
RD-R158 035 R REACTIVE LERRNING ENVIRONMENT FOR THE EQUIPMENT /
PROBLEM SOLVING TECHNIQUES (EPST) SVSTEM(U) AIR FORCE

INST OF TECH IRIGHT-PRTTERSON AFB OH D G MCKENNEV
UNLSIID AG8 FT/lN-56TFG59 N

'ENENEE~h

* 1111 lAS328 15

11111 .0 &L2
11111 56 L3

Jill'll'-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

lINCI ASS
SECURITY CLASSIFICATION 01 035

READ INSTRUCTIONS
REPORT I BEFORE COMPLETING FORM

I. REPORT NUMBER I. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 85-68T _

4. TITLE (and Subtilee) S. TYPE OF REPORT & PERIOD COVERED

A Reactive Learning Environment for the THESIS/DtbtUMM
Equipment Problem Solving Techniques (EPST
System G PERFORMING ORO. REPORT NGER

7. AUTHOR(aJ l. CONTRACT OR GRANT NUMEiqeJ

David Gene McKenney

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: The University of Utah

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR August 1985
WPAFB OH 45433 12. NUMBER OF PAGES

70
14. MONITORING AGENCY NAME I ADDRESS(If dileont frm Controllln4 Oflice.1 IS. SECURITY CLASS. (of tls repoe)

UNCLASS

ISa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of tiis Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED ELECTE
='11AUG 16 0 5

17, DISTRIBUTION STATEMENT (of th, abstract enteod in Block 20, It dilffrent from Report)

V/

IS. SUPPLEMENTARY. NOTES

APPROVED FOR PUBLIC RELEASE: lAW AFR 190-1 LYXR E. WOLAVER
Dean for Research and

Professional Devel opmeni
r AJ)tJ'AFIT, WriQht-Patterson AFB OH

I9. KEY WORDS (Continue on revoe sdo II eaocooery, nd Identlfy by block number)

. ABSTRACT (Continue on reverse slde II noceoeary and Identify by block number)

T4TACHED 0

-10 1473 EDITION OF I NOV 65Is OBSOLETE UNCLASS
SECURITY CLASSIFICATION OF TIS PAGE (When Date Enteee

ABSTRACT

This thesis describes a user-friendly program that allows students to

troubleshoot equipment in a reactive learning environment. The system allows

students to develop problem solving strategies while troubleshooting faulty

equipment through the use of video scenes with graphic overlays. The student

interface contains instructional strategies which access information stored in a

database consisting of semantic networks and frames. Student troubleshooting

involves moving within equipment, changing device settings, setting up test

equipment, and obtaining equipment readings.

Important features of the student interface include the simulation of

devices based on first order effects, the use of production rules to describe

device state transitions, and the use of an emulation algorithm to ripple out

device state changes. The student interface also allows users to follow wire

connections, set up test equipment, record hypotheses, and get on-line help. In

addition, the groundwork is jrovided for the future addition of an Advisor

module (or Coach) to monitor the student's progress throughout the

troubleshooting process and give advice.

The student interface is general in nature. The content of the database

can be changed to represent any type of equipment, but the student interface

does not have to be redeveloped or modified for the new database. The

student interface is written in C" on a Unix operating system, which permits

the program to run on both large and small computer systems.

Distribution/

F.Availability Codes
lAvali aud/or

Dist Special

8 1.3 104 l

68T

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value aid/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR

Wright-Patterson AFB OH 45433

RESEARCH TITLE: A Reactive Learning Environment for the Equipment Problem

Solving T:r-thnigmag (FRP' R yft-m
AUTHOR: David Gene McKenney
RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES () b. NO
2. Do you believe this research topic is significant enough that it would have been researched

(or contracted) by your organization or another agency if AFIT had not?,

() a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

() a. MAN-YEARS () b. $

4. Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

() a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAME. GRADE POSITION

ORGANIZATION LOCATION

STATEMENT(s):

"

A REACTIVE LEARNING ENVIRONMENT FOR

THE EQUIPMENT PROBLEM SOLVING

TECHNIQUES (EPST) SYSTEM

by

David Gene McKenney

A thesis submitted to the faculty of

The University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
The University of Utah

August 1985

4 7 -- ~~ ~ **..J

'9

'"

Copyright (David Gene McKenney 1985
r All Rights Reserved

4 V

-J.

-g ...

v~.

S

I

To my wife, Annamarie

~c.

*

.~J1

ABSTRACT

This thesis describes a user-friendly program that allows students to

troubleshoot equipment in a reactive learning environment. The system allows

students to develop problem solving strategies while troubleshooting faulty

equipment through the use of video scenes with graphic overlays. The student

interface contains instructional strategies which access information stored in a

database consisting of semantic networks and frames. Student troubleshooting

involves moving within equipment, changing device settings, setting up test

equipment, and obtaining equipment readings.

Important features of the student interface include the simulation of

devices based on first order effects, the use of production rules to describe

device state transitions, and the use of an emulation algorithm to ripple out

device state changes. The student interface also allows users to follow wire

connections, set up test equipment, record hypotheses, and get on-line help. In

addition, the groundwork is provided for the future addition of an Advisor

module (or Coach) to monitor the student's progress throughout the

troubleshooting process and give advice.

The student interface is general in nature. The content of the database

can be changed to represent any type of equipment, but the student interface

does not have to be redeveloped or modified for the new database. The

student interface is written in 'C' on a Unix operating system, which permits

the program to run on both large and small computer systems.

CONTENTS

ABSTRACT iv

LIST OF FIGURES viii

LIST OF TABLES ix

ACKNOWLEDGMENTS x

CHAPTERS

1. INTRODUCTION ... 1

1.1 Motivation 2
1.2 Outline of Thesis 3

1.3 The EPST System 4
1.3.1 Authoring Mode 5

1.3.2 Student Interaction 6

1.4 Related W ork 6

2. EPST PROJECT DESCRIPTION 9

2.1 Database Structure 9

2.1.1 Semantic Network 10
2.1.2 Fram es 16

2.2 How the Equipment Tree Affects Learning 16

3. STUDENT INTERFACE 19

1.- 3.1 Student Interaction Modes 21
3.1.1 Teaching Mode 21
3.1.2 Practice Mode 22
3.1.3 Freeplay Mode 22

3.2 Student Movement in EPST 22
h 3.2.1 EPST State Definitions 23

3.2.2 Student Position Representation 25
3.2.3 Student Movement on Equipment Trees 25

3.2.4 Student Path Information 30
3.3 Obtaining Test Equipment Measurements 31

' W -

'V3.3.1 Connect State.............................. 32
3.4 Scoring in EPST................................... 34
3.5 Solving the Problem............................... 36

I'4. HYPOTHESIS FORMULATION............................... 37

4.1 Goal-Directed Hypotheses...........................37
4.2 Help in Forming Hypotheses......................... 38
4.3 On-Line Help..................................... 39

V4.3.1 Definition Command..........................40
4.3.2 General Command........................... 40
4.3.3 Specific Command........................... 40
4.3.4 Highlight Command.......................... 45
4.3.5 Problem Command............................45
4.3.6 Cost Command.............................. 45

5. EMULATION IN EPST.................................... 47

5.1 Use of Production Rules to Simulate Devices............47
5.1.1 How Information is Stored in Production Rules .. 47
S.1.2 Order of Production Rules..................... 48
5.1.3 Production Rules and Error Conditions 49
5.1.4 Sample Representation of a Device in EPST ... 49

5.1.5 Advantages of Using Production Rules 50
5.2 Emulation Algorithm............................... 51
5.3 Sample Emulation................................. 52

6. FUTURE RESEARCH..................................... 56-

6.1 Summary of Thesis................................ 56
6.2 Reiteration of Design............................... 57
6.3 Addition of an Advisor/Coach........................ 57
6.4 Natural Language Interface.......................... 58
8.5 Efficiency.. 59

REFERENCES.. 60

vii

LIST OF FIGURES

1. Triangle Nodes Used in EPST 12

2. Sample Parts Database 14

3. Sample Equipment Database 15

4. Device Part Node Frame 18

5. State Diagram Showing Possible Student Movement in EPST . 23

6. Connection of Two AND Gates 29

7. Emulation Algorithm Used for Rippling Out Device State
Changes 53

8. Simulating Devices Example 54

9. Sample Emulation in EPST 55

5-.

,.. h

-4N. %

LIST OF TABLES

1. Slots Used in EPST Frames.............................. 17

2. EPST States.. 24

3. Connect State Commands for Changing Current Connections . 33

4. Connect State Commands Available After Completing
Connection... 35

\,:N.

."

* ACKNOWLEDGMENTS

I would like to thank those organizations and people without whose help

and guidance this research could not have been completed. My deepest

appreciation goes to the U.S. Air Force, which provided both the opportunity and

financial support that allowed me to pursue an advanced degree.

I would like to thank Dr. Richard Brandt and Barbara Knapp for their help in

developing and expanding some of the ideas contained in this thesis. Thanks

also to my advisor, Dr. Richard Brandt, and the other committee members, Drs.

Thomas Henderson and Robert Kessler, for their support and 'advice during

-'; preparation of this manuscript. I would like to especially thank Sandra Peck for

her careful reading of the manuscript and her helpful comments on style and

content.

I would also like to thank everyone in the Computer-Based Education

Software System (CBESS) group, especially those individuals who developed

some of the underlying CBESS components the student interface uses. Thanks

-- to Eric C. ("No I don't do windows") Brown for developing the Interaction Driver

software and to Brad ("They will be up Real Soon Now") Davis for his work in

developing sequences and windows. A special thanks to Rick Paulsen, who

developed the EPST database software, without which the student interface

. could not run.

This work was partially supported by the Navy Personnel Research
V, J

Development Center under Contract Number N00224-83-C-1759.

Or.J

CHAPTER 1

INTRODUCTION

Equipment Problem Solving Techniques (EPST) is a Computer-Aided

Instruction (CAI) system developed at the University of Utah as a component of

the Computer-Based Education Software System (CBESS) [3, 121. EPST is an

interactive, image-based, computer-controlled trainer simulator capable of

simulating a wide variety of electronic and electromechanical equipment. The

major objective of EPST is to give students experience in troubleshooting

electronic equipment and developing troubleshooting strategies. The EPST

student interface developed in this thesis provides the basis for a reactive

learning environment that goes beyond the traditional "branch and test'

environment normally found on microcomputers. The student interface

combines recent advances in cognitive science and Artificial Intelligence to

allow students to not only learn about how to troubleshoot faulty equipment,

but also to actually develop problem solving strategies while troubleshooting.

This thesis addresses several design features of the student interaction

program (student interface), particularly those that provide aid to students in

forming hypotheses, developing troubleshooting strategies, and obtaining

information on how actual electronic equipment works. Device representation

and emulation are also discussed.

2

1.1 Motivation

Much of the motivation for designing EPST stems from the search for a

low-cost, image-based classroom trainer/simulator that can simulate the

operational and maintenance functions of a wide variety of electronic

equipment. Such a trainer is needed because extensive training and practice is

, required for electronics technicians to acquire operational and maintenance

skills. The equipment normally used for this training and practice is actual

operational equipment, which is expensive, involves hazards to both people and

machines, and often involves time-consuming procedures.! Another problem

with using actual equipment is that equipment is often in short supply, resulting

in delays or training on inappropriate or obsolete equipment (131. Previously

developed trainer/simulators have only provided a practice environment, relying

on instructors to provide instruction and on-line help.

