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RICHARD RUTTER GROSS. Using Software Technology to Specify Abstract Interfaces in VLS]
Design. (Under the direction of PETER CALINGAERT.)

; ABSTRACT

t

Good techniques for VLS] design change management do not now exist. A principal reason
is the absence of effective methods for the specification of abstract interfaces for VLSI designs.
This dissertation presents a new approach to such specification, an approach that extends to the
VLSI domain D.L. Parnas's techniques for precise specification of abstract software design inter-
faces to the VLSI domain. The proposed approach provides important new features, including
scalability to VLSI design levels, integration into the design life-cycle, and a uniform treatment of
functional, electrical, and geometric design information. A technique is also introduced for
attaching a value to the degree of specification adherence of a candidate module.

To illustrate and evaluate the proposed approach, an example specification method using it
is described and evaluated experimentally.
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CHAPTER 1
INTRODUCTION
1.1 Definition of the Problem.
VLSI design is integrated circuit design in which brute force no longer works. The major
concern in VLSI design is the management of complexity [Mudg81, S€équ83], not just putting

together a system with whatever means are handy.

Traditional techniques for complexity management, such as hierarchy, restriction, and struc-

turing, have been applied in the VLSI context: nevertheless, the design process is stil! costly, and
hundreds of designer-years are being invested in the development of state-of-the-art VLSI circuits
|Latt81, Cane83]. The unconstrained nature of the VLSI design medium leads to some of this cost
[Séqu83], in that only inefficient algorithms are available to apply to the typically NP-hard prob- I!_1
lems, such as one-dimensional placement [Valt82] and optimal routing [John82], encountered in :
design construction and verification. Nevertheless, while such traditional costs of VLSI design are .

still the subject of much research, another source of cost, only lately recognized, is becoming a

major concern among, designers. This coet arises from the ripple eflect of changes during the
design process {Wern83], and its seriousness stems from its particular sensitivity to the increases
in complexity that characterize modern VLSI design. Belady and Lehman’s work [Bela79), for
example, suggests that for software systems ‘‘increasing system complexity leads to a regenerative,
highly non-linear, increase in the eflort and cost of system maintenance and also limits ultimate
system growth.'’ While similar studies, to my knowledge, bave not yet been directed sy.cifically
at VLS] syst~ms evolution, there is good reason to suspect that the eflects of progressive changes

on VLS! systems are comparable.

Furthermore, this ‘‘cost of change” compounds in the following way. Competitive pressures
for denser, more capable, and hence more complex circuits beget increased refinement of designs,
or increased change. Such increased change, Werner notes, is necessitated by elevated perfor-
mance standards for modern chips, possibly even requiring retrofitting a design in progress to
include new technologies or capabilities. However, the same competitive pressures also demand
early production of these more-complex chips, so that larger teams, partitioning the design task,
are assembled to meet delivery schedules accelerated by intense competition. Increasing complex-

ity thus has two effects: (1) more change; and (2) larger design teams. As Brooks [Broo75] notes,
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. either eflect alone increases the amount of communication required in the design project, and the
.\':{::: cost of this communication must be added to the amount of design work to be done. The combi-
‘. ) pation of these effects compounds costs of communication and thus of design, making the cost fac-
:f.?_'f tors of design in the multi-designer environment significantly different from those that have been
na traditionally applied.

Lo

™ Consequently, as VLSI circuits grow larger, the cost of change management, especially in
_:,':;: the now-typical multi-person design effort, may well become the primary concern in the VLSI
::‘ design process. Because current VLS! design techniques focus primarily on developing correct ini-
tial designs and not yet on the management of design change, the development and study of VLS!
) design change management techniques are timely and important.

o 1.2 Potential Contribution from Softuare Engineering Technigues.

_' There have been numerous recent suggestions (for example, see [Rade82, Kuni84, Musa85)])
.." that transfer of design technology from software engineering, which has dealt with systems with

: similar numbers of components for at least a decade, might either improve the theoretical base for
t}j:j VLSI design or at least enhance the eflectiveness of emerging VLSI design methodologies. Séquin

[Séqu83] supports this suggestion by listing the following software design characteristics that pos-

%2:"_’, sess counterparts in VLSI design.

o

'_:'-' a. Appropriate design representations are crucial to design success.

_ b. Abstraction provides an appropriate vehicle for dealing with complexity. The possibility of
.\- exploiting such abstractions, using high-level languages, is promising.
‘?: c. At the lowest level, on the other hand, the design may be restricted to a limited set of well-
:}‘_E::', understood constructs.

- ~ d. The design task can be partitioned and structured. For example, functional design can be

‘.. separated from implementation.

'.‘;E:'_' e. Testing of the final realization against a well-defined system specification is essential.

::E.'.:‘- f. “Of crucial importance in the construction of large and complex systems is a good set of tools
'.- and a suitable design method.”

‘ In contrast to VLSI design, software engineering has seen much research directed toward design
metbodologies, and the application of principles from these methodologies to VLSI design is a

promising and relatively unexplored idea. Such adaptation of software engineering methodologies
o
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:-_ to VLSI design is certainly nontrivial, because the latter must take into account addi‘tional con- :
g cerns such as geometric and electrical limitations. Nevertheless, it is readily conceivable that ]
transfer of concepts from software engineering could contribute to the development of an i
improved theoretical base in VLSI design. Such improvement would aid both the teaching of !
VLSI design principles and the construction of more capable automated design tools. 5

Despite the quantity of methodological research in software engineering, however, most

modern software design methodologies do not specifically address the factor of change in the

PR TR

design process. In this regard, the software design techniques of D.L. Parnas are conspicuously

P

exceptional. His techniques, specifically those of information hiding, Aierarchical structuring for

design families, and precise specification, have demonstrated the potential to become the nucleus
of a coherent approach to the software change management problem. The overall motivation for
my current research, then, has been to investigate how these techniques can be applied to manage 1

change in the VLSI design proce-..

PR

1.8 Determination of Research Objectives.

A research program that conscientiously investigates the transferability of Parnas's tech-

y

niques to VLSI design change management would include: *
a. An extension of information hiding, hierarchical structuring for families of designs, and pre- :
cise specification into the VLSI domain by: J

(1) developing a realistic model of the contemporary VLSI design process; <

(2) identifying in the model the points at which decisions crucial to the techniques are

made;

: (3) constructing for these decision points a set of criteria that guide eflective design change
- management.
»
-
o
"_,'-.: b. The development of an integrated set of VLSI tools that enable a designer to use the cri-
::j-: teria developed in task a to manage design chonge.
L
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¢. An assessment of the eflectiveness and extensibility of the design change management pro-
cedure so devised.

The scope of such a research program clearly exceeds that of a single dissertation. Conse-
quently, it has been necessary to identify and order the component research problems embodied

by this program.

1.8.1 Component Research Problems and Their Interdependencies.

1.8.1.1 Specifying Abstract Interfaces for VLSI Dezigrs.

Britton, Parker, and Parnas [Brit81a] define an “interface” between two programs as “the
set of assumptions that each programmer needs to make about the other program in order to
demonstrate the correctness of his own program.” An abstract interface specification, in their
sense of the term, has been carefully limited in content to a description of only these assumptions,
so that the specification describes not a single interface but a class of interfaces. More than one

module or design thus fits the interface, and the interface is robust under certain types of changes.

Abstract interface specification of VLSI design modules is a largely unstudied problem. This
lack of attention is surprising in light of the growing realization that existing VLSI design

specification techniques are inadequate:

there are no real tools for developing and simulating high-level gpecifications, so most work must
be done by hand. There are also problems with casting the specification in the proper form....The
process of specification is intimately involved with the kinds of design tools available [Wali84].

I believe that the primary reason for this inadequacy is that most references to ‘‘specification” in
VLSI are to clear-boz specifications, frequently at the logic level. Clear-box specifications address
module interfaces only indirectly, by prescribing an implementation of internal module logic or
circuitry. Clear-box specifications, then, blur architectural and implementational concerns;
abstract interface, or “'black-box,” specifications keep these concerns separate. At VLSI complex-
ity levels, separation of these concerns is essential. Clear-box specification techniques do not scale
up, as can be plainly seen from the difficulty of inferring the function from even an MSl-level cir-
cuit diagram. More seriously, however, the merging of architectural and implementation issues in
large-scale system design significantly hinders the partitioning of the design task and degrades (if
not destroys) the conceptual unity, hence the usefulness and robustness to change, of the resulting
system [Blaa81]. The development of eflective abstract interface specificatic techniques for VLSI

designs is thus of critical importance.
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1.8.1.2 Quantifying Ease of Change of VLSI Designs.

One criticism justly raised about methodological research is that claimed benefits for pro-
posed methods are frequently unsubstantiated. To avoid this criticism, one would like to have an
impartial means of quantifying the degree to which a given VLSI design is easy or difficult to
change; then, based on this quantification, the merits of various change management techniques
could be compared.

Preliminary investigation into quantifying ease of change suggests that, first, a metric is
needed for change itself, so that the ‘difference’’ between two VLSI designs can be measured. A
modest amount of experimentation into developing a change metric was conducted in the context
of this exploration [Gros84]. This experimentation investigated measuring VLSI design change as
a difference in design information content, going on to attempt to measure design information by
counting various discrete design components (analogous to software science approaches such as
those described by Halstead [Hals77], McCabe [McCa76], or Albrecht and Gafiney [Albr83]).
Techniques employing such approaches will probably need to be complex to capture design infor-
mation content successfully. Further, there may be assumptions embedded in the design that
render desirable information components uncountable, suggesting that such metrics must be
derived from a design representation that also embodies these assumptions. An abstract interface

specification for the design is such a representation.
1.8.1.8 Using Information Hiding in VLSI Design Modularization.

The decomposition of a VLSI design into modules is an important phase of the design pro-
cess. In a study of decomposition criteria, Heath [Heat83] has found that information hiding
[Parn72b, Brit81a] is a desirable basis for VLSI design decomposition whenever robustness under
change is a primary design objective. At the same time, however, he notes that VLSI design
modularization, using any criterion, requires the external aspects of each module to be
“sufficiently and precisely specified.”” Because information hiding and modularization are so
directly interconnected, precise interface specification techniques for VLSI designs are essential if

the enefits of information hiding are to be obtained.
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1.8.1.4 Cresting Broad Femilies of VLSI Designe. .

s

Parnas [Parn76a] characterizes a set of programs as a family “‘whenever it is worthwhile to L

study programs from the set by first studying the common properties of the set and then deter-

T

Fafaly

mining the special properties of the individual family members.” It would be useful to learn

h o d

whether considering the successive versions of an evolving VLSI design as a family has the poten-
tial to reduce the cost of VLSI design development and maintenance. There is some evidence in
the affirmative [Gros83b).

e

I.v
.

o)
PRERT

Nevertheless, exploiting the family concept depends critically on the availability of
precisely-specified intermediate designes that can serve as checkpoints for design backtracking. To
the extent that these intermediate designs can be characterized by their interfaces, progress in
research seems to hinge once again on the availability of techniques for VLSI design interface

specification.
1.8.1.5 Determining Eztent of Required Revalidation Following VLSI Design Change.
The decision to change a VLSI design brings about the following activities.
a. Determine the nature and scope of the change required.

b. Perform the change. W

¢. Ensure the correctness of the design by testing following the change.

Full testing of the design following each change, however, is costly and often unnecessary. Unfor- g_

tunately, there currently exist no suitable ways to determine which subsets of the design might L

have been affected by a given change; thus one cannot be sure that anything less than full testing

will suffice. Techniques are required to assist the designer in making such a determination.

This problem is a chief reason that information hiding was developed in the software :
. domain. An extension of information hiding to VLSI design that would address this problem “

';! requires that an abstract interface be specified at the boundaries of each design component to '_
t.: which change effects are to be localized. The existence of such a specification would reduce test-
‘: ing of any changed design to the assurance that each changed module continued to meet its inter- iy
- face specifications. Even if such interface specifications were not met, the aflected boundary -~

modules would be clearly identified for follow-on modification and testing.
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1.8.2 Dissertation Overview.

The dissertation is organized as follows. Chapter 2, after defining key terms and criteria,

summarizes the research reported in the literature to date in developing methods for VLSI design

e e K X R B

interface specification. In chapter 3, I present an abstract interface specification method, an
extension of Parnas’s software specification techniques. I do not contend that either the specific :
method described, or the notation used to express it, is optimal; rather, 1 argue for the desirability

of the approach thus exemplified.

Its advantages and disadvantages are as follows:

[ N S

— The approach achieves practical scalability to VLSI design levels through precise partitioning
of concerns and the exploiting of abstraction: the complexity of the specification appears to
grow slowly with design scale. Pressing the separation of concerns to the ultimate, ] made a
major decision, to partition module semantics per-pin (instead of per-module, as is conven-
tional). This radical partitioning enhances scalability, complexity control, and change
management, at the cost of making it somewhat more difficult to specify constraints global to
the module.

— The proposed specification starts by capturing high-level concerns that are then evolved into
more particular specifications as details become available over the course of the design. The
specification not only evolves in detail, it remains an active component of the design, subject
to intentional revision occasioned by new insights from the detailing.

— The same mechanisms are used for each of functional, electrical, and geometric information.

— A new technique is included for attaching a value to the degrce of specification adherence of a
candidate module. Using this technique, the specifier can communicate knowledge of the mar-
ginal utility of design tradeoffs to the implementer. The technique is complex, however, and

needs to be made more eflicient to be practical.

The proposed interface specification method consists of:
— A black-box finite-state-machine model, together with a generic data type for pin and internal

state variables (the generic etate type) identifying the level of the specification. Specification

. K T o R LIy PR SR WPl | 2L B B S T . e,

refinement corresponds to evolutionary refinement of this data type. Data type syntactic and

semantic components are distinguished, the former being statically verifiable and the latter

requiring dynamic verification. This partitioning of concerns permits further simplification.

om0y 50 B9 QN
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— Ab extension of Parnas's access funclion as a key specification element, partitioning module
function into per-pin components.

— Adherence functions, which attach a value to the degree to which s module adheres to a given
specification. Specification sdherence is defined in terms of a Zadeh fuzzy set [Zade75,
Zade84).

I next discuss sequencing and performance issues in the composition of such specifications. 1
show how access functions are treated as ‘‘communicating sequential processes’’ (CSP) in Hoare’s
sense, and show how his CSP notation can be used to express these functions. I also address four
issues relating to such use of CSP:

— The power of CSP as an interface specification notation.

— Rules of thumb for expressing data and control pin access functions in CSP.

— The degree of module function partitioning that can be attained in various situations. The
worst case is one in which a single master control pin eflects all module function.

— Requirements of a base language for implementing CSP. CSP is a notation, not a language.

In closing chapter 3, I cite specific characteristics of the VLSI design process that might be
used to simplify specifications. In general, these involve restrictions on the general model:
— Restriction to the use of a standard, portable base Janguage.
— Restriction of the specification refinement hierarchy to certain predefined semantic and syntac-
tic levels, promoting reusability of generic state type definitions.
— Restriction of the adherence function space to a set of standard adherence functions (candi-

dates are presented).

In chapter 4, I report o an evaluation of the proposed abstract interface specification
method with respect to the criteria established in chapter 2. The evaluation is based on experi-
ence with a set of four real small- to large-scale IC modules which were specified, using the pro-
posed method, at various semantic and syntactic refinement levels. These specifications are pro-
vided in an appendix.

— To evaluate the perceived cost-eflectiveness (scalability) of the method at VLSI design levels, 1
consider specification size as a function of design size. The data suggest that this specification

approach is feasible for very-large-scale designs.
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Y — To test the life-cycle integration of the method, 1 first measure the relative amount of change
ey
. in the test specifications as they are refined, finding that a significant fraction of each test
specification is preserved unchanged through refinement.
_'-: — To examine the spareness of the method, I informally review each of its elements for overlap
;:::: with the others.
.:-f: ' — To estimate the method’s effectiveness in managing change, I conduct a series of experiments.
The first demonstrates the robustness of subordinate specifications when a parent specification
:-:'{ is changed. The second illustrates the conditions under which specification changes affect
:::'._f nearby modules. In the third, real-world changes are applied to an actual specification with
(o only minor effects.
_ii Chapter 5 contains conclusions and suggestions for future research.
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CHAPTER 2

SURVEY OF PREVIOUS RESEARCH

The previous chapter suggested that eflective techniques for specification of abstract VLSI
design interfaces would help manage change in the VLSI design process. This chapter will

describe and evaluate the effectiveness of existing VLSI design interface specification methods.

Some historical background will place this survey in context. A rough parallel can be drawn
between the evolution of design methodologies for software and for integrated circuits, although
the paths are offset in time by perhaps 10-15 years. In the software community, there was little
recognition of the importance of specifications before system complexity exceeded manageable
bounds. Even now (as Yeh [Yeh83] observes), certainly not all software designers have internal-
ized the recognition that the complexity of modern systems is truly beyond their intellectual span
of control. One expects, therefore, a parallel reluctance by IC designers to admit that complexity
has become overwhelming. Because MSI and LSI complexity levels do not compel an emphasis on
specification, ‘‘specification’ and ‘‘interface’’ are terms that have yet been mentioned only infre-

quently in the IC design literature.

This is not to say that the specification and interface definition functions have not been per-
formed in IC design, or even in VLSI design. These functions, however, have been called by
different names, leading to some semantic confusion. To define them clearly bere, I will first pro-
vide a model of the VLSI design process, a model that will show the role of VLSI design interface
specifications. Based on this model, I will define ‘VLSI design abstract interface specification.”
Finally, I will survey the important published work that has been done so far in developing VLSI

design interface specification techniques.
2.1 Definitions.
2.1.1 The Integrated Circuit (IC) Design Process; the VLSI Design Process.
Definitions. The IC design procese is a sequence of claborations that synthesize, from a design

concept, a form suitable for fabrication. The VLSI design procese is the 1C design process applied

to the design of very-large-scale circuits.
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“:}: Discussion. Figure 2-1 illustrates a hierarchical model of the contemporary IC design process.

:"_\ The designer starts with a concept, either of the complete system or of a system component. The i

N goal of the design is a description of the design in a form suitable for fabrication [Trim81]. To

o manage complexity, the designer subdivides the monolithic concept-to-fabrication transformation :

:5.:: into a sequence of elaboration steps, the result of elaboration (synthesis) at each each step being :
:::?: an intermediate representation (or ‘‘description’’; cf. [Lehm84]). Each representation, then, con- ]

tains more information, in Shannon’s sense [Shan49|, than its predecessor; it serves as a milestone

- .

b in the descent of a tree of potential designs that could be developed from the original concept.
-‘ [
7[: Representations frequently employed in IC design are, for example, the floorplan, the logic .
= diagram, the layout, and so on; each embodies additional information about the design. J

:j:" Synthesis and representation, however, are not the only activities that take place at each

:Ef.: elaboration step. Two additional activities — verification and evaluation — are required at each

.,, step to ensure the accurate progress of the design eflort (Figure 2-2). Redoing the current step or

-

A backtracking to a previous step may be required.

o !
::f: Designer’s Concept 1
- | Z
:_: ' -

!

. Representation 1

|

|

o |

. Representation 2
|

|

|

Representation n

L |

o |

‘o Form Suitable for Fabrication 3
9 Figure 2-1. The IC Design Process. .
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The IC design process, therefore, is the hierarchical repetition, possibly with backtracking,
of the four steps defined in Figure 2-2. Furthermore, in the IC system design process, Figure 2-1
should be visualized as being replicated many times, once for each design component (such as a
cell), so that a representation of the total design consists of a compatible set of representations for

all components.

The definition of the VLSI design process correctly identifies its component activities as the
same as those for IC design. As I noted in chapter 1, however, *VLSI design is IC design in which
brute force no longer works.” The requirement for using complexity management techniques in

the design elaborations distinguishes VLSI design from IC design at lesser levels of integration.
2.1.2 Interface; Abstract Interface.

Definitions. An interface (between two design modules) is the set of assumptions that each
module designer needs to make about the other module to demonstrate the correctness of his/her
own module. An abstract interface is an interface containing no assumptions about the internal

composition of the module.

— Synthesie: the elaboration of one level of description into the next lower level.

— Description: the construction of an abstract model of a system (a representation) that details
properties specific to a given purpose.

— Verification: a semi-formal process whereby the design at a particular level is shown to be
equivalent, in either behavior or structure [or “oth)], to one or more higher-level designs.

— Evaluation: the assessment of the degree to which the design meets (1) physical and perfor-
mance requirements and constraints; and (2) criteria of behavioral and structural complete-
ness.

Figure 2-2. Activities Performed at an IC Design Step.
[Boeh81, Latt81, Dall83]
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Discussion. Recall the definition of “interface’’ given in chapter 1: ““the set of assumptions that
each programmer needs to make about the other program to demonstrate the correctness of
his/ber own program.” Replacing ‘‘programmer’ with “designer’’ and ‘“‘program’’ with “design’’
yields a definition appropriate to the IC design process. Also from chapter 1, recall that an
“abstract” interface specification has the additional property that the specification must not con-

tain assumptions about the internal composition of the module (its implementation).

Nearly every representation of an IC design component is an interface specification, in that
it provides the basis for other designers to draw some interface assumptions. For example, a logic
diagram is frequently used as an interface specification, because it is believed that most designers
can infer the interface from the diagram. But, for the reasons noted earlier, such representation-

based {or “clear-box’’) specification techniques are inadequate at VLSI complexity levels.

Much less frequently are abstract interface specifications encountered in IC design. Britton,
Parker, and Parnas’s research [Brit81a] demonstrates that specifying an abstract interface is a
deceptively difficult process: identifying and precisely specifying all the essential assumptions
making up an interface, without over-constraining the definition with excess or improper assump-
tions, require both substantial kuowledge of the project and of the underlying technologies.
Mevertheless, 1 do not believe that VLSI designers can deal eflectively with complexity and change
until good abstract interface specification techniques are developed.

2.1.8 Frame; Specification.

Definitions. A frame is a design description assumed to be correct in all that it states or implies
about the design. A epecification is a highest-level (therefore unverifiable) description that serves

as a frame for subsequent verification activities.

Discuseion. Dallen [Dall83] provides a good general definition of the term specification: “‘an ideal
ized abstraction of the system being designed.”” What is the role of a specification in the design
process, however? Lehman, Stenning, and Turski [Lehm84| identify it, once again in the context

of the software domain, when they state:

Calculability of program correctness implies that ‘correctness’ is not an attribute a program may
or may not possess when considered in isolation. An external frame of reference must be provided
with respect to which the calculations are meaningful. This frame of reference for establishing
correctness of a program is often referred to as s specification.
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I bave shortened Lehman, Stenning, and Turski's phrase “‘frame of reference for establishing ‘
‘ correctness’ simply to the word frame. A physical frame both constrains and allows freedom :
. within its constraints; thus it is an accurate model of a specification. t
: 3
? Supporting this interpretation, Levene and Mullery [Leve82] identify the role of a
b

specification from a traditional administrator’s viewpoint, but still define it as a frame:

— |A specification] should clearly indicate what the intended system is to do, including intersction
with other systems, people, media, and devices, in terma that the customer or users can under-
stand;

M ol TR

2, 3,

o
[
. &

— It should be a complete specification for the purposes of the development agency....

RAASY

-"‘-‘

— While it is being produced, the partial specification document can be ... referenced for use in
.. developing other parts. This will also allow it to be maintained whenever the need for changes
0 is recognised, either during the development of the proposed system or later during its opera-
~ tional life.

.,

*,

.. Parnas [Parn77a) also acknowledges the role of specification as frame when he asserts that a

specification is necessary

»”“ - o,

— To describe the problem to be solved.
— For communication between software engineers. =
— To free the programmer from needing to know how the rest of the system works.

- — To support the development of multi-version software.

: — To complete the description of intermediate design decisions [encapsulated, for example, in the

3y 4 .

abstract primitives that make up high-level representations in Figure 2-1].
- — To permit verification of intermediate design decisions. s
-“ Ny
. A specification, then, is that abstract description of a system that provides a frame for system .
J verification, for answering the question “Did we build the product right?” [Boeh81} "
. Since, as | have noted, the word ‘“‘specification’ is infrequently used in a VLSI design con- :
text, what part of the VLSI design model is, by virtue of addressing these purposes, a de facto _
:: specification? Consider the initial (top-level) steps in the model of VLSI design developed in sec- %
b
tion 2.1.1. Figure 2-3 expands these initial steps into their four component activities. One of :
_{ these activities must be the synthesis, from the (undescribed) designer’s concept, of a highest-level 3
1:' description of the design, a description that cannot be verified since there is no description against C
6 which it can be verified. It is this highest-level, unverified description that I call the specification .
", >
‘.‘ of the VLSI design, and it is this description that serves as a frame for verification activities.
v "
‘\
X %
A) 1 This is not to say that lower-level descriptions cannot be taken out of their context in one design bierarchy : :
ke (Figare 2-1) and used as specifications in another. For example, a logic diagram might not be a specification in the ‘
y context of a complete design bat might serve as one in a subset of that design activity (a separate instantiation of Figure .
o 2'1)- :L
" I.
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Designer's Concept

! ( Synthesis
Representation 1 ~—(  Description
( Evaluation
(  Verification

i ( Synthesis
Representation 2 ~ ——(  Description
( Evaluation
( Verification

Figure 2-3. Expansioh of the VLSI Design Process
at its Highest Levels.

Many different types of specification exist. The following list describes some distinguishing

characteristics important for VLSI designs.

(1) Informal vs. Formal. A specification is usually called formal if both the syntax and semantics
of its primitives are mathematically precise, that is, strictly and unambiguously defined [Lisk79].

Formality and precision iu specifications are, therefore, intertwined. Parnas [Parn77a] concedes

that a specification can be precise without being formal but notes that creating one is ‘‘very

difficult.” By definition, the converse is not true: a formal specification is always precise.

Sometimes added is the stipulation that a formal specification must contain the capability

to demonstrate rigorously the validity of implementation objects derived from it [Cohe83,
Lehm84]. In my view, this overconstrains the definition, however desirable such a capability may
be.

AR IR Y.T a8 <
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(2) Syntactic vs. Semantic. Wegner [Wegn84| differentiates syntactic and semantic interface
specifications of software components as follows: ‘‘Syntactic interfaces specify compile-time invari-
ants that determine how components fit together, while semantic interfaces specify execution-time
invariants that determine what the component computes.” A similar concept exists for IC

modules: the syntax (well-formedness) of a composition of modules can be checked statically (i.e.,

Tate sl TR L LS L LF

without recourse to dynamic analysis or simulation), whereas the semantic integrity of a module
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. . composition requires dynamic verification. Syntactic specifications, therefore, are adequate to

] .-\' . . .

o determine the consistency (but not the validity) of a proposed module interconnection. As

- Wegner notes,

.. . strong semantic interface specifications are intractable in the sense that they do not always exist

N and their correctness cannot always be verified. ... The trade-offs between the flexibility and

efficiency of very weak interface specifications and the guaranteed integrity of strong interface
specifications need to be better understood.

(8] Non-ezecutable vs. Ezecutable. A specification is called ezecutable if it is possible to create a
-t machine interpretation of the specification that provides an approximation of external system

:': behavior [Zave84]. Because of their precise syntax and semantics, all formal specifications can be
meaningfully processed by a computer [Lisk79]; however, not all formal specifications contain the
kinds of behavioral semantics necessary to permit simulation of system behavior by machine pro-

S cessing.

_‘L: An extreme (and sometimes overconstraining) form of executable specification is a realiza-
tion of the desired design: when questions of specification details arise, one ‘‘asks the machine" by

- making an experimental query of the existing realization [Broo75).

