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ABSTRACT

The objective of this study is to examine the sensitivity of

the low wavenumber portion of the wall pressure field under a

turbulent boundary layer to both flow and wall conditions. The

analytical procedure makes use of a method for calculating the

broadband correlation function of the wall pressure field in

which the specific flow characteristics enter through profiles of

the mean velocity shear and turbulence intensity across the

boundary layer. The basic assumption used to extend the results

of this procedure to narrowband frequency characteristics is

that there is a range of large spatial separations in which

Strouhal scaling is not important. Several specific boundary

layers are considered including flows on smooth and rough walls

and in zero, favorable, and adverse pressure gradients. Results

are presented for the point pressure, the spatial correlation

function, and the low wavenumber spectral level.
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I. INTRODUCTION

When a turbulent boundary layer develops along a surface, the surface

is acted upon by the pressure fluctuations generated by the flow. The

resulting response of the surface and the pressure field it generates in

many circumstances is an important noise source. The characteristics of the

pressure fluctuations beneath a turbulent boundary layer (TBL) have therefore

been a subject of interest for many years.

Perhaps the simplest conceptual model of the turbulent flow in boundary

layer is that of frozen turbulence in which a pattern of random pressure

field is convected by the flow past the boundary surface. Any pressure

fluctuation of temporal frequency f that is present in this field would then

have a spatial wavelength of A = U /f, where U is the convection speed ofc c c

the pattern. The associated convective wavenumber is

k =
c X- Uc c

In underwater applications where flow speeds are relatively low and frequencies

of interest can be relatively high, the convective wavelength is small (and,

conversely the wavenumber is large). For example when U = 20 kt, X = 0.40 in.c c

at 1000 Hz. Because of their small wavelength, the noise associated with

pressure disturbances having spatial scales comparable to X c is relatively

easy to control by separating the flow from surfaces of interest by thin

intermediate layers.

Although measurements of the spatial scales of the pressure field beneath

turbulent boundary layers confirm that the spatial scale of most of the

fluctuations is near the convective wavelength, there is present to some degree

a broad distribution of wavelengths. In particular, a small portion of the

pressure field exists in disturbances with long wavelengths (i.e., low wave-

numbers). When the scale of the pressure field exceeds the convective wave-

length by the Mach number (i.e., M = Uc/cO , where c is the sound speed in the

fluid), the boundary layer noise cannot be distinguished from an acoustic

pressure disturbance of the same frequency. The level of the pressure

fluctuations of the TBL having low wavenumber spatial scales therefore sets

a noise floor for acoustic measurements made in proximity to the flow.
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Because the low wavenumber content of the wall pressure field is small

compared with the portion near the convective wavenumber, it has been difficult

to establish the level of the low wavenumber spectrum. Measurements making use

of wave-vector filters to reject the high wavenumber components have been

successful in setting levels in small ranges of wavenumber at moderately low

wavenumbers (e.g., 3 in-  (Ref. 1)). These measurements however have been

insufficient for determining the shape of the low wavenumber spectrum. The

conclusion drawn from theoretical arguments based on a planar incompressible

boundary layer of infinite extent is that the wavenumber spectrum should behave

as k2 in the low wavenumber range. An analytical model of the entire wavenumber

spectrum of the wall pressure fluctuations that embodies this dependence is

defined in Ref. 2.

(The objective of the present study is to examine the sensitivity of the

low wavenumber portion of the wall pressure field under a TBL to flow and wall

conditions. The procedure makes use of an existing analytical method for
3

calculating the broadband spatial correlation function. This method, which

assumes a planar flow, is attractive because it is formulated explicitly in

terms of the profiles of mean velocity and turbulence intensity across the

boundary layer. The wavenumber spectrum is obtained from the Fourier

transformation of the correlation function. Although the procedure is exact

for broadband properties, it is argued that in the range of low wavenumber and

frequency where Strouhal scaling is not expected, the broadband and narrowband

spatial characteristics should be nearly the same. With this approximation

the procedure is used to examine flow with both zero (i.e., nearly planar) and

non-zero (i.e., substantially non-planar) pressure gradients.

