AD-A158 835 A REHCTIVE LEHRNING ENVIRONMENT FOR THE EDUIPMENT
PROBLEM SOLVING TECHNIGUES (EPST) SVSTEM(U) AIR FORCE
INST OF TECH WRIGHT-PRTTERSON AFB OH 6 MCKENNEY

UNCLASSIFIED AUG 85 AFITA/CI/NR-85-68T F/G 5/9

"abon
T

A i S

ity Ay gy A

sl

LN

'‘d

i

o Iﬁm 2.5

s' i § i

M —— E ™ L
£ s

: i = K

XA

kX MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AL ik, o e

I g %, g Sy

el a s aa &

ST B oS AR DT AN I 33240

sS

s AD A58 035

READ INSTRUCTIONS

REPORT I BEFORE COMPLETING FORM
1. REPORT NUMBER i. RECIPIENT'S CATALOG NUMBER
AFIT/CI/NR 85-68T
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A Reactive Learning Environment for the THESIS/DIASERYVIA O
Equipment Problem Solving Techniques (EPS

System 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) ®. CONTRACT OR GRANT NUMBE iy e)
. David Gene McKenney
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT,. PROJECT, TASK

AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: The University of Utah

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR August 1985
WPAFB OR 45433 _ 13. NUMBER OF PAGES
70
—ONITORING AGENCY NAME & ADORESS(If different from Controlling Office) | 15. SECURITY CLASS. (of (hls report)
UNCLASS

18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED ELECTE
AUG 16 1985 _

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, I dillerent from Report)

B ..

18. SUPPLEMENTARY NOTES w 77
| APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 VMR E. WOLAVER
Dean for Research and o

Professional Development .

r MG I$0 AFIT, Wright-Patterson AFBJOH ;j

19. KEY WORDS (Continue on reverae alde il necessary and identlly by block number)

Jat JiEs

:;N..l

. ABSTRACT (Continue on reverss side If necessary and identily by block number)

S
one?

N
N

85 +

vion'ys 1473 eoition oF 1 NOv €S 1S oBsOLETE UNCLASS

f(‘ SECURITY CLASSIFICATION OF THIS PAGE (When Dala Entered)

..... J' ol

D L S S e L L L T U T T e T

o™ o

.
' ta Mt

e,
h .
2%
-

“w
>
‘-
5.
3.
)

e AT T I I T T T T TN R oW mxlxﬁmnﬁ

ABSTRACT

“This thesis describes a user-friendly program that allows students to
troubteshoot equipment in a reactive learning environment. The system allows
students to develop problem solving strategies while troubleshooting faulty
equipment through the use of video scenes with graphic overlays. The student
interface contains instructional strategies which access information stored in a
database consisting of semantic networks and frames. Student troubleshooting
involves moving within equipment, changing device settings, setting up test
equipment, and obtaining equipment' readings. |

Important features of the student interface include the simulation of
devices based on first order effects, the use of production rules to describe
device state transitions, and the use of an emulation algorithm to ripple out
device state changes. The student interface also allowsAusors to follow wire
connections, set up test equipment, record hypotheses, and get on-line help. In
addition, the groundwork is ;trovidod for the future addition of ‘an Advisor

module (or Coach) to monitor the student's progress throughout the

troubleshooting process and give advice.

The student interface is general in nature. The content of the database
can be changed to represﬁnt any type of equipment, but the student interface
does not have to be redeveloped or modified for the new database. The
student interface is written in "C” on a Unix operating system, which pxri'nits

the program to run on both large and small computer systems.

[SPEERII) o I

&

a
]

e ce———

By

oDC

LTy l l
INSPECTED ﬁ/ ' I I
1

. pistrjibutiog/
‘}_“Avauabxuty Codes

iAvail and/or |
Dist ! Special

R A A B T A o T et S T R L A A A

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value and/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: A Reactive Learning Environment for the Equfpment Problem
Solvi Techni (EPST) Syst
AUTHOR: _David Gene McKenney
RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES () b. NO

2. Do you believe this research topic is significant enbugh that it would have been researched
(or contracted) by your organization or another agency if AFIT had not?’

() a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

() a. MAN-YEARS () b. §

4. Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

() a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT . SIGNIFICANT SIGNIFICANCE

- 5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NARE GRADE . POSTTION
ORGANTZATION LOCATION

STATEMENT(s):

T T P T T T W W WL WV W P g T

A REACTIVE LEARNING ENVIRONMENT FOR
* THE EQUIPMENT PROBLEM SOLVING
TECHNIQUES (EPST) SYSTEM

by

David Gene McKenney

A thesis submitted to the facuity of
The University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
The University of Utah
August 1985

Ny
|
|
§
]
|
j
{
|

ed

A
g s o

¥ 1

- -

ety e
2t

S

Copyright (c) David Gene McKenney 1985

s All Rights Reserved

L L 4o fao 2 Lo, 2y v T T O O TR O T W LT T ﬂ

To my wife, Annamarie

RRs -

S

|

o

5

ELI
[]

ABSTRACT

This thesis describes a user-friendly program that allows students to
troubleshoot equipment in a reactive learning environment. The system allows
students to develop problem solving strategies while troubleshooting faulty
equipment through the use of video scenes with graphic overlays. The student
interface contains instructional strategies which access information stored in a
database consisting of semantic networks and frames. Student troubleshooting
involves moving within equipment, changing device settings, setting up test
equipment, and obtaining equipment readings. .

Important features of the student interface include the simulation of
devices based on first order effects, the use of production rules to describe
device state transitions, and the use of an emulation algorithm to ripple out
device state changes. The student interface also allows-users to follow wire
connections, set up test equipment, record hypotheses, and get on-line help. In"
addition, the groundwork is brovided for the future addition of an Advisor
module (or Coach) to monitor the student’'s progress throughout the
troubleshooting process and give advice.

The student interface is general in nature. The content of the database
can be changed to represent any type of equipment, but the student interface

. does not have to be redeveloped or modified for the new database. The
student interface is written in "C* on a Unix operating system, which permits

the program to run on both large and small computer systems.

ARt g

. -p -
[\ Obbﬂl l':‘l. J\‘,n ‘!

T AN WAL - iy a0 - (e A N .
i ‘ 'Y" " W ,A'l ' n! “n V:'l‘:'i.n |.|=. RPN .‘l‘ /) Ju",n‘ ,'l.wr'l'- l‘a'l‘m’l -.l‘o o & » 'y

. s o el SRR TR R e TR e e '"”T
CONTENTS
. ABSTRACT e e e, iv
LISTOF FIGURES ittt ittt viii
LIST OF TABLES ittt e, ix
ACKNOWLEDGMENTS ittt ittt it x
CHAPTERS
LINTRODUCTIONttt ittt it eesterernenaneens 1
Tl Motivation0ttt ittt et 2
T20utline of Thesisccoitermnunen. 3
1.3 The EPST Systemcoiiinrernnnenn. 4
131 AuthoringMede 5
1.3.2 Student Interaction 6
T4 Related Work ittt ittt iiiannn, 6
2. EPSTPROJECTDESCRIPTION0iiiiirnnnnnnn. 9
21 Database Structurec. .. 9
211 SemanticNetwork 10
212 Frames0iii i, 16
2.2 How the Equipment Tree Affects Learning 16
3. STUDENT INTERFACE0iiii i tittnnennnnnann 19
3.1 Student interaction Modes 21
311 TeachingModecovvvn.. 21
. 312PracticeMode0c.c0iiuunnnn.. 22
313 FreeplayMode, 22
. 3.2 Student Movement inEPST 22
3.21 EPST State Definitions 23
3.2.2 Student Position Representation 25
3.2.3 Student Movement on Equipment Trees 25

324 Student Path Information 30

331 ConnectState,
34 Scoring in EPST e
35 Solving the Problem

4. HYPOTHESIS FORMULATIONottt

4.1 Goal-Directed Hypotheses
4.2 Help in Forming Hypotheses
430n-LineHelp i,
4.3.1 DefinitionCommand
432 GeneralCommand
433 SpecificCommand
4.3.4 Highlight Command
435 Problem Command e e
436CostCommandoc0iitiinnannn.

S. EMULATION IN EPST iiiiiiiiinnennnnn

5.1 Use of Production Rules to Simulate Devices
5.1.1 How Information is Stored in Production Rules ..
5.1.2 Order of Production Rules
5.1.3 Production Rules and Error Conditions
5.1.4 Sample Representation of a Device in EPST
.5.1.5 Advantages of Using Production Rules
5.2 Emulation Algorithm,
S53SampleEmulation i i,

6. FUTURERESEARCH,

61SummaryofThesis 0civuuun.
6.2 Reiteration of Design
6.3 Addition of an Advisor/Coach
6.4 Natural Language Interface
BS Efficiency e

REFERENCES

--

32
34
36

37

37
38
39
40
40
40
45
45
45

47

47
49

49
49
50
s1
52

S6
57
57
58
59

K.
g LIST OF FIGURES
y
1. Triangle Nodes Used in EPST
2. Sample Parts Databasec..cuciiumenun..
3. Sample Equipment Database
4. Device Part Node Frame
: 5. State Diagram Showing Possible Student Movement in EPST
‘.; 6. Connection of Two AND Gates
: 7. Emulation Algorithm Used for Rippling Out Device State
Changes e e e e
‘. 8. Simulating Devices Example
9. Sample Emulation in EPST
:
:
il
$
3

2L

a,r"‘

.. 12
.. 14
.. 15
.. 18

23
.. 29

.. 53
.. 54
.. 55

Rl AN ks R e b a o dranci o a0l Coan By Gelei e 2 ; -H?".T

J LSS SIS TR TS S RS S WS Y T R PRI R

v TN W RN - mww

LIST OF TABLES

1. Slots Used in EPST Frames 17
2. EPST States 24
3. Connect State Commands for Changing Current Connections . 33
4. Connect State Commands Available After Completing

Connection, 35

ACKNOWLEDGMENTS

I would like to thank those organizations and people without whose help
and guidance this research could not have been completed. My deepest
appreciation goes to the U.S. Air Force, which provided both the opportunity and
financial support that allowed me to pursue an advanced degree.

| would like to thank Dr. Richard Brandt and Barbara Knapp for their help in
developing and expanding some of the ideas contained in this thesis. Thanks
also to my advisor, Dr. Richard Brandt, and the other committee members, Ors.
Thomas Henderson and Robert Kessler, for their support and ‘advice during
preparation of this manuscript. | would like to especially thank Sandra Peck for
her careful reading of the manuscript and her helpful comments on style and
content.

| would also like to thank everyone in the Computer-Based Education
Software System (CBESS) group, especially those individuals who developed
some of the underlying CBESS components the student interface uses. Thanks
to Eric C. ("No | don’t do windows"”) Brown for developing the Interaction Driver
software and to Brad ("They will be up Real Soon Now”) Davis for his work in
developing sequences and windows. A special thanks to Rick Paulsen, who
developed the EPST database software, without which the student interface
could not run.

This work was partially supported by the Navy Personnel Research

Development Center under Contract Number N00224-83-C-1759.

Eaa A RN Al Surit NN B bl e agti e sk s Rk B e s i ased mih - mihd DA aibi- bk - ackdy- st c sl - o del-umne - o r?ﬂ

N‘m,

3

R

,}'-

e

:: CHAPTER 1

ay INTRODUCTION

K

Equipment Problem Solving Techniques (EPST) is a Computer-Aided
' instruction (CAl) system developed at the University of Utah as a component of
‘:::\' the Computer-Based Education Software System (CBESS) [3, 12]). EPST is an
&::3 interactive, image-based, computer-controlled trainer simulator capable of
.’."':: simulating a wide variety of electronic and electromechanical equipment. The

f;: major objective of EPST is to give students experience in troubleshooting

.} electronic equipment and developing troubleshooting strategies. The EPST

: student interface developed in this thesis provides the basis for a reactive

learning environment that goes beyond the traditional “branch and test”
r environment normally found on microcomputers. The student interface
h combines recent advances in cognitive science and Artificial Intelligence to
- allow students to not only learn about how to troubleshoot faulty equipment,

:‘f-; but also to actually develop problem solving strategies while troubleshooting.
:".'; This thesis addresses several design features of the student interaction

':. program (student interface), particularly those that provide aid to students in
o forming hypotheses, developing troubleshooting strategies, and obtaining
¥

information on how actual electronic equipment works. Device representation

- .,
AM
C, I'i e

P E

)

B

and emulation are also discussed.

g

}‘LJA; o 3

A

[/
4
e
§
[}
[
1

ACGUA ARG P e U IR~ T E o VIR St RSt e o (LR O CA A SRR (R T S AR CRCR CL LN |

Laa ABa A (lus ciue Yia AL lde Tt dhhacfbie Aas K ke S See- g s dhtes £2a 2oan Se-feas St b ae i dey s v A Lot e un il an MO Ak b o 4 ien Jhams b M S Ae Berd K i s

. 2
o
‘ 1.1_Motivation |
.': Much of the motivation for designing EPST stems from the search for a]
:-:f; low-cost, image-based classroom trainer/simulator that can simulate the |
\ operational and maintenance functions of a wide variety of electronic §
?‘:; equipment. Such a trainer is needed because extensive training and practice is ‘
- required for electronics technicians to acquire operationai and maintenance
:. skills. The equipment normally used for this training and practice is actual
:' operational equipment, which is expensive, involves hazards to both people and
' machines, and often involves time-consuming procedures.” Another problem
J'\ with using actual equipment is that eduipment is often in shdrt supply, resulting
..\ in delays or training on inappropriate or obsolete equipment [13]. Previously
‘ developed trainer/simulators have only provided a practice environment, relying
on instructors to provide instruction and on-line help.
EPST, on the other hand, is a trainer/simulator that permits the emulation
: of the characteristics of a wide range of equipment and systems. EPST
- presents realistic performance symptoms similar to those of real equipment
*" during either normal or failed operating conditions and provides, when needed,
.’_‘_ instruction and on-line help that would normally come from an instructor. The.
‘ .' main purpose of the EPST student interface design is to create not just a
j;-' learning-by-doing practice environment, but a reactive learning environment
:-: that helps students learn appropriate problem solving strategies. The EPST
’“ student interface allows students to examine their own thinking and learning
,:.-; strategies and assists students in forming and testing their strategies. It also
:; helps students learn more about the specific equipment they are
troubleshooting and its related test equipment by providing on-line specific help
. ' through access to knowledge stored in the EPST database. Thus, the EPST
',;:' student interface improves students’ understanding of the operation of
: electronic equipment, their ability to recognize equipment problems, and their
ER
-
E-E: 'Fault insertion and conversion maintenance is time-consuming.
2
S
.
o
ey

(P Pu P L P SR S AT L A i S L N S SRR T T WY SN G STy R TN IS R T By o P AN, !
TRl L s e N L e L L Yy e e e N T T Tt oYl

T T T N AT] T T YT oYy Ty Wy owrsayowT ™ T FemMaPaWw v JTI¥VI§.W oW ¢ FomIRLw

ability to troubleshoot these problems.

