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ABSTRACT

) Prollferatilon of technlques and lack of unifying structure has hindered both study
The— avthors’

and appilcation of variance reduction. Our- recently developed unifylng structure,

presented 1n detall elsewhere, I1s a taxonomy that views each varlance reduction

technique (VRT) as a transformation from one experiment to another. The taxonomy Is

exhaustlve In that any VRT can be expressed as a composition of elemental

transformatlions from six classes,

1hs
This paper jllustrates -our taxonomy by uslng the notation, terminology, and

concepg/mm\mxggﬂ 1o discuss seven VRTs, which we assume are famlliar to the
~The - —
reader. -©Our objective 1s to use the reader's knowledge of these well-known techniques

to provide an Introductlon and overview of the taxonomy.

o -~

-

\\ ; —\,\
KEY WORDS: Antithetlc varlates, common random numbers, conditional
methsde e

expectations, control varlates, importance sampling, Monte CarloA postst.rat,lﬂed
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1. INTRODUCTION

A computer simulation model of a real or conceptual system consists of a
probabllistic representation of those elements in the system that cannot be predicted
with certalnty and deterministic rules that define the system's reaction to realizations of
the uncertaln elements. For Instance, In a model of a queuelng system the time between
arrivals Is uncertain while the queue Qdiscipline speclfies a rule for processing customers
after arrlval.. Such a model mimics the actual functionlng of the system, or at least the
essentlal elements of 1t. A slmulation experiment s performed by generatlx;g

reallzations of the model and computing estimates of performance measures.

- Varlance Reductlon Techniques (VRTs) are transformatlons. They transform a
simulatilon experiment Into a related experiment that ylelds better estimators of the
performance measures, where better means more precise. This gain In. precision may be
at the expense of the one-to-one correspondence between the model and the system. See
Bratley, Fox and Schrage (1983) and Wlison (1983a, 1985) for surveys of varlance

reduction.

5
.

In Nelson and Schmelser (1984b) we ldentify six classes of transformations that

At

'y

exhaust the set of all possible variance reduction techniques under composition. The

. derivation of the slx classes Is based on a mathematical-statistical definitlon of

simulation experiments developed specifically for studylng varlance reduction (Nelson
T and Schmelser, 1984a). We are proposing a taxonomy for variance reduction.

f-‘:.' Glven any taxonomy of varlance reduction, what should It do to be useful?
S Certalnly it should unify the fleld as it currently exists and also bring new insight into
- what could potentially exist. To be specific, we think a taxonomy should: (a) ellminate
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'C confuslon regarding the characteristics of, and relationships among, VRTs; (b) provide a
3

h common language for communleation In practice, research, and instruction; (c) help
g

Z~':t practitioners determlne appropriate varlance reductlon strategles; (d) generate new
SN

A

-;:'- variance reduction ldeas; and (e) provide a basis for automation of variance reduction.

We return to these filve criterla In section § after lllustrating the taxonomy in

25
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sectlon 4. The examples of sectlon 4 are based on graphlcal symbols presented In

y % T,
oy
e
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sectlon 3 and definitlons of simulation experiment and of the six classes of

transformatlons presented 1n section 2.

e
<

- 2. BACKGROUND

- Descriptions are ln terms of matrices, columns of matrices, and elements of
matrices. Letters, Greek or Roman, without subscripts denote matrices, letters with

single subscripts denote columns, and doubly subscripted letters are scalar elements,

using the usua)l row-column convention. For instance, X, Is the i** element of column

g

b'_\

;.-f vector X,, which Is the k' column 1n the matrix X. For our purposes, a matrix need
\":'

S

N not have elements in all positions, since elements of sets are arranged In rows and

-
™
. o

columns for conceptual rather than pomputatlonal reasons.

A letter with subscripts In parentheses indlcates a set of varlables with indices ina

fixed set. For example, X4, denotes all elements X; In X with subscripts In index set

. l‘l‘l .

A

(eb), a set that would have to be defined. Thus () Is a mapping from a single Index to a

s 0
«
o a

set of tndices.

Random variables are denoted by capltal Roman letters, and realizations of these
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random varlables by lower case letters. For example, y; Is a realization of random

variable Y;. Any notatlon that is counter to the above conventlons 1Is specifically

deflned as needed.