(4] Black-Boz vs. Clear-Boz. Eatlier, a clear-boz (sometimes called structural) specification of a
. module interface was characterized as one that prescribed the interface indirectly by describing an
implementation of internal module structure, logic, or circuitry. A black-boz (or behavioral) )
specification, on the other hand, prescribes a module interface through a description of the
module’s externally visible behavior [Zave84]. Somewhat generally, I referred to a black-box
) interface specification as an abetract interface specification, in that for a given black-box
specification more than one implementation (of the type prescribed in a clear-box specification)

could exist.

This distinction is perhaps too clearly drawn. Proponents of clear-box specification might
o state that the implementation they produce is not meant to constrain the implementation, but
merely to prescribe its behavior. Indeed, this implementation itself could be abstract, describing
module behavior executably but in terms of implementation-independent substructures [Zave84].
9. Zave calls a specification that describes module behavior in such a way an operational
specification. In contrast, a functional or input/output specification describes a direct functioral
relationship among module inputs and outputs without reference to substructures [Lisk79]. For
this dissertation, an (abstract) operational specification is also a black-box specification, but a so-
\' called operational specification that prescribes an implementation is neither black-box nor opera-

tional.
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In this dissertation, I will thus not join the debate between proponents of operational and
functional specifications. The crucial issue is that both types can specify interfaces abstractly,
and I contend that such specification, which I call black-boz, is superior to its clear-box counter-
part. Furthermore, in the hardware domain much of what passes for operational specification, as

Zave defines it, is in practice clear-box specification.

2.1.4 Module Funclion; Module Performance.

Definitions. The function of an 1C module is its externally visible behavior. The performance of
an IC module is a set of measurements of its function in terms of physical phenomena (e.g. speed,

power, area).

Discussion. The word ‘‘functional” is overloaded in specification parlance. In distinction from
the use made of it in the previous section as an opposite to ‘‘operational,’’ it can also be used to

differentiate the semantics contained in the specification.

In software, Liskov and Berzins [Lisk79] state that “functional” specifications ‘‘describe the
eflect of the module on its external environment,” whereas ‘‘performance’’ specifications ‘‘describe
constraints on the speed and resource utilization of the module.” In IC design, however, the effect
of the module on its external environment depends on its performance, so that the line between
functional and performance specifications must be redrawn. Indeed, it is possible to think of a
single function/performance continuum, corresponding to a continuum of abstraction of
specification primitives. 1 will treat this issue in detail during the discussion of adequacy in sec-

tion 2.2.2.

Other-than-functional specifications are sometimes called constraints. Roman [Roma85]. in
a recent taxonomy of software requirements engineering issues, enumerates several constraints

besides performance: interface constraints (assumptions about the environment), operating con-

::: straints (size, weight, power, etc.), life-cycle constraints {maintainability, enhanceability, portabil-
8 ity, development time limitations, etc.), economic constraints, and political constraints. For the
:" purposes of the current VLSl-oricnted work, Roman’s interface constraints are considered to be
E orthogonal to the functional/performance issue; operating constraints are considered together with
::_‘j performance constraints; and the other three types of constraints can be dealt with only infor-
.

mally.
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£.1.5 Abstract VLSI Interface Specificalion.

Definition. An abstract VLSI interface specification is a reduced set of assumptions that a
designer of an adjacent VLSI module would need to make to design, and especially to verify the
correctness of, this adjacent module. This set is reduced in that it excludes assumptions that

bave to do with internal module implementation.

2.2 Requirements for VLSI Design Abstract Interface Specifications.

In this section, I shall enumerate the requirements that an abstract interface specification
must meet in the VLSI design process. Later, I shall examine existing specification methods in

light of these requirements.

2.2.1 Provizion of Frame for Verification (Adequacy).

This requirement follows directly from the definition of “specification’ developed in section
2.1.3. A description purporting to be a specification must be a specification: it must provide a
frame for both technical and administrative verification. (To the extent that these types of
verification differ, technical verification focuses on technical performance of the product, while
administrative verification examines the product for fulfillment of relevant contractual obliga-

tions.)

Design specifications can be constructed at differing degrees of what 1 have chosen to call
adequacy. That is, there exists a continuum (Figure 2-4) of refinement of the amount of detail
included in the specification. At the coarsest levels, a specification max be given in general terms,
e.g. ‘this module is the ALU.” Refinement of this specification along the continuum of Figure 2-4
gradually adds detail to the specification, until at some point in the continuum there is an ade-
quate level of detail to guide the implementation. At this point, which is admittedly vaguely

defined, it can be said that the specification is adequafe.

Liskov and Berzins [Lisk79] distinguish two types of specifications: functional and perfor-
mance. With respect to these two types of specification, the experiences of software and hardware
engineering differ. In software engineering, functional specifications are of chief importance,

because performance issues are largely orthogonal to function and thus can be abstracted away; if

better performance is needed, one can tune the implementation later or get a faster machine.
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Two separate continua of refinement (Figure 2-4), one each for function and performance, thus

exist in software specification.

In bardware engineering, however, a well-known adage states: ‘Circuits must not only work;

they must perform.” In hardware design, what is functionally correct under less specific
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parametric or performance constraints may cease to be functionally correct under more specific

o

constraints; thus function and performance are naturally intertwined. Because of this characteris-

tic of hardware engineering, then, in IC design what is called a functional specification can be

> ]
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interpreted as an early stage, and performance specification as a later stage, of a single
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specification refinement continuum. At all levels of refinement the specification must be precise;

the primitives with which it is described, however, may vary in specificity. The adequacy, then,

& 1

I

(A L

of an IC design abstract interface specification depends on the specificity of its performance con-

straints relative to the specificity required. If one’s concern is merely that the circuit function

correctly at some level of performance, then a less detailed (functional) specification will be ade-

i I

quate. But if one’s concern is that the circuit function correctly at an intended level of perfor-

mance, a more refined, more detailed specification will be needed.
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In VLSI design in particular, concern for correct behavior at intended performance levels is
of central importance. Ultimately, then, a VLSI design interface specification must contain per-
formance detail. This requirement implies, because of the inseparability of performance from a
design's geometric and electrical characteristics, that these latter characteristics must also be
included. As a result, a substantial variety of information is required in a VLSI design abstract
interface specification, and the specification technique employed should both (1) provide rich
enough facilities to express this information and (2) express it in terms of the performance levels

required.

Shaw [Shaw84] bas recently elaborated on this requirement as follows:

A specification methodology that addresses [properties other than pure functional correctness]
must have two important characteristics. First, it must be possible for the programmer to make
and verify assertions about the properties rather than simply analysing the program text to derive
exact values or complete specifications. This is analogous to our approach to functional
specifications — we don’t attempt to formally derive the mathematical function defined by a pro-
gram; rather, we specify certain properties of the computation that are important and must be
preserved. Further, it is important that the specification methodology avoid adding a new concep-
tual framework for each new class of properties. This implies that mechanisms for dealing with
new programs should be compatible with the mechanisms already used for functional correctness.

£2.2.2 Spareness.

Pareimony, that is, limiting the number of related expressive mechanisms in a specification
technique, is clearly desirable. It might fruitfully be thought of as an aspect of a more general
economy, which I shall call spareness. Spareness is the property of a specification that implies

that it says only what it needs to say.

As Parnas bas noted [Parn72a, Parn77a), what a specification does not contain is nearly as
important as what it does contain. It is vitally important not to clutter the specification "vith
extraneous requirements: these not only over-constrain the implementer but also slow comprehen-
sion [Meye85]. Thus a spare abstract interface spccification technique must not only manifest
economy of expression, but it must also identify which details are essential and which are

unnecessary.
2.0.8 Perceived Cost-Effectiveness.
The desirability of spareness is but one illustration that the usefulness of a specification is

strongly related to its intuitive appeal to designers, that is, the degree to which the specification

technique is perceived as cost-effective. Clarity and simplicity, as Liskov and Berzins [Lisk79]
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have pointed out, contribute significantly to a specification technique's attractiveness. Choosing

familiar representations also aids acceptance [Lisk79]. Finally, the costs of using the method need

to be reduced as much as feasible: a clumsy or slow user interface is certair to undercut adoption
- of a proposed technique, especially considering that designers have not yet embraced specification
- methods per se. Baroque and unusable specification methods are all too easy to develop: Liskov
and Zilles [Lisk75] called difficulty in use ‘‘the fundamental problem with specifications.

. 2.2.4 Malleability.

A strong contributirg factor in the perceived cost-effectiveness of a specification is its useful-
ness throughout the degign life-cycle. What quality of a specification contributes to such useful-

ness?

'_:: A valuable but elusive goal in design is that of getting the specification ‘‘correct’” the first

‘ time through careful axiomatic thinking. Several noted contemporary scientists, such as Dijkstra,
believe that such a goal is achievable [Berg81], and they may ultimately be proven right. For the

'.',f present, however, specifiers do not always seem to be able to foresee the later emergence of

; difficulties and even contradictions in the specification constraints they have established at the
outset. If these specification constraints are rigid, backtracking that includes constraint

[ 'i modification would be impossible.
7
3

Perhaps, then, it is unfruitful to visualize specification constraints as being rigid. Instead,
the constraints might better be viewed as variables, albeit with *stifl”’ coeflicients of elasticity.

(Other variables have more pliable coefficients.) I call the degree to which a specification’s cc.i-

X straints can be viewed as variables its malleability, and | contend that malleability enhances the
- life-cycle utility of a specification. Malleability is not imprecision; it is the property of a
. specification that permits and facilitates precise constraint adjustment as necessary, in the

) interest of preserving the usefulness of the specification as a frame for verification throughout the

design life-cycle.

A

4 Good examples of malleable specifications are the incremental {prototype-based) [Myer84] -
:_ and transformation-based [Balz83, Part83] life~cycle paradigms, as contrasted to the conventional ':T'
:: - linear development model. Such methods depend on regular incorporation of feedback into the ]
.- specification, which is then used directly to derive refined systems. The appeal of these non- ::;
i conventional approaches may indeed be due largely to their increasing the usefuluess of the [,
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system specification in the design life-cycle.
2.2.5 Change Management Support.

Finally, as has been noted in chapter 1, a primary motivation for developing a new VLSI
design interface specification method is to support change management. To do this, an idcal
specification technique should assure the designer that internal changes to a design module that
do not change the specification also do not have eflects outside the boundaries of that module.
This requirement thus overlaps the requirements of the preceding sections, especially those for

adequacy and malleability.
2.8 Existing VLSI Design Interface Specification Methods.

No technique fully meeting the five requirements enumerated in the preceding section has
yet been developed. At this point, I will review the important published work that has been done
in developing methods for constructing VLSI design interface specifications. It is important to
note that all the specification methods to be surveyed have a place in the design process; however,
I shall evaluate them, using the criteria of section 2.2, specifically as candidates for interface

specification methods to support change management.
2.8.1 Methods for Informal Specification.

Informal specifications of IC interfaces are most often an ad Aoc mixture of prouse descrip-
tions and block diagrams, intended to convey the function andfor structure of the design to =

general audience. Procedures for informal specification rarely receive wide dissemina‘ion.
2.8.1.1 Ezamgles.

— Lattin et al. [Latt81] mention a ‘‘200-page document '’ that served as the specification for the
Intel iIAPX-432 design and that, judging from the context, was probably at least partly infor-
mal. Indeed, it is reascnable to surmise that most major chip design projects begin with such

a document.
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.Y — Standard cell syst;m documentation usually includes an informal description of cell interfaces.
Module interfaces in the Stanford Cell Library [Newk83], for example, are described both in
prose and in a formal mask description that can be simulated to provide more precise interface
data. Informal specifications similarly are included in documentation of those silicon compiler
systems [Gros83a] that are based on parameterized standard cells, such as the Concorde Sys-
tem of Seattle Silicon Technology, Inc. [SST84].

2.8.1.2 Strengths Weaknesses.

Britton, Parker, and Parnas [Brit81a] identify the strength of informal specifications: they
are easy to review for people not intimately familiar with the technical details of the project.
Since most specifications require approval by persons in this category, Britton, Parker, and Parnas
suggest that software specification methods should accommodate an informal component that
embodies those assumptions critical to the design and that is consistent with the formal portion of

the specification.

§ Unless they are supplemented by a formal component, however, informal specifications are
5

. inadequate to provide a verification frame in the design of complex systems, for the reasons listed
-__ by Dasgupta [Dasg84):

< — The dynamic aspects of the architecture ... are usually specified incompletely. [This is particu-
larly true in IC module interface specification, since the interface is semantically rich, with
functional, electrical, and geometrical components, and an informal specification is usually
truncated for manageability before all these data are included.)

— It is extremely difficult, even in principle, for the design to be validated for correctness without
constructing and testing the physical gystem.

»

. — The sequence of design decisions and the rationale for them are seldom documented explicitly.

N .. Itis virtually impossible to investigate, manipulate, ot alter a design, or evaluate alterna-

; tive architectures for performance characteristics, without constructing and testing the physical

Y system. [Heninger [Heni78) blames this lack of robustness not only on the intractability of in-
formal specifications but also on their frequent failure to include fundamental assumptions, re-

- quired subsets, expected changes, and rules for treatment of undesired events.]
The inherent weaknesses of informal specifications as stand-alone system specifications are dis-
. cussed in greater length by Meyer [Meye85].
1
A
5 2.8.2 Methods for Syntactic Specification.
;:: Syntactic interface specifications exist for verifying the integrity of a composition of
3 modules; they are of most value when such verification is complex.
~
"y
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2.8.2.1 Ezamples.

.-
»
L R R ]

. P
P

The best examples of syntactic IC module interface specification are '‘pin-typing' schemes.
S Ségal [Séga’l] was among the first to demonstrate such a technique, but his eflort was abandoned
- because of incompatibility with other existing tools. Noice, Mathews, and Newkirk [Noic82)

o reported on the benefits of using signal-labeling conventions in the two-phase nMOS clocking dis-
) cipline described by Mead and Conway [Mead80}; Karplus [Karp84] extended their work and pro-
Lo vided a formal basis for it. Some success with a related scheme using a different set of restrictions
- has been reported by Poulton [Poul84]. Although he has so far used only manual verification of
(- the embedded information, his method is compatible with existing design tools and has been
reported to aid design composition significantly in more than one project involving multiple clocks
[Poul8s]. Newkirk and Mathews [Newk83| and the designers of the VIVID system [Rose84] have
provided some syntactic pin-typing facilities in their respective design tools; no results analyzing

their usefulness have yet been reported.
2.8.2.2 Strengths/ Weaknesses.

In the previously-cited quote, Wegner [Wegn84] stated correctly that although syntactic
interface specifications are easier to create, it is usually in verifying semantics that a verification
::;_j frame (a specification) is most required. Consequently, purely syntactic IC interface specification
techniques have not yet generated much interest, except in designs, such as Poulton's, of

significant syntactic complexity.
o 2.8.8 Methods for Non-Ezecutable Specifications.

-: Because informal interface specifications have already been considered, I shall examine only
formal, non-executable specifications here. There have been two distinct formal, non-executable
approaches, which now appear to be joining in a confluence of thought. The first approach pro-
vides a formal high-level description of both behavior and structure as a starting point for design

synthesis. The second, traditionally less concerned with the specification’s role in aiding syn-

thesis, primarily describes module behavior or function with a view toward providing a frame in a

formal proof of design correctness.
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Synthesis-directed apéciﬂcation approaches begin with formal descriptions written in docu-
mentation languages that normally capture both behavior and structure of the intended design.
Many of these languages are called Computer Hardware Description Languages (CHDLs). While
interpreters have been created to render some of these CHDLs executable, in the main their pur-
pose has been documentary, and their role in the specification process has been as an informal

point of reference during design elaboration.

There is a class of synthesis-directed languages in which the role of capturing a starting
point for synthesis so far outweighs the specification role that the languages are rarely referred to
as CHDLs. These might be called ‘‘generator source languages,” because their role is analogous to
that of software source languages. Descriptions written in such languages (1) usually constitute
an intermediate step between a (perhaps informal) specification and lower-level synthesized
descriptions, and (2) serve as input to generators that produce executable design descriptious.
Here are included primarily input languages for automated synthesis aids, such as chip assemblers

[Mudg81, Katz83, Katz84] and silicon compilers [Gray82, Ance83, Lipt83, SST84].

Proof-directed specification approaches have undergone a change of direction. They began
with non-executable specifications, such as the non-procedural functional language used by
Wagner in 1977 and cited by Barrow [Barr84); such specifications were reconciled with synthesized
designs using manual proof techniques. Lately, however, with the renewed interest in artificial
intelligence, more interest has been shown in creating proof-directed specifications that can be
executed by inference engines to prove design correctness automatically; thus most contemporary

proof-directed specifications are executable.

A natural question, raised by Cohen at the 1983 International Conierence on VLSI [Cohe83],
is whether a single interface specification technique could serve both synthesis and verification
needs. That is, can a single technique capture sufficiently the behavior and structure of the
desired design to guide the synthesis eflort, while at the same time being precise enough to sup-

port formal proof of design correctness?
2.8.8.1 Ezamples.
Since Dallen [D2ll83], Dasgupta [Dasg84], and Nash [Nash84] provide excellent surveys of

CHDLs, it suffices to note here that CHDLs can be grouped into three classes, the block languages
(e.g. PMS [Siew82]), the register-transfer (R-T) languages (e.g., CDL [Chu74)], DDL [Diet74,
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Maru85)], ISP [Siew82], ISPS [Barb82]), and the graphical languages (e.g., Petri nets [Pete77],
Patois [Dali83], Interface-Nets [Moln85]).

CHDLs bave proliferated furiously [Wern84]. One current trend is toward a consensus
CHDL; an international group has been working for more than ten years on such a language,
CONLAN [Pilo85]. Another current trend seems to be toward extensible omnibus CHDLSs that

can be used to describe in a single language function, structure, and layout (e.g., the VHSIC

Hardware Description Language (VHDL) currently under development by Intermetrics for the U.S. }
Department of Defense [Dewe84, Shah85] and GTE Laboratories’ Zeus [Lieb85]). Finally, fine :
results have been obtained using programming languages as CHDLs, such as the use by Blaauw of

APL for this purpose [Blaa76, Blaa83)].

Barrow's VERIFY system [Barr84], although not properly a2 member of this section because

it produces executable specifications, typifies the state of the art in proof-directed specification

approaches. He begins with a set of primitive modules, represented as finite-state machines with
known black-box function. Next, he composes these modules into the structure of the target
design. Finally, he uses a PROLOG-based interpreter to prove that the mathematical composi- 'f
tion of the functions making up the interconnection is the function of the target design. ;
A
Can a single specification support both synthesis and verification? Frankel and Smoliar :‘
[Fran79|, Rowson [Rows80|, Gordon [Gord81|, Cardelli and Plotkin [Card81], Hafer and Parker :
[Hafe83], and Sheeran [Shee84] have all suggested the feasibility of specifications that apply

mathematical compositional systems to VLSI design components. Subrabmanyam [Subr83] has

recently reported on the development of a theoretically precise specification language designed to

serve as input to a silicon compiler, thereby showing a fortiori that it can serve to guide manual

design synthesis.

2.8.8.2 Strengths] Weaknesses.

Formal specification methods have substantial potential for dealing with the complexity lev-
els inherent in VLSI design, in that they can capitalize on their foundations in discrete mathemat-
ics and the theory of computation. Nevertheless, the formalism in such methods is now largely
foreign to programmers and managers, even to those with engineering backgrounds. If these
methods could be interpreted in automated tools, the retraining necessitatcd by their introduction

would be lessened, although certainly not eliminated. But methods not optimized for the use of
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such tools, such as non-executable formal specifications (which now usually require » manual
interface), will be slow to be accepted.

On the other hand, methods that are familiar, such as clear-box specification using CHDLs,
will be abandoned reluctantly, and the use of such techniques is currently widespread [Dasg84,
Evan85]. CHDLSs for black-box specification, whose primitives are abstract, do not have the same
intuitive appeal, however. Because no CHDL has emerged as a standard after many years
[Wern84], a needed breakthrough in CHDL technology may still be lacking.

2.8.4 Methods for Clear-Boz Specification.

Since non-executable specifications were addressed in the preceding section, only executable

clear-box specifications will be covered here.

Clear-box VLSI specification methods are an evolution of specification techniques used at
lesser degrees of integration. The primary characteristic of such clear-box specificaticns is that

they prescribe interfaces by inference, rather than directly.

2.84.1 Examples.

Executable clear-box specifications can be classified according to the level of abstraction of
the primitives appearing in the clear box. The executable clear-box CHDL specifications have the
highest-level primitives, such as registers. Next, generally for smaller modules, are found the ubi-

quitous logic diagrams and their simulators. These are especially prevalent in the composition of

»
’l ‘\ " "
LA

systems consisting of SSI and MS] circuits. Finally, in cases in which a replacement for an exist-

"
s
RS
Al

g

ing module is being developed, circuit- and mask-level simulators are available to enable the exist-

bk oy

&

ing module to act as the specification. Each technique is widely used, and there are many

languages and simulators for this purpose.

Excellent results have beer reported from the use of a clear-box specification system by Dus-
sault, Liaw, and Tong at AT&T Bell Laboratories [Murp83, Duss84]. This tool, called the Func-

tional Design System (FDS), enables designers to construct circuits hierarchically using custom-

designed primit.ves tailored from a menu of options. Designers can wors with black-box descrip-

tions of each primitive written in a special executable language. FDS is currently being used in a

production environment.
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2.9.4.2 Strengths] Weaknesses.

Clear-box specifications, like informal specifications, have the advantage of being familiar to
designers. They also provide a path to a feasible implementation, whereas black-box
specifications can mask fatal implementation difficulties [Moln85]. From a VLSI design point of
view, however, clear-box specifications also have several disadvantages, as section 1.3.1.1 states.
The most serious is that they confuse architecture (the external view) with implementation,
elevating low-level concerns too early in the design process to achieve good design partitioning :
and unity. Furthermore, as Parnas notes [Parn77a], it becomes ‘‘very hard for both the reader -
and writer of specifications to distinguish requirements from peculiarities of the sample implemen-

tation.” Thus clear-box specifications may constrain the implementation unnecessarily.

Prodl SRR

Zave [Zave84] lists further difficulties. Clear-box specifications are complex; often not tak-

PRy

ing advantage of abstraction, they scale up poorly and are hence reduced in value at VLSI levels R
of integration. Furthermore, because of this level of detail, they are time-consuming to construct d
and analyze. Finally, Dallen [Dall83] contends that clear-box specifications do not paturally aid ]
the synthesis process in hierarchical design because they are usually tied to fixed levels of abstrac- J
tion. ]

|

§

2.8.5 Methods for Formal, Semantic, Ezecutable, Black-Boz Specification.
Because critical disadvantages exist with each method of VLSI design interface specification

discussed thus far, examining the intersection of their complements provides the best hope for ;
finding techniques meeting the five requirements of section 2.2. X
e

Functional specification using high-level programming languages or special-purpose
specification languages is the primary technique that appears in this intersection. Typically, a
black-box interface specification is constructed for the module under design, a high-level language :
is used to describe its behavior, and the simulated output is compared to that obtained by simu- ‘
lating lower-level representations of the design. Evaluation of the specification through simula- )
tion, rather than through analysis or prototyping, is almost always used because of the intractable
complexity of the specification at VLSI levels of integration. Special-purpose specification
languages have arisen because programming languages can be cumbersome to use for this purpose:

they do not handle timing in a natural way, and it is difficult to make specificatious written in

them grow with the design life-cycle.
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2.8.5.1 Ezamples.

L

4

Many designers use languages such as APL, Algol, BLISS, C, and Pascal for functional simu- 4
lation of system specifications [Dall83, Evan85). Lattin ef ol. [Latt81] used 2 high-level language, K
SIMULA, directly as the specification medium for the Intel iAPX-432 chip. That is, rather than

serving as a simulator for a separate specification, this simulator itself filled the role of the frame

for design verification; questions were resolved by ‘‘asking the machine."” Tham, Willoner, and
Wimp [Tham84] of Intel updated this technique in their recent use of a MAINSAIL frame; a simi-
lar approach was also used by the designers of the Hewlett-Packard FOCUS chip [Cane83]. The
MetaLogic, Inc., MetaSyr silicon compiler [Sisk82] accepts as input a LISP-like executable
description of the function to be implemented [Wali84]. Control Data Corporation’s MIDAS sys-

tem specifies designs using a programming language enbanced with timing semantics [Evan85].
Finally, Suzuki has used Concurrent Prolog to specify the function of the Dorado computer
[Suzu85).

Parker and Wallace [Park81] identify the following milestones in the history of special-

purpose black-box interface specification languages: 3

— Bell and Newell's port semantics [Bell71};

— Curtis’s Interface Description Language [Curtis], a multi-level extension of PMS and ISP
developed circa 1974-1975;

— Vissers's formal description? of state diagrams using APL enhanced with timing constructs
[Viss76]; and

— Marino's proposed MPLID [Mari78|, a language for specification of hierarchical module inter-

faces.

Parker and Wallace's own language, SLIDE (Structured Language for Interface Description and

:
J

Evaluation), synthesizes these developments into an executable black-box register-transfer
language. SLIDE’s major contributions are this synthesis of trends and its elegant facility for

describing module interconnections as communicating asynchronous concurrent nrocesses.

b 2 See also [Blaa76]
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Pin names/attributes Parameters
( K/unspecified shope=6
T1 ( L/input lineage=pure-enh.
( M/unspecified
( N/unspecified shape=3
T2 ( P/input lineage=pure-enh.
( Q/unspecified
T1/T2  ( K/unspecified shape=2
composed ( L/input lineage=npure-enh.
in ( P/input
parallel  ( M/unspecified

Figure 2-5. Bain's External Outlines |Bain84].

Several other interesting approaches have recently been taken to the development of execut-
able special-purpose languages for black-box VLSI design interface specification. For example,
Bain [Bain84] has incorporated into his CHECK-ME design methodology verification system a
technique, based on Penfield's {Penf72] ‘‘wiring operators,”’ which completely characterizes a cir-
cuit using an ‘‘external outline’’ consisting of a list of terminal names, a limited set of
inputfoutput attributes, an electrical drive factor based on the shape of the internal transistors,
and a brcad characterization of the implementation strategy that he calls “‘lineage” (Figure 2-5).
While it requires extension to achieve semantic adequacy at greater levels of specification
refinement, Bain's method is encouraging, for it illustrates the simplicity that can be achieved in

abstract IC circuit interface specifications if an appropriate set of abstractions is identified.

Tsai and Achugbue [T5ai83] provide in their BURLAP system an idea of what a timing-level
extension of Bain's external outline might look like. They specify the abstract interface by a
“multi-cell module’ (MCM) description consisting of the components listed in Figure 2-6. Figure

2.7 shows the contents of a ti; ical BURLAP specification.

The hierarchy exploited by Bain and by Tsai and Achugbue has been formally analv:ied by
Chen and Mead [Chen83]. Using mathematical methods, thev define a semantic hierarchy of

?-:".: specification, and of the ensuing verification by simulation, similar to that depicted in Figure 2-4.
r. -
i | In this way, they formally partition the design process 2nd suggest that a uniform representation

[':;’, can be used to provide interface descriptions as simulator input at all levels. Individual design

|
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1/0 Interface - indicates the pin names and the pin types
at the “bla-k box'’ level.
Behavioral - description of the block function, either
in a procedure or Boolean equations
(truth table).
Structural - description of the interconnection of the
low-level primitive elements into which the
MCM can be expanded [pot used in black-box
specification).
Physical - description of the layout and size of the MCM.
Electrical - delay and timing information used by logic
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'.’"J'"'.r .,.‘_. N _,""t}_-}_;- RS

simulator and timing verifier.

Figure 2-6. Components of a BURLAP Interface Specification
[Tsai83].