A preliminary study using the proposed method is reported in Ref. 4 in

which the shear contribution of the wall pressure field is examined for the

flow over a smooth wall in zero pressure gradient. In the present study results

for both shear and turbulence contributions are calculated for four different

boundary layer flows. Two of these are non-planar, and although this violates

an assumption of the analysis, they are included to evaluate the effect of a

reasonably large variation in mean boundary layer properties on the results.

-2-
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II. ANALYTICAL MODEL

A. Definitions

Both temporal and spatial characteristics of the wall pressure field

under a TBL are determined from the second-order statistics of the field.

Specifically the space-time correlation function of the pressure field is

defined as follows:

C pp(x,,t,T) = E(p(x,t)p(x+C,t+T)] (1)

where Z is the spatial separation vector, T is the time delay, and E is the

expected value. Under the assumptions of spatial and temporal stationarity,

the correlation function becomes only a function of separation and is symmetric

about zero. Furthermore as commonly implemented the expected value is taken to

be the time average. When separation time T is zero, we obtain the broadband

correlation function

C pp(,O) = <p2>R(E) (2)

where the first quantity is the mean-square pressure and R() is the spatial

correlation function normalized to unity at zero spatial separation.

Narrowband frequency information is obtained by Fourier transforming the

temporal correlation function. For example the cross-spectral density is

defined aa the temporal transform of the space-time correlation function,

C pp(K;W) = f Cpp (,t) e- i T dt (3)

A normalized cross-spectral density can be defined analogous to Eq. 2 such

that

C (E,w) = P(w)R(E,w) (4)
p

where R(O,w) = 1.

The spatial Fourier transform of either Eqs. 2 or 4 yields the wavenumber

spectrum of the pressure field. For example when Eq. 4 is transformed, the

wavenumber-frequency spectrum is obtained,

(k,W) f C pp(,w) e i Z dZ (5)

-3-
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where the integral is over all separations on the surface. Owing to the

symmetry of the cross-spectral density, the Fourier transform can be replaced

by a cosine transform. This particular function is useful for describing the

characteristics of the wall pressure field.

B. Scaling

Dimensionless parameters that characterize the wall pressure field

of the TBL are obtained by selecting appropriate length and time scales. For

this study we choose for these scales the outer parameters of displacement

thickness 6 and mean flow speed U . From these parameters two length scales
1 o

can be defined, one being 6 and the second being Uo /. The reciprocal of

the latter is a wavenumber proportional to the convective wavenumber (kc =

W/Uc, where Uc .6 U ). For underwater applications these two length scales

are quite disparate. The cross-spectral density from Eq. 4 can then be non-

dimensionalized as follows:

Cp ( ,j)U
S = 0 P(i6 /U )R(wE/Uo, /61) (6)

pP q261  
1

where q = 1/2p

C. Low Wavenumber Assumptions and Spectrum

The boundary layer is assumed to be an incompressible flow actinr on

an infinite plane. Additionally changes along the flow direction are neglected

in comparison with changes across the boundary layer. This latter assumption

is compatible with the previous assumption of spatial stationarity. Under
these conditions, the theorem of Kraichnan and Phillips5 that there is no net

force on the plane generated by the TBL is applicable. A statement of this

theorem applied to narrow frequency bands is

f C (,w)d= 0 (7)

An equivalent statement using Eq. 4 is that the wavenumber-frequency spectrum

must vanish at zero wavenumber.

IP -4-
.. . . . . . ..
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The low spatial wavenumber levels of the pressure field under a TBL

reflect the information from the correlation measurements made at large

separation distances. At large separations however, it is unlikely that the

Strouhal dependence appearing in Eq. 6 remains as an important parameter. The

standard conceptual argument against preserving Strouhal scaling in this limit

is that it would imply low-frequency correlation of the wall pressure field at

very large separations. Given the distortion to boundary layers due to shear,

however this sustained correlation is not likely to exist.
6

The experimental results for the scaling of the large separation narrow-

band correlation are somewhat conflicting. Lack of Strouhal scaling in a low

frequency/large separation regime has been reported in several experimental

studies. 6- 8 Additionally, the analytical model developed by Chase 2 is consistent

with the data trends of Bull. Measurements reported in Refs. 9 and 10 however

do not indicate a lack of Strouhal scaling at low frequency. One explanation

by BlakeI0 of this discrepancy with the results of Bull is that the latter data

are distorted by the bandwidth of a filter in the measurements system.