For our purposes, a simulation ezperiment 1s a description of a system of random
varlables; the dimenslons of this system may also be random varlables. Glven & source
of randomness (usually Independent U(0,1) random varlables), reallzaﬁons of the system
can be generated. Based on .the definitions In Nelson and Schmelser (1984a), the.
random variables are partitioned Into snputs, outputs and statistics. These sets have

precise definitlons, but can be described loosely as follows:

Inputs are random varlables defined by known (although possibly only
conditionally) probabllity distributions. Examples are service and Interarrival times of a
queuelng slmulation, or the demand per period of an inventory system. Another
example Is a service time whose distribution, conditional on the number of customers In

the system, Is known. The countably Infinlte matrix of inputs Is denoted by X and has

Jolnt cumulative distribution function F(z).

Outputs are random varlables defined by known, deterministic functions of the
Inputs. They are the observations of system performance, such as the delay experlenced
by customers In the queueing simulation or the number of backorders In the inventory
system. The probabliity distribution of the outputs is not known, but the functions
defilne how outputs are realized from the Inputs. The output, Y, Is .the matrix of all
essentsal random variables defined by functions of X, In the sense that all remalning
random variables that are functlons of X can be derived from Y, provided no element of

Y is deleted. The outputs are denoted by Y = ¢ (X:R.), where R. s the sampling plan;

.........
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the sampling plan defines a stopping rule for the simulation experiment in terms of the

number of realizations in columns of Y.

Statistics are functions that aggregate outputs Into polnt estimators of the

performance measures of interest. A sample mean 1s often used. Varlance reduction

refers to reducing the varlance of these statistics. The statistics are denoted by

Z = h(Y), and the performance measures of interest by §; Z and ¢ are row vectors of the
same dimension.

It Z and ¢ are scalars, and Z Is an unblased estimator of #, then

Var(Z) = [ [h(g(z;R.) - ) dF (z)

VRTs are transformations of simulatlon experiments that alter the Inputs, outputs and
statistics to reduce var (Z). If we hold 6 and the sample space of X fixed, then varlance
reductlon must be accomplished by redefinlng F, ¢, R., and/or h. Six classes of

transformations, defined loosely here, that exhausi the possibilities are:

— Distribution Replacement (DR): Redefine the scalar marginal distributions of

the Inputs without alterlng any statistical dependencles among the Inputs.

— Dependence Induction (DI): Redefine the statistical dependencles among-the

scalar Inputs without altering any marginal distributions of the Inputs.

— Equivalent Allocation (EA): Redefine the functions from Ilnputs to outputs

without altering the allocatlon of sampling effort.

— Sample Allocation (SA): Redefine the allocatlon of sampling effort without

altering the functions that deflne the outputs.




— Eguivalent Information (EI): Redefine the functions from outputs to statistics

without altering the argument set of the statistics.

— Auziliary Information (Al): Redefine the argument set of the statistics

without alterlng the functions from outputs to statlstics.

Transformations In DR and DI rzedeﬁne F; those In EA and SA redeflne ¢ and R.,
respectively; and those In EI and AI redeflne A. The mathematical rigor needed to
prove properties such as exhaustiveness Is presented 1n Nelson and Schmelser (1984a,b);
precise deflnitlons are needed to make the partitloning of Inputs, outputs and statlistics
unamblguous, and to make the classes of transformatlons distinct. However, the loose,

intultive definitions given here are more useful for our current purpose.

3. SYMBOL SET

To augment the dlscusslon of the seven VRTs In sectlon 4, a graphlcal
representation of each VRT Is glven. Only three symbols are needed, as lliustrated in
Figure 1. Rectangles enclose a definltlon of an input, output, or statistic In the
simulation experiment. Circles enclose a class of transformations. Trapezolds contaln

the prior knowledge used to ma;ke application of the transformation possible and

reasonable.

Figure 1 about here
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By prior knowledge we mean any knowledge, elther known with certalnty or
suspected, beyond that necessary to design the original (“crude”) simulation experiment.
Since prior knowledge Is often difficult to state succinctly, and since our purpose here is
to lllustrate the taxonomy rather than to provide every detall of the VRTs discussed,
the prior knowledge specified In lf‘lgures 2-8 Is often minimal. Complete specification Is

often clear by considering Implementation of the VRT.

The progression in each figure Is from left to right, proceeding from a definition of

some Input, output, or statistlc to a new definition via a transformation.

