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ABSTRACT

Proliferation of techniques and lack of unifying structure has hindered both study

and application of variance reduction. Qw- recently developed unifying structure,

presented In detail elsewhere, Is a taxonomy that views each variance reduction

technique (VRT) as a transformation from one experiment to another. The taxonomy is

exhaustive In that any VRT can be expressed as a composition of elemental

transformations from six classes.

This paper illustrates -our taxonomy by using the notation, terminology, and

concept-. the taxonomy to discuss seven VRTs, which we assume are familiar to the

."*; reader. -Qi* objective Is to use the reader's knowledge of these well-known techniques

to provide an Introduction and overview of the taxonomy.

KEY WORDS: Antithetic varlates, common random numbers, conditional

. expectations, control varlates, Importance sampling, Monte CarloA poststratlfled

k ..- sampling, simulation, swindles, variance reduction
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1. INTRODUCTION

A computer simulation model of a real or conceptual system consists of a

probabilistic representation of those elements In the system that cannot be predicted

with certainty and deterministic rules that define the system's reaction to realizations of

the uncertain elements. For Instance, In a model of a queueing system the time between

arrivals Is uncertain while the queue discipline specifies a rule for processing customers

after arrival. Such a model mimics the actual functioning of the system, or at least the

essential elements of It. A simulation experiment Is performed by generating

realizations of the model and computing estimates of performance measures.

Variance Reduction Techniques (VRTs) are transformations. They transform a

simulation experiment Into a related experiment that yields better estimators of the

performance measures, where better means more precise. This gain Inprecision may be

at the expense of the one-to-one correspondence between the model and the system. See

Bratley, Fox and Schrage (1983) and Wilson (1983a, 1985) for surveys of variance

reduction.

In Nelson and Schmelser (1084b) we Identify six classes of transformations that

exhaust the set of all possible variance reduction techniques under composition. -The

derivation of the six classes Is based on a mathematical-statistical definition of

simulation experiments developed specifically for studying variance reduction (Nelson

and Schmelser, 1984a). We are proposing a taxonomy for variance reduction.

Given any taxonomy of variance reduction, what should It do to be useful?

Certainly It should unify the field as It currently exists and also bring new Insight Into

what could potentially exist. To be specific, we think a taxonomy should: (a) eliminate

3
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confusion regarding the characteristics or, and relationships among, VRTs; (b) provide a

common language ror communication In practice, research, and Instruction; (c) help

practitioners determine appropriate variance reduction strategies; (d) generate new

variance reduction Ideas; and (e) provide a basis for automation of variance reduction.

We return to these five criteria In section 5 after Illustrating the taxonomy In

section 4. The examples of section 4 are based on graphical symbols presented In

section 3 and definitions of simulation experiment and of the six clamss or

transformations presented In section 2.

2. BACKGROUND

Descriptions are In terms of matrices, columns of matrices, and elements of

matrices. Letters, Greek or Roman, without subscripts denote matrices, letters with

single subscripts denote columns, and doubly subscripted letters are scalar elements,

using the usual row-column convention. For Instance, Xjk Is the VA~ element of column

vector Xh, which Is the k'" column In the matrix X. For our purposes, a matrix need

not have elements In all positions, since elements of sets are arranged In rows and

columns for conceptual rather than computational reasons.

* . A letter with subscripts In parentheses Indicates a set of variables with Indices In a

fixed set. For example, X(,&) denotes all elements Xj, In X with subscripts In Index set

(eb), a set that would have to be defined. Thus ()Is a mapping from a single Index to a

set of Indices.

Random variables are denoted by capital Roman letters, and realizations of these

4
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random variables by lower case letters. For example, Sig Is a realization of random

variable 1's. Any notation that is counter to the above conventions Is specifically

defined as needed.

