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.  INTRODUCTION

The direct or forward problem in acoustics is the prediction of the
propagation of sound based on specified source, scatterer, and medium
conditions. The inverse probiem is the deduction of properties of the
source, scatterer, and medium from the propagated field. This relationship
can be described with the mapping of one function into another, AX=Y,
where X represents the specified source, scatterer, and medium properties
and Y represents the resuits of the propagated field. The operator A
provides the mapping from X to Y for the direct problem. Inversion of A
leads to the solution of the inverse problem.

Although the inverse problem has been the subject of much study, -4
most of the work in acoustics has been devoted to the forward problem.
Since Lord Rayleigh predicted the scattered field from a sinusoidal surface
in 1896, ° the study of rough surface scattering in particular has resulted in
an almost uncountable number of publications and about as many
theoretical developments.("z' This concentration of study has been no
less intense in underwater acoustics where theories have been developed to
understand the scattering from the ocean surface and seafloor. A concise
review of work accomplished in this area before 1970 was compiled by
Fortuin® and Horton.”

The theories used in these studies have been separated into two basic
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...........
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categories accordingto the mathematical approach. The first approach is
to model the scattering with a distribution of point scatterers, each with
its own impulse response and directivity. Middieton8 is regarded as the
originator of this rather straightforward approach, often called the
quasiphenomenalogical approach. The second approach, called the
optical-acoustic or physical approach, was formulated by Eckart.9 In this
method the scattered field is described by Helmholtz’'s theorem and
evaluated with Kirchhoff’'s boundary conditions resulting in integral
equations convergent for directional sources.

This latter approach has been widely used by underwater
acousticians. At Applied Research Laboratories, The University of Texas at
Austin (ARL:UT), a group of investigators have successfully applied Eckart’s
theory to yield theoretical models which follow experimental data very
well. 1714 These studies, which began in the 1960’s, have produced one

thesis '° and two dissertations 16,17

at The University of Texas. Clay and
Medwin'819  and others20-2! have aiso verified Eckart's theory with
experimentation.

In these studies of the forward problem the incident acoustic wave
and the acoustical and statistical properties of the scattering medium were
assumed in an attempt to predict the scattered field. The inverse problem
presented in the current work differs in that a limited knowledge of both
incident and scattered pressure is assumed In efforts to infer the
scatterer’s characteristics. In particular, the statistical properties of

randomly rough surfaces are the parameters which are of interest.
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Experimental studies of the forward problem at ARL:UT were ':_,j.'j‘
B

accomplished with model surfaces constructed from aeromagnetic maps of =
the Canadian Shield, 22 which have been measured for a particular root mean |
square (rms) surface height and correlation length. These surfaces are also ,o,'
used in the inverse scattering problem, the subject of this thesis. An B
S
overview of the acoustical theory supporting the inverse problem is : J
discussed, and solutions are proposed for obtaining estimates of the rms ' » ]
height and correlation length. An experiment was conducted to check the o
validity of the inverse theory and results from each of the surfaces are .
compared with each other as well as with the expected results. —.1
) B ‘*
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%4
-




place onthe data to reduce the leakage. 28

2. Bojarsky-Lewis Method

Sometimes even with the proper choice of a data window it is still
not practical to use the DFT technique to estimate an FT or an inverse FT.
For instance, if the data recordis so short that leakage cannot be corrected
(i.e., through deconvolution), other high resolution spectral estimation
techniques must be invoked to estimate the Fourier transform. One method
is the Bojarsky-Lewis method (BL),%3 which has been applied in
three-dimensional image reconstruction of electromagnetic wave
scattering, extrapolation of bandlimited functions, and spectral
estimation.

The Bojarsky-Lewis PDF estimate is derived in Appendix A and is

represented with the summation

J
(.l.)(() = z <V(() ' S("Oj(Z'"{mcmax- (/Cmax)>
=0
(2515 02 bmax: max)/2 .6

where the inner product <...> is defined by

+{max
a,b)= [ alt)b(t)dt n.7

-Cmax
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where Q(2&) represents the sampled ve: sion of Q consisting of M sampies, 4
* denotes complex conjugate, Af denotes the even sampling increment on _j
Q, and AL=1/MAEL. The sampled version of w, w(jl), will consist of M ' 1
samples corresponding to harmonically fixed values of {=jAl. Both Q and \
w are by definition periodic functions of pericd MAL and 1/Af b#;
respectively. Proper sampling of Q will therefore result if the Nyquist !?
criterion of 1/AE>2T mayx IS followed, where Cmax represents the maximum J
value of the surface relief {(or w({)=0 for -Cp o, <0<l oy, @ {-limited (LL) "".’%
function). Otherwise aliasing of w will occur, and w(jf) will not 1
accurately represent . _4
A major problem which is encountered in application of the DFT is : '

the phenomenon of leakage, which occurs due to the finite extent of the
data. The leakage results from the muitiplication of Q with a rectanguiar 1
window function which in the { domain corresponds with a convolution of '.:
w with  sin(21E 0)/1L (a sinc(l) function), where & =(& a0 +Emin)/2
As the observation window &m approaches infinity the sinc function f“o—:
approximates a delta function and leakage contributes very little to the
error in the DFT. However, it is not practical at times to extend the data to _1
infinity, and so an optimal window can be chosento place on the data to -‘""—‘

16
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estimates of the PDF of heights. In most practical situations Q is not ;;Q_‘;
known for all values of £. A study for which the characteristic function is :
known for various values of frequency (discrete values of £) is presented in i
Reference 13. The objective of the current study is to vary the angles of , Tj
incidence and reflection only over a modest range of observation to
establish measurements of the characteristic function. So the :: j
characteristic function is sampled over a £&-limited (EL) range, - » |
EminSEsEmax- The limits are selected so that Q is bounded, or so that the
image solution does not approach zero(due to the finite beamwidth of the ————'«i
directional source). B

These limitations of the sampling of the characteristic function
indicate that there may likely be a resolution probiem in obtaining accurate .j
estimates of the probability density function. The following discussion
outlings the discrete Fourier transform and two techniques used in high
resolution spectral estimation of the Fourier transform. :,1

I. Discrete Fourier Transform 1

The Fourier transform theory can then be extended to include sampled 4

functions through the sampling theorem and the discrete Fourier transform '

(DFT).27 The definition of the DFT pair follows

M-1 —
Q(E) = AL T w(jt) expl-i2mlj/M , 2 =0, .., M-1 .4
j=0

[
i fa e
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image solution, Eq. 11.20 becomes

Q(E) = <Pg>/Pg liL1
or
Q@) = w(l) expl-i2meL] dt 1.2

where the surface wave number &=¥/X\ is a function of the angles of
incidence and reflection and frequency. If the characteristic function Q is
known for all values of £ (all angles and all frequencies), w, the probability

density function, is determined by the inverse FT

w(l) = I QL) expli2mEl) d& . L3

-0

Asufficient condition for the validity of Eqgs. ll.2 and lll.3 is found
in Papoulis.25 If the absolute integral of w({) is bounded and finite
(absolute integrability), then its FT Q(f) exists and must satisfy the
inverse FT.  Since the PDF of surface heights is bounded for a finite
surface, its integral will also be bounded, and Egs. 1l.2 and lIL.3 hold.

Thus the inversion of the Fourier transform operator will yield
14
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1. INVERSE TECHNIQUES

Much can be inferred about the scattering surface from the two
stochastic quantities derived for the scattered pressure field. In
particular, the rms surface height and correlation length can be extracted
from measurements of the mean scattered pressure and covariance,
respectively. The rms surface height is the square root of the mean
squared height of the surface profile and can be obtained from the
probability density function of surface heights. The correlation length is a
measure of the distance one must move along a rough surface to lose all
knowledge of one’s previous position and can be directly obtained from the
correlation function of surface heights. The signal processing methods
used to estimate these parameters are the subject of this chapter.