Begin_Cell
Name:
Class:

Physical
Cell_Width:
Cell_Height:
Pin_Count:

Electrical
Cell_Current:
Power_Dissipation:
Delay:

Pins
Pin_Name:

Pin_Type:
Capacitance:

Equivalent_Port:

Layer:
Pin_Name:

Pin_Type:

Capacitance:

Equivalent_Port:

Layer:
[Pin_Name:
Power-Bus/Clock
VSS_Width:
VSS_Port:
End_Cell

RAM32x8
Storage_Element

40
40
23

35mA
150mW
60ns

A0

IN

0.1pf

0,38
Polystlicon
0

oUT
0.15pf
40,38
Polysilicon

38,0

Figure 2-7. A BURLAP Specification of a Static RAM
[Tsai83].

modules, in their work, are conceived as separately-compilable MAINSAIL descriptions of finite-

state machines, encapsulating design details at appropriate levels of semantic abstraction. To
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date, however, their work has centered on creating the formal bases necessary to prove correct-
ness, rather than on developing an abstract interface specification technique tractable at VLSI lev-

els of integration.

Another special-purpose specification language, previously cited, that makes use of
separately-compilable modules that represent finite-state machines is included in Barrow's VER- X

IFY system [Barr84]. VERIFY also uses the hierarchical approach recommended by Chen and

il hmia

Mead to predict the functional behavior of an interconnection of these modules from a description
of the behavior of each. But, instead of using the simulation customary in the verification pro-

cess, VERIFY uses a PROLOG-based interpreter to compare the predicted behavior with a set of

equations that specify the system’s behavior. To date, VERIFY has been tested on functional
specifications only, but its approach to verification is encouraging, in that it can be replicated
hierarchically to scale up to VLSI design levels without the need for specifications to be re-

executed at each level of refinement. A sample VERIFY specification is shown in Figure 2-8.

The ir.herent complexity of VLSI-level system specifications has hindered not only
verification but also the development of silicon compilers, the hardware design counterpart of the

transformational implementation of operational specifications mentioned by Zave [Zave84).

Subrahmanyam {Subr83} has addressed both problems simultaneously in his specification formal-
ism called BehaviorExpressions, an algebraic specification language designed also to serve as input
to a high-level silicon compiler. Figure 2-9 gives an example of a specification expressed in this

language.

Subrahmanyam's work addresses the need for semantic adequacy at cach of the functional,
geometric, and electrical levels mentioned earlier; it also includes paradigms for instructing the
silicon compiler to consider performance and cost data in performing its transformations. His

research plan is comprehensive and ambitious, and its results could prove significant indeed.

2.8.5.2 Strengthe/ Weakneeases.

Functional interface specification with abstract high-level languages has achieved the most

promising results of any technique discussed. Specification refinement, however, requires the
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K: eventual representation of dense semantics (particularly geometric and electrical information, con-
’ . - . . .

o currency, and parallelism). Although it is possible to express such semantics and their complex

P[

o data types in conventional programming languages, not many designers are now familiar with the
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% Definition of module type Register
Module: reg
Ports:
in (input, integer)
out (output, integer)
State Variables:
contents (integer)
Output Equations:
out := contents
0N State Equations:
o contents ;= in

[ "y
.

Figure 2-8. A Module Specification in VERIFY {Barrg4].

StackChip(s) =
INITIALIZE. StackChip (NEWSTACK)
INSERT x. StackChip (PUSH(s.x)
. ;ELETE TOP(s). StackChip (POP(s));
‘-t,' where Stack is an abstract data type with predefined syntax and semantics; INITIALIZE,

INSERT, and DELETE are global ports (two input and one output, respectively); s is a parameter
that represents an instance of the type Stack; and NEWSTACK, PUSH, and POP are operations
defined for the type Stack.

Figure 2-9. Specification Using BehaviorExpressions
[Subrs3].

disciplined programming style that such expression requires. Consequently, these languages are

now more frequently used for functional specification alone.

.
-

. Special-purpose languages possess more powerful primitives for expressing design semantics,

'. but their degrees of perceived cost-eflectiveness and malleability vary, particularly in the

AN

. representation of very-large-scale designs. And, as Evanczuk notes, a special-purpose language .
- has a smaller user community; he believes that the user momentum, availability, and portability -
2 of general-purpose programming languages makes techniques based on them more likely to R
‘ succeed [Evan85)|. '
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2.4 Parnas’s Techniques for Abstract Interface Specification.

Parnas's approach to attacking the complexity issues of the “software crisis’’ has been one
of ‘‘divide and conquer.” Few others have elucidated as well as he the issues involved in dividing

the software design task. A briel review of his treatment of these issues is in order.

2.4.1 State Machines.

In an early paper [Parn72a), Parnas set out the module as his software building block and
described how it was to be specified. His was a black-box specification, and his model of ithe
black-box contents a state machine. His choice of this formal but familiar model is typical of his
philosophy: understanding is the goal, and understanding is aided by simplification, without

compromising precision, wherever possible.

Interaction with Parnas’s module takes place entirely through what he later called access
Junctions (or access programs). These functions make up a major part of a2 module's specification
and can be invoked by other modules either: (1) (effect access function) to change the state of the
module by providing an input value; or (2) (value access function) to read out the state of the
module. By restricting access functions to one of these two types, the opportunity for prescrip-
tion of an intended implementation (which would cause the specification to become clear-box) is
reduced [Bart77).

2.4.2 Traces.

Parnas believed strongly [Parn72a] that specifications should be minimized, in the sense that
only the information required for the specification should be provided “and nothirg more.” He
felt that a chief source of specification failure was overprescription or redundancy, a view that

was then controversial but that has now been generally accepted [Meye85]. With Bartussek

[Bart77], Parnas became concerned that functions in the specification could potentially prescribe
an implementation. To be sure, the definitions of such functions were, by fiat, unavailable out- i
side the module being specified (leading to their being called “'hidden functions’ in the literature).

A But their existence bothered Bartussek and Parnas, especially because of the suggestion (see sec-

0

Pl
a, .
v

PR
L]

T AR

tion 2.1.3) that modules could be specified ‘‘by giving a program whose behavior would be accept-

able and asking that the program produced be ‘equivalent’.”’ Such ‘‘equivalent functions,” they

‘

felt, provided superfluous information [Parn75a).
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Syntaz:
PUSH: <integer> X <stack> — <stack>
POP: <stack> — <stack>
TOP: <stack> =+ <integer>
DEPTH: <stack> — <integer> |
Semantice: ]
A. Legality:
(1) &(T) => &(T.PUSH(a))
(2) &(T.TOP) = &(T.POP) J
B. Equivalence:
(3) TDEPTH=T
(4) T PUSH(a)POP =T
(5) £(T.TOP)=> T.TOP =T
C. Values:
(6) &(T) => V(T.PUSH(a).TOP) = a
(7) &(T) => V(T.PUSH(a)DEPTH) = 1 + V(T.DEPTH)
(8) V(DEPTH) = 0 )
Figure 2-10. Specification Using Traces of i
a Stack for Integer Values [Bart77). ,
Notation: ]
Dot (.) is the functional composition operator.
&(T) is TRUE if calling the functions in the sequence specified in the trace with the
arguments given in the trace when the module is in its initial state will not result in an abnormal '
exit.
V(T) is a value access function that returns information about the module state.
3
The result of Bartussek's and Parnas’s work was an ‘‘axiomatic’ specification approach i
called “‘traces.” It is called axiomatic [Lisk79) because a specification using traces makes state-
ments (axioms) only about the eflects of function calls; it contains no reference to any internal
data structure. Figure 2-10 gives an example of such a specification. Specifications using the
trace approach are termed complete (i.e., they completely determine externally visible module
::::: bebavior) if one can determine from the specification the value returned by every trace (sequence
j;::: of function calls) ending with a value access function and not causing an abnormal exit. The use
:;j-:: of traces for IC specification has been reported by Rem, van de Snepscheut, and Udding [Rem83).

2.4.8 The Software Cost Reduction (SCR) Project.

Parnas, sensitive to the frequently-made criticism (see section 1.3.1.2) that claims made for

new software engineering methods are usually poorly supported, undertook a major proje-t begin-

ning in the late 1970's to test his and other software engineering principles in a real-world
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environment. This project, cponsored by the Office of Naval Research, is structured aroand the

re-engineering of obsolete avionics software for the Navy A-7 aircraft. Thus it provides a point of

comparison for the efficacy of the new software engineering methods.

Fn_name Parm_type Parm_info Undesired_events
+EQ+ pl:real;] source!! % %constant dest'n% %
+NEQ+ p2:real;l 'source!!
+GT+ p3:boolean;O !4 destination+!
+GEQ+ p4:real;l user threshold!!
+LT+
+LEQ+
+ADD+ plireall source!! %%constant dest'n% %
+MUL+ p2:real;] Nsource!! %%range exceeded%
+SUB+ p3:real;,O +destination+!
()
Program Effects

+ADD+ p3 = pl + p2
+EQ+ p3 = (p1 =+ p2)
+GEQ+ p3 = (pl =+ p2)

OR (p1 - p2

is positive)
(..}

* [This equality is precisely defined in a text footnote]

Figure 2-11. An Access Program Table
for Specifying Operations on Real Entities [Clem84].

Notation:
+name+ indicates that name is an access function.
"name!! indicates that name is a term defined elsewhere in the specification.
'+ name+! indicates (here) that name is a value produced by an access function.
%name% indicates that name is an undesired event that may not be detected until run-
time. Double percent signs indicate an undesired event that will be detected at system

) . generation-time.
Voo Except for access functions, each name is defined in a dictionary contained elsewhere in the
* «.ﬁ specification.
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':j One product of the SCR Project has been an abstract interface specification method
[Parn77b] that evolves traces (in recognition of their frequently-unworkable complexity) by relax-
N y ing the restriction against equivalent functions. The SCR specification [Heni78, Brit81a] consists
". of two partially redundant interface descriptions:
~
:: — An assumption list, an English-language statement of assumptions implicit in the functional
specifications. It contains both basic assumptions underlying module construction and
-':_f— assumptions about “undesired events” (what is to occur in each foreseen incorrect or error 4
-'.;4{ situation). The assumption list makes it easier to identify invalid assumptions and is reviewed [
_\“ by both programmers and non-programmers.
, — Formal functional specifications of programming constructs embodying the assumptions.
:L These can be used directly in user programs. They, in turn, consist of access functions and
: events, i.e., signals from a module to other modules indicating the occurrence of some state
'~‘ change within the first module. Events are ‘‘reported via access programs that do not return
‘ until the specified conditions hold” [Clem84]. Access functions syntax and semantics are
‘-:-_:: presented in an access program table (Figure 2-11).
‘ The assumption list, access program table, and the dictionaries defining the terms and data types
N used in each are therefore the primary components of an SCR specification.
_:- The SCR specification method has also been employed in other projects (see, e.g., [Hest81]) 1
::',' and bas been the subject of several years of both theoretical and practical research. Its chief i
‘ benefits have been found to be the facilitation of a structuring set of system documentation and 1
::: the ready implementation of information hiding [Brit83]. :
5 ]
‘;:. 2.5 Summary. ;
s |
t:' Parnas’s techniques for abstract interface specification have considerable potential for exten-
b:,-:: sion to the VLSI design domain. Like the other techniques discussed in section 2.3.5, they possess X
g:‘ the desirable characteristics of being formal, semantic, executable, and black-box. But their chief ]
.', merit lies in their unusual capability for implementing a precise separation of concerns (informa- :
»:E:E tion hiding), not only among modules but also vertically along the hierarchy of specification
£ refinement depicted in Figure 2-4. This precision, coupled with Parnas's concern for spareness,
:-_. suggests that these techniques can serve as a starting point in the development of an abstract

interface specification method for VLS designs that meets the five criteria of section 2.2.
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. In the preceding chapter, I have examined related contemporary work in the specification of
abstract interfaces for VLSI designs and have pointed out the shortcomings of existing VLSI
design interface specification methods. This chapter reports on a new approach to such

specification that addresses some of these shortcomings, presenting the approach by describing a 1

method that uses it. Chapter 4 contains an evaluation of the method’s utility and eflectiveness,

and chapter 5 provides conclusions and suggestions for future research.

Chapter 3 is organized as follows. ] begin by describing an IC module abstract interface

o specification method, an extension of Parnas’s interface specification techniques to the domain of
VLSI design. The second section provides a detailed example of how the new method can be used
to specify the interface of an IC module. Next, I show how the behavior of compositions of such
specifications can be predicted using Communicating Sequential Processes [Hoar78]. A final sec-
tion focuses on siinplifications to the method that can be obtained by exploiting certain charac-

teristics of the VLSI design process.

8.1 Overview and Description of the Approach.

As has been seen, a critical purpose of a VLSI design interface specification is to serve as a
frame for subsequent design verification. In attempting to develop a specification method that
P fulfills this purpose, however, one encounters contradictory constraints. On the one hand. it is

- desirable to construct the specification early in the design process, to capture high-level design

Y
i 7T el > B

b {

concerns and to guide subsequent design. However, in practice even the most top-down design

turns up subtle contradictions among the constraints, requiring backtracking. What is needed,

PP

and what [ propose, is an interface specification approach that can etart by capturing high-level

A

concerns but then can be refined into a more particular specification as further information

becomes available over the course of the design. Such a specification fulfills the objectives (sec-

i |

tion 2.2) of adequacy and malleability; it can serve as a verification frame throughout the design

.

life-cycle, because it can ‘‘grow’’ with the design.
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Another objective addressed in this research hos beep the perceived cost-eflectiveness of
interface specification at VLSI complexity levels. As has been stated, clear-box specification
methods do not scale well to VLSI levels because their complexity must increase directly with the
pumber of components in the circuit. Several black-box techniques have been proposed, but few
include abstraction mechanisms that eflectively reduce complexity by crisp partitioning of con-
cerns. In the approach | propose, precise partitioning of design function is achievable, and com-
plexity can be further reduced by partitioning timing from function. Additionally, the proposed
partitioning mechanisms can be used for geometric as well as for functional/electrical information,

enhancing the approach's spareness and cost-effectiveness.

Finally, the proposed approach includes techniques that support the objective of change
management by precisely quantifying the concept of specification adherence. Such techniques
permit design maintainers to measure the degree to which a candidate replacement module meets
its specification and thus to predict how much change, if any, will be introduced beyond the
module boundary by its inclusion in the design. If such techniques exist, they have not before

been applied to change management in VLSI design.

The following paragraphs provide an overview of the proposed approach. In general, this
approach extends Parnas's abstract interface specification techniques for software, providing
specification refinement and complexity management in a hierarchy of virtual machines. A
specification language is not part of the proposal, and the notation and syntactic constructs pro-
vided are not purported to be superior. Instead, eflort has been focused on identifying and study-
ing the issues involved in specifying abstract interfaces for VLSI designs. The proposed approach,
therefore, is ai. attempt to address these issues generically, and the techniques proposed herein

represent a class of abstract interface specification methods.

8.1.1 Model.

The proposed abstract interface specification model is a simple “black box,” consisting of an
abstract model of a sfate (Figure 3-1). The state consists of a finite set of entities called state
variables and is accessed through a distinguished subset of those variables called pins; state vari-
ables that are not pins are called internal. Data enter and leave the module, via the pins, in eig-
nzl variables. This model corresponds, of course, to the state machine model used by Parnas
[Parn72a), Bartussek [Bart77], Barrow [Barr84}, and others [Lisk75] in the treatment of abstract

data types in software, where by ‘‘abstract data type’' is meant a set of objects together with a
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::;:".:.- Figurc 3-1. Basic Specification Model.
e (Pi=Pini, i=1...7)
{ &
- set of operations on those objects.
-‘. -
. 8.1.2 Data Typing.
::.".} Indeed, each pin and internal state variable in the model depicted in Figure 3-1 is a particu-
:.':::' lar instance of a single generic abstract data type, called here the generic etate type. The objects
), in the generic state type are signals; the operations on the signals vary, but typically include
; \"\ transmission, inversion, selection, and so on. The generic state type is generic because its particu-
L)
::i: larizations depend on the specification of values for semantic and syntactic al{ribufes, which are
‘:::7: parameters used in the definition of type operations (semantic attributes) and in the definition of
|
- legal type usage fron: outside the module (syntactic attributes). Pins and internal state differ, ‘
therefore, in that internal state variables possess no syntactic attributes; this is their only |
.j::.'_ difference. ‘
e Since the pins and internal module state are the only objects in this mode), it is in the |
o~ . .
.t definition of the generic state type that the level of the specification is determined. A |
'( specification whose generic state type has simpler syntax or semantics (such as, for example, ‘
:. “signal-type = Boolean") is a high-level specification, whereas a specification whose generic state
ﬁ type has more complex syntax or semantics (such as *‘signal-type = vector,” where the vector |
% |
”‘:_\,‘:
o
1.
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consists of a Boolean functional value plus validity and signal strength valneﬁ) is a lower-level

specification. The dilemma of contradictory constraints (alluded to earlier) here confronts those

who would construct specification methods. What kinds of syntax and semantics should be

included in the generic state type? With too much detail, the specification cannot be constructed

until after it is needed in the design process; with too little, the specification becomes rapidly

overtaken by emerging information gathered from lower-level design.

8.1.2.1 Data Type Evolution.

The answer, I believe, is not to limit an interface specification to any one level of data typ-

ing, but instead to evolve the specification generic state type to increasing levels of detail over the

course of the design. In this interpretation, a pin or internal state variable is assigned a high-level

type early in the specification process and then, as the design process continues, the generic state l:::
type is made more complex so that specification syntax and semantics are strengthened in a ;N

natural and pecessary way. I call this evolution of specifications by data type particularization

specification refinement (see section 2.2.2, especially Figure 2-4).

Let us illustrate specification refinement by continuation of the earlier example. Early in

the specification process a signal might be assigned the type ‘Boolean,” a type that is clearly a
high-level abstraction of the functional and electrical characteristics of its signal. Later, without
sacrificing the earlier characterization, the Boolean type for this signal might be extended into a
type that consists of four bits of information. One of these is the earlier Boolean type, but a
second bit might describe the first bit's validity (i.e., ‘11’ might be a valid *‘one,”” whereas 10"
might represent an indeterminate state) and the remaining two bits might describe the strength of

the signal described by the first two.

It is important (indeed essential) to this development that the particularization of these data
types represent an evolution (and not a revolution). Frequently, when high-level specifications are
found to be lacking in essential semantic information, they are discarded and a new specification
is developed. However, this poses the problem of reconciling the new specification with the old
one, a manual (hence error-prone) process at best. It is much better to evolve the higher-level
specification into the lower-level one and thus to avoid the reconciliation problem. As has been
stated earlier, such an evolutionary specification is integrated into the design life-cycle. This
benefit becomes even more apparent when it is noted that an evolutionary approach makes it pos-

sible to compose modules at a high level of specification with modules at a lower level and still
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bave the composition be meaningful. Such mixed-level specification can aid significantly in an

incremental design or redesign eflort.

The concept of evolution is made more precise in the following

Definition.! Let <A, OA> and <B, OB> be data types, in which the first component of the
ordered pair is a set of objects and the second is a set of operations on those objects. Then

<B, OB> is an evolutionary particularization (or evolutionary refinement) of <A, OA> iff there
are two mappings ¢: A—B and y: OA—OB such that for all 6 ¢ OA and forall 6 ¢ A

¥(0)(¢(a)) = ¢(o(a)).

This definition is illustrated in Figure 3-2.

A familiar example of an evolutionary refinement is the ccmmonly-understood refinement of
the data type “‘integer” into the data type ‘‘real.”” Real operations on integers do not give results

inconsistent with those of counterpart integer operations on integers.
8.1.2.2 Date Type Dimensionality.

Whereas software interfaces are usually characterized in the single dimension of function, IC
interfaces traditionally are recognized to contain information in three dimensions: the functional,
geometrical, and electrical. These axes do not seem to be orthogonal,; instead, an IC module’s
electrical information can be considered a refinement of its functional information, and so the

functional and electrical axes can be collapsed together. Therefore, pins and state variables could

Data Type
<B, OB>: ¢('a) = ¥o)(¢(a)) = ¢(o(a))

| I |

<A, OA>: a - o(a)

Figure 3-2. Evolutionary Data Type Refinement.

1 This ¢-finition extends the refinement concept developed by the IBM Federal Systems Division ;|BM82, Witt85!
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be characterized by data types with functional/electfical and geometric components.

However, this traditional characterization leads to unnecessary complexity; an alternate
characterization reduces complexity by allowing more precise partitioning of concerns. Recall
that dyramic verification is required only for module semantics and that static checking suffices
for module syntax. It happens that much of the geometric information in a design can be
classified as syntactic, and much of the functional/electrical information is semantic. (This
correspondence is not complete: designs possess semantic geometric information (e.g., current den-
sity) and syntactic functional/electrical information (e.g., whether a signal is used for input or
output)). But, recognizing that the purpose of a specification is to aid in verification, it is more
efficient to partition specification elements along syntactic and semantic axes than along
functional/electrical and geometric axes. Consequently, in this method generic state types exist
at discrete levels of semantic and syntactic complexity, and the particular specification state type,
hence the level of the specification, is fixed by a pair

<semantic_level, syntactic_level >.
Here are some well-known examples of semantic and syntactic levels:

a. Semantic. At lesser levels of specification refinement, generic state types have semantics on the
functional end of the functional/electrical spectrum. Functional/electrical values here are typ-
ically drawn from a finite set, of size two (Boolean signal levels), three (Boolean with the
indeterminate signal level often characterized as *‘X,” or more (e.g., twelve, obtained by multi-
plying three with a set of four signal strength values, such as floating strength, gate-driven
strength, steered strength, and unknown strength). Note that the three-value type is an cvolu-

tionary refinement of the two-value type, and the twelve an evolutiorary refinement of both.

Further on, one typically requires generic state types with performance semantics, containing
signal types consisting of vectors of values that specify signals in tcrms {rst of voltage levels
and then of capacitive and resistive drive, current levels, power density and consumption, and

80 on.
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b. Syntactic. Here, in evolutionary order, are three sample syntactic types that might be used in

pin specification:
i. An “‘unspecified’ syntactic type that imposes no constraint whatsoever on pin placement
along the module periphery.
ii. An “order-specified’’ syntactic type that constrains a pin to a given po:ition in an order-
ing of the pin set around the periphery of the module.
iii. A “location-specified”’ syntactic type that constrains a pin to a given geometric window

ob the boundary of the module.
8.1.8 Access Functlions and Specification Refinement.

Oncc again extending the techniques of Parnas {section 2.4), I characterize each module pin
by associating with it an access function. Such access functions can be of one of two types: value
or effect [Clem84]. Value access functions are used to obtain a value on a pin; effect access func-
tions are used to set internal state of the module using the value on a pin. I contend that VLSI
modules can be fully specified using such access functions, and that such a specification permits

efficient change management over the course of the VLS| design process.

The following definitions formalize those of section 2.4 and extend them into the IC design

domain:

Definitions. Let an IC module have a set S of internal states, and let R be a set of input or out-
put signal values. Then a value accees function is a function

v:S =+ R,
and an effect accees function is a function

w:S X R—-S.

From these definitions, the notion of (semantic) specification refinement can now be formal-
ized. (A similar formalism can be drawn for syntactic refinement.) Let V and W be the sets of
value and effect access functions associated with the pins of a given module. Let us first identify,
for each (value access) function v, in V, a corresponding signal range r, , such that
i=1,2, .., card(V)

vl:S—orl,

Similarly, for each (eflect access) function w, in W, let us identily a corresponding #ignal domain

d, , such that

w, S x dl —-S,i=12 .., card(W)
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These signal range and domain sets encompass the spectra of values that pin signals can at.ain.

Observe, therefore, that the locus of specification refinement is in the signal range and

domain sets r, and d, and in the state set S. By our previous discussion of state variable seman-
tics, for a given i each element of LA d,, or S may be seen to be a vector in SE, where SE is a set

of semantic values. Then (semantic) specification refinement is the redefinition (by enlargement)

of the sets r,, d , and/or S, for any of the access functions, and/or for the state set, which maic

up the specification.

An example may help. Suppose, for pin 1 in a given module, SEl = {0,1}. This description
corresponds to pure behavioral simulation using two-valued logic. If one wished to refine the

specification to three-valued logic, he would represent this refinement as a redefinition of SE, to

{0.1.X}.

As another example, 2a module’s internal state might consist of vectors in
{strong O, strong 1, weak 0, weak 1}.

A specification refinement might redefine this set to

{floating, unknown, steered 0, steered 1, gate-driven 0, gate-driven 1}. i

8.1.! Scheduling.

How should scheduling be handled by this specification method? This important question

it ot St

can b addressed in at least two ways. A first way is to add a separate temporal dimension to the
generic state type semantics, so that pins and internal state variables could have scheduling
semantics in addition to functional/electrical (and possibly geometric) semantics. This could lead,
for example, to a state type data structure consisting of a Boolcan signal level, a signal strength,

and a clock phase during which the signal is active. Bear in mind, however, that we have been

IR A W)

seeking to control specification complexity by precisely separating concerns. Adding a temporal
dimension to data type semantics detracts from this complexity control objective by mixiig two
potentially separable kinds of information, i.e. functional/electrical and scheduling semantics.
Indeed, from the viewpoint of local (module) functional/electrical concerns, clocked signals are
not semantically different from unclocked signals: scheduling information, if any, is external (glo-
bal). Including global infarmation in a module interface specification violates information hiding

by including knowledge of the module's context.
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A different, albeit less conventional, way to handle scheduling is to treat scheduled signals
semantically the same a8 unscheduled signals and to add scheduling information instead to the
syntactic portion of the specification. Because clock signals, for example, change the state of a
module just as other signals do, one can define access functions corresponding to clock inputs and
outputs just as for other pins. Scheduling itself then becomes a global concern and, as such, is
dealt with syntactically at the system integration level. This method of treating scheduling
achieves separation of concerns and is a substantial conceptual simplification. As will be shown in
section 3.3, the synchronization and scheduling of individual access functions within a module can
be partitioned from the description of access function semantics, which can in turn then be cast as

independent {asynchronous) sequential processes.

8.1.5 Specification Adherence and Tolerance.

What does it mean to say that a module edheres to such a specification? The asscciation of
module semantics with access functions enables us to relate the concept of adherence to access

function terminology.

I will formalize the concept of adherence by appealing to the fuzzy set theory pioneered by
L.A. Zadeh |e.g., Zade75, Zade84]. Fuzzy sets are sets for which set membership is not defined
solely by an in-or-out criterion. Instead, Zadeh defines a fuzzy set membership function
plF| : A = [0,1],
that indicates. for each element of a set A, its grade or degree of membership in a fuzzy set F.

Often, when A is a continuous interval, u[F] is 3 monotonc¢ function over A (Figure 3-3).

In software design, in which functional adherence is the only real concern (secticn 2.2.2),
adherence can be defined with traditional set theory. That is, for a given module specification,
there will be a set of modules that adhere to the specification, and a complementary set of
modules that do not. But in hardware design, adherence is not so sharply characterized, for the
reason noted in section 2.1: ““Circuits must not only work, they must perform.” There must be a
continuum of the utility of specification adherence that corresponds to the continuum of perfor-
mar.ce. Consequently, the set of modules that adhere to a specification is a fuzzy set. I will
further introduce for each specification adherence functions, analogous to membership functions,
which map modules onto the interval |0,1] according to the utility of the degree to which they

satisfy the specification.
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Figure 3-3. A Fuzzy Set F
and its Membership Function u{F] {Zade84).

Unlike fuzzy sets, however, which possess a single membership function, an IC interface
specification must bave multiple adherence functions, one for each of the multiple pomts at which
modules may or may not adhere to the specification. Happily, one adherence function suffices for
each access function (and hence for each pin). Unhappily, this adherence function is in general
much more complex than the membership function of Figure 3-3. In fact, the adherence function
can be up to four-dimensional, in that the adherence function maps each (possibly two-
dimensional) input and output of its corresponding access function into the range [0,1] (which

range is here always represented on the y-axis (ordinate) by convention).