For our purposes, a simulation experiment Is a description of a system of random

variables; the dimensions of this system may also be random variables. Given a source

of randomness (usually Independent U(0,1) random variables), realizations of the system

can be generated. Based on the definitions In Nelson and Schmeiser (1984a), the

random variables are partitioned Into inputs, outputs and statistics. These sets have

precise definitions, but can be described loosely as follows:

Inputs are random variables defined by known (although possibly only

conditionally) probability distributions. Examples are service and Interarrival times of a

queueing simulation, or the demand per period of an Inventory system. Another

example Is a service time whose distribution, conditional on the number of customers In

the system, Is known. The countably Infinite matrix of Inputs is denoted by X and has

joint cumulative distribution function Hz).

Outputs are random variables defined by known, deterministic functions of the

Inputs. They are the observations of system performance, such as the delay experienced

by customers In the queueing simulation or the number of backorders In the Inventory

system. The probability distribution of the outputs Is not known, but the functions

define how outputs are realized from the Inputs. The output, Y, Is the matrix of all

essential random variables defined by functions of X, In the sense that all remaining

random variables that are functions of X can be derived from Y, provided no element of

Y Is deleted. The outputs are denoted by Y g(X;R.), where R. Is the sampling plan;



the sampling plan defines a stopping rule for the simulation experiment In terms of the

number of realizations In columns of Y.

Statistics are functions that aggregate outputs Into point estimators of the

performance measures of Interest. A sample mean Is often used. Variance reduction

refers to reducing the variance of these statistics. The statistics are denoted by

Z - h (Y), and the performance measures of Interest by 0; Z and 9 are row vectors of the

same dimension.

If Z and 0 are scalars, and Z is an unbiased estimator of 0, then

Var (Z) f f1h (#(z;R) - 1
2 dF(z)

VRTs are transformations of simulation experiments that alter the Inputs, outputs and

statistics to reduce Var (Z). If we hold 9 and the sample space of X fixed, then variance

reduction must be accomplished by redefining F, g, R., and/or k. Six classes of

transformations, defined loosely here, that exhausL the possibilities are:

- Distribution Replacement (DR): Redefine the scalar marginal distributions of

the Inputs without altering any statistical dependencies among the inputs.

- Dependence Induction (D1): Redefine the statistical dependencies among-the

scalar inputs without altering any marginal distributions of the Inputs.

- Equivalent Allocation (EA): Redefine the functions from Inputs to outputs

without altering the allocation of sampling effort.

- Sample Allocation (SA): Redefine the allocation of sampling effort without

altering the functions that define the outputs.

6



- Equivalent Information (El): Redefine the functions from outputs to statistics

without altering the argument set of the statistics.

- Auxiliary Information (AI): Redefine the argument set of the statistics

without altering the functions from outputs to statistics.

Transformations In DR and DI redefine F; those In EA and SA redefine g and R.,

respectively; and those In EI and Al redefine h. The mathematical rigor needed to

prove properties such as exhaustiveness Is presented In Nelson and Schmelser (1984a,b);

precise definitions are needed to make the partitioning of Inputs, outputs and statistics

unambiguous, and to make the classes of transformations distinct. However, the loose,

Intuitive definitions given here are more useful for our current purpose.

3. SYMBOL SET

To augment the discussion of the seven VRTs In section 4, a graphical

representation of each VRT Is given. Only three symbols are needed, as Illustrated In

Figure 1. Rectangles enclose a definition of an Input, output, or statistic In the

simulation experiment. Circles enclose a class of transformations. Trapezoids contain

the prior knowledge used to make application of the transformation possible and

reasonable.

Figure 1 about here

7



By prior knowledge we mean any knowledge, either known with certainty or

suspected, beyond that necessary to design the original ("crude") simulation experiment.

Since prior knowledge Is often difficult to state succinctly, and since our purpose here Is

to Illustrate the taxonomy rather than to provide every detail of the VRTs discussed,

the prior knowledge specified In Figures 2-8 Is often minimal. Complete specification Is

often clear by considering Implementation of the VRT.

The progression In each figure Is from left to right, proceeding from a definition of

some Input, output, or statistic to a new definition via a transformation.