In the present study we assume that there is a frequency/separation

regime in which Strouhal scaling fails and we examine the implications to the

(narrowband) wavenumber-frequency spectrum. Under this assumption, the cross-

spectral density in Eq. 6 is given by

Cpp (Kn;w) = P( 61/U )R(/6In/6 1) (8)

n > nL

where C and n are the separation distances in the flow and transverse directions,

respectively, and the subscript L indicates the separation beyond which Strouhal

scaling fails. It is understood that the frequency range in Eq. 8 is also

limited by the assumed lack of Strouhal scaling.

When both sides of Eq. 8 are integrated over frequency the simplification

introduced by the assumed independence of Strouhal scaling becomes apparent.

The result is the definition of the broadband spatial correlation function given

in Eq. 2. Consequently, under the assumption of no Strouhal scaling the spatial

characteristics of the wall pressure field at large separation become independent

of the frequency bandwidth.

& -5-
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The wavenumber frequency spectrum is obtained from the two-dimensional

Fourier transform of the cross-spectral density function. The integrals are

over all separation distances and involve contributions from both large and

small separation distances. In particular the narrowband wavenumber spectrum

contains contributions from the narrowband correlation function at small

separations which involves Strouhal scaling (i.e., Eq. 6). Invoking Eq. 8, we

obtain the following expression for the narrowband wavenumber spectrum:

(kl,k 2;W) = 4P(w) f R(En,w/Uo )cosk l cosk 2 nddn

0
(9)

4f f R(Ein)cosk 1 cosk 2nd~dn]

EL nL

The Kraichnan-Phillips theorem expressed in Eq. 7 states that this spectrum

must be zero at kI = 0. When applied to Eq. 9 as well as to its broadband

counterpart, this theorem gives the following identity:

EL IL EL nL

f f R(E,r,w/U 0)cosk 2 Td~dn =f f R(,Icsk2n~~ (10)

0 0 0 0

This equality states that the average over E of the narrowband and broadband

correlation functions at small separations are equal. By Eq. 9 each of these

contributions equals the negative of the E-average over large separations.

The relationship in Eq. 10 strictly applies to zero wavenumber (kI ). We

assume that a similar relationship between integrals of the narrowband and

broadband correlation function exists at small but non-zero wavenumber. Under

this assumption the low wavenumber integral can be replaced by its broadband

counterpart, giving the following approximate result for the low wavenumber-

frequency spectrum:

Lim P(kltk 2 ;w) = 4P(w) f f R(&,n)cosk 1 cosk2 ddn (11)

0 0
k -0O
1

-6-
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This result is used in this report to obtain the low wavenumber frequency

spectrum from a model of the broadband correlation function R(E,n).

D. Spatial Correlation Function

The broadband spatial correlation function in Eq. 11 is evaluated

using the analytical procedure developed in Ref. 3 by Meecham and Tavis

which assumes the turbulent boundary layer to be a planar incompressible flow.

The formalism and numerical results to facilitate implementation of the

procedure are also given in Ref. 3; consequently, only an outline of the

method is given here.

The pressure field in the incompressible boundary layer is governed by

the following equation:

V2p = -p0 (12)
I I

3r 9r 1

where the subscripted variables are Cartesian tensors with indices 1 and 3

referring to the flow and normal directions, respectively, and the underlined

variables are vectors. The source term on the right-hand side is given by

I I
H Q(r) =2U(z )6 IU + uu -<uu> (13)

where 6i.. = 1 is the Kronecker delta function (6.. = 1, i=j; 6.. = 0, i'j),

U and u are the mean and fluctuating flow speeds, respectively, and z is the

coordinate in the normal direction. This equation which holds in the semi-

infinite space above a rigid wall is solved in terms of an infinite space

Green's function by replacing the wall by an image source field and a drag

force. The latter quantity is shown in Ref. 3 to be negligible. Under these

conditions the solution for the pressure field in the boundary layer is given

by

por) PO f- 1 a2H a(ro)dr
4-Tr~- f 0 aOo r0

P(r) = 4~~ - rt aro o (14)

where integral is over all space.