1.2 Outline of Thesis

The rest of this chapter describes the overall EPST system and related
work. The chapters that follow describe the student interface designed for EPST
and the reactive learning environment it creates. Chapter 2 describes the
make-up of the EPST database, which has been designed using a combination
of semantic networks and frames that provide a powerful framework for storing
and accessing knowledge. This database design allows for the easy, compact
storage of knowledge about different pieces of fauity/test equipment yet
permits quick access to this knowledge by the program or student while
troubleshooting. This type of storage and access was not available in earlier
trainers. The database design also makes it possible for EPST to provide a
more realistic troubleshooting environment by allowing students to actually
follow wire connections and access test equipment during troubleshooting. The
database creates a solid framework on which to add future enhancements such

as an advisor or coach.

Chapter 3 describes the student interface in detail, defining the overall

structure of the reactive learning environment and describing student movement
during troubleshooting. This environment allows students to select and view
different sections of the faulty equipment and to create and test hypotheses.
Students not only view sections of the faulty equipment and change its control
settings, but also view and set up test equipment, set up test connections, and
actually take test equipment readings. Allowing students to use test equipment
in this way provides more realistic troubleshooting that results in more training
in the proper use of test equipment. Chapter 3 also describes a method that
allows students to follow physical (wire) connections in order to trace
erroneous signals from device to device. This method uses the input and
output triangle nodes stored in the semantic networks in the EPST database.

Finally, after a student has finished a problem, the student has the opportunity

RN P T T Y TR T NN
R .&-\ ‘;.\'.\ _'-h \.J\ t,‘\ .;:‘;'.‘. *,‘.-J’ “1\ o f.‘:

-

hodiandi Al i M O hillimiiadiadd At A i SRk davi sl e g _Rik> i A anc Bn o Geay Sas Waa. mae o o hogh B e L e b) b 4 et N o

to view and compare his procedures with those of an expert.

Chapter 4 discusses how the EPST student interface aids students in
forming and testing hypotheses. It describes how students can think out and
record their hypotheses and proposed tests, and how this information will be
made available during troubleshooting and for instructor evaluation. EPST can
also suggest possible hypotheses at cenain points in the troubleshooting
saession and provide various types of on-line help to aid students in formulating
their own hypotheses. The typaes of on-line help available to the student are
described.

Chapter 5 discusses device representation and emulation, and how
production rules are used. The emulation algorithm is given along with an
example of how it works. The fina! chapter, Chapter 8, summarizes the resuits

of this thesis and outlines areas for further research.

1.3_The EPST System

EPST is a versatile educational tool that consists of relatively machine
independent software which allows Subject-Matter Experts (SMEs) who know
nothing about computer programming to create instructional material by
entering informational contont' into an appropriate EPST database. EPST uses a
combination of semantic networks, production rules, and frames to represent
knowledge in the database. Emulation in EPST is based on first order
knowledge, where each device is defined in terms of inputs and outputs, and
production rules are used to determine the outputs of a device based on its
inputs. A representation of how individual devices are connected to each other
is kept in a semantic network.

The major objective of EPST s t6 give students experience in
troubleshooting electronic egquipment through the use of video scenes with
graphic overiays representing the status of actual equipment. Ouring authoring
and on computers that cannot support video, menus are used to display

information normally found on video pictures. The current EPST prototype uses

only menus, since the video interface and graphics package is still being
developed.

For ease of discussion, EPST is normally divided into two parts: EPST
Database and User Interaction. The EPST Database is described in detail in
Chapter 2. The EPST User Interaction consists of two parts: authoring and
student interaction. The EPST authoring mode enables SMEsS who are not
computer programmers to develop, enter, and modify data in the EPST database.
The EPST student interaction mode allows students to obtain practice in
problem solving techniques Dby interacting with the EPST database that was

created in the authoring mode.

1.3.1 Authoring Mode
The authoring mode consists of two steps: EPST database creation and

creation of video images with graphic overlays.

1.3.1.1 EPST database creation. Creating an EPST database requires an
SME to:

specify the equipment to be used for troubleshooting practice,

specify the test equipment that may be used in troubleshooting,

specify the problems .that may be presented for troubleshooting

practice,

4. enter the information into the database by defining the semantic
networks, and

5. test the database tO ensure content accuracy.

WN -

Entry and modification of the information needed in these five areas is
performed in the authoring mode which is described in Paulsen et al. (19]
.4 Creating vi ima nd graphic overl in this step, an

SME will specify the video images needed for displaying the different parts of

the equipment. Creating video images is described by Brandt (4].

BAC ol gt h R sal oo a AL

- = i

[::) 1.3.2 Student Interaction
b Student interaction allows students to develop and use problem solving
strategies while troubleshooting fauity equipment. Students continuously
develop, test, and modifv hypotheses during troubleshooting. To test
hypotheses, students can:
. 1. change control settings on the simulated equipment,
2. set up test equipment,
3. take test equipment readings,
4. observe responses obtained from the changed control settings and
test equipment, and
5. ultimately identify and replace the element that is causing abnormal
symptoms.

On-line help is available to aid students in forming hypotheses. At the
end of a troubleshooting session, students can compare their solution paths to
those of an expert. The student interface designed for student interaction is
describad more fully in Chapter 3 and in Paulsen et al. [19].

1.4 Related Work

EPST is based on the frame-based Electronic Equipment Maintenance
Trainer (EEMT) [7] designed for the Navy by the Cubic Corporation Defense
Systams Division. The EEMT system is a two-dimensional trainer/simulator
designed to reduce reliance on the use of actual equipment trainers in Navy
technical schools. It is an outgrowth of the Generalized Maintenance
Trainer/Simulator (Rigney Trainer) developed by Dr. Joseph Rigney and others at

. the Behavioral Technology Laboratory, University of Southern California [12, 14].
' . GMTS ishowed the feasibility, effectiveness, and broad application of a
',_:::_ trainer/simulator in the field of electronic training systems. Except for some
;-EE differences in hardware selected for impliementation, EEMT functions identically
_-; to GMTS. For this reason, normaily both systems are jointly referred to as
e EEMT.

T.

::;;
e
G
Y Xy T e G N A Y A S S N Ny D S AR R W IR A O L A TS

W W
Y,

L)

e

LY

-

.- . »

e

EEMT allows students to practice troubleshooting skills on equipment

through learning-by-doing, but it does so in a limited way. EEMT:

1. does not allow students to learn about their own thinking and
learning strategies; '

2. does not provide help to students in forming or testing their
hypotheses;

3. does not provide specific help to students on the equipment they
are troubleshooting;

4. allows students to thrash about and spend many hours pursuing
wrong paths.

One reason for these limitations is the way the subject matter knowledge
is represented and organized in EEMT. All the system knowledge is implicitly
programmed into the database with no means of accessing it, so there is no
way for a student to view this knowledge and learn from it, nor fou: the software
to use the knowledge to create a reactive learning environment for the student.

Several projects have been associated with trying to solve these
limitations in electronic troubleshooting programs, including one of the more

successful ones, SOPHIE of Brown et al. [S]. The SOPHIE program teaches

electronic troubleshooting for a particular electronic device, the IP-28 regulated-

power supply. SOPHIE creates a reactive learning environment that evaluates
student’s hypotheses, critiques measurements, handles any guestion presented
in the context of electronic troubleshooting, and uses a simple coach to track
and advise the student during troubleshooting. While SOPHIE was developed for
use in troubleshooting simple circuits, EPST deals with a more compiex

troubleshooting environment. A less robust program, TASK, developed by

Search Technology Inc., also teaches the fundamentals of troubleshooting

simple circuits, but does not evaluate students’ hypotheses, nor provide a
coach.

Concurrent research in simulating circuits for electronic troubieshooting
systems is being done by Randall Davis at MIT [8]. Davis also uses reasoning

based on first principles (first order effect). Oavis’ reasoning uses knowiedge of

P) PP e

oy PRI X " P&k e IR IR T
» i , S AR S L Y 5 P R S BT L e -

i

1

e S S BEIOON A (S P

- LY T T T v pdiad haa Loa boa o a boa v -t-vvm-u-v-vn—u-v-—-uw

structure and behavior, where structure is the information about the
interconnection of modules, and behavior refers to the black box description of
a component.’ Reasoning from first principles offers many advantages, including
making it easier to construct and maintain the overall system.

A thesis by David Matty describes a similar use of first order knowledge
to describe module behavior in a Constraint Driven Synthesis system [17],
where module behavior is defined in terms of inputs and outputs and outputs
are derived from inputs using procedural definitions. David Matty's current
research aiso deals with using first order knowledge to simulate behavior.

The EPST algorithm used for emulation and the theory of how production

rules are evaluated to determine outputs from inputs was originally developed

|
|
l
I
by EPST group members and other members of the CBESS group. Lee Coller, a
member of the EPST group, has imblemented a prototype of a production rule
evaluator, which searches a list of production rules for an applicable rule. A
similar system is also described in a thesis by Michael Lemon [16].‘

There are numerous publications that deal with issues in human-computer 1
interface design. One of the more complete articles is by Beverly and Robert
Williges [22], which compiles in one document various dialogue design
considerations from a variety of sources. Many of the ideas presented in the
Williges’ paper and in other articles [10, 11, 15, 18] were used in designing the

EPST student interface.

»
Black box description means: How is the information leaving the component relsted to the
information that entered it?

TN el Ll L LT DL o Lo f L LD T N0 Lt L O]

3

S
g0
. '~‘-'l.l

R

i ~"\¢-, ‘-:5 W,

CHAPTER 2

EPST PROJECT DESCRIPTION

2.1 Database_Structure

EPST uses a combination of semantic networks and frames to reprasent
the knowiedge content in the EPST database. Combining these two
representations allows the knowledge to be stored efficiently, permitting fast
access and easy storage. Elaine Rich [20] defines frames and semantic nets as
general-purpose structures in which particular sets of dt;main-spocific
knowledge can be embedded. Using semantic networks in the EPST database
provides a strong framework that exploits ISA and IS_PART_OF" re'lationships to
represent knowiedge about equipment and its parts. These semantic networks
allow the representation of different pieces of equipment in terms of spatial,
physical, and logical dependenf:ies," without having to store explicitly all of the
implied relations. This advantage, along with being able to use property
inheritance, allows decreased storage space and the use of set search
strategies for finding needed information. Semantic networks aiso provide EPST
the flexibility to allow students to access and set up test equipment, and to
trace wire connections on faulty equipment.

In Artificial Intelligence, frames are used to describe a collection of

attributes that a given object possesses. The EPST database design uses frames

"The ISA and IS_PART_OF relations are discussed in Section 2.1.1.

L1
Physical refers to actual wire connections between two pisces of equipment, while spatial
refers to pieces that sre iocated next to each other on the equipment but may not be physically
connected. Logical refers to pieces of equipment that are related in the context of troubleshooting.

o 10

&

.\';jbﬁ to store attributes of different parts of the equipment, which reduces the

X number of triangles and search time. If a pure semantic network were used

.',j:.; without the addition of frames, each piece of knowledge would be represented

::" as a triangle relation, consisting of a subject, relation, and object. For example, a

'::::: production rule would be stored as ProductionRule1 /S_PRODUCT/ON_RULE OF

; .\,_. . Device3. If a large piece of aquipment with many devices were stored in such

f-;::: a pure semantic network, a great number of triangles would be needed.” By

:Z.:F using frames instead of relations to store equipment attributes, the EPST

database design greatly reduces the number of triangle relations needed, thus

'5:'.3 eliminating much of the overhead cost associated with storing and searching

:": these triangles during run time. Frames also allow knowledge to be localized by

’“l storing information with only that part of the equipment that needs to know the

. information. ‘

.:.':“:I if only small pieces of equipment with few devices were used in EPST, a

:1‘."-_' pure semantic network would work well. But EPST is designed to handie
\ equipment with a relatively targe number of devices. Frames also provide a way

_§S to store instructional information that can be used if an advisor or coach is

i%: . added.

’ ‘ The rest of this chapter .discusses how semantic networks are used as the

::: basic structure for the EPST database, how frames are used to store additional

{S information, and how the design of the IS_PART OF tree affects the learning

: :\ environment.

-

E:j 2.1.1 Semantic Network

;:_:, EPST uses semantic networks to represent the physical layout and

‘;'1"..' . relationships between daevices on different pieces of equipment. Two trees are

~'x used in constructing semantic networks for the EPST database: an ISA tree and

X

o

Y ” .

AN EPST uses 18 bit indices for all nodes, and is currently limited to about 32,000 nodes. Nodes

:,:l'.: are described in Section 2.1.1.