4. DECOMPOSITION OF VARIANCE REDUCTION TECHNIQUES

The VRTs consldered are antithetlc varlates, common random numbers, control
varlates, stratifled sampling, poststratifylng the sample, conditional f;xpectatlons, and
Importance sampling. These seven were selected specifically because they are well-
known and understood, and thus they provide a convenlent Introductlon to our variance
reduction taxohomy. For each VRT, a description of the VRT and graphical display of
1ts decomposition Is presented. The purpose Is not to propose a comprehensive
definitlon of these seven VRTs, but rather to lllustrate our taxonomy using well-known

examples.

Each transformation in the decomposition of a VRT may not, by Itself, reduce
variance or even yleld an acceptable experiment. Varlance reduction Is achleved by the

combined effect of all the relevant transformations.

---------------------
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4.1 Antithetic Variates (AV)

Antlthetlec Varlates Is a VRT that has been extenslvely studlied 1n the context of
Monte Carlo estimation. The technlque first appeared In Hammersley and Morton
(1956), with further early developments by Hammersley and Mauldon (1956), Morton
(1857), Halton and Handscomb (1957), and Handscomb (1958). In 1ts broadest sense,
“we use the term antlthetic varlates to describe any set of estimators which mutually
compensate each other’s varlatlons” (Hammersley and Handscomb, 1964, p. 61). Statist-
Ical results s;1¢h as

Var (Y;2Y;) = Var(Y;) + Var (Y;) £ 2Cov (Y;, Y;) 1)
lndlqate the advantage of forcing correlation among outputs while malntaining thelr
marginal distributions. Antithetlc variates attempts to Induce negatlve correlations

among identlcally distributed simulation outputs.
Conslder estimating 4,, a real scalar, using a simulation experiment deflning

Yo =00(Xyy) s=12..I =2n

where E(Y;,) = 4, and X;,, Is a set of Inputs Indexed by s, with statlstic

Further, suppose that

X(l.l) ~ "d F(,)(z(“)) ] = l’ 2, ooy 2n (2)

The usual AV transformation Is to redeflne the Joint distribution of

(X(ﬁl'—l.l) B X(ﬁl',l)) = 1,2,...,n
such that the marglinals glven in (2) are unchanged, but the palrs are negatively corre-
lated. When X|;,, s a scalar, or If AV Is used only on a scalar component of X, the

correlatlon 1s most often Induced by generating rcallzations via the inverse cumulatlive

Ty




distributlon functlon (cdf) of X;,, In the following manner:

X(m‘—m) = F-l(l)(t]i)
X@ig = F,)(1-U;)

where U; ~11.d. U(0,1) ¢« = 1,2, ..., n; this induces the minimal achlevable covarlance
between the Inputs X _,, and X, With the given marginal distributions (Whitt,
1976). The resulting jolnt cdf is

max (F(l)(z(ﬂl'—l.l)) + Ffz@ig) - L o}
Thus, AV is composed of a single transformation from the Dependence Inductlon (DI)

class, as shown 1n Flgure 2.

Flgure 2 about here

When correlation 1s to be Induced among k-tuples (k > 2), there are a varlety of
approaches and cbjectlves (see for Instance, Fishman and Huang, 1983). Although more
complicated mathematically, the k-tuple case stlll lnvolves only a single transformation

from DI.
The reason for Induclng dependence among the Inputs Is to cause
Cov(Ygia,, Ygi1) <O
which reduces the variance of Z, via (1). Negative covarlance between the outputs Is
not guaranteed by negatlve covariance between the Inputs. However, Willson (1983)
showed that iIf the Inputs are generated vla the Inverse cdf (as shown above) and g¢;, Is
monotone, then the minimum achlievable covarlance between Y, _,, and Y, , wlll be

achleved. However, achleving the bound, or even reducing variance at all, Is not a fac-

10
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tor In classifying these methods as AV or the transformation as AI. The only relevant
factor Is that the correlation 1s Induced by redefining the Inputs whlle malntalning tiels

marglnal distributions.

This redefinitlon Is usually accomplished by making the Inputs deterministically
dependent. When an estimator conslsts of a sum of n outputs, the antithetic-variates
theorem (Hammersley and Mauldon, 1956, Handscomb, 1958, Wilson, 1979, 1983) states
that under falrly general conditlons the greatest lower bound of the variance of the estl-
mator can be apﬁroached arbltrarily closely by generating all n Ilnputs from a deter-
minlstlic transformation of a single randomly sampled Input. But whether or not corre-

latlon Is Induced deterministically, the transformation is stlll DI in our taxonomy.