The normalized correlation function defined by Eqs. 1 and 2 is obtained

by time-averaging the product of the pressures at two spatial locations,

e -7-
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Cpp(r,r') <P(r)P(r ) >  (15)

When Eq. 14 is substituted into Eq. 15, the correlation is expressed in terms

of a 2-fold volume (i.e., 6-fold linear) integral with multiple point velocity

correlations appearing in the integrand. Simplifications are introduced by

using the assumption of isotropic turbulence to model these correlation

functions. The scale of the turbulence is taken to depend on the distance

from the wall. Furthermore under the assumption of a Gaussian distribution

function, fourth-order velocity correlations are expressed in terms of second-

order correlations. With this assumption and extensive manipulations four of

the integrals can be evaluated analytically in terms of relatively simple

functions of the velocity correlations. The remaining two-fold integrals have

to be evaluated numerically.

Two contributions to the correlation of the surface pressure are obtained.

The first which depends on the correlation of the fluctuating velocity components

is given by

c ( 2 ) (n) Go

R ( TI) __2 2 = 2 f d& 3 [u' (IE3I J Uo / Q(n,A, 3 )dA (16)
q IT 

f

where Q is an explicit function given in Ref. 3 in terms of several tabulated

functions, M is the scaling function, and 93' A are transformed separation

coordinates. This contribution has been shown to be small in general. Results

for the contribution of this term to the mean square pressure are presented in

Section IV. The second contribution to the correlation depends on the product

of the mean velocity gradient and the turbulence velocity. This contribution

can be expressed as follows:

()C( (gn -dU~) U(4 3 )] 2 c
R 8 dU - N(ET, p3Pd p  (17)pp2 7t 3 3---(---oC3

PPq 0 00

where N is defined in terms of several tabulated functions, and p, 3 are

transformed separation coordinates.

As indicated in Eqs. 16 and 17, the spatial correlation of the wall

pressure is given in terms of two-fold integrals that have to be evaluated

numerically. The inner integral is a "universal" function in that it is

-8-
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b

independent of specific boundary layer parameters. In this formulation

variations between boundary layers introduced by roughness or pressure

gradients are obtained through the profiles of mean velocity and of

turbulence intensity that appear in the outer integral.

p

IS

-9-
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III. NUMERICAL EVALUATION

A. Universal Functions

The functions Q and N in the inner integrand of Eqs. 16 and 17 are

defined in Ref. 3 in terms of explicit integrals of functions of the velocity

correlations. A smooth representation of the velocity correlation function

which is required to evaluate these integrals is used in Ref. 3. This

reference also contains all the functions required to calculate Q and N both

in graphical and in tabular form. In the present study the tabulated data are

used to calculate the required integrals, these data being interpolated using

third-order Lagrange and logarithmic (for large arguments of monotonically

decreasing functions) interpolation schemes. The inner integral in Eqs. 16

and 17 is evaluated using Simpson's rule.

B. Turbulent Boundary Layer Data

1. Data Sources

The mean flow data required in the analytical calculation are

the profiles of turbulence intensity and mean velocity shear across the boundary

layer. For the purpose of the present study these data are required for flows

over smooth and rough flat walls with pressure gradients that range from

favorable to adverse. Sets of measurements that include both turbulence and

mean velocity data for these conditions are limited to a small number of studies.

Data for zero pressure gradient flows on a smooth wall from a number of studies
11

are reported in Hinze's book. Of particular note are the measurements by

Klebanoff of the turbulence intensity close to the wall 1 2 (i.e., z/6 < .02).

Measurements on a smooth wall of both mean velocity and the longitudinal

component of turbulence intensity for zero, adverse and favorable pressure
13

gradients are reported by Schloemer. Data for a flow with zero pressure

gradient on smooth and rough walls are reported by Blake
10 and by Burton.1 4

Finally, measurements on both smooth and rough walls in a range of pressure

gradients is given by Burton.1 5 This latter reference is particularly useful

in that the profiles of turbulence intensity in several directions are given

for these boundary layers.

