for an irregular surface, G is rather hard to evaluate. But for

a plane surface placed tangentially to dZ, G is well known, 24 and

((S/Sn) G) 2 ((S/Sn) ([exp(ikr,)1/r,)} 11.5

for r1, the distance from d. to the receiver. This means that the radius of

curvature of the roughness is assumed much greater than the wavelength;

6
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Ii. ACOUSTIC THEORY

This section describes the acoustic theory which leads to the

formulation of the inverse problem. The mathematical framework of the

forward problem provides the context for solution of the inverse problem.

. The physical model established by Eckart is used as the foundation for the

inverse theory. The development used here follows very closely that of

Clay and Medwin 18 and Boyd and Deavenport. 14  An expression for the

pressure field scattered from rough surfaces is derived which can be

* si.hiplified with knowledge of the incident pressure field and the

assumption of a randomly rough interface.

A. Eckart's Scattering Theory

Consider the scattering geometry of Fig. 1; the source is spherically

divergent, with position vector s incident upon the surface F., and the

receiver is at r. With the surface height defined by the variable t(x,y) (in

. the direction of the z axis) , the coordinate system is oriented such that

the x-y plane lies in the average surface height described by

fJ t,(x,y) dx dy 0 11.1

and the origin is the point where the beam axis of the source, assumed

directional, intersects the mean plane.

4. . . . .



v(O is the DFT of the characteristic function, and the 5U)Oj are the prolate

angular wave functions of the first kind.

Convergence of the summation depends upon many factors. The DFT

is discrete and thus the inner product will be represented by a numerical

integral introducing numerical error due to the integral approximation. The

value (max represents an estimate of the bound on the surface heights, and A

so knowledge of the maximum surface height is necessary. The j are

more oscillatory as the index j increases and as the product 2fTlm max -

approaches infinity. As a result most of the contribution to the summation

will be due to the lower order S()0 j. Also,-if errors in the original

characteristic function exist, then the errors in the summation will also be

Slarge. In general, Perry 29 shows that the BL technique is numerically

unstable for certain cases. The degree of instability depends upon the value

2Tt.r; the smaller this value is, then the more stable the method is.

3. Extended Prong Method

Another high resolution spectral estimator which has been used is

the extended Prong method (EP), 0 known for its ability to accurately

predict the Fourier spectra of short data records. The Prong method has

been used in spectral estimation, data reconstruction, and resonance

extraction from transient response functions. The Prong method, presented

in detail in Appendix B, consists of expanding a complex function known at
U-7

- . evenly sampled sub-intervals with a basis set of complex exponentials.

This expansion can be expressed as
18
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0( E ci exp[s1t]

j~~1

or, for discrete values of t

QW Cj [zi i 1 0,...,M-11.

j=1

which looks similar to the DFT expansion of Eq. 111.4. However, the {Sj) are

complex in general and non-harmonically related,

5j c i2Trj 111.10

and

z. e= 111.11

where the (xi is a damping factor. Unlike in the DFT, no assumptions about

periodicity are made but instead all parameters are estimated including the

complex frequencies, sj, and complex amplitudes, cj. The frequencies ofU

19



the spectra are not predetermined by the choice of data record length nor is

the process restricted to cosines and sines. If it is also assumed that

cj A. A x~ 111.12

are complex amplitudes, then the FT of Eq. 111.25 is

W(( Cj 2cX~j 2 + {21T((.-( 1))21 .[11

j=1

The data are first assumed to follow linear prediction models so

that a linear Toeplitz system of equations,

q flo

0() Xaj 0(-),Iq. M i-1 111.14

can be solved f or the prediction coef ficients such that ao=- 1. The equation

q

aj ~qj 0 111.15

U j=Q
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is a polynomial equation which can be solved for the damping factors and

frequencies zj. The complex amplitudes are then retrieved from a solution

to a Vandermonde system of equations in Eq. 111.9. The Fourier spectrum of

Eq. 111.13 is then calculated as an estimate of the PDF.

One problem associated with implementing the extended Pron-

method is the determination of the number of estimation parameters q. A

method for doing this is presented in Appendix B. Noise also affects the

accuracy of the EP method, the largest impact being on the damping factors

{(xj) which become larger with lower signal-to-noise ratios.

B. Correlation Function

The correlation function can be obtained from the covariance of the

pressure of Section II.C. The correlation function describes the

correlation of the surface profile, i.e., how much one portion of the

surface compares quantitatively with another portion a distance away.

However, the discussion of the correlation function differs from the

PDF discussion in that the Fourier transform domain consists of spatial

position and spatial wave number space, as opposed to the surface

heights/surface wave number space for the PDF.

Following the definition of the DFT given by Eqs. 111.4 and 111.5, the 2-
following DFT pair involving the spatial pressure field is also observed,

M-1

P(Ar) =Ap . p(jp) exp[-i2Trkj/M] , i = 0, ... M-1 111.16

j=0
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T* . .;7 V_ I I .

and

p(jp) =ArF POWi) exp[-i21T~j/MJ] ,j =0,... ,M-1 . 111.17

where P(Ir) represents the sampled version of the pressure f ield with the

uniform sampling increment (in Cartesian coordinate space) of Ar (instead

of surface wave number space).