4. DECOMPOSITION OF VARIANCE REDUCTION TECHNIQUES

The VRTs considered are antithetic varlates, common random numbers, control

varlates, stratified sampling, poststratifyIng the sample, conditional expectations, and

importance sampling. These seven were selected specifically because they are well-

known and understood, and thus they provide a convenient Introduction to our variance

reduction taxonomy. For each VRT, a description of the VRT and graphical display of

Its decomposition Is presented. The purpose Is not to propose a comprehensive

definition of these seven VRTs, but rather to Illustrate our taxonomy using well-known

examples.

Each transformation In the decomposition of a VRT may not, by Itself, reduce

variance or even yield an acceptable experiment. Variance reduction Is achieved by the

combined effect of all the relevant transformations.

8
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4.1 Antithetic Variates (AV)

Antithetic Varlates Is a VRT that has been extensively studied In the context of

Monte Carlo estimation. The technique first appeared in Hammersley and Morton

(1950), with further early developments by Hammersley and Mauldon (1956), Morton

(1957), Halton and Handscomb (1957), and Handscomb (1958). In its broadest sense,

"we use the term antithetic varlates to describe any set of estimators which mutually

compensate each other's variations" (Hammersley and Handscomb, 1964, p. 61). Statist-

Ical results such as

Var (Y±Y,) = Var (Y,) + Var (Y,) ± 2Cov (Y. Yj) (1)

Indicate the advantage of forcing correlation among outputs while maintaining their

marginal distributions. Antithetic varlates attempts to Induce negative correlations

among Identically distributed simulation outputs.

Consider estimating 01, a real scalar, using a simulation experiment defining

YI = gi ;(X(;1)) i = 1, .... I 2n

where E(Yj,) = 0, and X(j,) Is a set of Inputs Indexed by i, with statistic

'I

Further, suppose that

Xyl) - i.i.d. Fl)(zi)) i = 1, 2,..., 2n (2)

The usual AV transformation Is to redefine the Joint distribution of

(X(2_,, X(2,) = 1, 2..n

such that the marglnals given In (2) are unchanged, but the pairs are negatively corre-

lated. When Xy, is a scalar, or if AV Is used only on a scalar component of X( 1 ), the

correlation is most often Induced by generating rallzations via the inverse cumulative

9



distribution function (cdf) of X(j,) In the following manner:

X(2 .,) ---- F- 1 (,)(U )

X(, .j) - F-1(j(i-P )

where U - l.l.d. U(0,1) i = 1, 2. ; this Induces the minimal achievable covarlance

between the Inputs X(_-.1 ) and X(6 ,) with the given marginal distributions (Whitt,

1970). The resulting Joint cdf Is

max {F(j)(z(,_1 .,)) + F(1 )(z(21.j)) - 1, 0)

Thus, AV Is composed of a single transformation from the Dependence Induction (DI)

class, as shown In Figure 2.

Figure 2 about here

When correlation Is to be Induced among k-tuples (k > 2), there are a variety of

approaches and cbjectives (see for Instance, Fishman and Huang, 1983). Although more

complicated mathematically, the k-tuple case still Involves only a single transformation

from DI.

The reason for Inducing dependence among the Inputs Is to cause

Cov (Ygil- .0' < 0

which reduces the variance of Z, via (1). Negative covarlance between the outputs Is

not guaranteed by negative covarlance between the Inputs. However, Wlson (1983)

showed that If the Inputs are generated via the Inverse cdf (as shown above) and gi, Is

monotone, then the minimum achievable covarlance between Y,-,1 and Y2*.1 will be

achieved. However, achieving the bound, or even reducing variance at all, Is not a fac-

10
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tor In classlryIng these methods as AV or the transformation as Al. The only relevant

factor Is that the correlation Is Induced by redefining the Inputs while maintaining thel,-

marginal distributions.