Specific parameters of the boundary layer flows selected for this study

are given in Table I. The corresponding turbulence intensity and mean

velocity data are discussed in subsequent sections.

-10-
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2. Data Curve Fit

a. Turbulence Intensity

The analytical model which involves a numerical integration

across the boundary layer requires the profile of turbulence intensity. This

profile is defined by the experimental measu--ements at a relatively small

number of distances from the boundary. Furthermore in those data sets that

include more than one component of the turbulence intensity, the measurement

locations can differ for each component. When more than one turbulence

velocity component is reported, we use the following definition for the

turbulence intensity:

11/2

u E i iz (18)

N components are measured (i.e., N = 1, 2, or 3).

In order to use the discrete measurements in the analytical model, we

must fit a continuous curve through the data points. Once such a curve has

been defined, the data can be interpolated at any location between measurement

points. Spline interpolation is used for this purpose. A cubic spline is a

third-order polynominal that fits through two data points. The set of splines

selected to span the data is then constrained to result in a function having

minimum curvature. This constraint results in adjacent polynomials being

joined continuously with continuous first and second derivatives (see Ref. 16

for further discussion and FORTRAN program).

The generation of an interpolating function for the turbulence intensity

data occurs in two steps. First separate spline fits are made to the data for

each component of the turbulence intensity, this being necessary for those

cases where the measurement locations differ for each component. The specific

sets of data used are shown in Fig. 1. The number of data points for each

component typically varies from 10 to 15, and the data range between z/6 = .05

and z/6 a 1.0. The second step is to use these functions to calculate the

turbulence intensity according to Eq. 1. Except for the data of Ref. 12 (see

Fig. 2) there are no measurement available to define the variation of intensity

near the wall. It is therefore assumed that the behavior in all boundary layers

-11-
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I I.

is similar to that of the zero pressure gradient flow along a smooth wall.

Specifically it is assumed that for z/6 < 0.05 the dependence on distance

from the wall is as follows:

!=.05 /

where z = z/6. The measured data away from the wall along with the above

assumption near the wall are used to generate the turbulence intensity profile

at approximately 20 points spanning the range of z/6 from 2 x 10 to 1.2.

b. Mean Velocity Shear

With the possible exception of the flow in an adverse pressure

gradient the mean velocity profile near the wall is well represented by a

universal logarithmic distribution of the form,
17

-- 2.5 Ln(z/k ) + B (20)

ss
u

i 10 where k sis the equivalent sand roughness and B is a parameter depending on

the hydraulic roughness of the wall (see Fig. 3). When the wall is hydraulically

smooth (i.e., roughness height less than the viscous sublayer thickness), B is

given by

B = 2.5 Ln (- + C (21)

where v is the kinematic viscosity of the fluid, and C is given by various

sources to be in the range of 4.5 - 5.5. Substituting of Eq. 21 into Eq. 20

results in the familiar form of the universal distribution for smooth walls,

namely,

U(z) - 2.5 Ln u z + C (22)
* V

u

For completely rough walls B takes on a constant value of 8.5.

The mean velocity shear of all boundary layers having a velocity profile

given by Eq. 20 is the same, namely,

dz - 2.5 u (23)dz z

-12-
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It is obvious that this relationship does not apply in the immediate proximity

of the wall. In the case of a smooth wall, there is a constant stress layer

where the mean shear can be related to the shear velocity and the fluid

viscosity. Since the mean shear profile is multiplied in the analytical model

by the profile of turbulence intensity which vanishes at the wall, a complete

description of the mean shear is not required.

The universal velocity distribution in Eq. 20 does not extend to the

outer reaches of the boundary layer. To account for the outer region, the

expression in Eq. 20 can be made non-universal by adding the correction term

provided by Cole's law of the wake. This term can be adjusted to match the

deviations from the universal law that are encountered with rough walls and

with non-zero pressure gradients. However, in the outer region of the boundary

layer both the turbulence intensity and the mean shear (see Eq. 23) become

small. Furthermore, since these two profiles are multiplied together in the

calculation, it is not necessary to include the shear contribution from the

law of the wake term.