2

P

I A R T T i R s L L L Y A S G A L L AT RL S LA "R AT TR L L
SO PL PR 1--'{-'&‘.__:‘. TN A ST IR .‘_-.'._}.":"."f'-‘_-("-_ RYIR g RO ,!.‘:_-_" r-_..‘\: *'n Y ‘r. QS 5.‘;*-4.5'

1"

an IS_PART_OF tree. An ISA tree relates parts on a conceptual basis and is
referred to in EPST as a parts tree. An IS_PART_OF tree relates parts in terms
of their spatial, physical, and logical placement on the equipment and is referred
to in EPST as an equipment tree. During troubleshooting, all steps a student
takes to aécess different parts of the equipment are on the equipment
IS_PART_OF tree. Therefore, the design of each equipment IS_PART_OF tree
strongly affects the learning environment and the student’s troubleshooting
strategies.

Triangles are used in semantic networks to represent knowledge and are
composed of three parts: a subject, a relation, and an object. EPST uses
triangle nodes to represent these triangles in the database, each triangle node
being unique. The subject and object can be any node in the database, while
the relation must be a permitted relation. EPST permits three types of triangle
nodes, each defined by the types of relations allowed. The three types of
triangles nodes are shown in Figure 1. Three different types of triangle nodes
are used in EPST to decrease the search time required during run-time. For
example, if information is needed about an input, then onily the input triangle
nodes need be searched instead of all triangle nodes. If a triangle node is
being searched for that has a standard relation, such as the IS_PART_OF relation,
then only the standard triangle nodes need to be searched. By searching only a
subset instead of all the triangle nodes for the current equipment tree, search
time required is reduced, thus improving response time.

EPST uses first order knowledge, whereby each device is defined in terms
of the production rules that describe how outputs are obtained from inputs.
This information is stored with the generic device in the parts tree. The
equipment tree contains the spatial, physical, and logical relationships between
devices. That part of the equipment tree consisting of the IS_PART_OF relations
contains the logical and spatial relationships, while the remaining relations in an
equipment tree semantic network show physical (wire) connections. All this

information is readily available to authors for error checking, to the EPST

. ’.".-".'.",-

il T Jhae® e |

e e A R L A

I T D T R T T T R T N T T O N S e S ey

b
3

3

)

TR

4

e e

12

1. INPUT RELATION - An input relation triangle node represents a
triangle where the relation is an input relation. An example of an
input retation would be, NAND2 /nput_A +5 volts, where NAND?2 is
the subject, input_A is the relation, and +5 volts is the object.” The
number of input relations allowed is large, since the relation itself
will be the actual name of the input. Different devices may have the
same input relation.

2. OUTPUT RELATION - An output relation triangle node is similar to
an input relation triangle node except it represents a triangle where
the relation is an output relation. An example of an output relation
would be, NAND2 output_Q +5 volts.

3. STANDARD - A standard triangle is a triangle that is not an input
or output triangle. An example of a standard reiation would be,
~2_INPUT_NAND /sa NANDGATE. The types of standard relations used
are:

ISA

IS_PART_OF
INSTANCE-OF
IS-TESTPOINT-OF
IS-CONNECTED-TO

Figure 1: Triangle Nodes Used in EPST

student interface program for use in simuiating devices, and to students
through on-line help.

2.1.1.1 Parts database. A parts iree is a semantic network that defines
devices and probes and categorizes them using the ISA relation. The ISA
relationship is used in this case to represent the relationship between objects in
a hierarchical taxonomy. All devices in the equipment tree¢ are instances of an
item in the parts tree. Each parts tree is composed of the ISA nodes and two
types of nodes: part nodes and category nodes. Part nodes describe the
operation of devices and are represented as leaf nodes on the parts tree.
Category nodes are used to classify part nodes and are represented as

nonterminal nodes on the parts tree. While several leveis of category nodes

L
The object in this case is not another device but a quantifier.

R A R A A P WL IR TS T TR S ~n m LR R A -~ o
AL OGS N Y R M L TG A g 2T I RSN eI T A Iy

B I T T T aar e an i ae e

3

may exist, the first level will always categcrize all devices under either
Mechanical, Electrical, Electro-mechanical, Probe, or as uncategorized. A sample
parts tree is shown in Figure 2.

Subject-Matter Experts define the operation of equipment devices by
entering leaf part node data, and then classifying the nodes under a category
node. Since each equipment device is an instance of a part node, all static
information and knowledge about each equipment device is localized in the
respective part node in the parts tree.” Any information that changes, such as
current state information, is stored with the individual nodes (instances of the
part nodes) in the equipment tree. The EPST database design simplifies
authoring [19], since an author need enter oniy once the information known
about each part device and how it may be connected to other devices. Authors
use instances of these part nodes to build equipment trees. !

2.1.1.2 Equipment databases. An equipment tree is a semantic network
that contains a spatial, physical, and logical representation of the equipment
layout. All nodes on an equipment tree correspond to actual equipment parts
or devices and are reilated by their spatial, physical, or logical placement on the
equipment. Spatial placement refers to pieces that are located next to each
other on the equipment but are not physically connaectad. For example, a device
may be represented as a sibling of another device simply because it is
physically located on the same panel with the device, even though it may not
be wired to anything on the panel. Physical connections refer to actual "wire”
connections between devices. Physical links exist where wires normally would
be. These links are represented by input and output triangie nodes and by
standard triangle nodes that use the IS-TESTPOINT-OF and IS-CONNECTED-TO

relations. Examples of standard triangle node "wire” links are:

A

b2 AAAA

»

The current version of the EPST database does not use inheritance in the parts tree to store
information. Using inheritance in the parts tree is discussed as a future research topic in Chapter
8.

Y e T e

“

AN IO N
v'. 200 *
pahh

ey
i A RS
L N

Pafiaiy
l‘ e

P e

fa ¥
T s e
Pl 2 2

e

I
-
7

DGR N NN SRR
R -_'fq,"ﬁ. A 4 e,

14
Electrical Elect?o-
Mechanicai
Toggle Nodulat ion Bite Select
Seitch Seitch Seitch

Figure 2: Sample Parts Database

TP1 js_testpoint_of PANEL2
TP1 is_connected _to QNT_1.”

Logical placement refers to the way the equipment is subdivided logically into
paneis and devices by the SME when constructing the equipment tree. For
example, devices and panels may be grouped together on a panel because they
are task related. This logical structure of the equipment tree is very important,
since it may influence the student’s cognitive model of the equipment structure.
This idea is discussed in Section 2.2. A sample equipment tree with a portion
of its parts tree is shown in Figure 3.

The general structure of an equipment tree uses the IS_PART_OF relation
and is composed of three types of nodes: a scene node, panel nodes, and
device nodes. The scene node is a sketch, diagram, or picture that represents
an overail view of the equipment being simulated, including all external panels.
Each equipment tree contains only one scene node. Panel nodes represent
equipment panels or sections of the equipment that provide access to devices,

testpoints, or other panais. Device nodes represent equipment daevices

At
Quantifier nodes, such as QNT_1, are used to represent values in the database. In this
example, Qnt_1 is the name of the quantifier that contains the value of TP1.

-

“") -r$ \\

R R L AR A SR

Y R B . Foat o ; L. . . e .. . I
J.'\"':'t o ,‘_;-'_ - Y "‘ ¢ LN I S I R I Bt .. S A S S
~ ﬁ - - N
L WK g (1 e " B ~

L,‘.:_',_ e e s T T e rr e rteLw X LN = i v g SR 2 O = RS L N4 ! = 0
N
. 15
¥
S
A
ot AN/USC-3
’gg Parts Tree Equipsent Tres
; A | s-Part-of TV I $-Par t-of
&
.EL” 1sa Antenna I s-Par t-of Control
4 \ - Control Indicator
W : - Panel Panel
At Hechanical . Y
e . i
isa
i 15-Tastpoint-of | 1s-Part-of
.5; 5"'@ 1s—Part-of
r;;:- isa [tp 103]
i fodulation foduiat ion Dite Power Preset
) Seitch Ins tance~of Seitcht Seitch Seitch Channe |
“v Figure 3: Sample Equipment Database
Czt depicting switch settings, indicator readings, or any other observable state
_ information and provide access to testpoints. Every device node on an
\}_: equipment tree is connected to its respaective part node (leaf) on the parts tree
K{- by the INSTANCE_OF relation. A device node is the only type of node that
:. contains state information. A probe is a special case of a device. It is at the
device node that the student normally interacts with the trainer/simulator by
“f;::; changing device settings, setting up testpoint connections, and obtaining
-
’-j:’.t . testpoint readings. Testpoint readings can also be obtained from testpoints on
a panel node.
‘A
w,, When an equipment tree is created, nodes are arranged in an hierarchical
4
:'} structure, with the scene node shown as the root node, panel nodes as
nonterminal nodes, and device nodes as leaf nodes.
3_-‘: A fourth kind of node contained in equipment trees are testpoint nodes.
:CJ. : They are connected to panel and device nodes by the IS_TESTPOINT_OF relation.
il' Testpoint nodes are used to access quantifiers and are also shown as leaves on
> the equipment tree.
(o
IRy
i
.‘:-?
25
‘_
". -
1N
l‘*‘ = R e e N PRI RN TR LS S0 NS TR 3
Sy S LIS T St v

y ¥ "

8t
% .‘;'

L
LT
r.‘v"

16

2.1.2 Frames

Each part node and each instance of a part node has a frame associated
with it. This frame is referenced by an index number stored in the node.
Within each frame, slots are used to store such things as production ruies,
states, and data for graphics and video. Additional help information not usually
associated with equipment, such as possible hypotheses and tests to be
performed, is also stored in frame slots.

All information that can be inherited by all instances of a device is stored
in the frame attached to the device part node in the parts tree. Other frame
information that pertains to an actual instance of the device is stored in the
frame attached to the respective instantiated device node in the equipment tree.

The EPST SUIDD document [19] describes the structure of frames for the
different types of nodes and the record format for the different slots. The types
of slots used in EPST frames are described in Table 1 and a portion of a frame

attached to a device part node is shown in Figure 4.

22 How the Equipment Tree Affects Learning

The IS_PART_OF tree has a direct influence on the student’s cognitive
model of the equipment. How a Subject-Matter Expert (SME) logically divides
the equipment up into panels and devices when building an equipment tree has
a direct influence on the strategy the student uses and how the student
remembers relationships between panels and devices on the equipment.

While practicing troubleshooting, the student will develop a cognitive
model of the layout of the equipment based on how the logical organization
(using the IS_PART_OF relation) was defined in the equipment tree. For example,
if the initial scene state is divided up into three panels, the student will form a
cognitive model in which thare are three main panels or parts on the
equipment. If it is usually necessary to inspect one of these three paneis first
for certain problems, then by defining the first level of the equipment tree as

consisting of only three panels, the student is forced to select one of these

y~ts

YRS Y RS0 SN TRYY T
L lALd i Sele s lse el

e

S
I
) | .\nl'
- 17
e
s, 3 Table 1: Slots Used in EPST Frames
’IQ‘
v Stot Description
%
‘-{}.‘ _ Errors The set of error records associated with the part node.
N
:: i Graphics Information The graphic record associated with the part, scene, panel,
. device, or probe node.
\(Hypothesis The set of possible student hypotheses associated with panel
e and device nodes.
::: Node The index of the corresponding atom node in the semantic
e network.
” Positions The set user of input records associated with the device node.
AN
n '::: Production Rules The set of production rule records associated with the part
e node.
I
._) Replaceament Information The replacement information record associated with the panel
s é or device.
o
N Selection Area The set of selection area records associated with the panel.
N device, probe, or testpoint node.
~
i States The set of state records associated with the part node.
Tests The set of possible tests associated with panel or device nodes.
ay s,
,: Vidgo The vidot@eo associated w.th the scene. panel, or probe
by
SN ; node. ~
iy
L%
) .
2% panels depending on the problem. An SME may also group certain paneis or
,.-'_-
S devices together hecause they are task related. Such grouping helps students
'.r:‘.
:::.:- remember relationships among different parts of the equipment.
On past trainers, students were constrained during troubleshooting to
e
™
follow only what EPST defines as the I1S_PART_OF relation. While this helps
“
:::'_-: develop a cognitive model of equipment layout and relationships between
S . paneis and devices, it does not present a realistic troubleshooting environment.
e
oo For example, when troubleshooting an actual piece of equipment, a student may
:;:' find a faulty input to a device, and want to trace the input (wire) to its source.
v i) !
'-i. In previous systems (using only the IS_PART_OF links), the student would have :
A to determine which device the input wire came from, move up the IS_PART_OF ‘
o
h,”
-,'-
-
o

o, PO LY L L A e T St e e LT L e e PR
3)' S c‘ “I . » ‘ .\ P),:i, "f.r.'_rl_'.vuf, ‘ .,_J“..(.‘.'..‘~‘ ",', -

-

.

s
.

e s A
oD o G

NS
‘l

REERS3 1o TN

.‘,};.7‘_. -. Xe

18

Production Rules

States

Replacement information

Errors

Graphics Information

Positions

Figure 4: Device Part Node Frame

tree until reaching a common ancestor of both the current device and the
desired device, and then move back down the tree to the desired device.

Since EPST explicitly stores wire links as input and output triangle nodes,
the student can actually follow “wires” during troubleshooting and trace down a-
bad input source. This is a significant change from past trainer/simulators, and
is due to the fact that EPST can represent wire connections as waell as the
logical layout of panels and devices. An example of how a student can follow

wire connections is presented in student movement in Chapter 3.

Iy
¥

ety 4y a2

a Al L XL

¢t 2 t 88

25 [T LA MMOENS

.,-.-,._
‘ol

O VR VA] &

e rl.)'b

fwa o weeaa Lol 2L i h ol Sl Bl kSl gl ol and and- A ek SaRcAak Al e e At de i - -

CHAPTER 3

STUDENT INTERFACE r

The EPST student interface is the basis for a reactive learning

environment, one that allows students to develop problem solving strategies
while practicing the troubleshooting of faulty equipment. John Seeley Brown [6]
describes a reactive learning environment as one that allows students to try out
their hypotheses, see the results of their tests, analyze their data, find
counterexamples to their hypotheses, and experiment with different solutions.
For the reactive learning environment to be productive, the troubleshooting
environment created should be easy to learn and use, so that it does not
detract from the more important issue of learning. The EPST student interface r
also lets students explore their partial understanding of how a system works
with complete safety. Students are able to formulate, test, and witness the
consequences of their ideas without worrying about possible catastrophic
consequences.