EPST, on the other hand, is a trainer/simulator that permits the emulation

of the characteristics of a wide range of equipment and systems. EPST

presents realistic performance symptoms similar to those of real equipment

during either normal or failed operating conditions and provides, when needed,

instruction and on-line help that would normally come from an instructor. The.

main purpose of the EPST student interface design is to create not just a

learning-by-doing practice environment, but a reactive learning environment

that helps students learn appropriate problem solving strategies. The EPST

student interface allows students to examine their own thinking and learning

strategies and assists students in forming and testing their strategies. It also

helps students learn more about the specific equipment they are

troubleshooting and its related test equipment by providing on-line specific help

through access to knowledge stored in the EPST database. Thus, the EPST

student interface improves students' understanding of the operation of

electronic equipment, their ability to recognize equipment problems, and their

Fault insertion and conversion maintenance is time-consuming.

J.

p 3

ability to troubleshoot these problems.

1.2 Outline of Thesis

The rest of this chapter describes the overall EPST system and related

work. The chapters that follow describe the student interface designed for EPST

and the reactive learning environment it creates. Chapter 2 describes the

make-up of the EPST database, which has been designed using a combination

of semantic networks and frames that provide a powerful framework for storing

and accessing knowledge. This database design allows for the easy, compact

storage of knowledge about different pieces of faulty/test equipment yet

permits quick access to this knowledge by the program or student while

troubleshooting. This type of storage and access was not available in earlier

trainers. The database design also makes it possible for EPST to provide a

more realistic troubleshooting environment by allowing students to actually

follow wire connections and access test equipment during troubleshooting. The

database creates a solid framework on which to add future enhancements such

as an advisor or coach.

Chapter 3 describes the student interface in detail, defining the overall

structure of the reactive learning environment and describing student movement

during troubleshooting. This environment allows students to select and view

different sections of the faulty equipment and to create and test hypotheses.

Students not only view sections of the faulty equipment and change its control

settings, but also view and set up test equipment, set up test connections, and

actually take test equipment readings. Allowing students to use test equipment

in this way provides more realistic troubleshooting that results in more training

in the proper use of test equipment. Chapter 3 also describes a method that

allows students to follow physical (wire) connections in order to trace

erroneous signals from device to device. This method uses the input and

output triangle nodes stored in the semantic networks in the EPST database.

Finally, after a student has finished a problem, the student has the opportunity

4

to view and compare his procedures with those of an expert.

Chapter 4 discusses how the EPST student interface aids students in

forming and testing hypotheses. It describes how students can think out and

record their hypotheses and proposed tests, and how this information will be

made available during troubleshooting and for instructor evaluation. EPST can

also suggest possible hypotheses at certain points in the troubleshooting

session and provide various types of on-line help to aid students in formulating

their own hypotheses. The types of on-line help available to the student are

described.
..

Chapter 5 discusses device representation and emulation, and how

production rules are used. The emulation algorithm is given along with an

example of how it works. The final chapter, Chapter 6, summarizes the results

of this thesis and outlines areas for further research.

1.3 The EPST System

EPST is a versatile educational tool that consists of relatively machine

independent software which allows Subject-Matter Experts (SMEs) who know

nothing about computer programming to create instructional material by

entering informational content into an appropriate EPST database. EPST uses a

combination of semantic networks, production rules, and frames to represent

knowledge in the database. Emulation in EPST is based on first order

knowledge, where each device is defined in terms of inputs and outputs, and

production rules are used to determine the outputs of a device based on its

inputs. A representation of how individual devices are connected to each other

is kept in a semantic network.

The major objective of EPST is to give students experience in
troubleshooting electronic equipment through the use of video scenes with

graphic overlays representing the status of actual equipment Ouring authoring

and on computers that cannot support video, menus are used to display

information normally found on video pictures. The current EPST prototype uses

5

only menus, since the video interface and graphics package is still being

developed.

For ease of discussion, EPST is normally divided into two parts: EPST

Database and User Interaction. The EPST Database is described in detail in

Chapter 2. The EPST User Interaction consists of two parts: authoring and

student interaction. The EPST authoring mode enables SMEs who are not

computer programmers to develop, enter, and modify data in the EPST database.

The EPST student interaction mode allows students to obtain practice in

problem solving techniques by interacting with the EPST database that was

created in the authoring mode.

1.3.1 Authorina Mode

The authoring mode consists of two steps: EPST database creation and

creation of video images with graphic overlays.

1.3.1.1 EPST database creation. Creating an EPST database requires an

SME to:

1. specify the equipment to be used for troubleshooting practice,
2. specify the test equipment that may be used in troubleshooting,
3. specify the problems that may be presented for troubleshooting

practice,
4. enter the information into the database by defining the semantic

networks, and
5. test the database to ensure content accuracy.

Entry and modification of the information needed in these five areas is

performed in the authoring mode which is described in Paulsen et al. (191

1.&.12 Creatins video imaies and araihic overlays. In this step, an

SME will specify the video images needed for displaying the different parts of

the equipment. Creating video images is described by Brandt (4L

'

"*' ,* " . "* " " " /. .. .; " .r .. .; . r-.,

6

1.3.2 Student Interaction

Student interaction allows students to develop and use problem solving

strategies while troubleshooting faulty equipment. Students continuously

develop, test, and modify hypotheses during troubleshooting. To test

hypotheses, students can:

1. change control settings on the simulated equipment,

2. set up test equipment,

3. take test equipment readings,

4. observe responses obtained from the changed control settings and
test equipment, and

5. ultimately identify and replace the element that is causing abnormal
symptoms.

On-line help is available to aid students in forming hypotheses. At the

end of a troubleshooting session, students can compare their solution paths to

those of an expert. The student interface designed for student interaction is

described more fully in Chapter 3 and in Paulsen et al. [19).

1.4 Related Work

EPST is based on the frame-based Electronic Equipment Maintenance

Trainer (EEMT) [71 designed for the Navy by the Cubic Corporation Defense

Systems Division. The EEMT system is a two-dimensional trainer/simulator

designed to reduce reliance on the use of actual equipment trainers in Navy

technical schools. It is an outgrowth of the Generalized Maintenance

Trainer/Simulator (Rigney Trainer) developed by Dr. Joseph Rigney and others at

the Behavioral Technology Laboratory, University of Southern California (12, 141.

GMTS showed the feasibility, effectiveness, and broad application of a

trainer/simulator in the field of electronic training systems. Except for some

differences in hardware selected for implementation, EEMT functions identically

to GMTS. For this reason, normally both systems are jointly referred to as

EEMT.

V7A

EEMT allows students to practice troubleshooting skills on equipment

through learning-by-doing, but it does so in a limited way. EEMT:

1. does not allow students to learn about their own thinking and
learning strategies;

2. does not provide help to students in forming or testing their
hypotheses;

3. does not provide specific help to students on the equipment they
are troubleshooting;

4. allows students to thrash about and spend many hours pursuing

wrong paths.

One reason for these limitations is the way the subject matter knowledge

is represented and organized in EEMT. All the system knowledge is implicitly

programmed into the database with no means of accessing it, so there is no

way for a student to view this knowledge and learn from it, nor for the software

to use the knowledge to create a reactive learning environment for the student.

Several projects have been associated with trying to solve these

limitations in electronic troubleshooting programs, including one of the more

successful ones, SOPHIE of Brown et al. (5]. The SOPHIE program teaches

electronic troubleshooting for a particular electronic device, the IP-28 regulated-

power supply. SOPHIE creates a reactive learning environment that evaluates

student's hypotheses, critiques measurements, handles any question presented

in the context of electronic troubleshooting, and uses a simple coach to track

and advise the student during troubleshooting. While SOPHIE was developed for

use in troubleshooting simple circuits, EPST deals with a more complex

troubleshooting environment. A less robust program, TASK, developed by

Search Technology Inc., also teaches the fundamentals of troubleshooting,
simple circuits, but does not evaluate students' hypotheses, nor provide a

coach.

Concurrent research in simulating circuits for electronic troubleshooting

systems is being done by Randall Davis at MIT (81 Davis also uses reasoning

based on first principles (first order effect). Davis' reasoning uses knowledge of

8

structure and behavior, where structure is the information about the

interconnection of modules, and behavior refers to the black box description of

a component.4 Reasoning from first principles offers manv advantages, including

making it easier to construct and maintain the overall system.

A thesis by David Matty describes a similar use of first order knowledge

to describe module behavior in a Constraint Driven Synthesis svstem (171.

where module behavior is defined in terms of inputs and outputs and outputs

are derived from inputs using procedural definitions. David Matty's current

research also deals with using first order knowledge to simulate behavior.

The EPST algorithm used for emulation and the theory of how production

rules are evaluated to determine outputs from inputs was originally developed

by EPST group members and other members of the CBESS group. Lee Collar, a

member of the EPST group, has implemented a prototype of a production rule

evaluator, which searches a list of production rules for an applicable rule. A

similar system is also described in a thesis by Michael Lemon (16.

There are numerous publications that deal with issues in human-computer

interface design. One of the more complete articles is by Beverly and Robert

Williges (221 which compiles in one document various dialogue design

considerations from a variety of sources. Many of the ideas presented in the

Williges' paper and in other articles [10, 11, 15, 181 were used in designing the

EPST student interface.

N'.-

Slack box description means: How is the information leaving the component related to the
information that entered it?

CHAPTER 2

EPST PROJECT DESCRIPTION

2.1 Database Structure

EPST uses a combination of semantic networks and frames to represent

the knowledge content in the EPST database. Combining these two

representations allows the knowledge to be stored efficiently, permitting fast

access and easy storage. Elaine Rich (201 defines frames and semantic nets as

general-purpose structures in which particular sets of domain-specific

knowledge can be embedded. Using semantic networks in the EPST database

provides a strong framework that exploits ISA and IS PART OF* relationships to

represent knowledge about equipment and its parts. These semantic networks

allow the representation of different pieces of equipment in terms of spatial,

physical, and logical dependencies,"* without having to store explicitly all of the

implied relations. This advantage, along with being able to use property

inheritance, allows decreased storage space and the use of set search

strategies for finding needed information. Semantic networks also provide EPST

the flexibility to allow students to access and set up test equipment, and to

trace wire connections on faulty equipment.

In Artificial Intelligence, frames are used to describe a collection of

attributes that a given object possesses. The EPST database design uses frames

The ISA and ISPARTOF relations are discussed in Section 2.1.1.

refers to pieces that are located next to each other on the equipment but may not be physically
connected. Logical refers to pieces of equipment that are related in the context of troubleshooting.

10

to store attributes of different parts of the equipment, which reduces the

number of triangles and search time. If a pure semantic network were used

. without the addition of frames, each piece of knowledge would be represented

as a triangle relation, consisting of a subject, relation, and object. For example, a

production rule would be stored as ProductionRulel ISPRODUCTIONRULEOF

Device3. If a large piece of equipment with many devices were stored in such

a pure semantic network, a great number of triangles would be needed.* By

using frames instead of relations to store equipment attributes, the EPST

database design greatly reduces the number of triangle relations needed, thus

eliminating much of the overhead cost associated with storing and searching

these triangles during run time. Frames also allow knowledge to be localized by

storing information with only that part of the equipment that needs to know the

information.
If only small pieces of equipment with few devices were used in EPST, a

pure semantic network would work well. But EPST is designed to handle

equipment with a relatively large number of devices. Frames also provide a way

to store instructional information that can be used if an advisor or coach is

added.

The rest of this chapter discusses how semantic networks are used as the

. basic structure for the EPST database, how frames are used to store additional

* information, and how the design of the IS PART OF tree affects the learning

environment.