4.2 Common Random Numbers (CRN)

Common random numbers Is often called correlated sampling (CS). Confuslon can
arise because CRN Is both a method for generating correlated samples and a VRT that
exploits Induced correlation. “The name of the technique stems from the possibllity In
some situations of using the same stream of basic U(0,1) random variables to drive each
of the alternative models through tlme...” (Law and Kelton, 1982, p. 350). We use the
term CRN In the sense of CS, meaning that correlation Is induced (by whatever means)
between certaln Inputs to obtaln positively correlated outputs for estlmathg the
difference between two performance measures. CRN has the distinctlon of being “...the

only VRT that Is as a rule used by practitioners of simulation™ (Kleijnen, 1874, p. 208).

Conslder estimating

11
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transformed In the simulation experiment. The decomposition of a VRT depends, for
Instance, on what the crude experlment was. Also, two techniques that emphaslze sam-
pling based on smportance may differ greatly in how they achleve 1t (see STRAT and IS,
above). In this paper, the decomposition of each VRT should be considered in light of
the definition of the VRT presented here; 1t may not (and probably will not) be the

same for every application that goes by the same name.

Tables 1 and I1 sumnmarlze the decomp.sitions presented In this paper. Any
decomposed VRT lles in a cell of one of these or a higher order table. Six of the seven
VRTs discussed are shown. The seventh, Importance sampling, lles In the fourth order

table In cell (DR, EA, EI, Al).

We conjecture that If all known VRTs were decomposed and entered Into these
and hlgher order tables, there would be empty cells. Why are these cells empty? Do
they suggest new VRTs to be discovered, or are there some comblnatlons that are
Infeasible? Our taxonomy suggests the openings and provides a foundation on which to

develop further structure for addressing such issues.

Tables I and II about here
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for general simulation experiments. The underlylng motlivation for the creation of our
taxonomy was the observation that varlance reduction, despite its obvious benefit, s sel-
dom used because of the difficulty In learnlng varlance reductlon ideas, the dificulty in
Implementing many of the technlques, and the likelthood of improperly Implementing a
technlque, thereby Invalidating the experiment. Any hope of widespread use of variance
reduction depends upon the automation of these methods. Automation needs to occur
for both the ldentificatlon of appropriate varlance reQuctlon ideas and for the implemen-
tation. TheA long term goal Is an Interactlve system capable of looking at a computéy
simulation model and asking good questlons about the avallable prior knowledge (recall
the definitlon of prlor knowledge) and suggesting good variance reduction ldeas. In con-
Juncilon with a particular language such a system would then implement the ldeas. But
any automated system needs a “world” In which to work. We hope that, Just as our
taxonomy has provided a world view for us to identify appropriate VﬁTs directly, the

taxonomy will do the same for automated systems.

In discussing these five criteria, we are making an Important distinction between
the design and the analysls of VRTs. Criteria (c), (d), and (e) above concern deslgn,
whlle the present paper lllustrates the analysls aspect (criterla (a) and (b)) by demon-

strating how VRTSs are decomposed.

We are often asked: “In terms of this taxonomy, what 1s VRT x?” Our answer Is
usually to glve the decomposition for what we consider to be the most common form of
VRT x, as was done 1n thls paper. A better answer would be "It depends.” A strength

of our taxonomy ls that i1t does not categorize VRTs, but reflects what Is actually

24
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experience has been that once a simulation experiment is expressed In terms of the

inputs, outputs and statistics, then examining the experiment from the perspective of
the six classes of transformatlons facllitates the identification of appropriate variance
reduction strategles. In a varlety of real and textbook cases, we have found that think-
ing !n terms of the taxonomy provided a ready-made list of 1deas (the six classes),
helped Identify the relevant prlor knowledge, suggested generalizations and
modlficatlons of standard technlques, and indirectly provided a sense of when to stop
the search for mbi‘e variance reduction ldeas. Of course, It Is difficult to determine
whether the Improved abllity to find varlance reductlon ldeas is due to the Inslght
galned from the months spent creating the taxonomy or from the taxonomy lItself. Only

the experience of others will tell.