Troubleshooting faulty equipment involves developing a strategy, and then
using this strategy to access different parts of the equipment, change
equipment switch settings, obtain testpoint readings, and replace bad paneis or
devices. During basic problem solving, human cognition tends to invoke a
sequence of actions based on various patterns of knowiedge. These steps in
problem solving are based on cognitive rules that specify which actions should
be performed under a given set of conditions. These steps are cailed
productions, which usually consist of an overall goal and a set of subgoals used
to reach the overall goal. The ACT theory of cognition [1] uses goal-directed

productions, where the conditions needed to reach the overall goal are goals

™ 1. A%] ven » LCRT R A M AT

3 e R T e Y P T I Y 3 ” o o WORSTCRAI T .
-""-"'_— b Tt Le 4 T AT SR AN IR IR L A WS fPe Pl ~ AN

e

g0,

e T P Lt Lt o D e R o o e e o o L T ot W L
G T S e A A A S Ve o

20

themselves. This type of goal directed cognition has been the key to effective
teaching and tutoring of equipment troubleshooting and problem solving in
general (2].

Based on this goal-directed approach to problem-solving, the general
troubleshooting process the student should follow during EPST student
interaction consists of the following four steps:

Step 1. Student develops and enters an hypothesis, identifying information used
in forming the hypothasis.

Step 2. Student proposes a test or tests (goals and subgoals), based on the
hypothaesis, that should prove or disprove the hypothesis.

Step 3. Student performs the tests and gathers information both explicitly” and
implicitly.**

Step 4. Student analyzes information obtained from the tests and uses it to
form conclusions about the hypothesis. The student returns
to step 1 and repeats the process until a solution is reached.

The different parts of the EPST student interface will be described in

terms of:
1. entry of hypotheses,
2. student interaction modes,

. student movement,

s W

. measurements,

5. scoring,

6. on-line help, and

7. solving the problem.

Entering hypotheses and the use of on-line help are discussed in detail in

Chapter 4. The other five areas are discussed in the remainder of this chapter.

E]
Information received through readings from tast points.

AR
Information received through observations of meters, lights, switches on the equipment, and
the effect of replacement parts.

"

A Aty el kv
VA GR R A UNNE

Mt B 4 th e el e S0l

21

3.1 Student Interaction Modes

EPST student interaction allows six different student interaction modes.
The teaching, practice, and freeplay modes are the modes that are used in the
reactive learning environment. The overall troubleshooting sequence the
student follows in ali three modes will be the same. The teaching and practice
modes provide a structured tearning environment while the freeplay mode
provides an unstructured environment. The main differences among the three
modes are the options and specific help’ available to the user while
troubleshooting the equipment. The reasons for having a structured and
unstructured tearning environment are:

1. The structured environment allows an instructor to adapt the system
to individual teaching style and course flow.

2. The structured environment sets the stage for the later addition of
an interactive advisor/coach module.

3. The unstructured environment allows students to use the system
with no constraints, experimenting freely.

The three modes are defined in the following sections.

3.1.1 Teaching Mode
The teaching mode allows structured practice in troubleshooting
malfunctioning equipment. This mode allows the instructor to preselect:
1. the faulty equipment database to be used by the student,
2. the troubleshooting problem to be solved by the student,
3. the troubleshooting problems available for student selection, "

4. the order in which the troubleshooting problems will be done,

~
The six modes are: tutorial, tesching. practice, frespiay. tryout (for authors), and test.

"Thc types of specific help available are described in Chapter 4. Examples of specific heip are
how far away the student is from the bad device. how a device woarks (production rules), and the
input/output values for a device.

ARR
This restricts students to selecting only from a preselected list specified by an instructor.

5. the options available to the student in the Finished state if the
maifunction was not corrected, and

6. the types of specific help available to the student.
In the teaching mode, an instructor can create a controlled learning
environment, by preselecting certain constraints that control which problems a

student can do and what is available to the student in the problem.

3.1.2 Practice Mode

The practice mode is the same as teaching mode except the only specific
help available is the production rules associated with how a device works. This
allows the student to troubleshoot with virtually no help available, simulating a

test environment.

3.1.3 Freeplay Mode

The freeplay mode allows unstructured practice in examining or
troubleshooting malfunctioning equipment. The student can examine and
traverse an EPST database with no restrictions. All defined help will be

available.

3.2 Student Movement in EPST

In EPST, students examine or troubleshoot fauity .equipment by moving
among ten different EPST system states. Movement is controlled by selecting
an item from a menu, by selecting a command from the command line, or by
selacting the next panel or device node to view. A state diagram of student
movement in the EPST system is shown in Figure 5.

While traversing the different states shown in Figure 5, users can interrupt
the EPST system at any time by pressing the ESCAPE <ESC> or HELP <?>
key. The escape interrupt allows students to quit the troubleshooting session at

any time." The help interrupt allows the student to access any on-line help that

L]
The ascape interrupt in future releases of EPST aiso will allow students to send comments and
notes to Subject-Matter experts and instructors.

R T R T T W T T I W T T I W N YW T TeE T

23

1 (Select Interactisn Meds)

(Select Fauity Equipment)

@oﬁnﬂo-)
(Select Tast Equipment

Eé@

Figure 5: State Diagram Show_ing Possible Student Movement in EPST

85

is available for that session. The types of on-iine help are described in Chapter

4,

3.2.1 EPST State Definitions

The EPST system states, defined in Paulsen et al. (19], are briefly
described in Table 2. The Select Interaction Mode, Select Faulty Equipment, and '
Select Problem states are used to set up the troubleshooting probiem for the
user and initialize the necessary variables. Actual equipment troubleshooting is
done in the remaining seven states, where the Scene, Panel and Device states
are used to actually examine or view parts on a piece of equipment." The
Scene, Panel, and Device states in the EPST system, enclosed by dotted lines in
Figure 5, corraspond to the scene, panel, and device nodes on an equipment
tree. Students can view either the faulty equipment tree or a test equipment

trees, but only one tree at a time. Thus, when a student is moving among the

L]

it the video picture or graphics is not available in a scene. panel, or device node. &8 menu
containing & textual listing of the panaels, devices. testpoints. probes. or device settings available
for seiection will be displayed. This menu will siso be used for testing the database befare video
is available.

DS GRS DA A S S R SRR S S SRR S SR SR Ty W A LRI Y Y A R N - a . W -
R T R Ta B T A T R A T N T e T S R O T O N Rt O e s B oS

24
Table 2: EPST States

State Description

Connect Allows the student to change test equipment connections and
get test equipmant readings.

: Device Displays a selected device node that 1s on the currant equipment

tree.

Finished Evaluates whether the student soived the problem or not.

Hypothesis Allows the student to update an hypothesis file with an
hypothesis, proposed tests. data obtained from tests, or
conclusions.

Panel Displays a selected panel node that is on the current equipmant
tree.

Scene Displays a video picture showing a full view of the equipment
system currently under examination.

Select Faulty Used to select a faulty equipment database for troubleshooting

Equipment practice.
Select Interaction Used to select a student interaction mode.
Mode
Select Problem Used to select a troubleshooting problem
Select Test Allows a student to select a piece of test equipment in order to
Equipment view its squipment tree or set it up for testpoint readings.

Scene, Panel, and Device states in the EPST system, the student is conceptually
moving among the scene, panel, or device nodes on an equipment tree.

The remaining four states, Select Test Equipment, Connect, Hypothesis,
and Finished, are used by the students to aid in troubleshooting and developing
problem solving strategies. The Select Test Equipment state allows students to
select a new equipment tree for viewing, since the student may view only one

equipment tree at a time. The Connect state allows users to view existing test

equipment connections and make new connections or change old ones. Setting
up test equipment and obtaining test equipment readings allows students to
test the validity of their hypotheses. The Hypothesis state aliows users to

record their hypotheses and any associated information. It serves as a scratch

bl ekt BN ® e ” S e e ®

'\\
5-

.‘...i:‘n} \S ‘ It}lk\\\‘ L\i’ %Jﬁfmm\}::\u:.::x

haliadib bl C e R A e A e R A e A S A e e st i bl s i s o i i il A A i B ol a * it Res Sl Bat Rah Sk Son Bad G S ol ‘Aad

25

pad for students to record hypotheses, proposed tests, and resuits from those
tests. The Finished state evaluates the user's solution to the troubleshooting
problem and allows the user to view other solutions. Thase last four states are
accessed by selecting a command from the command line, and in all but the
Finished state movement out of these states is actually a return to the Scene,

Panel or Device state from which the original command was selected.

3.2.2 Student Position Representation

During troubleshooting, a student’s current position is always represented
as a scene, panel, or device node on the current equipment tree. A student can
view only nodes on one equipment tree at a time. A current pointer
(curr_equipment) is kept which always points to the current database record,
and is updated whenever a new database is selected in the Select Tast
Equipment state or as a result of selecting the Jump command.

The current node information is stored in the associated database record
(database_rec) in the curr_node field. Thus, when a user moves back and forth
between equipment trees during a problem, the current node on the current

piece of equipment can always be displayed.

3.2.3 Student Movement on Equipment Trees

Student Movement in EPST provides a more realistic simulation of a
troubleshooting environment than was available in previous trainer/simulators,
such as EEMT (7]. EEMT allowed students to access different parts of the faulty
equipment only in terms of the hierarchical structure (Scene - Panel - Device)
and students could not access test equipment at all. In contrast, EPST not only

allows students to access different parts of the faulty equipment by traversing

:v_:' up and down a similar hierarchical structure, but also allows access to different
o

:.':-' parts of the test equipment in the same way. EPST allows students to move
v

:f-‘: between the faulty equipment and test equipment, freely setting up test
.

; equipment and test connections in order to get test equipment readings. EPST
r_ ..-_'

r.:'~.1

oo

30

¥

o

]

‘I.‘- Pl

-- W
i

a0 e
.

-
te
..
LS
' 8
.

-

R RN G G Ol T e i N G G N O e LU PG & 'Lj RROA VLT N AR R (¢ |

B i A A S i ek A~ e B il i o e R G M e e g e it giae aav S DA i o TR Ty Iw [l el aen sl 0l

26

also allows students to follow actual wire connections, which has not been
possibie in the past. Allowing students to set up test equipment and follow
wire connections are major advantages of EPST since they provide a more
realistic trainer and should help students develop a better cognitive model of
troubleshooting.

Students initially examine or troubleshoot faulty equipment by traversing
through the faulty equipment tree semantic network, viewing scene, panel, and
device nodes. The Scene - Panel - Device (IS-PART-OF) hierarchical structure
was used as the basis for student movement in EPST because of the proven
success of the use of this type of structure in EEMT and GMTS systems {13],
and because EPST was designed to replace EEMT in Navy training schools.
Movement within an equipment tree semantic network is accomplished by
selecting

1. the next panel or device node to be viewed,

2. the Up or Scene command, or

3. the Follow_wire command.

The user moves down the IS-PART-OF relation in the equipment tree by
selecting the next desired panel or device node from the current node’s
video/graphics display.” The areas available for selection by the student will be
stored in the selaction slot in the frame attached to each child of the current

node. In all cases, the sta..dard triangles are searched for all triangles that have

the current node as the object, the IS_PART_OF or IS_TESTPOINT_OF relation as
the relation, and any node as the subject. When menus are used, the subjects
of all triangles found will be included in the menu as the panels, devices, or
testpoints available for salection from the current node. When video/graphics is
used, the selection areas of the subjects of all triangles found will be used to

determine the selection areas from the current node. Referring to Figure 3, the

L]
User will select from a menu display if video/graphics is not available.

(R DN

TN S P TR T A PR

.,..---.
Pl
,’_‘f‘:.'i“t
»

27

Ol T N B 4
PR

panels that would appear on the AN/WSC-3 Scene Node Menu would be the
E Antenna Control Panel, WSC-3 Panel, and Control Indicator Panel.
Moving up the IS-PART-OF relation is controlled by selecting either the

SEN Up or Scene command. The Up command symbolically moves the student up

- - one node on the equipment tree to the parent of the current nnde. This is
. accomplished by searching the standard triangle nodes for the node that
:}::: contains the current node as the subject, the IS-PART-OF relation as the
-"‘ relation, and any node as the object. When this triangle node is found, the

object of the triangle will contain the index to the parent node of the current
node. For example, if the current node in the AN/WSC-3 equipment tree, shown
in Figure 3, is the Bite Switch, the triangle that wiil be found is [Bite Switch is-
part-of WSC-3 Panel]. The WSC-3 Panel will then be displayed to the student.
The Scene command symbolically moves the student to the root node of
‘_:;1;: the equipment tree and displays the scene node. An index to the scene node is
kept in each equipment tree database record to avoid having to do extensive
. triangle searches, especially when the student is many nodes away from the
scene node.