This redefinition Is usually accomplished by making the Inputs determinlstlcally

dependent. When an estimator consists of a sum of n outputs, the antithetic-variates

theorem (Hammersley and Mauldon, lI56, Handscomb, 1958, Wilson, 1979, 1983) states

that under fairly general conditions the greatest lower bound of the variance of the estl-

mator can be approached arbitrarily closely by generating all n Inputs from a deter-

ministic transformation of a single randomly sampled Input. But whether or not corre-

latlon Is Induced determinlstically, the transformation Is still DI In our taxonomy.

4.2 Common Random Numbers (CRN)

Common random numbers Is often called correlated sampling (CS). Confusion can

arise because CRN Is both a method for generating correlated samples and a VRT that

exploits Induced correlation. "The name of the technique stems from the possibility In

some situations of using the same stream of basic U(0,1) random variables to drive each

of the alternative models through time..." (Law and Kelton, 1982, p. 350). We use the

term CRN In the sense of CS, meaning that correlation Is Induced (by whatever means)

between certain Inputs to obtain positively correlated outputs for estimating the

difference between two performance measures. CRN has the distinction of being "...the

only VRT that Is as a rule used by practitioners of simulation" (KlelIjnen, 1g74, p. 206).

Consider estimating

11
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transformed In the simulation experiment. The decomposition of a VRT depends, for

instance, on what the crude experiment was. Also, two techniques that emphasize sam-

pling based on importance may differ greatly in how they achieve It (see STRAT and IS,

above). In this paper, the decomposition of each VRT should be considered In light of

the definition of the VRT presented here; It may not (and probably will not) be the

same for every application that goes by the same name.

Tables I and Ii summarize the decomp, siltions presented In this paper. Any

decomposed VRT lies in a cell of one of these or a higher order table. Six of the seven

VRTs discussed are shown. The seventh, Importance sampling, lies in the fourth order

table in cell (DR, EA, El, AI).

We conjecture that If all known VRTs were decomposed and entered Into these

and higher order tables, there would be empty cells. Why are these cells empty? Do

they suggest new VRTs to be discovered, or are there some combinations that are

Infeasible? Our taxonomy suggests the openings and provides a foundation on which to

develop further structure for addressing such Issues.

Tables I and fl about here
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for general simulation experiments. The underlying motivation for the creation of our

taxonomy was the observation that variance reduction, despite Its obvious benefit, Is sel-

dom used because of the difficulty In learning variance reduction Ideas, the difficulty In

Implementing many of the techniques, and the likelihood of improperly Impiementing a

technique, thereby Invalidating the experlmc.nt. Any hope of widespread use of variance

reduction depends upon the automation of these methods. Automation needs to occur

for both the Identification of appropriate variance reduction Ideas and for the Implemen-

tation. The long term goal Is an Interactive system capable of looking at a computer

simulation model and asking good questions about the available prior knowledge (recall

the definition of prior knowledge) and suggesting good variance reduction Ideas. In con-

junction with a particular language such a system would then Implement the Ideas. But

any automated system needs a "world" In which to work. We hope that, Just as our

taxonomy has provided a world view for us to Identify appropriate VRTs directly, the

taxonomy will do the same for automated systems.

In discussing these five criteria, we are making an Important distinction between

the design and the analysis of VRTs. Criteria (c), (d), and (e) above concern design,

while the present paper Illustrates the analysis aspect (criteria (a) and (b)) by demon-

strating how VRTs are decomposed.

We are often asked: "In terms of this taxonomy, what Is VRT x?- Our answer Is

usually to give the decomposition for what we consider to be the most common form of

VRT x, as was done in this paper. A better answer would be "it depends." A strength

of our taxonomy Is that It does not categorize VRTs, but reflects what Is actually

24



experience has been that once a simulation experiment Is expressed In terms of the

Inputs, outputs and statistics, then examining the experiment from the perspective of

the six classes or transformations facilitates the identification of appropriate variance

reduction strategies. In a variety of real and textbook cases, we have found that think-

Ing In terms or the taxonomy provided a ready-made list of Ideas (the six classes),

helped Identify the relevant prior knowledge, suggested generalizations and

modifications of standard techniques, and Indirectly provided a sense of when to stop

the search for more variance reduction Ideas. Of course, It Is difficult to determine

whether the Improved ability to find variance reduction Ideas Is due to the Insight

gained from the months spent creating the taxonomy or from the taxonomy Itself. Only

the experience of others will tell.