2.1.1 Semantic Network

EPST uses semantic networks to represent the physical layout and

relationships between devices on different pieces of equipment. Two trees are

used in constructing semantic networks for the EPST database: an ISA tree and

.p ".*

EPST uses 16 bit indices for all nodes, and is currently limited to about 32,000 nodes. Nodes
are described in Section 2.11.

'V%

• ,1Z A

11

an IS PART OF tree. An ISA tree relates parts on a conceptual basis and is

referred to in EPST as a parts tree. An ISPARTOF tree relates parts in terms

of their spatial, physical, and logical placement on the equipment and is referred

to in EPST as an equipment tree. During troubleshooting, all steps a student

takes to access different parts of the equipment are on the equipment

ISPARTOF tree. Therefore, the design of each equipment ISPARTOF tree

strongly affects the learning environment and the student's troubleshooting

strategies.

Triangles are used in semantic networks to represent knowledge and are

composed of three parts: a subject, a relation, and an object. EPST uses

triangle nodes to represent these triangles in the database, each triangle node

being unique. The subject and object can be any node in the database, while

the relation must be a permitted relation. EPST permits three types of triangle

nodes, each defined by the types of relations allowed. The three types of

triangles nodes are shown in Figure 1. Three different types of triangle nodes

are used in EPST to decrease the search time required during run-time. For

example, if information is needed about an input, then only the input triangle

nodes need be searched instead of all triangle nodes. If a triangle node is

being searched for that has a standard relation, such as the IS PART OF relation,

then only the standard triangle nodes need to be searched. By searching only a

subset instead of all the triangle nodes for the current equipment tree, search

time required is reduced, thus improving response time.

EPST uses first order knowledge, whereby each device is defined in terms

of the production rules that describe how outputs are obtained from inputs.

This information is stored with the generic device in the parts tree. The

AD. equipment tree contains the spatial, physical, and logical relationships between

devices. That part of the equipment tree consisting of the IS PART OF relations

contains the logical and spatial relationships, while the remaining relations in an

equipment tree semantic network show physical (wire) connections. All this

information Is readily available to authors for error checking, to the EPST

S="e

12

1. INPUT RELATION - An input relation triangle node represents a
triangle where the relation is an input relation. An example of an
input relation would be, NAND2 input_A +5 volts, where NAND2 is
the subject, input A is the relation, and +5 volts is the object. ' The
number of input relations allowed is large, since the relation itself
will be the actual name of the input. Different devices may have the
same input relation.

2. OUTPUT RELATION - An output relation triangle node is similar to
an input relation triangle node except it represents a triangle where
the relation is an output relation. An example of an output relation
would be, NAND2 output_Q +5 volts.

3. STANDARD - A standard triangle is a triangle that is not an input
or output triangle. An example of a standard relation would be,
2 INPUT NAND isa NANDOGATE. The types of standard relations used
are:

ISA
IS PART OF
INSTANCE-OF
IS-TESTPOINT-OF
IS-CONNECTED-TO

Figure 1: Triangle Nodes Used in EPST

student interface program for use in simulating devices, and to students

through on-line help.

2.1.1.1 Parts database. A parts tree is a semantic network that defines

devices and probes and categorizes them using the ISA relation. The ISA

relationship is used in this case to represent the relationship between objects in

a hierarchical taxonomy. All devices in the equipment tree are instances of an

item in the parts tree. Each parts tree is composed of the ISA nodes and two

types of nodes: part nodes and category nodes. Part nodes describe the

operation of devices and are represented as leaf nodes on the parts tree.

Category nodes are used to classify part nodes and are represented as

nonterminal nodes on the parts tree. While several levels of category nodes

The obiect in this case is not another device but a quantifier.

13

may exist, the first level will always categcrize all devices under either

Mechanical, Electrical, Electro-mechanical, Probe, or aF uncategorized. A sample

parts tree is shown in Figure 2.

Subject-Matter Experts define the operation of equipment devices by

entering leaf part node data, and then classifying the nodes under a category

node. Since each equipment device is an instance of a part node, all static

information and knowledge about each equipment device is localized in the

'S-. respective part node in the parts tree.' Any information that changes, such as

current state information, is stored with the individual nodes (instances of the

-. part nodes) in the equipment tree. The EPST database design simplifies

authoring [19L since an author need enter only once the information known

about each part device and how it may be connected to other devices. Authors

5'- use instances of these part nodes to build equipment trees.

2.1.1.2 Eguipment databases. An equipment tree is a semantic network

that contains a spatial, physical, and logical representation of the equipment

layout. All nodes on an equipment tree correspond to actual equipment parts

or devices and are related by their spatial, physical, or logical placement on the

equipment. Spatial placement refers to pieces that are located next to each

other on the equipment but are not physically connected. For example, a device

may be represented as a sibling of another device simply because it is

physically located on the same panel with the device, even though it may not

be wired to anything on the panel. Physical connections refer to actual "wire"

connections between devices. Physical links exist where wires normally would

be. These links are represented by input and output triangle nodes and by

standard triangle nodes that use the IS-TESTPOINT-OF and IS-CONNECTEO-TO

relations. Examples of standard triangle node "wire' links are:

The current version of the EPST database does not use inheritance in the parts tree to store
information. Using inheritance in the parts tree is discussed as a future research topic in Chapter

6.

".oP,"
m., J.

14

Eectrico I Electro
•P r o b e c h n i c a

'flehanani

ISO

""" I search

, I =
IToggle lodulotion eal Select
LIe it ch Switch I Sw itc h

Figure 2: Sample Parts Database

TP1 is testpoint_of PANEL2

TP1 is connected to ONT 1. .

Logical placement refers to the way the equipment is subdivided logically into

panels and devices by the SME when constructing the equipment tree. For

example, devices and panels may be grouped together on a panel because they

are task related. This logical structure of the equipment tree is very important,

since it may influence the student's cognitive model of the equipment structure.

This idea is discussed in Section 2.2. A sample equipment tree with a portion

of its parts tree is shown in Figure 3.

The general structure of an equipment tree uses the IS PART OF relation

and is composed of three types of nodes: a scene node, panel nodes, and

*' device nodes. The scene node is a sketch, diagram, or picture that represents

%, an overall view of the equipment being simulated, including all external panels.

Each equipment tree contains only one scene node. Panel nodes represent

equipment panels or sections of the equipment that provide access to devices,

- testpoints, or other panels. Device nodes represent equipment devices

Quantifier nodes. such as QNT 1, are used to represent values in the database. In this

example, Qnt-1 is the name of the quantfier that contains the value of TP1.

% ~ -

15

AN/USC-3
Parts Tree Equipment Tree

PartI s-Pt-of aRN/USC-3 I S-Prt-of

Sntenna ControlI I Cfntroll ond icatOI Ponl MS 3 {Panel

an I

rI c h o i1iIII 'oI

I T i r-o IS-ar-o

Modulaion olaii it Poe Pet

'- I Modulation alt Sa- - t,
,. th Saitch S lPop ChelS t c h "S t I .

Figure 3: Sample Equipment Database

depicting switch settings, indicator readings, or any other observable state

information and provide access to testpoints. Every device node on an

equipment tree is connected to its respective part node (leaf) on the parts tree

by the INSTANCE-OF relation. A device node is the only type of node that

contains state information. A probe is a special case of a device. It is at the

device node that the student normally interacts with the trainer/simulator by

changing device settings, setting up testpoint connections, and obtaining

testpoint readings. Testpoint readings can also be obtained from testpoints on

a panel node.

When an equipment tree is created, nodes are arranged in an hierarchical

structure, with the scene node shown as the root node, panel nodes as

nonterminal nodes, and device nodes as leaf nodes.

A fourth kind of node contained in equipment trees are testpoint nodes.

They are connected to panel and device nodes by the IS TESTPOINTOF relation.

Testpoint nodes are used to access quantifiers and are also shown as leaves on

the equipment tree.

16

2.1.2 Frames

Each part node and each instance of a part node has a frame associated

with it. This frame is referenced by an index number stored in the node.

Within each frame, slots are used to store such things as production rules,

states, and data for graphics and video. Additional help information not usually

associated with equipment, such as possible hvpotheses and tests to be

performed, is also stored in frame slots.

,I
"
. All information that can be inherited by all instances of a device is stored

in the frame attached to the device part node in the parts tree. Other frame

information that pertains to an actual instance of the device is stored in the

frame attached to the respective instantiated device node in the equipment tree.

The EPST SUIDO document [191 describes the structure of frames for the

different types of nodes and the record format for the different slots. The types

of slots used in EPST frames are described in Table 1 and a portion of a frame

attached to a device part node is shown in Figure 4.

2.2 How the Equipment Tree Affects Learnina

The IS PART OF tree has a direct influence on the student's cognitive

model of the equipment. How a Subject-Matter Expert (SME) logically divides

the equipment up into panels and devices when building an equipment tree has

a direct influence on the strategy the student uses and how the student

remembers relationships between panels and devices on the equipment.

While practicing troubleshooting, the student will develop a cognitive

model of the layout of the equipment based on how the logical organization

(using the IS PART OF relation) was defined in the equipment tree. For example,

if the initial scene state is divided up into three panels, the student will form a

cognitive model in which there are three main panels or parts on the

equipment. If it is usually necessary to inspect one of these three panels first

for certain problems, then by defining the first level of the equipment tree as

consisting of only three panels, the student is forced to select one of these

.4o.

., ,',

17

Table 1: Slots Used in EPST Frames

Slot Description

Errors The set of error records associated with the part node.

Graphics Information The graphic record associated with the part, scene. panel,
device, or probe node.

Hypothesis The set of possible student hypotheses associated with panel
and device nodes.

Node The index of the corresponding atom node in the semantic
network.

Positions The set user of input records associated with the device node.

Production Rules The set of production rule records associated with the part
node.

Replacement Information The replacement information record associated with the panel
or device.

Selection Area The set of selection area records associated with the panel,
device, probe, or testpoint node.

States The set of state records associated with the part node.

Tests The set of possible tests associated with panel or device nodes.

Vidotge The vide (jtee associated %.th the scene, panel, or probe
node.

S, panels depending on the problem. An SME may also group certain panels or

devices together because they are task related. Such grouping helps students
--. remember relationships among different parts of the equipment.

On past trainers, students were constrained during troubleshooting to

follow only what EPST defines as the IS PART OF relation. While this helps

develop a cognitive model of equipment layout and relationships between

o- panels and devices, it does not present a realistic troubleshooting environment.

.3: For example, when troubleshooting an actual piece of equipment, a student may

find a faulty Input to a device, and want to trace the input (wire) to its source.

In previous systems (using only the IS PART OF links), the student would have

to determine which device the input wire came from, move up the IS PART OF

Production Rules

States
A..

Replacement Information

I-'Errors

I Graphics Information

Positions

Figure 4: Device Part Node Frame

tree until reaching a common ancestor of both the current device and the

S. desired device, and then move back down the tree to the desired device.

,' Since EPST explicitly stores wire links as input and output triangle nodes,

the student can actually follow "wires' during troubleshooting and trace down a

bad input source. This is a significant change from past trainer/simulators, and

is due to the fact that EPST can represent wire connections as well as the

logical layout of panels and devices. An example of how a student can follow

wire connections is presented in student movement in Chapter 3.

V
.

..