A. Probability Density Function

The probability density function (PDF) describes the distribution of
the surface heights and can be derived from the mean scattered pressure
(Section 1lB).  The PDF is the inverse Fourier transform of the
characteristic function; the conjugate Fourier transform variables are
surface height {, and surface wave number £. In the surface wave number

domain, the characteristic function is defined as the mean scattered

pressure divided by the image solution, Pp, of scattering from a planar

surface. So the development is picked up fromEq. 1.20 and, for a non-zero
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It can be shown that for a suitable random rough surface (i.e.

homogeneous, isotropic) the covariance is dependent only upon the

difference |r-r’|, while for the autocovariance, the peak of the function

occurs at a zero-spatial difference (r=r’) and corresponds with the

scattered pressure intensity. The covariance decreases rapidly as the lag

value (spatial difference) increases, the rate of decrease of the function

being greater for a larger roughness (L e/ increasing). Clay and Medwin

have shown that for a time varying rough surface, the spatial covariance

reaches a maximum at a predictable spatial lag value if the pressures for

which the covariance is calculated are fixed time-delay versions of the

pressure field.

In other words, the pressure is being scattered from the

same type of roughness (i.e., a traveling wave or surface structure) at

different times into different spatial positions. From calculations of the

correlation function of the scattered pressure field, Clay and Medwin were

able to predict the wave velocity of a traveling surface wave.

For scattering from a stationary rough surface, the surface

correlation is retrieved by spatially correlating the scattered pressure

from separately insonified areas on the surface.

The value of the

correlation function for a particular surface displacement is the peak value

of the spatial correlation function. Thus a surface correlation function can

be approximated by plotting this peak value versus the insonified area

separation.
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H" assuming e, to be directed alongR,. The bracketed term ( {..} ) is just the
pressure field scattered from a plane surface corresponding to the image
NN
solution Pg, which is evaluated with a stationary phase integral. The term .;:,:;;-:;*]
I <expl-ik¥C)> represents the Fourier transform (FT) of the PDF of surface “-__‘,’:1
heights or the characteristic function (CF). \
\ C. Covariance of Scattered Pressure S
, , , L ]
l The covariance of the pressure field can be derived with a '4
simplification of Eq. IL17.  Since we have already assumed a sufficiently L
- directional source, we canwrite Eq. IL.17 as ,_,«;l
’ )
~ 1
Pg(r) = [ik/(21)] f [ Do(xy) ({explik(r+s)}/Irs]) expl-ik¥L] '
I "[Cxex’cgeg’ezl'cl dedy 1.24
where r=|r| and s=|s|. If we assume that the slopes are negligible the
N covarianceof the pressure becomes e
! CP(r) Po(r ) > = <explik(¥L-3T) [k/(2mrs)l R
""'
x[[[[Do(xy) Do(xu)* (e ey) (R ) dx dydy’ dy . 1.25 R
' However, the integral does not simplify much further (but can be evaluated = .
numerically) and at this point it is necessary to reflect upon the work of
Reference 18 and the results relating the covariance to the correlation SO
4 »
function of the surface. A
I A
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quantities we will be concerned with are the so-called mean scattered

[
-

pressure and the covarianceof the pressure field.

B. Mean Scattered Pressure

-

P
o
b

The ensemble average of the pressure field, or mean scattered

pressure, expressed in £q. 1117 is defined with
<Pg¥ = [ Pg 0(LLyLy) dC dty b, 118

for w, the three-dimensional probability density function (PDF) of surface
heights and slopes. The ensemble average represents the average over the
variation of the total area insonified on the surface. For a time varying

surface (L a function of time) this is a time average, and for a fixed surface

(€ a function of x and y) this is an average over a number of insonified

surface areas. If {, Ly, and t,y are uncorrelated, then Eq. 1117 becomes

{P4(r)> = [ik/(277)] ff Do) ({explik(Ro*RPIN/[Ry Ry)) <expl-ik¥L)> R,

x(Cyey ey re e drdy . 119 N

and with the Cx and LU zZeromean processes,

v e
RN .- -
oot A
[ P .

. . R o
PR soaletel
S RV
TR . .
AN DR U Y

el .

{Pg(r)> = <expl-ik3L]> {lik/(2m)] f [ Do(x,y) ({explik(Rg+RPI}/[Ry Ry)

xsin O, dx dy} .20

T 7.
s IR e
-' .* -' N




and for a source concentrating the incident energy within a small region

about the directional axis (a directional source of finite beamwidth),

sinyg>sin®; and siny =sin6 . .15 é;:{’ﬁ

SR

Approximations for rq and ry then follow: ;::l\;?:"l,?;

ro*Ro-Lsing; and ry =R -Csine, . .16

,1;-;;;.;:;]

Now the exponential in Eq. IL13 is greatly simplified and can be s

broken down into a term dependent upon the plane surface geometry and a *
term dependent upon the surface heights. Also it should be noted that the @

denominator rgry varies slowly with respect to the exponential and can be i\\S

replaced with RgR,. Therefore, for receiver points far from the surface and .(3.‘

sy

near normal incidence (with negligible shadowing) Eq. 113 becomes — 3

AN

Pg(r) = lik/(270)] [ Do(x.y) ({explik(Rg*RI}/IRy Ryl) expl-ik¥L] L)

for ¥ = sin 6; + sin 6. 2

Suppose that the surface heights f(xy) can be described with a

two-dimensional zero mean random variable. This allows us to define

various statistical properties of the pressure field. The two particular
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(8/8n) ([exp(ikr)/ry) = ik(neey) (lexp(ikr)l/r) . .10

Also0, an expression for the unit normal vector and surface element canbe

derived using differential geometry,

n= L/ | VL] = (Lyeyt eyre VI )2 )] IRY

and

dz =/ [@Q)2 )20 axay iLi2

where V is the differential operator, {, and (g are the surface slopes with

respect to x and y, and ey, ey. and e, are the Cartesian coordinate system

unit vectors.

Equation 1.6 now becomes

Pg(r) = [ik/(217)] f [ Do(xy) ({explik(rg+rYl}/Irg ry))

"(Cx“x’(geg’cz]"l dg dy . .13

According to Spetner,25 the surface roughness is assumed smaller than

both the source and receiver distances, or

(20/Rg)sinyg « 1 and  (2L/Rysin ¢, « 1, .14
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another result is that multiple scattering and shadowing are neglected.
FromEq. 1.5, the Green’s function solution simplifies to
P(r) = (1/(2m)] [[Pi(rg) {(8/8n) (lexp(ikrl/ry)} dT . L6
For a directional acoustic source emitting spherically radiating
wavefronts, the incident pressure is
= P; = Dolxy) (lexp(ikro)l/r 1.7
5 i o(x,y) ([exp(ikrg) o) e
in the farfield, where Dy is the pressure density proportional to the
directivity pattern of the source and ry the distance from dZ to the source. 91
The partial derivative of the integrand in £q. 1.6 canbe evaluated as 2 ';ff;f
_ (8/8n) (lexp(ikrV/ry) = ik(n-ey) (1-1/(ikr)D)  (Texp(ikry)/ry) .8 ;_-;1
25
v for a unit normal vector n pointing into the surface and e, a unit vector i
pointing alongr,. At this point, the Fresnel-Kirchhoff approximation canbe --'-1
o easily applied such that ]
= kry»1 .9 T
S
which is equivalent to assuming that the observation range is longer than S
the wavelength of the source. Equation 1.8 then becomes ”!*1
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The scattered pressure Pg satisfies the wave equation