The Follow_wiro command is used to allow students to follow wire

) connections both forwards (tracing the output) and backwards (tracing an input).
'f.‘\,; When selected, the Follow_wire command displays a list of all inputs and
" outputs for the current device, along with their values. The student can then
I use a Negation Strategy [9] for problem solving, where the student traces

known correct signals, determining where the fault has been inserted. If the

student can narrow down the faulty device to a certain path of devices, the
student can examine the devices along this path and determine whether the 1
outputs for each device are consistent with the inputs. |If the outputs are 1
normal, then the student can usually conclude that the device is operating |
correctly. The student will then select the next device along the path, and

determine if it is good. Once the student finds a device where the output is not

consistent with the inputs, then the faulty device has been found. The student

::_:w_‘__:;-«-un"w“ RO I S A R A I S Nl A AL i e A e S A el Al 2 i it g el e i A i - AN oL el i - R e - of
.,:\'.:“' .
e 28
i
:3:::? will then replace the device and confirm that the problem was solved.
\" Mhen a student wants to trace an input, the student wiil select the
;}f-j desired input from the menu. The device whose output is connected to the
; input is then displayed. If the student selects to view this device, the device
::Z':: becomes the current device and its inputs and outputs are shown. If the
‘_x student wants to trace an output, then the desired output is selected from the
\ menu. A list of devices whose inputs are connected to the output is displayed,
. and the student may select one of these devices to view. If a new device is
selected, then it becomes the current device, and its inputs and outputs are
shown. ‘
The way the knowledge is represented (stored) in the database., in the
form of input and output triangle nodes, allows EPST to easily find which
‘f outputs are connected to inputs. For example, consider the simple connection
of two AND gates, shown in Figure 6. The output of device 1 is used as an
- input to device 2. The value of output A on device 1 is therefore the same as
the value of input_1 on device 2, and is stored in a quantifier node (QNT_1).
This information is stored in the semantic network in the form of input and
output triangle nodes. These triangle nodes would symbolically look something
. . like:
o
o Triangle 1: Devicel Output_A QNT_1
o
: Triangle 2: DOevice2 /nput 1 QNT_1.
\ in actuality, the subject, relation, and object fields contain indices to the specific
"-."-: nodes that contain the names or values. For exampie, QNT_1 actually contains
‘\. the index of the quantifier node which contains the value. Using this structure,
.__ : there is only one copy of the value (the number in QNT_1) to worry about for
updating. The common part of the two triangle nodes above is the Qnt_1 node.
Sﬁ In order to find the output whose value is used. for input_1 on device2, EPST

searches the output triangles of the current equipment tree for any outputs that

have the same quantifier pointer (like triangle 1 above). After finding the

. . s . FERAER IS SN BN I L R Y R)
SRR RSO RES .\' _'-.\', -0 -.'~$‘ LI -'N:. S

RO LR LS B0 U N L A AL S8l B It et W S A PN B S oA i i bl ittt iy i il e e et b 0 A AR 0 A N frig gum bus B e

Aa b £ R ad al ol saa oo b n kb

29

DEVICE 1 DEVICE 2
INPUT_3
o OUTPUT_A . INPUT_1 |
QNT_1 oUTPUT_B
INPUT 4 o0—i
INPUT_2

Figure 6: Connection of Two AND Gates

triangle, the source device and output are known, and are displayed to the
student. Since all physical {wire) connections between devices are represented
in this manner in the EPST database, students can follow wires from one device
to another (either forward or backward), until they find the source of an
erroneous signal.

Movement between the fauity equipment and test equipment is
accomplished by selecting the Tost_oquip command or Jump command. The
Test_equip command displays the Select Test Equipment state, which allows
the student to select any piece of test equipment available for the current
problem. |If a piece of test equipment is selected, that piece of equipment
becomes the current piece of equipment, and the student will view the current
node for that test equipment tree. The current node is stored in the database
record for the equipment tree, and is either the scene node if the tree is being
viewed for the first time, or the last node that was viewed on the test
equipment tree. The Jump command is used to jump back and forth between
the current node on the faulty equipment tree and the current test equipment
tree. The current test equipment tree is the last equipment tree that was

viewed by the student. The Jump command is available only after at least one

test equipment tree has been viewed.

:j R T L S R N T oY Ty Ty r.“wrd‘.'“'a’“*"\r'T

.

- 30

3

i} 3.2.4 Student Path Information

‘{ The ability of the system to store and replay the student’'s solution paths

is very important for a reactive learning environment. It allows a student to

.::\t view what he has done. In EPST, the student path information is stored in a

;: . sequential list so that student movement can be analyzed after a

troubleshooting problem is completed. The hypothesis file is available to the

;Z:} student during the troubleshooting session. This student path information will

o also be used later by instructors to find student errors and weak points in the
database.

Being able to store the student’s solution path is even more powerful

when an advisor or coach is added.” The advisor or coach can determine which

;' aspects of the audit trail should be enhanced in order to help students

f "discover” their misconceptions or shortcomings {6]. '

EPST student path information is stored in a global list, problem_path,

':ji which has been initially defined as a linked list. This data structure allows for

S the unknown length a student path could have, and allows for storage of

, different amounts of information. Each time an equipment tree node (Scene,

j':* Panel, or Device) is displayed, Fhe equipment database index and node name are

g added to the problem path list. When the Select_test_eq, Connect, Hypothesis,

j.-_j and Finished states are entered, the name of the entered state will be added to

= the list.

o

Z This initial attempt at storing path information is simplistic and will be

:;.. used mainly for debugging programs. At a later time, a more sophisticated path

: storing mechanism can be added that can record everything a student has done,

ﬁ so that the information can be used by both the student and an advisor/coach

._ during troubleshooting.

L.;:

_ a‘l’ho addition of an advisor/coach module is discussed in Chapter 6.

% w L DS

P W IR Il I S I S R I
v_.«w_;,,;. ” *-;._:‘,-"%- ata et

Fre s

'

s

4 e

Ruphls :“k' R .

* PSAEAE

7.
--'
‘-.
2
‘-l
<,
4"
i
c
<
N
.
ﬂ

31

3.3 Obtaining Test Equipment Measurements

Another important part of the EPST student interface is that it allows
students to take measurements by setting up test equipment and actual
testpoint connections. Earlier trainers, such as EEMT, did not allow students to
set up test equipment. They were allowed only to select testpoints that were
preconnected to test equipment and a reading then was displayed. This meant
that the system could use only connections that had been predefined and
preset in the database. Allowing students to make any test connection they
choose provides a more reactive learning environment since it gives students
the freedom to experiment. It also provides a better simulation of a real world
troubleshooting environment.

In EPST, students traverse the test equipment tree in the same way as
they move through the fauity equipment tree, except they cannot traverse the
input/output wire connections. Students move up or down the tast equipment
tree using the IS_PART_OF relation, viewing panels and devices, changing device
settings, and connecting test probes to the faulty equipment if they are
available on the current piece of test equipment. Then, in the Connect state,
students set up testpoint and test equipment connections and are able to view
test equipment readings. Students are not confined to using only predefined
testpoint connections to test equipment, but are free to use any testpoint and
test equipment and take any testpoint reading they desire. They may set up
wrong testpoint and test equipment connections or have several pieces of test
equipment connected to the faulty equipment at one time. Students also can
have several different probes from different pieces of test equipment hooked up
to a single testpoint. Since EPST will use graphic overlays, not all possible test
point connections to test equipment have to be predefined by the Subject

Matter Expert when creating the database."

~
Some predefined connections could be used in the advisor module to help give advice to
students on what tests are appropriate at certain points in the troubleshooting process.

32

3.3.1 Connect State

The Connect state allows students to change test equipment connections
and get test eaquipment readings. The student selects the Connect state by
selecting the Connect command while in another state. The Connect state
displays a menu containing current test equipment probe connections and the
current connection being set up.

A probe connection in the Connections Menu includes the name of the
test equipment, the test equipment probe-input,” probe, and testpoint that make
up the connection. Probe connections to test equipment probe-inputs are
predefined by SME’'s in the authoring mode and can not be changed by
students.

The first connection in the Connections Menu will be the current
connection being set up. The current connection being set up consists of the
current piece of test equipment and the last probe selected. If the student
selected a testpoint just prior to entering the Connect state, that testpoint will
be displayed in tha current connection, connected to the last probe setlected on
the current piece of test equipment. The current connection being set up will
always be shown in a different color from the rest of the Connections Menu and .
marked by ">>."

The current connection is changed by selecting a command from the
command line. The Connect state commands available for changing current
connections are briefly described in Table 3.

When the New_Probe or Select_new_test_equipment command is selected,
a menu is displayed in the lower right-hand corner of the screen, being overiaid
on top of the Connections Menu if necessary, from which a new probe or new
piece of test equipment is selected. The Probe Menu will contain the probes
available for the current test equipment. The Test Equipment Menu will contain

the test equipment available for troubleshooting the faulty equipment. After the

. .
The probe-input is the name for the place on the test equipment where the probe is connected.

Na - baall o2t - M B Lid e o el v T T T -“mmmmmwm
I“l

o .
L 33
.\. .
o
:{',‘.j Table 3: Connect State Commands for Changing Current Connections
.-:.
d Command Description
ﬁ::; Adjust_test . Moves student to the Select Test Equipment state where the
‘4-", _equipmaent student selects a piece of test squipment in order to view
-:.; its equipmaent tree and set it up for test equipment readings.
' ' . Make Makes the current connection on which the student was working
_connection a compieted connection.
':-.'
b New_probe Allows student to select a new probe for a connection.
e
A Return Returns student to the state from which the Connect state was
A entered.
Select_new Allows student to select a new piece of test equipment
e _test_sgquipment to connaect to.
o
N
, student seiects one of the available probes or test equipment from the menu,
f‘ the selected item is placed in the current connection at the top of the
L.
e Connections Menu under the appropriate heading. If the probe is changed, the
:.:} probe-input associated with the selected probe also replaces the oid probe-
input in the current connection. |f a new piece of test equipment is selected,
R
:.j:, the current probe is erased. After the student selects a new probe or piece of
:1:::. test equipment, the Probe or Test Equipment Menu is erased and the student
e N
"a
") selects another command from the Connect state command line. Once the
student has finished changing the current connection, the student compietes the
,:-::f changed connection by selecting Make_connection from the command line.
o
'“--:.' 311 M nnection nd. Selecting the Make_connection
’,; command makes the current connection on which the student has been working
0
AN
-\.j-’ a completed connection and adds the completed connection to the Connections
A.J.q .
;‘i: Menu. The newly completed connection will be marked by the keyboard cursor
>
9. . in the Connections Menu. Any previously completed connection for the same
]
: test equipment that contained the same probe as the newly added connection
RCY) .
ALY will be deleted. Once the connection is completed and the Connections Menu is
s
Fie
'_-_'.*; updated, the updated Connections Menu and new command line will be
™
fes displayed.
-.-'.-
e
-.:;:
b

” g T e &
- s

)
>V

A e R Lol . A S oL a N (Y LS | Lra .o’ f e . 0, "
..k_l ,lQ. " l' » > _ ‘ \-' \ l,!' ! ,l N A RS M LY PN o] cl’:','.’l.-'l N Is [y ‘ l.&'." 3" WL

34

The commands available for use after the connection is completed are
described briefly in Table 4. When selecting one of these commands, the
connection that has the cursor next to it will be the connection that the student
will see the value for. After selecting both the desired co'nnection and the
Measurement command, the student moves to the state corresponding to the
panel or device node last visited on the test equipment tree and sees the
video/graphics picture of the panel or device and the test equipment reading.
After the desired connection and the Value command are selected, the test
equipment reading will be displayed. The Quantifier command will appear on
the command line only in the Tryout mode, and is used only by an SME.
Selection of the Quantifier command allows an SME to view the value of the

quantifier for the test equipment connection made.

34 Scoring in EPST

EPST provides several mechanisms for recording how well students do on
particular problems. These mechanism are: time, cost, and problem score.
These scoring mechanisms allow instructors to quantitatively judge how waell
students are doing, and also provides a sense of gaming or compatition to the
system for student motivation during practice sessions. The time kept
represents the time spent by the student on the troubleshooting problem. The
time is recorded at the beginning and end of the problem, and the difference
between the two is the time spent. The cost and probiem score are defined in
EPST as generally as possible, allowing different system users to modify them
to suit their needs. The cost for a particular troubleshooting problem normally
consists of only the total cost of all replacement parts used. The replacement
cost of a device is stored in the frame associated with the generic description
of the device in the parts tree. The replacement cost of a panel is stored in the
frame attached to the panel node in the equipment tree. Other costs or
bonuses could be added, such as giving the student a bonus for solving the

problem under a certain time or for using fewer test connections.

35
‘w\, Table 4: Connect State Commands Available After Completing Connection
x\"‘:'
’ Command Description
o
N
) ." . Measurement Displays the test equipment reading and moves the student
'~‘-: to the state corresponding to the last node viewed on the test
> equipment tree.
b
Quantifier Allows an SME to view the value of the quantifier for the test
‘.-: equipment connection.
r:-.::::' Return Returns student to the Connect state, redispiaying the connect
o command line.
5.4’
Value Displays the test equipment reading only and leaves student in
» current state.
o
N
ot Problem scoring is associated with the different types of on-line help
‘. ", available. In trying to design a way to score the types of hélp used, two
b '\'
% different ways are commonly usad. The first way to score a student is to start
A
-‘;-J the student with a score of zero, and each time on-line help is used, add a set
.
, amount of points to the student's score. The student’'s goal is to finish with the
-
.‘-1
< lowest score possible. The second way is to start the student with some
S
{" - . N
:"i' maximum score, say 200 points, and subtract a set deduction from the student's
\.hl -
‘) score each time on-line help is used. The student’'s goal in this case is to
: finish with the highest score possible. EPST allows both of these types of
:L scoring, allowing an SME or instructor to actually specify the values to be used.
s
b An external file (called Score_definitions) exists that can be edited by an SME or
oy instructor in order to allow them to specify the initial value of problem_score
1Y)
?} i and set the values of the individuali on-line help deductions. If the help
W)
"; deductions are given a positive value, it will be added to the problem score if
2' that type of help is called. A negative value will result in the value being
::.'j- subtracted. Defining scoring in this way allows system users to modify the
f-:-ﬁ scoring to suit their needs and allows them the freedom to experiment with
e
7% different combinations of scoring. The amount of the deductions can aiso be
L
: ?,i modified as students gain more experience.
~
Cd
. :.s
.,3
o
h‘\-
e S T T e e o b e B A o e s e o

LB S e e B B 8 ah Ml madoaicp e -Sethas &

36

3.5 Solving the Probiem
After the student reaches a solution, makes the necessary changes to the

faulty equipment (either causing a state change within the faulty equipment that
corrects the problem or replacing a panel or device), and verifies that change(s)
to the equipment have corrected the malfunction, the student proceeds to the
Finish state. The Finish state evaluates whether the student solved the problem
or not, and gives the cost, time, and score associated with the solution if it was
correct. The Finished state displays the student’'s scorebox containing
information about the student’s solution to the troubleshooting problem and a
menu containing options on what the student can do next. The options
displayed in the Options Menu depend on the student’s interaction mode. The
options available allow the student to:

1. view an expert's solution to the problem,

2. view an expert’'s hypothesis file,

3. view the student’'s hypothesis file, and

4. view any help information available for the troubleshooting problem.
Allowing students to view an expert's hypothesis file and problem solution helps
students learn different problem solving strategies and techniques. Students
can also review their hypothesis file and compare it to the expert’s. After
completing the Finished state, the user may start another problem or exit the

system.

