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Abstract 

This report describes the results from an analytical and numerical study 
concerning the effects of waves on the boundary layer of a surface-piercing body. 
The boundary-value problem associated with the boundary-layer development on a 
surface-piercing body is formulated in a more rigorous manner in which proper 
consideration is given both to the kinematic and dynamic boundary conditions and to 
the deformation of the potential-flow free surface within the boundary layer. 
Simplications that are appropriate for small amplitude waves are then 
investigated. To this end, the flow field in the neighborhood of the body-boundary- 
layer/free-surface juncture is divided into five regions and order-of-magnitude 
estimates for each region are provided. Of particular interest is the body/free- 
surface boundary layer in the region very close to the free surface in which the 
free-surface boundary conditions have a significant influence. In this region, it 
is shown that, for laminar flow, the parameter Ak/e, where Ak is the wave-steepness 
parameter and e = 6/L is the nondimensional boundary-layer thickness, is an 
important parameter for characterizing the flow. Different solution regimes are 
identified depending on the magnitude of Ak/e. in particular, for Ak/e sufficiently 
large such that the free-surface boundary conditions have a significant influence a 
consistent formulation requires the solution of the partially-parabolic Navier- 
Stokes equations. For turbulent flow, these conclusions cannot be reached with the 
same degree of certainty due to the present uncertainties in turbulence modeling, 
especially when a free surface is present. Numerical results are provided for the 
idealized    geometry    of    a    combination    Stokes-wave/flat-plate. For    this    initial 
investigation, the usual thin-boundary-layer equations were solved using an existing 
three-dimensional finite-difference boundary-layer computer program that was 
modified     to    perform     the    present    calculations. The    primary    purpose    of     the 
calculations is to demonstrate the influence of waves on boundary-layer development, 
including the effects of the free-surface boundary conditions, and to explore the 
limitations of the thin-boundary-layer equations prior to embarking on a more 
complete     solution. For    laminar     flow,     calculations    were    made     using    both     an 
approximate and the small-amplitude-wave free-surface boundary conditions. The 
approximate boundary condition used is a symmetry (i.e. zero-gradient) condition 
which corresponds to a small-cross-flow solution along the mean free surface and a 
fully three-dimensional solution below. The influence of the free-surface boundary 
conditions is shown to be signficant. For turbulent flow, calculations were made 
using the symmetry boundary condition only. Lastly, the implications of the present 
investigation for calculating ship boundary layers for nonzero Froude numbers are 
discussed. 
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EFFECTS OF WAVES ON THE BOUNDARY LAYER OF A SURFACE-PIERCING BODY 

I.  BACKGROUND 

The boundary-layer development upon a body that intersects a free-surface 

can be greatly influenced by the presence of free-surface gravity waves. In 

particular, waves of sufficient steepness induce a region of flow separation 

near the free-surface, which is otherwise absent. The occurrence of separa- 

tion significantly modifies both the viscous and the wave-resistance compo- 

nents, making this a problem of considerable engineering importance. In spite 

of this, very little detailed experimental or rigorous theoretical work has 

been done on this problem. 

Most of the experimental data concerning the influence of free-surface 

waves on body boundary-layer development are for ship and offshore-structure 

resistance. Wu and Landweber (1963) and others have shown that, for ship 

models, the viscous resistance depends on the Froude number. Present methods 

for predicting forces on offshore structures (for example, Salvesen et al. 

1982) require drag-coefficient data for surface-piercing circular cylinders 

oscillating in ambient wave fields. A compilation of such data (Sarpkaya and 

Isaacson 1981) shows large effects due to the presence of a wavy free-surface 

and wave-induced separation. 

Surface shear-stress and pressure-distribution measurements have been 

made in towing tanks for various ship forms by Steele (1967) , Steele and 

Pearce (1968) , Tzou (1968) and Huang and von Kerczek (1972) . The results from 

these experiments show considerable influence of Froude number on the shear 

stress and pressure distributions along waterlines close to the free-surface. 

More recent towing-tank experiments (again for various ship forms) have 

included some mean-velocity-profile measurements within the boundary layer 

(Doi 1980, Nagamatsu 1981, ITTC 1984). Most of the data are limited to the 

stern and near-wake region. Also, the Froude-number range is limited. Again, 

the results indicate effects due to the presence of the free surface and a 

dependence on Froude number. Very recently, mean-velocity and turbulence 

measurements were made in the stern and near-wake region of a double-tanker 



model, in a circulating water channel, by Hotta and Hatano (1983) . The data 

were obtained for one value of Froude number. The measurements indicate a 

local damping of the normal component of turbulence near the free-surface. 

This effect has also been observed in open-channel flows (Rodi 1980). 

Only one investigation has been concerned specifically with |wave-induced 

separation (Chow 1967) . Chow demonstrated wave-induced separation experimen- 

tally with two-dimensional struts mounted vertically and piercing the free 

surface in a hydraulic flume. The struts were designed for unseparated flow 

when no waves are present, that is, at large depths. For an airfoil-like 

strut. Chow observed regions of separated flow originating just beyond the 

wave trough and extending to the strut trailing edge (see figure 1) . The 

depth of the separated-flow region was on the order of the wave height. The 

length of the separated-flow region was shown to depend on Froude number. 

Chow also observed large secondary flow within the separated-flow region which 

he presumed was due to the curvature of the free-surface waves. He speculated 

that the flow separation was caused by the secondary flow. 

Very few theoretical investigations of boundary-layer development on 

surface-piercing bodies have been performed. Furthermore, all of these 

investigations have been of an approximate nature and none have properly 

accounted for the free-surface kinematic and dynamic boundary conditions or 

the local damping of turbulence near the free surface. Most of the calcu- 

lations that have been made utilize integral methods and assume small-cross- 

flow conditions (Lin and Hall 1966, Webster and Huang 1968, Gadd 1971, Adee 

1972 and 1975, Sachdeva and Preston 1975, Doi 1980, Hinatsu and Takeshi 

1985) . Shahshahan and Patel (1983) calculated the boundary-layer along the 

body/wave intersection for Chow's model (see figure 1) and the Wigley hull 

using the small-cross-flow differential equations. These methods do indicate 

significant free-surface effects on boundary-layer development, including 

wave-induced separation at certain Froude numbers. Separation is judged to 

occur when the streamwise skin friction is zero or the cross-flow becomes 

large. In some cases, qualitative agreement with experimental data has been 

shown (Doi 1980 and Shahshahan and Patel 1983). 



II.  PHYSICAL PROBLEM 

Consider the development of the boundary-layer upon a ship-like body, 

moving steadily at velocity U^ and intersecting the free-surface of an 

incompressible viscous fluid. This situation is depicted in figure 2. In 

distinction from the infinite fluid double-body problem, the present problem 

has special features due to the presence of the free surface and gravity waves 

(Patel et. al, 1983): 

* the external-flow pressure field is influenced by the body wave-making 

such that it is Froude-number dependent; 

* at the free surface, which is itself unknown and to be determined as 

part of the solution, there are two nonlinear boundary conditions, a kinematic 

one and a dynamic one, that the solution must satisfy; 

* the characteristics of the structure of turbulence is modified near a 

free surface; and 

* waves of sufficient steepness induce a region of flow separation near 

the free surface, which is otherwise absent. 

In order to elucidate the effects of these special features on the body- 

boundary-layer development it is necessary to examine the flow in the neigh- 

borhood of the body-boundary-layer/free-surface juncture in somewhat more 

detail. As shown in figure 3, the flow field can be divided into five 

regions: I, potential-flow region in which viscous effects are negligible; II, 

free-surface boundary-layer region at a sufficient distance from the body that 

it is not influenced by the body boundary layer; III, body-boundary-layer 

region at a sufficient depth that it is not influenced by the free-surface 

boundary conditions; IV, body/free-surface boundary layer in the region very 

close to the free surface in which the free-surface boundary conditions have a 

significant influence; V, meniscus boundary-layer region. 

In region III, the effects of the free surface are primarily transmitted 

through the external-flow pressure field and the flow-field order-of-magnitude 

estimates are well established. Over a large part of a ship-like body the 

thin-boundary-layer equations are applicable, and it is only in the stern 

region that it is necessary to solve the more complete partially-parabolic 



Reynolds equations (Patel 1982). The order-of-magnitude estimates for regions 

I and II are also well established; however, this is not the case for regions 

IV and V. 

In region IV, the effects of the free surface are due both to the influ- 

ences of the external-flow pressure field and the kinematical and dynamical 

requirements of the free-surface boundary conditions.  The kinematic boundary 

condition expresses the requirement that the free surface is a stream surface. 

The dynamic boundary condition expresses the requirement of continuity of the 

normal and tangential stresses across the free surface.   The free-surface 

boundary conditions influence both the mean and the turbulent velocity com- 

ponents.  The limited experimental data that are available indicate that, near 

a free surface, the normal component of turbulence is damped and the longi- 

tudinal and transverse components are increased.  The turbulence structure 

near a solid wall shows similar characteristics, but there the situation is 

complicated  by  the  influence of high  strain  rates due  to the no-slip 

condition.  The strain-rate magnitudes in regions IV and V are as yet not well 

established.  Note that region IV is kinematically similar to the flow in a 

streamwise corner for which it is known that two length scales are important 

and the thin-boundary-layer equations are not applicable. 

