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DIFFERENTIAL ENTROPY AND THE STATISTICS OF
INSTANTANEOUS FAILURE

I. Introduction

Instantaneous failure statistics are usually modelled in terms of a

probability density fT(t) of the (continuous) time to failure, 04t<-, for a

component or system under consideration [1,2]. In order to define a

dimensionally consistent differential entropy for such a process, it is

necessary to deal with a dimensionless probability density that is a function

of a dimensionless time or ordering parameter. This may be accomplished by

introducing a positive time scale parameter r T so that the dimensionless time

is just

t tiTT , 0<^t<-

The corresponding dimensionless probability density is

fT(t) = TTfT(t) (1.2)

Then it is straightforward to define a dimensionless differential entropy for

failure statistics to be

A A A A

ST - f T ft (t) log fT(t) d = - E[log {T(A)) (1.3)
0

By explicit demonstration [31, ST is well-defined for all the customary models

of instantaneous failure although ST is not necessarily positive.
A

One object of this paper is to point out a relationship between ST and

the dimensionless relative failure rate at time , i.e. the dimensionless
A

hazard rate, XT(t).

XT('t) fT(t )/[I-FT() (1.4)
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Here FT(t) is the probability distribution at time I. It is clear that

XT(t)dt is just the ratio of the probability of failure in [(,"+dtI to the

probability of survival to time t. It is established in the next section that

A

ST is equal to the negyative of the expectation of the logarithm of the hazard

function, i.e. to -E[log XT(t)], plus unity.

This relationship is then used as a basis of a discussion of the behavior

ST under transformations of ordering parameter, which may occur 
because of

A

change of physical conditions. Transformations that leave ST invariant leave
A

E[log XT(t)] invariant. Such invariance is interpreted as meaning that the

conditions of failure remain unchanged even if measured in terms of a

different ordering parameter. Similarly, the lack of invariance of ST or

Elog XT( )] is interpreted to mean the conditions of failure have been

changed as e.g. in accelerated testing. Both types of behavior are discussed

further in section III.

II. Differential Entropy and the Expectation of the Logarithm of the

Hazard Rate

As indicated in the introduction, there is a simple relationship between

the differental entropy 9T and the expectation of the logarithm of the hazard

rate E[log T(t)). That relationship is based on the following observations.

First note that the cumulative hazard rate AT(t) is Just

A
AT(t) = f T( -)d = logr1-FT( )] (2.1)

0

Further note that the cumulative probability weighted with the cumulative

hazard rate is independent of the choice of probability density.

SI(FT) T- fT()log[ -FT(')]dt
0

FT

- - F log(-FA)dF
o T T
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(-FT)IOg(1-FT) + FT (2.2)

In particular when FT(t) - 1, i.e. as t ,

(1) = 1 (2.3)

independent of the choice of fT(t).

It follows immediately from the definitions of ST and T(t) respectively

in (1.3) and (1.4) that

ST = -Eflog \T(t)l + 1 (2.4)
A

Hence an evaluation of ST for a particular probability density serves equally

well as an evaluation of E[log XT()l. Thus the differential entropy takes on

a very specific empirical meaning in the context of the statistics of instan-

taneous failures. This empirical basis is used in the next section to inter-
A

pret the invariance properties (or lack thereof) for ST under transformations

of ordering parameter.

III. Invariance Properties of the Differential Entropy

In general a time or ordering parameter is a positive cumulative

function that increases monotonically from an origin. A transformation of

ordering parameter which may arise from changes in physical conditions is

taken to mean a one-to-one relationship between two ordering parameters such

that the derivative of the transformed parameter with respect to the original

parameter is positive and finite almost everywhere, i.e., except possibly at

isolated points. Implicit in the specification in section I of the range of

the ordering parameter t to be 0 < ' < w is the setting of origin for failures

at t - 0. Transformed ordering parameters will here also be assumed to be

aligned in the sense that they all share the same origin.