Equation 23 has been used for the mean velocity shear for all the

boundary layers in zero and favorable pressure gradients. The flow in the

adverse pressure gradient reported in Ref. 15 however is not found to follow a

universal logarithmic distribution. For this flow the velocity distribution is

* reasonably well described by a power law,

u/UO = (z/S)1/n (24)

with n a 1.50 for the flow with a free stream velocity of U = 100 ft/s (see4 0

Fig. 4). Using this form for the velocity profile along with the definition

of the displacement thickness, we find that

_1

61/6 = n1l = 0.4 (25)

The mean velocity shear in this boundary layer is given by

d-= .667 U- (6) (26)

This shear has a weaker dependence on distance from the wall than that of

Eq. 23.

-13-
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3. Data Interface with Numerical Integration

The numerical calculation of the shear-turbulence contribution

to the correlation function requires the product of turbulence intensity and

mean velocity shear. For convenience this product is evaluated at approximately

20 points from z/6 = 2 x 10- 4 to z/6 = 1.2 using the spline fit to the turbulence

data discussed in Section B.2 and the analytical expression for the mean shear

discussed in Section B.2. A cubic spline fit to the product is made which is

then called by the numerical integration routine.

The results for the turbulence intensity, mean velocity shear, and the

product for flow with zero pressure gradient along smooth walls (Fig. 5); zero

pressure gradient along rough walls (Fig. 6); favorable pressure gradient along

smooth walls (Fig. 7); and adverse pressure gradient along smooth walls

(Fig. 8). The outer integral in Eqs. 16 and 17 is evaluated using Simpson's

rule. The number of terms required for convergence of these integrals is found

to depend on the spatial separation.

C. Wavenumber Spectrum

The wavenumber spectrum is given by the two-fold cosine transformation

of the correlation function (see Eq. 11). These integrals are evaluated using

Filon's integration formula. 18 The shear noise contribution to the correlation

differs from the purely turbulence contribution in that it depends on the

direction of spatial separation (e.g., flow or transverse). Because of this,

the two-fold transformation of the shear noise contribution becomes a product

of the one-dimensional transforms in each direction, that is,

D(krk 2) = 4P(W) f R(C)cosk 1 dE f R(n)cosk2 ndn (27)

0 0

The narrowband spectrum level in Eq. 11 is assumed to be given by the point

pressure spectrum (see for example Ref. 19).

-14-
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IV. RESULTS

In this section results are presented for the point pressure, the spatial

correlation functions, and the low wavenumber level of the four flows discussed

in Section III. These boundary layers (viz., zero pressure gradient on smooth

and rough walls, and both favorable and adverse pressure gradient flows on

smooth walls) are selected to be representative of the range of variation of

mean and turbulence profiles encountered in practice. Because of its highly

non-planar flow, the boundary layer in the adverse pressure gradient is

inconsistent with the basic assumptions of the analysis. It is of interest

however to see whether the calculated results bear any resemblence with

experimentally determined characteristics.

The root-mean-square (RMS) pressure normalized to the dynamic head is

given by

P/q [C pp(0)] (28)

1 U2
where q = - PU o and the "bar" indicates RMS value. If we normalized the

2 o
pressure to the wall shear stress then the following relationship is found

/Tw  o ICp (0)] (29)

Measurements of this quantity by a number of investigators in boundary layers
20

with nominally zero pressure gradient are found to be in the range,

P/T = 3 ± 1 (30)

w

Values of this ratio have been calculated for the four flows examined in this

study. Both the shear and turbulence contributions to the point pressure have

been calculated. A summary of these results is given in Table II where the

total pressure and the shear contribution are compared with experimentally

determined values. For all four boundary layers the turbulence term contributes

at most 11 percent to the total RMS point pressure. This is consistent with

the findings of Ref. 3. With the exception of the flow under the adverse

pressure gradient, the calculated results are within the range given by Eq. 30

and are in reasonable agreement with the specific experimental determination.