The precise physics in Region V is a complex matter involving surface 

tension. It is known that the shape of the meniscus depends upon the nature 

of the body surface finish and that it can have a very sharp angle of 

contact. According to Mei (1983) , this subject appears to be a poorly 

understood part of physical chemistry. 

III.  SCOPE 

The previous two discussions indicate both the complexity and present 

limited understanding of the effects of waves on the boundary layer of a 

surface-piercing body. In this report an effort is made to increase our 

understanding of the flow in regions III and IV (see figure 3) . 

First, the boundary-value problem associated with the boundary-layer 

development on a surface-piercing body is formulated in a more rigorous manner 



in which proper consideration is given both to the kinematic and dynamic 

boundary conditions and to the deformation of the potential-flow free surface 

within the boundary layer.  Simplifications that are appropriate for small- 

amplitude waves are then investigated.   This is consistent with the usual 

approximation for calculating the outer wave potential in which linearized 

small-amplitude wave theory is used.  Initially, in Sections IV and V the 

above analysis is performed for laminar flow so that definitive conclusions 

can be reached concerning the flow-field order-of-magnitude estimates for 

region IV.   It is shown that the parameter Ak/e, where Ak is the wave- 

steepness  parameter   and e = 6/L is   the   nondimensional   boundary-layer 

thickness, is an important parameter for characterizing the flow.  Different 

solution  regimes  are  identified  depending  on  the  magnitude  of Ak/e. In 

particular, for Ak/e  sufficiently large such that the free-surface boundary 

conditions have a significant influence, a consistent formulation requires the 

solutions of the partially-parabolic Navier-Stokes equations.  Thus region IV 

is, in fact, analogous to the flow in a streamwise corner. 

Next, in Section VI, laminar-flow numerical results are provided for the 

idealized geometry of a combination Stokes-wave/flat-plate. This geometry is 

considered optimum for the present investigation, since it is simple, yet the 

flow near the free-surface is fully three-dimensional. Far from the free- 

surface and for laminar flow, the solution is the well-known Blasius one. For 

this initial investigation, the usual thin-boundary-layer equations were 

solved using an existing three-dimensional finite-difference boundary-layer 

computer program that was modified to perform the present calculations. The 

primary purpose of the calculations is to demonstrate the influence of waves 

on boundary-layer development, including the effects of the free-surface 

boundary conditions, and to explore the limitations of the thin-boundary-layer 

equations prior to embarking on a more complete solution. Results are 

presented from calculations performed using both an approximate and the small- 

amplitude-wave free-surface boundary conditions. 

In Section VII, the necessary extensions for turbulent-flow analysis are 

considered. In this case, it is not possible to determine the order-of- 

magnitude estimates for region IV with the same degree of certainty. This is 

due to the present uncertainties in turbulence modelling, especially when a 



free surface is present. A brief discussion is included concerning this 

difficult topic. The influence of turbulence on the previous laminar-flow 

symmetry-condition results is then studied. For this purpose, a simple 

modification is made to a one-equation wall-turbulence model to account for 

the influence of the free surface. 

Lastly, in Section VII, a summary of the results from the present 

investigation is provided, and in Section VIII, the implications of the 

present investigation and the necessary extensions that are required for 

calculating ship boundary layers for nonzero Froude numbers are discussed. 

IV.  LAMINAR-FLOW PROBLEM FORMDLATION 

For ease of explication and since the numerical results to be presented 

are for the thin-boundary-layer equations, the governing differential 

equations presented are the usual thin-boundary-layer equations which are 

written in orthogonal curvilinear coordinates (Nash and Patel 1972) 

U  8U  V  3U  W  3U   , ,     19,,, 
 + — — + — — + (Kn.U - K^^W) W + — "3^ (P/p) h  8x  h  3y  h  9z 'is"- '31' 

V  8   1  9u 
" h  3y ^h  3y^ " ° 

2  ^   2  ^ 
(IV-1) 

1  9 
- ^ (P/p) = 0 

2 ^ 
(IV-2) 

U  9W  V  9W  W  8W 19,,, 
TT ^ + - ^ ^ - ^ + (K3^W - K^3U) U + ^ 3^ (P/P) 
1      2      3 ,      3  . 

v_ _9_ j^ 9W 
- h^ 9y (h^ 9y^ = ° (IV-3) 

1  9u   1  9v   1  9w ,   .. 
TT 1^ + IT ^ ^ TT ^ + (^21 ^ ^3i) " ^ (^13 ^ ^23^ ^ = °  ^'''-^^ 



where V =  (U, V, W)  and P are the velocity components and piezometric 

pressure, p is the fluid density and v is the fluid kinematic viscosity.  The 

h- are the metrical coefficients associated with the (x,y,z) coordinates and 

K.. = ——   Oh /3x ) is the curvature of the x- coordinate curve with x- = 
ID   h.h. ^  i'  : 1 -• 

constant^ "^ Consistent with thin-boundary-layer theory, the (x,y,z) coordinate 

system is constructed such that the parametric curves x = constant and z = 

constant form an orthogonal grid upon the body surface and the y-coordinate is 

normal to the body surface. Such a coordinate system is only truly orthogonal 

on the body surface itself; however, the deviation from orthogonality off the 

body surface is presumed of higher order.  There are a number of methods for 

constructing such a coordinate system.  The external flow is assumed to be 

known either from experiment or inviscid-flow theory.  It should be recognized 

that determination of this in itself may be a formidable task for an arbitrary 

three-dimensional body. 

In consideration of the above and for specified initial conditions and 

appropriate boundary conditions, the system of equations (IV-1) - (IV-4) can 

be solved for (U,V,W). It is assumed that the initial conditions are known. 

The appropriate boundary conditions for the present problem are now consi- 

dered. Referring to figure 4, which shows the projection of a surface x = 

constant onto a transverse plane (XQ = constant) , we have the following 

boundary conditions: 

1) on the surface of the body (y = 0); 

j U = V = W = 0 {IV-5) 
' \'\   -    ' .    '      - 

2) at the edge of the boundary layer (y = 5) ; 

■ [ U = Ug, W = Wg (IV-6) 

3) on the plane-of-symmetry; 

8U 
W = 0, ^- = 0 (IV-7) 

oz 



4)   on   the   free-surface   (z=n)    there  are   two boundary  conditions; 

' kinematic  boundary  condition:     V   •  n =   0 (IV-8) 
! 

J       ■ * 

1 dynamic boundary condition:  T..n. = T..n. {IV-9) 

-I 
where n = (n, , n,, n,) is the outward normal vector to the free surface 

and T.. and T.. are the fluid and external stress tensors, respectively, 

within the boundary layer, the free surface is deformed and does not coincide 

with the potential-flow free surface; consequently, within the boundary layer, 

just as is the case in the outer flow, the free surface must be determined as 

part of the solution. In general, the free surface within the boundary layer 

can be expressed by an equation of the form (see figure 5) 

' z = Ti(x,y) (IV-10) 

thus 

n = - n e^ - n e„ + e_ 
I —     X 1   y 2   3 

where 

_ i_ In      _ j^ in 
! '^'^ ~ \ ^^' ^^ ~ h  3y 

and (e , e , e ) are the unit vectors in the (x,y,z) directions. 

The kinematic free-surface boundary condition (IV-8) expresses the 

requirement that the free-surface be a stream surface. The dynamic boundary 

condition (IV-9) expresses the requirement of continuity of the normal and 

tangential stresses across the free surface (see figure 6) . The external 

stress is simply given by the difference between the ambient pressure p and 

the surface-tension pressure 

9e   9e 

thus 

! x*. =- (p^-p^) 6.. (IV-12) 

where T is the coefficient of surface tension, e  is the unit normal vector, 
ys  ^ n 

(e ,e ) are two unit tangent vectors and <S. . is the Kronecker-delta func- 
S   t 1"] 



tion.  For Cartesian coordinates, p  is simply given by 

PY = 

T{n  + n  ) 
XX y y o o o o 

2 2,3/2 
[1 + n + n  ] ' 

X y 
o o 

Stokes' law provides the fluid stress 

T  = -p6.. + 2ue.. 
i:    i:    13 

{IV-13) 

where U  is the fluid viscosity, p is the fluid pressure and e.. is the rate- 

of-strain tensor 

with 
1: 

a h/2 g/2 
h/2 b f/2 
g/2    f/2    c 

(IV-14) 

1  8U 
h  3x 12    13 

1 av 
b = T— 3- + WK„^ + UK-- h  oy 23    21 

1  9W 
h  3z 31    32 

1  3V 1  3W 
f = r~ T" - VK_^ + T~ T~ -  WK-3T h  3z 23   h  3y    32 

1_ 9W 
g = T— -5— - WK^T + T" IT - UK, , h, ox    31   h, oz    13 

1_ 3U 

1  3U 1  3V 
h^ 3y    12   h, 3x    21 

2     ^ 1 

(IV-15) 

By  means  of  the  previous  definitions,  the  free-surface  boundary 

conditions (IV-8) and {IV-9) can be expressed by 

-nu-nv + w=o 
x    y 

(IV-16) 

pn + P [-2an - hri + g] = (p - p ) n (IV-17) 
X        X    y        o   Y  X 



pn   + u [-hn   - 2bn   + f]  =  (p   - pj  n (iv-i8) 
y X y o Y       y 

! - P + M[-gn   - fn   + 2c]  = -   (p -p ) (iv-i9) 
I ^ X y o    T 
I . . . 