An estimate of the covariance of the pressure field in Eq. 11.25 is

possible with the inverse FT of the cross-oe sectrum3  of the

pressure. or

M-lI

RS(If) Ap Z sg(jp)" exp[-i2TrIj/MI 1 0, .. ,M-1 , 111.18

j=0

where the covariance is assumed to be a function of the spatial separation

of the positions E= r-r'. The cross-power spectrum is def ined

SsOp) =<PO(OP) p8(Jp)M> ,111.19

*where the p's are the FT's of the pressure fields from spots 0 and 8,

respectively (insonif ied spots being separated by a distance of 8).
22
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Anestimate of the correlation function of the surface is possible by

calculating the covarianceof all spatial pressure field pairs (p0's and pS's)."- -

associated with various surface spot separations. The resulting covariance

can be normalized with the autocovariance measurements at E=O, or

M-1
A0= Ap < Ipo(jp) I>111.20,"..----,

j=0

and .1

A&Astp <IPO~P)I , 111.21 .

j=o

*which yields the normalized correlation function

CS(je) =RS(jf)/(A 0OA&) .111.22

* The correlation will have a peak value at some delayed value of E due to the

separation of the spots 8.The correlation of the surface can be

constructed by noting the peak values of C at these delayed E values and

plotting them versus the spot separation 8.This is verified with actual -7
experimental data in Appendix C. .

23
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IV. EXPERIMENT AND DATA ACQUI51TION

The subjects of Chapters II and III were the development of the

acoustical inverse theory which would allow inference of the statistical

properties of the scattering surface, the rms height, and the correlation

length. This chapter describes the experiment which is used to verify this

theory. First, the constraints involved in the theoretical development that

are most critical in the experimental arrangement are outlined, followed by

a discussion of the specific experimental parameters used...1

A. Considerations

Before the theory can be assessed, a valid experiment must first be

designed with the assumptions of the theoretical development in mind. The

choice of a rough surface model was the first consideration. Three

pressure release polystyrene models (82 cm by 82 cm) constructed from j
aeromagnetic maps of the Canadian Shield 22 were used and the statistical

properties of the surfaces are wellI known (see Fig. 4). An actual histogram

of heights (PDF) of surface 3 (also representing surfaces I and 2 with

appropriate scale changes) was developed by measuring the heights of 1089

points on the surface (Fig. 2). Figure 3 represents the autocorrelation

function of the surface for two perpendicular orientations of the surface.

A Gaussian and exponential curve have been fit to both the histogram and

correlation function, respectively. A measure of the rms height is obtained

24
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FIGURE 2
HISTOGRAM OF HEIGHTS MEASURED AT 1089 POINTS IN THE CENTRAL

'I QUARTER OF THE THIRD ROUGH SURFACE (COURTESY OF S. K. MITCHELL)
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 1.13 cm, WHICH

APPROXIMATES THE rms HEIGHT OF THE SURFACE
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CORRELATION A
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•~~ x : .
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DISPLACEMENT (cm)

EXPONENTIAL x X-AXIS ' Y-AXIS
CORRELATION CORRELATION a

FIGURE 3
AUTOCORRELATION OF THE SURFACE MEASURED FROM THE CENTRAL

QUARTER OF THE THIRD MODEL SURFACE (COURTESY OF S. K. MITCHELL)
THE E-FOLDING VALUE OF THE EXPONENTIAL CURVE IS 4.51 cm, WHICH

APPROXIMATES THE CORRELATION LENGTH OF THE SURFACE

26
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with the standard deviation of the Gaussian function, and a measure of the

correlation length is obtained by observing the 2-folding (1ie) point of the

exponential function.

The next consideration was that of establishing an acoustic 7
measurement geometry. Recall that the acoustic source is restricted to

near-normal incidence so that there will be a minimum shadowing of the

surf ace. Shadowing studies32 were conducted on the first three rough
surf aces and estimates of the shadowing functions obtained. A choice of

Oi>500, such that the shadowing function is unity, will assure that

shadowing is insignificant. Figure 4 represents the experimental geometry

and is ref erenced f or the rest of the discussion.

The wavelength of the incident acoustic pressure must also be

selected. A rough guide to this choice is the Rayleigh criterion 0 of

surface roughness. A surface is considered effectively smooth if

-or O 0 IV.1

which should set an upper limit on X. Another guide to the choice is to

select a range on for sampling the main structure of the characteristic

function. If a Gaussian PDF is assumed, the use of the 3 rms point of the

characteristic function yields a lower limit on-, or

3 rms> (sinex co sinr)/X w IV.2

27
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(xp,yp,zp) (xr,yr I to yr2,zr)

R11  R 21

900- 0j < 400 -

Model 1 2 3
rms Height, rms 0.231 cm 0.462 cm 0.924 cm

Correlation lenth 6.48 cm 6.48 cm 6.48 cm
Wavelength, X 1.88 cm 1.88 cm 1.88 cm
Transmit, (xp,yp,zp) (0,-50,275) (0,-50,275) (2,-70,293)
Receive, (xr,yrl;yr2,zr) (0,27;73,275) (0,27;73,275) (-31,-1;121,273)
Spot radius, a4b 16.5 cm 16.5 cm 16.5 cm
Number of spots 49 49 69
Transmit pulsewidth 450 ps 450 ps 600 ps
Repetition rate 25/Is 25/Is 30 Is
Receive pulsewidth 125 pis 125 ps 200 ps

FIGURE 4
EXPERIMENTAL GEOMETRY AND PARAMETERS
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The solutions are valid for directional sources only so a fairly small

beamwidth is necessary. This parameter is of particular interest since the

beamwidth along with the range will determine the illumination spot size

on the surface and the number of independent spots which can be insonified. .

The larger the number of spots, the larger will be the ensemble over which

the mean scattered pressure is calculated in Eq. 11.20. Also, the dimension

of the spots should be on the order of a correlation length so that at least

one correlation length of the surface is insonified.