Consider then the transformation ^u - U0 UV() - 0, where i involves

the ratio of a dimensional ordering parameter to a corresponding time scale

3
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parameter -U .  In general, such transformations are not linear. The one-to-

one nature of the transformation means that

FU(u)= FT(^) , A C(E) . (3.1)

or

A A AA

fu(u) = fT(t)/[di(t)/dtl (3.2)

Then

SU = ST + f T ( )log [du(E)/dt1d 't (3.3)
0

In general the integral on the right hand side of (3.3) does not vanish so

that the differential entropy is not invariant under a transformation of

ordering parameter.

In view of (2.4), (3.3) may be rewritten as

E[log(C)] - ETlogT(t)] - ftt d (3.4)

0

AThus E[IOgXT(t)] is also not in general invariant under the transformation

determined by (3.1). Such a lack of invariance is not unreasonable and, in

fact, should be expected when the conditions of failure are changed. Changes

in the condition of failure are a usual occurrence, for example, when an

object being observed for failure is subjected to reduced or increased ambient

temperature in the course of a life test. Consider the simple case of a

linear transformation

at() - i (3.5)

where a is a positive dimensionless constant. The transformation can either

be viewed as a change in the dimensional ordering parameter from t to At or a

4



change in the time scale parameter from TT to TU = TT/a. If 1 = 1, there are

compensating changes respectively in the dimensional orderin ind scale

parameters e.g. t = kt/kTTfor arbitrary k, and there is no change In the

differential entropy. If 1>, u(t) is larger than t so that the process must

be slowed to accomm)date (3.1). Similarly if a<i, the failure process must be

arcelerated to accommodate (3.1). This variation of behavior with the

nainitude of A is also revealed by considering the behavior of E[loXT(t)]

under the transformation (3.5). In that case

E[LogXu(u)j EIOgXT( )1 - log (3.6)

Again it is clear that the failure process is slowed for 1>1 and accelerated

for a<1.

To go beyond the simple situation of a linear transformation, it is

instructive to consider specific probability distributions for the failures.

Two of the most usual are the exponential and the Weibull with respective

distributions,

FT = I-exp-(XTt) ( 3 . 7 a)

FW - 1-exp-(nWw)6 , 8>0 (3.7b)

Here t and w are dimensional ordering parameters and XT and njj are dimensional

rate parameters. (For the exponential distribution XT is the dimensional

hazard rate.) By introduction of TT and rTj respectively, (3.7a,b) are

readily expressed in terms of the dimensionless quantities XT-TTXT, t - t/TT,

W a TWnW and - w/rW. Consider then the transformation

t , bwS or 8 (3.8)
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where b has the dimensions of [timel I- , b is dimensionless, and both are

positive. From (3.1) and (3.7a,b), it follows that

h = rS/XT, b = fl/XT (3.9)

14 W

The difference between the differential entropies calculated respectively

for the exponential and Weibull distributions is just

A l~B A

S-T - "W AST14 = logfrVJ/X T - Y(B-l)/ (3.10)

Here y is the Euler constant, y = 0.577215... . Clearly, depending on the

i A ~'A
values of 3 and the ratio nw/AT, AST can be either positive or negative cor-

responding respectively to decelerated or accelerated failures. The latter

behavior is again immediately revealed by the fact that ASTn4 is the negative

of the difference in the expectation of the difference in the logarithms of

the hazard rate for the corresponding exponential and Weibull distributions.

A

When ASTw = 0, the differential entropy remains invariant under the

transformation from an exponential to a Weibull distribution. This additional

condition serves to remove some of the arbitrariness in the choices of TT and

TWj. Indeed if a choice is made for one of the latter two, the other becomes

(in general) a function of nW and XT. Actually it is convenient to make the

latter dependence tacit by choosing

-1
TT - XT or XT - 1 (3.11)

so that the invariant ST = S - 1. Then (3.10) for AS-M4=0 yields

W '-lexo(1--1)y -Z(S) (3.12)

Here the right hand equality serves to define A(W) so that

-rw  A()n -  (3.13)
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which determines the dimensional scale parameter in terms of the rate

parameter nw . It follows directly from (3.9) and (3.12) that

b= rA(8)]8 bTS/TT (3.14)
W

or

T= b[rT/A(8)I8 (3.15)

Thus the respective dimensional time scales are related bv the same trans-

formation (3.8) as the dimensional order parameters provided there is an

appropriate normalization determined by the condition 69,4=0.