Conditions     (IV-16)     -     (IV-19)     are    to    be    applied    on    the    unknown    surface 

z  =   n{x,y).   Note   that   conditions    (IV-16)    -    (IV-19)    are   linear    in   the   free- 

surface    slopes   (n   ,n  ),       and     thus    two    of    the    conditions    can    be    used    to 
X     y 

eliminate   (n   ,   n  )   by  expressing   them   in  terms  of   the  pressure difference   (p - 
X       y 

p      +  p  )    ,     the    fluid    velocity    components    and     the    rates-of-strain. The 

remaining    two   conditions,    with   (n   ,   n  )   known,    can    then   be   used    to   provide 
^ X       y 

boundary     conditions      in     the     solution     of     the     momentum     equations. No 

approximations have been made in deriving conditions (IV-16) - (IV-19) and, as 

such, the formulated boundary-value problem constitutes a fully nonlinear 

free-surface problem. Presumably, conditions (IV-16) - (IV-19) are sufficient, 

in conjunction with the remainder of the boundary-value problem, to render a 

unique  solution,   including   the  free-surface   itself. 

V.      SMALL-AMPLITUDE-WAVE   SOLUTION 

Consideration is now given to appropriate simplifications of the free- 

surface boundary conditions that are consistent with small-amplitude waves. 

To this end, it is necessary to determine the order-of-magnitude estimates for 

region IV (see figure 3). This is accomplished by considering both the 

established order-of-magnitude estimates in the surrounding regions I-III and 

the requirements imposed by the free-surface boundary conditions. These 

estimates are then applied to the governing equations and different solution 

regimes  are   identified. 

In Region I (potential flow), consistent with small-amplitude wave 

theory,   the  flow-field  order-of-magnitude  estimates  are  as  follows: 

(V-1) 

U   =   U     +   u  ~  0(1) 
o 

e 
ij 

~ 0(Ak 

(u,V,W)   ~  0(Ak) Tl   ~ 0(Ak) 

Vn - 0(Ak) 

10 



where U is the body speed, A is the characteristic wave amplitude and k the 

characteristic wave number. The most important nondimensional parameter in 

this region is Ak, the wave steepness, and for small-amplitude wave theory to 

be valid, Ak << 1. 

Region II is the part of the free-surface boundary layer above region I 

and is due to the condition of zero stress on the free-surface in a viscous 

fluid (for example. Kinsman 1965 or Mei 1983). For laminar flow, the thick- 

ness of this boundary layer is 

/2  -1/2 
fs   k  w 

(V-2) 

where R  = C/vk is the wave Reynolds number and C U  is the wave celerity. 

6   is of the same order of magnitude as the body boundary layer 
f s 

1 .    -1/2 (V-3) 

U L 
where R = -^ is the body Reynolds number; since, for most circumstances, the 

b   V   „^ 
wave length X = — - L. However, the free-surface boundary layer is very weak 

^ 2 
and has a negligible influence (0(6, )) on the potential flow kinematics and 

dynamics.  Evidently, the zero-stress condition places a much less severe 

restriction on the flow field than the wall-boundary-layer no-slip condition, 

resulting in only minor adjustments to the potential-flow velocity field.  The 

flow-field order-of-magnitude estimates for region II are the same as for 

region I. 

Region III, is the body-boundary-layer region sufficiently deep below the 

free surface that it is not influenced by the free-surface boundary condi- 

tions.  Based on region II considerations, it is expected that the required 

depth is of 0(6 ).  At this depth the effects of the free surface are pri- 
b 

marily transmitted through the external-flow pressure field and the flow- 

field order-of-magnitude estimates are well established (Nash and Patel 1972) : 

(U,W) ~ 0(1) 

V ~ 0(E) 
9      -1 
^~ 0(e  ) 

(V-4) 

n 



where e = 6 /L is the most important nondimensional parameter for this region 
b 

and, for thin-boundary-layer theory to be valid, e << 1. 

Region IV is the body/free-surface boundary-layer overlap region. Near 

the free surface, the region III order-of-magnitude estimates (V-4) will be 

modified due to wave effects. The wave effects are characterized by the 

parameter Ak. Thus there are two important nondimensional parameters for 

region IV, e and Ak. In order for boundary-layer theory (thick or thin) to be 

valid, some of the above order-of-magnitude estimates (V-4) must be retained: 

U ~ 0(1) 

V ~ 0(e) 3y 

0(1) 

0(e ^) 

(V-5) 

For small-amplitude waves, it can be assumed that, within the boundary layer. 

n ~ 0(Ak) 

W ~ 0(Ak) 

(V-6) 

just as they are in the outer flow.   This assumption implies that the 

magnitude of the coordinate cuvatures K.|^3 and K3-|^ in region IV are >  0 (Ak) . 
3 

The order-of-magnitude of y is to be determined next.  This is accomplished 

by using equation (IV-19) to eliminate the pressure difference p - p^ + p  in 

equations (IV-17) and (IV-18) which yields 

2(c-a)n - hn + g = gn + fn n 
X    y        X    X y 

(V-7) 

hn + 2(c-b) n + f = gn n + fn 
X y      "^ X y    y 

12 



and taking orders-of-magnitude to obtain 

C 

V. >0(f) 

(V-81 

which imply that 

1^'   °(-) 
,Ak. 
' 2 
e 

(V-9) 

Here the equality in (V-9) can be assumed since this represents the most 

restrictive case. The region IV order-of-magnitude estimates are summarized 

in table 1. The above analysis indicates that the ratio Ak/e is an important 

parameter in characterizing the flow in region IV. In fact, as will now be 

discussed, different solution regimes can be identified according to the 

magnitude of Ak/e. 

■ t ■ ' ■  ■  . 

Table 1.  Body/Free-Surface Boundary Layer Order-of-Magnitude Estimates 

order-of-magnitude 

u 1 

V ■ £• 

w Ak 

8/9x 1 

a/9y -1 
e 

8/9z Ak/e^ 

n Ak 

\ 
Ak 

n 
y 

V 

Ak/e 
2 

e 
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For this purpose, it is assumed that the order of magnitude of Ak is 

given by 

Ak ~ 0(e ) (V-10) 

Using the results from table 1 along with (V-10) in the momentum equations 

(IV-1) and (IV-3) it can be seen that the z-derivative terms have the orders 

of magnitude 

W  3u    , 2n-2, 

3 

W_ 9w 

^3 

^~AkO(e 
2n-2 

) 

(V-11) 

(V-12) 

This shows that the z-derivative terms can be neglected for n > 1.5. There- 

fore, this regime is similar to the small-cross-flow approximation which has 

been used by some investigators. Note that in the limit as n-*-™ Ak = 0; that 

is, the free surface is flat and the flow is locally simply two-dimensional. 

For n < 1.5, the z-derivative terms cannot be neglected since they are of 

comparable order of magnitude to the other terms in the equations. Also, 

consideration of the order of magnitude of the z-diffusion terms that are 

neglected in the thin-boundary-layer equations shows that they are of the same 

order of magnitude as the terms in (V-11) and (V-12) for the x- and z-momentum 

equations, respectively. Therefore, for consistency, these terms cannot be 

neglected either. Furthermore, many of the terms neglected in the y-momentum 

equation (IV-2) are also of comparable order of magnitude and cannot be 

neglected. In fact, for n = 1 the order of magnitude estimates in region IV 

become, .    .     , 

(V-13) 

which are identical to those used by Patel (1982) in deriving the partially- 

parabolic Reynolds equations. Thus, it is seen that region IV is analogous to 

the flow in a streamwise corner as was indicated in Section II. 

U   ' -  0(1) 
3 

3x 
- 0(1) 

(V,W)   ' - 0(e) 
d       3 

hy'   3z^ - 0(e"^ 
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The free-surface boundary conditions (IV-16) - (IV-19) are to be applied 

on the unknown surface z = ri(x,y). However, using the same technique as that 

used in the outer flow, conditions (IV-16) - (IV-19) can be expanded in a 

Taylor Series about the known surface z = 0 and evaluated up to the desired 

order of approximation. To the lowest order of approximation conditions (IV- 

16) - (IV-19) are retained and simply evaluated on z = 0. Such a technique is 

restricted in the present application to 0(Ak/e) > 1 based on the previous 

order-of-magnitude analysis, since for 0(Ak/e) < 1 the Taylor series expan- 

sions are not convergent. Consequently, for 0(Ak/£) < 1 a small-amplitude- 

wave solution is not valid and the free-surface boundary conditions must be 

applied   on   the  actual   free  surface   z =   n. 