(d) The taxonomy generates new variance reduction ldeas. While our taxonomy
1s not an “erector set” of components from which VRTs are directly a;ssembled, 1t does
foster dlscovery of new ldeas by expanding rigld definitions of standard VRTs (see CV
above, for example). In terms of the six classes of transformations, no VRT Is really
new, it 1s just an expansion of existing ldeas made possible by a broader perspectlve.
Examples of such ldeas that the authors have developed (and have not, to our
knowledge, appeared 1n the llterature) include: (1) using nonlinear control varlates for
estimating probabillitles, where standard linear controls may yleld infeasible estimates,
(11) using the difference between two analytlc results as control varlates, and (111) using
distribution replacement to make optimal sample allocatlon posstble (& difficult concept

before the two, often confused, ldeas were distinctly separated).

(e) The taxonomy provides a basls for research on automated variance reduction

23
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Introduction In light of the taxonomy presented In this paper:

(a) The taxonomy reduces the confuslon that currently exlsts regarding the funda-
mental characteristics of, and relatlonships among, VRTs. Nelson (1983) listed elghty
names of VRTs that have appeared In the lterature. Many are different names for
almost (If not precisely) the same technique and many fundamentally different tech-
niques have quite simllar (or identlcal) names. These slmllaritles and differences are
more apparent when VRTs are decomposéd Into thelr baslc transformations, as the

examples In this paper lllustrate.

(b) The taxonomy provides a common language for communication among
researchers, between researchers and practitioners, and among practitioners. The prob-
lem of multlple names for roughly equlvalent (where we can now say what roughly
equlvalent means) VRTs should be less of an Issue. The simllaritles and differences
between VRTSs are apparent when they are decomposed Into thelr elemental transforma-
tlons. The existence of classes of transformations makes possible the unification of
theoretical results concernlng conditlons that Insure eflectlveness of VRTS, results that
presently exist In a fragmented fashion In the literature and have been of llmited practl-

cal use,

Ideally the taxonomy would also be a usefui tool for teaching var!ance reduction to
simulators (students and practitloners), but our experlence In thls area has been disap-
pointing. The reason, and a motivation for this paper, Is that learnlng proceeds most

naturally from specific to abstract.

(¢) The taxonomy provides a different, and we think more eflective, approach for

practitioners to find varlance reductlon strategles in slmulation experiments. Our
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original outputs Y;, and the auxlllary information Y;, (AlI). Generalization to altering
the distribution of a random vector, rather than the scalar X, does not change the

decomposition.

- Figure 8 about here

The decomposition also does not depend upon the cholce of the new input distri-
bution f4(za), which typlcally Is chosen to be approximately proportlional to
| E(Y:, | za) | fa(za), where the expectation Is over X;,. This measure of importance is
réughly the product of output magnitude |y;,] and Input likelthood. See Kahn (1556)

for additional detalls.

5. CONCLUSIONS ‘

|

The _examples in thls paper illustrate the variance reduction taxonomy developed j

in Nelson and Schmeiser (1984a,b). The anglysls of varfance reduction technlques by 11

decomposing them Into members of the six classes of transformations Is central. Other |
attempts to develop a taxonomy of varlance reduction, suc=h as McGrath and Itving
(1973) and Wllson (1983a, 1985), were not completely successful, in part bécause they
tried to categorize VRTs. But as we have seen In section 4, simple partitions do not
exls;.. VRTs overlap In the sense that they are composed of transrormatlons from com-

mon classes.

Returning to the questlon ralsed !n the !ntroductlon — Why Is a taxonomy of

varlance reductlon useful? — we now dlscuss the flve criterla mentioned In the

21




reglon. In contrast to STRAT, which directly allocates sampling eflort, IS blases the

outputs by altering the probabllity distributions of the inputs.

IS 1s a standard technlque In Monte Carlo estimation problems; see for Instance
Hammersley and Handscomb (1984) and Kahn (1956). The technique s used infre-
quently ln systems simulation because the effect of altering the Input distribution is
often difficult to derive. See Kleljnen (1974) for a general dlscussion, and Jeruchim

(1984) for an example,

A stmple version of IS that llustrates the central ldea is glven here. Conslder
estimating 4, by I, observations of Y;,, where E(Y;,)=40,, ¢« =1, 2. ..., I,. The crude est}-

mator of 4, might be

Z,=h(Yy)=1I," ‘% Ya
Now suppose Y;, Is a function of (X, X, ) for some fixed column ln;iex k of X. For
notational convenlence write
Yo, = gii(Xa)
suppressing the X @y Assume that X;, are l.l.d. random varlables for all s with ldentical
discrete or continuous marginal pdf f.(za). Conslder some other pdf f§4 of the same

type and having the same support as f,. If X; 1s sampled from f 4 and If X, Is sam-

pled from the unaltered conditiona) distributlon of X, glven X, = z4, then

b JaXe)