For analysis, however, the chief concern is with the two-dimensional projection (of the
adherence function) that corresponds to each separate access function input value, so that module
output is graphed on the x-axis (abscissa) and the adherence function value on the y-axis. On the
y-axis of such a projection (e.g., Figure 3-4), the designer can choose intervals of adherence for the

specification, with each interval assigned an intuitive meaning or figure of merit. The intervals
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for the adherence function output values that are intercepted on the x-axis by these adherence
intervals are commonly referred to as the tolerances for these outputs. This tolerance concept, if
not often formalized, is also familiar. For example, the *“plus and minus x%'’ color banding of
resistors is well-known in electrical engineering. Even in software, where the concept is almost
always abstracted away, one must sometimes acknowledge tolerances, as when testing a floating-
point variable for zero, e.g.

if (abs(x) < tol_value) then ...

The ordinate of the adherence function graph is not dimensionless, as has previously been
suggested. Actually, the adherence function measures the marginal utility of reduced tolerance.
In so doing, it provides a means, heretofore unavailable, for the specifier/designer to communicate
to the implementer the cost of suboptimization. As such a vehicle, the adherence function might
be termed an adherence value function. Further research is needed to exploit this important con-

cept to optimize its value in the VLSI design process.

Adherence functions can be formalized as follows. Let
V:S =,
be a value access function in a specification. The specification will then also include an adherence
function
alv,]: $ x r, = [0,1]
such that. if v, (q0) = x0, alv, ](q0.x) equals 1 if x = xO (the specified vale) and some other
value in [0,1] if x £ x0. The variable x represents an output signal, and thus it may be multi-

valued (a vector).

Similarly, if
w:SXxd—S
is an effect access function in a specification, the specification also includes an adherence function
ﬂ[vI]: (Sxd)xS— [0,1]
such that, if w, (q0,x0) = ql1, Alw, |(q0,x0,q) equals 1 if ¢ = ql and some other value in [0,1] if

q £ q1. Here the variable x0 represents an input signal; it too can be a vector.
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i alf]

ot fa: Full

Marginal adherence above thls ne
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Figure 3-4. A Projection of an Adherence Function aff]
for a Single Input of an Access Function f.

Notes:
1. X-axis (abscissa) measures output, state output (if f is an effect access function), or signal

) 1 variable output (if f is a value access function). x0 is the output value predicted by the
\ '}; specification access function f.
‘:nf“f: 2. Variable tolerance range for full adherence.
'n::-':. 3. Variable tolerance range for marginal adherence.
OR 4. The values fa and ma are chosen by the designer; they are provided in this figure only to
N illustrate sample meanings of the intuitive concepts of ‘‘full’’ and “marginal’’ adherence.
o
SRR Adherence functions appear to be complicated to use. Part of their complexity may result

from the recognized detail explosion that has hampered efforts toward developing teciimiques for
abstract interface specification of VLSI designs at refinement levels below the functional. But
adherence functions exist even at the functional level. In functional specifications, adherence
functions are degenerate, however, and return zero rather th...n some other value in [0.1] for an
input other than the specified one (vide function 1, Table 3-3). Thus, for functional specifications

the access function itselfl suffices for the adherence function, masking the adherence function's
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existence. ldentifying the adherence functions is necessary only in more refined specifications;

however, if the existence of these functions is acknowledged at the functional level, the

specification refinement process can be visualized more consistently. (In section 3.4 some ways

':-: will be suggested to simplify adherence function usage without sacrificing precision.)

B e e
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s

The definitions of ‘‘abstract interface specification’ and ‘‘adherence’ can now be completed,
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as follows:
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Definition. An IC module abstract interface epecification is a 6-tuple
<P, S, V, W, VAF, WAF>, where

P is a set of pins,

-

AR
« 80y
.

S is a set of internal stales,

V is a set of value access functions,

W is a set of effect access functions,

VAF is a set of value adherence functions, and

WAF is a set of effect adherence functions.

In passing, we should recognize also the value of informally including in the specification a set of
English-language assumptions [Heni78, Brit81a]. These assumptions (see section 2.4.3) provide no
essential abstract interface information, but they do set the context for the formal content of the
specification and do so in a way that can be easily assimilated by reviewers. In addition, they
play an important role in communicating the content of the specification to non-technically-

oriented reviewers, who may, thus enlightened, be able to provide valuable feedback.

If a specification’s adherence functions are constructed appropriately, a consistent interpre
tation of the concept of adherence can be applied not only across all inputs of a single access
function. but indeed across all access functions in the specification. The result will be that, for
each k, the situations in which adherence functions return values in the interval [k,1] have a com-

mon meaning.

Definition. Let MS = <P,S,V,W,VAF WAF> be a module specification, and let M be an IC
module. A pin p of M is said to k-adhere to specification MS if
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(1) when p corresponds to an access function v ¢ V, for all g0 ¢ dom(v), if M is in state q0
and if x is the output when v is applied to M, then
afv}(q0,x) > k;

and

(2) when p corresponds to an access function w ¢ W, for all pairs (q0,x0) ¢ dom(w), if M is in
state qO, if x0 is the input to M, and if this causes M to make a transition to state q, then
A{w](q0,x0,q) > k.

Further, module M K-adheres to specification MS if K is the smallest k for which any pin p in M
k-adheres to MS.

Some important corollaries of these definitions can be noted.

(1) If k-adherence is to be established by simulation, exhaustive simulation is required. Modules
must therefore be kept small to avoid the penalties of the combinatorial explosion. For-
tunately, having small modules also contributes to intellectual control, and systems of hun-
dreds of small software modules have been found to be easier to specify and manage than have

systems of tens of larger modules [Brit81b, Parn83b, Parn84).

(2) However, k-adherence need not be established by simulation. If a module’s behavior and per-
formance can be predicted analytically (e.g., see [Barr84]), the definition can be tested using

these means.

(3) Adherence to a functional specification is 1-adherence. This concept is meaningful because 1-
adherence and its implicit adherence functions are well understood. To provide the same
degree of intuition for k-adherence, the specifier must construct adherence functions carefully
to reflect (a) the degree of tolerance in a specification and (b) the impact of incomplete adher-
ence. For example, if a “‘cushion’’ is intentionally built into a specification, the adherence
function should permit a wide degree of deviation before it falls from a value of 1. As another
example, pin behavior may fall off as the square of a voltage deviation but only linearly with
current deviation. The adherence function should reflect this. Research is needed into the

development of adherence functions that both meet these criteria and also yield values that

lend meaning to k-adherence across a wide spectrum of designs.
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8.2 Ezample.

An example will clarify the distinctions of the proposed interface specification technique.
Figure 3-5 provides, using a clear-box specification method, a specification of a register cell used
in the recent development of the WAfer-Scale Systolic Processor [Hed183, Hed184b, Cole85] at the
University of North Carolina. The logical operations specified for this cell are SHIFT, invoked by
a value of 1 on the #h signal, and HOLD, invoked by a value of 0.

Figure 3-6 shows how this same module is specified in the proposed method. The major sec-

tions of the specification are as follows:

(1) Assumptions. This informal list states in prose the fundamental assumptions underlying the
module’s definition. As in Parnas’s method, the assumption list can contain statements about

required subsets, expected changes, and behavior in the face of undesired events.

(2) Specification Level. Identification of the syntactic and semantic levels of the specification’s

generic state type.

(3) Pin and Internal State Variable Summaries. This list contains: (a) the names of the module
pins and internal state variables; (b) the identity of the access function corresponding to each
pin; and (c) a ‘‘call/definition” indicator that tells whether the access function is defined in

this specification or merely called.

(4) State Variable Attribute Initislizations. The generic state type requires particularization hy
the initialization of its attribute values. For example, the generic state type might define state
variables with capacitive load C; in this section, instances of this type would be particularized

by the assignment of a value to C.

(5) Access Funclion Definitions. An abstract statement of the actions to be performed on invoca-

tion of each access function. To enhance robustness of the specification under refinement, this

statement should be as data-type invariant as possible.
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o
- NAME WASP 1.0, July 15, 1984
o plashin — LSSD input driver
R Variations: plashina
. SYNOPSIS
e LSSD memory element: static memory cell that can convert
~o to a shift register.
o~ USAGE
o This is the basic shift register memory cell used in both
L the MinAlu and the Switch.
PROPERTIES
Size delta x = 18 lambda delta y = 90 lambda
Power Consumption (to be determined)
> PINS
".-:: p2sh  input active phi2 restored control
-, p2shbar input active phi2 restored control
plshbar input unclocked restored control
scin input active phi2 steered scan data input
P scout output active phi2 steered scan data output
- ) routbar output unclocked restored data output
s DESCRIPTION
Static memory cell that can function as a shift register.
4 Typically controlled by a single shift signal, sh,
- sh=0 stat:c memory
- su=1 shift register
: This usage assumes the following logic for the control
- signals:
N p2sh = phi2 AND sh
- p2shbar = phi2 AND (NOT sh)
o plshbar = phil OR (NOT sh)
2 Data are shifted from left to right.
b NOTES
p 'yj 1) Control signals can be generated by cell rwentl.
R RELATED DOCUMENTATION
' See manual pages for rwentl and LSSD memory.
e TESSELLATION
1, Cells abut horizontally to form registers of arbitrary length
oy that shift from left to right.
vy ORIG'™N
%{' Originally derived from Stanford Cell Library (old version)
A cell PlaShiftln (CIF ID 81). Minor modifications by Hedlund
¢ e (UNC) and Lospinuso (UNC).
e LOGIC DIAGRAM
e roviber { o shbar
3l
'{‘.'_- nylin
1-:_ vOin
- :.: sen s s A—> scout

- |

Figure 3-5. A Clear-Box Cell Specification [Hed!84a].
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(6) Data Type Definitions. Here, the generic state type's objects and operations are defined.
These definitions are level-specific, but they can be reused.

(7) Adherence Function Definitions. In this final section, an adherence function is formally

defined for each access function in the specification. These definitions are also level-specific.
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plashin
Module Specification

ASSUMPTIONS

Synopsis: LSSD memory element: static memory cell that can convert to a shift register.

Size: delta x == 18 lambda; delta y = 90 ]ambda

Description-01: Data are shifted from left to right.

Description-02: p2sh = p2 AND sh; p2shbar = p2 AND (NOT sh}); plshbar = p1 OR (NOT
sh)

Notes-01: Control signals can be generated by cell rwentl.

Related_Documentation: See manual pages for rwent! and LSSD memory.

Tessellation: Cells abut horizontally to form registers of arbitrary length that shift from left to
right.

Origin-01: Originally derived from Stanford Cell Library cell PlaShiftIn (CIF ID 81).

Origin-02: Minor modifications by Hedlund (UNC) and Lospinuso (UNC).

SPECIFICATION LEVEL?

Semantic: 4-strength
Syntactic: immaterial

PINS 4
Name AccFn Cc/D
scin G_Scanln C
scout P_ScanOut D
routbar P_DataOut D
p2sh S_Shift D
p2shbar S_Hold D
plshbar  S_Recirculate D

INTERNAL STATE VARIABLES

. Teft
right

2%
-’;1 A .

5T
[

.' L
3 LI 2
. P

STATE VARIABLE ATTRIBUTE INITIALIZATION

LN

None.

" S e

P RTI)
L S}
.

ACCESS FUNCTIONS

G_Scanln: none

Pl il M. 19
R
LSO
RS

oA

2See Table 3-2.
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Figure 3-6. Proposed Specification for plashin.

A

&

:» .

P N L S S PR TP L I
'.-q' ........

kf -‘ -"..‘v"t -ﬂbf-r:f:‘{I{L{A}" + "’L‘\-A‘A "l.l‘.(_‘.‘. 'q iﬂ;_‘ PR “A_A_- e SR S achant:




MBEA BrAS ane mas e o ok sua e adanbant aas add- s o ol - d-iudeoad- - adboaatog i muy e e et ol o R A e i A A i NI A LS UAANE I Sl e I e

P_DataOut:
#/““".."‘“‘...“‘...““"‘..“.“‘.‘.‘.“‘.‘.“““/
#/*  Access function P_DataOut:

¥/

! routbar = ROUTBAR — skip; /* Null access function ¢/

P_ScanOut:

#/‘."“.."“‘“‘.O.‘.'t““.'....‘.‘...‘.t.‘.‘.‘.“““/
#/*  Access function P_ScanOut:

# ¢/

| ! scout = SCOUT ~ skip;

S_Shift:
#/"“.“.‘.....“.‘.‘"““‘..‘."..“.‘....“.‘*"““./
#/*  Access function S_Shift:
# ¢/
| ? P2SH = p2sh —
# SS = signal(P2SH),
# ST = signal_threshold(P2SH);

[SS >=ST —

? SCIN = scin;

# steer(SCIN,P2SH.left);
# inv(left, ROUTBAR);

| SS < ST — skip;

S_Hold:

#/.“.“.““.*".“‘.““..““t“““‘.‘““‘...“t..‘./
#/*  Access function S_Hold:
# ¢/
| ? P2SHBAR = p2shbar —
# SH = signal(P2SHBAR);
# ST = signal_threshold(P2SHBAR);
[SH >= ST —
# steer (SCOUT P2SHBAR left);
| SH < ST — skip;

|

S_Recirculate:
#/‘..“.‘.““"‘.‘.“““‘.‘l““‘..t““"tt‘#t““““/
#/*  Access function S_Recirculate:
# ¢/
| ?* PISHBAR = plshbar —
# SR = signal(P1SHBAR);
# ST = signal_threshold(P1SHBAR);

[ SR >=ST —
# steer (ROUTBAR,P1SHBAR, right);
# inv (right, SCOUT);

| SR < ST — skip;

J

Figure 3-6. Proposed Specification ior plashin. (Cont "d)
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DATA TYPE DEFINITIONS
/* Data Type Definition:

* Four-strength semantic refinement level.
¢ Immaterial syntactic refinement level.

]

s At this level the state variable data structure is

. typedef struct stvar {

* int sigvartyp;

. int sigfval;

* int sigstrength;

* } STVAR ;

+ with

» sigvartyp = variable type (4 = four-strength/immaterial);
. sigfval = functional value in {0,1,9 (= undefined)};
b sigstrength = signal strength in

* {0 (= unknown),

* 1 (= floating),

» 2 (= steered),

» 3 (= restored)}

* with signal strength codes semantically ordered

* (i.e., i > j — strength i > strength j).

*
S—

#define INFINITY 65535

inv(input,output)
STVAR =input, *output;
{

output—sigvartyp = input—ssigvartyp;
output—sigfval =
(input—sigfval == 9) ? 9 : (1 - input—sigfval);
if (input—sigvartyp < 4) output—sigstrength = 0;
else output—sigstrength = (input—sigstrength >= 2} ? 3 : 0);
return;

}

int
signal(input)
STVAR sinput;

{

return(INFINITY);

int

signal_threshold(input)
STVAR #input;

return(0);

Figure 3-6. Proposed Specification for plashin. (Cont " d)
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steer(input,control,output) X
STVAR sinput, *control, *output; .
{ ]
output—sigvartyp == input—ssigvartyp; ':
output—sigfval == (control—ssigfval === 1) ? input—sigfval q
: output—sigfval; 3
if (input—sigvartyp < 4) output—esigstrength = 0; 4
else output—sigstrength = (input—esigstrength >=2)? 2 : 0); :.
return; g
) -
"J
ADHERENCE FUNCTION DEFINITIONS g
Access Fn f Adherence Function aff] g
P_DataOut a(q,x) = 1 if x—sigfval = P_DataOut(q)—sigfval _}
and x—sigstrength > 2; I:
= 0 otherwise. 1
P_ScanOut a(q,x) = ] if x—sigfval = P_ScanOut(q)—sigfval X
and x—sigstrength > 2; -
= 0 otherwise. N
S_Shift alqs,q’) = 1if ¢ = S_ShifYq,s); A
== 0 otherwise. ;_1
- S_Hold a(q,b,q’) = 1ifq = S_Hold(q,h); g
- == 0 otherwise. N
o S_Recirculate a(q,r,q’) = 1if @' = S_Recirculate(q,r); K
= 0 otherwise. ol
h
I:'
X

Figure 3-6. Proposed Specification for plashin. (Cont *d)
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Several d'minguisﬁing features can be noted in Figure 3-6. In the first place, module seman-
tics are defined on a per-pin basis, rather than globally. Such a partitioning of module semantics
makes the specification easier to construct and verify intellectually; it also reduces the combina-
torial complexity of the formal verification task in two ways. First, each pin's semantics a:e only
a subset of module semantics, making the verification task simpler at each pin. Also, for IC
modules, physical fabrication constraints (i.e., pin count restrictions) will continue to provide
motivation to encapsulate module subfunctions, keeping low the number of separate pin

verifications [Moor84].

Figure 3-6 illustrates this partitioning. The module functions SHIFT and HOLD bhave been
redefined into the access functions P_ScanOut (which Puts a value on the scout pin), P_DataOut,
and the three qualified clock access functions S_Shift, S_Hold, and S_Recirculate (which set the
state variables left and right according to an input value received on the p2sh, p2shbar, and
plshbar pins respectively). The sixth access function G_Scanln is not defined in the specification,
but appears instead as a function call (? left = Scanln) in the definition of the function S_Shift.
(Access functions have been expressed in the Communicating Sequential Processes (CSP) notation

[Hoar78], which will be explained in section 3.3. The question mark in CSP is an input operator.)

Note that as a specification is refined, it may be necessary to add additional pins: for exam-
ple, power and ground pins will generally not appear in less-refined specifications, nor will pins at
both ends of busses. Because the specification is defined on a per-pin basis, however, the change
required by the addition of new pins is reduced. Power and ground pins generally do not require
access functions, as their information of concern is purely syntactic until one arrives at the most
refined specification levels; even at these levels, their access functions would be easy to construct.
As for the other pins, most specifications contain one reference (definition or call) to an access
function for each logical pin in the module. While some pins (e.g., control busses such as
plshbar) may be implemented with more than one physical termination, for less refined
specifications the access function is assumed to define the behavior at all physical pin termina-
tions. If it does not, as perhaps for long poly control busses, new access functions can be defined
for each termination whose behavior differs. Usually, however, the scope of these access functions

in module state is small, and hence a small amount of change, if any, is required in adjacent

4

acc 35 functions.
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At least one disadvantage accrues from this partitioning of module semantics into per-pin
components: global module constraints, such as power consumption, current draw, tessellation,
and aspect ratio, are difficult to specify. Possible approaches include (1) apportioning these con-
straints among the pins and (2) constructing distinguished state variables (‘“‘constraint variables"),
global to all access functions, that express these constraints. Constraint variables will probably
differ in type from the genetic state type, complicating the specification, but they will exist in lim-
ited numbers. Further research is needed to determine the best way to specify global constraints
within the proposed approach.

A second thing to note about Figure 3-6 is that it is executable. Using a CSP interpreter,
one can obtain an approxim-tion of module performance at any level of specification definition;
such an approximation can be used as a frame for design verification. As an example, Figure 3-7
illustrates the role of a ‘‘Specification Interpreter’’ based on the CSP/84 implementation of CSP
[Jaza80a, Jaza80b, Midd84, Midd85] which was used experimentally in this research to approxi-

mate the behavior of CSP access functions (see Appendix B).

Third, the specification in Figure 3-6 is malleable; that is, by undergoing specification
refinement it can continue to serve as a frame for verification throughout the design life-cycle.
Ideally, such refinement affects only the data type and adherence function definitions: there
should be no need to change access function definitions, a fact that strengthens the robustness of
the specification under refinement. Furthermore, if specification refinement is evolutionary, com-
positions of modules specified at different levels of refinement can be interpreted consistently. For
example, the definitions of the operators ‘inv' and ‘steer’ have been enriched to carry out run-time
typing of their inputs, and thus they can process variables of less semantic complexity. The
added overhead of such run-time typing is justified for specification interpretation, which need not
be extremely efficient; and the added complexity that run-time typing adds to data type definition
can be justified because data type definitions, once completed, are reusable and can be catalo-

gued.

Fourth, the specification in Figure 3-6 is both adequate and precise. Adequacy is
guaranteed through specification refinement, which in turn can be accomplished by evolutionary

refinement of the generic state type. Precision exists at all specification levels through the formal

definition of access functions, the generic state type, and adherence functions.
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Figure 3-7. Role of Specification Interpreter
in the VLSI Design Process.
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Finally, the speciﬂéation in Figure 3-6 is long — four times as long as the clear-box
specification in Figure 3-5. This length is the cost incurred for the benefits of clean partitioning
and facilitated verification, executability, malleability, adequacy, and precision. Section 3.4 will
contain a discussion of the prospects for reducing this cost. First, however, I shall examine in
more detail some issues involved in composing interface specifications that are constructed in the

proposed manner.
8.8 Compoasition of Specifications.
8.8.1 Synchronization and Scheduling.

As has been noted, a chief advantage of a black-box specification method is its clean separa-
tion of architectural and implementationa! concerns. However, the complexity of a large black
box cannot be reduced by resorting to descriptions of its internal hierarchy, for to do so would
make unintended assumptions about its implementation. Instead, I seek to reduce black-box com-
plexity in two ways: first, by providing an abstract model of its operation; and second, by parti-
tioning its semantics and specifying them on a per-pin basis rather than globally. Because the
entirety of the abstract state model might be large, it is usually undesirable that any pin effect
access function should be required to update any significant portion of the state. Instead, these
access function effects should be localized to reduce function complexity and to improve intellec-

tual control, aiding verification.

This requirement necessitates the introduction of some mechanism for sequencing the appli-
cation of access functions. A simple example illustrates the problem. Suppose a module has three
state variables, v v, and A and two effect access functions, f, and f2 , where the eflect of any

1’ 1

call to f, moves the value in vitov,,. Obviously the call sequence fx . 12 produces a potentially

different result in v, than does the sequence f, . I,. At the same time, to maintain simplicity one
does not wish to involve f, with testing either the value in v, or the status of invocation of f,,.

Another expedient is required.

Put another way, a mechanism is needed to schedule and synchronize the invocation of
dependent sequences of independent actions in a way that produces consistent and predictable
results. In a landmark paper [Hoar78], Hoare proposed a potation, called Communicating Sequen-
tial Processes (CSP), which integrated previous work on this problem. In Hoare's words, the

essential proposals of CSP are the following:

)
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(1) Dijkstra’s guarded commands are adopted ... as sequential contro! structures, and as the sole
means of introducing and controlling nondeterminism.

(2) A parallel command ... specifies concurrent execution of its constituent sequential commands
(processes). ... They may not communicate with each other by updating global variables.

(3) Simple forms of input and output command ... are used for communication between concurrent
processes.

(4) Such communication occurs when one process names another as destination for output aad the
second process names the first as source for input. ... There is no automatic buffering: in general,
an input or output command is delayed until the other process is ready with the corresponding Q
output or input. Such delay is invisible to the delayed proces.. .
(5) Input commands may appear in guards. A guarded command with an input guard is selected
for execution only if and when the source named in the input command is ready to execute the
corresponding output command. If several input guards of a set of alternatives have ready
destinations, only one is selected and the others have no effect, but the choice between them is
arbitrary. ... [Hoar78]

Following another suggestion of Parnas [NPS79], I chose CSP as a notation for expressing

scheduling and synchronization for the proposed specification method. The alternative, whicb is

used in Simula, ClassC, and some commercial IC simulators, is to use ap event list driven by a

global clock. Such usage focuses the specification around a global issue, the passage of simulated )

time, hindering the localization of concerns that facilitates change management. CSP, on the

other hand, explicitly separates synchronization and scheduling from the description of process

function. The potential for reducing the complexity of change through such a separation of con-

cerns is just beginning to be noticed in the VLSI research community (see, e.g., [Lieb85)]).

To use CSP in IC module specification, one collects module access functions into a single

CSP process, which corresponds to the module and is called the “‘module process.” The (CSP)

module process incorporates elements of the module specification in the format shown in Table 2

3-1. As can be seen, the module process contains all the module specification except for the

level-specific information: data type definitions (which could be included, but which are generally

omitted for brevity) and adherence function definitions.

The core of the module process is the access function definition list. As Table 3-1 indicates,

this list consists of a sequence of guarded definitions of the form

<pin_guard> — <statement_list> ’

As has been stated, in a specification there is a one-to-one relationship between module pins and

access functions; however, not every pin has an access function definition in the module process.

Instead, definitions are included only for (1) input pins of effect access functions, and (2) output

pins of value access functions. The remaining pins are referenced from within these defiritions as

access function calls. A ‘‘Call/Definition (C/D)" indicator has been included in the pin summary

(see Figure 3-6) to reflect whether an access function call or definition is included in the

specification.
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<module_process> ::m=
procese module_name ::
< pin_declaration_list >
< state_var_declaration_list>
< access_function_defn_list>
end process

< pin_declaration_list> ::==
< pin_declaration> | <pin_declaration> <pin_declaration_list>

< pin_declaration> ::=
{guarded} [input | output] port <sig_type> pin_id ;

<sig_type> ::= (Varies with specification refinement level. See data type definitions for the
particular level desired.)

<state_var_declaration_list> ::= <state_var_declaration>
| <state_var_declaration> < state_var_declaration_list>

<state_var_declaration> ::= (Varies with specification refinement level. See data type
definitions for the particular level desired.)

< access_function_defn_list> 1=
<state_var_initialization_statement_list>
*[<guarded_defn_list >]

<VB> :=|
<guarded_defn_list> :=
<guarded_defn> | <guarded_defn> <VB> <guarded_defn_list>
(Note that a vertical bar, <VB>, must separate guarded definitions.)
<guarded_defn> ::= <pin_guard> — <statement_list>

<pin_guard> ::= ? state_var_id = pin_id
| ! pin_id = state_var_id

Table 3-1. Partial Syntax of a CSP/84 Module Process
|Jaza80a, Jaza80b, Midd85).

(Expansions for <state_var_initialization_statement_list> and <statement_list>> can be
obtained from the references.)

Segregating the semantics of synchronization and scheduling into the pin guard separates
them from the access function’s bebavior. Thus, the module process body consists of an infinite
polling loop (represented by the notation ¢[<guarded_defn_list>]), a loop that tests each of the

pin guards non-deterministically to determine whether a call has been made of that access




function from outside the module. If a call has been made, the <statement_list> associated with

the access function is executed, including any embedded access function calls; otherwise, polling
continues. In Figure 3-6, the outer syntactic brackets of this loop have been omitted, but the
vertical bar that separates access function definitions has been retained to show how the access

functions making up the <guarded_defn_list> are intended to be concatenated into this list.

Returning to the question posed at the beginning of this section, then, bow are access func-
tions to be scheduled in a consistent and predictable way using CSP? No additional mechanism is
needed. One simply introduces in composition other CSP module processes that schedule access
function executions through appropriate call sequences. In Figure 3-6 such an external call is
illustrated: the definition of access function S_Shift cortains the statement

? SCIN = scin;
which is a call of the (implicit) value access function G_Scanln (for *‘Get Scanln”). As part of
the module composition, the #scin input pin has been matched (through a separate set of port-to-
port connection declarations called a channel file) with an output pin, say P, on an adjacent
module. When G_Scanln is called in the execution of function S_Shift, a call is immediately
issued through the channel file correspondence to the (value) access function for pin P, which in
turn executes and returns a value to the scin pin. This value is then input to the state variable

SCIN to complete the ‘‘? SCIN = scin;” function call, and access function S_Shift proceeds.