For small-amplitude-waves (0(Ak/ e ) > 1) and in consideration of the 

table 1 order-of-magnitude estimates the highest-order terms in the free- 

surface boundary  conditions   (IV-16)   -   (IV-19)   are 

-riu-nv + w=o, 
X y 

0(Ak) (V-14) 

-   hn    + g  =   0, 
y 

hn    -   2bri    +   f    =   0, 
X y 

Ak 
o(-) 

e 

Ak 
o(-) 

on   z 

{V-15) 

(V-16) 

{P   -    PQ   +   Py)    +   H gn^ -  fn„ + 2c]      = o, 
X y 

2     Ak   2 
0   (e     (—)   ) {V-17) 

where the order of magnitude of the terms in conditions (V-14) - (V-17) is 

shown to the right of each equation. In the present investigation both p and 

(p    -     p  )     have    been    neglected     in     (V-17) . The     former    approximation     is 

consistent with neglecting region V. The y-momentum equation (IV-2) implies 

that  within   the  context  of   thin-boundary-layer   theory 1 

p -  p    =   pg(n    -  n) 
o e 

on  z=0 
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where g is the gravitational acceleration and n is the potential-flow free 

surface; however, this effect was neglected. With these approximations (V-17) 

becomes 

1 Ak 2 
- g n - fn + 2c = 0       0((—) ) (V-18) 

i  ■   . ■ ^  X     y £ 

VI.  STOKES-WAVE/FLAT-PIATE BOUNDARY LAYER 

Calculations have been performed that demonstrate the influence of free- 

surface waves on body-boundary-layer development using the idealized geometry 

of a combination Stokes-wave/flat-plate. This flow configuration is consi- 

dered optimum for the present investigation, since it is simple, yet the flow 

near the free surface is fully three-dimensional and of the same character as 

that generated by the wave-making of a surface-piercing body. Far from the 

free surface and for laminar flow, the solution is the well-known Blasius 

one. For laminar flow, calculations were made using both an approximate and 

the small-amplitude-wave free-surface boundary conditions. The approximate 

boundary condition used is a symmetry (i.e. zero-gradient) condition which 

corresponds to a small-cross-flow solution along the mean free surface and a 

fully three-dimensional solution below. Of particular interest was the 

influence of wave steepness on the boundary-layer development. 

Consider the flow field in the vicinity of a surface-piercing vertical 

flat plate moving in and at the same speed as a simple harmonic wave train. 

It is assumed that the plate is sufficiently thin that it generates no wave of 

its own. Such a flow can be simulated in a towing tank either by towing the 

plate at the same speed as a wave-maker generated harmonic wave train or by 

towing the plate and generating the wave system with a submerged horizontal 

foil afixed ahead of the plate leading edge.* Outside of the plate boundary 

layer, the flow is essentially inviscid (see figure 3) and can be represented 

* An experiment using the latter arrangement is presently under way at The 
University of Iowa's Institute of Hydraulic Research, the results of which 
will be reported in the near future. 
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mathematically as a first-order Stokes wave; that is, the fluid velocity 

field V  for coordinates moving with the plate/wave system is simply given by: 
e 

V = U e, + V 41 
e   o 1 

(VI-1) 

where (|) is the velocity potential 

-kz 
cf) = - AU e   sin kx 

o 
{VI-2) 

and (x,z) are Cartesian coordinates with x positive downstream and z positive 

downwards (see figure 7) .** The third coordinate y is normal to the plate and 

across the boundary layer. The potential-flow free-surface elevation ri(x) and 

piezometric pressure coefficient c are given by 

n(x) = A cos kx 

- kz 
c (x,z) = 2 Ak e    cos kx p \   r   / 

(VI-3) 

(VI-4) 

With regard to calculating the boundary layer on the plate, the most important 

quantities are the edge velocities 

- kz 
U /U = 1 - Ak e    cos kx 
e o 

(VI-5) 

Wg/U^ = Ak e ^'^  sin kx 

and the pressure gradients 

{VI-6) 

3  _p 
^ (  2 ^ 

PU 

-.   (2) 

2 -kz  . 
Ak e   sin kx 

2  -kz 
Ak  e   cos kx 

PU 

(VI-7) 

(VI-8) 

** Note that for the present application there is no need to distinguish 
between Cartesian and curvilinear coordinates and thus the subscript o has 
been dropped (see figure 2). 
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The wave elevation, edge velocities and pressure gradients are shown in 

figure 7. Referring to figure 7, it is seen that four potential-flow regions 

can be distinguished. In region I, both p^, and p,^ are favorable, Wg > 0 and 

accelerating and U^ < U^ and accelerating. In region II, p^ is favorable and 

p is adverse, W > 0 and decelerating and U^ > U^ and accelerating. In 

region III, both p and p are adverse, W^ < 0 and decelerating and U^ > U^ 

and decelerating. In region IV, p^ is favorable and p^^ is adverse, W^ < 0 and 

accelerating and Ug < UQ and decelerating. Each of these regions has a 

distinct influence on the boundary-layer development as will be discussed 

subsequently. 

A. Computational Method. The governing differential equations (IV-1) - 

(IV-4) must be integrated numerically to obtain the fluid velocity field (U, 

V, W) . It was decided from the outset that, if possible, an existing finite- 

difference method of integrating the three-dimensional boundary-layer equa- 

tions would be modified for performing the present calculations. However, the 

requirements on such a method for the present application eliminated many of 

the more commonly used methods. Specifically, the method to be used must 

allow for cross-flow reversal and be sufficiently flexible in the prescription 

of boundary conditions to permit the specification of the free-surface boun- 

dary conditions (V-14) - (V-17) as discussed previously. These requirements 

are only met by methods that are fully implicit. One such method is that of 

Nash and Scruggs (1976) , originally developed for aircraft applications. 

Subsequently, this method was improved by Patel et al (1979, 1983 and 1985) 

and applied to bodies of revolution at incidence and to ship forms for zero 

Froude number. This method was used for the present calculations. A number 

of modifications were required, as will be discussed next in conjunction with 

a brief review of the overall procedure. 

The boundary-layer equations (IV-1) and (IV-3) can be written in matrix 

vector form 

■ -■ r 

2 
3F     9F     3F     9 F 

A^F + A^ -3^ + A3 ^ + A^ ^ + A3 — + Ag = 0 (VI-9) 

i '^ 

where F  = (U,W) and the A, - A, are coefficient matrices.  By approximating 

each of the derivatives in (VI-9) by finite differences, equation (VI-9) can 
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be expressed as 

'   B F^     + B F^    + B F^  + B F^    +BF^    = B^F^"-^ - A,  (VI-IO) 
^1 m+l,n  ^2 m,n+l  3 m,n  ''4 m-l,n  5 m,n-l   6 m,n   6 

where (<l,m,n) are node-point indexes in the (x,y,z) directions respectively 

and the B-, - B^ are coefficient matrices composed of linear combinations of 
1    6 

the A's divided by the appropriate spatial difference. In obtaining equation 

(VI-10) the x-derivative in (VI-9) is expressed as a backward difference, the 

first-order z- and y-derivatives are expressed using upwind differencing so as 

to preserve convective stability and lastly the second-order y-derivative is 

expressed using a central difference. Thus, the overall procedure is only 

first-order accurate. The finite-difference molecule associated with (VI-10) 

is shown in figure 8. Note that both equations (VI-9) and (VI-10) are 

nonlinear since the coefficient matrices are functions of F. Equation (VI-10) 

is solved by means of an alternating-direction-implicit (ADI) scheme. 

The forward marching procedure advances in the positive x-direction from 

a cross-plane H-l, where the solution is assumed to be known, to a cross-plane 

i , at which a new solution is obtained from the solution of equation (VI-10) 

(see figure 8) . The ADI scheme consists of scanning the cross-plane alter- 

nately in the n- and m-directions, converting equation (VI-10) respectively 

into the successive forms 

B,F  ,  + B^F   + B.F  T  = C, 
1 m+l,n  3m,n  4m-l,n   1 

(VI-11) 

2,        £       Jl 
B^F    -,+ B^F    + B_F    T= C„ 
2 m,n+l   3 m,n   5 m,n-l   2 

(VI-12) 

in which C-, and C^ contain the passive terms originating from the left-hand 

side of (VI-10). The coefficients of equations (VI-11) and (VI-12) form a 

block-tridiagonal matrix and which is solved by an extended Thomas 

algorithm. After each n- or m-scan, the continuity equation is integrated to 

obtain the V velocity component. The B and C matrices are updated in 

successive iterations until convergence is obtained with respect to the 

velocity components at each grid point within a specified tolerance. 
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The thickness of the integration domain is 1.26 6(x,z). Note that 6 is 

determined as part of the solution. The number of grid points is kept con- 

stant in both the y- and z-directions. For laminar flow, a uniform distri- 

bution of grid points is used across the boundary layer. An expanding grid 

was used in the z-direction so as to allow for a higher concentration of grid 

points near the free-surface. A diverging geometric series was used for this 

purpose. The step size Ax is arbitrarily specified. The number of cross- 

plane grid points and the step size Ax are determined from accuracy and 

computer-cost considerations. 