(d) The taxonomy generates new variance reduction Ideas. While our taxonomy

Is not an "erector set" of components from which VRTs are directly assembled, It does

foster discovery of new Ideas by expanding rigid definitions of standard VRTs (see CV

above, for example). In terms of the six classes of transformations, no VRT Is really

new, It Is just an expansion of existing ideas made possible by a broader perspective.

Examples of such Ideas that the authors have developed (and have not, to our

knowledge, appeared In the literature) Include: (1) using nonlinear control variates for

estimating probabilities, where standard linear controls may yield Infeasible estimates,

(11) using the difference between two analytic results as control variates, and (111) using

distribution replacement to make optimal sample allocation possible (9 difficult concept

before the two, often confused, Ideas were distinctly separated).

(e) The taxonomy provides a basis for research on automated variance reduction

23
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introduction in light of the taxonomy presented In this paper:

(a) The taxonomy reduces the confusion that currently exists regarding the funda-

mental characteristics of, and relationships among, VRTs. Nelson (1983) listed eighty

names of VRTs that have appeared in the literature. Many are different names for

almost (if not precisely) the same technique and many fundamentally different tech-

niques have quite similar (or Identical) names. These similarities and differences are

more apparent when VRTs are decomposed Into their basic transformations, as the

examples in this paper Illustrate.

(b) The taxonomy provides a common language for communication among

researchers, between researchers and practitioners, and among practitioners. The prob-

lem of multiple names for roughly equivalent (where we can now say what roughly

equivalent means) VRTs should be less of an Issue. The similarities and differences

between VRTs are apparent when they are decomposed Into their elemental transforma-

tions. The existence of classes of transformations makes possible the unification of

theoretical results concerning conditions that insure effectiveness of VRTs, results that

presently exist In a fragmented fashion In the literature and have been of limited practi-

cal use.

Ideally the taxonomy would also be a useful tool for teaching variance reduction to

simulators (students and practitioners), but our experience In this area has been disap-

pointing. The reason, and a motivation for this paper, Is that learning proceeds most

naturally from specific to abstract.

(c) The taxonomy provides a different, and we think more effective, approach for

practitioners to find variance reduction strategies In simulation experiments. Our

22



original outputs Y', and the auxiliary information Y, (AI). Generalization to altering

the distribution of a random vector, rather than the scalar Xa, does not change the

decomposition.

- Figure 8 about here

The decomposition also does not depend upon the choice of the new input distri-

bution f 4(zk), which typically is chosen to be approximately proportional to

E(YzI z) I fi(zk), where the expectation is over X(y,). This measure of importance is

roughly the product of output magnitude I yz I and input likelihood. See Kahn (1956)

for additional details.

5. CONCLUSIONS

The.examples in this paper illustrate the variance reduction taxonomy developed

in Nelson and Schmetser (1984a,b). The analysis of variance reduction techniques by

decomposing them into members of the six classes of transformations is central. Other

attempts to develop a taxonomy of variance reduction, such as McGrath and Irving

(1973) and Wilson (1983a, 1985), were not completely successful, in part because they

tried to categorize VRTs. But as we have seen in section 4, simple partitions do not

exist. VRTs overlap In the sense that they are composed of transformations from com-

mon classes.

Returning to the question raised In the Introduction - Why Is a taxonomy of

variance reduction useful? - we now discuss the five criteria mentioned In the

21



region. In contrast to STRAT, which directly allocates sampling effort, IS biases the

outputs by altering the probability distributions of the inputs.