(V2+k2}Pg=0 1.2

where V2 js the Laplacian operator and k=21/X is the wave number for

wavelength A. Asolution to Eq. 1.2 is

Pg(r) = [1/(am)] [[Pi(rg) {(8/8n) G(rrg)tdz 3

where P; is the incident pressure, (8/8n) the partial derivative with respect

to the normal to the surface n, dZ the surface element, and G the Green's

function which satisfies
{(V2+Kk2} G =-4m8(r - rg) 1.4

for G vanishing onthe surf ace.23 The observation point is at r with dZ at

rg. However, for an irreguiar surface, G is rather hard to evaluate. But for

a plane surface placed tangentially to dz, G is well known,24 and
{(/8n) G} = 2 {(8/8n) (lexp(ikry))/ry)} IS

forr,, the distance from dZ to the receiver. This means that the radius of

curvature of the roughness is assumed much greater than the wavelength;
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FIGURE 1
COORDINATE SYSTEM AND GEOMETRY FOR ROUGH SURFACE SCATTERING
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ll. ACOUSTIC THEORY

This section describes the acoustic theory which leads to the
formulation of the inverse problem. The mathematical framework of the
forward problem provides the context for solution of the inverse problem.
The physical mode) established by Eckart is used as the foundation for the
inverse theory. The development used here follows very closely that of
Clay and Medwin 18 and Boyd and Deavenport."®  An expression for the
pressure field scattered from rough surfaces is derived which can be
si.iplified with knowledge of the incident pressure field and the
assumption of a randomly rough interface.

A. Eckart’'s Scattering Theory

Consider the scattering geometry of Fig. 1; the source is spherically
divergent, with position vector s incident upon the surface ¥, and the
receiver is at r. With the surface height defined by the variable L(xy) (in
the direction of the z axis) , the coordinate system is oriented such that

the x-y plane lies in the average surface height described by

[ft(xy) dx dy=0 ILi

and the origin is the point where the beam axis of the source, assumed

directional, intersects the mean plane.
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v(t) is the DFT of the characteristic function, and the S"’oj are the prolate

angular wave functions of the first kind.
Convergence of the summation depends upon many factors. The DFT
is discrete and thus the inner product will be represented by a numerical

integral introducing numerical error due to the integral approximation. The

value Ly, represents an estimate of the bound onthe surface heights, and
so knowledge of the maximum surface height is necessary. The S"’Oj are

more oscillatory as the index j increases and as the product 21, Lmax

approachesinfinity. Asa reéﬁit most of the contribution to the summation

will be due to the lower order S‘"Oj. Also;-if errors in the original

characteristic function exist, then the errors in the summation will ailso be
large. In general, Perrg‘?9 shows that the BL technique is numerically

unstable for certain cases. The degree of instability depends upon the value

21r{m; the smaller this value is, then the more stable the method is.

3. Extended Prony Method

Another high resolution spectral estimator which has been used is
the extended Prony method (EP).30 known for its ability to accurately
predict the Fourier spectra of short data records. The Prony method has
been used in spectral estimation, data reconstruction, and resonance
extraction from transient response functions. The Prony method, presented
in detail in Appendix B, consists of expanding a complex function known at
evenly sampled sub-intervals with a basis set of complex exponentials.

This expansion canbe expressed as
18
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q
Q)= 3 i exp[sjt‘,] 1.8

1
or, for discrete values of £ = §A¢L,

q
AR) = g ¢ [zjl’l ,0=0,.M1 s

j=1

which looks similar to the DFT expansion of Eq. ll.4. However, the {sj} are

complex in general and non-harmonically related,
Sj = o + I2‘ITCJ' .10
and

Zj = QXD[SjA&] , 11R)

where the o is a damping factor. Unlike in the DFT, no assumptions about

periodicity are made but instead all parameters are estimated including the

complex frequencies, sj, and complex amplitudes, cj. The frequencies of

19
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the spectra are not predetermined by the choiceof data recordlength nor is

the processrestricted to cosings and sines. If it is also assumed that
¢ = Aj exphej] , .12
are complex amplitudes, then the FT of Eq. 1125 is

q
o) = 2 ¢ 20<j/[o<j2* {Zﬂ(C-Cj)}zl . .13

7!

The data are first assumed to follow linear prediction models so

that a linear Toeplitz system of equations,

q
QL) =3 3 Q-j) . L=q ... M1 .14

!
canbe soived for the prediction coefficients such that ag=-1. The equation

q
2 A9 = g .15

=0

20
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is a polynomial equation which canbe solved for the damping factors and
frequencies zj. The complex amplitudes are then retrieved from a solution
to a Vandermonde system of equations in EQ. Il.9. The Fourier spectrum of
Eq. IL13 is then calculated as an estimate of the PDF. S

One problem associated with implementing the extended Prony
method is the determination of the number of estimation parameters q. A
method for doing this is presented in Appendix B. Noise also affects the 1 *:'@t::'-_'
accuracyof the EP method, the largest impact being on the damping factors
{«j} which become larger with lower signal-to-noise ratios. '-'51
B. Correlation Function

The correlation function can be obtained from the covariance of the ]
pressure of Section ILC. The correlation function describes the :Z:
correlation of the surface profile, i.e, how much one portion of the
surface compares quantitatively with another portion a distance away. ;

However, the discussion of the correlation function differs from the —hﬂq

L.\

\, PDF discussion in that the Fourier transform domain consists of spatial

.
() ll" -
e

position and spatial wave number space, as opposed to the surface
heights/surface wave number space for the PDF.
- Following the definition of the DFT given by Eqs. liL.4 and lIl5, the

0

= following DFT pair involving the spatial pressure field is also observed,
L4

2 M-1

' P(Rr) = Ap 2 pljp) expl-i2maj/M) , 2 =0, .., M-1 liL.16




- and

M-1 "

p(jp) = Ar| 3 P*(Ar) expl-i2my/M | ,j=0,.. ., M1 ., L7 f.'if"_.ﬁ
2=0

where P(fr) represents the sampled version of the pressure field with the
uniform sampling increment (in Cartesian coordinate space) of Ar (instead

of surface wave number space).

e
-2 An estimate of the covariance of the pressure field in Eq. 11.25 is
possible with the inverse FT of the cross-power spectrum3' of the
pressure, or
M-1
) Rs(e) = Ap T sg(ip)* expl-izmj/Ml ,R=0,.. M1 ,  1ILI8
& =0
where the covarianceis assumed to be a function of the spatial separation
of the positions e=|r-r’|. The cross-power spectrum is defined
sg(ip) = <po(jp) pg(ip)*> . .19
' where the p’s are the FT's of the pressure fields from spots 0 and §,
respectively (insonified spots being separated by a distance of §).
= 22
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Anestimate of the correlation function of the surface is possible by
calculating the covarianceof all spatial pressure field pairs (pg's and ps's)

associated with various surface spot separations. The resuiting covariance

canbe normalized with the autocovariance measurements at €=0, or

M-1
Ag=0p 2 <|polip) |> 111.20
j=0
and
M-1
As=0p 3 L|pglipd|> 111,21
j=0

which yields the normalized correlation function

Cs(j€) = Rg(ie)/ {TAgAg) . 1.22

The correlation will have a peak value at some delayed value of ¢ due to the
separation of the spots 8. The correlation of the surface can be
constructed by noting the peak values of C at these delayed ¢ values and
plotting them versus the spot separation 8. This is verified with actual

experimental data in Appendix C.
23
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IV. EXPERIMENT AND DATA ACQUISITION

i The subjects of Chapters Il and lll were the development of the
acoustical inverse theory which would allow inference of the statistical
> properties of the scattering surface, the rms height, and the correlation
- length. This chapter describes the experiment which is used to verify this
theory. First, the constraints involved in the theoretical development that

are most critical in the experimental arrangement are outlined, followed by

. a discussion of the specific experimental parameters used.
A. Considerations
Before the theory canbe assessed, a valid experiment must first be
. designed with the assumptions of the theoretical development in mind. The
choice of a rough surface model was the first consideration. Three
" pressure release polystyrene models (82 cm by 82 cm) constructed from
T aeromagnetic maps of the Canadian Shield?2 were used and the statistical
- properties of the surfaces are well known (see Fig. 4). Anactual histogram
5 of heights (PDF) of surface 3 (aiso representing surfaces | and 2 with
- appropriate scale changes) was developed by measuring the heights of 1089 ;;:f;:lf
= points on the surface (Fig. 2). Figure 3 represents the autocorrelation
° function of the surface for two perpendicular orientations of the surface.
A Gaussian and exponential curve have been fit to both the histogram and
- correlation function, respectively. Ameasure of the rms height is obtained
: N
Y
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FOF