The boundary conditions imposed when solving equation (VI-10) at each 

cross-plane are: 

F = 0 

3F 

9y  - 0 

3F 
0 

9z  " 

ap 
9z " s 

on y = 0 

on y = 1.26 6 

on z = z max 

on z 

Condition      (VI-13)      is     the     no-slip    condition:   F 
o,n 

(IV-13) 

(VI-14) 

(VI-15) 

(VI-16) 

0.   Condition      (VI-14) 

imposes   the   condition   that   the   viscous-flow   solution   merge   smoothly   with   the 

outer  potential   flow  and   is   implemented by 

■   I   ■ 

■•!'■■■ i I 

i ,      ^MM-l,n~     MM,n 

where MM is the maximum number of grid points across the boundary layer.  The 

zero-gradient matching condition does not insure that the edge values of 
I 

F are   identically   (U   ,   W  )   and   small  differences  can occur;   thus,   after   a MM,n -^    '   e'     e' 
converged solution is obtained at each cross-plane the velocity profiles are 

scaled with the known values of (U , W ). Condition (VI-15) is a symmetry 

condition  and   is   implemented  by 

I _     I 
^m,NN-l~   ^m,NN 
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where NN is the maximum number of grid points in the z-direction.   The 

distance z„,  is selected such that the integration domain is large enough 

that two-dimensional flow is recovered and thus (VI-15) becomes similar to a 

plane-of-symmetry condition.  Lastly, condition (VI-16) is the free-surface 

boundary condition which is obtained from (V-14) - (V-16) and (V-18) .  As 

discussed previously,  two of  these conditions can be used  to eliminate 

(Ti ,Ti ) .  It is convenient to use the kinematic boundary condition (V-14) and 
X  y 

the transverse stress condition (V-16)  for this purpose.  For the present 

coordinate system this results in 

n = [2W(V + UK^ ) - V(V + W )]/D 
X      y   21      z  y 

(VI-17) 

where 

n  =[U(V + W)-WU]/D 
y    z  y    y 

2U (Vy + UK21) - vUy 

(VI-18) 

(VI-19) 

The normal (V-18) and longitudinal (V-15) stress conditions can be solved for 

(U^/ W ) which, for the present coordinate system, are given by 

u = u n 
z  y y 

w =-[unn +w n„] z  2  y y X   y y 

(VI-20) 

(VI-21) 

Conditions   (VI-20)   and   (VI-21)   are  implemented   in  finite-difference  form by 

F     „   =   F       -   Az  C- m,0 m,l o  3 
(VI-22) 

where C^ is a 2 component column vector composed of the right-hand sides of 

equations (VI-20) and (VI-21) and n=l corresponds to the mean water level z = 

0. The symmetry-condition boundary condition is obtained by simply putting C3 

= 0 in (VI-22). Due to the highly nonlinear character of (VI-22), it was 

necessary to use under-relaxation. At the end of each complete ADI sweep, 

(VI-22)   was   updated   using  an   under-relaxation   factor   of   .25. 
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Refering to (VI-17) - (VI-19) , it is seen that the evaluation of (n ,r\   ) 

requires V .  In order to evaluate V  correctly it was necessary to account 

for the grid nonorthogonality in the marching direction.  Specifically, in 

integrating  the  continuity  equation,  the  following  modifications  were 

required: 

3U   9u _ 9y 3U 
"5x ~ 3x   9x 9y 

V = V + U sin a 

{VI-23) 

(VI-24) 

where 

-1^ 
a = tan h K 

Similar corrections with respect to z derivatives had been made previously by 

Baek (1984) . 

B.   Laminar-Flow Results.   Laminar-flow calculations were made for 

Reynolds number R„ = U L/v = 20,000.   In the discussions to follow,  the 
no 

{x,y,z) coordinates are nondimensionalized based on the plate length L. Both 

L and the wave length X = 2i\/k are given the value of one. Typically, 170 x- 

steps and 21 grid points across the boundary layer were used. An expanding 

grid was used in the z-direction with 8-15 grid points and z^^^^ = .75. For 

the symmetry-condition calculations 8 z-grid points were sufficient with the 

first point below z = 0 at z-, = .025. The calculations in which the small- 

amplitude-wave free-surface boundary conditions were used required 12-15 z- 

grid points and z-, = .001. Numerous checks were made to insure that the 

results were grid independent. Also, a strict convergence criteria was used, 

namely 

AF/Q  < .00005 
e 

2   2 
where o = /u + W  and a minimum of three ADI sweeps were required at each 

e    e  e 
cross-plane.  The calculations were made on a Prime-750 computer and took from 

1-3 hours of computing time depending on the z-grid distribution and the wave 
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steepness.  The Blasius solution based on local R^ was used for the initial 

conditions. 

The results from the symmetry-condition calculations are shown in figures 

9 through 13.  The results shown are for Ak = (.01, .1, .2, .3).  Figure 9 shows 
* 

a comparison of the streamwise displacement thickness 6   vs. distance along 

the plate for each value of Ak.  The curves in figure 9 have been normalized 

using the solution obtained at the greatest depth z^^^^^^ = .75, that is, the 

Blasius solution.  The Blasius solution was recovered at this depth to within 

a few percent for all the integral parameters and the wall shear stress.  The 

normal velocity component V (VI-24) was only recovered to about ten percent 

accuracy.  Referring to figure 9a, which is for Ak = .01, it is seen that, for 

X < .15, the displacement thickness is somewhat thicker near the free surface 

than it is at greater depths.  This is no doubt due to the initial conditions 

and the decrease in local R^^ towards the free surface in this potential-flow 

region (see figure 7).  Subsequently, for x > .15, the displacement thickness 

is reduced near the free surface as compared with greater depths.   This 

reduction is due both to the favorable p,^ in potential-flow regions I and II 

and to the favorable p^, in region I.  A favorable p^^ tends to accelerate the 

flow and thin the boundary layer in that region.  A favorable p^ tends to 

drive the cross-flow away from the free surface and thin the boundary layer in 

that region.   The minimum displacement thickness shows about a 3 percent 

reduction and occurs near x = .45.  For x > .45, the displacement thickness 

near the free surface increases such that for x > .75  it is greater near the 

free surface than it is at larger depths.  This increase is initially due to 

adverse p  in potential-flow region II which tends to drive the cross-flow 

towards the free surface and thickens the boundary layer in that region.  This 

is compounded by continued adverse p^ in potential-flow region III and adverse 

p  in regions III and IV.  An adverse p^^ tends to decelerate the flow and 

thicken the boundary layer in that region.  The maximum displacement thickness 

shows about a 2.5 percent increase and occurs near x = .86.  Lastly, for x > 

.86, the displacement thickness near the free surface decreases until the end 

of the plate is reached at x = 1.  This reduction is due to the favorable p^ 

in potential flow region IV.   Figures 9b-9d show that the aforementioned 

trends are greatly intensified due to increasing Ak.  Also, flow separation 
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occurs for these larger Ak values: at x = .725 for Ak = .1; at x = .67 for Ak 

= .2; at X = .64 for Ak = .3. Flow separation is deemed to occur when the 

streamwise shear-stress component becomes ^0. Note that, for Ak sufficiently 

large, the influence of adverse p^. in potential-flow regions II and III causes 

an earlier and more rapid reduction in displacement thickness near the free 

surface than that obtained for the lower Ak values (see figures 9c and 9d) . 

The other integral parameters (boundary-layer thickness, momentum thickness, 

shape parameter) all show similar and consistent trends to those described 

above for the displacement thickness. 

The results for the wall-shear-stress magnitude T  and angle 6 are shown 
w 

in figures 10 and 11 respectively. The figure 10 format is similar to that of 

figure 9. Referring to figure 10a, which is for Ak = .01, it is seen that the 

wall-shear-stress behavior is consistent with the previously described dis- 

placement thickness, but in reverse trend. Note that the shear stress 

responds more quickly, and with greater intensity to changes in the potential 

flow than the displacement thickness. The maximum and minimum values show 

about a 7.5 percent and a 10 percent change from the Blasius solution 

respectively. Referring to figure 11a, which is for Ak = .01, it is seen that 

the shear-stress angle 

1 —1      y 
; 6 = tan  lim rr- 
'      ■ y^o y 

can be directly correlated with p^. In potential-flow region I, where p^ is 

favorable, 3 is positive. In regions II and III, where p^ is adverse, 3 is 

negative. Finally, in region IV, where p^ is again favorable, 3 is positive. 

Note that there is a lag in the 3 response to p^ such that 3 becomes negative 

at X =* .325 and positive again at x » .85. It should be recognized that 3 

indicates the direction of the cross-flow near y = 0 and it is in this low- 

inertia region that W first responds to changes in p^. Thus, subsequent to a 

sign change in 3, so-called S-type cross-flow profiles occur as will be shown 

next. Also seen from figures 10 and 11 is that increasing Ak greatly inten- 

sifies the wall-shear-stress response which is consistent with the displace- 

ment-thickness results. 