The module process is therefore an information hiding module in Parnas’s s: ase of the term.
It accomplishes the objective of separating architectural and implementational concerns, because
access functions are only an abstract representation of module behavior. Moreover, the inodule
process is attractive as a specification because synchronization and scheduling concerns are clearly
separated from access function definitions. Finally, because this separation has been made, and
because module behavior is specified on a per-pin basis, individual specifications are small and

therefore easily comprehended and verified, even with exhaustive simulation.

Before proceeding to discuss the composition of specifications further, I will enumerate some
issues 1 encountered in using CSP as an interface specification notation in genera] and as an access

function scheduling and synchronization mechanism in particular.
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8.8.1.1 Power of CSP as a Notation for Interface Specification.

At no time during this research were VLSI interface constructs encountered that could not
be represented in the CSP notation. That CSP should be equal to the task of representing these

constructs is not surprising, because modern programming languages (such as APL, C, and Pascal)
have been successfully used for this purpose, and CSP possesses all the expressive power of these
languages in its sequential process description facility. Additionally, of course, CSP has a

separate mechanism for scheduling and synchronization of these processes.

Two examples of CSP's power for specification follow. In the first, suppose one wishes to
specify a sequence of actions when a signal SIG1 is high (1), another sequence when it is low (0),
and a pull sequence when it is undefined. CSP represents this specification as follows (in CSP /84

notation):

il APPSR R ) AARAI R s B

vy v - - -

| SIG1 == 1 — < statement_list_1>
| SIG1 == 0 — <statement_list_2> R
| “((S1G1==1)||(SIG1==0)) — skip; R

/* Null access function */

If, on the other hand, if one wished to specify that an undefined value of SIG1 is not acceptable,
he could have eliminated the alternative leading to ‘‘skip.’”” This would cause the process to ter-
minate on testing of an undefined value for SIG1. As a better expedient, the desigrer could ‘‘pol-

ice’’ this condition by replacing ''skip’ with a trap to an error routine.

A second example illustrates the specification of timing constraints in CSP. The WASP 1.0
design [Hed184a] contained a sigpal called *‘mgl” that was specified to rise and fall only on the
leading edge of the ‘'phi2gl” clock. This constraint can be represented in CSP simply by con-
structing the access function definitions in such a way that the specified behavior is obtained only

if the access functions are called in the proper sequence:

s ..
| ? MGL = mgl — skip; /* Null access function */
| ? PHI2GL = phi2gl —

<statements using new value of MGL >
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Finally, CSP, or an equivalent notation possessing the power of CSP, seems a good
compromise as a notation for abstract interface specification of VLSI designs. It is general enough
to be reasonably portable and does not require any special extensions for use in IC design
specification. However, it is more explicit than general-purpose programming languages (APL, C,
Pascal, etc.) in expressing concurrency and in controlling complexity by eflecting a clean parti-
tioning of synchronization concerns from the expression of other aspects of module function.
Furthermore, its ability to model subsets of the design as discrete processes makes it more suit-

able than general-purpose languages for evolutionary refinement as the design progresses.

3.8.1.2 Data/ Control Mapping.

In the specification of IC designs using CSP, a certain convention for the mapping of data
and control pins was useful. Dafa pins were best mapped using guarded CSP outputs and
unguarded inputs, and control pins were best mapped using the reverse. This convention led to

the definition of data pins by value access functions and of control by effect access functions.

One difliculty that can arise with such a8 convention is if a data output from one moduie is
used as a control input in another module, because CSP forbids the connection of two guarded
ports. A dummy module must be constructed and inserted between the two connections; this
module consists only of an infinite loop consisting of an unguarded input and an unguarded out-
put that passes along the result of the input. The introduction of such a dummy module is
unclean, and it is not obvious that it will always produce an accurate specification. Further work

is necessary here.

A second potential difficulty is deadlock, which can result from the connection of unguarded
inputs and outputs (as would be the case if a control output was used as a data input). Middle-
ton [Midd85) is modifying CSP/84, specifically for hardware modeling, to avoid this problem by
preventing unguarded outputs from blocking: if an outpu: is not accepted by the time a new out-
put is generated, the first output is discarded and an error message is sent. In the specifications
constructed in this research, I was always able to avoid deadlock, but as before such avoidance
sometime involved the introduction of artifice (such as the forced “consumption’’ of an output
value that would not be used). Such artifice also is present in other specification languages, and it

does permit the accurate specification of the desired effect. Neverthelcss, it is undcsirable in that
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it alters the correspondence between specification and implementation.

8.8.1.8 Access Function Eztent.

A benefit of the proposed access function-based specification method is its potential for com-
plexity control through crisp partitioning of module function into functional clements associated
with each pin. In some modules, however, not much partitioning can be obtained. This difficulty
occurs in particular in modules having many data pins and few control pins, because access func-
tions for data pins tend to be trivial (value) access functions, leaving most of the module function
remaining to be partitioned among the few control (eflect) access functions. Although different
abstractions for module state could probably be constructed to overcome this, such construction is

not natural and would probably diminish the attractiveness of the method to designers.

When a better partitioning can be obtained, another problem arises. This problem is, where
should the line: be drawn between the effects of the various access functions on the module state?
For example, suppose there are two access functions S_mode and S_phil (a clock), in which the
“mode" signal realigns the module environment for a different mode of operation. Should, on the
invocation of S_mode, the entire module state be reset for the new mode in the current clock
phase, or should the appropriate switches merely be set to activate the new mode when the next

clock access fur:ction is invoked?

The answer to this question may differ depending on whether a specification or a simulator
is being constructed. Recall that the goal of a specification is to provide a frame for verification,
and thus it is required only to describe one model of correct operation and a catalog of specified
actions to be taken when incorrect operation (as Parnas says, an ‘‘undesired event’') is encoun-
tered. The requirements for a simulator are more stringent: a simulator should predict what will
occur even in the presence of incorrect operation. It is important not to confuse these two sets of
requirements, especially in that simulators can be used as specifications, as has been noted earlier.
This is a pitfall of using a simulator as a specification: of the behavior included in the simulator,
it is possible that the designer does not really know which behavior to implement {the ‘‘correct’

behavior) and which to ignore.
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1 8.8.1.4 CSP Base Language Support.

N . The concept of the CSP notation, as explained by Hoare [Hoar78], does not include a

::.': language for expressing the contents of the sequential process embedded in a guarded CSP com-
"‘ mand. In particular, the implementation of CSP 1 used, CSP/84 |Jaza80a, Ja2a80b, Midd84], did
not support closed subroutines in its base language. Even though escape to the programming

i language C was provided, there was no easy way that C subroutines could be linked into the CSP
_:':Q code. This omission was intentional, in that through a robust subroutine facility cont.rol transfers
~:: could be implemented that subvert the partitioning of scheduling that is the main attraction of
‘::: CSP. Yet, for economy of coding, and particularly when greater levels of specification refinement
. with their more complex data types are being modeled, the abstraction that can be gained

‘: through closed subroutines is essential to understandability and cost-effectiveness of the

_\: specification. For the IC specification application, it is necessary that a CSP implementation

,-f-:: include at least a restricted closed subroutine capability in its base language.

8.8.2 Performance.

Suppose two or more modules, each k-adhering to their specifications, are composeu

together. What, if anything, can be said about the k-adherence of the composition if adherence

functions remain the same for pins that appear in both components and composition (Figure 3-8)?

= P14+ P24 $P3

M1 M2
P4
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M1 kl-ndheres to its specification; M2 kz-adberes to its specification.

Figure 3-8. k-adherence of a Composition.
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Before this question can be answered, the concept of “composition of specifications’’ must be
S defined: under what conditions is the composition of specifications itself a (consistent)

specification, and what are the characteristics of such a composition? Let

M, = <P1,Sl,Vl,Wl,V.-\Fl,WAF‘> and

LS

~::~‘_ M, = <P2,Sz,V2,W2,VAF2.WAF >
b~ be specifications. Then
puw M= <P,S,V,W,VAF WAF>
}3 is a compoesition of Ml and M2 if the following conditions hold:
&3 ; :

2% (1) P is a proper subset of P, U P, ;

P

- (2)§=5,US,;and

(3) For each pin p ¢ P, U P, with associated access function v(w) ¢ V, U V, (W, UW, ) and

'.'_::f adherence function a (8) ¢ VAF, U VAF, (WAF, U WAF, ), peP = v eV (weW)and

::. a ¢ VAF (8 ¢ WAF). In other words, external pins in the composition retain their prior

? access and adherence functions.

- The composition is called consistent if the difference (P, UP, ) - P is a set of pairs of pins

{ <p.p,> P, €eP,p,eP,}

- such that

C_‘:. (a) Exactly one pin of each pair has an associated access function defined (rather t.an called)

‘ inV,UV,UW,UW,;and
- (b) The access functions corresponding to the pins in the pair are neither both value nor both

,. effect access functions.

:::: In a real sense, then, the composition behaves as the sum of its component parts, each retaining |
. :';j its identity and behavior with no real concern for its environment. Such information hiding, as l
‘-,; has been noted, was a goal of this approach for change management. The consistency condition is A

‘ really a syntactic check, akin to the verification that inputs and outputs are connected in pairs, 3
L and is not central to the development. Note that mixed-level composition is also permitted by ‘
- this definition; as section 3.1.2.1 indicates, such composition requires only the presence of p
¥ : appropriate data type conversion facilities. ]
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Assume, then, as in Figure 3-8, that two modules M1 and M2 are composed, with adher-
ences k, and k,, respectively. Observe that it is possible for the composition to exhibit k-
adberence for k greater than either kl or kg; for suppose pin P1 and P3 both 1-adhere to their
specifications, pin P2 k -adheres to the specification of M1, and pin P4 k_-adheres to the
specification of M2. In this case it would be possible for the composition to 1-adhere to its
specification even though k, and k, were substantially less than 1. Shortfalls in the adherences of
P2 and P4 can be completely compensated for by large safety margins built into their correspond-
ing pins in the adjacent module. A composition, then can exhibit 1-adherence even though nei-

ther component does.

What, on the other hand, is the worst case? Suppose, in Figure 3-8, that all pins of M1 k -
adhere and all pins of M2 k_-adhere, 0 < k, k, <1 Isit then possible that the composition
might exhibit k-adherence for k < min(k,,k,)? A moment's reflection will show that such a case
is also possible. Suppose all pins but P2 1-adhere to their respective specifications, and P2 0.5
adheres to the specifications of both M1 and M2. Then, by definition, both M1 and M2 0.5
adhere to their specifications, but if the dimirished output from M1 at P2 is insufficient to drive
the higher-than-expected load in M2 at P2, M2's external output pins might not function at all,

and the composition would exhibit 0-adherence.

Given simply that two modules kl-a.dhere and kz-adbere, then, the level of adherence of
their composition cannot be predicted a priorsi. It would be helpful to conduct further research in
this area to determine the kinds of restrictions on design parameters that would permit such a
prediction to be made. Udding [Uddi84] has recently published some work of this kind, which
provides tests for the robustness of module delay-insensitivity through composition; additional

work is ongoing [Moln85).

As an example of the type of results that are needed, observe that a lower bound on compo-
sition adherence can be obtained if adherence shortfalls in one module can be “‘translated” into

adherence shortfalls in the other. Suppose, in Figure 3-8, that pin Pi k”-a.dheres to module

specification Mj. Suppose further that signals low through both P2 and P4 from M1 into M2.
Finally, suppose the capability is available to “translate” the adherence shortfalls (1 - k, ) and

(1- k") by decreasing k,, and k , (to, say, k', and k') enough to raise k,, and k, to 1. Thatis

pin pairs with the adherences (k,,, k,,) and (1, X',,) would behave identically; so would pin pairs

with (k. k) and (1, k' ;). In this restricted case, then, the composition adherence is bounded
e e e e e e e T e N e e e : DREIRURICIR GO,
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\_:::: 8.4 Simplifications to the Approach Permitied by VLSI Design Characteristics.
"
S As has been shown, the abstract interface specification method proposed in the preceding
: A sections has many desirable attributes; however, it is also costly to build and use. Much of the
¥
b, cost comes from the method’s generality. In this section I will examine ways of exploiting charac-
Lo
X teristics of VLSI design to reduce this cost.

In geieral, cost reduction can be pursued through restriction of the method to certain stan-
ff‘:‘» dard formats that are of interest to VLSI designers. First, for example, a standard language can
j,"-j be used for expressing access functions, data type definitions, and access function definitions. A
standard language improves executability characteristics by capitalizing on portable, optimized
! system software developed for interpreting this language. Also, it improves intellectual control by
‘-'.:-jf allowing designers to express function with familiar programming objects. In this research I chose
~'_::: to use the language C as such a standard, chiefly because my CSP interpreter, CSP/84, was C-

. compatible.

:::: Semantic Refinement:
{‘ 1. Functional: Three values (0,1,X); no signal strength information.
._. 2. Four-strength: Three functional values plus four signal strength levels (unknown, floating,
'“ steered, restored).
::'f 3. Drive-load: One voltage level functional value plus an average switching current value. Rise
3 and fall times are symmetric.
‘ 4. E11: Voltage levels plus switching current as reflected in nominal pin voltages, resistances,
_ capacitances. Rise and fall times may be asymmetric.
'::- Syntactic Refinement:
‘ . 1. Immaterial: No geometric information.
_-:: 2. Pingrid: (X,Y) virtual grid coordinztes provided for each pin.
" -

B 1"
1
.

L Ry
o .

Table 3-2. Specification Levels Used in this Rescarch.

T .

e A A B Gl B




Sy P Erath DAt Aot mecen i b ot St St R o B gk Mian Bame e a0 g g

Next, one can restrict the specification refinement hierarchy of Figure 2-4 to certain levels at

which generic state types have been predefined. In this way, each specification need not contain
full definitions of these data types; instead, it need only refer to previously catalogued definitions.
The specification refinement level is entirely a designer option, reflecting his/her evaluation of the
cost/eflectiveness tradeoffs inherent in constructing specifications at such a level. The introduc-
tion of a new level involves only the definition of a new generic state type and a corresponding set
of adherence functions. Therefore, ] make no claim that the types ] have chosen are the types
that should be used in specification construction. Table 3-2 lists the specification levels that were
used in this research; some of their definitions have been included in the specifications in Appen-
dix A.

Together with a standard generic state type set, one can construct a matching set of stan-
dard adherence functions that operate on data types at each refinement level. Table 3-3 contains

definitions of the standard adherence functions that were chosen for this research.

Why were the functions in Table 3-3 chosen? The first function, labeled ‘“Functional” or
“Spike,"” is the implicit function inherent in all functional specifications. The others are generali-
zations of this function that incorporate various kinds of specification tolerances. The Square
Band function is a direct generalization of the first function, but it is insensitive to changes in k
when k-adherence is being measured. Therefore, the Linear Ramp function, which provides the
same tolerances as the Square Band but which is linearly sensitive to changes in k, was intro-
duced. The Normal function has better mathematical properties for composition (e.g., continuous
derivatives) than the other functions and is also sensitive to changes in k; it was considered to

investigate the utility of these better properties.

Finally, when such variables as signal strength are being considered, one-sided functions are
of more use than two-sided; signal drive greater than some minimum, or signal load less than
some maximum, is generally of no concern. Consequently, one-sided alternatives were also con-
sidered for all adherence functions studied. Of course, an adherence function can be a3 combina-
tion of two-sided and one-sided functions; in general, it may be any combination of functions on

its data type components. Fcr example, Figure 3-6 contains for the "P_"" access functions a com-

bination of Spike and One-Sided Square Band adherence functions: the Spike function measures
adherence on the data type component e#igfval, while the Ope-Sided Square Band function meas-

ures adherence on the data type component #igatrength.
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1. Functional (spike)
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s T 17 TTTT%
s x@
- 2. Two-sided square band
:i 1 —
3 - d d
s T LI L L L
[ ] x0
(One-slded square band functions also could be used)
3. One-sided Linear Ramp (LR)
LRI(x) LRD(x)
. — PR——
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T T T T
x@

[ ]

(Two—~eided LR functions aleo
4. One-sided Normal

NI(x)

(N)

could be used)

ND(x)
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T 11 71 [
x@

(Two—-sided N functions alsoc coul

11 l!lll 11l
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) x0
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Table 3-3. Adherence Functions Used in this Research.
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-\_:: In summary, compared to Figure 3-6, the incorporation of these simplifications reduces the
\ size of an interface specification constructed with the proposed method. Nevertheless, the cost of
L a good specification is high, and it increases with the level of specification refinement. This cost
~ can be justified only by comparing it to the cost of a bad specification. Because there have been
::: no controlled studies that quantify this comparison (nor are there likely to be, because of the cost
.:_-: and diffliculty of such studies), each designer must decide to what extent his/ber individual project

merits the use of interface specifications. The object of this research is to show that, while good

abstract interface specifications for VLSI-scale design are complex, the application of software

:r technology can reduce their lifecycle cost. In the following chapter I will describe experiments

- which suggest how well the proposed approach attains this objective.
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CHAPTER 4

TECHNIQUE EFFECTIVENESS

In chapter 3, I reported on the development of a new approach to VLSI design abstract
interface specification, illustrating the approach with a method that employed it. This chapter
contains an evaluation of the approach using the criteria laid down in section 2.2 for abstract
interface specification techniquss. Four separate categories of questions are addressed in this

evaluation:

— How well does the method scale up to VLSI complexity levels, and is it perceptibly cost-
effective at these levels?

— How easily can specifications be refined? Is the method malleable and adequate throughout?

— Is the method spare? In particular, can geometric information be included with the same
mecbanisms used for functional and electrical information?

— How well does the specification manage change? Does the specification approach inhibit the

propagation of change to other parts of the design?

Experiments or studies were conducted to gain insight in each of these areas. In two subsections,

this chapter describes first the experimental design and then the experimental results.

4.1 Ezperimental Design.

4.1.1 Scalability Teet.

Unlike clear-box specifications, which control complexity with hierarchy, black-box
specifications use abstraction as their primary complexity management technique. That suitable
alatractions exist for VLSI-scale modules is not in question: examples of such abstractions are
many and varied. [t remains only to show that abstractions of large modules can be eflectively

used in the proposed class of methods.

The only obstacle to such a demonstration is the traditiona: one: the unavailability for

study of detailed public-domaiu VLSI designs. Such designs are sufficiently costly to develop that

they are beyond the threshold of pure research laboratories, and the d~signs developed for the

marketplace remain proprietary. Rather than construct an artificial example {even if the
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resources for such construction were available), I chose to specify as demonstrations of the tech-
pique SSI, MSI, and LSI designs available locally. The extrapolation of complexity factors present
in these designs should provide insight into the scale and perceived cost-eflectiveness of

specifications at VLSI levels.

The proposed method was used to construct abstract interface specifications of several
smaller designs as well as a specification of an LSI chip, the WAfer-Scale Systolic Processor
(WASP) developed in 1984 by Kye Hedlund and his associates [Hed183, Hedl8-ib, Cole85]. Based
on the relative costs of constructing these specifications, estimates were made of the scalability

and perceived cost-effectiveness of the method. These estimates are presented in section 4.2.1.

A word about the selection of designs for this testing is in order. These designs, whose
specifications are shown in Appendix A, are all real designs, originally implemented in full-custom
nMOS combinationa! and sequential logic. To keep the experiments manageable, the size of the
experimental test set was kept small; therefore, certain types of designs were not included. For
example, | deferred consideration of semi-custom modules for later research; however, because
semi-custom design is more constrained than full custom design, it seems intuitive that a system
that manages complexity satisfactorily in the full-custom design environment should translate well
to the semi-custom environment. Also, because the specification method offers clock signals no
special semantic interpretation, I made no effort to include modules that were specifically
intended for asynchronous operation. Finally, because the method encompasses analog
specification in the course of refinement, I included no modules specifically intended for analog

implementation.

The design modules sclected for this specification testing are summarized in Table 4-1.

4-1.2 Malleability Test.

S e - g -

Whether or not a specification is malleable depends on (1) its ease of being refined with
detailed design parameters as these become available; and (2) its service to the designer at many
points in the life-cycle. The latter question may be rephrased, “Does the specification continue to

R
o
provide a frame for verification at numerous design life-cycle points?"’ 1
]
9
&
W
d
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Module Name Size Description
plashin 7 aMOS shift register cell (sequential
logic). This module was evaluated in
the context of a shift register of
four such cells.
foblk 8 nMOS combinational logic. This module
was evaluated in the context of the ‘malv’
(next entry).
malu 35 nMOS microprocessor ALU; composition of
5 smaller cells. This module was
evaluated in the context of the
microprocessor datapath.
wasp 3860 Array of simple processors embedded in

s switch matrix. Processors can perform
the 16 Boolean functions on two bits.

Table 4-1. Experimental Module Test Set.

Source of designs: WASP [HedI84a, HedI84b].
Sizes are in numbers of transistors in an actual implementation.

To gain a feeling for how easy it would be to refine specifications written using the proposed
approach, I refined a design through three diflerent semantic levels and two different syntactic lev-
els. 1 used the number of specification lines changed in each refinement as a rough measure of

refinement eflort. These results are presented in section 4.2.2,

Next, 1 executed the specifications thus constructed at each semantic refinement level and
evaluated informally the ease of comparing these outputs to simulation output from actual
designs at each level. I further examined the ease of verifying syntactic specification components
with actual design syntax at each syntactic refinement level. The results of these evaluations are

also presented in section 4.2.2,
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I
E-_: 4.1.3 Sparences Study. ’
= ]
: - To evaluate the method's spareness, each specification element (enumerated in section 3.2) |
» was judged informally according to the following criteria:
3
) -'.:: (1) Is the information included in this section essential to design? What part, if any, of the )
i design could not be accomplished if information in this section were omitted? ‘
:-_: (2) Is the information included in this section redundant, that is, presented anywhere else in ]
: the specification? Could the information in this section be presented more compactly? ]
The results of this analysis are presented in section 4.2.3.
t:-. 4.1.4 Change Management Tests.
r ) The proposed method’s effectiveness in change management was evaluated in three ways:
;:f.- (1) (Vertical Change Propagation). First, I changed the specification of a module that had
o already been decomposed and had had its components specified. I measured the amount
t of change that propagated to the component specifications, using once agair the metric
of number of specification lines changed.
L:" (2) (Horizontal Change Propagation]. Second, I investigated the conditions under which less
, :E: than full adherence to a module specification aflected that module’s environment. The
, ‘ horizontal change propagation test consisted of the following steps:
'::}f o | developed a representative sample set of design modules, each in the context of a
: larger design.
:, o | simulated the performance of the modules in context.
o | made ‘‘typical” changes to the modules and evaluated the k-adherence of the
:;3. changed modules to the specification.
::'.:' o | re-simulated the performance of the changed modules in their context.
.‘ e | determined under what conditions, if any, change propagated to the studied modules’
! environments.
(3) (Internal Robuetness). Third, I measured the amount of modification that was needed in
‘.:E: a large specification to reflect several actual changes the design had undergone.
-..
-2
-
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4.2 Ezperimental Results.

4.2.1 Scalability Teat.

The goa! of this test was to deduce, using data from the experimental specifications, an idea
of how large the specification for VLSI-scale designs would be.

Table 4-2 summarizes the experimental data, and Figure 4-1 shows the relationships
between design sizes (in number of transistors) and specification sizes (in lines). The points
labeled *‘F'' represent the absolute size of specifications constructed at the functional and four-
strength refinement levels; The points labeled ‘D" represent the absolute size of specifications
constructed at the drive-load refinement level; and the points labeled ‘‘I'" represent the size of the

former specifications with their level-dependent sections removed.

These data cannot, of course, be used to guarantee the practical scalability of the propc:ed
approach. They are presented merely to show that, for the specifications considered, specification

size grew slowly with design size.
£.2.2 Malleability Test.
As was explained in section 4.1.2, the evaluation of the proposed approach’s malleability

consisted of two phases. In the first phase, I found that specification refinement permitted the fol-

lowing percentages of specification lines to remain unchanged:

Refinement
{Table 3-2) Lines Unchanged! % Unchanged
functional to 77/82 93.9
four-strength
four-strength to 69/161 429
drive-load
functional to 69/161 429
drive-load
immaterial to 82/112 73.2
pingrid

1 Notation: Entries are of the form n/d, where m is the number of specification lines unchanged in the indicated
refnement, and ¢ is the larger of (total number of lines in the unrefined specification, total number of lines in the refined
specification).
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Lt Spec’n Spec'n Trans- Specification Lines
e Number Levels istors  Level- Level-
- (App.A) (sem/synt) (typical)] Indept Dependt Total
s B-6,7  fnal/immat 7 36 41 e
- : 36 4str/immat 7 36 46 82
A-1 drvl/immat 7 36 125 161
- A-2 4str/pingr 7 36 76 112
- A-3 drvl/immat 8 28 151 179
. A-4  drvl/immat 35 87 191 278
A A-5 foal/immat 3860 113 134 247
;- Table 4-2. Sizes of Experimental Specifications.
L

- Note: “Specification lines’’ figures count expansions of closed-form adherence functions (because
parameters may differ from pin to pin), iterative definitions (such as ‘‘F[B], B=0..3") as one line,
and closed forms of open subroutines. Comments, blank lines, headers, the ‘‘Assumptions”
section, and code used for consistency checking only were not counted.

Specification
size (lines)

)

- 1 @ E Legend
g — v D
i 3 a F
:-:'. 1 8 4 _é e 1
: _3
5 10 3 =
S . - .
8 25 . e =
- 10 5 =
¥ 1 —=
.j- 1 @ _é Desiogn size
§ (transistors)
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Figure 4-1. Scalability of Proposed Specification Method.
(See text for legend.)
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This analysis confirmed that the partitioning inherent in the specification method allowed a
substantial fraction of old specifications to be used in refined specifications. Also, since the
cbanged portion consisted largely of data type and adherence function definitions, which can be
reusable, the potential exists for making refinements with little effort indeed.

Further, although the module studied in the previous analysis was a small one, it seems real-
istic to believe that this good performance will hold in the specification of larger modules as well,
in that the percentage of specification lines that was refinement-level-dependent remained roughly

constant regardless of module size:

Spec'n  Transistors % of Specification Level-Dependent
(Fig.) (typical) Functional  4-Strength  Drive/Load

B-7 7 53.2

3-6 7 56.0

A-1 7 77.6
A2 7 67.9

A-3 8 84.4
A-4 35 68.7
A-5 3860 54.3

Furthermore, the complexity of the transformations carried out in specification refinement appears
to be independent of module size. Although larger modules require the definition of more

different data type operations, this increased volume is reflected in specifications at a!l refinement

levels. In summary, the specifications studied in this research exhibited good reusability and thus

were easy to refine.

Using the specification to verify the design at the functional and four-strength refinement
levels was straightforward. The output from both simulation and specification interpretation was
in the same digital format, and, because spike adhererce functions could be used meaningfully at
these levels, comparison of the two sets of outputs for equality satisfied the verification task.
Verification decisions were rendered as either 1-acherence (if all module pins adhered fully), or
(otherwise) 0-adherence. At the pingrid syntactic level, spike adherence functions are no longer
useful in general, but this simply meant that verification decisions could be rendered in terms of

k-adherence for all k in [0,1].

At the drive-load semantic level, an inconvenience arose: the output of the simulator used
was in a format (graphic waveforms) different from the output of the specification interpreter
(numeric text). While this problem was not a conceptual difficulty preventing eflective
verification of the design, it does illustrate the desirability of integrating such a specification inter-

preter into the design too! suite.
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4.2.8 Spareneas Study.

The proposed method yields a specification with seven sections or elements. The first three
sections are informational, providing an immediate abstract view of the module to the dcsigner.
The next two sections are more detailed, and the final two more detailed still. Through its parti-
tioned structure, the proposed specification approach presents the module in a layered way and
identifies which details should be included and which omitted.