SURFACE HEIGHTS (cm)

. HISTIGRAM = SAUSSIAN

FIGURE 2
HISTOGRAM OF HEIGHTS MEASURED AT 1089 POINTS IN THE CENTRAL
QUARTER OF THE THIRD ROUGH SURFACE (COURTESY OF S. K. MITCHELL)

STANDARD DEVIATION OF THE GAUSSIAN CURVE 1S 1.13 cm, WHICH
APPROXIMATES THE rms HEIGHT OF THE SURFACE

25
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CORRELATION

x \\‘—\“’;" .

0 x w x
0 2 4 6 B 10 12 14 16
DISPLACEMENT (cm) e
~ EXPONENTIAL * X-AXIS > Y-AXIS '

CORRELATION CORRELATION

FIGURE 3
AUTOCORRELATION OF THE SURFACE MEASURED FROM THE CENTRAL
QUARTER OF THE THIRD MODEL SURFACE (COURTESY OF S. K. MITCHELL)

THE E-FOLDING VALUE OF THE EXPONENTIAL CURVE iS4.51 cm, WHICH
APPROXIMATES THE CORRELATION LENGTH OF THE SURFACE

26
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with the standard deviation of the Gaussian function, and a measure of the
correlation length is obtained by observing the e-folding (1/e) point of the
exponential function.

The next consideration was that of establishing an acoustic
measurement geometry. Recall that the acoustic source is restricted to

near-normal incidence so that there will be a minimum shadowing of the

surface. Shadowing studies 32 were conducted on the first three rough

surfaces and estimates of the shadowing functions obtained. A choice of fJ

8;>50° such that the shadowing function is unity, will assure that oS
.9

shadowing is insignificant. Figure 4 represents the experimental geometry N

and is referenced for the rest of the discussion. :

The wavelength of the incident acoustic pressure must also be
selected. A rough quide to this choice is the Rayleigh criterion'0 of

surface roughness. A surface is considered effectively smooth if

Crms/A0 or 6,20 Iv.1

which should set an upper limit on A. Another guide to the choice is to

select a range on £ for sampling the main structure of the characteristic

function. If a Gaussian PDF is assumed, the use of the 3("“5 point of the

characteristic function yields a lower limit on\, or

3/Crms > (sinei + sine,)/)\ ) Iv.2

27
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(xp,yp,2p)

(xr,yr1 toyr2,zr)

90°- Bi < 40°-

Model 1 2 3
rms Height, Crms 0.231 cm 0.462 cm 0.924 cm »

Correlation length 6.48 cm 6.48 cm 6.48 cm
Wavelength, A 1.88 cm .88 cm 1.88 cm T
Transmit, (xp,yp.zp) (0,-50,275)  (0,-50,275)  (2.-70,293) SRS
Receive, (xryrtiyr2,zr) (0,27;73,275) (0,27:73,275)  (-31,-1121,273) e
Spot radius, a=b 16.5 cm 16.5 cm 16.5 cm

Number of spots 49 49 69 So
Transmit pulsewidth 450 ps 450 ps 600 ps 3
Repetition rate 25 /s 25 /s 30 /s Y
Receive pulsewidth 125 ps 125 ps 200 pis S

4

s

'
PP SO A ST N a)

FIGURE 4
EXPERIMENTAL GEOMETRY AND PARAMETERS
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The solutions are valid for directional sources only so a fairly small
beamwidth is necessary. This parameter is of particular interest since the
beamwidth along with the range will determine the illumination spot size
on the surface and the number of independent spots which canbe insonified.
The larger the number of spots, the larger will be the ensemble over which
the mean scattered pressure is calculated in Eq. 1.20. Also, the dimension
of the spots should be on the order of a correlation length so that at least
one correlation length of the surface is insonified.

The insonified area on the surface is considered to be determined by
the -3 dB beamwidth (8) contour. For a directional source beam pattern
which exhibits azimuthal symmetry, the spot is elliptical with semi-major

axis a and semi-minor axis b,

a= zp tan(B/Z)/sin"’ei V.3

and

b=2a sinei V.4

where zp is the range, being determined by the farfield distance of the
source, or zp>S/ for S, the acoustically active surface area of the source.

The orientation of the source and receiver should also be such that
the source does not interfere with the measurements of the field. So

restricting the measurements to the -10 dB contour will yield an elliptical

29
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spot of 2/(10/3) times that of the surface spot. This will also prevent

the characteristic function from being undefined as the image solution

approaches zero.
Also, a time T; is required to illuminate the surface within the -3 dB

contour. FromFig. 4 it is noted that

Ry = yp/sin{0;+8/2) IV.5

Ry = yp/sin(e;-8/2) IV.6
and

Ti = (Ry-RyVc V.7

where c is the sound speed in water (1500 m/sec). This time delay results

in a rise time that will allow a puised signal to be detected as a steady

state signal. There is also a time delay T4 between transmit at the source

and receive at the receiver, or

Td = (sz’R")/C . Iv.8

The experimental measurements were done in a sonar model tank
room, which meant that there would be multiple reflections due to the
walls, water surface, and tank bottom. This problem was overcome by

30
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operating the source in a pulsed mode rather than a continuous mode so
that a particular pulse rate and pulse width can be selected such that the
reflections will not interfere with the return pulse from the rough surface.
Thus, the timing involved in obtaining the scattered pressure measurements
is critical in that the proper delay of the observation interval should be
chosento capture the valid scattering.

It is impractical (if not impossible) to experimentally measure the
characteristic function for all possible surface wave numbers. However,
we can obtain a finite number of discrete values. According to the
sampling theorem he characteristic function must be sampled at least at
the Nyquist rate in even intervais of the variable £. Thus the receiver and
source positions or wavelengths must be selected such that & is

incremented in even intervals. This is done by maintaining the source as

stationary (@; fixed), radiating one frequency (A fixed), and moving the

receiver (er varied) such that Q is sampled in even increments. The

covariance function requires the sampling of the pressure field in even
increments of space, so a technique must be developed to allow sampling
both in space and surface wave number space, ¢.
B. Geometry and Experimental Equipment

The forward scattered data were collected in the sonar model tank
room at ARL:UT. The scattering surfaces were a plane pressure release
surface and three randomiy rough surfaces constructed specifically for
scattering studies. The complex pressure field was measured using a line

and cone transducer33 as the narrowbeam projector and an H-56 standard

31
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= DFT = GAUSSIAN

FIGURE 10
THE PROBABILITY DENSITY FUNCTION FOR THE SECOND ROUGH
SURFACE VIA THE DISCRETE FOURIER TRANSFORM TECHNIQUE
STANDARD DEVIATION OF THE GAUSSIAN CURVE 1S 237 cm
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FIGURE 9
THE PROBABILITY DENSITY FUNCTION FOR THE FIRST ROUGH
SURFACE VIA THE DISCRETE FOURIER TRANSFORM TECHNIQUE
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 219 cm
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rms Height (in cm)

Surface Actual DFT Elementary BLM  EPM

Bandwidth
] 231 219 214 na 327
2 462 237 214 825 412
3 924 47.0 224 881 140

Correlation Length (in cm)