24 



The streamwise velocity profile U along the mean free surface (z=0) at 

various cross-planes is shown for Ak = .3 in figure 12.  In this figure the U 

profiles have been normalized by Ug and are plotted vs. y/6. It can be seen 

that for X = .1 the U profile is similar to the Blasius profile. Subsequently, 

during the acceleration phase, the U profile is fuller than the Blasius 

profile,  and  finally,  during  the  deceleration  phase,  as  separation  is 

approached, it becomes less full.  The results for the lower Ak values are 

similar only with reduced intensity as can be deduced from figure 9.  The 

cross-flow velocity profile W along the mean free surface {z=0) at various 

cross-planes is shown for each Ak = (.01, .1, .2, .3) in figure 13.  In this 

figure the W profiles have been normalized by Ak and are plotted vs. y/5. 

Referring to figure 13a, which is for Ak = .01, it is seen that initially, for 

X = .1 and .2, the cross-flow is positive.  Subsequently, beginning with the 

inner part of the profile first, the cross-flow becomes negative (x = .5,.6, 

.7,.8).  Lastly, for x = .9 and 1., again beginning with the inner part of the 

profile first, the cross-flow becomes positive.  The influence of increasing 

Ak on the W profile, as can be seen from figures 13b-13d, is to increase the 

maximum velocity during the initial phase and decrease the minimum velocity 

during the subsequent phase.  The velocity profiles at greater depths show 

very similar trends to those just discussed, but with reduced amplitudes in 

their deviation from the Blasius solution due to the exponential decay of p^^ 

and p^. .    . 

The results from the symmetry-condition calculations were explained 

solely with reference to the potential-flow pressure field and without regard 

to the free-surface boundary conditions. This is because the symmetry 

condition violates the free-surface boundary conditions and basically allows 

the solution to be continuous through the free-surface. Calculations were 

also made to investigate the influence of the small-amplitude-wave free- 

surface boundary conditions {VI-20) and (VI-21) . Imposing these highly 

nonlinear conditions proved to be a severe test of the present computational 

method. As will now be discussed, in regions where W > 0 and U^ (VI-20) was 

large, the numerics were prone to instability. The results from the calcua- 

tions for Ak = .01 are shown in figures 14 and 15. Also discussed are the 

results obtained for Ak = (.001, .005 , .03). 
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For very small Ak, the behavior of the solution is very similar to that 

obtained using the symmetry conditions.   The maximum deviation from the 

Blasius solution is only about one percent for Ak = .001.  For the larger Ak 

values investigated, Ak = (.005, .01,.03), the results show a marked influence 

on the solution due to the change in boundary condition.  Figures 14a - 14c 

show the displacement thickness and wall-shear-stress magnitude and angle, 

respectively, for Ak = .01.  By comparing figures 9a and 10a to 14 it is seen 

that the differences are only appreciable in the region very close to the free 

surface z < Ak and for x < .75.  Specifically, during the acceleration phase 

(favorable p  and p ) a much larger decrease in displacement thickness and 

increase in wall shear stress is obtained and the minimum and maximum values 

no longer occur near x = .45 for all depths but vary from x = .275 at z = 0 to 

X = .45 for z >   .023.  The minimum displacement thickness shows about a 10 

percent reduction as compared to the symmetry-condition calculation which only 

showed a 3 percent reduction.  Similarly, the maximum shear stress shows about 

a 14 percent increase as compared to the symmetry-condition calculation which 

only showed a 7.5 percent increase (see figure 10a).  By comparing figures 11a 

and 14c, it is seen that the change in boundary condition has no appreciable 

effect on the wall-shear-stress angle.  The calculations for Ak = (.005, .01) 

became unstable near the free surface for x > .875 indicating initially, a 

rapid thinning of the boundary layer and an increase in the wall-shear stress, 

followed by large amplitude oscillations.   This same type of instablity 

occurred in the Ak =  .03 calcuation only for x = .2; that is, near the 

location of the minimum displacement thickness.  In order to explain the above 

differences from the symmetry-condition results, including the occurrence of 

instability,  it is necessary to examine the small-amplitude-wave boundary 

conditions in more detail. 

Figures 15a and 15b show the calculated free-surface slopes ri  (VI-17) 

and  n  (VI-18)  for Ak = .01.   From figure 15a, it can be seen that h 
y -1 "" 

deviates somewhat from its potential-flow value tan  W /U , especially in the 

inner part of the boundary layer.  It is interesting that the shape of the n 
X 

profile is similar to the W profile.  Its magnitude is 0(Ak) as expected. From 

figure 15b, it can be seen that n •*• 0 at the edge of the boundary layer and 
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becomes large in the inner part***. Initially, for x < .3, n is negative 

and of small magnitude. Subsequently x <_ .8, n becomes positive and large. 

Lastly, n becomes negative and very large. The shape of the n profile is 

similar  to the -W profile.   The free-surface displacement n is obtained 

from n  as 
Y 

n = - 
0 

and is shown in Figure 15c.   It can be seen that n basically follows the 

behavior of W as would be expected  ,  in this case, based on physical 

reasoning.   The small-amplitude-wave boundary conditions U^ (VI-20) and W 

{VI-21) are shown in figures 15d and 15e for Ak = .01.  From figure 15d, it is 

seen that  U  (= TI u ) follows a very similar trend to that of 1  (and - W) , 
z    y y y 

but with a greatly increased magnitude.  Figure 15e shows that W  follows a 

similar trend to that of n  (and W), but with an increased magnitude, although 

not nearly so large as U, Note that U (or W ) < 0 implies an increase in 
z    z 

velocity towards the free surface and U  (or W ) > 0 a decrease. 

Based on figure 15, the influence of the small-amplitude-wave boundary 

conditions can be explained as follows. Initially, when U < 0, the U profile 

near the free surface is increased, resulting in a larger reduction in dis- 

placement thickness and increase in wall shear stress then that obtained due 

to {Py-t P2) effects alone. Subsequently, when U > 0, the U profile near the 

free surface is decreased at a more rapid rate than that indicated by (p^^, p ) 

alone. However, for x > .45, the influence of the boundary condition is not 

appreciable until x = .875 where the calculation becomes unstable. The reason 

for this is that, within the context of thin-boundary-layer theory and the 

zone-of-infuence principle, the free-surface boundary condition does not 

influence the solution when W < 0. For x >_ .875, W becomes positive again and 

U is very large. Very large U^ caused the numerics to become unstable. For 

Ak = .03, this occurred during the initial acceleration phase.  Note that the 

*** Consistent with neglecting the menisus boundary layer, V^  was allowed to 
go to zero at y = 0; the correct limit is "'y   =      (UyWyy   -    UyyWy)/3UyWy. 
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occurrence very near the free surface of such large gradients in the z 

direction implies that diffusion in this direction should not be neglected in 

this region. Figure 16 shows the Blasius solution boundary-layer thickness 

vs. distance along the plate for a R^^ = 20,000. With the aid of this figure, 

the magnitude of Ak/ e for the four values of Ak investigated Ak = (.001, 

.005, .01, .03) can be ascertained. Recalling that the small-amplitude-wave 

solution is restricted to Ak/e < 0(1), it is seen that the largest Ak value is 

at   the limiting  condition. 

The above results are consistent with the previous order-of-magnitude 

estimates in showing that the free surface boundary conditions have a 

significant influence on the solution in a region very close to the free 

surface. The results presented show trends that are very consistent with the 

behavior that would be expected based on physical reasoning. However, these 

results must be viewed with some caution due to the limitations of both the 

small-amplitude-wave solution and the use of thin-boundary-layer theory 

equations and numerics. It appears that the small-amplitude-wave solution is 

strictly limited to 0(Ak/e) < 1 . However, this cannot be judged fully until 

higher-order effects are included in the governing equations. As discussed 

previously, a more consistent formulation requires the solution of the 

partially-parabolic Navier-Stokes equations. In these equations, diffusion is 

neglected only in the streamwise direction; thus, the pressure field is fully 

elliptic and the velocity field is elliptic in each cross-plane. Including 

diffusion in the z-direction should reduce the gradients and smooth the 

solution somewhat. Also, the boundary condition will play a role even for W < 

0. Based on the above, it is expected that this would result in a much more 

rapid thickening of the boundary layer in regions where W < 0 and U^. > 0. The 

influence  of downstream pressure  on   the  above   results   is difficult   to   judge. 
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VII.  TURBULENT FLOW 

Consideration is now given to the necessary extensions of the previous 

laminar-flow analysis to turbulent flow and some of the difficulties 

encountered are indicated. Here, it will not be possible to determine the 

order-of-magnitude estimates for region IV with the same degree of certainty 

as that done for laminar flow in Section V. This is due to the present 

uncertainties in turbulence modeling, especially when a free surface is 

present. A brief discussion is included concerning this difficult topic. 

Also, results from turbulent-flow calculations for the Stokes-wave/flat-plate 

flow geometry are presented. The results were obtained using the symmetry- 

condition approximation for the free-surface boundary condition. Thus, no 

attempt was made to resolve the details of the flow very near the free surface 

(region IV) and as such a simple modification is made to a one-equation wall 

turbulence model to account for the influence of the free surface. Of 

particular interest was the influence of turbulence on the previously 

discussed  laminar-flow  symmetry-condition   results. 