-15-
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The normalized spatial correlation function in both the flow and

transverse directions is plotted in Figs. 9 thru 12 as a function of separation

distance normalized to displacement thickness. Based on the results of the

point pressure calculations, only the shear contribution to the correlation

functions has been evaluated. The results for the flow over the smooth wall

in zero pressure gradient shown in Fig. 9 indicate a positive correlation in

the transverse direction for all separations and a correlation in the flow

direction that changes sign at a normalized separation of approximately 3.5.

In general the magnitude of the correlation in the transverse direction exceeds

that in the flow direction, this being consistent with the broadband

measurements of Ref. 9 and 21. The results for the correlation in the flow

direction display a long region of negative correlation that slowly returns to

zero at large separation. This result in general gives a somewhat negative

average to the correlation (and by Parseval's theorem, to the level at zero

wavenumber) in the flow direction. This result violates the Kraichman-Phillips

theorem (i.e., Eq. 7). Since there is no experimental information available in

the range of very low wavenumbers (i.e., in and somewhat above the acoustic

range) and since the effects of this negative average are less important at

somewhat higher wavenumbers, this aspect of the results is not thought to

adversely effect the comparison among flows. The most likely reason for the

long region of negative correlation is the error introduced by implementing

the procedure to calculate the correlation function via the tabulated values

given in Ref. 3. Specifically, the behavior of the correlation function at

large separation depends on the values of several functions at large argument.

Interpolation of these functions between the tabulated values is therefore a

likely source of error.

In Fig. 10 the correlation functions are shown for the boundary layer

flow in zero pressure gradient over a rough wall. These correlation functions

are minimally different from those of the smooth wall flow shown on Fig. 9.

The principle difference is found in a larger point pressure for the rough

wall flow (see Table II). The normalized correlation functions shown in

Fig. 11 for the flow over the smooth wall in the favorable pressure gradient

are also similar to those obtained for the zero gradient flow.

-16-
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Figure 12 shows the results for the correlation functions in the boundary

layer on a smooth wall in an adverse pressure gradient. As discussed above

calculations of this non-planar flow are not expected to agree well with

measurements. The correlation in the flow direction has a deep region of

negative correlation compared with the results obtained for the previous flows.

Additionally, even the transverse correlation is somewhat negative at large

separations.

Results for the low wavenumber-frequency spectrum are presented on

Figs. 13 thru 16 for the four flows. These results are calculated via Eq. 27

at a Strouhal number (S - w61/Uo) of unity. For each flow the normalized

spectrum is plotted against dimensional wavenumber for a range of low wave-

numbers that is above the acoustic wavenumber (w/c ) for frequencies below
0

approximately 800 Hz. Also presented on these figures is the zero wavenumber

level calculated for these flows using a modified Corcos spectrum. At a

Strouhal number of unity for these flows this spectrum is essentially

independent of wavenumber with the normalized level being given by

o (0'0'_)U0 8 C1 c S-3(+C)-2 (31)
2 3 f2 C3  () (q 81 l 3o-o

where the ratio of convection to external velocity is taken to be 0.6 and

the constants are C1 = .08 and C3 = .55.

On Fig. 13 the wavenumber spectrum is shown for the zero pressure gradient

boundary layer on a smooth wall. The increasing slope at low wavenumbers is a

result of the somewhat negative value at zero wavenumber. At the higher wave-

number range the level is approximately 12 dB above that of the modified

Corcos level. The level for the zero pressure gradient flow over the rough

wall shown on Fig. 14 is found to be approximately 16 dB above the smooth wall

result and approximately 20 dB higher than the Corcos spectrum. The level of

the spectrum calculated for the favorable pressure gradient flow shown on

Fig. 15 is approximately 27 dB higher than that of the zero pressure gradient

flow along the smooth boundary, and it is substantially higher than that derived

from the modified Corcos spectrum. It should be noted that the latter spectrum

has been defined by adjusting the Corcos spectrum to agree at low wavenumber

with available measurements, these resulting from flows in nominally zero

-17-
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pressure gradient on smooth walls. It is therefore not unreasonable to

expect a poor comparison with the modified Corcos spectrum for the flows with

non-zero pressure gradient. Figure 16 shows the results for the flow in an

adverse pressure gradient.