The condition ASTw=O may be understood to mean that the physical mecha-

nisms of failure are not changed. For example, one could take the view that

an object has its own internal clock which orders its evolution to failure.

The clock used in the laboratory for measurements in general will be different

from the internal clock. Since in such a situation, the physical mechanisms

of failure remain the same independent of the ordering parameter used for

enumeration of failures, E[logT(')] and hence also ST would remain invariant.

When this invariance obtains under the transformation (3.8) as for example

when the measured distribution is Weibull with an underlying exponential, the

measured failure rate nW should have some surprising features. For instance

if 8>1, it should be smiller than expected and similarly if R<O, it should be

larger than expected. Another possible indicator of the presence of an under-

lying distribution here would be unexpected dependencies of the rate on system

specific parameters. For this example, if the change of a power of parameter

to a (power)/6 provided expected behavior, then one would have an indicator

that there is an underlying exponential distribution. This latter indicator

also provides the key to improved performance by its revelation respectivelv

of an increased or decreased (depending on the value of 6) sensitivitv of

parameters. Appropriate modification of the parameters entering in the rate

parameter itself, could lead to improved performance.



The example given here exhibited a relationship between the exponential

distribution into the Weibull distribution by means of a transformation, Ea.

(3.8). This discussion suggests a useful general method of finding

relationships between different distribution functions and their respective

entropies. Two other examples of interest in Statistics of Instantaneous

Failures would be (a) 6-Weibull to 6'-Weiull, 6*a' and (b) exponential to

bathtub distribution.

The case of transformation of a Weibull to another Weibull is of some

interest. In the notation of (3.10) it is found that

- W" -- S"q = log( r,/Iw) + (8-6'I/8")•W

The discussion of the type following (3.6) in this case shows that the

failure process is slowed or accelerated depending on the relative values of
A A

the rates nW and rlW- as well as the exponents 6 and 6.

The discussion above concerned transformation which carried the range of

the ordering parameter variable from (0,-) to (0,-). It is also possible to

make other types of transformations which carry (0,-) to (a,b) or to (

In a generalized sense, these may also be considered as transformations of

time but the physical meaning is perhaps obscured by such transformations.

Thus, we could use the transformation Xi = log(l+ebY) ('b>O) which carries

x:(0,-) to r:(- ,o). and the exponential distribution in x is then trans-

formed to a logistic distribution e-bV/(1+e-bY) 2 . The entropy change SxS V

is (-1-Ln(X/b)). The transformation log(b-a/-z), becoes

:(a,b) and the exponential distribution becomes a uniform distribution in Z.

The change in entropy, Sx-S Z is InX-a

The bathtub distribution is obtained from an exponential distribution

when the transformation

bI
!A - e( ) , b > 0



is made on the exponential distribution in the -variable. This takes t:(Oo)

to z:(0,:) and the exponential distribution is transformed to the bathtub

distribution in the -variable. The entropy difference is given bv

^ T= _ Zn(Yb ) _!'e-VZn(t+v)dv - (b-1) !' e-Ydvin(0Zn(i+v))
- -- 0 0x b

In summary, we have related the dimensionless entropy for failure

statistics to the negative of the expectation of the logarithm of the hazard

rate. We have also pointed out that the general lack of invariance of the

differential entropy under a transformation may be viewed as enuivalent to

changing the phvsical conditions under which the hazard function is reasured.

In future work, we plan to use this general observation as a basis for the

development of strategies for accelerated testing.

9
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