RGO CR L TR SR, 8 T8 g T C LR O

CHL "SI YTt St D o

:
!
!
:
)

PR T B

+
i

BB A S o,

<

N9]) ST T e T T
%
2
Ed
}‘::
250
o CHAPTER 4
D

4 - HYPOTHESIS FORMULATION
"'_‘:: Developing strategies is an important concept for teaching students skills

in troubleshooting equipment. A maintenance person who is out on a ship
\:c: thousands of miles at sea needs to be able to develop strategies to fix unusual
E."; problems on familiar equipment or on new pieces of equipment for which no
"; specitic training has been available. That person just cannot take a time
‘ consuming hit or miss approach, especially when the piece of equipment that
.t" has failed is vital to the operation of the ship. The repair person must be able
,_‘_f-:‘; to methodicaily develop a test strategy in order to find and repair the problem
‘ as quickly as possible. Providing help in forming hypotheses and developing
:“i strategies can help teach these skiils.
:'.t: Brown [5] says in order to facilitate this style of learning in a reactive _
"'l"’ learning environment, the studént must be encouraged to formulate, test and
" { witness the consequences of his own ideas and must be freed from worry
EE about possible catastrophic consequences. He also says that the system should
;: be designed to criticize the student’'s ideas. A program that helps students
' form ideas and then criticizes those ideas ailows students to learn from their
.r,:i mistakes.
oy
S 4.1 Goal-Directed Hypotheses

Hypotheses should relate to goals and subgoals. Usually the overall goal

'z' when troubleshooting a piece of fauity equipment is to fix the equipment. An
.‘ example of a subgoal might be: determine whether a certain device is faulty or

not. This subgoal can be reached by using testpoints to look.at the device !

(I St B
2%

=

(4
P ol
N S NI e

]

----- L il acint it ek ind RALA St Stk MR a-s mad shed - obit st RAAd std sl aiih Al adiic-mill < aduh A i " o il o - ol ’,.',',9'“7

38

inputs and outputs, and determine whether they are correct or not. if an input
is wrong, the student knows the device is good. The student could then trace
the input to the source of the erroneous signal. If the inputs are all good. but
the output is bad, then th; student would deduce that the device is faulty and
replace it. In either case, the subgoal has been reached. It is important for the

student to set such goals and be aware of what is needed to achieave them.

4.2 Help in Forming Hypotheses

What EPST now offers is limited help to the students in forming
hypotheses. The Hypothesis state provides a scratch pad for students to use in
developing hypotheses and storing information associated with the
troubleshooting problem. By providing this type of on-line scratch pad, EPST
allows students to see their hypotheses in written form, making it easier for
them to develop and modify their goals and subgoals. The Hypothesis scratch
pad also allows students to store information, so students do not overioad their
working memorv.'

Students analyze and improve their troubleshooting strategies by

formulating hypotheses, then testing and witnessing the consequences of them.

On-line help is available to provide additional information about the equipment“

to students to aid them in forming hypotheses. On-line help can also present
possible hypotheses to the students, depending on thair position in the faulty
equipment tree.”” An example of on-line help that can be offered is the
device_hint heip command, which helps a student decide which type of device
should be checked first. Since the faulty device for the current probiem is
known, information in the parts and equipment trees can be used to give hints

to the student on which device is faulty. For example, if a modulation switch is

.Working maemory, according to the ACT theory, stores what the problem solver currently knows
sbout the problem (2]

(1)
Possible hypotheses can only be given if they have been entered by an SME. These
hypotheses are stored n frames attached to equipment tree nodes.

L S A \,-,. SR

‘. ‘.h ’.h
RASLSLSQ

DI T S S L I O R SR [-,\-'.. .v-

1
1

l. .I:‘I:A t".‘s.. h

A
a’a

b
L)

39

the faulty device, the hint could come from one level higher on the parts tree
(refer to Figure 2) and tell the student that a switch is fauity. A less direct hint
could come from two levels higher and state that a mechanical part is bad.
These hints would be given when asked for by the student or, when an advisor
or coach is added, when deemed necessary by the advisor/coach module. Thus,
by combining what is known about the faulty equipment, and where the student
is, EPST provides limited advice to students and helps them form hypotheses
and develop problem solving strategies.

In the future, student learning can be enhanced by an advisor module that
critiques student hypotheses and offers advice, as is done in SOPHIE. This idea
is discussed under future research in Chapter 6.

The different types of on-line help available in EPST are disqussed in the

remainder of this chapter.

43 On-Line Help

in order to provide the student with a realistic learning environment, it is
necessary to provide as much help as possible, similar to what could be
received from an instructor if one were present. The way in which knowledge
is represented in the EPST data‘base permits various types of on-line help to be
made available to the student.

EPST's student interface was designed to provide many different forms of
on-line help to students, depending on the mode of student interaction. Help
available in each mode is defined in Paulsen et al. {19], and in Chapter 3,
Section 3.1. The student can access on-line help by selecting the help

interrupt. The commands available under the help interrupt are:

Definition
General
Specific
Highlight
Problem
Cost.

U

T Rl VWU W T W LT T W W W W Palt AT T T W e W W WY e W -

]

L Aok e Jita Bh o Wate Shiha-Able - Sas -Tude - thie Sl G i A S - Anlhane Sealh “Sin g e Jhite S wn Y A e G A M 2 ba T JEie b AL LI Shsc A M 4 MAdiE e b ote e Sy 4 -,

40

The Definition and General help commands will be implemented system
wide 1n CBESS, and are not discussed at length in this thesis. Each of the other F

commands listed above is explained briefly below.

4.3.1 Definition Command

If a student encounters a word and is unsure of the meaning, the P
Definition command allows the student to see a full definition of the word,

provided it is in the Language Skills Computer Assisted Instruction (LSCAI) 9

database and the LSCAI database is present.

- 4.3.2 General Command
1?_: The General command provides help in using the CBESS system (including
E the interface) and is not related to the subject matter. Examples of help

available under the General command includes descriptions of: how to enter

% various types of answers, how to use lesson control keys, and where to find

special keys on the keyboard.

4.3.3 Specific Command
. The Specific command allows students to access any on-line help that is
available for helping the stud;nt troubleshoot, develop hypotheses, or deveiop
problem solving strategies. it provides specific information on devices, the
fauity equipment, and the troubleshooting problem. Much of the help offered in
specific help would not be available in an actual troubleshooting environment
but would be available in the classroom, where an instructor would be present
: to help students, offer advice, and give hints that help focus students efforts
g towards a certain solution. The net effect is increased learning.
The commands available in specific help are:
1. Path Information

. 2. Faulty Device Hints

3. Production Rules

4. Replacement Conditions

P L ol Lo e n S e oo .-
R :’i l ‘!l’.'is.{in':&. ANV PR ')_::1 ﬁ&hu;lﬁ&&k\}\‘hibL \'{.\(\ \L\\"-ﬂ\.

9
.

TN e T 4 A T W, N TS Ve Tal e ¥ T e e e 7
an "B Rl SRl ol e d 20 S i ai in i Bt MR Sl H A B e Acai i) S i~ g S Yl S B i Sl Bl B i LA -]

41

5. inputs/Qutputs
6. Error Description
7. Possible Hypothesis

8. Possible Tests.

This list of help options is by no means exhaustive of all the possible
types of help that can or should be given to a student. It represents the types
of information that can be accessed from the EPST database. In the future, help
options can he expanded to include instruction and troubleshooting techniques,
among others. The amount of specific help available to the student during
troubleshooting is limited by the interaction mode the student is currently in,
and is controlled at the student interface by the commands that are made
available to the student. The specific help commands are describad below.

4.3.3.1 Path information. Path information is designed to help direct the

student towards finding the faulty node by confirming for the student whether
or not the current node on the faulty equipment tree is on the fau/t path.' Since
the program knows the fauity node for the current problem, the student
interface determines the “fault path” and the path from the scene node to the
current node using the IS_PART_OF relation. These two paths are compared. If
the paths are exactly the same (the student has found the faulty node) or if the
current node is on the “fauit path,” then a message will be displayed indicating
that the current node is on the “fault path” and within a certain number of

nodes of the faulty node. If the two paths differ (the current node for the fauity

g equipment tree is not on the “fault path"), a message will be displayed
indicating that the student is not on the "fauit path” but is within a certain
: number of nodes of the faulty node.
:.._) With both messages, the distance (number of nodes) part of the message
- '
PZ\,:' .Tho "feult path” is defined as a concatenated list of nodes that describes the most direct path

from the scene node to the faulty node using only the IS_PART_OF relation. For example, if the
Bite Switch shown in Figure 3 is the faulty node, the “fauit path” would be "(AN/WSC-3)} / (WSC-3
Panel) / {Bite Switch).”

Y.

P O R B N R

....0."
LS TAY

14

P T TEL T

%

""
PALAL
e
s
s 8 2B

¢
o

oy

AT
P

WRTRTETE.

MR A C A G AN AP A DS SC A M At - a” S e B S T M T~ S i i AV b A T S At e S -"a s Bl T Aaa i e e e o \w“-—‘—T

42

will be an approximation of how close the current node is to the faulty node,
instead of the exact distance. An approximation is used t0 avoid giving too
much information to the student, especially when the student is close to the
faulty node. The actual distance from the current node to the faulty node is
used to provide the approximation. The actual distance to the faulty node is
calculated using the distance the student would have to travel on the equipment
tree using the IS_PART_OF relation. The distance approximations currently used

are:
a. within three nodes of the faulty node,
b. within six nodes of the fauity node,
c. within nine nodes of the faulty nodse, or
d. greater‘than nine nodes away from the fauity node.

4.3.3.2 Faulty device hints. The Faulty Device Hints command allows a

student to receive descriptive hints as to which device is faulty. There is a
sequence of four types of hints available to the student, each successive type
being more descriptive. The four hints available are:

Category The type of category the device falls under. All devices on
the parts tree are categorized under either Maechanical,
Electrical, Electromechanical, Probe, or uncategorized.

Type The type of device it is, such as a switch or circuit board.
Generic What kind of device it is.
Faulty device The actual name of the faulty device.

If the modulation switch shown in Figure 3 was the fauity device, the hints

given would be:

Category: The faulty device is Mechanical.
Type: The faulty device is a switch.
Generic: The faulty device is a modulation switch.

s '
" - “
e
e
AN
;‘*33: Faulty device: The faulty device is the modulation switch on the
i WSC-3 Panel.
oy
y Each successive hint is .more descriptive and would result in a larger score
:':-f ’ change. In other words, the Category hint would result in a low change to the
: ﬁ student’s score while the Faulty device hint would result in a large change.
{-j The information needed to provide these hints is retrieved from
\{ successive searches of the triangle nodes for the faulty equipment. Since the
:3 faulty device is always known by the prngram for each problem, the faulty
o device hint simply uses this information. The generic device hint is found using
'_; the INSTANCE_OF relation. The standard triangle nodes are searched for the
‘::' triangle that contains the faulty node as the subject and INSTANCE _OF as the
' relation. The object of this triangle will be a pointer to the name of the generic
-':._-: device. The type hint is found by searching for the triangle node that has the
":EJ generic device as the subject and ISA as the relation. The object of this
1‘ triangle node will be the type of device. The Category hint is found in the same
oS way, using the type of device as the subject and ISA as the relation.
.“:-E: 4.3.3.3 Production rules. Production rules describe device state
?* . transitions and are used during emulation to determine the outputs of a device
. based on the inputs. This specific help command displays the production rules
j defined by the Subject Matter Expert for the current device. This information is
:: helpful in allowing students to determine whether a device is working normally
" or not. Examples of production rules and how they are used are described in
:C.: detail in Chapter 5.
t{ g 4.3.3.4 Replacement conditions. Selecting the Replacement specific
';:-: help command allows the student to view any replacement conditions that must
’: — be met before a device or panel can be replaced. As a minimum, usually the
',x power needs to be turned off, but there may be other conditions that must be
'5 mgs. before replacing the panel or device in aorder to avoid damage to the
e 3 equipment or personal injury. These conditions are checked by the program
o

I R b M M A R AR R - Ll i~ i o™ il ol o= o i~ o

D o T N T I U T O T O O S R WY W

44

whenaver a student tries to replace a device or panel. A warning message is
printed out and replacement is prevented if the conditions have not been met.
The replacement conditions for a device are stored with the generic device
description found in the parts tree. This information is found by following the
INSTANCE _OF relation to find the generic device, and then looking in the frame
to get the information.

4.3.3.3 Inputs/outputs. This command displays a list of input/output
values for the current device or for any device selected by the student. It
allows a student to view the inputs/outputs of any device at any time. Using
this type of help eliminates excessive time spent trying to move through the
equipment tree to a certain device in order to use the Examine_inputs
command. It also allows a student to compare inputs/outputs from similar
devices. The list of inputs/outputs is retrieved by searching all input and output
triangle nodes for the triangles that have the selected node as the subject. The
relation of these nodes has the index of the name of the input/o'utput and the
object contains the index of the quantifier node that contains the current
input/output value.