Surface Actual Calculated Spatial Spot Separation

Lag Increment
l 6.48 7.03 25 3.18
2 6.48 3.32 95 318
3 6.48 5.18 95 2.29

TABLE!: Summary of results of the estimates of rms height and

correlation length
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the Gaussian curve, carefully noting the degree of goodness of fit between =

the estimates and analytical curve. For more realistic comparisons, S
however, the structure about the central maximum must also be fitted with
s '————J.‘ 5 - -
a Gaussian curve. "y
The accuracy of the rms height estimates is a problem due to the ilf,. \

finite extent of the observation window. The elementary bandwidth is the

inverse of the observation window and is directly related to the resolution
of the Fourier transform estimate. Thus, the length of the data
observation window will affect each of the three techniques and resolution
will improve as the observation window is increased. Also, greater
resolution is achieved with EPM than with BLM, and better resolution with
BLM than DFT. All three methods are somewhat sensitive to changes in the
rms height when the observation window is the same, as seen in
comparisons of the PDF estimates of surfaces 1 and 2. These results are
summarized in Table I, the values representing the estimated rms heights
obtained from Gaussian curves fitted to the PDF estimates of the three
techniques.
1. DFT Technique

Figures 9, 10, and 11 represent the discrete Fourier transform
technique applied to the characteristic functions of surfaces |, 2, and 3,
respectively. These resuits will be the benchmark by which the other two
techniques are compared for resolution. For surfaces | and 2, the
elementary bandwidth of the surface heights is 214 cm when the observed

data record is used by itself. However, this resolution of heights can be

42
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least means square solution for the {cj} in Eq. 1.S. The Fourier spectrum . @

is then computed with application of Eq. Mli3, and as in the
Bojarsky-Lewis method, extrapolation or interpolation of the
characteristic function is possible.

The correlation function computation proceeds with the FFTs of the
scattered pressure fields from each of the spots (Eq. Ill.17).  Since the
correlation function estimate is valid for zero-mean stochastic
processes,3' the mean value of the pressure must be zero before
proceeding. The auto-power and cross-power spectra of the pressure
fields corresponding with spots separated a given uistance are then
computed with Eq. 1l.IS, the ensemble average being the average over the
ensemble of spot pairs. The normalized correlation function (Eq. 11.22) for
each possible spot separation is computed via the inverse FFT and with
knowledge of the zero-lag values of the auto-power spectra (Egs. .20 and
1.21).  The peak value of the correlation is then plotted versus the spot
separation of the spots.

B. PDF Estimates

This section presents the numerical solutions resulting from the
application of the three PDF estimation techniques upon the experimental
data. Theresults are presented for each of the three model rough surfaces.
The general structure of the PDFs is bounded and Gaussian in shape.
Therefore, a Gaussian function is fit to the PDF estimates to minimize the
mean squared error between the Gaussian and the estimate (a least mean

square fit). The rms height value is taken to be the standard deviation of

41
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the fast Fourier transform (FFT) algorithm. 27

For the application of the Bojarsky-Lewis method, the proiate

angular wave functions must be calculated for use in EQ. lll6. These

functions are calculated with knowledge of £, and {4 and the algorithm

of Reference 36. The value used for ‘Em is the average value of the surface

wave number over the range of sampling of the characteristic function, and

the value used for {,,, is anestimate of the bound on the surface heights.

This value is assumed to be three times the actual rms surface height of
the model surface. Recalling the truncated summation of Eq. N6, one
notes the inner product between the prolate angular wave functions and the
estimate of the PDF, v(f) of £q. lll.7. The estimate of v is computed with
the FFT of EqQ. IS as in the discrete Fourier transform technique above
(however, no optimal window is applied). The inner product is then
calculated as a numerical integral. Due to the continuous nature of the
estimate of Eq. ll1.6, any interpolated or extrapolated value for the PDF is
possible, the only limitation being the truncation of the summation.

As in the Bojarsky-Lewis method, the extended Prony method is a
multiple step process. The sampled characteristic function forms the data
vectors of Eq. B.Il for calculation of the data matrix of Eq. B.17, thus
requiring knowledge of the value for q. The eigenvalue decomposition of
the matrix is computed and the weakest eigenvector (corresponding to the

smallest eigenvalue) is the vector of Eq. B.18. The polynomial of Eq. IILIS

is then rooted to find the values for the {zj }, which are then used to find a

40
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; pressure corresponds to the -3 dB beamwidth of the image solution. The e

scattering from surface 3 is observed over the -10 dB beamwidth of the

image solution. This data observation length determines the resolution of

i the PDF estimates, as will be seen.
The plots were digitized so that data points could be interpolated -
for sampling the pressure in even increments of both surface wave number \‘
| space (£) and Cartesian coordinate space (r). A “cubic spline” technique l_
: (fitting a cubic equation to data points) was used for interpolation of the L
digitized amplitude and a linear interpolation method was used for the
' digitized phase.
The uniform sampling in surface wave number space allows the
§ calculation of the PDF and the sampling in coordinate space allows the
~|. Calculation of the correlation function. Thus, following interpolation,
_ solutions to the inverse problem can be sought. For the calculation of the
é PDF, the characteristic function must be computed using Eq. lill.  The
numerator is the mean scattered pressure and is calculated with the _«_‘.j..:.i:;,
ensembie average of the pressure field over the independently insonified
; spots. The image solution is the pressure field for the reflection from the e
' planar surface. The inverse Fourier transform of the characteristic
: function must now be estimated with one of the three techniques of “\
i Chapter I S
| Before the application of the discrete Fourier transform, an optimal -l:tf:-zl
window, the Kaiser-Bessel window, 28 jg applied to the characteristic \i
I function. The discrete Fourier transform of £q. L5 is then applied using ~_gj
39 2
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E-vector decomposition

(Amph‘tude and phase sweop)

l Correlation
Surface characteristic Interpolate pressure in
to compute? spatial increments
POF |
interpolate pressure in Compute FT of pressure
increments of surface with egn. 11117
wavenumber
( )
L Compute auto- and
Compute characteristic cross-power spectra
function with equation Ii1.1 and spatial correlation

of egn. 1122 )

( Plot peak correlation h

of matrix of eqn. B.17 values versus spot
with eqn. B.11 Method? }———— \_ _ Separations
and q known BLM
Fit results with
Compute prolate angular exponential curve
[ Weakest E-vector isj wavefunctions with
ean. B.18 knowledge of max.
s limit on thqu OFT
_ Computo eqn. 1117 Apply Kaiser-Bessel
Root polynomial with equation A.3 optimal data window
of Eqn. H.is and the FFT
Solve eqn. 1119 and _Compute numerical Compute eqn. IS
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and truncate summation
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FIGURE 8

FLOWCHART OF THE PROCESSING OF THE SCATTERED PRESSURE
DATA FOR INFERENCE OF THE PDF AND CORRELATION FUNCTION
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V. RESULTS

This chapter describes the analysis of the scattered pressure field
measurements using the processing techniques discussed in Chapter Ill. The
numerical results of the calculations for each of the model rough surfaces
are presented and compared with the actual statistical parameters of the
model surfaces. Suggestions are made for improving the accuracy of the
results where appropriate.

A. Data Processing

The implementation of the signal processing techniques in Chapter Ili
is straightforward, in that the equations necessary for the processing are
all present in the text. Figure 8 is a flowchart of these processing
techniques, which were programmed in FORTRAN for use on a CYBER 171
digital computer available at ARL:UT. Although the actual coding is not
presented here, archived copies of the programs along with documentation
for usage are available upon request.