IS Is a standard technique in Monte Carlo estimation problems; see for instance

Hammersley and Handscomb (1964) and Kahn (1958). The technique Is used infre-

quently In systems simulation because the effect of altering the input distribution is

often difficult to derive. See KleIJnen (1074) for a general discussion, and Jeruchlm

(1984) for an example.

A simple version of IS that illustrates the central Idea is given here. Consider

estimating 0, by I, observations of Y, where E(Y) = 0, i = 1, 2. 1,. The crude esti-

mator of 0, might be

'1
Z' --- hj()) = I,-' Y i,

i-1

Now suppose Y1, is a function of (X(j). Xai) for some fixed column Index k of X. For

notational convenience write

suppressing the X(yl). Assume that Xjk are i.i.d. random variables for all i with Identical

discrete or continuous marginal pdf fi (z1k). Consider some other pdf f J of the same

type and having the same support as fir,. If Xib is sampled from f/J and If X(j,) Is sam-

pled from the unaltered conditional distribution of X(11 ) given X, ff= zj, then

f I, (Xih) 

Is the (unbiased) IS estimator of P . As shown In Figure 8, IS employs the new input dIs-

tribution F& (DR), the new outputs Ys based on the prior knowledge of the old and

new Input distributions (EA), and the new statistic (El) that averages the product of the

20
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is known or can be calculated for all realizations W,. of Yj, where here Y, is generic for

any of Y~i, then based on the well-known relation

Var (E (YjI Y2)) ---Var (Y,) - E (Var (Y, iY2))

the conditional expectation estimator

12

Z' = "h,(Y2) I " E E(Y ] Y)()

can be used. As shown In Figure 7, based on the (possibly only suspected) prior

* knowledge that E (Var (Y Y,))>o, CE uses Yj. as auxiliary information (AI) in the

modified estimator (El) based on the constants E (Y Y2) obtained from prior

knowledge.

The estimator (8) is unbiased for 0 , and if I 1. and the Y,. are independent

then It has no greater variance than (7). However, CE Is often employed when 1. > 11,

such as when Y1, are results of "rare events." Clearly the estimator (8) may be based on

a vector of outputs, not Just a scalar Y1%, but this does not affect its decomposition.

Note that Y, has not been redefined, but rather other outputs (auxiliary information)

in the simulation experiment are used.

Figure 7 about here

4.7 Importance Sampling (IS)

Importance sampling is one of several VRTs that attempt to concentrate sampling

in regions of interest, where interest may be related to the variance within the region,

the likelihood of observations In the region, and/or the magnitude of observations in the

A1



Figure 8 about here

4.8 Conditional Expectations (CE)

The conditional expectatlois method is often called conditional Monte Carlo

f .- (CMC). However, CMC also refers to a sampling technique developed by Trotter and

Tukey (1958) to "use a family of transformatlom to convert given samples into samples

conditioned on a given characteristic (p. 04)." Dub and Horowitz (1979), Granovsky

(1981), and Wilson (1985) discuss CMC In detail. But other than to mention that the

original CMC employs a transformation In EA, we do not discuss CMC further here,

since the background and detail needed to decompose CMC requires the precise

definitions of our taxonomy.

We reserve the term conditional Monte Carlo for the original sampling technique.

Conditional expectations (CE) is used here as In Law and Kelton (1982), where the

expected value of the output of Interest Is replaced by Its known conditional expected

value.

Consider estimating 0, using a simulation experiment defining

Y I 1i g'dXY;0) i -f 1 .. I

where E(Y 1) - 9 , with statistic

Z, *h(r,) 11-1 , Y, 1 (7)

If there Is another output random variable Yis i 1,2. I such that

E(Y 1 IY,2 NOii

5 18
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a more representative sample by controlling the sampling plan (I, a. .... . When

such control Is not possible, sometimes each observation can be weighted on the basis of

whether Its stratum Is under or overrepresented In the sample. This VRT, usually

called poststratified sampling, we call poststratifying the sample, since the sampling plan

Is not altered. Bratley, Fox and Schrage (1983), Cochran (1977). and Kleunen (1974)

discuss PSTRAT. Wilson and Prltsker (1Q84a,b) apply PSTRAT In queueing simula-

tion.