Turbulent-flow analysis will be discussed within the context of the 

Reynolds equations. The boundary-layer equations for turbulent flow differ 

from    the   laminar-flow   momentum    equations   by    the   additional    Reynolds    stress 

terms  u.u.   .     Thus,   for   turbulent   flow,   the  thin-boundary-layer  equations   (IV- 
1 : 

1)   -   (IV-3)   are  supplemented  by   the   following   terms   respectively 

1     9     ,—^ —- -^    uv 

2     ^ 

(VII-1) 

(VII-2) 

(VII-3) 

The more complete partially-parabolic Reynolds equations contain all six 

Reynolds stresses. Closure of the Reynolds equations requires the use of a 

turbulence model, as will be discussed subsequently. First, the modifications 

of the free-surface boundary conditions and the small-amplitude-wave solution 

for   turbulent   flow  are  considered. 

For   turbulent   flow,   the   fluid   stress   (IV-13)   is  given by 

m 



T       =  -  p  6       +   2iie . .   -   p u . u . 
ij ij ID 1   : 

(VII-4) 

and  consequently  the dynamic boundary  condition   {IV-9)   becomes 

pn    -   (2ua  -   pu   )n    -   (Mh  -   puv)n +   ug  -   p  uw =   (p    -  p^)   n 
X X y o Y       X 

(VII-5) 

pn   -  (yh - puv)n   -   (2yb - pv )  n    + uf - p vw =   (p   - p^)   i (vii-6) 
y X y o Y        y 

-   p -   (ug  -   p  uw)n -   (yf -   pvw)Ti    +  2yc  -  pw    =  -   (p     -  P  ) (VII-7) 
X y o Y 

The   kinematic  boundary  condition   (IV-16)    is   unchanged 

n U 
X 

n V + w 
y 

(VII-8) 

In principle, if the Reynolds stresses are known, conditions (VII-5) - (VII-8) 

can be treated in a similar manner as they were for laminar flow; that is, 

(VII-6) and (VII-8) can be used to eliminate n and n in (VII-5) and (VII-7) 

which can then be used as boundary conditions for the mean-flow momentum 

equations. At this juncture, it should be pointed out, that additional free- 

surface boundary  conditions  may be   required   in   the   turbulence-model   equations. 

For laminar flow, it was possible to determine order-of-magnitude esti- 

mates for region IV and, as a result, appropriate simplifications of the free- 

surface boundary conditions for small-amplitude-waves and different solution 

regimes were identified. A smilar analysis is not possible for turbulent flow 

due    to    the    present    uncertainty    of    the    order-of-magnitude    of    the    Reynolds 

stresses  u  u    near  a  free  surface.     Often,   in  three-dimensional  boundary layer 
i : 

analysis   it   is  assumed   that 

u  u .     ~ 0(e) 
1   D 

and can be represented by an isotropic eddy viscosity 

-uu  =2ve - 1/3 q 6 . 

(VII-9) 

(VII-10) 
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where q^ = u^ + v^ + w is the turbulent kinetic energy and v the turbulent 

eddy-viscosity. If these assumptions are made for the present problem, iden- 

tical conclusions to those reached for laminar flow in Section V can be 

reached for turbulent flow as well. However, assumptions (VII-9) and (VII-10) 

are not directly applicable to the present problem; since, the complex effects 

described earlier that a free surface has on a turbulent flow cannot be 

simulated with an isotropic eddy-viscosity turbulence model. Tentatively, 

based on physical reasoning, it is assumed that conclusions similar to those 

reached for laminar flow for region IV can also be extended to turbulent 

flow. That is, for Ak/e of sufficient magnitude, the flow in region IV should 

be treated as partially parabolic and a small-amplitude-wave solution in which 

the free-surface boundary conditions are applied on the mean free-surface, is 

restricted to small Ak/e. More definitive conclusions can only be reached when 

further   experimental   and   numerical   work   is done. 

A turbulence model is required that includes modeling of the individual 

Reynolds stresses and/or a nonisotropic eddy-viscosity. Rodi (1980) and Celik 

et al (1982) have developed a turbulence model for open channel flow that 

includes free surface effects. In their approach, the k-e turbulence model is 

modified to include a nonisotropic turbulent eddy-viscosity which is deter- 

mined based on algebraic expressions derived for the individual Reynolds 

stresses. Also, the length scale is reduced near the free surface through 

the e free-surface boundary condition. The results show favorable agreement 

with experimental data; however, the authors point out that the procedure is 

only tentative and needs both further numerical testing and experimental 

validation. The influence of streamline curvature and the presence of a 

surface-piercing body is not known. The turbulence model just described can 

be extended for application to the present problem; however, this is beyond 

the  scope  of  the  present   investigation  and   recommended   for   future  study. 

I ■ ■    ■ 
A.     Computational  Method 

If the turbulent motion is characterized by a single length scale, then 

it is expected that this scale must decrease towards a free surface due to 

geometrical   restrictions.     In  the present   investigation,   a  simple modification 
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is made to a one-equation wall-turbulence model to account for the influence 

of the free surface. This is consistent with the use of the symmetry- 

condition boundary  condition. 

Specifically, the Bradshaw/Nash one-equation turbulence model, which was 

built into the original Nash and Scruggs (1976) program, was used here also. 

In this procedure, an approximate form of the turbulent kinetic energy 

equation is solved in conjunction with the boundary-layer equations. The 

turbulent-kinetic-energy   equation   is  put   in  the   form 

• U     3      ~2 V     9      ~2 , W     9      ,   2 ,^,        uv   1     9u 
TT -^   (q  /2)   + - -9^   (<3  /2)   + - -9^   (q  /2)   + - -FT ^ 

1 2 3 2 

where 

vw  1     9w 
+ -— -— -r-+D-e  =   0 

2    h^   9y 

1     9       pv       q  V. 
h     9y     p 2 

(VI-11) 

2 2 2 
e =  V  [2V u +  vV V +  wV w] 

(VI-12) 

{VI-13) 

The diffusion   term   (VII-12)    is   represented  by  a bulk diffusion model 

~2 
1     9     , \iax 2, 

° = IT "9? ^T" ^2^ ^ 
2 e 

(VII-14) 

where 

2 2 
q       =  maximum  value  of  q     in  the  outer   3/4   of   6 
max 

a^ = 1.125 (y/6)^ - .375 {y/S)^ 

The dissipation term (VII-13) is represented by 

2 3/2 , 
e = (q )   /L, (VII-15) 

where Lp, is the dissipation length 
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2 7 
L   = 7.195 n/d + 4 n   + 5 n ) (VII-16) 

and n is the minimum distance of either y/6 or z/6. Lastly, the Reynolds 

stresses are related to the turbulent kinetic energy by the empirical 

functions 

— /  2 1     3U 
p  uv  =  -   .0225   /q    L    —- 3- 

^      D   h     9y 
2 

(VII-17) 

p  vw  =   -   .0255   /q^   L^ T" ^- ^      D   h     oy 
1_  8W 

2 

The   turbulent-kinetic-energy   equation   (VII-11)   was   solved   in   conjunction   with 

the    mean-flow   momentum    equations    using    the    ADI    procedure    as   described    in 
T 2 

Section    VI.A     with     F       =      (U,W,   q  ).        For     turbulent     flow,     a     nonuniform 

distribution    of   grid    points    is    used    across    the   boundary   layer    in   which    a 

higher   concentration  of  grid   points   is  placed   near   the  wall. 

B.     Turbulent-Plow Results*     Turbulent-flow calculations  were made  for  R 

=    5    X    10   . 

specified   at  x 

The    calculations   were   begun   as   laminar    flow,    with    transition 

.05    (R n 250,000).     The   same  grid  distribution  and   initial 

conditions  as described   for   the  laminar-flow  results  were   used. 

The results are shown in figures 17 through 23. The same format is used 

in figures 17 through 23 as that described earlier for the laminar-flow 

results. The results shown are for Ak = (.01, .2 , .3 , .35). Figure 33 shows the 

displacement thickness. Figure 18 shows the maximum turbulent kinetic energy 

in the outer 3/4 of 6 and is normalized using the solution obtained at the 

greatest   depth    z^^^^^   =    .75.       Figures    19    and    20    show   the   wall-shear-stress 

magnitude  and   angle.     Figures   21   and   22   show  the   (U,W)   velocity  profiles   along 
-2 

the mean  free-surface.     Lastly,   the  turbulent-kinetic-energy  profiles  q    along 
—2 

the   mean   free   surface   are   shown   in   figure   23.      In   this   figure   the  q    profiles 
2 

have   been   nondimensionalized   by   the   edge   velocity   magnitude  Q   .        The   U   and 

turbulent-kinetic-energy  profiles   are   shown   for  Ak ■ 3   only. 

Scrutiny of the above figures shows that the turbulent-flow results are 

completely consistent with the symmetry condition laminar-flow results 

described   earlier.      The   primary   influence   of   the   turbulence   is   to dampen   the 
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three-dimensionality of the flow; that is, the cross-flow is reduced. This 

reduction in cross-flow inhibits the occurrence of separation such that 

separation  occurs  only   for   the largest Ak  value. 