1
=1} Y, 'Y YaY,

fl’ﬁ(xll) o ‘=]

§ =1

Is the (unblased) IS estimator of ¢,. As shown In Figure 8, IS employs the new input dls-
tribution F4 (DR), the new outputs Y;, based on the prior knowledge of the old and

new input distributions (EA), and the new statistic (EI) that averages the product of the
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o Is known or can be calculated for all reallzations y;, of Y;,, where here Y, 1s generic for

i any of Y;,, then based on the well-known relatlon

i Var (E(Y, | ;) = Var (Y,) - E (Var (Y, | Y;,))

E the conditional expectation estimator

St !

i Zi=MYD =1 B E(Y,| Y ()
i can be used. As shown In Filgure 7, based on the (possibly only suspected) prior
knowledge that E (Var(Y,| Y;;)>0, CE use.s Y;, as auxiliary Information (AI) in the
- modified estimator (EI) based on the constants E(Y,| Y;s) obtalned from prior
sy

i knowledge.

The estimator (8) Is unblased for 4,, and If I, = I, and the Y;, are ‘ndependent

then 1t has no greater varlance than (7). However, CE Is often employed when I, > I,,

B

e e

. S e e .o
L

LN ‘v '

R R R

-
A

such as when Y;, are results of “rare events.” Clearly the estimator (8) may be based on

-
s

a vector of outputs, not Just a scalar Y, but this does not affect 1ts decomposlition.

AN

.
(]

Note that Y;, has not been redefined, but rather other outputs (auxlliary information)

o

X -

In the slmulation experlment are used.

L
ol

Ny
R ol

Flgure 7 about here
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3 .

oA 4.7 Importance Sampling (IS)

ij.'.;' Importance sampling 1s one of several VRTs that attempt to concentrate sampling

I_._ In reglons of Interest, where inlerest may be related to the varlance within the reglon,
K the likelthood of observations In the region, and/or the magnitude of observatlons In the

18
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Figure 6 about here

4.6 Conditional Expectations (CE)

The conditional expectations method 1s often called conditional Monte Carlo
(CMC). However, CMC also refers to a sampling technique developed by Trotter and
Tukey (1956) to “use a famlly of transformations to convert given samples Into samples
conditloned on a glven characteristic (p. 64)." Dubl and Horowitz (1979), Granovsky
(1981), and Wilison (1085) discuss CMC In detall. But other than to mention that the
oﬁglnal CMC employs a transformation In EA, we do not discuss CMC further h;:re.
since the background and detall needed to decompose CMC requires the preclse

definitions of our taxonomy.

We reserve the term condistional Monte Carlo for the original sampling technique.
Condstional ezpectations (CE) 1s used here as \n Law and Kelton (1982), where the
expected value of the output of interest is replaced by its known condltional expected

value.

o Conslder estimating #, using a simulation experiment defining

Yl'l=,l'l(x(l'l)) ' =12 .. Il

where E(Y;,) = 6,, wWith statistic

1, .
zlghl(yl)=ll-l ‘E‘ Yl'l ) (7)

If there 1s another output random variable Y;, ¢ =1,2, ..., ], such that

.__.\ E(Y,| Yig= yig)
i 18

,'-.
.. . .‘\‘

g, oty

r.'. o SN PAPAEN,

.........

': o @ e Lt e M e e b4 <7 X .. w’y
Seed RS NP SR RO N RIS SNy Y AN TN TG xR A

-------




R A R " R LAV b e ifare T
ol ol iess Shuts Aoy Soa gob 4 L And Al A8 ""‘\"h'v'l‘k"L‘L‘-‘L‘\‘\." I R "ike i

8 more representative sample by controlling the sampling plan {I, I,, ..., ,,,}. When
such control Is not possible, sometimes each observation can be welghted on the basls of
whether 1ts stratum 1s under or overrepresented In the sample. This VRT, usually
called poststratified sampling, we call poststratifying the sample, since the sampling plan
Is not altered. Bratley, Fox and Schrage (1983), Cochran (1977), and Klel)nen (1974)
discuss PSTRAT. Wilison and Pritsker (1984a,b) apply PSTRAT Ian queuelng simula-

tion.