The following observations may be made about the essentiality and redundancy of the infor-

mation contained in each of the seven elements of the proposed specification:

(1) Assumptions. As was tle corresponding section in Britton, Parker, and Parnas's software
specification [Brit81a], this section is *‘partially redundant.” In addition to its casting impor-
tant portions of the formal sections to follow in a more easily-understood way, it also expli-
citly states premises that underlie the construction of the remainder of the specification. It
would be difficult to justify the essentiality of this section, but without it the specification
would communicate much less eflectively. The assumptions section, then, is included for

efliciency rather than for completeness.

(2) Specification Level. This small section identifies the specification data types being used. Like

the assumptions section, it too is informational.

(3) Pin and Internal State Variable Summaries. The information in this section essential to the
specification process also could be inferred, in this case from the access function section.
Nevertheless, this index facilitates the construction of a specification interpreter and also pro-

vides an abstract view of the module.

(4) State Variable Attribute Initializations. This section, which directly follows the summaries of
pin and internal state variables, declares particular values for their levckspecific attributes.
Consequently, this section is clearly essential, in that it directly provides syntactic reference
values for static verification. Further, semantic values in this section are refcrenced by access
functions for dynamic verification. The method provides identical facilities for including both
semantic information (usually functional/electrical) and syctactic information (which tends to

be geometric).
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;: (5) Accese Function Definitions. The heart of the specification, this section specifies the behavior
\: of each IC module pin. The partitioning of module function into per-pin components, even
X when these components are identical or similar, need not produce excessive descriptive redun-
: dancy, because common elements can be factored out and described by a reusable data type
:3 definition. The treatment of timing through a uniform implicit discipline does make the ;
-:3 description of function slightly less compact, but large compensating dividends are gained by L
] the separation of concerns this partitioning produces.
‘ (6) Data Type Definitions. The data structures, and operations on them, comprising the generic
state type are defined in this essential section. Separation of level-specific definition into this

section from the access function definition section is less than optimally compact; as before, k
i: however, the ease of refinement that such a separation imparts, with the corresponding gains :
. in malleability, compensate for this type of presentation. r
i (7) Adherence Function Definitions. Without this section, the specification could not convey a :
“.j: precise understanding of the relative merits of various degrees of adherence. Further research K
,' is required to determine whether this concept can be conveyed more concisely than with such -
- functions. R
,::;: 4.2.4 Change Management Tests. :
-- R
::: 4.2.4.1 Vertical Change Propagation. d

¢

; - In this test, | measured the amount of change propagated through a single decomposition ?
'-::f level by several real-world changes applied to a parent specification. The changes applied are .:
W enumerated in Table 4-3. .

The results of this test are reported in Table 4-4. Usually, the propagated complexity was

‘I

0
e . .
SIIAY B Ra e

of the order of the original change, a pleasant result considering that several types of changes and
differing specification refinement levels were considered. For the changes numbered 2 and 4, how-

cver, there was an order of magnitude increase in the propagated change.
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No. Description

1 Add a pin to clear the accumulator in each of the
nine WASP processing elements.

2 Generate an internal control sigral to recirculate
the internal state of the processing elements.

3 Correct an error in the logic of the processing
element function block.

4 Change the edge membership of module pads to effect a
more balanced distribution around the chip perimeter.

5 Change from a broadcast to a pipelined clocking
discipline.

6 Change scan-in/scan-out lines from driven to
precharged.

Table 4-3. Types of Changes Studied
for Vertical Propagation Effects.

Semantic/ Spec'n Lines Spec'n Lines

Syntactic Changed/ Changed/Total

Refinement Total Lines Lines in Percent

Change Level in Parent First-Level Propa-

No. _ (Table 3-2) Children _gated

1 funct/immat 5/247 5/483 100
1 drvload/immat 7/308 7/278 100
2 funct/immat 2/247 22/503 1100
3 funct/immat 4/247 4/503 100
3 drvload/immat 16/278 16/775 100
4 funct/pingrid 98/443 887/1504 905
5 funct/immat 19/247 57/475 300
6 funct/immat 0/247 0/503 0

Table 4-4. Vertical Change Propagation.

Notation: Columns 3 and 4 present a ratio, n/d. In column 3, n is the number of lines changed in
the parent specification and d is the larger of (total number of lines in unchanged parent
specification, total number of lines in changed parent specification). In column 4, nis the total
number of lines changed in all the specifications for the first-level child modules of the parent, and
d is the larger of (total number of lines in all unchapged first-level child specifications, total
number of lines in all changed first-level child specifications).

— In the first of these cases, change 2, a new internal module had to be specified: it was the fixed

C L s e A,

cost of constructing an entirely new submodule specification (even though only 20 lines long)
that caused the large percentage change. This result suggests that, while in-place

specifications may be easy to change, there is a disproportionately high start-up cost for new
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specifications. Tools that assist in creating routine portions of the specification could alleviate

this cost.

— The second case, change 4, exhibited poor robustness chiefly because the proposed specification
approach itself was insufficiently applied. The syntactic data type chosen, pingrid, called for
the specification of absolute coordinate points on a two-dimensional grid. This was not a good
use of abstraction. Consequently, each change to the parent module specification rippled
through several first-level child modules. A better abstraction, for example one in which edge
membership is described sym'olically, could be expected to resist change propagation more
fu'ly. A corollary observation might be that less abstract data types appear more susceptible

to vertical change propagation.

4.2.4.2 Horizontal Change Propagation.

The types of test changes to be introduced into the test module depended on two factors.
First, there was the level of refinement of the module specification. The signal data types at the
functional specification level are not rich enough to admit value perturbations and still have their
modules k-adhere to specifications for any k>0. Slight specification refinement (to include, say, a
small finite set of signal strengths), produced similazrly unsatisfactory test-bed specifications. |
chose, therefore, to specify test modules at a more refined level. Generally, the drive-load
functional/electrical level (Table 3-2) was used: it was simple, but not so much so that essential

specification elements were not illustrated.

The choice of adherence function also influenced the types of changes that would be found

interesting. Spike adherence functions (Table 3-3), which reduce k-adherence to 1-adherence for

all k>0, and Square Band adherence functions, which are also insensitive to change from a

,,-'! k-adherence standpoint, were discarded for analysis. The Linear Ramp and Normal functi s,

7;.“;' therefore, were chosen for the specifications used in this study. For consistency of analysis, | used

F':: the one-sided adherence functions illustrated in Figure 4-2: the decreasing functions are recipro-

'L'::: cals of the increasing Linear Ramp and Normal functions, so that a zero drive and an infinite load

,;! both bave O-adherence. Once the specification, including adhcrence functions afx), was esta-

j:; ' blished, changes were introduced by perturbing output values to those values of x for which >
- - :
- 0<ax) < 1. ;i
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Figure 4-2. Linear Ramp (LR) and Normal (N)
Increasing and Decreasing (I/D) One-Sided Adherence Functions
Used in this Research.

Figure 4-3 illustrates the canonical test environment. It consists of an incoming signal path,
a pin on a module boundary, a propagation path, and an observation point. Note that the obser-
vation point can be outside the test module, in which case the pin is an output pin and the propa-
gation path in the module's environment, or it can be inside the test module, in which case the

pin is an input pin and the propagation path inside the test module.

The testing showed that quantifying the amount of propagated change depends on " nowing
both the k-adberence of the test moduie and the characteristics of the propagation path. Alterna-
tively, the test suggested that different adherence functions should be used depending on the

' intended utilization of module pin signals, so that “k-adhcrence’’ acquires a uniform mearing for

L each value of k.
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observation point

pin “e O

propagation path

module boundary

Figure 4-3. Canonical Test Environment.

For small discrepancies in adherence, a more complex propagation path tended to
ameliorate the effects of less-than-full adherence to a module specification. The simplest type of

path measured was a bus (Figure 4-4). Electrically, the pin and observation point are the same

node in this arrangement, so that the waveforms observed at the two points are identical. Less

tban full adherence to the specification at the pin, therefore, translates directly into a similar

deficiency in the environment. The implication is that it is important for long (e.g., control) sig-
pal drivers 1o adbere fully to their specifications; consequently, adherence functions for bus drivers

should be steeply sloped.

Even a simple change to (he propagation path reduces the effect of less-than-full adherence.
Figure 4-5 illustrates change propagation through a steered si;nal path in nMOS. Here the pin
and nbserved waveforms, originally separated by a threshold voltage drop. tend to come together

as k diminishes.

This eflect is even more pronounced wher signal restoration is included in the propagation
path. Figure 4-6 illustrates that severe degradation of the pin signal is possible before an effect is
noticed at the observation point. However, as Figure 4-6 indicates, a rapid crossover occurs at
low values of k: suddenly the observed signal becomes considerably wors~ than the pin signal.
This phenomenon indicates that, for mcre complex propagation paths {especially these including
restoration of signals), careful design in the propagation path may achieve tuoderate tolerance to
less-than-full specification adherence. The adherence function for such pins, then, should be
gently sloped around the specified value, with a steep slope being attained around the point of

behavioral failure. Table 4-5 summarizes these results.
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It is not evident from these data that continuous adherence function curves are needed.

Piecewise linear functions should suffice.

Type of Pin Adberence Function Characteristics
bus driver should fall off sharply when

specified value not achieved

pass-gate logic near-unit slope probably ok
for aMOS implementations

restored logic tolerant to small discrepancies;
should fall off sharply around
failure point for large
discrepancies
Table 4-5. Desirable Adherence Functions
for Controlling Horizontal Change Propagation.

4.2.4.8 Internal Robustness.

Having illustrated how well the proposed approach resists change propagation from module
to module, I now will examine how much change is introduced into a single module specification
by typical real-world changes. Each of the changes enumerated in Table 4-3 was an actual
change made in a real design. Observe from the statistics for parent modules in Table 4-4 that
each of the changes, with one exception, resulted in the modification of less than 109 of the lines
in the specification. Because this specification approach emphasizes partitioning and minimal
redundancy, it is not surprising that the studied changes did not result in major specificaticn

rewriting.

The one change (change 4) requiring over 10% of the specification lines to be changed has
been identified before as an instance of a less-than-optimal usage of the proposed approach. That

is, in this example insufficient use was made of abstraction. A more abstract data type for the

syntactic specification information, such as an extension of the abstractions used in modern sym-

N
.

1
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bolic layout systems (e.g., VIVID [Rose84]), would have improved specification robustness in this

»
't
H

example. With this specification approach, as with all representation systems, it is true that

DR

¢ ey

robustness under change declines as the representation data types become more concrete. Yet

even with the rather concrete data type used in this example, the partitioning inherent in the
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proposed approach prevented the need for wholesale specification changes: the worst-case change
of 22% is certainly tolerable.
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CHAPTER 6
CONCLUSION

In this final chapter, I will summarize the principal conclusions from this study and make

suggestions for future research.
5.1 Principal Conclusgions.
5.1.1 Software Technology Transfer to VLSI Design has been Demonstrated.

Despite its intuitive appeal (cf. chapter 1), the transfer of software technology to VLSI
design has as yet been a largely unfulfilled promise. Although similar approaches to common
problems can be observed in software engineering and VLSI design, few of these similarities can
be traced to an explicit attempt to transfer software technology [Gros83c]. As a result, some
skepticism has developed of late, and researchers are now seeking demonstrations that confirm the

promise of software technology transfer.

The research carried out in this dissertation is such a demonstration. Abstract interface
specification techniques developed exclusively in the software domain were extended and applied
successfully to VLSI design. To recapitulate, these techniques included: (1) using the definitions
of abstract data types in interface specifications; (2) obtaining the precise partitioning and com-
plexity control of module interface specifications using a finite state machine and access function
model; and (3) expressing and interpreting these interface specifications with Hoare's Communi-
cating Sequential Processes (CSP) notation. That the transfer eflort was successful is evidenced

by the demonstrated realization in VLSI interface specifications (chapter 4) of the benefits of these

software techniques.

5.1.2 The Proposed Abstract Interface Specification Approach Has VLSI-Level Power.

To repeat from chapter 1, VLSI design is integrated circuit design in which brute force no
longer works. This research has proposed an approach for abstract interface specification that

demonstrates specification power appropriate to VLSI complexity levels.
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Reasonable extrapolations of parameters from specifications constructed in this study sug-
gest strongly that the proposed approach can be used to specify functionally in tens of pages
abstract interfaces of designs whose implementation requires tens of thousands of devices. Furth-
ermore, both functional and performance specification are supported at these levels of integratior,
and high-level specifications can be evolved (with non-trivial reusability of their contents) to pro-
vide a verification frame at later design stages. A third implication of the data in this study is
that the total size of performance specifications, if needed, is manageable, roughly an order of
magnitude larger than the size of the corresponding functional specification. A method of quanti-
fying adherence to the specification is provided for use at these levels of detail. In summary, the
research provides a means of realizing and exploiting abstraction and precise partitioning for

VLSl-scale complexity control.
5.1.8 VLSI Design Specification is Difficult and Not Universally Inspiring.

This research also confirmed that precise specification, a difficult task in the software
domain, is no easier in VLSI. Numerous classes of component assumptions (section 3.2) must be
included if the interface specification is to be complete. Identification and inclusion of these
assumptions is a resource-consuming process; abstract interface specifications take longer than
expected to construct and are much larger than clear-box specifications now commonly used in
VLSI design. As has been noted, of course, such clear-box specifications use a monolithic (unpar-
titioned) approach that strains or exceeds designers’ intellectual capacities, even at MSI/LSI lev-

els.

In this regard, I should note that I found in the process of conducting this research that the
value of specifications per se in VLSI design is not yet commonly embraced® (a difficulty that also
exists in software). Accordingly, much of the research commonly suggested in the {vllowing sec-
tion is directed toward demonstrating this value. Without a greater base of agreeme.t or the

merits of VLSI specifications, research into this topic will be difficult to support.

3 For example, a8 anopymous referee wrote, in response to an earlier partial draft on this research, ““As a designer
hate formal description languages and the idea of executable specifications. 1think both interfere with my ability to
design effectively.”
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o 5.2 Suggestions for Future Research.
4
: . A substantial amount of follow-on work remains to be done in abstract interface
¥ :: specification of VLSI designs, let alone in the application of software technology to VLSI design
:::: change management, for which several broad research projects were enumerated in chapter 1.
‘::: Here are some of the tasks needed to carry on the work in abstract interface specification.
.::f- 5.8.1 Evaluate Approach’s Usefulness with Other Base Languages.
N
The abstract interface specification method described in this dissertation used CSP as a
medium of expression, preferring CSP to standard programming languages because of its capabili-
ties for segregating scheduling concerns from functional. Other modern languages for concurrent
‘ programming have been introduced: would the use of these languages, rather than CSP, make
& _ representation of abstract interface specifications significantly easier? In particular, the VHSIC ;
Hardware Description Language (VHDL) [Dewe84, Shah85] uses Ada® control structures both for
multitasking and for modular decomposition. At the same time, the VHDL is a more hardware- ‘
'.jf oriented language than CSP, suggesting that it might be possible to use the proposed technique k
Al .
~ for specification and yet specify more compactly with richer primitives.
'_'~fj 5.2.2 Investigate Approach’s Usefulness for Top-Down Design.
- Circuit designers, as section 2.3 notes, are most comfortable with clear-box specifications, a
/ specification technique that leads to bottom-up design. It wculd be revealing to discover how
_‘_:' easily designs could be constructed top-down in practice using the proposed approach: for exam- !
P N
:’-J‘ ple, by assigning a desirable capacitance and clock rate to a module pin before the module’s inter- h
“ nals had been laid out and simulated to learn these parameters.
::: 5.2.8 Specify Global Constraints Better.
o At present, there is no eflicient way of specifying constraints global to the design module
':.__‘ (e.g., power consumption, current draw, tessellation, aspect ratio) using the proposed approach. 1
' :* believe this difficulty to be minor relative to the gains in practiczl scalability, complexity control,
_::t and change management which the proposed approach achieves; nevertheless, the perceived cost- :
- eflectiveness of the approach would be enhanced by a solution. ,
%
i 2 Adais a trademark of the U.S. Department of Defense :
>
;:.,
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5.2.4 Ezplost Adherence Conceptes.

| IOy

Quantizing the utility of specification adherence, as suggested herein, is a concept that could v
be exploited further. To do this, adherence functions need to be better understood and to be B
easier to use. One possible way to begin this would be to develop by experience a general set of 1
adherence functions and rules for their interpretation and use. Based on the existence of such a J
set of functions, meaning could be assigned to k-adherence for particular values of k, so that, for 3.1

example, *'90%-adherence’” would have a commonly-understood meaning in the design commun-

"

ity. Other related research topics include investigating the eflect of composition on k-adherence
and determining whether adherence functions are the best way of expressing the value of adher-

ence.

5.2.5 Study Use of Approach for Wider Range of Designe.

It would be useful to learn the applicability of the proposed approach in retroactively speci-

fying interfaces of desigas originally implemented in technologies other than sMOS and in design

N &2 e S IR
EATETE il PSS ST .

styles other than synchronous, full-custom. The usefulness of the method for specifying interfaces

of designs intended for analog implementation should also be investigated.

5.2.6 Refine Approach with Feedback from & Good Implementation.

PR PRI SO

1 fully agree with Brooks [Broo82] in his statement that the most productive software

engineering principle to be developed in the last ten years is the “incremental build™ app.oach of
Harlan Mills [Myer84). With this approach, rather than to conduct additional theoretical

research. I believe it would now be far more productive to refine the ideas expressed in this disser-
tation using feedback from the VLSI design community. To do this, one should develop and field

a set of good tools implementing the proposed approach, tools that include a well-engineered

e designer interface. Without such a set of tools and designer interface, it is fruitless to expect that
already-overextended designers can be induced to use the proposed approach sufficiently to render

a fair evaluation.

. One should not, however, underestimate the cost of such tocl development, a cost several
times the cost of constructing a mere "snapped-together’ implementation of the specification

principles proposed herein [Broo75]. I began this research proposing to build and collect feedback

o from such .. set of tools, and it was not until | had invested numerous weeks in them that 1
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realized they would, without an order of magnitude more effort, be unacceptably clumsy and
“unmarketable” (even gratie) to VLSI designers. Despite the current interest in reducing such
costs through capital-intensive methods [Wegn84], the costs of building prototype design tools
that are eflective in obtaining essential feedback remain a major current impediment to methodo-

logical research. This statement leads to my final suggestion.

5.2.7 Further Evaluate Approach’s Exztenssbility.

It is coiumon for Ph.D. dissertations to include in their final section the phrase, ‘‘The exten-
sibility of the proposed approach to very large designs at an acceptable cost has not yet been
demonstrated.” This dissertation is no exception; such demonstration of extensibility, although in
a final sense “‘the proof of the pudding,” is well beyond dissertation scope. Meta-research is
needed, now that complexity and matters of scale are dominant concerns in 80 many engineering
research fields, to determine ways of verifying, at acceptable cost, the extensibility of proposed

techniques to real-world-size problems.

Nevertheless, in the absence of methods for proving exteasibility, it would be wrong to give

up. There is much precedent for the subsequent and successful large-scale application of ideas
that germinated, without certainty of extension, on a modest scale in a laboratory. It is too early
to tell whether the ideas set forth herein will enjoy such application, but I am thankful to have

had the opportunity to develop them.
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APPENDIX A
SPECIFICATIONS OF MODULES IN TEST SET

,::C:: Contents’
;'__:: Figure Module Semantic Level Syntactic Level

' B-6,7  plashin  functional immaterial

! 3-6 plashin  four-strength immaterial
& A-1 plashin  drive-load immaterial
B A-2 plashin  four-strength pingrid

ey A-3 foblk drive-load immaterial

e A-4 malu drive-load immaterial

A-5 wasp functional immateral

..o

3
[ .
DIV W O SHCIREJOE T TR O V0 e S W Y WOW YW e

1See Table 4-1 for module descriptions, Table -2 for level descriptions. (The first two specifications appear in
Appendix B 2-d in Chapter 8, respectively )
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plashin
Module Specification

ASSUMPTIONS

Synopsis: LSSD memory element: static memory cell that can convert to a shift register.
Size: deita x = 18 lambda; delta y = 90 lambda
Description-01: Data is shifted from left to right.
Description-02: p2sh = p2 AND sh; p2shbar = p2 AND (NOT sh); plshbar = p1 OR (NOT
sh)
Notes-01: Control signals can be generated by cell rwentl.
Related_Documentation: See manual pages for rwentl and LSSD memory.
Tesselation: Cells abut vertically to form registers of arbitrary length that shift from left to
right.
Origin-01: Originally derived from Stanford Cell Library cell PlaShiftIn (CIF ID 81). ‘
Origin-02: Minor modificati:as by Hedlund (UNC) and Lospinuso (UNC). 1

SPECIFICATION LEVEL ,‘

Semantic: drvload
Syntactic: immaterial

- PINS ;
L} <.

b Name AccFn

[ scin G_Scanln

o scout P_ScanOut
routbar P_DataOut

p2sh S_Shift
p2shbar  S_Hold
plshbar  S_Recirculate

cccccog

INTERNAL STATE VARIABLES

left l
right .
STATE VARIABLE ATTRIBUTE INITIALIZATIONS

SCIN.maxloadcurr = 275
SCOUT.mindrivecurr = 2750
ROUTBAR.mindrivecurr = 2750
P2SH.maxloadcurr = 300 .
P2SHBAR.maxloadcurr = 300 ‘
P1SHBAR.maxloadcurr = 350
left.mindrivecurr = 2750

left. maxloadcurr = 275
right.mindrivecurr = 2750
right.maxloadcurr = 275

Figure A-1. plashin Specification.
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ACCESS FUNCTIONS
G_Scanln: none

P_DataOut:

#/"..‘t.“*".‘“‘“.‘.'...C‘.‘C".‘...‘..“‘.““'0..‘./
#/*  Access function P_DataOut:
]

! routbar = ROUTBAR - skip;

P_ScanOut:
#/..““‘.."‘..“.“‘..‘..“.".“.“".“.“..“‘...“‘/
#/%  Access function P_ScanOut:

# ¢/

! scout = SCOUT - skip;

S_Shift:
N T S T T e ey |
#/*  Access function 5_Shift:
#+/
? P2SH = p2sh —
# SS = signal{PZSH);
# ST = signal_threshold(P2SH);
[SS >=ST —
? SCIN = scin;
# steer(SCIN,P2SH, left);
# inv(left, ROUTBAR);
SS < ST — skip;

S_Hold:

F[reresensrnasssrsssssaessensasaseseassssessessssnaneens |

#/*  Access function S_Hold:

# */

? P2SHBAR = p2shbar —

# SH = signal(P2SHBAR);

# ST = signal_threshold(P2SHBAR);
[SH >= ST —

# steer (SCOUT P2SHBAR left);
| SH < ST — skip;
}

S_Recirculate:
#/“‘t.“‘t"“‘“‘3*t‘.t"ttt“‘.t‘tl#*“*"*“.“'t‘.“/
#/*  Access function S_Recirculate:
# ¢/
? PISHBAR = plshbar — i
# SR = signal(P1SHBAR);
# ST = signal_threshold(P1SHBARY); '
[ SR >= ST —
# steer (ROUTBAR,P1SHBAR right};
# inv (right, SCOUT),
| SR < ST — skip;
|

Figure A-1. plashin Specification (Continued). i




maxloadcurr = specified maximum load current
threshold (nanoamps)

o
; 102
i o DATA TYPE DEFINITIONS

- /* Data Type Definition:
. * Drive-Load semantic refinement level.
ks ¢ This is a very simple electrical model with 3
. ¢ symmetric rise/fall times.
N s Immaterial syntactic refinement level.

.‘_'\:. s

::-j ) s At this level the state variable data structure is

Ny * typedef struct stvar {
S . int sigvartyp;
, s int sigvoltage;
. int sigcurrent;

- . int mindrivecurr;/* Semantic attribute s/

. int maxloadcurr; /¢ Semantic attribute ¢/

- » } STVAR ; )
[ * with )

* sigvartyp = variable type (= drive-load /immaterial);
. sigvoltage = drive/load voltage (millivolts)

. sigcurrent = average drive/load switching current

: » (nanoamps)

. * mindrivecurr = specified minimum drive current

L * (nanoamps)

3 L ]

L .

*
S~

#define VHIMAX 5000
#define VHIMIN 3800
#tdefine VTH 3750
##define VLOMAX 1200

- #define VLOMIN 250 ]
o ( ;
b~ abs(i) .
"':. it i; K
Y
return ((i > 0) ? i : -i);
‘-::: inv(stinput,stoutput) ,
e STVAR *input, *output; y
.~ { '
.. output—sigvartyp = input—ssigvartyp;
a3 if ((input—sigvoltage <= VTH) ]
.:_4 && (-input—sigcurrent >= output—maxloadcurr)) { {
'\: output—sigvoltage = VHIMAX; i
. output—ssigcurrent = output—+mindrivecurr; \
o ]
9. else if ((input—sigvoltage > = VHIMIN) 3
A £ % (input—sigcurrent > == output—+maxloadeurr)) { !
output—ssigvoltage = VLOMIN; )
: output —sigcurrent = -output-+mindrivecurr; 1
:::: else { b
- output—sigvoltage = undefined (VLOMIN, VHIMAX); i
N output—sigcurrent = A

Figure A-1. plashin Specification (Continued). )
b
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undefined (—output—mindrivecurr,

output—smindrivecurr);
}
return;
)
signal(input)

STVAR sinput;

return(abs(input—ssigcurrent));

signal_threshold(input)
STVAR sinput;

return(input—maxloadcurr);

steer(input,control,output)
STVAR #input, *control, *output;

output—sigvartyp = input—sigvartyp;
if ((control—+sigvoltage >= VHIMIN)
& & (control—sigcurrent >= control—maxlosdcurr)) {
output—esigvoltage = input—sigvoltage - VTH;
output—sigcurrent = input—ssigcurrent;

else {
output—sigvoltage = undefined (VLOMIN, VHIMAX);
output—sigcurrent =
undefined (—control—mindrivecurr,
control—mindrivecurr);

return;

}

undefined (lo, hi)
int lo, hi;
/* 'undefined’ represents a condition specified as
* illegal. It returns a value for the purposes of
* executability in the specification interpretation.
* This value should either cause the interpretation
* to terminate or it should cause aberrant behavior,
* in either case alerting the designer to potential
* difficulty.
]

return ((hi-lo)*0.5);

ket LS LT R PF R XA
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Figure A-1. plashin Specification (Continued).
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ADHERENCE FUNCTION DEFINTTIONS

Access Fn [ Adherence Function aff]
P_DataOut a(qx) =
R x-esip,
= =l 0 sip,’
where
”'ﬂh ‘i"" s ey ”'ﬂ-

are the n variables in the #ip data type,
x0 = P_DataOut(q), and
0 < x < x0;

= 1, otherwise.

P_ScanOut alqx) =
B x—eny,
T = Xy,
where
8ig;, 8392, . . ., 8ig,

are the n variables in the #ig data type,
x0 = P_ScanOut(q), and
0 < x < x0;

= 1, otherwise.