Using the above notation for STRAT, consider the PSTRAT estimator

+

where Y-j is the mtA observation of Y, for which Xa E L, and I Is the number of such

observations of the I, total. The I, are outputs (the result of sampling), but we con-

tinue to denote them as I for convenience.

Provided I > o for j 2, 3. n +1, Z,0 Is an unbiased estimator of 0. Whereas Z,

gives each observation weight 1/1r, Zf gives weight pi/I4. If the observations distribute

themselves proportionately (I -pi I.) then this reduces to 1/1. If a stratum Is over or

underrepresented, pi/I Is less or greater then 1/1, respectively. Thus PSTRAT

corrects for disproportionate sampling, In contrast to CV, which corrects for shifts In

location. Figure 8 shows how PSTRAT combines the strata sample sizes as auxiliary

information (AI) with the prior knowledge of the strata probabilities to obtain the new

estimator (El). In our taxonomy PSTRAT Is more closely related to CV than to

STRAT, since 1, In PSTRAT is random and therefore an output requiring AI, while In

STRAT It Is a known constant and therefore simply part of the new estimator.
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i-
The STRAT estimator Is

Zj ffh'(Y1 ) E ) . Y-)

which requires arbitrary control, of the new jO stratum sample size 11 and prior

knowledge of P (Xk E Li), denoted by pj, for each stratum j = 2. 8, u +I.

Figure 5 shows that STRAT reallocates the number of observations per stratum

(SA) using the prior knowledge of the strata definitions and then rewelghts the outputs

In the estimator by the ratio pj/l, (El). Generalization to stratifying on a random vec-

tor rather than a scalar random variable does not affect the decomposition. Also,

whether or not the new sample allocation yields a variance reduction does not affect the

decomposition. Allocation strategies are not discussed here (see for Instance, Cochran,

1Q77), but proportional allocation (It - lp,) guarantees

Var (Z) < Var (Z)

N (Rubinstein, 1981). If the I, are not altered by fixing them In advance, then the VRT Is

known as poststratifying the sample; see section 4.5 below.

Figure 5 about here

4.5 Poststratifying the Sample (PSTRAT)

A source of variability in all sampling experiments Is that the sample Is not

representative of the population sampled. Using proportional allocation, STRAT forces

! 18
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between the two systems; as In the CRN example (section 4.2), both systems am part of

the same simulation experiment in our definition.

4.4 Stratified Sampling (STRAT)

STRAT is a technique that replaces simple random sampling with a sampling plan

designed to reduce variance. Hammersley and Handscomb (1084) and Rubinstein (1081)

discuss stratified sampling in the context of Monte Carlo problems and Cochran (1977)

discusses the context of survey sampling. Books containing chapters dealing with

stratified sampling specifically in systems simulation are KleUnen (1074) and Bratley,

Fox and Schrage (1983).

Consider estimating 0, when It is possible to sample I, observations of Y., where

E(Y 1 ) 1, i = 1. 2, ..., 1,. The crude estimator of 01 might be

~z,= hJ(0) ---111 E Y I

Now suppose Y1I can be expressed as a function of (X(i, , Xk ) for some fixed column

Index k of X. For notational convenience write

=i g fi(Xik) ()
suppressing the X, 1). Assume that Y. are i.i.d. random variables for all i, and that the

range of X can be divided into n nonoverlapping, exhaustive strata (intervals). Denote

these strata by L- , - 2, 3., +1. An equivalent way to view (8) Is

Ymj =g. (Xk) . 3. ... +1 m ~1,2.I

such that Y., is the m ' observation of Y, for which the associated random variable

Xi, E L , and

15



where 4 Is a scalar, and the ratio estimator

S() (4)

The function s. is the control varlate.