The insonified area on the surface is considered to be determined by

the -3 dB beamwidth (1) contour. For a directional source beam pattern

which exhibits azimuthal symmetry, the spot is elliptical with semi-major

axis a and semi-minor axis b,

a= zp tan($/2)/sin2e IV.3

S

and

b= a sine i  IV.4 -

where zp is the range, being determined by the farfield distance of the

source, or zp>S/X for S, the acoustically active surface area of the source.

The orientation of the source and receiver should also be such that

the source does not interfere with the measurements of the field. So

restricting the measurements to the -10 dB contour will yield an elliptical

29
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spot of 2.(10/3) times that of the surface spot. This will also prevent

the characteristic function from being undefined as the image solution

approaches zero.

Also, a time Ti is required to illuminate the surface within the -3 dB

contour. From Fig. 4 it is noted that

RI, yp/sin(ei+1/2) IV.5

R21= yp/sin(ei-,/2) IV.6

and

T= (R21-Rs)/c , IV.7

where c is the sound speed in water (1500 m/sec). This time delay results

in a rise time that will allow a pulsed signal to be detected as a steady

state signal. There is also a time delay Td between transmit at the source

and receive at the receiver, or

Td -(R2,+Ril)/c IV.8 2

The experimental measurements were done in a sonar model tank

room, which meant that there would be multiple reflections due to the

walls, water surface, and tank bottom. This problem was overcome by

30
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operating the source in a pulsed mode rather than a continuous mode so

that a particular pulse rate and pulse width can be selected such that the

reflections will not interfere with the return pulse from the rough surface.

Thus, the timing involved in obtaining the scattered pressure measurements

is critical in that the proper delay of the observation interval should be

chosen to capture the valid scattering.

It is impractical (if not impossible) to experimentally measure the

characteristic function for all possible surface wave numbers. However,

we can obtain a finite number of discrete values. According to the
S

sampling theorem he characteristic function must be sampled at least at

the Nyquist rate in even intervals of the variable . Thus the receiver and

source positions or wavelengths must be selected such that [ is

incremented in even intervals. This is done by maintaining the source as

stationary (Oi fixed), radiating one frequency (X fixed), and moving the

receiver (or varied) such that Q is sampled in even increments. The .,

covariance function requires the sampling of the pressure field in even

increments of space, so a technique must be developed to allow sampling

both in space and surface wave number space, .

B. Geometry and Experimental Equipment

The forward scattered data were collected in the sonar model tank

room at ARL:UT. The scattering surfaces were a plane pressure release

surface and three randomly rough surfaces constructed specifically for

scattering studies. The complex pressure field was measured using a line

and cone transducer 33 as the narrowbeam projector and an H-56 standard

31 S .- -.
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FIGURE 10
THE PROBABILITY DENSITY FUNCTION FOR THE SECOND ROUGH
SURFACE VIA THE DISCRETE FOURIER~ TRANSFORM TECHNIQUE

STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 237 cm

07
45

AS-85-316 .-



. o.

777

PDF

°. .

-500 0 500
HEIGHTS (cm)

- DFT GAUSSIAN .i
I

FIGURE 9
THE PROBABILITY DENSITY FUNCTION FOR THE FIRST ROUGH .' "

SURFACE VIA THE DISCRETE FOURIER TRANSFORM TECHNIQUE -

STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 219 cm

44J

AS-85-315

..- -.



-AL

rms Height (in cm)

Surf ace Actual OFT Elementary BIM EPM
Bandwidth

1 .231 219 214 71.4 32.7
2 .462 237 214 82.5 41.2
3 .924 47.0 22.4 8.81 1.40

Correlation Length (in cm)

Surf ace Actual Calculated Spatial Spot Separation
Lag Increment

1 6.48 7.03 .55 3.18
2 6.48 3.32 .55 3.18
3 6.48 5.18 .55 2.29

TABLE I: Summary of results of the estimates of rms height andA

correlation length
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the Gaussian curve, carefully noting the degree of goodness of fit between ..

the estimates and analytical curve. For more realistic comparisons,

however, the structure about the central maximum must also be fitted with :1
a Gaussian curve.

The accuracy of the rms height estimates is a problem due to the

finite extent of the observation window. The elementary bandwidth is the

inverse of the observation window and is directly related to the resolution .

of the Fourier transform estimate. Thus, the length of the data

observation window will affect each of the three techniques and resolution . . -

will improve as the observation window is increased. Also, greater

resolution is achieved with EPM than with BLM, and better resolution with

BLM than DFT. All three methods are somewhat sensitive to changes in the

rms height when the observation window is the same, as seen in

comparisons of the PDF estimates of surfaces I and 2. These results are

summarized in Table 1, the values representing the estimated rms heights

obtained from Gaussian curves fitted to the PDF estimates of the three

techniques.

I. DFT Technique

Figures 9, 10, and 11 represent the discrete Fourier transform.1

technique applied to the characteristic functions of surfaces 1, 2, and 3, ._I

respectively. These results will be the benchmark by which the other two

techniques are compared for resolution. For surfaces 1 and 2, the

elementary bandwidth of the surface heights is 214 cm when the observed

data record is used by itself. However, this resolution of heights can be _

4I42 .
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least means square solution for the (cj) in Eq. 111.9. The Fourier spectrum

is then computed with application of Eq. 111.13, and as in the :

Bojarskg-Lewis method, extrapolation or interpolation of the

characteristic function is possible. -.

