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ABSTRACT 

The effects of a sloping bottom on acoustic transmissions, between a source 

and receiver at arbitrary but fixed locations, are investigated using ray 

theory.  An isospeed channel is assumed, and bottom angles up to about 3" are 

considered. Sloping bottom influence on per-ray quantities, including travel 

time and transmission loss, are examined for cw transmissions.  Significant 

variations are shown to occur, such as travel time changes of more than 200 ms 

over ranges of about six kra.  Per-ray transmission loss is found to be 

influenced strongly by bottom slope, the amount of influence depending upon 

source-receiver bearing and the bottom loss model used.  Variations of more 

than 20 dB are demonstrated.  Effects of a sloping bottom on the total 

acoustic field are examined also, and the results compared with those for a 

horizontal bottom.  Fiaalxy, a simple lodel of a shallow water fronc is 

superposed over the sloping bottom, and travel time is in"---2s-:igatad.  Ihe 

sloping bottom effect can induce travel time changes more than 300% larger 

than tha frontal ef-Ject for diff3rent source-raciiver geo^iatries and bottom 

inclinations. 



INTRODUCTION 

Shallow water in the world's oceans occurs along continental margins and 

in many of the seas, ^  Continental margins are subdivided into the continental 

shelf, a region of gently sloping bottoms with slopes of 0° to 3°, and the 

continental slope or shelf break region, where water depth increases rapidly 

and bottom inclination can be as much as 5".^'^     Acoustic transmission in 

shallow water is significantly different from deep water transmission with the 

former being characterized by stronger bottom interaction and somewhat shorter 

ranges (see, for example, Ref. 3).  Acoustic models of the shallow ocean vary 

in complexity from a simple constant depth, isospeed medium to one in which 

depth, sound speed, and bottom properties vary spatially.^ 

A variety of papers have shown certain consequences of shallow ocean 

environmental features on acoustic transmissions.  For example, both ray and 

mode theories were used^'"^ to indicate influences of sloping bottoms on 

signal intensity and on horizontal trajectories of propagating modes.  A 

method" for studying the horizontal propagation of local normal modes has been 

applied to a wedga shaped duct, which affects individual mode trajectories 

and eigenvalues differently.  Accurate analytic approximations from ray 

theory, for ray gsometry, tra"al time, and spreading less, have been 

obtained,^'^ but only for the strictly twc=di.T.ensional propagation directly 

up-or downslope.  Transmissicr. losses and ahadow zones for an isospesd wedge 

shaped duct have been described for medium range propagation using geometric 

acoustics and normal modes. ^"^  The three-dimensional nature of acoustic 

procaga-ion induced by variable bottom topography has been shown to strongly 

influence horizontal ray trajectories and shadow zone locations.^^'^2 decent 

studies have concentrated on application of the parabolic apprQxi.T.ation to 

shallow water sloping bottom oceans, ^-^' ^ ^ to show -nodal cutoff for upslope 
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propagation.^^  Also, modal coupling has been considered,''^ and different methods 

for wave propagation over an inclined bottom have been developed^' and 

adapted.^'^'^^  Relationships among propagation theories have been clarified in 

detail (as in'Ref. 20).  In addition, some deep water studies have used ray theory 

to demonstrate inclined bottom effects between fixed sources and receivers.-^'22 

The purpose of this paper is to study sound transmission in shallow water 

over a sloping bottom when source and receiver are located at arbitrary 

positions in the sound channel, but at relatively short range.  We consider cw 

signals of sufficiently high frequency to permit the use of ray theory.  The 

influence of the sloping bottom on acoustic quantities is developed in a 

constant sound speed medium with a Mackenzie bottom model. ^-^  Other bottom 

models may be used in.shallow water (see, for instance, Ref. 24) with similar 

results.  A sound channel with horizontal surface and bottom dictates 

two-dimensional ray paths in the vertical plane containing the source and 

receiver.  Imposition cf a plane, sloping bottom necessitates consideration of 

three-dimensional ray paths for other- than directly up- or downslope, as is 

well known. 