The complex pressure field measurements are represented with the
amplitude and phase sweeps obtained from the receiving hydrophone (the
output of the voltmeter and phasemeter 5°). The scattered pressure field
from both the planar surface and the model surface are necessary to

compute the PDF, the scattering from the plane surface being used as the

image solution. For surfaces | and 2, the observation interval of the
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FIGURE 7
A SAMPLE PHASE PLOT OF THE OUTPUT OF THE PHASEMETER versus THE
SPATIAL POSITION OF THE HYDROPHONE

THE SAMPLING INCREMENT IS UNIFORM IN CARTESIAN COORDINATE SPACE
THIS REPRESENTS THE PHASE OF THE PRESSURE FIELD OF THE SCATTERING
FROM ONE INSONIFIED SURFACE SPOT ON SURFACE THREE
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FIGURE 6
A SAMPLE AMPLITUDE PLOT OF THE OUTPUT OF THE VOLTMETER versus THE
SPATIAL POSITION OF THE HYDROPHONE

[] THE SAMPLING INCREMENT IS UNIFORM IN CARTESIAN COORDINATE SPACE
[_. THIS REPRESENTS THE AMPLITUDE OF THE PRESSURE FIELD OF THE SCATTERING
o FROM ONE INSONIFIED SURFACE SPOT ON SURFACE THREE
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from the receiver were amplified and filtered for analysis of phase and

amplitude using a pulse phasemeter34 and voltmeter. The amplitude and

phase were recorded using chart recorders in the sweep mode, with the J
sweep synchronized with the scanning of the field. Figure S is a block -

diagram of the equipment used for data acquisition. The continuous
amplitude and phase plots resuiting from the above experiments were then

digitized for data storage and subsequent processing, examples of which

are shown in Figs. 6 and 7. Figure 6 is an amplitude plot of the scattered
pressure from one surface spot insonified on surface 3. Figure 7 is the

phase plot corresponding to the amplitude plot of Fig. 6.

33

.................
..................................




hydrophone as the omnidirectional receiver. The projector remained fixed .
at a given angle of incidence upon the surface and the receiver was moved
to form an array of pressure measurements. The pressure field was
scanned for each insonified area on the model surface to form an ensembie
of pressure fields. The projector and receiver coordinates were selected
so that shadowing was minimized. When a spot size on the order of a
correlation length was insonified neither the projector nor receiver
interfered with the other (see Fig. 4).

Due to the finite size of the water tank, a pulsed cw signal was
transmitted at a frequency of 80 kHz. The pulse was rectangular with a
fixed width and repetition rate. The projector had a -3 dB beamwidth
covering a spot of radius 16.5 cm on the surface and an acoustic
wavelength of .88 cm.

The mode! surface was located in the farfield of the projector at x

near-normal incidence producing a -3 dB insonification spot size i

approximating a circle. A number of spots were insonified leaving an area

T e,
' ‘

the size of one spot radius uninsonified at the edge of the surface. The

L9 total area insonified was more than half the surface so that the results _q
E from the processing could be compared with the physical characteristics of -
L‘ Figs. 2 and 3. -
o The receiver’'s active acoustic size was approximately one ___'
wavelength in dimension. The receiver was moved by a motorized column 3
in @ direction parallel with the model surface. Only the steady state

portion of the scattered pulse was sampled for processing. The outputs - !
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FIGURE 11
THE PROBABILITY DENSITY FUNCTION FOR THE THIRD ROUGH
SURFACE VIA THE DISCRETE FOURIER TRANSFORM TECHNIQUE
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 47.0 cm
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improved by assuming the characteristic function is zero outside the
observation window and computing the FFT with the extended data record
thus improving the elementary bandwidth. Although this is cheating, the
resolution of the estimate is not improved because of the leakage due to
the finite length of the non-zerodata. The only improvement is in the
view of the finer structure of the PDF.

However, an improvement in the resolution can be seen in the PDF
estimate of surface 3 for which the elementary bandwidth is 22 cm. The
closest estimate of the rms height (from the DFT) is represented with the
Gaussian curve fit of Fig. 9 and is 47.0 cm compared to the true rms height
of 0.924 cm. It is obvious that high resolution techniques are necessary
for better estimates of the rms height.

2. BLM Technique

Figures 12, 13, and 14 reflect the application of the Bojarsky-Lewis
method to the characteristic functions of surfaces |, 2, and 3. It should be
noted that the PDF estimates of Figs. 12 and 13 no longer fit a Gaussian
shape due to the appearance of secondary structure. The rms estimates
with the least mean square Gaussian fit are therefore deceptive, since it is
the central structure of the PDF which should be observed. For a Gaussian
curve fit to the central portion, rms height estimates of 7.4 and 82.5 cm
are obtained for surfaces 1 and 2. Although the Bojarsky-Lewis method
makes use of the discrete Fourier transform, an improvement in resolution
is evident, especially in the PDF for surface 3. The rms height for this

surface is 8.81 cm, a definite improvement in the estimate. However, it

47
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FIGURE 12
THE PROBABILITY DENSITY FUNCTION FOR THE FIRST ROUGH
SURFACE VIA THE BOJARSKY-LEWIS METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 224 cm
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FIGURE 13
THE PROBABILITY DENSITY FUNCTION FOR THE SECOND ROUGH
SURFACE VIA THE BOJARSKY-LEWIS METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 208 cm
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FIGURE 14
THE PROBABILITY DENSITY FUNCTION FOR THE THIRD ROUGH
SURFACE VIA THE BOJARSKY-LEWIS METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE 1S 8.81 cm
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still does not compare with the true value of 0.924 cm. So it is necessary 'y
to use a higher resolution technique.
3. EPM Technique
Figures 15, 16, and 17 show the extended Prony technique applied to

the characteristic functions of surfaces 1, 2, and 3. When applied to

surfaces 1 and 2, it is noted that the least mean square Gaussian curve does

not fit well. When a Gaussian curve is fit to the central portion of the PDF ;.-_-.f.!:;
visually, estimates of 32.7 and 41.2 cm are obtained for surfaces | and 2.
As is expected with the longest data window, the best rms height estimate .,_“,4
of 3.2 cm is obtained for the third surface. Fitting the best Gaussian curve ”’:"ﬁ

to the central portion yields an estimate of 1.4 cm. The steps necessary
for further improvement of the estimates are obvious when comparing
surfaces | and 2 resuits to surface 3 resuits. The extension of the length
of the data record improves the resolution as expected. Therefore, if the

sampling of the characteristic function is extended past the -10 dB points
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on the image solution, a further improvement in the estimates of the PDF

- '
LI
.

should result. The only other alternative is to use a higher resolution

technique for estimation of the PDF.

C. Correlation Estimates

p

L

o The surface correlation functions were constructed from the
normalized spatial correlations of the pressure field of seven different L}
insonification area separations. An example of these spatial correlations .

for surface 3 is presented in Appendix C. The surface correlation functions ,
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FIGURE 15
THE PROBABILITY DENSITY FUNCTION FOR THE FIRST ROUGH
SURFACE VIA THE EXTENDED PRONY METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 62.4 cm
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FIGURE 16

300

THE PROBABILITY DENSITY FUNCTION FOR THE SECOND ROUGH

SURFACE VIA THE EXTENDED PRONY METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE 1S 215 cm
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FIGURE 17
THE PROBABILITY DENSITY FUNCTION FOR THE THIRD ROUGH
SURFACE VIA THE EXTENDED PRONY METHOD
STANDARD DEVIATION OF THE GAUSSIAN CURVE IS 3.17 cm
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L
of Figs. 18, 19, and 20 are monotonically decreasing, resembling h_,;ﬁ_—gﬂ
exponrential functions. Thus an exponential least squares fit between the '
data and the analytical function is used to obtain the best fitting function.