The correlation function computation proceeds with the FFTs of the

scattered pressure fields from each of the spots (Eq. 111.17). Since the .

correlation function estimate is valid for zero-mean stochastic

processes,3 1  the mean value of the pressure must be zero before

proceeding. The auto-power and cross-power spectra of the pressure -

fields corresponding with spots separated a given uistance are then

computed with Eq. 111.19, the ensemble average being the average over the
ensemble of spot pairs. The normalized correlation function (Eq. 111.22) for

each possible spot separation is computed via the inverse FFT and with

knowledge of the zero-lag values of the auto-power spectra (Eqs. 111.20 and

111.21). The peak value of the correlation is then plotted versus the spot

separation of the spots.

B. PDF Estimates

This section presents the numerical solutions resulting from the

application of the three PDF estimation techniques upon the experimental

data. The results are presented for each of the three model rough surfaces.

The general structure of the PDFs is bounded and Gaussian in shape.

Therefore, a Gaussian function is fit to the POF estimates to minimize the '
mean squared error between the Gaussian and the estimate (a least mean

square f it). The rms height value is taken to be the standard deviation of

412
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the fast Fourier transform (FFT) algorithm. 27 :"

For the application of the Bojarsky-Lewis method, the prolate

angular wave functions must be calculated for use in Eq. 111.6. These

functions are calculated with knowledge of Zm and (max and the algorithm .

of Reference 36. The value used for m is the average value of the surface

wave number over the range of sampling of the characteristic function, and

the value used for (max is an estimate of the bound on the surface heights.

This value is assumed to be three times the actual rms surface height of

the model surface. Recalling the truncated summation of Eq. 111.6, one

notes the inner product between the prolate angular wave functions and the

estimate of the PDF, v(() of Eq. 111.7. The estimate of v is computed with

the FFT of Eq. 111.5 as in the discrete Fourier transform technique above

(however, no optimal window is applied). The inner product is then

calculated as a numerical integral. Due to the continuous nature of the
.•

estimate of Eq. 111.6, any interpolated or extrapolated value for the PDF is

possible, the only limitation being the truncation of the summation.

As in the Bojarsky-Lewis method, the extended Prong method is a

multiple step process. The sampled characteristic function forms the data

vectors of Eq. 5.11 for calculation of the data matrix of Eq. 8.17, thus

requiring knowledge of the value for q. The eigenvalue decomposition of

the matrix is computed and the weakest eigenvector (corresponding to the

smallest eigenvalue) is the vector of Eq. B.18. The polynomial of Eq. 111.15

is then rooted to find the values for the (zj), which are then used to find a S

40
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pressure corresponds to the -3 dB beamwidth of the image solution. The

scattering from surface 3 is observed over the -10 dB beamwidth of the

image solution. This data observation length determines the resolution of

the PDF estimates, as will be seen. °

The plots were digitized so that data points could be interpolated

for sampling the pressure in even increments of both surface wave number

space (.) and Cartesian coordinate space (r). A "cubic splinen technique -

(fitting a cubic equation to data points) was used for interpolation of the

*: digitized amplitude and a linear interpolation method was used for the

digitized phase.

The uniform sampling in surface wave number space allows the

calculation of the PDF and the sampling in coordinate space allows the

calculation of the correlation function. Thus, following interpolation,

solutions to the inverse problem can be sought. For the calculation of the

PDF, the characteristic function must be computed using Eq. 111.1. The
S

numerator is the mean scattered pressure and is calculated with the

ensemble average of the pressure field over the independently insonified

spots. The image solution is the pressure field for the reflection from the

planar surface. The inverse Fourier transform of the characteristic

function must now be estimated with one of the three techniques of

Chapter IlI.

Before the application of the discrete Fourier transform, an optimal

window, the Kaiser-Bessel window, 2 8 is applied to the characteristic

function. The discrete Fourier transform of Eq. 111.5 is then applied using

39
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V. RESULT5

This chapter describes the analysis of the scattered pressure field

measurements using the processing techniques discussed in Chapter Ill. The

numerical results of the calculations for each of the model rough surfaces

are presented and compared with the actual statistical parameters of the

model surfaces. Suggestions are made for improving the accuracy of the

results where appropriate.

A. Data Processing

The implementation of the signal processing techniques in Chapter Ill

is straightforward, in that the equations necessary for the processing are

all present in the text. Figure 8 is a flowchart of these processing

techniques, which were programmed in FORTRAN for use on a CYBER 171 .-.J
digital computer available at ARL:UT. Although the actual coding is not

presented here, archived copies of the programs along with documentation

for usage are available upon request. -:-

The complex pressure field measurements are represented with the

amplitude and phase sweeps obtained from the receiving hydrophone (the
output of the voltmeter and phasemeter 35). The scattered pressure field

from both the planar surface and the model surface are necessary to

compute the PDF, the scattering from the plane surface being used as the

image solution. For surfaces 1 and 2, the observation interval of the

UV
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SAMPLE PHASE PLOT OF THE OUTPUT OF THE PHASEMETER versus THE
SPATIAL POSITION OF THE HYDROPHONE

THE SAMPLING INCREMENT IS UNIFORM IN CARTESIAN COORDINATE SPACE
THIS REPRESENTS THE PHASE OF THE PRESSURE FIELD OF THE SCATTERING

FROM ONE INSONIFIED SURFACE SPOT ON SURFACE THREE
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FIGURE 6
A SAMPLE AMPLITUDE PLOT OF THE OUTPUT OF THE VOLTMETER versus THE i