S_Shift
Let

S_Shift (q,8) ={v,, v ..., vg}
and
S_Shift (q' ,S)={llx. dz,...,z/.},

where {t } is the set of values, of the module state variables, that make up the

module state q. Then
3 .
a(q,8,¢ )= max (0, mie (1, min min ":"‘“.l.
j=l ¢ 'I —ag,

))

Figure A-1. plashin Specification (Continued).

e e S L N I i e

o




‘—'—---w-—v--rﬁ-mwm-—v‘w-'-\:—'x"ﬁ'vrv'"v“w‘vw""wﬁww."T'T"Tv‘b‘"'lrr“i";—’ TSR T T T T TS TR TR oYW
v

£ EY

106

S_Hold
Let

S_Hold (q,b) -{v;, % ..., vg}
and
S_Hold (¢ ,h)a{d,, %, ..., d,;,

where {1} is the set of values, of the module state variables, that make up the
module state g. Then

k vy,
a(q,h,q ) = max (0, mia (1, mia mia—+—— ) ).
J=1 1 U =8y,

S_Recirculate

S_Recireulste (q,1) =={v;, v, ..., v;}
and
S_Recirculate (¢ 1) = {1/1, h,..., % },

where {y} is the set of values, of the module state variables, that make up the
module state q. Then

k o
afard )= max (0, mia (1, min mia vyt ) )
’-l 4 ') — 8y,

Note: The adherence functions defined above are the Linear Ramp (LR) functions introduced in
section 3.4. Because their definitions are (unfortunately) complex, we shall abbreviate them as
follows in the remainder of this appendix:

affl defined for  will be abbreviated as

P_DataOut LRI [P_DataOut| (q,x)

S_Shift LRD [S_Shift] (q,5,9")

Figure A-1. plashin Specification (Continued). 1
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&8 plashin j
P Module Specification .
a ASSUMPTIONS i
:'_f: (Same as for previous specification (A-1)) _
S SPECIFICATION LEVEL 3
~':: Semantic: Four-strength )
Syntactic: Pingrid
& PINS
o7
3 (Same as for previous specification (A-1))
< Y
: INTERNAL STATE VARIABLES y
b (Same as for previous specification (A-1))

- STATE VARIABLE ATTRIBUTE INITIALIZATIONS

SCIN.varxpos = 0 SCIN.varypos = 2
SCOUT.varxpos = 6 SCOUT.varypos = 2
ROUTBAR.varxpos =1 ROUTBAR.varypos = 21
P2SH.varxpos = 0 P2SH.varypos = 0
P2SHBAR.varxpos = 0 P2SHBAR.varypos = 1

AR K £ X A XX

’
o

b P1SHBAR.varxpos = 0  P1SHBAR.varypos = 18

LS

ACCESS FUNCTIONS

- (Same as for previous specification (A-1))

- DATA TYPE DEFINITIONS

. /* Data Type Definition:

- * Four-strength semantic refinement level.

- * Pingrid syntactic refinement level.

*

_ * At these levels the state variable data structure is ;
Ay » typedef stvar { 3
:: ", * int sigvartyp; -

by * int sigfval;

< * int sigstrength; '
* int varxpos; /* Syntactic Attribute */ ;
- . int varypos; /¢ Syntactic Attribute ¢/ i
.. * } STVAR ;

04 * with ;
- * sigvartyp = variable type (= four-strength /pingrid);

- . sigfval = functional value
" . in {0,1,9 (== undefined)};

9 * sigstrength = signal strength in o
» {0 (= unknown), 1
, . 1 (= foating), K
- s 2 (== steered), i
; * 3 (= restored)} N
- * with signal strength codes semantically ordered -
L . (i.e. i > j — strength i > strength j); d
::_ . varxpos == x state variable grid position; )
> Figure A-2. plaghin Specification.
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] varypos == y state variable grid position.

. s /

(Operator definitions same as for Figure 3-6)

s ADHERENCE FUNCTION DEFINITIONS

(Semantic adherence functions identical to those given for Figure 3-6. Additional functions fol- -
low for measuring syntactic adherence. Note that the evaluation of these functions is indepen- N
dent of module state, and that therefore this evaluation can take place statically.) :

Access Fn Adherence Function alf]

) P_DataOut a(qs) =1, s—varxpos = ROUTBAR—+varxpos
' and s—varypos < ROUTBAR-+varypos + 1;
= 0 otherwise.

P_ScanOut a(qs) =1, s—varypos = SCOUT—varypos
- and s—varxpos < SCOUT—svarxpos + 1;
== ( otherwise.

»
a s,

{‘1_ i l_' 1,

S_Shift a(qs) = 1, s—varypos = P2SH—varypos
and s—varxpos > P2SH—varxpos - 1;
= () otherwise.

S_Hold a(q,s) =1, s—varypos = P2SHBAR—varypos
and s—varxpos > P2SHBAR—varxpos - I;
h == () otherwise.

S_Recirculate a(qs) =1, s~+varypos = PI1SHBAR—~varypos
and s—varxpos > P1SHBAR—varxpos - 1;
= 0 otherwise.

3
%

SR AN

Figure A-2. plashin Specification (Continued).




A" Sn "hate "Bt Tl S ede A el ca iuih ool an vl S it ol St St "N Tt M s, i g Jhae dae Bt de- i <

foblk
Module Specification

ASSUMPTIONS

Synopsis: ALU function block
Size: delta x = 42 lambda; delta y == 80 lambda
Description: (M. Lospinuso) The function block receives two inputs, the data register (BUFOUT)

and the accumulator (ACOUT). The logic operation performed by the function block is
specified by the four function block control lines 10, f1, (2, and f3. The function block opera-

T ot B

tions are listed below: 4
controls output mnemonic controls output mnemonic 33
0123 0123 3
0000 0 zero 1000 (B+AY BnorA 1
0001 BA’ BandA’ 1001 A' A ~
0010 BA BandA 1010 (BxorAY BxnorA :
0011 B B 1011 (B' AY BorA’

0100 B A B’ andA 1100 B’ B’

0101 BxorA BxorA 1101 (BAY BnandA

0110 A A 1110 (BA' Y B’ orA

0111 B+A BorA 1111 1 one

Related_Documentation: WAfer-Scale Systolic Processor (WASP) Project Technical Note, ‘dp2
Data Path Module Specifications,” July 5, 1984

Origin-01: WASP 1.0, K. Hedlund (UNC)
SPECIFICATION LEVEL

Semantic: Drive-load
Syntactic: Immaterial

PINS
Name AccFn Cc/D

acout S_acout D

acoutbar S_acoutbar D

bufout S_bufout D

bufoutbar S_bufoutbar D

fonout P_fnout D

sbin P_sbin D

f|B] S_fiB] D B=0.3

INTERNAL STATE VARIABLES

t[B], B=0..3

Figure A-3. fnblk Specification.
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STATE VARIABLE ATTRIBUTE INITIALIZATIONS

ACOUT .maxloadcurr = 275
ACOUTBAR.maxloadcurr = 275
BUFOUT .maxloadcurr = 275
BUFOUTBAR.maxloadcurr = 275
FNOUT .mindrivecurr = 5000
SBIN.mindrivecurr = 50000
F|[B].maxloadcurr = 275, B=0..3
t|B|.mindrivecurr = 2750, B=0..3
tlB .maxloadcurr = 275, B=0..3

ACCESS FUNCTIONS

P_fnout:
#/“t....'....“.‘..'.....‘...“‘“...‘...‘.‘.“.“.““‘/
#/*  Access function P_fnout: ./

! fnout = FNOUT - skip;

P_sbin:
#/‘“t“*'t‘tt.‘“"**‘.t‘.“*."““‘.‘C“‘#‘.““‘C‘t“/
#/*  Access function P_sbin: »/

! fnout = FNOUT — &kip;

S_acout:
#/#“"".t‘*““‘“‘t““"‘*‘““‘““"t*‘...“‘*“t“/
#/*  Access function S_acout: J

? ACOUT = acout —
# SA = signal{ACOUT);
# ST = signal_threshold(ACOUT);

|SA>=ST —
# steer(F1,ACOUT,t);
#  steer(t, BUFOUTBARt1);
# steer(F2,BUFOUT,t);
# steer(t,ACOUT,t2);
# arbitrate4 (t0,t1,t2,t3 FNOUT),
# samenode (FNOUT,SBIN);
| SA < ST — skip;
I
S_acoutbar:
#/“*““‘“‘“...‘t“‘#‘“.“"t‘“t.’t‘t“““‘.‘.““‘/
#/*  Access function S_acoutbar: 7

? ACOUTBAR = acouttar —

# SA = signa)(ACOUTBAR);

# ST = signal_threshold(ACOUTBAR);

| SA >=ST —
steer(FO,BUFOUTBAR,t);
steer(t, ACOUTBAR,0);
steer(F3,BUFOUT, t);
steer(t, ACOUTBAR,t3);
arbitrate4 (10,t1,t2,t3, FNOUT);
samenode (FNOUT,SBIN);

SA < ST — skip;

LR GE R L L

Figure A-3. fnblk Specification (Continued).
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S_bufout:
#/'.."..‘.“...‘............‘..‘..".'.‘.....‘........‘.,
#/*  Access function S_bufout: o/
? BUFOUT = bufout —
# SA = signal(BUFOUT);
# ST = signal_threshold(BUFOUT);
[ SA >= ST -

steer(F2,BUFOUT, t);

steer(t,ACOUT, ¢2);

steer(F3,BUFOUT,t);

steer(t, ACOUTBAR,t3);

arbitrate4 (t0,t1,62,t3 FNOUT);

samenode (FNOUT,SBIN);
] SA < ST - skip;

S_bufoutbar:
#/"“.“‘““‘.“......“““‘.“.‘.““"‘.“..‘.'..“./
#/*  Access function S_bufoutbar: s/
? BUFOUTBAR = bufoutbar —
# SA = signal(BUFOUTBAR),
# ST = signal_threshold(BUFOUTBAR);
| SA >= ST —

steer(FO,BUFOUTBAR,t);

steer(t, ACOUTBAR,0);

steer(F1,ACOUT,¢);

steer(t, BUFOUTBAR,t1);

arbitrate4 (t0,t1,t2,t3 FNOUT);

samenode (FNOUT,SBIN);
| SA < ST - skip;
]

S_fo:
#/“““‘*“““““““.‘.‘““‘.‘.“.“‘.‘.‘...‘....“./
#/*  Access function S_{O: J

? FO = 10 — skip;

R R

R R®

S_f1:
#/t*“‘t‘ﬁ"*“.“‘.".“““".“*.““.““"“..““‘Q/
#/*  Access function S_f1: ./

?F1 = f1 — skip;

S_f2:
#/““‘#*““‘#‘*“.“#‘“""*“.l‘“““““““‘.‘3"./
#/%  Access function S_f2: 7

?F2 = 12 - skip;

Figure A-3. fnblk Specification (Continued).
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S_f3:

#/“‘...0..“..t‘t.‘.‘.‘....l‘..‘.t...‘O.t““.‘..t.“.‘./

*/

#/*  Access function S_f3:
?F3 = 13 — skip;

DATA TYPE DEFINITIONS

(Same as for Figure A-1, with the following operations added:)

arbitrate4 (varl var2,var3,var4,varout)

STVAR svarl,evar2,svar3,svar4,svarout;

/* This is a very simple arbitration strategy.

varout—sigvoltage =
max (varl—sigvoltage, var2—sigvoltage,

var3—sigvoltage, var4—sigvoltage);

varout—sigcurrent =
max (varl—sigcurrent, var2—sigcurrent,

var3—sigcurrent, vard—sigcurrent};

varout—sigvartyp = varl—ssigvartyp;

}

samenode (varl,var?)
STVAR #var], svar2;
{

var2—ssigvartyp = varl—sigvartyp;

var2—sigvoltage = varl—sigvoltage;
var2—ssigcurrent = varl-+sigcurrent;

ADHERENCE FUNCTION DEFINITIONS

AccessFnf  Adherence Function aff]

S_acout LRD [S_acout] (q.5,4 )
S_acoutbar  LRD [S_acoutbar) (q,,q )
S_bufout LRD [S_bufout] (q.5.q' )

S_bufoutbar LRD S_bufoutbar] (9.8.9 )

S_fo LRD [S_f0] (q,6.q' )
s_f1 LRD [S_f1] (a.5.9" )
S_f2 LRD [S_f2] (q.5.q' )
5_f3 LRD [S_3] (g5.0' )
P_foout LRI [P_fnout] (q.5)
P_sbin LRI [P_sbin] (q,8)

Figure A-3. fnblk Specification (Continued).
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Module Specification
-
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ASSUMPTIONS

Synopsis: WASP 1.3 Minimal ALU. Performs 16 Boolean functions on two bits, one from the
accumulator and one bit from outside the data path. The Minimal ALU is the processing ele-
ment of the WAfer-Scale Systolic Processor (WASP).

Size: delta x = 220 lambda; delta y = 80 lambda

Descriptinn: Major component parts: input buffer (dynamic storage during execute, pseudo-static
with phi? refresh during instruction load), accumulator (pseudo-static storage), inverter pair,
function block, and superbuffer (listed sequentially, left to right).

The function block receives two inputs, the data register (BUFOUT) and the accumulator
(ACOUT). The logic operation performed by the function block is specified by the four func-
tion block control lines 10, f1, 2, and 3.

The accumulator is a pseudo-static storage cell. Its input can come from the data register
(aceztp?), the current accumulator (acrecp?), or the function block (acfnp2). In order to keep a
known value in the accumulator, one of its three input enable lines must be enabled during
every phi? phase of an execute cycle. The accumulator value becomes undefined if more than
one accumulator contro} line is simultaneously high during any phi2 phase of an execute cycle.
The accumulator can be cleared with the accumulator clear line (acclrp2). During instruction
load the control line StHIdHAZ2 goes high during each phi2 phase, and causes refresh of the
current accumulator value.

The output superbuffer receives the function block output. (Synopsis and Description written
by M. Lospinuso.)

Related_Documentation: WAfer-Scale Systolic Processor (WASP) Project Technical Note, “dp2
Data Path Module Specifications,’”’ July 5, 1984

Origin-01: K. Hedlund, M. Lospinuso, 2nd E. Vook (UNC).
SPECIFICATION LEVEL

Semantic: Drive-Load
Syntactic: Immaterial
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Figure A-4. malu Specification. ~
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EN

PINS
Name AccFn C/D

o S_fo D
nl s_f1 D
r° L D
f3 S_f3 D
phil S_phil D
phi2 S_phi2 D
StHIdHA2 S_StHIdHA2 D
acfnp?2 S_acfnp2 D
acbufp?2 S_acbufp? D
acrecp? S_acrecp?2 D
ClrAcpx S_ClrAcpx D
DtOut P_DtOut b
Dtln G_DtIn C

INTERNAL STATE VARIABLES

ACINO
ACIN1
BUFINO
BUFIN1
FNOUT
t[B], B=0..3

STATE VARIABLE ATTRIBUTE INITIALIZATIONS

ACINO.mindrivecurr = 2750
ACINO.maxloadcurr = 275
ACIN]1.mindrivecurr = 2750
ACIN]1.maxloadcurr = 275
BUFINO.mindrivecurr = 2750
BUFINO.maxloadcurr = 275
BUFIN1.mindrivecurr = 2750
BUFIN1.maxloadcurr = 275
FNOUT .mindrivecurr = 5000
FNOUT .maxloadcurr = 275
F[B].maxloadcurr = 275, B=0..3
t[B].mindrivecurr = 2750, B=0..3
t|B].maxloadcurr = 275, B=0..3
PHI1.maxloadcarr = 200
PHI2.maxloadcurr = 200
STHLDHA2. maxloadcurr = 275
ACFNP2.maxloadcurr = 275
ACBUFP2.maxloadcurr = 275
ACRECP2.maxloadcurr = 275
CLRACPX.maxloadcurr = 300
SBIN.mindrivecurr = 50000
DTIN.maxloadcurr = 300

Figure A-4. malu Specification (Continued).
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s ACCESS FUNCTIONS

“« .
e e

G_Dtln: none. g
E 4
. P_DtOut: 5
S #/sessssnsassrsassnrsansnessessaressssessnsssansescssneansf y
o #/*  Access function P_DtOut: ) i
X ! DtOut == SBIN — skip; .
- S_fo: 3
¢ #/“"‘...““.“"““‘.“.“‘.""“‘.“““.‘.“““"/ 1_,
. #/*  Access function S_{O: 7 1
? FO = f0 — skip; S
S_f1: ]
v #/‘t““““.““““..‘"..".“.“‘.““‘.“““‘t““./ ]
* #/*  Access function S_f1: s/ k
'F1 = f1 — skip; I
S_f2: J
p ~ #/“t‘ttt"““““‘.“““‘““““.“““““““t“‘t“/ :
#/*  Access function S_f2: g R
d ?F2 = 12 — skip; 0
- B
S_f3: B
#/ttntntttttttttttstttt:tttattttuttttttttttttttttttttt/

#/*+  Access function S_f3: s/ -
?F3 = 13 — skip; A
! ¢
S_StHIdHA2: e
#/““““““‘“‘t‘tt‘t‘““"“.““‘.“““.‘t“‘*‘.“/ ™

#/*  Access function S_StHIdHA2: J -
? STHLDHA2 = StHIdHA2 — 3
# SA = signal(STHLDHA2), ~
# ST = signal_threshold(STHLDHAZ2); =

~ # steer(ATIN1,STHLDHA2,ACINO); g
.- # steer(BUFIN1,STHLDHA2 BUFINO); ]
- | SA < ST — skip; g
< 1 ]
F S_phit: -
N #/“““““t‘t*“‘“*““3““"‘“.‘*““t.t‘l‘*“““‘/ ‘:
#/*  Access function S_phil: ) i’
? PHI1 = phil — 5
a # SA = signal(PHI1); 2
# ST = signal_threshold(PHI1); b

e [SA >=ST -

# steer(ACINO,STHLDHA2,ACIN1); 3
o # steer(BUFINO,STHLDHA2,BUFINI1); R
s # /* Evaluate function block s/ S
- # iov(ACINLACOUTBAR); i’
- # inv(BUFIN1,BUFOUTBARY); N
£ # steer(f0,BUFOUTBAR,t); 3
# steer(t, ACOUTBAR,t0), g
. Figure A-4. malu Specification (Continued). 'i
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NN
N # steer(f1,ACINL,t);
’ N # steer(t, BUFOUTBARt1);

e # steer(F2,BUFIN1 t);
N # steer(t,ACIN1,t2);
. # steer(F3,BUFINI,t);

.§~: # steer(t, ACOUTBAR,t3);
- # arbitrate4 (t0,t1,t2,t3, FNOUT);
i # samenode (FNOUT,SBIN);

- SA < ST — skip;

S S_phi2:

:"_ #/Ctttttttt‘tttttttttttttttt‘ttt#tt*ttttt‘tttttt‘tttt‘t‘t/
e #/*  Access function S_phi2: J
[ ? PHI2 = phi2 —

“a # SA = signal(PHI2);

# ST = signal_threshold(PHI2);

op [SA >= ST —~

- ? DTIN = Dtln;
L . # steer(DTIN,PHI2 BUFINO);

e | SA < ST — skip;

I

.- S_acfnp2:
A “_". #/“““‘.t““““.““.ttt‘.“‘.““‘*‘.“““““““‘/
o #/*  Access function S_acfnp?2: ¢/
A ? ACFNP2 = acfop2 —~

e # SA = signal(ACFNP2);

- # ST = signal_threshold(ACFNP2);

- | SA >=ST =
-, # steer(FNOUT,ACFNP2,ACINO);
o | SA < ST - skip;
) !

LY

Ly S_acbufp2:

- ) #/““t‘*‘*‘#““***“‘3‘3‘.“"t"#"“*““.*#‘#“.#“3/
AN #/*  Access function S_acbufp2: J
- ? ACBUFP2 = acbufp2 —
" # SA = signal(ACBUFP2);

" # ST = signal_threshold(ACBUFP2);

i [ SA >=ST —
D # steer(BUFIN1,ACBUFP2,ACINO);

= | SA < ST — skip;

R

:-3." S_acrecp2:
’ Y #/‘...‘..“...‘..‘k‘.“‘"“‘.'*..‘.".““.““"‘.‘C.“/
&é #/*  Access function S_acrecp?2: 7

ol ? ACRECP2 = acrecp2 ~

- # SA = signal(ACRECP2);

N # ST = signal_threshold{ ACRECP2);

. [ SA >= ST -

N # steer(ACIN1,ACRECP2,ACINO);
SA < ST - skip;

Figure A-4. malu Specification (Continued).
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TR {

S_ClrAcpx:
#/.“‘.‘....‘O“"“‘.“‘.‘“‘.‘.“‘“““““"‘t“*“t'l
-, #/*  Access function S_ClrAcpx: 7
? CLRACPX = ClrAcpx —
# SA = signal(CLRACPX);
# ST = signal_threshold(CLRACPX);

[SA >m= ST —
# steer(GND,CLRACPX,ACINO);

SA < ST - skip;

e,

‘l'."‘

DATA TYPE DEFINITIONS

Rl TNIDIEIEIRT | ol TOPLIIT -

(Same as for Figure A-3)
ADHENENCE FUNCTION DEFINITIONS

[N

Access Fnf  Adherence Fn {]

S_fo LRD [S_fo} (q,5.9' )

s_n LRD [S_f1] (q,8,9' )

S_f2 LRD [S_f2] (q.8.9' )

S_13 LRD [S_f3] (q,5,9' )
S_phil LRD [S_phil] (q,8,¢' )
S_phi2 LRD [S_phi?2| (q.5,9' )
S_StHIdHA2 LRD [S_StHIdHAZ] (q,5,q' )
S_acfnp2 LRD [S_acfnp?2] (q,8,q9' )
S_acbufp2 LRD [S_acbufp?] (q,8,¢ )
S_acrecp?2 LRD {S_acrecp?] (q,8,¢ )
S_ClrAcpx LRD [S_ClrAcpx] (q,5,9' )
P_DtOut LRI [P_DtOut] (q,s)

S PSTAIY pung) T D

Figure A-4. malu Specification (Continued).
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wasp
Module Specification

ASSUMPTICNS

Synopsis: WASP 1.3, WAfer-scale Systolic Processor.
Designed by Kye Hedlund, William Hargrove, Margaret Lospinuso, snd Eric Vook, Univer-
sity of North Carolina at Chapel Hill, 1984.

For certain special-purpose computations, systolic architectures have the potential for very
high performance. A wafer-scale implementation, in which processing elements are con-
nected by a mesh of programmable switches on a single wafer, offers the best means for
optimizing speed and reliability in systolic arrays. The smaller size and lower capacitance
of on-chip wiring permits higher speed than could be obtained with discrete chips and exter-
nal wiring. On-chip irterconnection also brings greater reliability through a reductior in the
number of components, and the programmable switch matrix lessens the impact of faults by
permitting the inclusion of redundant processors and local exclusion of bad processors.

WASP 1.3, a prototype systolic wafer-scale processor, has an array of simple processors
embedded in a switch matrix. The processors are capable of performing all 16 Boolean func-
tions on two bits. The switches are programmable and can receive and send data in four
directions. The processing elements can also be programmed to receive and send data in four
different directions. Switch programming allows bad processors to be isolated from the net-
work, while level-sensitive scan design (LSSD) allows switch and processing element micro-
code to be shifted in at low pin cost.

Statistics:
9 processing elements
40 programmable switches
3860 transistors
2965 nodes
3000 x 3000 lambda
866 cm metal wire
621 c¢m polysilicon wire
407 cm diffusion wire

Description:
All elements (switches and PE’s) of the 7 by 7 array in WASP 1.3 have the following SHARED
PROPERTIES:

1. Elements communicate only with their 4 NEAREST NEIGHBORS: (north, east, south, west)

2. Communication between elements is by a 1-BIT SERIAL data stream.

3. Each element contains 8 state bits which indicate its ROUTING, i.e. its selection of input
and output streams (see 4, 5). These bits are scanned in when the machine is in LOAD
mode (pin name mgl = LOAD) and the shift contro! for the row containing the element is
ACTIVE (pin name shgl <R> = 1, R is row no.). Otherwise the current routing setting of
the element is retained.

4. As INPUT, each element reads from a SUBSET of the four directions. The results are not
defined when more than one direction is selected at a time.

5. As OUTPUT, each element sends dzta to a SUBSET of the four directions.

Figure A-5. wasp Specification.
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6. The selection of inputs and outputs are INDEPENDENT. It is not possible to scap in a new
setting for one without also scanning ib a new setting for the other.

7. The element does not behave differently if its neighbor in any direction is a switch, pe, or
input-output pad pair. (An input-output pad pair always listens to its input and always
sends to its output. These pads are cumbered d<rlcl>_<r2c¢2> and effect the sending of
a signal from the element at row rl, col c1 to the element at row r2, col ¢2, where either rl, ,
cl, r2, or ¢2 is an off-grid index (0 or 8)). b

g . S

Overview of WASP 1.3 LOGICAL LAYOUT of elements:

1. The rows are numbered 1 to 7 from top (north) to bottom (south). The columns are pum-
bered from 1 to 7 from left (west) to right (east).

2. Arrangement of elements: there are 7 rows of 7 elements each.

3. Pattern of elements:
Odd rows contain only switches.
0Odd columns contain only switches.
PE’s are at the intersection of even rows with even columns.

4. Due to a limitation in the number of available pads, input-output pad pairs are found only at
the ends of even rows or columns.