"..,

A

CHAPTER 3

STUDENT INTERFACE

The EPST student interface is the basis for a reactive learning

environment, one that allows students to develop problem solving strategies

while practicing the troubleshooting of faulty equipment. John Seeley Brown [6J

describes a reactive learning environment as one that allows students to try out

their hypotheses, see the results of their tests, analyze their data, find

counterexamples to their hypotheses, and experiment with different solutions.

For the reactive learning environment to be productive, the troubleshooting

environment created should be easy to learn and use, so that it does not

detract from the more important issue of learning. The EPST student interface

also lets students explore their partial understanding of how a system works

with complete safety. Students are able to formulate, test, and witness the

consequences of their ideas' without worrying about possible catastrophic

consequences.

Troubleshooting faulty equipment involves developing a strategy, and then

using this strategy to access different parts of the equipment, change

equipment switch settings, obtain testpoint readings, and replace bad panels or

devices. During basic problem solving, human cognition tends to invoke a

sequence of actions based on various patterns of knowledge. These steps in

problem solving are based on cognitive rules that specify which actions should

be performed under a given set of conditions. These steps are called

productions, which usually consist of an overall goal and a set of subgoals used

to reach the overall goal. The ACT theory of cognition [11 uses goal-directed

productions, where the conditions needed to reach the overall goal are goals

20

themselves. This type of goal directed cognition has been the key to effective

teaching and tutoring of equipment troubleshooting and problem solving in

general (2].

Based on this goal-directed approach to problem-solving, the general

troubleshooting process the student should follow during EPST student

interaction consists of the following four steps:

Step 1. Student develops and enters an hypothesis, identifying information used
in forming the hypothesis.

Step 2. Student proposes a test or tests (goals and subgoals), based on the
hypothesis, that should prove or disprove the hypothesis.

Step 3. Student performs the tests and gathers information both explicitly* and
implicitly.

Step 4. Student analyzes information obtained from the tests and uses it to

form conclusions about the hypothesis. The student returns
to step I and repeats the process until a solution is reached.

The different parts of the EPST student interface will be described in

terms of:

I. entry of hypotheses,

2. student interaction modes,

3. student movement,

4. measurements,

5. scoring,

6. on-line help, and

7. solving the problem.

Entering hypotheses and the use of on-line help are discussed in detail in

Chapter 4. The other five areas are discussed in the remainder of this chapter.

Information received through readings from test points.

Information received through observations of meters. lights. switches on the equipment, and
the effect of replacement parts.

-4..

: 5,,'

21

3.1 Student Intoraction Modes

EPST student interaction allows six different student interaction modes.

The teaching, practice, and freeplaV modes are the modes that are used in the

reactive learning environment, The overall troubleshooting sequence the

student follows in all three modes will be the same. The teaching and practice

modes provide a structured learning environment while the freeplay mode

provides an unstructured environment. The main differences among the three

modes are the options and specific help" available to the user while

troubleshooting the equipment. The reasons for having a structured and

unstructured learning environment are:

1. The structured environment allows an instructor to adapt the system
to individual teaching style and course flow.

2. The structured environment sets the stage for the later addition of
an interactive advisor/coach module.

3. The unstructured environment allows students to use the system
with no constraints, experimenting freely.

.- The three modes are defined in the following sections.

3.1.1 Teaching Mode

The teaching mode allows structured practice in troubleshooting

malfunctioning equipment. This mode allows the instructor to preselect:

1. the faulty equipment database to be used by the student,

2. the troubleshooting problem to be solved by the student,

3. the troubleshooting problems available for student selection,

4. the order in which the troubleshooting problems will be done,

The six modes are: tutorial, teaching, practice, freeplay. tryout Ifor authors). and test.

The types of specific help available are described in Chapter 4. Examples of specific help are
how far away the student is from the bad device, how a device works (production rules), and the
input/Output values for a device.

-This restricts students to selecting only from a preselected list specified by an instructor.

Z.s Np

'p%

22

5. the options available to the student in the Finished state if the
malfunction was not corrected, and

6. the types of spec'fic help available to the student.

In the teaching mode, an instructor can create a controlled learning

environment, by preselecting certain constraints that control which problems a

student can do and what is available to the student in the problem.

3.1.2 Practice Mode

The practice mode is the same as teaching mode except the only specific

help available is the production rules associated with how a device works. This

'S" allows the student to troubleshoot with virtually no help available, simulating a

test environment.

3.1.3 Freeplay Mode

The freeplay mode allows unstructured practice in examining or

troubleshooting malfunctioning equipment. The student can examine and

traverse an EPST database with no restrictions. All defined help will be

*available.

3.2 Student Movement in EPST

In EPST, students examine or troubleshoot faulty equipment by moving

among ten different EPST system states. Movement is controlled by selecting

an item from a menu, by selecting a command from the command line, or by

selecting the next panel or device node to view. A state diagram of student

movement in the EPST system Is shown in Figure 5.

While traversing the different states shown in Figure 5, users can interrupt

the EPST system at any time by pressing the ESCAPE <ESC> or HELP -?>

key. The escape interrupt allows students to quit the troubleshooting session at

any time." The help interrupt allows the student to access any on-line help that

The escape interrupt in future releases of EPST also will allow students to send comments and
notes to Subject-Matter experts and instructors.

%

23

*1'
(select PTelcm)

(cga
Dmeato \ Illlerled

Figure 5: State Diagram Showing Possible Student Movement in EPST

is available for that session. The types of on-line help are described in Chapter

4.

3.2.1 EPST State Definitions

The EPST system states, defined in Paulsen et al. (191 are briefly

described in Table 2. The Select Interaction Mode, Select Faulty Equipment, and

Select Problem states are used to set up the troubleshooting problem for the

user and initialize the necessary variables. Actual equipment troubleshooting is

done in the remaining seven states, where the Scene, Panel and Device states

are used to actually examine or view parts on a piece of equipment.- The

Scene, Panel, and Device states in the EPST system, enclosed by dotted lines in

Figure 5, correspond to the scene, panel, and device nodes on an equipment

tree. Students can view either the faulty equipment tree or a test equipment

tree, but only one tree at a time. Thus, when a student is moving among the

If the video picture or graphics is not available in a scene, panel, or device node, a menu
containing a textual listing of the panels, devices testpeints. probes. or device settings available
for selection will be displayed. This menu will alls be used for testing the database before video

.- is available.

.."

24

Table 2: EPST States

State Description

Connect Allows the student to change test equipment connections and
get test equipment readings.

Device Displays a selected device node that is on the current equipment
tree.

Finished Evaluates whether the student solved the problem or not.

Hypothesis Allows the student to update an hypothesis file with an
hypothesis, proposed tests, data obtained from tests, or
conclusions.

Panel Displays a selected panel node that is on the current equipment
tree.

Scene Displays a video picture showing a full view of the equipment
system currently under examination.

Select Faulty Used to %elect a faulty equipment database for troubleshooting
Equipment practice.

Select Interaction Used to select a student interaction mode.
Mode

Select Problem Used to select a troubleshooting problem

Select Test Allows a student to select a piece of test equipment in order to
Equipment view its equipment tree or set it up for testpoint readings.

Scene, Panel, and Device states in the EPST system, the student is conceptually

moving among the scene, panel, or device nodes on an equipment tree.

The remaining four states, Select Test Equipment, Connect, Hypothesis.

and Finished, are used by the students to aid in troubleshooting and developing
problem solving strategies. The Select Test Equipment state allows students to

select a new equipment tree for viewing, since the student may view only one

equipment tree at a time. The Connect state allows users to view existing test

equipment connections and make new connections or change old ones. Setting

up test equipment and obtaining test equipment readings allows students to

test the validity of their hypotheses. The Hypothesis state allows users to

record their hypotheses and any associated information. It serves as a scratch

25

pad for students to record hypotheses, proposed tests, and results from those

tests. The Finished state evaluates the user's solution to the troubleshooting

problem and allows the user to view other solutions. These last four states are

accessed by selecting a command from the command line, and in all but the

Finished state movement out of these states is actually a return to the Scene,

Panel or Device state from which the original command was selected.

3.2.2 Student Position Representation

During troubleshooting, a student's current position is always represented

as a scene, panel, or device node on the current equipment tree. A student can

view only nodes on one equipment tree at a time. A current pointer

(curr equipment) is kept which always points to the current database record,

and is updated whenever a new database is selected in the Select Test

Equipment state or as a result of selecting the Jump command.

The current node information is stored in the associated database record

(database rec) in the curr-node field. Thus, when a user moves back and forth

between equipment trees during a problem, the current node on the current

piece of equipment can always be displayed.

3.2.3 Student Movement on Equipment Trees

Student Movement in EPST provides a more realistic simulation of a

troubleshooting environment than was available in previous trainer/simulators,

such as EEMT (7]. EEMT allowed students to access different parts of the faulty

equipment only in terms of the hierarchical structure (Scene - Panel - Device)

and students could not access test equipment at all. In contrast, EPST not only

allows students to access different parts of the faulty equipment by traversing

up and down a similar hierarchical structure, but also allows access to different

parts of the test equipment in the same way. EPST allows students to move

between the faulty equipment and test equipment, freely setting up test

equipment and test connections in order to get test equipment readings. EPST

A

:.:::

26

also allows students to follow actual wire connections, which has not been

possible in the past. Allowing students to set up test equipment and follow

wire connections are major advantages of EPST since they provide a more

realistic trainer and should help students develop a better cognitive model of

S-" .troubleshooting.

Students initially examine or troubleshoot faulty equipment by traversing

through the faulty equipment tree semantic network, viewing scene, panel, and

device nodes. The Scene - Panel - Device (IS-PART-OF) hierarchical structure

was used as the basis for student movement in EPST because of the proven

success of the use of this type of structure in EEMT and GMTS systems (131,

and because EPST was designed to replace EEMT in Navy training schools.

-Movement within an equipment tree semantic network is accomplished by

selecting

-; 1. the next panel or device node to be viewed,

2. the Up or Scene command, or

3. the Follow wire command.

The user moves down the IS-PART-OF relation in the equipment tree by

selecting the next desired panel or device node from the current node's

video/graphics display.* The areas available for selection by the student will be

stored in the selection slot in the frame attached to each child of the current

node. In all cases, the stadard triangles are searched for all triangles that have

the current node as the object, the IS PART OF or IS TESTPOINT OF relation as

the relation, and any node as the subject. When menus are used, the subjects

of all triangles found will be included in the menu as the panels, devices, or

testpolnts available for selection from the current node. When video/graphics is

used, the selection areas of the subjects of all triangles found will be used to

determine the selection areas from the current node. Referring to Figure 3, the

User will select from a menu display if video/graphics is not available.

.A

27

panels that would appear on the AN/WSC-3 Scene Node Menu would be the

Antenna Control Panel, WSC-3 Panel, and Control Indicator Panel.

Moving up the IS-PART-OF relation is controlled by selecting either the

Up or Scene command. The Up command symbolically moves the student up

one node on the equipment tree to the parent of the current node. This is

accomplished by searching the standard triangle nodes for the node that

contains the current node as the subject, the IS-PART-OF relation as the

relation, and any node as the object. When this triangle node is found, the

object of the triangle will contain the index to the parent node of the current

node. For example, if the current node in the AN/WSC-3 equipment tree, shown

in Figure 3, is the Bite Switch, the triangle that will be found is [Bite Switch is-

part-of WSC-3 Panel]. The WSC-3 Panel will then be displayed to the student.

The Scene command symbolically moves the student to the root node of

the equipment tree and displays the scene node. An index to the scene node is

kept in each equipment tree database record to avoid having to do extensive

triangle searches, especially when the student is many nodes away from the

scene node.