The principal novelty of this paper is the development of analytic approx= 

imations for three-dimensional ray geometry, travel time, and per-ray and 

total-field loss between a fixed source and receiver.  Our study of ray geometric 

properties and of certain acoustical effects of three-dimensional ray paths prc= 

duces new results.  For instance, our formulas facilitate interpretation of 

acoustic variations which result from changes in source-receiver location and 

bottom inclination.  Another feature of this paper is an appraisal of the rela- 

tive acoustic significance of a sloping bottom and a shallow ocean front, using 

results of another study. ^-^  In numerical examples we use frontal parameters 

which are similar to those of the Slope Front in the North Atlantic Ocean.  Enough 
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parameter variations are considered so that our results are applicable to a 

variety of ocean environments.  Finally, we remark that detailed comparisons 

of our results with those in the previous studies cited above are not attempted 

in this paper.  This is because different acoustical quantities are typically 

emphasized, and because our results are applicable to shorter range trans- 

missions, while previous studies are primarily applicable to longer ranges. 

However, it should be noted that there is strong qualitative agreement between 

level curves of transmission loss in this paper and those calculated by 

Bradley'"^, which were obtained using normal mode theory and which apply at 

longer ranges. 

In Sec. I we describe ray geometry determined by regular perturbations 

from an isospeed sound channel with horizontal surface and bottom.  It is shown 

how ray geometry depends upon bottom inclination, source-receiver bearing 

relative to the maximum gradient of bottom slope and range.  Results are used 

in Sec. II to express travel time and spreading loss in terms of bottom angle 

and bearings.  Then, a Mackenzie bottom model is used in an examination of 

per-ray transmission loss.  Incoherent total-field transmission loss is 

considered also, amd the sloping bottom influence is discussed.  Section III 

studies the effect of a sloping bottom superimposed on propagation through a 

simple frontal model.  Ray geometry and travel time expressions are derived, 

and the relative significance of the sloping bottom and front are illustrated. 

Finally, we summarize our results in Sec. IV. 
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I.  MODEL DESCRIPTION AND RAY GEOMETRY      .  ■       , ' ■ •■ 

The bottoms on the continental shelf and in shelf break regions are 

commonly and most easily modelled as planes with angles of inclination of up 

to about 3°.-'°''^     In this paper, we model the ocean above the continental 

shelf as a channel bounded above by a horizontal surface and below by a plane 

having an angle of inclination a.  Subsequently, we will use radian measure 

for this and other angular quantities.  In order to concentrate on the 

sloping bottom effect, we initially suppress oceanic variations, taking the 

water to be stationary and to have constant sound speed c.  The influence of 

the sloping bottom will be investigated using ray theory and a Mackenzie 

bottom interaction model.^3 

Suppose that an omnidirectional sound source S and a point receiver R are 

located at arbitrary depths hs and hj^ in an ocean channel of depth dt^ at I\. 

We establish a right-handed Cartesian coordinate system with origin on the 

surface over R, with depth z increasing downward, and with x increasing 

directly upslope (shoreward), as shown in Fig. 1(a).  The bottom angle a is 

nonnegative and measured from the horizontal, and the relative bearing 3 of 5 

from R is measured positively clockwise from the y-axis'-as shown in Fig. 1(b). 

It is the angle 8(-ii < 3 <_ TT ), then, which specifies propagation in a ccLiver- 

gent or divergent channel.  The range R is the horizontal distance separating 

S and R.  We use N to designate the total number of bottom reflections batween 

S and R for a given ray, and we number bottom reflections sequentially from 5 

to R by 1,2,..,,N.  A ray lobe is that portion of, a ray path between 

successive bottom reflections, and the lobe is numbered with the smaller of 

its bottom reflection numbers (i.e., lobe k is thac portion of the ray path 

between bontom reflections k and k + 1).  Lobe zero is the (tvoicallv oartial) 
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lobe between S and the first bottom reflection, while lobe N is the (typically 

partial) lobe between the last (Nth) bottom reflection and R,  We designate 

the water depth at S by dg and the depth at bottom reflection k:(1 < k < N) bv 

The altitudinal angles of a ray at S and R are 03jj and Gj^x^, respectively, 

measured positively downward from the horizontal.  In lobe k (1 < k < N-1 ) , 

0;^j^ is the positive altitudinal angle of the ray after its surface reflection; 

