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DIFFERENTIAL ENTROPY AND THE STATISTICS OF
INSTANTANEOUS FAILURE

L. Introduction

Instantaneous failure statistics are usually modelled in terms of a
probability density fT(t) of the (continuous) time to failure, 0<t<», for a
component or system under consideration [1,2]. 1In order to define a
dimensionally consistent differential entropy for such a process, it is
necessary to deal with a dimensionless probabilitv density that is a function
of a dimensionless time or ordering parameter. This mav be accomplished by
introducing a positive time scale parameter Tr so that the dimensionless time
is just

tzt/rp, OKEt<= (1.1
The corresponding dimensionless probability density 1is

fx(%) = tpfp(t) (1.2)
Then it is straightforward to define a dimensionless differential entropy for

failure statistics to be
A A a A A A A
Sp = = /® £r(£) log fr(t) dt = - E[log f7(P)] (1.3)
o

By explicit demonstration [3], §T is well-defined for all the customary models
of ingstantaneous failure although §T is not necessarily positive.

One object of this paper is to point out a relationship between §T and
the dimensionless relative failure rate at time E, {.e. the dimensionless

hazard rate, ST(E).

Sp®) = £p B/ 1-Fp(E)] (1.4)
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Here FT(G) is the probability distribution at time t. It is clear that
AT(%)dE is just the ratio of the probability of failure in [E,E+d§] to the

probability of survival to time t. Tt is established in the next section that

§T 1s equal to the negative of the expectation of the logarithm of the hazard
function, i.e. to -Ellog XT(E)I, plus unitv.

This relationship is then used as a basis of a discussion of the behavior
§T under transformations of ordering parameter, which may occur bhecause of
change of physical conditions. Transformations that leave §T invariant leave
Ef{log KT(G)l invariant. Such invariance is interpreted as meaning that the
conditions of failure remain unchanged even if measured in terms of a
different ordering parameter. Similarly, the lack of invariance of §T or
Ellog iT(G)] is interpreted to mean the conditions of failure have been
changed as e.g. in accelerated testing. Both tvpes of behavior are discussed
further in section IIL,

II. Differential Entropy and the Expectation of the Logarithm of the

Hazard Rate

As indicated in the introduction, there is a simple relationship between
the differental entropy §T and the expectation of the logarithm of the hazard
rate E[log Ap(£)]. That relationship is based on the following observations.

First note that the cumulative hazard rate KT(E) is just
A A 2 A A A
Ap(E) = SEAp(E-)dt” = logll-Fp(E)] (2.1)
o

Further note that the cumulative probability weighted with the cumulative

hazard rate is independent of the choice of probability density.

a(Fp) = - £& En(t*)logl1-Fp(£)1at*
[¢]

Fp
-/ log(l-F”)dF~”
o T T




= (1-Fp)log(i-Fp) + Fr (2.2)

In particular when FT(E) =1, 1l.e. as t - o,

Q1) =1 (2.3)
independent of the choice of ET(E).

It follows Iimmediately from the definitions of §T and XT(E) respectively

in (1.3) and (1.4) that

a

Sp = -Ellog Ap(8)] + 1 (2.4)
Hence an evaluation of gT for a particular probahility density serves equally
well as an evaluation of Ellog iT(E)]. Thus the differential entropy takes on
a very specific empirical meaning in the context of the statistics of instan-
taneous failures. This empirical basis 1is used in the next section to inter-
pret the invariance properties (or lack thereof) for §T under transformations

of ordering narameter.

ITI. Invariance Properties of the Differential Entropy
In general a time or ordering parameter is a positive cumulative

function that increases monotonically from an origin. A transformation of
ordering parameter which may arise from changes in physical conditions is
taken to mean a one-to-one relationship between two ordering parameters such
that the derivative of the transformed parameter with respect to the original
parameter is positive and finite almost everywhere, i.e., except possibly at
isolated points. Implicit in the specification in section T of the range of
the ordering parameter ttobe 0 <t <mwis the setting of origin for failures
at t = 0. Transformed ordering parameters will here also be assumed to be
aligned in the sense that they all share the same origin.