The Follow wire command is used to allow students to follow wire

connections both forwards (tracing the output) and backwards (tracing an input).

When selected, the Follow-wire command displays a list of all inputs and

outputs for the current device, along with their values. The student can then

use a Negation Strategy (9] for problem solving, where the student traces

known correct signals, determining where the fault has been inserted. If the

student can narrow down the faulty device to a certain path of devices, the

student can examine the devices along this path and determine whether the

outputs for each device are consistent with the inputs. If the outputs are

normal, then the student can usually conclude that the device is operating

correctly. The student will then select the next device along the path, and

determine if it is good. Once the student finds a device where the output is not

consistent with the inputs, then the faulty device has been found. The student

28

will then replace the device and confirm that the problem was solved.

,Vhen a student wants to trace an input, the student will select the

desired input from the menu. The device whose output is connected to the

input is then displayed. If the student selects to view this device, the device

becomes the current device and its inputs and outputs are shown. If the

student wants to trace an output, then the desired output is selected from the

menu. A list of devices whose inputs are connected to the output is displayed,

and the student may select one of these devices to view. If a new device is

selected, then it becomes the current device, and its inputs and outputs are

shown.

The way the knowledge is represented (stored) in the database, in the

form of input and output triangle nodes, allows EPST to easily find which

outputs are connected to inputs. For example, consider the simple connection

of two AND gates, shown in Figure 6. The output of device 1 is used as an

input to device 2. The value of output A on device 1 is therefore the same as

the value of input 1 on device 2, and is stored in a quantifier node (QNT 1).

This information is stored in the semantic network in the form of input and

output triangle nodes. These triangle nodes would symbolically look something

like:

Triangle 1: Devicel Output A ONT 1

Triangle 2: Oevice2 Input_ OINT 1.

- *,., In actuality, the subject, relation, and object fields contain indices to the specific

nodes that contain the names or values. For example, QNT 1 actually contains

the index of the quantifier node which contains the value. Using this structure,

. there is only one copy of the value (the number in QNTI) to worry about for

updating. The common part of the two triangle nodes above is the Qnt I node.

In order to find the output whose value is used for input 1 on device2, EPST

searches the output triangles of the current equipment tree for any outputs that

have the same quantifier pointer (like triangle 1 above). After finding the

I"*'

-'Zf 7 -r. - VI -- 7. -. 7-; W' - W

29

0UPU- IPT_ _IMT-

Figure 6: Connection of Two AND Gates

triangle, the source device and output are known, and are displayed to the

student. Since all physical (wire) connections between devices aro represented

in this manner in the EPST database, students can follow wires from one device

to another (either forward or backward), until they find the source of an

erroneous signal.

Movement between the faulty equipment and test equipment is

accomplished by selecting the Test equip command or Jump command. The

Test-equip command displays the Select Test Equipment state, which allows

the student to select any piece of test equipment available for the current

'..' problem. If a piece of test equipment is selected, that piece of equipment

becomes the current piece of equipment, and the student will view the current

node for that test equipment tree. The current node is stored in the database

record for the equipment tree, and is either the scene node if the tree is being

viewed for the first time, or the last node that was viewed on the test

equipment tree. The Jump command is used to jump back and forth between

the current node on the faulty equipment tree and the current test equipment

tree. The current test equipment tree is the last equipment tree that was

viewed by the student. The Jump command is available only after at least one

test equipment tree has been viewed.

r/

S'. .,,.] . .*

30

3.2.4 Student Path Information

The ability of the system to store and replay the student's solution paths

is very important for a reactive learning environment. It allows a student to

view what he has done. In EPST, the student path information is stored in a

sequential list so that student movement can be analyzed after a

troubleshooting problem is completed. The hypothesis file is available to the

student during the troubleshooting session. This student path information will

also be used later by instructors to find student errors and weak points in the

database.

Being able to store the student's solution path is even more powerful

when an advisor or coach is added.* The advisor or coach can determine which

aspects of the audit trail should be enhanced in order to help students

"discover" their misconceptions or shortcomings [61.

EPST student path information is stored in a global list, problem-path,

which has been initially defined as a linked list. This data structure allows for

the unknown length a student path could have, and allows for storage of

different amounts of information. Each time an equipment tree node (Scene,

Panel, or Device) is displayed, the equipment database index and node name are

added to the problempath list. When the Select testeq, Connect, Hypothesis,

and Finished states are entered, the name of the entered state will be added to

the list.

This initial attempt at storing path information is simplistic and will be

used mainly for debugging programs. At a later time, a more sophisticated path

storing mechanism can be added that can record everything a student has done,

so that the information can be used by both the student and an advisor/coach

during troubleshooting.

The addition of an advisor/coach module is discussed in Chapter 6.

31

3.3 Obtaining Test Equipment Measurements

Another important part of the EPST student interface is that it allows

students to take measurements by setting up test equipment and actual

testpoint connections. Earlier trainers, such as EEMT, did not allow students to

set up test equipment. They were allowed only to select testpoints that were

preconnected to test equipment and a reading then was displayed. This meant

that the system could use only connections that had been predefined and

preset in the database. Allowing students to make any test connection they

choose provides a more reactive learning environment since it gives students

the freedom to experiment. It also provides a better simulation of a real world

troubleshooting environment.

In EPST, students traverse the test equipment tree in the same way as

they move through the faulty equipment tree, except they cannot traverse the

input/output wire connections. Students move up or down the test equipment

tree using the ISPARTOF relation, viewing panels and devices, changing device

settings, and connecting test probes to the faulty equipment if they are

available on the current piece of test equipment. Then, in the Connect state,

students set up testpoint and test equipment connections and are able to view

test equipment readings. Students are not confined to using only predefined

testpoint connections to test equipment, but are free to use any testpoint and

test equipment and take any testpoint reading they desire. They may set up

wrong testpoint and test equipment connections or have several pieces of test

equipment connected to the faulty equipment at one time. Students also can

have several different probes from different pieces of test equipment hooked up

to a single testpoint. Since EPST will use graphic overlays, not all possible test

point connections to test equipment have to be predefined by the Subject

Matter Expert when creating the database.*

Some predefined connections could be used in the advisor module to help give advice to
students on what tests are appropriate at certain points in the troubleshooting process.

%

-.._ , • -. . w,.rr,.flw w m nn -nr , w . nrrnr - - -...- . - 'v , = -. -'. . -,.. - ,-b. - - - ..

32

3.3.1 Connect State

The Connect state allows students to change test equipment connections

and get test equipment readings. The student selects the Connect state by

selecting the Connect command while in another state. The Connect state

displays a menu containing current test equipment probe connections and the

current connection being set up.

A probe connection in the Connections Menu includes the name of the

test equipment, the test equipment probe-input," probe, and testpoint that make

up the connection. Probe connections to test equipment probe-inputs are

predefined by SME's in the authoring mode and can not be changed by

• .:: students.

The first connection in the Connections Menu will be the current

connection being set up. The current connection being set up consists of the

*-.. current piece of test equipment and the last probe selected. If the student

"" selected a testpoint just prior to entering the Connect state, that testpoint will

be displayed in the current connection, connected to the last probe selected on

the current piece of test equipment. The current connection being set up will

always be shown in a different color from the rest of the Connections Menu and

marked by ">>.'

The current connection is changed by selecting a command from the

command line. The Connect state commands available for changing current

connections are briefly described in Table 3.

When the New Probe or Select-new-test-equipment command is selected,

a menu is displayed in the lower right-hand corner of the screen, being overlaid

on top of the Connections Menu if necessary, from which a new probe or new

piece of test equipment is selected. The Probe Menu will contain the probes

available for the current test equipment. The Test Equipment Menu will contain

the test equipment available for troubleshooting the faulty equipment. After the

Th

. . .5 o .

33

Table 3: Connect State Commands for Changing Current Connections

Command Description

Adjusttest Moves student to the Select Test Equipment state where the
equipment student selects a piece of test equipment in order to view

its equipment tree and set it up for test equipment readings.

Make Makes the current connection on which the student was working
connection a completed connection.

New probe Allows student to select a new probe for a connection.

Return Returns student to the state from which the Connect state was

entered.

Select-new Allows student to select a new piece of test equipment
_test equipment to connect to.

student selects one of the available probes or test equipment from the menu,

the selected item is placed in the current connection at the top of the

Connections Menu under the appropriate heading. If the probe is changed, the

probe-input associated with the selected probe also replaces the old probe-

input in the current connection. If a new piece of test equipment is selected,

the current probe is erased. After the student selects a new probe or piece of

test equipment, the Probe or Test Equipment Menu is erased and the student

selects another command from the Connect state command line. Once the

student has finished changing the current connection, the student completes the

changed connection by selecting Make connection from the command line.
3.3.1.1 Make connection command. Selecting the Make connection

command makes the current connection on which the student has been working

a completed connection and adds the completed connection to the Connections
Menu. The newly completed connection will be marked by the keyboard cursor

in the Connections Menu. Any previously completed connection for the same

test equipment that contained the same probe as the newly added connection

V4 will be deleted. Once the connection is completed and the Connections Menu is

updated, the updated Connections Menu and new command line wall be

displayed.

*34

The commands available for use after the connection is completed are

described briefly in Table 4. When selecting one of these commands, the

connection that has the cursor next to it will be the connection that the student

will see the value for. After selecting both the desired connection and the

Measurement command, the student moves to the state corresponding to the

-. panel or device node last visited on the test equipment tree and sees the

video/graphics picture of the panel or device and the test equipment reading.

After the desired connection and the Value command are selected, the test

equipment reading will be displayed. The Quantifier command will appear on

the command line only in the Tryout mode, and is used only by an SME.

Selection of the Quantifier command allows an SME to view the value of the

quantifier for the test equipment connection made.

3.4 Scorina in EPST

EPST provides several mechanisms for recording how well students do on

particular problems. These mechanism are: time, cost, and problem score.

These scoring mechanisms allow instructors to quantitatively judge how well

*. students are doing, and also provides a sense of gaming or competition to the

system for student motivation during practice sessions. The time kept

represents the time spent by the student on the troubleshooting problem. The

time is recorded at the beginning and end of the problem, and the difference

between the two is the time spent. The cost and problem score are defined in

EPST as generally as possible, allowing different system users to modify them

to suit their needs. The cost for a particular troubleshooting problem normally

consists of only the total cost of all replacement parts used. The replacement

cost of a device is stored in the frame associated with the generic description

of the device in the parts tree. The replacement cost of a panel is stored in the

frame attached to the panel node in the equipment tree. Other costs or

bonuses could be added, such as giving the student a bonus for solving the

II. problem under a certain time or for using fewer test connections.

4.s".

35

Table 4: Connect State Commands Available After Completing Connection

Command Description

Measurement Displays the test equipment reading and moves the student
to the state corresponding to the last node viewed on the test
equipment tree.

Quantifier Allows an SME to view the value of the quantifier for the test
equipment connection.

Return Returns student to the Connect state, redisplaying the connect
command line.

Value Displays the test equipment reading only and leaves student in
current state.

Problem scoring is associated with the different types of on-line help

available. In trying to design a way to score the types of help used, two

different ways are commonly used. The first way to score a student is to start

the student with a score of zero, and each time on-line help is used, add a set

amount of points to the student's score. The student's goal is to finish with the

lowest score possible. The second way is to start the student with some

maximum score, say 200 points, and subtract a set deduction from the student's

score each time on-line help is used. The student's goal in this case is to

finish with the highest score possible. EPST allows both of these types of

scoring, allowing an SME or instructor to actually specify the values to be used.