PR PRI

Likond

(Assumptions section written by Margaret F. Lospinuso and Eric R. Vook)
SPECIFICATION LEVEL

Semantic: Functional
Syntactic: Immaterial

PINS

Name AccFn C/D
acclr S_acclr D
mgl S_mgl D y
philgl S_philgl D
phi2gl S_phi2gl D h
shglHL1[R] G_shglHLI[R] € R=1.7 '
acscin[C] G_acscin|C} C C=11
acscout|C]  P_acscout[C] D C=17 !
do2_12 G_do2_12 C ;
d12_02 P_d12_02 D
d04_14 G_d04_14 C
d14_04 P_d14_04 D
d06_16 G_d06_15 C
d16_06 P_d16_06 D
d28_27 G_d28_27 c
d27_28 P_d27_28 D -
d48_47 G_d48_47 c '1
d47_48 P_d47_48 D 21
d68_67 G_d68_67 C X
d67_68 P_d67_68 D A\
ds2_72 G_ds82_7: C B
d472_82 P_d72_82 D ,
d84_74 G_84_74 C ]
d74_84 P_d74_84 D 2
d36_76 G_d86_76 C ﬁ
d76_86 P_d76_86 D a4
d20_21 G_d20_21 C J
d21_20 P_d21_20 D H

ORCRNS: P I

Figure A-5. wasp Specification.
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- d40_41 G_d40_41 C
P d41_40 P_d41_40 D
d60_61 G_d60_61 C
d61_60 P_d61_60 D
STATE VARIABLES
N INDIRR](C] R=1.7, C=1.7
P~ OUTDIR[R}|C] R=1.7, C=1.7 :
o FUN[R|[C) R=2,4,6, C=2,4,6 {
: ACBUF[R][C]  R=2,4,6,C=24,6 ‘
ACREC|RJ{C] R=2,4,6, C=24,6 N
. ACFN[R][C] R=2,4,6, C=2,46 3
2 ACINO[R]|C] R=2,46, C=2,4,6
< ACIN1[R|[C] R=24,6, C=2,4,6
= BUFINOR][C]  R=2,4,6, C=2,4,6
BUFIN1[R][C R=24,6, C=24,6
OUTRAIL[R][C] R=0,2,4,6,8, C=0,2,4,68
K- STATE VARIABLE ATTRIBUTE INITIALIZATIONS .
1y "~ [}
-fj None. 1
" ACCESS FUNCTIONS :
. /t“‘.“‘“‘.‘.“‘.".‘".‘**‘“‘"“““.““...Q"“‘./
e #/' Access function P_acscout|1}: g ‘
! acscout(1) = ACSCOUT]1] — skip;
< F[rossrsransnnssenresarsssssessnesssesssssesssssssseees/
#/*  Access function P_acscout|2]: 7
! acscout(2) = ACSCOUT(2] — skip;
- #/‘.“...‘#**t.‘...‘.‘*’t“‘““‘..“‘“.“‘."‘.“““‘.‘/
Ay #/*  Access function P_acscout|3]: Ji
X ! acscout(3) = ACSCOUT3] — skip;
C'-: /".‘.".“.“.“'."3““."".'..*.“.“"“‘3““““/
o #/+  Access function P_acscout|4): 7
e ! acscout(4) = ACSCOUT|4] — skip; v
/) #/‘"“tt“t#t"‘3“"“““"8“““““‘.“‘.“t“"ttt/ '
o #/%  Access function P_acscout[5): */ :
- ! acscout(5) = ACSCOUT!5] — skip; :
:: #/‘““l"“‘“..‘."“‘t‘*“.“‘."“.‘*“‘.*.““““"/ Iy
L #/%  Access function P_acscout[6]: 7 N
. ! acscout(6) = ACSCOUT|6] — skip; 3
a #/"3.‘.""..“#““.“".“.“‘.'.Ct“*‘t““‘l"““‘l/ i
X #/*  Access function P_acscout[7]: 7 :
! acscout(7) = ACSCOUT[7] — skip; .
#/“““.““‘..““*'..“““"...t“‘..““.“““.'.“/ ;
#/*  Access function S_acclr: g "
) ? ACCLR == acclr — skip; 3
3 #/.““.‘.““.t"““.t““““‘“‘.*"“t‘.““3.“"“/ '
] #/*  Access function S_mgl: ./ :
- ? MGL = mg} — skip; y
::.," #/‘““.“#““""“t“‘.“““"t‘.l"“““"**‘*““‘/
\-j #/*  Access function S_philgl: e/ :
" ? PHIIGL = philgl — v
b | |PHIIGL == 1 — '
- ‘ MGL == 1 - N
.
- [N
o t
ol Figure A-5. wasp Specification (Continued). t
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printf ("Execute phase, phil entered”);
for (R=2; R<8; R+==2) { for (C=2; C<8; C+=2) {

/* Compute Output Value 7
steer(ACINO[R][C],PHI1GL ,ACIN1[R][C]);
steer(BUFINO[R||C}, PHI1GL BUFIN1[R|(C]);
fablk (FUNJR}[C] BUFIN1[R}|C]ACINY[R]|C],

OUTRAILIRJ[C]);

/* Send Output, if appropriate s/
if (OUTDIR[1][2)&1) != 0) {
get_inswitch(1,2,inswitch);
D12_02 = OUTRAIL|inswitck[0]][inswitch|1]};

}

if ((OUTDIR[1][4]&1) != 0) {
get_inswitch(1,4,inswitch);
D14_04 = OUTRAIL|inswitch{0}}[inswitch(1]];

}

if (OUTDIR|1][6]&1) = 0) {
get_inswitch(1,6,inswitch);
D16_06 = OUTRAIL|inswitch{0]][inswitch(1]];

ir}((OUTDIR|2][l]&8) t== 0) {
get_inswitch(2,1,inswitch);
D21_20 = OUTRALL[inswitch|0]}[inswitch[1]};

}

if ((OUTDIR[4][1]&8) != 0) {
get_inswitch(4,1,inswitch);
D41_40 = OUTRALIL |inswitch|0]][inswitch|1]];

ir}((oummlslm&z;) 1= 0) {
get_inswitch(6,1,inswitch);
D61_60 = OUTRAIL [inswitch|[0]][inswitch|1]};

}

if ((OUTDIR[7}|2]&4) = 0) {
get_inswitch(7,2,inswitch);
D72_82 = OUTRAIL[inswitch[0])[inswitch[1]];

}

if ((OUTDIR|7][4]&4) != 0) {
get_inswitch(7,4,inswitch);
D74_84 = OUTRAIL|inswitch!0]}linswitch(1}];

}

it ((OUTDIR[7)(6)&4) != 0) {
get_inswitch(7,6,inswitch);
D76_86 = OUTRAIL[inswitch|0]][inswitch[1]};

}

if ((OUTDIR|2){7]&2) = 0) {
get_inswitch(2,7,inswitch);
D27_28 = OUTRAIL[inswitch|[0]][inswitch(1]};

ir}((OUTDIRM[?]&:!) t=0) {
get_inswiteh (4,7, inswitch);
D47_48 = OUTRAIL|inswitch|0]|{inswitch(1]};

if}((OUTDlR|6]|7]&2) 1= 0) {
get_inswitch(6,7 inswitch);

Figure A-5. waep Specification (Continued).
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D67_68 = OUTRAIL|inswitch{0]][inswiteh[1]];

}
| MGL == 0 —
printf ("Load phase, phil entered”);
for (R=1; R<8; R++) {
? SHGLHL1[R] = shgIHL1(R);

}
for (C=1; C<8; C++) {
ACSCOUT|C] = ACSCIN|C};

| “((MGL===1)||(MGL==0)) — skip;
/* It MGL not defined, nothing */
/* is to happen. )

| PHIIGL == 0 — skip;

¥ k HE % R

#/""“.t"".“‘““.“.."“."‘t‘.““‘..“““‘.““/
#/*  Access function S_phi2gl: s/
? PHI2GL = phi2gl —
[ PHI2GL == 1 —
[MGL == 1 —
printf ("Execute phase, phi2 entered”);
steer(BUFIN1[R]}|C],ACBUF|R}|C],ACINO[R}|C]);
steer(OUTRAIL[R}[C}, ACFNIR]|C], ACINO[R]IC});
steer(ACIN1[R][C], ACREC|R]|C}, ACINO|[R][C]);
steer(GND,ACCLR,ACINO[R|[C]);
if (INDIR[1][2] == 1)
? OUTRAIL|0][2] = d02_12;
if (INDIR[1}[4] == 1)
? OUTRAIL{0]}4] = d04_14;
if (INDIR|[1][6] == 1)
? OUTRAIL|0]{6] = d06_16;
if (INDIR[2][1] == 8)
? OUTRAIL|2|[0] = d20_21;
if (INDIR[4][1] == 8)
? OUTRAIL|4][0] = d40_41;
if (INDIR[6][1] == 8)
? OUTRAIL|6}[0] = d60_61;
if (INDIR[7][2] == 2)
? OUTRAIL|8|[2] = d82_72;
if (INDIR[7]{4] == 2)
? OUTRAIL|8][4] = d84_74;
if (INDIR[7][6] == 2)
? OUTRAIL|8|[6] = d86_76;
if (INDIR[2][7] == 4)
? OUTRAIL|2)[8] = d28_27;
if (INDIR[4]|7] == 4)
? OUTRAIL[4)[8] = d48_47;
if (INDIR[6])|7] == 4)
? OUTRAIL6}[¢] = d68_67;
for (R=2; R<8; R+=2) { for (C=2; C<8; C+=2) {
/* Locate Input Source ¢/
it (INDIR[R][C] = 0) {
get_inswitch(R,C,inswitch);
BUFINO|R][C] =

FRhB® % % F B % o % R % %k RHBR®RH®

Figure A-5. wasp Specification (Continued).
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OUTRALL[inswitch|0]] [inswitch{1]};
else BUFINO[R][C] = 9;

| MGL === 0 —
printf ("Load phase, phi2 entered”);
/* Documented StHIdHAZ2 signal is 7
[* equivalent to PHI2GL & (MGL). ¢/
steer(ACIN1|R]|C] PHI2GL,ACINO[R][C]);
steer(BUFIN1[R][C] PHI2GL BUFINO[R}[C]);
/* 'BIT" is a counter which )
/* keeps track of which bit J
/* of the 15-bit control stream ¢/
/¢ is currently being entered. ¢/
if (BIT===15) BIT=0;
for (C=1; C<8; C++) {
? ACSCIN|C] = acscin(C);
for (R=1; R<8; R++) {
if (SHGLHL1|R] == 1) {
/* Bit stream is encoded into ¢/

/* integers here as follows: ¢/
/* 0,1,13,14 — BIT 14 o/
/*2,3,11,12 = BIT 12 s/
/* 4567 —BIT? o/

/* Others as shown below:s/
if (BIT== 7) FUN[R||C] = ACSCIN|C};
if (BIT==8) ACFN|R]|C] = ACSCINIC};
if (BIT== 9) ACREC|R]|C] = ACSCIN[C];
if (BIT====10) ACBUF|R]|C| = ACSCIN|C};
if (BIT==12) OUTDIR|R}|C] = ACSCIN|C};
if (BIT===14) INDIR|R]|C] = ACSCIN[C];

} )}
BIT++;

| “((MGL==1)||(MGL==0)) — skip;

FHRBREEETRTRRERTREETRE TR RTRETETRE RS

| PHI2GL == 0 — skip;

#/.“““‘t‘.“.“‘“.‘...““..‘.‘..‘.‘.“..“"“‘..“‘/
#/*  Access function P_d12_02: s/
1d12_02 = D12_02 — skip;
#/..‘....‘““"."."...‘.‘...“.‘.“‘.“"‘.."‘....‘.‘/

#/*  Access function P_d14_04: 7

LAt saTacs s BT

''d14_04 = D14_04 — skip; I
#/“‘...““‘..““.‘.““““.“.‘.“.‘.“‘..‘.‘.“.“../ ‘:
#/*  Access function P_d16_06: s/ )

1d16_06 = D16_06 — skip;
*!/....‘.‘.....‘....‘....‘.....‘“‘.."“.“..“...'0“‘..,
#/*  Access function P_d27_28: 7
1d27_28 = D27_28 — skip;
#/‘.‘.‘....‘.“‘..."“.‘...‘.““.‘.i““.‘..“‘t.‘...‘l/
#/*  Access function P_d47_48: o/

! d47_48 = D47_48 — skip;

Figure A-5. waen Specification (Continued).
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#/“‘ S0 08S ¢ -..‘.‘....“.‘......““.‘...“‘..‘./
#/*  Access function P_d67_68: J

! d67_68 = D67_68 — skip;
/0000000000000000000040000044200000888000800 000000000008 |
#/*  Access function P_d72_82: s/

1 d72_82 = D72_82 -+ skip;
#/‘..“'.‘.‘.“‘.‘t.t“...‘.“tt‘.‘.“..“‘“...t.l“.“‘/
#/*  Access function P_d74_84: 7

1 d74_84 = D74_84 — skip;
#/"t".‘.."."."‘.‘“‘“.“.“.“‘““‘..‘.‘.“.“3‘.‘/
#/*  Access function P_d76_86: s/

1 d76_86 = D76_86 — skip;
#/"“‘“‘“‘““‘0‘t".““.“““.‘...‘..'t‘l““““.‘/
#/*  Access function P_d21_20: 7
1d21_20 = D21_20 — skip;
#/uunnunsnunnntnucntnnunuuunut"n/
#/*  Access function P_d41_40: s/

t d41_40 = D41_40 — skip;
#/l"..".‘.‘t..‘...‘.'.‘."“‘..‘."...‘.“'.““"‘.“./
#/*  Access function P_d61_60: 4

! d61_60 = D61_60 — skip;

|

DATA TYPLE DEFINITIONS

/* Data Type Definition:
¢ Functional semantic refinement level.
* Immaterial syntactic refinement level.

]

* At this level the state variable data structure is
. typedef struct stvar {

. int sigfval;

* } STVAR ;

* with

* sigfval = functional value in {0,1,9 (=undefined)};
L ]

* For efliciency, operatiors are defined on integers

* instead of with reference to this equivalent

* structure.

*/

/* Operator Definitions are the same as for Figure B-7,
with the following operations added: J

/* 1. Operations on state variables: ./

foblk (funindex,stvarl,stvar2 stvarout)
int funindex;
int stvarl, stvar2;
int sstvarout;

i{f ((stvarl==9) || (stvar2==9))

sgtvarout = @,
return;

}

Figure A-5. waep Specification (Continued).
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i | 0

- switch (funindex) { J
case 0:
sstvarout = 0;
return; g
case 1: E
sstvaroul = stvarl & (1-stvar2); .
return;
case 2:
sstvarout = stvarl & stvar2; J
return;
case 3:
X sstvarout = stvarl;
return;
case 4:
sstvarout = (1-stvarl) & stvar2;
return;
case O:
- sstvarout == stvarl ~ stvar2;
.- return;
case 6:
sstvarout = stvar2;
- return;
case 7:
sstvarout = stvarl | stvar2;
return;
case 8:
*stvarout = l-(stvarl | stvar2);
return;
case 9:
sstvarout = 1-stvar2;
return;
case 10:
sstvarout = 1-{stvarl ~ stvar2);
return;
case 11:
sstvarout = 1-{(1-stvarl)} & stvar2));
- return;
> case 12:
sstvarout = 1-stvarl;
return;,
case 13:
sstvarout = 1—{stvarl & stvar2);
return;
case 14:
*stvarout = 1-{stvarl & (1-stvar2));
return;
case 15:
sgtvarout = 1;
return;
default:
printf("Bad function value %3d”,funindex);
/* Such error flags are not part of the specification.
s They are included merely for assistance in detecting
‘ s errors during verification. See section 3.3.1.3 for
s a discussion of differences between specifications
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Figure A-5. waep Specification {Continued).
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* and simulators.
s/
sstvarout = 9;
return;

}

/* 2. Local closed subroutines, included for efficiency
*  to replace in-line subroutines.

*/

get_inswitch(currrow,currcol,inswitch)
int currrow, currcol;
int inswitch|[2];
}"“““.“‘t.‘.“.“‘..“‘.‘.t‘.“.“.“.....““‘..“‘
* Function name: get_inswitch
* Parameters: currrow: {input} row of active PE
i or switch
currcol: (input) column of active PE
or switch
inswitch: (output) row and column of PE
or switch which provides input
to the active PE or switch
* Assumptions: 7x7 grid of switches/PE’s
* External References:
. INDIR (matrix of input switch settings)
» OUTDIR (matrix of output switch settings)
* Author: R. Gross, March 1985
(222232 2 R 222222223231 23 24 N 4“““.‘.‘tt“".“t““‘/
extern int INDIR[|(8], OUTDIR]}{8];
int borderl = 0, border2 = 8;
int newrow, newcol;

* # 4 & »

loop:
switch (INDIR[currrow][currcol))
{

case 1: [* North s/
newrow=currrow-1;
newcol=currcol;
break;

case 2: /* East i
NeWIOW=CUrrrow;
newcol=currcol+1;
break;

case 4: /* South s/
newrow=currrow+1,
pewcol=currcol;
break;

case 8: [* West J
NEWIOW=CUITIOW;
newco'!=currcol-1;
break;

default:
printf ("Bad value %d in INDIR|%d](%d].",

INDIR[currrow][currcol],currrow currcol);

Figure A-5. wasp Specification (Continued).
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printf ("A value of 1 has been assumed.”);
newrow==currrow-1;
newcol=currcol;

) [* Consistency Test s/
if ((newrow != border1) £& (newcol != borderl) &£&
(newrow != border2) &£& (newcol != border2) &&
((invert (INDIR|currrow]|currcol})
& OUTDIR|newrow||newcol]) == 0))

rrint{("Inconsistency:");

printf ("INDIR|%d]|%d]=%d, OUTDIR|%d]|%d]=%d",
currrow,currcol, INDIR|currrow]|currcol],
pewrow,newcol, OUTDIR|newrow|[newcol]);

inswitch|0] = newrow;

inswitch[l] = newcol;

if {(newrow !== borderl) && (newrow != border2) &£&
(newcol != borderl) &£& (newcol != border2) &&
(({ncwrow & 1) != 0) || ((newcol & 1) != 0)))
{

CUITIOW = NEWIOW;
currcol = newcol;
goto loop;

}

return;

}

int
invert (dir)

int dir;
/tt‘tt‘t"“‘tt#.*‘.t‘Ottt‘.“".tttt#"‘l““**“t#‘tt“
s Function name: invert
* Parameters: dir: (input) 1, 2, 4, or 8, representing

* N,E,S,W respectively.
* Returns: Input 1 2 4 8
* Output 4 8 1 2

* Assumptions: Input is valid
* External References: None
* Author: R. Gross, March 1985

‘“‘t‘““““t‘t".““‘t““."‘#‘t“.““.““““.‘/
switch (dir)

case 1: return (4);
case 2: return (8);
case 4: return (1);
case 8; return (2);
defsult: return (0);

Figure A-5. wasp Specification (Continued).
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|
ADHERENCE FUNCTION DEFINITIONS

AccessFn f Adherence Function aff] J‘
P_acscout|[C] afqs) = 1ifs = P_acscout|C|; 4
C=1.7 = ( otherwise. 3
S_acclr a(qs,q’ ) = 11ifq = S_acclr(q,s); |
= 0 otherwise, i
S_mgl a(qsq ) = 1ifq = S_mgl(qs)
= 0 otherwise, i
S_philgl a(qs,q ) = 1if ¢ = S_philgl(q,s); i
= ( otherwise, \

S_phi2gl a(qs,q’ ) = 1ifq = S_phi2gl(qs);

= 0 otherwise.

A

ntntsatioadnad Aatat AP RPNy AR P &Y B |

PO SN S ILY VL

Figure A-5. wasp Specification (Continued).
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APPENDIX B :

N ILLUSTRATION OF SPECIFICATION EXECUTION ]

d

4

- ]

- ]

[

]

doutpt doutpt doutpt :

i 1) (&3 8) o k

n u k

P b 4 d

t P p

plashin plashin plashin t i

(1) 2> a8 ]

]

control ]

3

To execute this interconnection of eight ‘plashin’ shift register cells, I used 19 simple module
processes. In addition to the ‘plashin’ module process, which was obtained by copying the
specification (see Figure 3-6):

- ‘doutpt(i)’ reported module-specific output from each register cell; 4
- ‘inpt’ and 'cutpt’ provided and reported register test input and output, respectively; and
— ‘control’ was an environment process which provided control stimuli.

Each module process was specified independently of the others; only a simple “channel file” {con-
It taining only eyntactic information) was used to describe interconnections. The CSP/84 language,
9 described in scction 3.3 of the text, was the medium used for representing both module process
specifications and the channel file.

«* This specification execution was performed at a functional refinement level; with minor

- - modifications, interpretations at a more refined level (not presented here) were also obtained.
L Also, with suitable type conversion mechanisms included in specification data type definitions,
::;_‘ mixed-refinement-level execution was obtained (e.g., ‘doutpt’ was specified at a lesser refinement
" level than ‘plashin’). The same channel file sufficed throughout.
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~ : B-5 ‘outpt’ module process

B-6  ‘plashin’ module process (compare Figure 3-6)
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# Name: nplashin

#

# Function:  This is a n-plashin-cell interconnection.

# Ope must set n in the first statement.

#

# Author: R. Gross, October 1984
HHRERFRFRRFFARRARFERFRFRRERRARERR S ARA R AR AR RRHR AR AH
setn 8

array plashin 1:n
array doutpt l:n

# datapath:

connect inpt.ScOut to plashin(1).Scln
for i 2:n

connect plashin(i-1).ScOut to plashin(i).ScIn
connect plashin(i-1).DOut to doutpt(i-1).DIn
cndfor

connect plashin(n).ScOut to outpt.Scln
connect plashin(n).DOut to doutpt{n).Dln
# control:

fori l1:n

connect control.s(i-1) to plashin(i).s
connect control.r(i-1) to plashin(i).r
connect control.h(i-1) to plashin(i).h
connect control.od(i-1) to doutpt(i).od
endfor

connect control.os to outpt.os

Figure B-1. Channel File.
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##include <stdio.h> 1

process control :: y
output port int s(8) ; ‘
output port int h(8) ;
output port int r(8) ;
output port int od(8);
output port int os;

int CELLS ;

int count ;

char command;

char line[100];

int i;

command = "'"';
CELLS = 8;

* command !="q' —

# printf ("Enter s for shift, h for hold, q for quit:”); .
fgets(line,100,stdin); )
command = line[0};

/* Shift: J
/* stimulate shift (s) s/
/* and recirculate (r) repeatedly. 7
/* o is used to trigger the printed output. s/

%R *%

| command =='s' —
for (i = 0; i < CELLS; i++) {
Ys(i) =1;

for (i = 0; i < CELLS; i++) {
1 8(i) = O;

}
for (i=0; i < CELLS; i< +) {
tod(i) = 1;

tos =1,

for (i = 0; i < CELLS; i++) {
(i) = 1;
te(i) =0

for (i = 0; i < CELLS; i++) {
od(i) = 1;

T OE%R R R HHE R %

tos=1;

Figure B-2. control Module Process.
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for (i = 0; i < CELLS; i++) { }
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-

#* /* Hold: o/ i
-~ * /* stimulate bold (b) s/ :
o # /* and recirculate (r) repeatedly. o/
- # /* o is used to trigger the printed output. o/

b:: | command === 'h’ —~

e for (i = 0; i < CELLS; i++) {

= ! h(i) = 1;

.-,

for (i = }0; i < CELLS; i++) {
! h(i) = 0;

- } :
o for (i = 0; i < CELLS; i++) {

o Vod(i) = I;

- 'os = I;
o~ for (i= 0; i < CELLS; i++) { !
- Vr(i) = 1; 1
a8 } ]
o for (i = 0; i < CELLS; i++) { ‘
~ 'r{i) = 0;

for (i = }0; i < CELLS; i++) {
Yod(i) = 1;

* R X % H®R %R

'os =1,

I
I

end process

e w
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Figure B-2. control Mod.le Process (Continued). ;
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#¢include <stdio.h>

process doutpt ::

guarded input port int od;
input port int Din ;

int val ;

int O ;

#/* read and print output values

I Ox==1—
? val = Dn;

# printf("Data Output Cell %d value = %d”,
# csp_proc_num, val);
# fush (stdout) ;

| O ==0— skip;

|
l

end process

---------

Figure B-3. doutpt Module Pr: cess.
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. ' ##include <stdioh> .
process inpt :: o
T output port int ScOut ; i
X ! SeOut = 0;
-3 ! ScOut = 0;
_‘ ! ScOut = |;
N ! ScOut = |;
A ! ScOut = 0;
4 ! ScOut = 0;
! ScOut = 1; b
- ! ScOut = 1; ;
I-. ( J
:: tll — :'
) ! ScOut == 0; “
b ]
- end process i
L
]
> 3
.‘;j K

T

.: ’
-: »

. L]
", -
.
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: .
. ™ K
. R
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c" !
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- .
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Figure B-4. inpt Module Process.
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##include <stdio.h>

process outpt ::

guarded input port int os;
input port int Scln ;

int val;

int O;

#/* read and print output values 7

*(?O =08~
? val = Scln;
#  printf("Scan Output value = %d”, val);
# flush (stdout) ;
| O == 0 — skip ;
]
]

end process

A
e KON

&

Figure B-5. outpt Module Process. O
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##include <stdio.h>
process plashia ::

input port int Scln ;
guarded input port int s ;
guarded input port int h ;
guarded input port int r ;
guarded output port int ScOut ;
guarded output port int DOut ;

int Jeft ;
int right ;
int DOUT;
int SCIN;
int SCOUT;
intsS;

int H;
intR;

#/* Initialize. s/
#/*+ 9 means undefined. 7
left = 9;
right = 9;

#/+*  Poll input ports: ./

*|
#/0.“0*.“*‘#*#.88."“t"t“t“l*ttt.“‘t“‘ttt“t..‘t#/
#/*  Access function P_DOut:

#*/

! DOut = DOUT — skip;

#/‘ttt’."“'#.‘.“““"““.““‘..‘..‘..“"“‘.““'"/
#/*  Access function P_ScOut:

# */

! ScOut = SCOUT — skip;

#/“*‘t“*‘*.t"t"**.“*“ﬁ“.““‘““‘*.t"“““*“"/
#/*  Access function S_s:
all # ./
|?S=s~— b
# SS = signal(S); ’
# ST = signal_threshold(S);

[SS >=ST —

? SCIN = Sclb;

# steer(SCIN,S left);
# inv(left, DOUT);

| SS < ST — skip;

&
‘

I
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Figure B-6. plashin Module Process.
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#/O“......‘....‘..‘.‘...".‘.‘...‘..‘.“.‘........‘..‘.‘/
#/*  Access fuaction S_h:
# ¢/
|THm= b —
% SH = signal(H);
# ST == signal_threshold(H);
[SH >u= ST —
# steer (SCOUT H,left);
| SH < ST — skip;

#/‘.“'..“.".“““...“.‘.“..‘..““““...“‘..““‘/
#/*  Access function S_r:
# s/
|'R=1—
# SR = signal(R);
# ST = signal_threshold(R);
| SR >= ST —
# steer (DOUT R, right);
# inv (right, SCOUT),
| SR < ST — skip;
]
]

end process

Figure B-6. plashin Module Process (Continued).
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'r
v,
Ed

':-:3 /* Data Type Definition:
}_‘;‘: + Functional semantic refinement level.
e * Immaterial syntactic refinement level.
- .

-~ s At this Jevel the state variable data structure is
v . typedef stvar {
o s int sigvartyp;

. int sigfval;

* } STVAR ;

* with

» sigvartyp = variable type (= 1)

* sigfval = functional value in {0,1,9 (= undefined)}

s/
#define INFINITY 65535

inv(varl,var2)
STVAR #varl, svar?;
{
var2—sigvartyp = varl—sigvartyp;
var2—sigfval = (varl—sigfval == 9)
?9: (1 - varl—sigfval);

return;

}

int
signal(varl)
VAR #varl;

{
return(INFINITY);
}

int
signal_threshold(varl)
VAR s#varl,

return(0);

}

steer(varl,var2,var3)
STVAR sevarl, svar2, *var3;
{

var3—sigvartyp = (var2—ssigfval == 1)

? varl—ssigvartyp : var3—sigvartyp ;
var3—sigfval = (var2—sigfval == 1)

? varl—sigfval : var3—sigfval ;

N RN S

return;

}

Figure B-7. Data Type Definitions.
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(User input preceded by "UL:')

UL ¢sp -o rtyp.def.o nplashin control
UI: (same line, cont'd) doutpt inpt outpt plashin
channel file is nplashin
control:
doutpt:
inpt:
outpt:
plashin:
Linking.
Running.
Enter s for shift, h for hold, q for quit:
Ul:s
Data Output Cell 1 value = 1
Data Output Cell 2 value = 9
Data Qutput Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell 6 value = 9
Data Output Cell 7 value = 9
Data Output Cell 8 value = 9
Scan Output value =9
Data Output Cel! 1 value = 1
Data Output Cell 2 value = 9
Data Output Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell § value = 9
Data Output Cell 7 value = 9
Data Output Cell 8 value = 9
Enter s for shift, h for hold, q for quit:
Scan Output value = 9

al T

Figure B-8. Sample Output.
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Ul:s

Data Output Cell 1 value == |
Data Output Cell 2 value = |
Data Output Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell 6 value = 9
Data Output Cell 7 value = 9
Data Output Cell 8 value = 9
Scan Output value = 9

Data Output Cell 1 value = ]
Data Output Cell 2 value = 1
Data Outpui Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell 6 value = 9
Data Output Cell 7 value = 9
Data Output Cell 8 value = 9
Enter s for shift, h for hold, q for quit:
Scan Output value = 9

UL: b

Data Output Cell 1 value = 1
Data Output Cell 2 valye = 1
Data Output Cell 3 value = 9
Data Output Cell 4 value = 9
Data Output Cell 5 value = 9
Data Output Cell 6 value = 9

.y "y

C

Data Output Cell 7 value = 9 {

Data Output Cell 8 value = 9 "

Scan Output value = 9 5

Data Output Cell 1 value = 1 A

Data Output Cell 2 value = 1 3

Data Output Cell 3 value = 9 S

Data Output Cell 4 value = 9 u

Data Output Cell 5 value = 9 h

Data Qutput Cell 6 valye = 9 1

Data Output Cell 7 value = 9 1

Data Outnut Cell 8 value = 9 ::

Enter s for shift, h for hold, q for quit: ]

Scan Output value = 9 4

Ul: q K

N alt fail :line 74,control.c(0). error 1 ]

write :line 7,inpt.c(0). error 3 X

- 4
9

S g

MR

st Bt

Figure B-3. Sample Output (Continued).
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