OQJ^ is the altitudinal ray angle in lobe zero as the ray path approaches the 

first bottom reflection; Q-^f^  is that angle in lobe N after surface reflection, 

if such a reflection occurs.  For arbitrary source and receiver depths and 

fixed N, there will, in general, be four rays connecting S to R.  We introduce 

the parameter a^ia^)   which is +1 if 0g^ ORN^ > ° ^'^'^  is -1 if Q^^  ORN^ < O* 

We relate altitudinal angles by 

©SN = '^sQoN (la) 
and     .  • 

QRM = <^RQNN (lb) 

In Fig. 1, we show schematically a ray with N = 3, for which OQ =  -1 and aj^ = 

+ 1 .  Each ray lobe lies in a single vertical plans and spec-lar reflection 

insures that, in general, adjacent Icbes lie in different vertical planes, 

giving rise to three-dimensional ray paths.  The azimuthal angle i« lobe k(0 < 

k _<_ N) of a ray is ^i^.-.,   T.easured in the same wr.;;^' ?.3 3.  The prrjection c:: t'.a 

ray path in lobe k onto a horizontal plane is callad L)^\j.  In general, 

N-dependent quantities, such as 9gj^ and h,^.^, are functions of Og and a^.     Fcr 

simplicity, however, we will suppress this dependence in subsequent notation. 

Fur'-.her, nondlmensional quantities will be designated by a caret (-), while 
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quantities associated with a sound channel having a horizontal bottom of 

depth dj^ will be indicated by an overbar. 

For fixed source and receiver locations, fixed N, and specified 03 and 

Oj^, we facilitate the determination of the geometry of a ray by specifying the 

unit vector tangent to the ray at S, Ag^' ^^'^   ^^  ^'   '^RN' ^'^   lobe k:( 0 _<_ k _< N) , 

the unit vector tangent to the ray approaching the bottom reflection is A 
~kN 

Although A'  is not actually present on the physical ray when o-^ =  -1, it is a 

computational convenience; a  similar statement applies to AQ^J when Og = +1 . 

Unit ray tangents may be written as 

cos Gsj^j sin (t)Q^ 

^SN =  1 -^°2 Ggj^ cos <j)oN I ' -    (2a) 
sin 9sjj 

cos 8RN sin (J)^!^ 

^RN =   I ~<=°s ®RN <=°S "^NN I ' (2b) 
SI in 0 RN 

and 

cos e^^  sin. ^^^ 

^kN = \ ~^°^  ®kN '^°^  '^kN I '  0 <_ k <_ N .        (2c] 
-Sin 0kN 

The effect of a boundary reflection on the unit tanjgent vector to a ray 

is normally written as a vector equation, with the reflected tangent vector 

expressed as a linear combination of the incident unit tangent vector and a 

vector normal to the boundary.2o  This linear combination of vectors is a 

linear transformation of the incident ray tangent, and can be represented by 

a matrix. 27  The matrix of transformation Trr. at a surface reflection, and 

that at a bottom reflection, Tc, can be -written as        • 

/I   0    0\ 
T,p =    0   1    0 , (3a) 

\ 0   0   -1 / 



and 

(cos   2a       0       -sin   2a\ 
0 1 0      j   . (3b) 

-sin   2a       0        -cos   2a/ 

Ray   tangents   can   now  be   related   by 

and 

A       =TA ,0<k<N, (3c) 
~kN       "T  ~kN ""      ~ 

=TTA        ,0<k<N-1. (3d) 
(k+1)N        ~T~3-kN -      - 

Thus,   we   can  relate A       to  a  ray  tangent near R   by 
~kN 

A'  = [T T jN"'"^ A'  , 0 < k < N-1 . (4) 
'kN    "B-T     ~NN     ~  ~ 

The ray tangent at S (or R),   Agj^ (or Ap^jj) , is A^j^ (or A^) if Og (or a^]   = -1 

It is necessary to determine ray geometry in order to calculate travel 

time, spreading loss, and bottom loss.  We first seek to determine the 

altitudinal and azimuthal angles of a ray tangent at S and R,and thesa 

quantities are than specified at any point on the ray path through Eq» (4). 