Consider then the transformation & = 4(£), G(0) = 0, where U involves

the ratio of a dimensional ordering parameter to a corresvonding time scale




parameter Ty. In general, such transformations are not linear. The one-to-

one nature of the transformation means that

Fy(d) = Pp(t) , 4 = 4(8) . (3.1)
or
fFy(d) = fp(2)/1da(E)/at] (3.2)
Then
§y = S7 + re fr(£)1ogldd (£)/dE 14t (3.3)

In general the integral on the right hand side of (3.3) does not vanish so
that the differential entropy is not invariant under a trausformation of
ordering parameter.

In view of (2.4), (3.3) may be rewritten as

E(loghy(8)] = Elloghp(})] - r=fp(t)1ogldd(£)/dt 1at (3.4)

o

Thus E[logiT(E)] i1s also not in general invariant under the transformation
determined by (3.1). Such a lack of invariance is not unreasonable and, in
fact, should be expected when the conditions of faflure are changed. Changes
in the condition of fallure are a usual occurrence, for example, when an
object being observed for fallure is subjected to reduced or increased ambient
temperature in the course of a life test. Consider the simple case of a

linear transformation
b(t) = at (3.5)

where 3 i{s a positive dimensionless constant. The transformation can either

be viewed as a change in the dimensional ordering parameter from t to At or a




change in the time scale parameter from TT to ty = tp/d. If & = 1, there are

compensating changes respectively in the dimensional ordering ind scale
parameters e.g. t = kt/krTfor arbitrary k, and there Ls no change in the
differential entropv. TIf &>1, G(f) is larger than t so that the process must
be slowed to accommodate (3.1). Similarly if a<l, the failure process must be
accelerated to accommodate (3.1). This variation of behavior with the
maanitude of 3 {s also revealed by considering the behavior of E[logip(t)]

under the transformation (3.5). In that case

Elloghy(@)] = E{logip(})] - log & (3.6)
Again it is clear that the failure process is slowed for 3>l and accelerated
for a<cl,

To go bevond the gimple situation of a linear transformation, it is
instructive to consider specific probability distributions for the failures.

Two of the most usual are the exponential and the Weibull with respective

distributions,
Fr = l-exp=(Agt) ' (3.7a)
Fy = l-exp-(myw)B ,  8>0 (3.7b)

Here t and w are dimensional ordering parameters and Ar and ny are dimensional
rate parameters. (For the exponential distribution At is the dimensional
hazard rate.) By introduction of tp and Ty respectively, (3.7a,b) are

readily expressed in terms of the dimensionless quantities iT’TTXT, t = t/tr,

Aw = Tyny and W = w/Ty. Consider then the transformation

t = bwB or t = bwh (3.8)




where b has the dimensions of [time]l™B, b 1s dimensionless, and both are

positive. From (3.1) and (3.7a,b), it follows that
b o= nS/AT, b = AB/%y (3.9)

The difference between the differential entropies calculated respectively

for the exponential and Weibull distributions 1s ijust

St - 8y = ASpy = lomeny/ip - y(-1)/8 (3.10)
Here y is the Euler constant, y = 0,577215... . Clearly, depending on the
values of 3 and the ratio ﬁw/iT, A§TW can be either positive or negative cor-
responding respectively to decelerated or accelerated failures. The latter
behavior is again immediately revealed by the fact that A§TW is the negative
of the difference in the expectation of the difference 1n the logsarithms of
the hazard rate for the corresponding exponential and Weihull distributions.

When AgTw = 0, the differential entropy remains invariant under the
transformation from an exponential to a Weibull distribution. This additional
condition serves to remove some of the arbitrariness in the choices of 11 and
Tyye Indeed if a choice is made for ome of the latter two, the other becomes
(in general) a function of ny and Ap. Actually {t {s convenient to make the
latter dependence tacit by choosing

= A;lor A =1 (3.11)

so that the invariant §T = §W = 1. Then (3.10) for Agngo vields

A(B) (3.12)

a

Here the right hand equality serves to define A(R) so that

fiy = 87 lexn(1-8"1)y

W= ’A(B)n‘;l (3.13)




which determines the dimensional scale parameter in terms of the rate
parameter ny. It follows directly from (3.9) and (3.12) that

b = [A(B)]B = bTS/TT (3.14)
or

17 = blty/A(8)]8 (3.15)
Thus the respective dimensional time scales are related by the same trans—
formation (3.8) as the dimensional order parameters provided there is an
appropriate normalization determined by the condition AgTw=0.