Both (3) and (4) are of the form

., A 0e(Yod) 02(Y() (5)

with the property that A ($,,a) = 0,. Several authors have noted that these two estima-

tors are similar, including Kielinen (1974) and Isaki (1983).

As shown in Figure 4, statistics such as (5) are obtained by a composite transfor-

mation that first augments the argument with output Y(,), which Is AL, then modifies

the statistic h, which Is El.

Figure 4 about here
-- - - - - - -

Both (3) and (4) extend naturally to multiple control variates, which does not

change the decomposition. Whether 6 is a constant or Is estimated from the outputs

also does not change the decomposition.

In the simulation literature, a distinction Is made between "internal" control varl-

ates (random variables that are part of the same real or conceptual system) and "exter-

nal" control varlates (random variables that are part of a similar real or conceptual sys-

tem). This distinction is important in our taxonomy. Inernal CV, shown In Figure 4,

makes use of inherent correlation within the single system. However, external control

varlates employ an additional DI transformation to Induce statistical dependence

14



This simple version of CRN Is shown In Figure 3.

Figure 3 about here

4 The desired positive correlation between the outputs Is not guaranteed merely by

Inducing positive correlation between the Inputs. However, analogous to antithetic varl-

ates, If the Inverse cdf Is used to generate the Inputs, then monotonlclty of the 1,7tune-

tons ensures a favorable covarlance term. Here again, whether a variance reduction Is

"2- achieved Is not relevant to the decomposition of CRN. Similarly, the decomposition Is

the same when the Inputs are an historical trace or when nondeterministic methods

(such as blocking In the experimental design) are used.

4.3 Control Variates (CV)

By the term control variates we refer to statistics that attempt to correct the

.:value of an estimator based on the discrepancy between the value of a second estimator

and the known value of Its expectation. For example, let Y(,) and Y(2) be sets of output

random variables In a simulation experiment, and . and a. be known scalar-valued

functions such that

E [8 (Y(j))] 01 aid E is (Y(2))l - a

where 0, and a are real scalars; 0, Is the performance measure of Interest and a is known.

The two most common CV estimators of 0, are the linear control

Z' = (Yo)l - b (eg(Y(2)) - a) (3)

5 13.. ..... *.,
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where a. and a. are real, scalar constants, using a simulation experiment defining

Ya -g(X(g)) i -,,.....1 1 -2,3L-

where E (Ya) - *I, with statistic

s-I isi.. Z, - -. E Y.- is-, Y,, af F2 -I'S

"" The basis for CRN Is the well-known relation

Var (F, - ) = Var (F2) + Vat (YO)- 2 Coy (F2, Fs)

Aggregating the Individual Inputs Xa Into two sets of Inputs corresponding to the

two systems, we can write

Y- gt(X(g)) 1 =,

which defines two aggregated sets of outputs. The original experiment typically has X(2)

and X(,) Independent; that Is, the two systems are realized using different sequences of

U(0,1) random numbers. CRN redefines the joint distribution of (X(,). X(,)), without

changing their multivariate marginal distributions, in a way the practitioner hopes will

induce Coy (F,, F.) > o and In turn a variance reduction for Z1. Thus, CRN consists of a

single transformation from the DI class.

If pairs of scalar inputs, say (X,., X., can be Identified such that each parr Is

Independent of all other pairs, Xq E X(9). and X)4 E X(,), then positive correlation can be

Induced within each pair by generating observations with the same U(0,1) random

number sequence using the Inverse edf

Xg =Fa-'(U) I =2.3

which results In the maximum achievable Cov (X.,, X,) and joint cdf

min (F,,(z,. F,8 (z,.))

12
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that have improved this paper and clarified our thoughts.
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Figure 1 Symbol Set for VRT Decomposition
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Table I
VRT single-component decompositlons

DR DI EA SA El Al

Table II
VRT two-component decomposItions

DR DI EA SA El Al

DR _

DI

EA 0

SA * STRAT

CE,CV
PSTRAT

AI S
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