L'0_-

f

-18-
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V. CONCLUSIONS

The objective of this study has been to explore the utility of an

approximate procedure for evaluating the effects of flow non-ideality on the

narrowband characteristics of the wall pre ssure field, specifically on the

wavenumber-frequency spectrum at low wavenumbers. The procedure which is

"exact" for broadband results but approximate for narrowband spectra has been

implemented using partial results available in tabular form in Ref. 3.

Conclusions drawn from this study are the following:

1. The RMS point pressure normalized to the wall shear stress that is

obtained for three of the flows is in reasonable agreement with the experimentally

determined value. The value obtained for the flow in a substantially adverse

pressure gradient is considerably larger than that measured.

2. The levels of the low wavenumber spectra are somewhat higher than

the levels obtained from the modified Corcos spectrum for the two zero pressure

flows. Substantial differences are obtained between these two spectra for the

flows in non-zero pressure gradients.

3. The calculated spectra at very low wavenumbers are contaminated by

errors introduced by the use and interpolation of the tabulated functions.

This finding is detrimental to a more general usage of the method.
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TABLE I

BOUNDARY LAYER PARAMETERS

Flow U (ft/s) 6 (ft) 6 (ft) u,/U (a) (ft) dp
0 g q dx

Smooth Wall/
Zero Pressure 164 .142 2.3 x 102 .034 0 0
Gradientl4

Rough Wall/
Zero Pressure 164 .200 4.6 x 102 .055 7.7 x 10-  0

Gradient
1 4

Smooth Wall/ (b) 3 -4

Favorable Pressure 164 .039 4.9 x 10 .049 0 -9.2 x 10

Gradient
1 5

Smooth Wall/ (c) 2
Adverse Pressure 100 .180 7.2 x 10 .022 0 19
Gradient

1 5

(a) Arithmetic mean roughness height

(b) Assumed to be 8 61

(c) See Eq. 25
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TABLE II

CALCULATED RATIO OF RMS SURFACE PRESSURE TO WALL SHEAR STRESS

P/Tw

Flow u /U Cpp (0) Calculated
Measured

Total C

pp

Smooth Wall -Vp W 0.034 7.2 x 10 4.1 3.7 3.6VP=0

Rough Wall 0.055 4.7 x 10 - 4  3.8 3.6 2.9
VP = 0

Smooth Wall 0.049 1.5 x 10- 4  2.7 2.5 2.1
Favorable VP

Smooth Wall 0.022 4.5 x 10- 5  68 67 8
Adverse VP

-21-
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0 .2 .4 .6 . .8 11'2

-' 8.99

Fig. ic - Turbulent Velocity Intensities over Smooth Walls. Symbols: Favorable
Gradient:

(1) u no gradient, Blake (1970) (3) u no gradient, Schloemer (1966)

(2) v no gradient, blake (1970) (4) u favorable, Schloemer (1966)

.16

.14-
1,2,0,0 U.12 A 3

U 06 .O 2

AA 1 . . . - -4 ,

U-_4 -

.2 .04 26.1,12 .

Fig. id - Turbulent Velocity Intensities over Smooth Walls with Adverse
Gradients.

(1) u, Schloemer (1966) (3) v, Bradhaw (1966)

(2) u, Bradshaw (1966) (4) w, Bradshaw (1966)

Filled circles: = 0. Other points: 24.3
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Fig. 2 - (a) Variation of turbulence kinetic energy across the boundary layer.

(b) Variation of turbulence intensity near the wall.
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25

SYMBOL Re, X 10- YU
YMBL Re xlO 3  "*--'5.75 Ioglo0 + 4.7

O 2.53 smooth

20 - 4.97 smooth (smooth)
0 9.26 rough
0 16.42 rough

15 °

U
UT

10

- J (rough)

5

0 tioI l i I I I I I *00 0' I I I I I II0 1102
10 0 z r 103  10 4

Fig. 3 - Mean velocity profiles with inner parameter scaling. Favorable

gradients. 13
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Fig. 4 - Mean velocity profiles with outer parameter scaling. Adverse gradient
15

and smooth wall.
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