Referring to figure 23, which shows the turbulent-kinetic-energy profile 

along the mean free surface (z=0) at various cross-planes and for Ak = .3, it 

is seen that initially, during the acceleration phase, the maximum value 

occurs very close to the wall. Subsequently, during the deceleration phase, 

the maximum value occurs towards the middle of the boundary layer. This 

result is consistent with figure 18. By comparing figure 18 with figures 17 

and 20, it is seen that the magnitude of the turbulent kinetic energy in the 

outer 3/4 of 6 correlates closely with the wall-shear-stress angle and not 

the displacement   thickness. 

VIII.   SUMMARy 

Through the use of both flow-field order-of-magnitude analysis and three- 

dimensional thin-boundary-layer calculations for the idealized geometry of a 

combination Stokes-wave/flat-plate, it has been shown that the influence of 

free-surface waves on boundary-layer development for surface-piercing bodies 

can be significant. There are two distinct mechanisms for this influence: the 

external-flow pressure gradients; and the viscous-fluid free-surface boundary 

conditions. 

The influence of the external-flow pressure gradients is shown to pene- 

trate to a depth on the order of half the wave length, z <_ X/2 " 10 6. The 

magnitude of this influence depends on the wave steepness Ak. The symmetry- 

condition calculations discussed in Sections VLB for laminar flow and VII.B 

for turbulent flow demonstrate many interesting effects on the flat-plate 

boundary-layer development due to a wavy free surface. In particular, it has 

been shown how the boundary layer responds to the pressure-gradient changes 

along the plate length between favorable and adverse. Also, waves of suffi- 

cient steepness induce flow separation near the free surface in regions of 

large adverse pressure gradients p^^. The overall influence of turbulence is 

to dampen the three-dimensionality of the flow and inhibit the occurrence of 

separation. The symmetry boundary condition is similar to a small-cross-flow 

boundary  condition  and   as  such  violates   the  free-surface boundary conditions. 
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The   influence   of   the   viscous-fluid    free-surface   boundary   conditions   is 

shown    to   be    significant    only    in    a    region    very   close    to    the    free    surface 

z  < Ak  "   6.  Within   this   region,   order-of-magnitude   analysis   for   laminar   flow 

shows   that   the   parameter  Ak/e   is   important   in   characterizing   the   flow.      Only 

for    small  Ak~0(e^*^)   or    less    are    the    free-surface   boundary   conditions    of 

higher    order.       This   is   the   small-cross-flow   regime.      For   larger   values   of 

0{e^'^)   <   Ak  <   0(e)       the    role    of    the    free-surface   boundary    conditions    is 

significant;    furthermore,    a   consistent    formulation    requires    the   solution   of 

the   partially-parabolic   Navier-Stokes   equations.      For   this   regime,   a   small- 

amplitude-wave   solution   is derived.      In   this   solution   the   highest-order   terms 

in   the   free-surface   boundary   conditions   are   retained   and   applied   on   the   mean 

free   surface.      The  latter   approximation   is   the  most   severe.     For  Ak£0(e),   the 

small-amplitude-wave  solution   is  no longer   valid   and   the   free-surface boundary 

conditions must be  applied   on   the  exact  viscous-flow   free  surface.     For   turbu- 

lent   flow,   it   is   not   possible   to   reach   such  definitive   conclusions  concerning 

the  order-of-magnitude   estimates   and   solution   regimes   for   region   IV.      Tenta- 

tively,   based    on   physical    reasoning,    the   above   conclusions    are   extended    to 

turbulent  flow  also. 

Calculations were also made for laminar flow to investigate the influence 

of the small-amplitude-wave free-surface boundary conditions. The results are 

consistent with the order-of-magnitude analysis in showing that the influence 

is significant only in a region very close to the free-surface z < Ak = 6. The 

results show interesting trends that are explained by reference to the free- 

surface boundary conditions. It is shown that, within the boundary layer, the 

potential-flow free surface is deformed in a manner that correlates closely 

with the cross-flow velocity. In fact, all the small-amplitude-wave free- 

surface properties are shown to correlate with ± W. Of particular interest is 

the behavior of the imposed free-surface velocity gradients U^ and W^. In 

regions where U (or W^) < 0, there is an increase in velocity towards the 

free   surface,   and   where   U^.    (or   W^)   >   0   ,   a  decrease.      It   is   shown   that   the 

behavior   of   U      is    similar    to   -   W   and   W^   to   W    itself.      During   the    initial z z 
acceleration phase, where W > 0 we have U^ < 0/ which results in an even 

larger acceleration near the free surface than indicated from the symmetry- 

condition    calculations.        Subsequently,    U^    changes    sign,    as   does    W,    which 
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results in an even larger deceleration near the free surface than indicated by 

the symmetry-condition calculations. However, within the context of thin 

boundary-layer theory and the zone-of-influence principle, the free-surface 

boundary conditions do not influence the solution when W < 0. Thus, in the 

present calculations, the influence of the free-surface boundary condition is 

not well   represented   for  U^, >   0. 

Imposing   the   highly   nonlinear   free-surface  boundary   conditions   proved   to 

be   a   severe   test   of   the   present   computation   method.      In   regions   where   W   >   0 

and   U     was   large   the   numerics   were   prone   to   instability.      The   results   pre- 
z ^ 

sented show trends that are very consistent with the behavior that would be 

expected based on physical reasoning. However, these results must be viewed 

with some caution due to the limitations of both the small-amplitude-wave 

solution and the use of thin-boundary-layer theory equations and numerics. it 

appears     that     the     small-amplitude-wave     solution     is     strictly    limited     to 

Ak/e < 0(1). However, this cannot be judged fully until higher-order effects 

are included in the governing equations. As discussed previously, a more 

consistent formulation requires the solution of the partially-parabolic 

Navier-Stokes equations. In these equations diffusion is neglected only in 

the streamwise direction; thus, the pressure field is fully elliptic and the 

velocity field is elliptic in each cross-plane. Including diffusion in the z 

direction should reduce the gradients and smooth the solution somewhat. Also, 

the   boundary   condition   will   play   a   role   even   for   W <   0.     Based   on   the   above, 

it is expected that this would result in a much more rapid thickening of the 

boundary layer in regions where W < 0 and U^ > 0. The influence of downsteam 

pressure  on   the  above   results   is difficult   to   judge. 

IX.      IMPLICATIONS   FOR  SHIP   BOUNDARY   LAYERS 

The    present    study    has    several    implications   with    regard    to   calculating 

boundary    layers    on    actual     ship    forms. Ship    boundary    layers    are    fully 

turbulent    over    most    of    their    length    excluding    a    small    bow    region.        The 
-3 

Reynolds   number   is   very   large   which   implies   very   small   e =   6/L ~ 0(10     ).   The 

wave   steepness   can   very   greatly   depending   on   Froude   number.       Recently,   Fei 

(1984)   calculated   the  wave  potential   flow  around   a  variety  of  ship  forms   using 
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a Hess-Smith-Dawson method. His results indicate that usually Ak <_ .1 except 

neat the bow where it can be considerably larger. Thus, the parameter 

Ak/e for ships will typically be fairly large and in some cases > 0(1). The 

present investigation indicates that the influence of free-surface waves is 

significant. 

For many practical applications it may not be necessary to resolve the 

flow in the region very close to the free surface (z < 6); consequently, as a 

first approximation, the boundary layer can be calculated using the symmetry 

boundary condition and the thin boundary layer equations (except near the 

stern). In this case, the influence of free-surface effects on the turbulence 

model should not be significant. However, in order to calculate ship boundary 

layers, including the region very close to the free surface and the free- 

surface boundary conditions, the flow must be treated as partially parabolic 

over the entire length and not just in the thick stern boundary-layer 

region. Furthermore, in some cases, the small-amplitude-wave solution will 

not be applicable and it will be necessary to satisfy the free-surface 

boundary conditions on the exact viscous-flow free surface which must be 

determined as part of the solution. However, the small-amplitude-wave 

solution should be useful in this regard. Also, a turbulence model is 

required that can simulate the influence of a wavy free-surface on the 

turbulence characteristics. 

A number of iterative solution procedures have been developed for solving 

the partially-parabolic equations (for example, Pratrap and Spalding 1976 and 

Mahgoub and Bradshaw 1977). The major added difficulties in solving these 

equations are: 1) computational grid generation; 2) velocity/pressure field 

coupling procedure; 3) and in regions where the boundary layer is thick either 

a viscous/inviscid interaction procedure or a large solution domain must also 

be included. Considerable success with these difficulties has been attained 

over the last eight years as seen in recent publications (for example, Chen 

and Patel 1984). For the present application a number of extensions are 

necessary. In the cases where the free-surface boundary conditions are to be 

applied on the exact viscous-flow free surface a boundary-fitted coordinate 

grid generation method will be required. Also, an iterative method for 

adjusting the free surface such that the free-surface boundary conditions are 

satisfied will need to be developed. 
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Figure 6.    Dynamic Free-Surface Boundary Condition 
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