SPATIAL POSITION OF THE HYDROPHONE
STHE SAMPLING INCREMENT IS UNIFORM IN CARTESIAN COORDINATE SPACE

THIS REPRESENTS THE AMPLITUDE OF THE PRESSURE FIELD OF THE SCATTERING ,>
FROM ONE INSONIFIED SURFACE SPOT ON SURFACE THREE*.
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PHASE AMPLITUDE
SWEEP SWEEP .-

X- LINEAR X-
CHART SWEEP CHART

RECORDER (yri to yr2) RECORDER

SAMPLING BANDPASS SAMPLING
PHASEMETER FILTER VOLTMETER

Reference 1
FREQUENCY BANDPASS

SYNTHESIZER FILTER

80 kHz Sample and Hold

TRANSMITTER PULSE RECEIVER
SIGNAL TIMING SIGNAL J

J GATE Trigger GENERATOR DelaU GATE
GATE __ Pulse _ _ _ _ Pulse GATE

Moveable for -."i".l-l

spot placement
POWER DIFFERENT IAL

AMPLIFIER MODEL SURFACE AMPLIFIER

LINE-AND-CONE STANDARD H-56

FIGURE 5
DATA ACQUISITION EQUIPMENT FOR EXPERIMENTAL MEASUREMENTS
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from the receiver were amplified and filtered for analysis of phase and

amplitude using a pulse phasemeter 34 and voltmeter. The amplitude and

phase were recorded using chart recorders in the sweep mode, with the

sweep synchronized with the scanning of the field. Figure 5 is a block

diagram of the equipment used for data acquisition. The continuous

amplitude and phase plots resulting from the above experiments were then

digitized for data storage and subsequent processing, examples of which

are shown in Figs. 6 and 7. Figure 6 is an amplitude plot of the scattered

pressure from one surface spot insonified on surface 3. Figure 7 is the

phase plot corresponding to the amplitude plot of Fig. 6.

33
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hydrophone as the omnidirectional receiver. The projector remained fixed

at a given angle of incidence upon the surface and the receiver was moved

to form an array of pressure measurements. The pressure field was

scanned for each insonified area on the model surface to form an ensemble "

of pressure fields. The projector and receiver coordinates were selected

so that shadowing was minimized. When a spot size on the order of a

correlation length was insonified neither the projector nor receiver

interfered with the other (see Fig. 4).

Due to the finite size of the water tank, a pulsed cw signal was

transmitted at a frequency of 80 kHz. The pulse was rectangular with a -

fixed width and repetition rate. The projector had a -3 dB beamwidth

covering a spot of radius 16.5 cm on the surface and an acoustic

wavelength of 1.88 cm.

The model surface was located in the farfield of the projector at

near-normal incidence producing a -3 dB insonification spot size

approximating a circle. A number of spots were insonified leaving an area

the size of one spot radius uninsonified at the edge of the surface. The

, total area insonified was more than half the surface so that the results

from the processing could be compared with the physical characteristics of

Figs. 2 and 3.

* The receiver's active acoustic size was approximately one .__

wavelength in dimension. The receiver was moved by a motorized column

in a direction parallel with the model surface. Only the steady state

portion of the scattered pulse was sampled for processing. The outputs

32
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FIGURE 11
THE PROBABILITY DENSITY FUNCTION FOR THE THIRD ROUGH

SURFACE VIA THE DISCRETE FOURIER TRANSFORM TECHNIQUE
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 47.0 cm
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improved by assuming the characteristic function is zero outside the

observation window and computing the FFT with the extended data record

thus improving the elementary bandwidth. Although this is cheating, the

resolution of the estimate is not improved because of the leakage due to

the finite length of the non-zero data. The only improvement is in the

view of the finer structure of the PDF. -..-

However, an improvement in the resolution can be seen in the PDF -

estimate of surface 3 for which the elementary bandwidth is 22 cm. The

closest estimate of the rms height (from the DFT) is represented with the

Gaussian curve fit of Fig. 9 and is 47.0 cm compared to the true rms height U

of 0.924 cm. It is obvious that high resolution techniques are necessary

for better estimates of the rms height.

2. BLM Technique -.

Figures 12, 13, and 14 reflect the application of the Bojarsky-Lewis

method to the characteristic functions of surfaces 1, 2, and 3. It should be
18noted that the PDF estimates of Figs. 12 and 13 no longer fit a Gaussian -

shape due to the appearance of secondary structure. The rms estimates -

with the least mean square Gaussian fit are therefore deceptive, since it is .

the central structure of the PDF which should be observed. For a Gaussian

curve fit to the central portion, rms height estimates of 71.4 and 82.5 cm

are obtained for surfaces 1 and 2. Although the Bojarsky-Lewis method4!
makes use of the discrete Fourier transform, an improvement in resolution

is evident, especially in the PDF for surface 3. The rms height for this

surface is 8.81 cm, a definite improvement in the estimate. However, it
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FIGURE 12
THE PROBABILITY DENSITY FUNCTION FOR THE FIRST ROUGH

SUR FACE VIA THE BOJARSKY-LEWIS METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 224 cm
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FIGURE 13
THE PROBABILITY DENSITY FUNCTION FOR THE SECOND ROUGH

SURFACE VIA THE BOJARSKY-LEWIS METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 208 cm
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FIGURE 14
THE PROBABILITY DENSITY FUNCTION FOR THE THIRD ROUGH

SURFACE VIA THE BOJARSKY-LEWIS METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 8.81 cm
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still does not compare with the true value of 0.924 cm. So it is necessary

to use a higher resolution technique.