An external file (called Score-definitions) exists that can be edited by an SME or

instructor in order to allow them to specify the initial value of problem score
and set the values of the individual on-line help deductions. If the help

deductions are given a positive value, it will be added to the problem score if

that type of help is called. A negative value will result in the value being

subtracted. Oefining scoring in this way allows system users to modify the

scoring to suit their needs and allows them the freedom to experiment with

different combinations of scoring. The amount of the deductions can also be

modified as students gain more experience.

%

36

3.5 Solving the Problem

After the student reaches a solution, makes the necessary changes to the

faulty equipment (either causing a state change within the faulty equipment that

corrects the problem or replacing a panel or device), and verifies that change(s)

to the equipment have corrected the malfunction, the student proceeds to the

Finish state. The Finish state evaluates whether the student solved the problem

or not, and gives the cost, time, and score associated with the solution if it was

correct. The Finished state displays the student's scorebox containing

information about the student's solution to the troubleshooting problem and a

menu containing options on what the student can do next. The options

displayed in the Options Menu depend on the student's interaction mode. The

options available allow the student to:

1. view an expert's solution to the problem,

2. view an expert's hypothesis file,

3. view the student's hypothesis file, and

4. view any help information available for the troubleshooting problem.

Allowing students to view an expert's hypothesis file and problem solution helps

students learn different problem solving strategies and techniques. Students

can also review their hypothesis file and compare it to the expert's. After

completing the Finished state, the user may start another problem or exit the

system.

• ,. t. .+. ,. , ,.. , .*. . J4 , '

CHAPTER 4

HYPOTHESIS FORMULATION

Developing strategies is an important concept for teaching students skills

in troubleshooting equipment. A maintenance person who is out on a ship

Sthousands of miles at sea needs to be able to develop strategies to fix unusual

problems on familiar equipment or on new pieces of equipment for which no

specific training has been available. That person just cannot take a time

consuming hit or miss approach, especially when the piece of equipment that

has failed is vital to the operation of the ship. The repair person must be able

to methodically develop a test strategy in order to find and repair the problem

as quickly as possible. Providing help in forming hypotheses and developing

strategies can help teach these skills.

Brown [5J says in order to facilitate this style of learning in a reactive

learning environment, the student must be encouraged to formulate, test and

witness the consequences of his own ideas and must be freed from worry

about possible catastrophic consequences. He also says that the system should

be designed to criticize the student's ideas. A program that helps students

form ideas and then criticizes those ideas allows students to learn from their

mistakes.

4.1 Goal-Directed Hypotheses

Hypotheses should relate to goals and subgoals. Usually the overall goal

when troubleshooting a piece of faulty equipment is to fix the equipment. An

example of a subgoal might be: determine whether a certain device is faulty or

not. This subgoal can be reached by using testpoints to look.at the device

;;P
51.

38

inputs and outputs, and determine whether they are correct or not. If an input

is wrong, the student knows the device is good. The student could then trace

the input to the source of the erroneous signal. If the inputs are all good, but

the output is bad, then the student would deduce that the device is faulty and

replace it. In either case, the subgoal has been reached. It is important for the

student to set such goals and be aware of what is needed to achieve them.

4.2 Help in Forming Hvotheses

What EPST now offers is limited help to the students in forming

hypotheses. The Hypothesis state provides a scratch pad for students to use in

developing hypotheses and storing information associated with the

troubleshooting problem. By providing this type of on-line scratch pad, EPST

allows students to see their hypotheses in written form, making it easier for

them to develop and modify their goals and subgoals. The Hypothesis scratch

pad also allows students to store information, so students do not overload their

working memory.

Students analyze and improve their troubleshooting strategies by

formulating hypotheses, then testing and witnessing the consequences of them.

On-line help is available to provide additional information about the equipment

to students to aid them in forming hypotheses. On-line help can also present

possible hypotheses to the students, depending on their position in the faulty

%, equipment tree. An example of on-line help that can be offered is the

device-hint help command, which helps a student decide which type of device

should be checked first. Since the faulty device for the current problem is

known, information in the parts and equipment trees can be used to give hints

"- to the student on which device is faulty. For example, if a modulation switch is

Working memory, according to the ACT theory, stores what the problem solver currently knows
about the problem 121.

Possible hypotheses can only be given if they have been entered by an SME. These
hypotheses are stored in frames attached to equipment tree nodes.

) 4-

• -. 1

39

the faulty device, the hint could come from one level higher on the parts tree

(refer to Figure 2) and tell the student that a switch is faulty. A less direct hint

could come from two levels higher and state that a mechanical part is bad.

These hints would be given when asked for by the student or, when an advisor

or coach is added, when deemed necessary by the advisor/coach module. Thus,

by combining what is known about the faulty equipment, and where the student

is, EPST provides limited advice to students and helps them form hypotheses

and develop problem solving strategies.

In the future, student learning can be enhanced by an advisor module that

critiques student hypotheses and offers advice, as is done in SOPHIE. This idea

is discussed under future research in Chapter 6.

The different types of on-line help available in EPST are disqussed in the

remainder of this chapter.

4.3 On-Line Help

In order to provide the student with a realistic learning environment, it is

necessary to provide as much help as possible, similar to what could be

received from an instructor if one were present. The way in which knowledge

is represented in the EPST database permits various types of on-line help to be

made available to the student.

EPST's student interface was designed to provide many different forms of

"-. on-line help to students, depending on the mode of student interaction. Help

available in each mode is defined in Paulsen et al. (191, and in Chapter 3,

Section 3.1. The student can access on-line help by selecting the help

interrupt. The commands available under the help interrupt are:

1. Definition
2. General
3. Specific
4. Highlight
5. Problem
6. Cost.

S.P°

S. -4D -i = , --.

N..* .*- * .. W :

40

The Definition and General help commands will be implemented system

wide in CBESS, and are not discussed at length in this thesis. Each of the other

commands listed above is explained briefly below.

4.3.1 Definition Command

If a student encounters a word and is unsure of the meaning, the

Definition command allows the student to see a full definition of the word,

provided it is in the Language Skills Computer Assisted Instruction (LSCAI)

database and the LSCAI database is present.

4.3.2 General Command

The General command provides help in using the CBESS system (including

the interface) and is not related to the subject matter. Examples of help

available under the General command includes descriptions of: how to enter

various types of answers, how to use lesson control keys, and where to find

special keys on the keyboard.

4,3.3 Specific Command

The Specific command allows students to access any on-line help that is

available for helping the student troubleshoot, develop hypotheses, or develop

problem solving strategies. It provides specific information on devices, the

faulty equipment, and the troubleshooting problem. Much of the help offered in

specific help would not be available in an actual troubleshooting environment

but would be available in the classroom, where an instructor would be present

to help students, offer advice, and give hints that help focus students efforts

towards a certain solution. The net effect is increased learning.

The commands available in specific help are:

1. Path Information

2. Faulty Device Hints

3. Production Rules

4. Replacement Conditions

-.

05 41

5 Inputs/Outputs

6 Error Description

7. Possible Hypothesis

8. Possible Tests.

This list of help options is by no means exhaustive of all the possible

types of help that can or should be given to a student. It represents the types

of information that can be accessed from the EPST database. In the future, help

options can be expanded to include instruction and troubleshooting techniques,

among others. The amount of specific help available to the student during

troubleshooting is limited by the interaction mode the student is currently in,

and is controlled at the student interface by the commands that are made

available to the student. The specific help commands are described below.

4.3.3.1 Path information. Path information is designed to help direct the

student towards finding the faulty node by confirming for the student whether

or not the current node on the faulty equipment tree is on the fault path.' Since

the program knows the faulty node for the current problem, the student

interface determines the "fault path" and the path from the scene node to the

current node using the IS PART OF relation. These two paths are compared. If

the paths are exactly the same (the student has found the faulty node) or if the

current node is on the "fault path," then a message will be displayed indicating

that the current node is on the "fault path" and within a certain number of

nodes of the faulty node. If the two paths differ (the current node for the faulty

, equipment tree is not on the "fault path"), a message will be displayed

indicating that the student is not on the "fault path* but is within a certain

number of nodes of the faulty node.

*. With both messages, the distance (number of nodes) part of the message

The "fault path" is defined as a concatenated list of nodes that describes the most direct path
from the scene node to the faulty node using only the IS PART-OF relation. For example, if the
Site Switch shown in Figure 3 is the faulty node, the 'fault path" would be "IAN/WSC-3) / (WSC-3
Panell / (Site Switch)."

' -

42

will be an approximation of how close the current node is to the faulty node,

instead of the exact distance. An approximation is used to avoid giving too

much information to the student, especially when the student is close to the

faulty node. The actual distance from the current node to the faulty node is

used to provide the approximation. The actual distance to the faulty node is

calculated using the distance the student would have to travel on the equipment

tree using the IS PART OF relation. The distance approximations currently used

are:

a. within three nodes of the faulty node,

b. within six nodes of the faulty node,

c. within nine nodes of the faulty node, or

d. greater than nine nodes away from the faulty node.

4.3.3.2 Faulty device hints. The Faulty Device Hints command allows a

student to receive descriptive hints as to which device is faulty. There is a

- sequence of four types of hints available to the student, each successive type

being more descriptive. The four hints available are:

Category The type of category the device falls under. All devices on
the parts tree are categorized under either Mechanical,
Electrical, Electromechanical, Probe, or uncategorized.

Type The type of device it is, such as a switch or circuit board.

Generic What kind of device it is.

Faulty device The actual name of the faulty device.

- . It the modulation switch shown in Figure 3 was the faulty device, the hints

given would be:

Category: The faulty device is Mechanical.

Type: The faulty device is a switch.

Generic: The faulty device is a modulation switch.

",",, , , 4",:'.'.',"','.":-;",'-'--'-'-'. ,'-" " "-"..".....,..'.."."........"...."..,..

43

Faulty device: The faulty device is the modulation switch on the

WSC-3 Panel.

Each successive hint is -more descriptive and would result in a larger score

change. In other words, the Category hint would result in a low change to the

student's score while the Faulty device hint would result in a large change.

The information needed to provide these hints is retrieved from

successive searches of the triangle nodes for the faulty equipment. Since the
faulty device is always known by the prngram for each problem, the faulty

device hint simply uses this information. The generic device hint is found using

the INSTANCE OF relation. The standard triangle nodes are searched for the
triangle that contains the faulty node as the subject and INSTANCE OF as the

relation. The object of this triangle will be a pointer to the name of the generic

device. The type hint is found by searching for the triangle node that has the

generic device as the subject and ISA as the relation. The object of this

triangle node will be the type of device. The Category hint is found in the same

way, using the type of device as the subject and ISA as the relation.

4.3.3.3 Production rules. Production rules describe device state

transitions and are used during emulation to determine the outputs of a device

based on the inputs. This specific help command displays the production rules

defined by the Subject Matter Expert for the current device. This information is

helpful in allowing students to determine whether a device is working normally

or not. Examples of production rules and how they are used are described in

detail in Chapter S.

4.3.3.4 Replacement conditions. Selecting the Replacement specific

help command allows the student to view any replacement conditions that must

be met before a device or panel can be replaced. As a minimum, usually the

power needs to be turned off, but there may be other conditions that must be
met before replacing the panel or device in order to avoid damage to the

equipment or personal injury. These conditions are checked by the program

* 4b

1 ~ 4.,"

4. 4

4 : whenever a student tries to replace a device or panel. A warning message is

printed out and replacement is prevented if the conditions have not been met.