Using the above notatlon for STRAT, consider the PSTRAT estimator

s +1 ,; p’.
- Zl'= .E 2 TY.’
J=2 M) F)
where Y,; Is the m* observation of Y, for which X, € L;, and I; 1s the number of such

observatlons of the I, total. The I; are outputs (the result of sampling), but we con-

tinue to denote them as /; for convenlence.

Provided I; > o for y = 2,3,.., n+1, Z/'ls an unblased estimator of §,. Whereas Z,

glves each observation welght 1/7,, Z" glves welght p;/1;. If the observations distribute

themselves proportlonately (I; = p;1,) then this reduces to 1//,. If a stratum Is over or

PR
v

DAL

4,

underrepresented, p;/I; 1s less or greater then 1/I,, respectively. Thus PSTRAT

corrects for disproportionate sampling, in contrast to CV, which corrects for shifts in

N
E\ location. Figure 6 shows how PSTRAT comblnes the strata sample sizes as auxlllary

f. Information (AlI) with the prior knowledge of the strata probabllitles to obtaln the new
estimator (EI). In our taxonomy PSTRAT 1s more closely related .to CV than to !
h STRAT, since J; In PSTRAT Is random and therefore an output requiring Al, while In E
& 1
g STRAT I} Is a known constant and therefore simply part of the new estimator. '
s

:
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The STRAT estimator Is

, n+1 4 n
Z{= h)'(Y(l)) = ’,E’Pj (U _}.3_. Y-,‘)

which requires arbitrary control. of the new j;* stratum sample size I{ and prior

knowledge of P(X; € L;), denoted by p,, for each stratum j ==2,3,..., n+1.

Figure 5 shows that STRAT reallocat;es the number of observatlons per stratum
(SA) using the prior knowledge of the strata definitions and then rewelghts the outputs
In the estimator by the ratlo p;/I} (EI). Generalization to stratifying on a random vec-
tor rather than a scalar random varlable does not aflect the decomposition. Also,
whether or not the new sample allocation ylelds a variance reduction does not affect the !
decomposition. Allocatlon strategles are not discussed here (see for instance, Cochran,
1977), but proportional allocation (I} = I,p;) guarantees

Var (Z]) < Var(Z))

(Rubinsteln, 1981). If the I; are not altered by fixIng them 1n advance, then the VRT is

known as poststratifying the sample; see section 4.5 below.

Flgure 5 about here

4.5 Poststratifying the Sample (PSTRAT)

A source of variability In all sampling experiments 1s that the sample Is not

representative of the population sampled. Using proportional allocation, STRAT forces

-

.
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RN
;:Z,-'
- between the two systems; as In the CRN example (section 4.2), both systems are part of
o
- the same simulation experiment in our definition.
‘ e
:_:
N
o
N 4.4 Stratified Sampling (STRAT)
Cur .
C:; STRAT Is a technlque that replaces simple random sampling with a sampling plan
-~
s designed to reduce varlance. Hammersley and Handscomb (1964) and Rubinstein (1981)
25 discuss stratified sampling In the context of Monte Carlo problems and Cochran (1877)
-r::: ) -
j.':~,‘ discusses the context of survey sampling. Books contalning chapters dealing with
>
st_,ratlned sampling speclfically In systems simulation are Klelynen (1974) and Brat_ley,
',:_]:j 'Fox and Schrage (1983).
o Conslder estlmating 4, when 1t 1s possible to sample I, observations of Y;,, where
P E(Y:))=20, 1 =1,2,..I,. The crude estimator of ¢, might be
o ‘
.\.
':‘:: ’1
" - R . Zy=h(Yqy) = " ‘El Yo
) 4
Now suppose Y;, can be expressed as a functlon of (X, Xi) for some flxed column
I '
T Index &£ of X. For notatlonal convenlence write
- , Yo = 9::(Xa) - ()]
:S"-f suppressing the X;,. Assume that X; are L.l.d. random varlables for all ¢, and that the
g ‘
',':v_f range of X, can be divided into n nonoverlapping, exhaustive strata (Intervals). Denote
n .
! these strata by L; , j = 2,3, ..., n+1. An equlvalent way to view (6) Is
Yei = tmi(Xa) 5 =23, ..0+1 m=12.,1[
such that Y,; I1s the m' observation of Y, for which the associated random varlable
L 15
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where & Is a scalar, and the ratlo estimator

8,( Y(l))
D e—— 4
The function s, Is the control varlate.
Both (3) and (4) are of the form
2. = h(s,(Y (). 83(Y(g))) : (5)

with the property that A (6,,a) = 4,. Several authors have noted that these two estima-

tors are simllar, Including Klelynen (1974) and Isaki (1983).