3. EPM Technique

Figures 15, 16, and 17 show the extended Prong technique applied to 9

the characteristic functions of surfaces 1, 2, and 3. When applied to

surfaces I and 2, it is noted that the least mean square Gaussian curve does

not fit well. When a Gaussian curve is fit to the central portion of the PDF

visually, estimates of 32.7 and 41.2 cm are obtained for surfaces 1 and 2.

As is expected with the longest data window, the best rms height estimate

of 3.2 cm is obtained for the third surface. Fitting the best Gaussian curve

to the central portion yields an estimate of 1.4 cm. The steps necessary

for further improvement of the estimates are obvious when comparing

surfaces I and 2 results to surface 3 results. The extension of the length

of the data record improves the resolution as expected. Therefore, if the

sampling of the characteristic function is extended past the -10 dB points

on the image solution, a further improvement in the estimates of the PDF..

should result. The only other alternative is to use a higher resolution .

technique for estimation of the PDF.

C. Correlation Estimates

The surface correlation functions were constructed from the

normalized spatial correlations of the pressure field of seven different

insonification area separations. An example of these spatial correlations

for surface 3 is presented in Appendix C. The surface correlation functions ..2
51

51 . .. . . . .:



PDF

-150 0 150
HE IGHTS (cm)

-EPM *'GAUSSIAN 1

FIGURE 15

THE PROBABILITY DENSITY FUNCTION FOR THE FIRST ROUGH2
SURFACE VIA THE EXTENDED PRONY METHODK. STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 62.4 cm0
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FIGURE 16
THE PROBABILITY DENSITY FUNCTION FOR THE SECOND ROUGH

SURFACE VIA THE EXTENDED PRONY METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 215 cm
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FIGURE 17
THE PROBABILITY DENSITY FUNCTION FOR THE THIRD ROUGH -

SURFACE VIA THE EXTENDED PRONY METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 3.17 cm
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of Figs. 18, 19, and 20 are monotonically decreasing, resembling

exponential functions. Thus an exponential least squares fit between the

data and the analytical function is used to obtain the best fitting function.

The correlation lengths calculated represent the e-folding value of the

exponential curve. The correlation function fit to surface 1 is reasonably

close and yields a correlation length of 7 cm. The least mean square fit for

surface 2 does not follow the structure very well, and if an exponential is

fit visually a correlation length of 5.5 cm is obtained. The correlation

length for surface 3 of 5.2 cm is also reasonable.

The correlation length estimates seem to agree with the physical

measurements very well. Many factors have contributed to this agreement.

The pressure field is neither oversampled nor undersampled, but sampled
i

sufficiently to yield results unadulterated by the finite extent of the data.

Also, the spatial correlations are computed for spots which are

incrementally separated a fraction of a correlation length. The variation

which does exist is believed to be actually due to the variation of the

correlation along different orientations (as in Fig. 3) on the surface; also,

the sampling of the pressure field in one dimension allows calculation of

the correlation along one axis of the surface.

The results are summarized in Table I. The correlation estimates for

surfaces 1, 2, and 3 follow very closely with the actual physical

measurements of the correlation lengths.
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FIGURE 18
CORRELATION FUNCTION FOR THE FIRST ROUGH SURFACE VIA

THE POWER SPECTRUM OF THE SCATTERED PRESSURE FIELD
THE E-FOLDING VALUE OF THE EXPONENTIAL CURVE IS 7.03 cm
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FIGURE 19
CORRELATION FUNCTION FOR THE SECOND ROUGH SURFACE VIA 7

THE POWER SPECTRUM OF THE SCATTERED PRESSURE FIELD
THE E-FOLDING VALUE OF THE EXPONENTIAL CURVE IS 3.32 cm -
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FIGURE 20
CORRELATION FUNCTION FOR THE THIRD ROUGH SURFACE

VIA THE POWER SPECTRUM OF THE SCATTERED PRESSURE FIELD
THE E-FOLDING VALUE OF THE EXPONENTIAL CURVE IS 5.18 cm
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VI. CONCLUSIONS

Several techniques have been outlined which have yielded predictions

of the probability density function of surface heights and correlation

function. The estimates of these statistical characteristics can be

obtained directly from measurements of the scattered pressure field from

the rough surfaces. Thus the inverse problem has been investigated.

The correlation function estimates agree very well with the
AD

measured correlation functions. This is due to two factors: (I) the -

insonification spots are large compared to the dimensions of the

correlation length and (2) the pressure field spot separation and spatial
S

sampling increment are both a fraction of a correlation length in

dimension. Therefore, a portion of the surface representative of the

surface correlation function has been insonified; and the correlation

function estimate has been observed within the resolution bounds

necessary to determine correlation length. Thus Clay and Medwin's

correlation theory was verified, this time with stationary randomly rough

surfaces.

The probability density estimates, although bounded, were not as

accurate as the correlation estimates. The estimated rms height values 0

were all exaggerated with the exception of one estimate. From the

analysis it is obvious that the experimental constraints have limited the
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#X=W 6 .21

where

t* z B.22

X CIC2 ... cqIT B .23

and

W=0(a) ... QQI-I) IT 8.24

The form of tis a Vandermonde matrix for which a least squares solution

is

xzl,~fl Hw .B.25
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for H, the complex conjugate transpose. 7
Combining Eqs. B.13 and B.17 results in

q q

8j (Cgj"Cgi) TgHTh B.19

g=1 h=,

such that e will have one eigenvector Eq.i which is orthogonal to the q

mode vectors, or

Eq. l = 0 B.20

for an eigenvalue of zero.