The condition A§Tw=0 may be understood to mean that the physical mecha-
nisms of failure are not changed. For example, one could take the view that
an ohject has its own internal clock which orders its evolution to failure.
The clock used in the laboratory for measurements in general will be di‘ferent
from the internal clock. Since in such a situation, the phvsical mechanisms
of failure remain the same independent of the ordering parameter used for
enumeration of failures, E[logﬁT(E)] and hence also §T would remain invariant.
When this invariance obtains under the transformation (3.8) as for example
when the measured distribution is Weibull with an underlying exponential, the
measured failure rate ny should have some surprising features. For instance
if g>1, it should be smrller than expected and similarly if R<l, it should be
larger than expected. Another possible indicator of the presence of an under-
lying distribution here would be unexpected dependencies of the rate on system
specific parameters. For this example, if the change of a power of parameter
to a (power)/B provided expected behavior, then one would have an indicator
that there {s an underlying exporential distribution., This latter indicator
also provides the key to improved performance by its revelation respectivelv
of an increased or decreased (depending on the value of R) sensitivityv of
parameters. Appropriate modification of the parameters entering in the rate

parameter itself, could lead to improved performance.
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The example given here exhibited a relationship between the exponential
distribution into the Weihull distribution bv means of a transformation, Ea.
(3.8). This discussion suggests a useful general method of finding
relationships between different distribution functions and their respective
entropies. Two other examples of interest in Statistics of Instantaneous
Failures would be (a) B8-Weibull to B”-Weibull, B#*8~ and (b) exponential to
hathtub distribution.

The case of transformation of a Weibull to another Weibull is of some
interest. In the notation of (3.10) it is found that

Sy = Sy- = ASyy- = log(B‘ﬁ;/Bﬁw) + (B-8"/BB” )Y .

The discussion of the type following (3.6) in this case shows that the
failure process is slowed or accelerated depending on the relative values of
the rates fiy and Ny~ as well as the exponents 8 and B”.

The discussion above concerned transformation which carried the range of
the ordering parameter variable from (0,=) to (0,»). It is also possible to
make other types of transformations which carry (0,») to (a,h) or to (~=,=),
In a generalized sense, these mav also be considered as transformations of
time but the physical meaning is perhaps obscured by such transformations.
Thus, we could use the transformation 3& = log(l+e%§) (B)O) which carries
%:(0,®) to y:(-=,2), and the exponential distribution in X is then trans-
formed to a logistic distribution e'%§/(l+e‘%§)2. The entropy change §x-§v
1s (-1-2n(A/b)). The transformation A% = log(b-a/b-2), a<z<h, %:(0,=) becomes

A A QD

2:(a,b) and the exponential distribution becomes a uniform distribution in 2.

N

The change in entropy, §X—S ts 1-gn{A(6-32)].

Z
The bathtub distribution i3 obtained from an exponential distribution

when the transformation

A A ~ b
At =e(Y) 1, f b >0




is made on the exponential distribution in the t-variable. This takes ti(n,=)
to 2:(0,=) and the exponential distribution is transformed to the hathtub

distribution in the z-variable. The entropv difference is given bv

é,—é = = gn(Yb ) —r®a=Ven(l+v)dv -~ (P71) r® a=Viavea(en(li+y))
=t EN 5 o

In summarv, we have related the dimensionless entropy for failure
statistics to the newative of the expectation of the logarithm of the hazard
rate. We have also pcinted out that the general lack of invariance of the
differential entropv under a transformation mav be viewed as equivalent to
changing the phvsical conditions under which the hazard function is measured.
In future work, we plan to use this general observation as a hasis for the

deve lopment of strategies for accelerated testing.
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