4.3.3.6 Error description. This command will actually display an English
description of what the equipment error is for the current problem, without
telling the student which panel/device is faulty. The English description of the
equipment error is stored with each probliem.

4.3.3.7 Possible hypotheses. This information will be entered by an
SME or instructor, and will be connected to certain nodes on the equipment tree
and stored in the frame associated with the node. The hypotheses can be used
for designated problems or for all problems associated with the equipment tree.
It hypothesis information is asked for and the current equipment tree node does
not have any possibie hypotheses information associated with it, the program

will use inheritance to find the hypotheses information of the closest ancestor

node that contains such information.

e
:
), ‘f

€
£

{‘n

1)

TAY

PR

1@

Il
SN A NN

[}
y
>

STSLTITS S S

45

4.3.3.8 Possible tests. The Possible Tests command is similar to the
Possible Hypotheses command described above. This command displays

possible tests to perform based on the current node and problem.

4.3.4 Highlight Command

The purpose of the Highlight command is to prevent student frustration
incurred after repeatedly selecting panels, devices, or device positions from a
video screen that are not available for seiection. When the Highlight command
is salected, the possible selection areas will be drawn in reverse video. A
student can than see what is available for selection and make an appropriate
choice. The Highlight help command will be available when video/graphics are
avsilable. When menus are used instead of video to display the scene, panael,
and device nodes, the items in the menu are the only choices allowed. The
information that is used in creating a menu will be used to highlight the

different panels and devices on the video/graphics screen.

4.3.5 Problem Command

Selecting the Problem command displays the complaint and/or symptoms
associated with the current troubleshooting problem. This is the same-
information that is presented to the student at the beginning of a problem, and
is available anytime in EPST, without any score deductions. The complaint

and/or symptoms for each problem are stored in the probiem record.

4.3.6 Cost Command
Selecting the Cost command displays the replacement cost of the current
panel or device being viewed when the heip interrupt was selected and/or the

cumulative cost for troubleshooting the faulty equipment thus far. if a panel or

—~
.Vid@%'cmus will display actusl pictures of devices that are currently on the equipment.
Because the cost involved. most devices that have had _spme device positions deactivated are
not repiaced. Therefore. positions may appear on the vido@uu that are not actually hooked up
to anything.

R I AR R NS By SO o SRS hn B 87 ST S o Do A e
Coo S P e L S S R A N B L e ASCRMCTEI Ty A €3 5 S N A IR i

46

device is not replaceable, only the cumulative cost for the current
troubleshooting session is given. The replacement cost for a device is stored
with the generic device description found in the parts tree. This information is
found by following the instance-of relation to find the generic device, and then

looking in the frame to get the information.

R P R N o S I Y U O L I I G S, W R L P ”
DI AN -~ =t *" ‘o’ oo ‘.‘\ .Qn. V‘ » .“ " > I 'y > !0“)‘.-‘[

N " n i anpan w o Moo ga B e Rh Sa-the dERiacER s |
Leld)]

.
.-::'u
"!"::
i
AL
o
P
45
e CHAPTER 5
b
A - EMULATION IN EPST
i‘, \
'.,_.‘,1 in EPST, each device is defined in terms of inputs and outputs, and
production rules are used during emulation to determine the value of the
":'_.':: outputs of a device based on its inpdts. Keeping all information local and using
:ﬁj:' reasoning from first principles offers many advantages, including making it
: easier to construct and maintain the overall system.
5 ok
Related research in simulating circuits for electronic troubleshooting
i.",:Z: systems is being done currently by Randall Davis at MIT [8]. Davis also uses
reasoning based on first principles (first order effact). This reasoning uses
i knowiedge of structure and behavior, where structure is the information about
)
% the interconnection of modules, and behavior refers to the black box description
N
: . of a component.
1N
J
L, S.1_Use of Production Rules to Simulate Devic
Wy
:' : Production rules are associated with part nodes and describe device state
lA-l
.-t"' transitions. They are used in emulation to determine new outputs of devices
Y 1
) ' based on the current state of a device and its inputs. The use of Production !
o ‘
\.ﬁ Rules are described in detail in Paulsen et al. (19], and some of the examples
o
‘:‘,-: contained in this section are taken from that document.
$l
B Ml
.. $.1.1 How Information is Stored in Prodyction Ryl
v.‘ .
-.j, A production rule consists of the following items:
" o
ol
{g Initial state The state a device must be in for the production rule to be
L7 applicable.
Py .
"i Bit vector The error conditions under which the production rule is
q. »
994
\).'
155 -

L T T T T PTG T T O T O T T N e T TR T TR T T F R U N T N T T T AN T VR W VR W T T W T WL Y CREn S i -in A e Aile “ga

\} applicable.

Boolean expression
The premise that, when evaluated, indicates whether or not

-;.j the production rule is applicable.

n:"u .

> Conclusion The state the device should go to if the production rule is
q‘] applicable. If the state should not change, the conclusion will

state "no-change.”

‘}'.1.

o

oy 5.1.2 Order of Production Rules

c’_-v

'~-.' The order of production rules is important because the system uses the

first applicable rule it finds." As a result, SMEs need to ensure that rules are

- -

placed in the production rule list in the proper order.

g s o
PETI

»

For example, one rule-ordering strategy that SMEs can use is to place

o N
T rules that operate on boundary states towards the front of the list so that
.
3::3 later rules can cover the general case. An example of this for a 4 bit counter
o
[}
‘}_’ is:
,..
! If in state 15 and operating normally and count and load are
; -i high, then state 0.
h : A later rule would say:
-~
it
o If in any state and operating normally and count and load are
4 high, then state = state + 1.
g t Another strategy SMEs can use is to specify conditions where nothing
) L]
d\ happens first, so that later production rules need not worry about them. For
«; example, the first rule for digital synchronous devices can often be:
.0
e
_;;3 : If in any state and under any conditions and (clock <> rise),
,-.;.* then no change.
o
2 .
o
. v .
.-::.' 'Thoro is implicit knowledge here, since later rules need not check for situations that are |
"':-.: covered in earlier rules. ‘
by \
‘ d "A boundary state is a state at which something special happened. For example, in state 15 a :
1 -i' 4 bit counter would go back to state O rather then continue to state 18.
5
t"

P L L P M R S
KNS N Ak

<

2 TP S
") -t o L]

) et
Ul ._"n.'... 3

s

>
’

I R N

]
!

1

o
PR

. Oy
-{I‘
Selr et

.
.
-
i T

LA

- tytd Y ¢
A '

AENRMME 1

e
.
PRTAEY
S

NN
L4 ;
R -“‘(Ln ,‘n_‘ ue .

DR

1)

PN W
O]
J:‘A" .

@

s
S
e %

CENCINE]
H ..'_‘«,‘\ ..r"v“'
L

¥
»
}

LSS Bh g 0 S S T B B e B g

Mg R AR S g A G S et G S g B e L abd A Al gni S e i BN DAt aas amk-aRe e am -l g 31

49

Rules fater in the list would not have to verify that the clock rose. Using such

strategies can often simplify production rules.

5.1.3 Production Rules and Error Conditions

There are two types of production rules, “normal” rules and "error” ruies.
Normal rules are used when a device is operating normally. Error rules are
used when an SME has specified that a device is operating under an error
condition. A production rule can fall into both these categories.

Each production rule has a bit vector that indicates when the rule is valid.
The least significant bit of the vector is set when the rule applies under normal

operating conditions.” The other bits in this bit vector signify error conditions

specified by the SME. If a bit is set, the rule is valid under that error condition.

5.1.4 Sample Representation of a Device in EPST

Consider a d-flip-flop with an asynchronous clear. The following two

states are defined:

State 0: Q low, Q_BAR high

State 1: Q high, Q_BAR low.

A subset of the production rules would be (in order):

1. IF
in any state, and
operating normally, and
low(clear)
Then
state (0)
Implicit assumption for following rules: clear is high

2. IF
in any state, and

L]

Associated with each instantiated device is a 18 bit fisld for giving the error conditions. If the
least significant bit is set, then the device is operating normally. The other bits represent different
error conditions. A device can only have one error at a time.

S e .”f "s 3% 1% L% ‘ .".} LI ALS
R B L AR TR TR OO MR A E RS A B 201 3

50

operating normally, and
not(rise{clock))

Then
no change

Implicit assumption for following rules: clock is rising

3. IF
in any state, and
operating normally, and
low(d)
Then
state (0)

4. IF
in any state, and
operating normally, and
truelempty premisel
Then
state (1).

The strategy used in defining the above rules is simple. Each rule was
defined in order because:

1. If the asynchronous clear is asserted, the flip flop goes into state 0
raegardless of what the other inputs are.

2. If the first rule does not apply, then nothing can happen unless the
clock rises.

3. This rule tells what happens when d is low. Clock is not mentioned
because the previous rule aiready indicated that the clock had risen.

4. If none of the above applied, then the d input must be high,
therefore the flip flop goes into state 1.

5.1.5 Advanta of Using Production Rul

There are several advantages to the way EPST uses production rules.
First, each device need only know about itself and its production rules, and not
how it affects every other device. An author can easily define the way each
device works in terms of inputs and outputs, and define the production rules to

represent this. This information is bound to the conceptual device node, and is

accessible to the program, author, and students.

o
-
s
A

N

€t 4 £ oot A SV

Ty "=

ur it T ol A ol - w e SNe B TeMTe @ -T54757 27 2T T
b ogai-w i aa e 0o a8 -m s te et ac il o Skt Rt Sal e KE » T e ATy

51

Second, this representation saves the Subject Matter Expert (SME) much
time and effort. For each device, the SME must define one concept node with
its associated production rules. This device definition then can be used with
any number of instantiations of the device with no extra effort on the part of
the SME.

Third, the amount of space required to store a single set of production
rules for all instantiations of a device versus separate production rules for each
instantiation is far smaller.

Finally, EPST makes it easy to modify a device once a database has been
created. If all the input and output connections remain the same, all that has to
be done is to redefine the device in the parts tree. If the inputs and/or outputs

change, the authoring mode can be used to add, delete, or edit inputs and/or

outputs.

5.2 Emulation Algorithm

The emulation done in EPST is not a true simulation of the operation of
the equipment, but an approximation of what actuaily happens. Emulation is
done by performing actions on devices. An action on a device is triggered
whenever one of its inputs changes, either as a resuit of an action on another
device or as a result of the user performing an action that affects the device
directly, such as throwing a switch. The devices awaiting an action are added
to an agenda, called a waiting actions list, which lists the devices for which
production rules need to be evaluated. The production rules for each device on
the waiting actions list are evaluated. and any changes to the outputs of the
device are recorded. After the waiting actions list is empty, each output that
was changed is examined, and all devices that have the changed output as an
input are placed on a new waiting actions list. This new waiting actions list is
then acted upon. The process continues until the waiting actions list is empty.

Thus changes ripple out through all the affected devices by the emulation

algorithm. The data structures used in this algorithm are:

- -
' 52
* -
’s
[.[__.
50 Waiting Actions List
.’ . . .
’~.: List of devices for which production rules need to be
v evaluated.
.(R'j Waiting Changes List
-t-j) List of quantifiers which need to be updated when the waiting
Y . list i '
o actions list is empty
) Changed Quantifiers List
:: List of digital quantifiers that were changed by the last set of
e actions. This list allows the program to go back and change
:f:j rise and fall values to high and low.” This list only contains
o digital quantifiers.
=g The algorithm assumes that there is a discrete system with no cycles.
L ",
Y
o The algorithm for emulation is shown in Figure 7. By using an agenda in the
:\ emulation algorithm, the possibility exists for allowing students to have a single
;1 step mode, where emulation could be stopped after each pass through the
:::;f algorithm. This is not possible in real life, but may be useful for teaching
-'.‘3: .
26 purposes. The current version of EPST does not permit this single step mode.
. 5.3_Sample Emulation
h?_:j To better understand the emulation algorithm, consider the simplified
» \. ’
\j example shown in Figure 8, where there are six devices, numbered 1 - 6. These
e
) six devices are connected by inputs and outputs, where the outputs of some
R
N devices are inputs to other devices. Therefore, if the output of a device
j.‘:- changes due to a state change within the device, the corresponding input to the
Wy
\ other devices that use the changed output as an input will aiso change. The
5 resuiting changed input may or may not cause a state change within the other
:C-:j devices. Device 1 is connected to devices 2, 3 and 4 in such a way that if
iy
-',#.
- .
9. R
"._f. EPST treats digital transactions (a transition from low to high or high to low) differently from
_-.;» other transactions in EPST. The reason is that EPST may need to know both the current value of a
e digital input and whether that input has risen or faillen. During emulation, if a quantifier has the
..'-:': . value low and a new valus of high is to be placed in the quantifier, EPST places the value rise in
& the quantifier and adds the quantifier to the Changed Quantifiers List. Similarly, if the quantfier
—g value is to be changed from high to low, EPST places the value fall in the quantifier and adds the
:L .r quantifier to the Changed Quantifiers List. When the current Waiting Actions List is empty, EPST
v changes rise vaiues to high and fail values to low [19].
A
3
‘-l‘
"ﬁ”

2+

n.;,]

e s a"s% s

M LT W

Nl
&

i Ay

yAZx)

» - e e
a = B

!

-l e At N

2.

6.

T.

53

Emulation starts when an individual input quantifier changes.

Devices which use this quantifier as an input are placed in

the Waiting Actions List. If the quantifier is a digital

quantifier, it is placed on the Changed Quantifiers List.

If Waiting Actions List i{s empty then EXIT.

For each device in the Waiting Actions List DO:

a. Evaluate the production rules for the device, using

the state of the device and the current input values
as inputs. '

b. Record new state of device in state_fld of node.

c. The outputs and their values are placed in the Waiting
Changes List.

The Changed Quantifiers List is traversed, and the
quantifiers updated to their new values (rise values
changed to high and fa// values changed to /ow).