The correlation lengths calculated represent the e-folding value of the '
exponential curve. The correlation function fit to surface | is reasonably \*
close and yields a correlation length of 7 cm. The least mean square fit for .,“vj
surface 2 does not follow the structure very well, and if an exponential is "1
fit visually a correlation length of 5.5 cm is obtained. The correlation
length for surface 3 of 5.2 cm is also reasonable. _______ﬁ

The correlation length estimates seem to agree with the physical
measurements very well. Many factors have contributed to this agreement.
The pressure field is neither oversampled nor undersampled, but sampled
sufficiently to yield results unadulterated by the finite extent of the data.
Also, the spatial correlations are computed for spots which are

incrementally separated a fraction of a correlation length. The variation

which does exist is believed to be actually due to the variation cf the

correlation along different orientations (as in Fig. 3) on the surface; also,
the sampling of the pressure field in one dimension allows calculation of ] '
the correlation along one axis of the surface. '

The results are summarized in Table |. The correlation estimates for

surfaces 1, 2, and 3 follow very closely with the actual physical " o
measurements of the correlation lengths. 1
L
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FIGURE 18
CORRELATION FUNCTION FOR THE FIRST ROUGH SURFACE VIA
THE POWER SPECTRUM OF THE SCATTERED PRESSURE FIELD
THE E-FOLDING VALUE OF THE EXPONENTIAL CURVE 1S 7.03 cm
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FIGURE 19

CORRELATION FUNCTION FOR THE SECOND ROUGH SURFACE VIA
THE POWER SPECTRUM OF THE SCATTERED PRESSURE FIELD
THE E-FOLDING VALUE OF THE EXPONENTIAL CURVE IS 3.32 cm
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FIGURE 20
CORRELATION FUNCTION FOR THE THIRD ROUGH SURFACE
VIA THE POWER SPECTRUM OF THE SCATTERED PRESSURE FIELD
THE E-FOLDING VALUE OF THE EXPONENTIAL CURVE IS5.18 cm
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V1. CONCLUSIONS

Several techniques have been outlined which have yielded predictions
of the probability density function of surface heights and correlation

function. The estimates of these statistical characteristics can be

obtained directly from measurements of the scattered pressure field from

the rough surfaces. Thus the inverse problem has been investigated.

The correlation function estimates agree very well with the J
measured correlation functions. This is due to two factors: (1) the !*
insonification spots are large compared to the dimensions of the
correlation length and (2) the pressure field spot separation and spatial .4

sampling increment are both a fraction of a correlation length in

dimension. Therefore, a portion of the surface representative of the

i

surface correlation function has been insonified; and the correlation 1
function estimate has been observed within the resolution bounds \-11
necessary to determing correlation length. Thus Clay and Medwin’s j
correlation theory was verified, this time with stationary randomly rough *“J
surfaces. 3

The probability density estimates, although bounded, were not as 1
accurate as the correlation estimates. The estimated rms height values *ji

were 3ll exaggerated with the exception of one estimate. From the

analysis it is obvious that the experimental constraints have limited the

® v .""
W
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X B.21

1]
x

where

=z B.22

X=lcic. cgl' . B.23
and

w={Q0). M- 1T . B.24

The form of ¢ is a Vandermonde matrix for which a least squares solution

is

x=[eHe1 ' eHw B.25
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for H, the complex conjugate transpose. NW.

Combining Eqs. B.13 and B.17 resuits in

- H
ejn =% ¥ (ng"an)Tg Th B.19 '~:::
N

g=1 h=l -

such that 6 will have one eigenvector Eq*l which is orthogonal to the q

mode vectors, or
e Eqﬂ =0 B.20

for an eigenvalue of zero.
The procedure for determination of q is to fill the matrix © to

dimension Q by Q and to calculate the eigenvectors and eigenvalues. If L

eigenvalues are equal to zero(or equal to mo? in the case of data with zero
mean noise and variance o), then q=Q-L. The matrix could be recomputed
to order q+1 by q+! and the eigenvectors and eigenvalues regenerated. From
Eqgs. B.1I6 and B.20 it is noted that the eigenvector corresponding to a zero

eigenvalue is the vector with the coefficients of the difference equation of

Eq. B.IS. Thereforenot only is q achieved but also the [aj ). ;‘_::':::.?
The polynomial equation of B.7 is rooted to find the {zj} and Eq. B.2 4
reduces to a set of linear equations which canbe written in matrix form, ::i:
72 ]
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vector Y}, starting at the jth £ step. Recalling Eq. B.4, the mode vectors

canbe represented with
Th=l12. 2" B.14

for which there are q vectors.
Now, seeking a solution for the difference equation from Eq. B.10,

q
S 2 Q1)) =0, 8=q, .. M1 . B.IS

j=0
A pseudo-inverse solution is achieved for which Eq. B.1IS takes onthe form
8A=0 , B.16

where © is a q+! by q*! Hermitian matrix such that

-pn.H

and

A=[ap .. aq]T B.18
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rooted to obtain the {zj}. Subsequently, the {cj} can be determined by

solving the equations of B.2 exactly or by least squares. But a successful
application of the EP method depends upon knowledge of the value for q.
Many methods have been outlined for the determination of q and the
eigenanalysis method outlined by Van Biaricum and Mittra 40 js relatively

easy to implement.

We begin with the Dj data vectors

Dj =1 9(a-)) Qq-j*) ... Aq-jom) )T B.11
for m+M-q-1 and T the transpose. These canalso be written

q
Dj = Z ¢ explsp(q-DAL] expls,2AL], £=0, .. m B.12

h=|
or, more simply,

q
Dj = z Chj‘Yh , B.13

h=1

where Chj=chcxp[sh(q-j)A£] represents the coefficient for the hth mode
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such that a5 = -1 and

(z-z)(z-2,)... (z-zq) =0 . B.8

A procedure for calculation of the {a]-} is now outlined. The first
equation in B.2 (2=0) is multiplied by ag the second by ag_;, ... and the
(g*)th by ag=-1 and the sum of the equations is computed. Since each Zj

satisfies Eq. B.8 the result is
AqQ - 3Q(g-1) - ... - an(O) =0 . B.9

A set of M-q linear equations are thus obtained by using this procedure on
the remaining equations of B.2. The resulting equation takes onthe form of

a familiar set of linear prediction equations,

q
Qr) = 3 3 Q- . =q .., M1 B.10

j=

which can be solved exactly for the {a,-}, if M=2q, or approximately by a

least squares estimation.

After determination of the {aj}. the polynomial equation of B.7 is
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where the o is a damping factor. If we also assume that the {cj} are also

complex amplitudes,
Cj = Aj GXDUQ,'] . B.S5
then the FT of EQ. B.2 is

q
oi®)= 3 g zuj/[«jh (ZTT(C‘Cj)}zl . B.6
F

If the {zj} are known, then Eq. B.2 represents a set of M linear

equations in q unknowns to be solved for the G- For M=q, Eq. B.2 can be

solved exactly as Prong39 had originally intended, and for M<q a linear
least squares estimation would obtain the solution, i.e., the EP method.
Otherwise the determination of (zj} with known {cj} leads to the solution
of a set of nonlinear equations.

Consider the {zj) to be the roots of the polynomial equation

q
2 aj Z(Q'j) =0 B.7
0
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. APPENDIX 8
' DERIVATION OF THE EXTENDED PRONY METHOD

The Prony method consists of expanding the data set known at evenly

B AN

sampled subintervals with a basis set of complex exponentials, or

| MO AR

q
AE) = 2 cj expls;E] B.1

il

or, for discrete values of £=0A¢,

q
QMRE) = 3 Cj [Zj]l ,2=0,.M1 , B.2
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o which looks similar to the DFT expansion. However, unlike the DFT the {sj} A
.S e
‘ RESAL RS
! are complex in general and non-harmonically related, - B

'-(rl,rl ' 41

- Sj = o<j + iZTfC] B.3 TR

Zj = expls jACl ’ B8.4 ;:\:3:
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where the R“’Oj are the prolate radial wave functions of the first kind. So

Eq. A.13 becomes

0= T <), M2ty Ulmay)?
j=0
(25N 0527t may: &/emax)/2 - Al7

But, from a practical viewpoint, the sum canonly be evaluated to a limit

J
6= $ WD), S Mty Ul 2
0
x(21) SP0;(2MEmtmax: t/lmax) - A.18
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such that the jth Fourier coefficient of the solution is
Cw(@) . mj> =@, M>/N A.12

Therefore, a solution for w(t) is

(> ]

oX)= 2 1<vD). 0 j>/mj1 n j(() Al3
0

h T .