The replacement conditions for a device are stored with the generic device

description found in the parts tree. This information is found by following the

INSTANCE OF relation to find the generic device, and then looking in the frame

to get the information.

4.3.3.5 Inputs/outputs. This command displays a list of input/output

values for the current device or for any device selected by the student. It

allows a student to view the inputs/outputs of any device at any time. Using

this type of help eliminates excessive time spent trying to move through the

equipment tree to a certain device in order to use the Examine inputs

command. It also allows a student to compare inputs/outputs from similar

devices. The list of inputs/outputs is retrieved by searching all input and output

triangle nodes for the triangles that have the selected node as the subject. The

relation of these nodes has the index of the name of the input/output and the

object contains the index of the quantifier node that contains the current

input/output value.

4.3.3.6 Error description. This command will actually display an English

description of what the equipment error is for the current problem, without

telling the student which panel/device is faulty. The English description of the

equipment error is stored with each problem.

4.3.3.7 Possible hypotheses. This information will be entered by an
SME or instructor, and will be connected to certain nodes on the equipment tree

and stored in the frame associated with the node. The hypotheses can be used

for designated problems or for all problems associated with the equipment tree.

If hypothesis information is asked for and the current equipment tree node does

not have any possible hypotheses information associated with it, the program

will use inheritance to find the hypotheses information of the closest ancestor

node that contains such information.

4.J

%-. "" " ' 4 "" """"..." '''...".".,.",,." ..- , .. r .,.,

45

* 4.3.3.8 Possible tests. The Possible Tests command is similar to the

Possible Hypotheses command described above. This command displays

possible tests to perform based on the current node and problem.

4.3.4 Highlight Command

The purpose of the Highlight command is to prevent student frustration

incurred after repeatedly selecting panels, devices, or device positionsh from a

video screen that are not available for selection. When the Highlight command

is selected, the possible selection areas will be drawn in reverse video. A

student can than see what is available for selection and make an appropriate

choice. The Highlight help command will be available when video/graphics are

available. When menus are used instead of video to display the scene, panel,

and device nodes, the items in the menu are the only choices allowed. The

information that is used in creating a menu will be used to highlight the

different panels and devices on the video/graphics screen.

4.3.5 Problem Command

Selecting the Problem command displays the complaint and/or symptoms

associated with the current, troubleshooting problem. This is the same.

information that is presented to the student at the beginning of a problem, and

is available anytime in EPST, without any score deductions. The complaint

and/or symptoms for each problem are stored in the problem record.

4.3.6 Cost Command

Selecting the Cost command displays the replacement cost of the current

panel or device being viewed when the help interrupt was selected and/or the

cumulative cost for troubleshooting the faulty equipment thus far. If a panel or

Vid4o "etures will display actual pictures of devices that are currently on the equipment.
*ecause-1T the cost involved. most devices that have had,,eyme device positions deactivated are
not replaced. Therefore. positions may appear on the vide cure that are not actually hooked up
to anything.

Pu

46

device is not replaceable, only the cumulative cost for the current

troubleshooting session is given. The replacement cost for a device is stored

with the generic device description found in the parts tree. This information is

found by following the instance-of relation to find the generic device, and then

looking in the frame to get the information.

I

-4'•

4 ,,

..

CHAPTER 5

EMULATION IN EPST

in EPST, each device is defined in terms of inputs and outputs, and

production rules are used during emulation to determine the value of the

outputs of a device based on its inputs. Keeping all information local and using

reasoning from first principles offers many advantages, including making it

easier to construct and maintain the overall system.

Related research in simulating circuits for electronic troubleshooting

systems is being done currently by Randall Davis at MIT (8J Davis also uses

reasoning based on first principles (first order effect). This reasoning uses

knowledge of structure and behavior, where structure is the information about

the interconnection of modules, and behavior refers to the black box description

of a component.

5.1 Use of Production Rules to Simulate Devices

Production rules are associated with part nodes and describe device state

transitions. They are used in emulation to determine new outputs of devices

based on the current state of a device and its inputs. The use of Production

; Rules are described in detail in Paulsen et al. [191 and some of the examples

contained In this section are taken from that document.

5.1.1 How Information is Stored in Production Rules

A production rule consists of the following Items:

Initial state The state a device must be in for the production rule to be

applicable.

Bit vector The error conditions under which the production rule is

48

applicable.

Boolean expression
The premise that, when evaluated, indicates whether or not

the production rule is applicable.
Conclusion The state the device should go to if the production rule is

applicable. If the state should not change, the conclusion will

state "no-change."

5.1.2 Order of Production Rules

The order of production rules is important because the system uses the

first applicable rule it finds. As a result, SMEs need to ensure that rules are

placed in the production rule list In the proper order.

For example, one rule-ordering strategy that SMEs can use is to place

rules that operate on boundary states" towards the front of the list so that

later rules can cover the general case. An example of this for a 4 bit counter

is:

If in state 15 and operating normally and count and load are

highl, then state 0.

A later rule would say:

If in any state and operating normally and count and load are

high, then state = state + 1.

Another strategy SMEs can use is to specify conditions where nothing

happens first, so that later production rules need not worry about them. For

example, the first rule for digital synchronous devices can often be:

If in any state and under any conditions and (clock <> rise),

then no change.

There is implicit knowledge here, since later rules need not check for situations that are
covered in earlier rules.

A boundary state is a state at which something special happened. For example, in state 15 a

4 bit counter would go back to state 0 rather then continue to state 16.

,x

ir.

49

% Rules later in the list would not have to verify that the clock rose. Using such

strategies can often simplify production rules.

5.1.3 Production Rules and Error Conditions

There are two types of production rules, 'normal" rules and "error" rules.

Normal rules are used when a device is operating normally. Error rules are

used when an SME has specified that a device is operating under an error

condition. A production rule can fall into both these categories.

Each production rule has a bit vector that indicates when the rule is valid.

The least significant bit of the vector is set when the rule applies under normal

operating conditions. The other bits in this bit vector signify error conditions

specified by the SME. If a bit is set, the rule is valid under that error condition.

5.1.4 SamDle Representation of a Device in EPST

Consider a d-flip-flop with an asynchronous clear. The following two

states are defined:

* 5-:K~State 0: Q low, QBAR high

- ." State 1: Q high, Q BAR low.

A subset of the production rules would be (in order):

1. IF
in any state, and
operating normally, and
low(clear)

Then
state (0)

Implicit assumption for following ru/es: clear is high

2. IF
in any state, and

Associated with each instantiated device is a 1e bit field for giving the error conditions. If the
least significant bit is set, then the device is operating normally. The other bits represent different
error conditions. A device can only have one error at a time.

) N

50

operating normally, and
not(rise(clock))

Then
no change

Implicit assumption for following rules. clock is rising
%3. IF

3. in any state, and
operating normally, and
low(d)

Then
state (0)

4. IF
in any state, and
operating normally, and
true~empty premise]

Then
state (1).

The strategy used in defining the above rules is simple. Each rule was

defined in order because:

1. If the asynchronous clear is asserted, the flip flop goes into state 0
regardless of what the other inputs are.

2. If the first rule does not apply, then nothing can happen unless the
,- clock rises.

3. This rule tells what happens when d is low. Clock is not mentioned
because the previous rule already indicated that the clock had risen.

4. If none of the above applied, then the d input must be high,
therefore the flip flop goes into state 1.

5.1.5 Adventaes of Usina Production Rules

There are several advantages to the way EPST uses production rules.

First, each device need only know about itself and its production rules, and not

how it affects every other device. An author can easily define the way each

device works in terms of inputs and outputs, and define the production rules to

" , represent this. This information is bound to the conceptual device node, and is

accessible to the program, author, and students.

: ' " ?5) ": '. ":' ' ' ;,:,.".:' :2 :' ? " ';i ".: ' ".'?""" .. ' -

51p Second, this representation saves the Subject Matter Expert (SME) much

time and effort. For each device, the SME must define one concept node with

its associated production rules. This device definition then can be used with

.any number of instantiations of the device with no extra effort on the part of

the SME.

Third, the amount of space required to store a single set of production

rules for all instantiations of a device versus separate production rules for each

instantiation is far smaller.

Finally, EPST makes it easy to modify a device once a database has been

created. If all the input and output connections remain the same, all that has to

be done is to redefine the device in the parts tree. If the inputs and/or outputs

change, the authoring mode can be used to add, delete, or edit inputs and/or

outputs.

5.2 Emulation Algorithm

The emulation done in EPST is not a true simulation of the operation of

the equipment, but an approximation of what actually happens. Emulation is

done by performing actions on devices. An action on a device is triggered

whenever one of its inputs changes, either as a result of an action on another

device or as a result of the user performing an action that affects the device

directly, such as throwing a switch. The devices awaiting an action are added

to an agenda, called a waiting actions list, which lists the devices for which

-' production rules need to be evaluated. The production rules for each device on

the waiting actions list are evaluated, and any changes to the outputs of the

device are recorded. After the waiting actions list is empty, each output that

was changed is examined, and all devices that have the changed output as an

A input are placed on a new waiting actions list. This new waiting actions list is0:.
then acted upon. The process continues until the waiting actions list is empty.

Thus changes ripple out through all the affected devices by the emulation

algorithm. The data structures used in this algorithm are:

I ,.-

-I

52

Waiting Actions List
4 List of devices for which production rules need to be

evaluated

Waiting Changes List
List of quantifiers which need to be updated when the waiting

actions list is empty.

Changed Quantifiers List
List of digital quantifiers that were changed by the last set of

actions. This list allows the program to go back and change

rise and fall values to high and low.4 This list only contains

digital quantifiers.

The algorithm assumes that there is a discrete system with no cycles.

The algorithm for emulation is shown in Figure 7. By using an agenda in the

emulation algorithm, the possibility exists for allowing students to have a single

step mode, where emulation could be stopped after each pass through the

. - algorithm. This is not possible in real life, but may be useful for teaching

purposes. The current version of EPST does not permit this single step mode.

5.3 Sample Emulation

-, To better understand the emulation algorithm, consider the simplified

example shown in Figure 8, where there are six devices, numbered 1 - 6. These

six devices are connected by inputs and outputs, where the outputs of some

devices are inputs to other devices. Therefore, if the output of a device

changes due to a state change within the device, the corresponding input to the

other devices that use the changed output as an input will also change. The

resulting changed input may or may not cause a state change within the other

devices. Device 1 is connected to devices 2, 3 and 4 in such a way that if

EPST treats digital transactions (a transition from low to high or high to low) differently from

other transactions in EPST. The reason is that EPST may need to know both the current value of a

digital input and whether that input has risen or fallen. Ouring emulation, if a quantifier has the

value low and a new value of high is to be placed in the quantifier, EPST places the value rise in

the quantifier and adds the quantifier to the Changed Quantifiers List. Similarly. if the quantifier
value is to be changed from high to low. EPST places the value fall in the quantifier and adds the

quantifier to the Changed Quantifiers List. When the current Waiting Actions List is empty. EPS"

changes rise values to high and fall values to low 1191.

53

1. Emulation starts when an individual input quantifier changes.
Devices which use this quantifier as an input are placed in
the Waiting Actions List. If the quantifier is a digital
quantifier, it is placed on the Changed Quantifiers List.

2. If Waiting Actions List is empty then EXIT.

3. For each device in the Waiting Actions List DO:

a. Evaluate the production rules for the device, using
the state of the device and the current input values
as inputs.

b. Record new state of device in state fld of node.

c. The outputs and their values are placed in the Waiting
Changes List.