For each output quantifier on the Waiting Changes List DO:

a. Update the quantifier of each output with the new
value.

b. For each output quantifier that is changed, all
devices that have this quantifier as an input are
placed in a new Waiting Actions List.

c. If the output value is digital, place the quantifier
on the Changed Quantifiers List.

Any changed screen graphics are updated.

Jump to step 2.

Figure 7: Emulation Algorithm Used for Rippling Out Device State Changes

s

a
""

@R
AN

4

L
AN

.

ey

]

et ateTa

A T

-
&

5
LS NI

s
17

e

- ¥
L

L
BN = - - . . - : .
e A S A M 0 G i VD G A B Sl Yt

Input |0evice|Qutput _ Input/Device|Qutput InputiDevice

2 S 6
Dev | coj it input [Device
1 3
inputiDevice
4

Figure 8: Simulating Devices Example

device 1 changes states, it may or may not cause a corresponding change to
the state of the other three devices. Similarly, devices 2 and 5 are connected
to devices 5 and 6, respectively. So if a state change in device 1 resuits in a
new input to device 2 which causes a state change in device 2, then the output
of device 2 will change, resuiting in a new input to device 5. If the new input
to device 5 causes a state change, device 6 will have a new input which could
cause a state change within device 6.

If we assume that the state of a device always changes whenever one of
its inputs changes, then EPST would emulate a state change in device 1 as
shown in Figure 9. In this example, the waiting actions lists have been
numbered for purposes of clarity only, since only one waiting actions list is
actually used. Four passes through the emulation algorithm are required,
because the algorithm repeats for each new waiting actions list until an empty

list is encountered.

~p - »

55

«x|nput to device | changes -> RAdd device ! to list (1)

Ugiting Actions List(1)

Device |

s*0utput of Device | changes -» Add Oevices 2,3,4 to list(2)

Maiting Actiona Liat(2)
Qevice 2
Device 3
Device 4
**Qutput of Devices 2,3,4 change -> Add Device 5 to 1ist(3)
Ugiting Actions Liat(3)
Oevice S

s*Quiput of Device S changes -> Add Device 6 to list(4)

Ugiting Actions List($)

Device 6
**gutput of Device 6 changes -> Finished

Figure 9: Sample Emuiation in EPST

£ s
[

X a0

RPR PO R R A

s

dow
L S

A
AR

) .

B I O]
et
.

.8

SN

P

Yoo
v

“aTa’a
AL P AL

-"
o

R

g
'

A

e

»

Y

. }__-}P L

P

3

CHAPTER 6

FUTURE RESEARCH

This final chapter summarizes the results of our research and discusses

some possible areas for future research.

6.1 Summary of Thesis

The EPST student interface provides a user-friendly reactive learning
environment that helps students practice troubleshooting faulty equipment and
develop troubleshooting strategies. Students develop, record and set up test
connections to test their hypotheses, eventually determining and replacing the
faulty component on the equipment. On-line help is available to help students
form their hypotheses and to provide general information on the faulty
equipment. EPST uses a combination of Semantic Networks and Frames to
represent knowledge in the database, which provides for easy storage and fast
access. The knowledge contained in the Semantic Networks is used to
represent equipment structure and the relationships between devices in terms
of inputs and outputs. Frames are used to store attributes associated with
different pieces of equipment. Students access differant parts of the faulty
equipment by following spatial, physical, or logical links.

Devicas in EPST are described in terms of structure and behavior. The
structure of devices is defined in terms of inputs and outputs and the behavior
of devices, which determines how outputs are derived from inputs, is defined in
production rules. An emulation algorithm that uses an agenda is used to
emulate the characteristics of devices. EPST was designed for the Navy for use

in its technical schools, and an experimental prototype was written in "C.”

' ..,‘.-‘-- ~..;» ;-:‘,‘ \; --._-.’t,‘i\ -~ \.. ‘.P."«"l;.. .}\.:-\.. S

«uw TN TN TR T Te TN TR Y Y ey

57

6.2 Reiteration of Design

In designing any type of system, a cycle of design (DESIGN - TEST
- EVALUATE - REDESIGN) should always be used to ensure a user effective
product. This cycle of design was used on a small scale in designing the EPST
prototypse, but now some long-term testing is needed to really see how well the
reactive environment works in allowing students to practice troubleshooting
fauity equipment and to develop problem-solving skills. This type of long-term
testing requires a large student population and the proper training environment.
For these reasons, the Navy will conduct this long-term testing in its technical
schools. The long term results of EPST will not be seen until after students are
out in the field, which takes upwards from six months to a year. Based on the
resuits of these tests, a reiteration of the design process should be used to

redesign EPST.

6.3 Addition of an Advisor/Coach

The EPST student interface creates a reactive learning environment that
allows students to formulate, test, and witness the consequences of their ideas
without worrying about possible consequences. The current prototype, however,
can not evaluate student actions or offer advice. Often students see things
differently from instructors, and the program should be able to detect these
different perspectives and then help alter them. A computer-based
Advisor/Coach couid do this. The Advisor/Coach shouid be able to determine
when the student has made an error, and then judiciously decide when it is
appropriate to interrupt. If the advisor interrupts too early, the student will not
be able to learn from his own mistakes and learn to make corrections. If the
Advisor/Coach interrupts too late, a valuable learning experience may be lost.

An Advisor/Coach could have multiple roles, offering timed advice, advice
based on student performance, and student-initiated help/advice. For example,
timed advice could have the Advisor/Coach track and periodically advise

students whether they are on the right path or not and how they are doing in

» TR TR T T S W T L W e WO R G E Wh Th TRV WG e W T T g e eyt Ty T

Eali> i e s e n - S sl (R Sl A aid—atnd " o™ oie ~aieh |

58

comparison to other students. The Advisor/Coach could interrupt students
based on their performance and offer constructive advice when they are doing
something wrong such as replacing an expensive device without first
performing some cheaper tests to ensure it is the faulty device. Students could
request help/advice at any time while troubleshooting. Examples of possible
requests could be: what type of test should | perform now and why, is my
hypothesis good, or is an action dangerous or not.

An Advisor/Coach could include an hypothesis evaluator that would inform
the student when and why an hypothesis was inappropriate or appropriate. It
could also offer possible hypotheses to students, based on where they are, what
tests they have performed, and what their current hypothesis is. This type of
help could be in the form of muitiple choice questions for the student or as
specific answers that might include a short explanation of why the hypothesis is
appropriate. i

In SOPHIE [5], an expert module used decision trees annotated with
schema to produce explanations for troubleshooting a circuit. The annotations
are associated with nodes in a decision tree, nodes which can be reached by
only one path. Thus, the exact context is known ahead of time. Although EPST
uses a more complex environment than SOPHIE, a similar idea may be used in

EPST.

»

w

*w
Y .

LA

5

6.4 Natural Language Interface

ela?

The current EPST student interface offers on-line help, but this on-line
help is limited by the number of commands offered to the student. This
limitation could be removed by adding a Natural Language Interpreter that

’ allows students to ask natural ianguage questions of the database. In this way
students could ask and receive any type of information available from the
database. This also could dacrease overall response time in heilp, since
students would not always have to go through many levels of questions before

actually receiving the information, but can ask for the spacific information they

3 G AR N SRR L S S nioe - T IS C R R RO ERACE
& R ' » - 0 b * R I TN D IR . .
S A TNy g e A e e

\.-"‘ - - 4 S b v - e Y 0) Y ST T
.
e
B
T 59
30
l‘ ‘
n):\
: N desire. This procedure could be similar to the one Risa Stewart is
St .
o~ designing [21], which provides a natural language interface that allows students
b, to ask questions about information contained in semantic networks for a
::::j. . Computer-based Memorization System (CBMS)." Stewart's work could be
'j:.:j modified to include Frames. A database browser could also be added to allow
.; students to traverse the EPST database and examine its contents.
g
[6.5 Etficiency
r'.:J
2 An important factor of an interactive system is its efficiency and response
time. The overall effectiveness of a system is lost if a student must wait an
:::-'." unusually fong time for responses from inputs. The EPST database was
f-;.';: designed to increase efficiency, by decreasing search time and allowing quick
i .
- access to knowledge contained in the database.
Currently each device in the parts trge contains all the information for that
device. Inheritance is not used extensively in the ISA or IS_PART_OF tree.
Developing a way to use inheritance with the ISA relationships would aliow
::l: properties of devices to be associated with the most general object for which
{-\.:j they are valid.”" This would allow for a more concise statement of properties of
- the objects in the relations and would reduce storage space.
)
)
ASY
oo
)
I
__.::;.
'.:.\
9.
<
.:':: *cams is a component of CBESS
&3
4]
: . "Tho information could be attached to the node in the parts tree that contains the most general
e case.
s
n’ *
‘e
A7)
..::

TR LA N
ALY

]
® a

o d
5

%.- .. B ‘ !‘ ‘w .s}‘-),'h.,f‘- :- \.a-".": :)\ e _‘.‘-" ~~)'--.

PR

o e e " P N P N T P P N T T R T TR T R T T VP e T Py PR TR TV T ¥ e IR TNTwEy

K
>
183
Y
»
.
N
o
.
N
L%
‘o REFERENCES
: $ N
}{ 1 Anderson, J.R., ACT Theory, Harvard University Press, Boston, 1983.
{ 2. Anderson, J.R., Boyle, C.F, and Reiser, B.J., “Intelligent Tutoring Systems.”
e Science, Vol. 228, April 26, 1985, pp. 456 - 462.
‘ 3 Brandt, R.C. and Knapp, B. H., Computer-Based Educational Software
g System Volume | Technical and Management Proposal, Department of
L Computer Science, University of Utah, 1984
N 4. Brandt, R. C. and Knapp, B. H., Sequence Editor Document, Department of
] Computer Science, University of Utah, 1985
- 5. Brown, J. S., Burton, R. R, and DeKleer, J., “Pedagogical Natural Language
- and Knowledge Engineering Techniques in SOPHIE I, H, and II,° in
Intelligent Tutoring Systems, Brown, J. S. and Sleeman, D., ed., Academic
Press, New York, 1982, pp. 227 - 282, ch. 11.

6. Brown, J.S., ‘“Learning-by-Doing Revisited for Electronic Learning
=", Environments,” in The Future of Electronic Learning, White, MA. ed.,
- Lawrence Eribaum Assoc., Hillsdale, New Jersey, 1982.
<.

j:: 7 Cubic Corporation, "Trainer Programming Report for Electronic Equipment

-, Maintenance Trainer,” Tech. report P-181/A005-1F, Cubic Corporation,
Dec., 1982.

': 8. Davis, R., "Diagnostic Reasoning Based on Structure and Behavior,”

. Artificial |ntelligence, Vol. 24, Dec., 1984, pp. 347 - 410.

7,

- 9. Ouncan, C., editor, Thinking: Current Experimental Studies, Lippincott,

~ New York, 1967.

Z:: 10. Farrell, R. G., Anderson, J. R, and Reiser, B. J.,, "An Interactive Computer-

o based Tutor for Lisp,” 444/ 84, 1984, pp. 106 - 109.

~ 11, Gould, J. D. and Lewis, C., "Designing for Usability - Key Principles and

." . What Designers Think,” Human Factors in Computing Systems, A. Janda,

, ed., ACM Special Interest Group on Computer & Human [nteraction, The

b Association for Computing Machinery, Inc., New York, 1984, pp. 50 - 53.

N

}' 12. Hotf, T. "NPRDC Contract NOQ0244-83-C-1759," Contract issued by

s NPRDC to University of Utah,.

KT 13. Lshey, G. F. and Malec, V. M., Navy Personnel Research and Development
Ceonter, Generalized Maintenance Trainer Simulator: User Manval, San

J0 L0 Y , LOOCOC O LR AN,
IO A n‘t'l t's‘?‘ :%’:'A‘. l."k‘:'u “:‘!' ALty Jf’-'s'gh"#‘«.'t‘ iy y

. \-q‘ - -~ IR R RN - T T IS mmT

" 81
&

:ﬁ Diego, California, 1982.

.'3
hadh 14. Lahey, G.F, “Generalized Maintenance Trainer Simulator: System

. Description,” Technical Note 82-6, Navy Personne! Research ang
L Development Center, Jan., 1982.

b T4

o
o f 15. Landauer, T. K, Galotti, K. M., and Hartwell, S., “Natural Command Names
NG and Initial Learning: A Study of Text-Editing Terms.,” Communications of
' the ACM, Vol. 26, No. 7, July, 1983, pp. 495 - 502.

\ 16. Lemon, M. J., “A ‘less-Procedural’ Methodology and Supporting
?;'1: Framework for Simulation Programming,” Ph.D. dissertation, University of
:t Utah, 1983.

” 17. Matty, D. G, “Constraint Driven Synthesis of Hardware Design,”

" Ph.D. dissertation, University of Utah, 1983.

1‘_':{ 18. Morland, D. V., “Human Factors Guidelines for Terminal Interface Design.”
o Communications of the ACM, Vol. 26, No. 7, July, 1983, pp. 484 - 494.

X

19, Paulsen. R. B, Coller, L. D, McKenney, D. G., Brandt, R. C., and Knapp,

] B. H., Software and (ser Interface Definition Document - Equipment
L Problem Solving Techniques System, University of Utah, 1985
:f::' 20. Rich, E., Artificial Intelligence, McGraw=Hill, Inc., New York, McGraw-Hill
. Series in Artificial Intelligence, 1983.

. 21. Stewart, R, A Natural Llanguage |[nterpreter for the Computer-B8ased
- Memorization Systermn, Master of Science Thesis Proposal, University of
E Utah, 1984.

s

"1 . 22 Williges, 8. H. and R. C., "Dialogue Design Considerations for Interactive

N ' Computer Systems,” Human Factors Review: 1984, F. A Muckler, ed.
The Human Factors Society, Santa Monica, California, 1984, pp. 167 - 208.

.Q'

>
.-'

.’.

I“
-
.

Sl ¢
;

.f

x

9-85

FMUAACT Y NINCOP 43I

.

ASHICK? LM

»

TR

At