The procedure for determination of q is to fill the matrix 8 to

dimension Q by Q and to calculate the eigenvectors and eigenvalues. If L

eigenvalues are equal to zero (or equal to maF2 in the case of data with zero

mean noise and variance C2), then q=Q-L. The matrix could be recomputed

to order q.I by q+l and the eigenvectors and eigenvalues regenerated. From

Eqs. B.16 and B.20 it is noted that the eigenvector corresponding to a zero

eigenvalue is the vector with the coefficients of the difference equation of

Eq. B.15. Therefore not only is q achieved but also the (aj).".

The polynomial equation of 5.7 is rooted to find the (zj) and Eq. B.2

reduces to a set of linear equations which canbe written in matrix form,
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vector Th starting at the jth step. RecallIing Eq. 5.4, the mode vectors ~0

can be represented with

Th I Z' Zh .14

for which there are q vectors.

Now, seeking a solution f or the dif ference equation f rom Eq. B.10,

Saj Q(I-j) =0, iVq, . M-1 B .15

j=0

A pseudo-inverse solution is achieved f or which Eq. B.15 takes on the f orm .q
E)A=0 B .16

where 8 is a q+l by qtl Hermitian matrix such that

19ji =D1H DI B.17

and

A:[aoa, ... aqiT B.18
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rooted to obtain the (z.). Subsequently. the (c.) can be determined by

solving the equations of B.2 exactly or by least squares. But a successful

application of the EP method depends upon knowledge of the value for q.

Many methods have been outlined for the determination of q and the

elgenanalysis method outlined by Van Blaricum and Mittra 40 is relatively

easy to implement.

We begin with the Djdata vectors

I0j Q(q-j) Q(q-j+1) .. Q(q-j~m) IT B.11

for m~M-q-1 and T the transpose. These can also be written

01= ch9 exPish(qj)A I exP[shIAZI1 =0, A , B.12

h~ 1

or, more simply,

Djz Chj~Th B. 13

h 1

where Chj =chexPsh(q-j)A~j represents the coefficient for the hth mode-
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such that ao = -1 and

(z-z)(z-zZ2)... (Z-Zq) 0 B.8

A procedure for calculation of the (aj) is now outlined. The first

equation in B.2 (1=0) is multiplied by aq, the second by aqI,..., and the AS

(q+l)th by a0=-l and the sum of the equations is computed. Since each zj

satisfies Eq. B.8 the result is

Q(q) - a102(q-1) -...- a q(0) 0 B.9

A set of I1-q linear equations are thus obtained by using th, procedure on

the remaining equations of B.2. The resulting equation takes on the form of

a familiar set of linear prediction equations,

Q(I) : 2 aj (I-j) .1 =q .... M-1 B.O10

which can be solved exactly for the (a.), if M=2q, or approximately by a

least squares estimation.

After determination of the (a1), the polynomial equation of B.7 is
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where the oK. is a damping factor. If we also assume that the (c.) are also

complex amplitudes,

cj =Aj exp[ie j , B.5

then the FT of Eq. B.2 is

q

(() Cj 2oj/[Ixj2 (21T((-(-))2 1  B.6

j=l

If the (zj) are known, then Eq. B.2 represents a set of M linear

equations in q unknowns to be solved for the cj. For M=q, Eq. B.2 can be.:

solved exactly as Prony39 had originally intended, and for M<q a linear

least squares estimation would obtain the solution, i.e., the EP method.

Otherwise the determination of (zj) with known {cj) leads to the solution

of a set of nonlinear equations.

Consider the (z.) to be the roots of the polynomial equation

q

.aj Z(q.j) =0 5.7
..-,-O.:

j=O V..i
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APPENDIX B

DERIVATION OF THE EXTENDED PRONY METHOD

p The Prorng method consists of expanding the data set known at evenly -

sampled subintervals with a basis set of complex exponentials, or

I q
Q =t) cj exp[s~j B

j=l . ..

or, for discrete values of ~1~

Iq
000)= ci [z~I 1 J=,...,M- I B.2

j=1

which looks similar to the DFT expansion. However, unlike the DIFT the (sjl

aecomplex in general and non-harmonically related,

sj *x i2Tr~1  B.3

and
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*where the R11jare the prolate radial wave functions of the first kind. So

Eq. A.13 becomes

00

x(2j+1)5SO) Oj( 2Trtmax, (/(mam)/ 2  
.A.17

But, from a practical viewpoint, the sum can only be evaluated to a limit

W( 0 <(0. 5W0.O( 2v~m~max, /'(max)>' 2

j=O

x(2jtl) S(1Ooj(2flr~ymax. /(Max) A.18
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WO 'Ij><(, Ij>X

A.'A

.Theref ore, a sol ut ion f or w(() is

00

j=0

f or ax<~a and the series is convergent in the mean square sense.
-(maxt'tma

The ijare related to the prolate angular wave functions of the first

kind. S0I)01, through

A.14

where

* Jj = r1(2j l A.15

and

Xj 4m &Mmax [1R(11j(27V~mtiax- 1 A.16

65



(~max

<a >a(()b(()d( A.8
-(max

Although not explicitly indicated, the and Xj also depend upon the

product 2TIr 4 max,

Slepian and Pollack38 describe a set of functions

which are orthonormal in the space of square integrable functions over the

L range. Mlultiplying both sides of Eq. AA by qj and integrating over

-max to *(max gives

+ max

0(0 11( (x) sinc((-x) dx. . A.10

The symmetric nature of the kernel and Eq. A.9 allows Eq. A.10 to be

rewritten as
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+Cmax

v( C(x) sinc((-x) dx .AA

-m-"max

The kernel of this integral equation therefore has a countable infinite set

of eigenfunctions

Ocorrespondingto positive eigenvalues

O >X>X2 >... >'0 A.6

such that the set {+P(C) is complete in the space of square integrable

f funct ions over the CL range. Also thej are orthogonal over the (L range,

* +1 >j =0' j I
1, j =I A.7

for r=o,1,..., and where the inner product is defined with
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APPENDIX A