4. The Changed Quantifiers List Is traversed, and the
quantifiers updated to their new values (rise values
changed to high and fall values changed to low).

5. For each output quantifier on the Waiting Changes List DO:

a. Update the quantifier of each output with the new
value.

b. For each output quantifier that is changed, all
devices that have this quantifier as an input are
placed in a new Waiting Actions List.

c. If the output value Is digital, place the quantifier
on the Changed Quantifiers List.

6. Any changed screen graphics are updated.

7. Jump to step 2.

Figure 7: Emulation Algorithm Used for Rippling Out Oevice State Changes

54

'. Figure 8: Simulating Devices Example

device 1 changes states, it may or may not cause a corresponding change to

~the state of the other three devices. Similarly, devices 2 and 5 are connected

:' :tO devices 5 and 6, respectively. So if a state change in device 1 results in a

2 5

. , . new input to device 2 which causes a state change in device 2, then the output

of device 2 will change, resulting in a new input to device 5. If the new input

• -:-to device 5 causes a state change, device 6 will have a new input which couldcause a state change within device 6.

v If we assume that the state of a device always changes whenever one of

its inputs changes, then EPST would emulate a state change in device 1 as
shown in Figure 9. In this example, the waiting actions lists have been

numbered for purposes of clarity only, since only one waiting actions list is

actually used. Four passes through the emulation algorithm are required,

because the algorithm repeats for each new waiting actions list until an empty

" list is encountered.
-1

N

55

**Input to device 1 changes -. Add device I to list'l)

P"-ASS Uaiting Actions List(1).
Device I

**Output of Device 1 changes -> Add Devices 2,3,4 to list(Z)

PSS- 2 Maitinag Rtions List(2)
Oev i ce 2

Device 3

Device 4

**Output of Devices 2,3,4 change -> Add Device 5 to list(3)

PS Salting fiction List(f)

Device 5

**Output of Device 5 changes -> Add Device 6 to Iist(4)

PRSS 4 ,aii.ng. atioan List(4).

Device 6

*Output of Device 6 changes -> Finished

Figure 9: Sample Emulation in EPST

e. .

o.
• , ,V

CHAPTER 6

FUTURE RESEARCH

This final chapter summarizes the results of our research and discusses

some possible areas for future research.

6.1 Summary of Thesis

The EPST student interface provides a user-friendly reactive learning

environment that helps students practice troubleshooting faulty equipment and

develop troubleshooting strategies. Students develop, record and set up test

connections to test their hypotheses, eventually determining and replacing the

faulty component on the equipment. On-line help is available to help students

form their hypotheses and to provide general information on the faulty

equipment. EPST uses a combination of Semantic Networks and Frames to

represent knowledge in the database, which provides for easy storage and fast

access. The knowledge contained in the Semantic Networks is used to

represent equipment structure and the relationships between devices in terms

of inputs and outputs. Frames are used to store attributes associated with

different pieces of equipment. Students access different parts of the faulty

equipment by following spatial, physical, or logical links.

Devices in EPST are described in terms of structure and behavior. The

structure of devices is defined in terms of inputs and outputs and the behavior

of devices, which determines how outputs are derived from inputs, is defined in

production rules. An emulation algorithm that uses an agenda is used to

emulate the characteristics of devices. EPST was designed for the Navy for use

in its technical schools, and an experimental prototype was written in C.

S.}

57

6.2 Reiteration of Design

In designing any type of system, a cycle of design (DESIGN - TEST

- EVALUATE - REDESIGN) should always be used to ensure a user effective

product. This cycle of design was used on a small scale in designing the EPST

'C- prototype, but now some long-term testing is needed to really see how well the

reactive environment works in allowing students to practice troubleshooting

faulty equipment and to develop problem-solving skills. This type of long-term

testing requires a large student population and the proper training environment.

For these reasons, the Navy will conduct this long-term testing in its technical

schools. The long term results of EPST will not be seen until after students are

out in the field, which takes upwards from six months to a year. Based on the

results of these tests, a reiteration of the design process should be used to

redesign EPST.

--. ! 6.3 Addition of an Advisor/Coach

The EPST student interface creates a reactive learning environment that

allows students to formulate, test, and witness the consequences of their ideas

without worrying about possible consequences. The current prototype, however,

can not evaluate student actions or offer advice. Often students see things

differently from instructors, and the program should be able to detect these

different perspectives and then help alter them. A computer-based

Advisor/Coach could do this. The Advisor/Coach should be able to determine

when the student has made an error, and then judiciously decide when it is

appropriate to interrupt. If the advisor interrupts too early, the student will not

be able to learn from his own mistakes and learn to make corrections. If the

Advisor/Coach interrupts too late, a valuable learning experience may be lost.

An Advisor/Coach could have multiple roles, offering timed advice, advice

based on student performance, and student-initiated help/advice. For example,

timed advice could have the Advisor/Coach track and periodically advise

students whether they are on the right path or not and how they are doing in

%.__.*..

58

comparison to other students. The Advisor/Coach could interrupt students

based on their performance and offer constructive advice when they are doing

something wrong such as replacing an expensive device without first

performing some cheaper tests to ensure it is the faulty device. Students could

p.-, request help/advice at any time while troubleshooting. Examples of possible

., requests could be: what type of test should I perform now and why, is my

.'.-. hypothesis good, or is an action dangerous or not.

An Advisor/Coach could include an hypothesis evaluator that would inform

the student when and why an hypothesis was inappropriate or appropriate. It

could also offer possible hypotheses to students, based on where they are, what

tests they have performed, and what their current hypothesis is. This type of

help could be in the form of multiple choice questions for the student or as

specific answers that might include a short explanation of why the hypothesis is

appropriate.

In SOPHIE [51, an expert module used decision trees annotated with

schema to produce explanations for troubleshooting a circuit. The annotations

are associated with nodes in a decision tree, nodes which can be reached by

* ... only one path. Thus, the exact context is known ahead of time. Although EPST

uses a more complex environment than SOPHIE, a similar idea may be used in

EPST.

6.4 Natural Language Interface

The current EPST student interface offers on-line help, but this on-line

help is limited by the number of commands offered to the student. This

- -"limitation could be removed by adding a Natural Language Interpreter that

allows students to ask natural language questions of the database. In this way

students could ask and receive any type of information available from the

database. This also could decrease overall response time in help, since

students would not always have to go through many levels of questions before

actually receiving the information, but can ask for the specific Information they

-p..

V.11.59.

I%

desire. This procedure could be similar to the one Risa Stewart is

designing (211, which provides a natural language interface that allows students

to ask questions about information contained in semantic networks for a

Computer-based Memorization System (CBMS).* Stewart's work could be

modified to include Frames. A database browser could also be added to allow

" students to traverse the EPST database and examine its contents.

6.S Efficiency

An important factor of an interactive system is its efficiency and response

time. The overall effectiveness of a system is lost if a student must wait an

unusually long time for responses from inputs. The EPST database was

designed to increase efficiency, by decreasing search time and allowing quick

access to knowledge contained in the database.

Currently each device in the parts tree contains all the information for that

device. Inheritance is not used extensively in the ISA or IS PARTOF tree.

Developing a way to use inheritance with the ISA relationships would allow

properties of devices to be associated with the most general object for which

they are valid."* This would allow for a more concise statement of properties of

*'..:the objects in the relations and would reduce storage space.

.

• .-. *CMS is a component of CulSS

, , The information could be attached to the node in the parts tree that contains the moat general

.,%-=,case.

.. I..

at

REFERENCES

1 Anderson, J.R., ACT Theory, Harvard University Press, Boston, 1983.

2. Anderson, J.R., Boyle, C.F., and Reiser, B.J., "Intelligent Tutoring Systems,"
Science, Vol. 228, April 26, 1985, pp. 456 - 462.

3. Brandt. R. C. and Knapp, B. H., Computer-Based Educational Software
System Volume I Technical and Management Proposal, Department of
Computer Science, University of Utah, 1984

4. Brandt. R. C. and Knapp, B. H., Sequence Editor Document, Department of
Computer Science, University of Utah, 1985

5. Brown, J. S., Burton, R. R., and DeKleer, J., "Pedagogical Natbral Language
and Knowledge Engineering Techniques in SOPHIE I, 11, and III,' in
Intelligent Tutoring Systems, Brown, J. S. and Sleeman, 0., ed., Academic
Press, New York. 1982, pp. 227 - 282, ch. 11.

6. Brown, J.S., "Learning-by-Doing Revisited for Electronic Learning
Environments," in The Future of Electronic Learning, White, M.A., ad.,
Lawrence Eribaum Assoc., Hillsdale, New Jersey, 1982.

7. Cubic Corporation, "Trainer Programming Report for Electronic Equipment
Maintenance Trainer," Tech. report P-181/A005-1F, Cubic Corporation,
Dec., 1982.

8. Davis, R., "Diagnostic Reasoning Based on Structure and Behavior,'
Artificial Intelligence, Vol. 24, Dec., 1984, pp. 347 - 410.

9. Duncan, C., editor, Thinking: Current Experimental Studies, Lippincott.
New York, 1967.

10. Farrell, R. G., Anderson, J. R., and Reiser, B. J., "An Interactive Computer-
based Tutor for Lisp," AAAI 84, 1984, pp. 106 - 109.

11. Gould. J. D. and Lewis, C., "Designing for Usability - Key Principles and
What Designers Think," Human Factors in Computing Systems, A. Janda,

Aed., ACM Special Interest Group on Computer & Human Interaction, The
Association for Computing Machinery, Inc., New York, 1984, pp. 50 - 53.

12. Hoff, T., "NPROC Contract N00244-83-C-1759," Contract issued by

NPROC to University of Utah,.

13. Lahey, G. F. and Malec, V. M., Navy Personnel Research and Development

Center, Generalized Maintenance Trainer Simulator: User Manuel, San

81

Diego, California, 1982.

14. Lahey, G. F., "Generalized Maintenance Trainer Simulator: System
Description," Technical Note 82-6, Navy Personnel Research and
Development Center, Jan., 1982.

15. Landauer, T. K., Galotti, K. M., and Hartwell, S., "Natural Command Names
and Initial Learning: A Study of Text-Editing Terms," Communications of
the ACM, Vol. 26, No. 7, July, 1983, pp. 495 - 502.

16. Lemon, M. J., 'A 'Less-Procedural' Methodology and Supporting
Framework for Simulation Programming,' Ph.D. dissertation, University of
Utah, 1983.

17. Matty, D. G., 'Constraint Driven Synthesis of Hardware Design,"
Ph.D. dissertation, University of Utah, 1983.

18. Morland, D. V., 'Human Factors Guidelines for Terminal Interface Design,*
Communications of the ACM, Vol. 26, No. 7, July, 1983, pp. 484 - 494.

19. Paulsen, R. B., Coller, L. D., McKenney, D. G., Brandt, R. C., and Knapp,
B. H., Software and User Interface Definition Document - Equipment
Problem Solving Techniques System, University of Utah, 1985

20. Rich, E., Artificial Intelligence, McGraw-Hill, Inc., New York, McGraw-Hill
Series in Artificial Intelligence, 1983.

21. Stew art, R., A Natural Language Interpreter for the Computer-Based
Memorization System, Master of Science Thesis Proposal, University of
Utah, 1984.

22. Williges, B. H. and R. C., 'Dialogue Design Considerations for Interactive
Computer Systems,* Human Factors Review: 1984, F. A. Muckler, ed.,
The. Human Factors Society, Santa Monica, California, 1984, pp. 167 - 208.

-a,.

'p

FILMED

9-85

"..

DTI