As shown 1n Figure 4, statistics such as (5) are obtalned by a composlite transfor-

mation that first augments the argument with output Y, which is Al, then modifies

the statistic A, which Is EI

Figure 4 about here

Both (3) and (4) extend naturally to multiple control varlates, which does not

change the decomposition. Whether b s a constant or Is estimated from the outputs |

|

- also does not change the decomposltion. |
.':;EZ In the slmulatlon literature, a distinction Is made between “Internal” control varl-
. ates (random varlables that are part of the same real or conceptual system) and “exter-

nal” control variates (random varlables that are part of a simllar real or conceptual sys-
tem). This distinction 1s important in our taxonomy. Invernal CV, shown in Figure 4,
makes use of Inherent correlation within the single system. However, external control

variates employ an additional DI transformation to Induce statistical dependence




1‘~ :.-._:a. 1{

=\

This simple version of CRN Is shown In Flgure 3.

Figure 3 about here

The desired positive correlation between the outputs is not guaranteed merely by
inducing positlve correlatlon between the Inputs. However, analogous to antithetic varl-
ates, If the Inverse cdf Is used to generate ti:e Inputs, then monotonleity of the g; func-
tions ensures a favorable covarlance term. Here agaln, whether a varlance reduction is
achleved 1s not relevant to the decomposition of CRN. Simllarly, the decomposition is
the same when the Inputs are an historical trace or when nondeterministic methods

(such as blocklng in the experlmental deslgn) are used.

4.3 Control Variates (CV)

By the term cbntrol variates we refer to statistics that attempt to correct the
value of an estimator based on the discrepancy between the value of a second estlmator
and the known value of Its expectation. For example, let Y, and Y, be sets of output
random variables In a slmulation- experiment, and s, and s, be known scalar-valued
functions such that

Els (Yol =6, and E[s(Y ) =<
where 4, and a are real scalars; 6, 1s the performance measure of Interest and a Is known.

The two most common CV estimators of 4, are the linear control

Z, = &,( Y(I)) - (‘I(Y(a)) -a) (3)

13
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0, =ag-ay

where a, and a, are real, scalar constants, using a simulation experiment defining
Yg -’a(X(a)) ) -], 2, ....I‘ i - 32,3
where E(Y3) = a;, With statistic

I, Iy
Z, = I’-".-E, Y- 1,7 ‘Ex Yio=Y,- ¥,

The basls for CRN Is the well-known relation
var (Y, - ¥,) = var (¥,) + vVar (Yy)- 2 Cov (V,, V)
Aggregating the Indlvldual Inputs X; Into two sets of Inputs corresponding to the

two systems, we can write

Yi=aXy) =223
which deflnes two aggregated sets of outputs. The origlnal experiment typlcally has X,
and X, Independent; that Is, the two systems are reallzed using different sequences of
U(0,1) random numbers. CRN redefines the jolnt distributlon of (X, X)), Without
changing thelr multlvgrlate marginal distributions, In a way the practitioner hopes will

Induce Cov (Y,, ¥,) > 0 and In turn a varlance reductlon for Z,. Thus, CRN conslsts of a

single transformation from the DI class.

If palrs of scalar inputs, say (X;; X;s), can be ldentified such that each palr is

Independent of all other palrs, X;, € X,, and X;, € X4, then positive correlation can be

Induced within each palr by generating observations with the same U(0,1) random

number sequence using the inverse cdf

Xa=Fa\(U;) | =23

which results In the maximum achlevable Cov (X, X;,) and Jolnt cdf
min {F,5(2;3), F;a(%ia)}

12
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Figure 3 Common Random Numbers (CRN)
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Figure 4 Internal Control Variates (CV)
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Figure 5 Stratified Sampling (STRAT)
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Figure 6 Postratifying the Sample (PSTRAT)
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Figure 7 Conditional Expectations (CE)
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Table 1
VRT single-component decompositions
DR DI EA SA El Al
CRN
AV
N
Table I
VRT two-component decompositions
DR D1 EA SA El Al
DR .
D1 .
EA .
SA ° STRAT
CE,CV
El ® PSTRAT
Al .
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