DERIVATION OF THE BOJARSKY-LEWIS METHOD7

The Bojarsky-Lewis method is developed for L functions. Since the

data are f inite in extent, it is assumed that a rectangular window U( ) is '
chosen such thatj

W() =I min <'5 t Smax

0, otherwise A.1

and, when applied to the characteristic function, yields

* V(&) U(&) Q(&) .A.2

Assuming that Q is known over the tL range and that V( ) has an inverse FT,

Eq. A.2 when inverse transformed and the convolution theorum invoked '
becomesJ

VW°(x) sinc(-x) dx A.3

-- APEDI A_..
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ref lection). Also Stanton34 has successfully implemented a pressure

amplitude analysis in an inverse type problem. Powell 37 used this method

in an analysis of the author's scattered pressure data.

In general, the objectives of the inverse problem in estimating the - u
statistical parameters of a randomly rough scattering surface were

accomplished with some Ilimited success.
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resolution. Perhaps the most critical constraint is the imposition or a

very smallI beamwidth source to insonif y smallI spots on the surf aces. This

results in a scattered pressure field which is very limited in angular extent

resulting in a very small observation window. With the additional

*constraint of a single frequency of incident pressure, this limits the

observation window of the wave number space of the characteristic

function of surface heights. An additional limitation to the resolution is

introduced by the choice of near-normal incidence to minimize shadowing

and neglecting surface slopes and multiple scattering.

Various improvements can be made to increase the resolution of the

experiment and as a result the accuracy of the PDF estimates. The f irst

improvement is of course to use the current acoustic model and simply

increase the observation window. But this would mean using a larger

beamwidth source, thus requiring a larger model rough surface so that a

representative number of spots could be insonified. Secondly, higher

* resolution spectrum analysis techniques could be used, for example,

maximum likelihood, maximum entropy, etc.

* A third alternative is to use a different acoustic scattering model.

* This could be done by modifying the present theory to account for

broadband incident energy, shadowing, slopes, or multiple scattering. The

* result, though, would be most certainly non-trivial. Clay and Medwin 19

were successful in applying the present theory for finding the PDF when

they used various frequencies of incident pressure to sample the surface

wave number space (instead of varying the angles of incidence and
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APPENDIX C

SPATIAL CORRELATION FUNCTION

The spatial correlation function of the pressure field contains

information which will allow the inference of the correlation function of

the scattering surface. In order to study the form of the spatial

correlation function suggested by Clay and Medwin, the spatial pressure

field was recorded for the insonification of different areas on the model

rough surface. The pressure field was then spatially correlated by

computing the correlation between the pressure fields of spots which have

been separated a given distance (for all possible combinations of spots

being separated that distance). Figure C-i represents the total number of

spots which were insonified on surface 3. All possible combinations of the

various spot separations are also listed by the number of separated spot

pairs. Figures C-2 through C-8 represent the spatial correlations of the

pressure fields from each spot separation. It should be noted that for

greater separations the maximum of the correlation function decreases and

is shifted from the origin an amount proportional to the spot separation.
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* iY-axis spot

. .. . separation increment

SPOT CENTERS ~ c
X-axis spot
separation increment

x 82 cm byj 82 cm model surface'l\

Spot
Separation (cm) 0.0 2.29 4.58 6.87 9.16 11.5 13.7

U*Spot Pairs 69 42 53 36 37 22 21 7w

FIGURE C-1
LOCATION OF THE 69 SURFACE INSONIFICATION AREAS

(-3 dB SPOT AREA) ON THE THIRD ROUGH SURFACE
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FIGURE C-2_
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K FIELD FOR SPOTS SEPARATED BY 0 cm
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FIGURE C-3
SPATIAL CORRELATION OF THE SCATTERED PRESSURE

F IELD FOR SPOTS SEPARATED BY 2.29 cm
THE MAXIMUM CORRELATION VALUE IS 0.695 AT A SPATIAL LAG OF 3.64 cm
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FIGURE C-4
SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE

FIELD FOR SPOTS SEPARATED BY 4.58 cm
THE MAXIMUM CORRELATION VALUE IS 0.604 AT A SPATIAL LAG OF 6.06 cm
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FIGURE C-5
SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE -o

FIELD FOR SPOTS SEPARATED BY 6.87 cm
THE MAXIMUM CORRELATION VALUE IS 0.406 AT A SPATIAL LAG OF 9.7 cm * ..
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FIGURE C-6
SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE

FIELD FOR SPOTS SEPARATED BY 9.16 cm
THE MAXIMUM CORRELATION VALUE IS 0.324 AT A SPATIAL LAG OF 14.5 cm
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FIGURE C-7
SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE

FIELD FOR SPOTS SEPARATED BY 11.5 cm

THE MAXIMUM CORRELATION VALUE IS 0.214 AT A SPATIAL LAG OF 18.2 cm
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SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSUREFIELD FOR SPOTS SEPARATED BY 13.7 cm
THE MAXIMUM CORRELATION VALUE IS 0.155 AT A SPATIAL LAG OF 24.2 cm
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