A T T

o s 1;1' PARREN

i " T . .

KR S

for ~Lax <C<*Cmax and the series is convergent in the mean square sense.
The i jare related to the prolate angular wave functions of the first

kind, 5™ q j» through

‘ﬂj(() - '/)‘_J smOj(zm.\mCmax- t/ (max)/ llj ' Ald

where

¥y = 127250 A.I5

Aj = 4 &m Cax (R 0270 &Ly, NP A16
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+Imax
{a,b)>= [ alt)b(t) dt . A8

-(max

Although not explicitly indicated, the ¢,~ and 7‘j also depend upon the

product 21t may-

Slepian and Pollack® describe a set of functions
{n; (0} = {Jlle $; (@) A9

which are orthonormal in the space of square integrable functions over the

(L range. Multiplying both sides of Eq. A4 by 7 j and integrating over

“Umax 1O *Cmay gives

+{max

VMD) . j(()> =< w(x) sinc(C-x) dx . M j(t) > . A0
-(max

The symmetric nature of the kernel and £q. A.S allows Eq. A.10 to be

rewritten as

VL), @) = Aje(®) . m j(C)> AN
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Cmax ’

+{max
v() = J w(x) sinc({-x) dx . A4
-(max

The kernel of this integral equation therefore has a countably infinite set

of eigenfunctions

$;@r.j=01 .. AS

corresponding to positive eigenvalues

Ao A >A2>.. >0 A6

such that the set {¢j(()} is complete in the space of square integrable

functions over the (L range. Alsothe ¢ jare orthogonal over the {L range,

<¢j.¢n)=0,jzl
=1 j=1 A7

forj, 2=0,1,.., and where the inner product is defined with
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APPENDIX A
DERIVATION OF THE BOJARSKY-LEWIS METHOD

The Bojarsky-Lewis method is developed for &L functions. Since the

T——
Lo

data are finite in extent, it is assumed that a rectangular window U(E) is

chosensuch that

UQ@) =1 . &min S & S&max

= 0 , otherwise Al

and, when applied to the characteristic function, yields

V() =u@) Q) . A.2

Assuming that Q is known over the &L range and that V(£) has an inverse FT,

Eq. A.2 when inverse transformed and the convolution theorum invoked

e

rrr.?' RN AR AR il
- [EREE T TR T I 1 .. -
o SRR et IR

. [
. . P N
, siatale
B
ATt

becomes

v(C) = l w(x) sinc(-x) dx A3

=00

forv, the inverse FT of V.

’.

For a real surface { is bounded and o in EqQ. A.3 is replaced with

0 ﬂfvv""ff.
1

|
R
7
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reflection). Also Stanton3? has successfully implemented a pressure
amplitude analysis in an inverse type problem. Powell37 used this method
in an analysis of the author’s scattered pressure data.

In general, the objectives of the inverse problem in estimating the
statistical parameters of a randomly rough scattering surface were

accomplished with some limited success.
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resolution. Perhaps the most critical constraint is the imposition of a
very small beamwidth source to insonify small spots onthe surfaces. This
results in a scattered pressure field which is very limited in angular extent
resulting in a very small observation window. With the additional
constraint of a single frequency of incident pressure, this limits the
observation window of the wave number space of the characteristic
function of surface heights. An additional limitation to the resolution is
introduced by the choice of near-normal incidence to minimize shadowing
and neglecting surface slopes and multiple scattering.

Various improvements can be made to increase the resolution of the
experiment and as a resuit the accuracy of the PDF estimates. The first
improvement is of course to use the current acoustic model and simply
increase the observation window. But this would mean using a larger
beamwidth source, thus requiring a larger mode! rough surface so that a
representative number of spots could be insonified. Secondly, higher
resolution spectrum analysis techniques could be used, for example,
maximum likelihood, maximum entropy, etc.

A third alternative is to use a different acoustic scattering model.
This could be done by modifying the present theory to account for
broadband incident energy, shadowing, siopes, or multiple scattering. The
result, though, would be most certainly non-trivial. Clay and Medwin 9
were successful in applying the present theory for finding the PDF when
they used various frequencies of incident pressure to sample the surface

wave number space (instead of varying the angles of incidence and
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APPENDIX C
SPATIAL CORRELATION FUNCTION

v

> - vy
5 et et te e
4 et T e

The spatial correlation function of the pressure field contains
information which will allow the inference of the correlation function of
the scattering surface. In order to study the form of the spatial
correlation function suggested by Clay and Medwin, the spatial pressure

field was recorded for the insonification of different areas on the model

rough surface. The pressure field was then spatially correlated by

. RYLIRIEE I
e @ e e ot
g R e

computing the correlation between the pressure fields of spots which have
been separated a given distance (for all possible combinations of spots
ﬁ being separated that distance). Figure C-1 represents the total number of
spots which were insonified onsurface 3. All possible combinations of the

various spot separations are also listed by the number of separated spot

pairs. Figures C-2 through C-8 represent the spatial correlations of the

£ B AR

pressure fields from each spot separation. It should be noted that for
greater separations the maximum of the correlation function decreases and

is shifted from the origin an amount proportional to the spot separation. ..,,,
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SPATIAL
CORRELATION

-30.30 0.00 30.30
SPATIAL LAG (cm)

FIGURE C-2
SPATIAL CORRELATION FUNL7TION OF THE SCATTERED PRESSURE
FIELD FOR SPOTS SEPARATED BY 0 cm
THE MAXIMUM CORRELATION VALUE IS 1 AT ASPATIAL LAGOF O cm
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SPATIAL
CORRELATION
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FIGURE C-3
SPATIAL CORRELATION OF THE SCATTERED PRESSURE
FIELD FOR SPOTS SEPARATED BY 2.29 cm
THE MAXIMUM CORRELATION VALUE 1S 0.695 AT A SPATIAL LAG OF 3.64 cm
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SPATIAL
CORRELATION
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FIGURE C-4
SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE
FIELD FOR SPOTS SEPARATED BY 4.58 cm
THE MAXIMUM CORRELATION VALUE 1S 0.604 AT A SPATIAL LAG OF 6.06 cm
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SPATIAL
CORRELATION
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FIGURE C-5
SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE
FIELD FOR SPOTS SEPARATED BY 6.87 cm
THE MAXIMUM CORRELATION VALUE IS 0.406 AT A SPATIAL LAG OF 9.7 ecm
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FIGURE C-6

SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE
FIELD FOR SPOTS SEPARATED BY 9.16 cm
THE MAXIMUM CORRELATION VALUE 1S 0.324 AT A SPATIAL LAG OF 145 cm
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FIGURE C-7
SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE
FIELD FOR SPOTS SEPARATED BY 11.5¢cm
THE MAXIMUM CORRELATION VALUE 1S 0.214 AT A SPATIAL LAG OF 18.2¢cm
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FIGURE C-8
SPATIAL CORRELATION FUNCTION OF THE SCATTERED PRESSURE
FIELD FOR SPOTS SEPARATED BY 13.7 cm
THE MAXIMUM CORRELATION VALUE 1S 0.155 AT A SPATIAL LAG OF 24.2cm
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