We write the x and y components of range in the form 

N 
R sin 2 = ); I^jj sin '^y.^ (5a) 

0 

and 

N 
R cos ?>   =   I   L,^Ki cos (j)^^ .     , (5b) 

0 

Now, the L.^j^j are related to wat-'^r depth, ray angles, and bottom inclination 

by the equations 
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^oN = (dg-Oghg) (tan 0^^+taa a sin <i!oN'~^ / (6a) 

Lj^N = 2hj^N(tan 0v.j^+tan a sin fj'kN)"'' , 1 _<_ k _<_ N-1 ,    (6b) 

and 

^im  = (dj^+Oj^hj^) (tan0j^j^-tan a sin ^INN^"^ • (6=) 

Further, water depths at successive bottom reflections can be determined 

recursively from 

h(k+1)N = hJ^J^(tan05^^J-tan a sin ^^j^) 

X   (tan 0]^^vj+tan a sin  <J>]^N'~^   ,   1  _<  k  <_ N-1   , (6d) 

with  h-i^ being   given  by - .       ' 

hiN  =   (<^S   ^^^   ®oN  "•"   '^S^S   ^^"^   '^  ^^^   "PoN^ 

X (tan QQj^+tana sin <)1ON)~^ • (6e) 

When Eqs. (6) are substituted into Eqs. (5) and (4). we have a system of non- 

linear coupled equations in the four angles QQN' ®NN' '^ON'   ^^'^  "{"NN-  Equations 

(1 ) then give Gg^ and Qjy^=  Since the system cannot be solved analytically, we 

proceed to perturb off known results^ for an isospeed channel with constant 

depth dR (i.e., a=0).  For a << 1, we write 

0]cN = % + ^QkN ' 0 _<_ k _< N , (7a) 

and 

(t)5^v, =   &   +  l\'^^^   , 0 _< k £ N , (7b) 

where 0jj is known from Ref. 3 to be 
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tan Qjvj =   [2N  -  Oghg .+  Oj^h^ +   2H(hg-1 )N   tan  aJR""!   .  ■ (8) 

In   Eq.    (8),   depth   and   range   parameters   with   carets   are   nondimensionalized   with 

respect   to   d   ,   h     =  h  d"'',   h     =  h  d"''    ,   and   R =  Rd"'',   and   H  is   the   Heaviside 
RSSRRRR R 

function.      The   Heaviside   function  permits   inclusion  of   the   last   terra   in   Eq. 

(8)   whenever   source   depth  exceeds   dj^. 

When  we   substitute   Eqs.   (7)   into   Eqs.   (2)   and   (4)   and   linearize   in   AGj^^vj, 

A(fi]^^  and  a,   we   obtain  approximations   for   AQ]^^ and   A(j))^j^  in   terms   of   A0Q^  and 

A(|)QJ^.     The   approximations   for   AGj^j^  and   A(j).^j^  are   substituted   first  in   Eqs.   (6), 

and   then   in   Eqs.   (5),   with   linearization   in   small  quantities   at  each   stea. 

Eventually  we   are   able   to  approximate   angular  changes   in   the   four   ray  angles 

at   S and   R,   in   the   form 

A0Qf^  =  -2Na(N+aj^hp,)R-1   sin  B  cos  % sin 'Q^  , {9a) 

A0j,T.,  =   -2Na[ (N+aj^hj^)R-''   sin   S  cos "GJ^  sin 'Q^ -   2N  sin   3:   ,   (9b) 

A(J)QJ^ =   2Na(N+aRhR)R-''   cos   e   , (9c) 

and 

^'t'NN =  2Na[(N-!-a|^hj^)R-''-tan "ejjjcos.. 0   . (9d) 

Equations (9) are accurate provided Q^  is not too close to 0 or TT/2 rad, 

so that unperturbed rays interacting with the bcttcni must not be too shallow 

or too steep.  In order to assess the accuracy, approximations from Eqs. (9) 

were compared with numerical solution of the system of equations.^8  por 

example, with surfaced S and R, R = 5 km, ct = 0,5°, 0 = -45°, dp, = 300 m, and 

rays with N = 1,2,...,5, approximations to altitudinal angles showed relative 

errors of less than 4%, while bearing approximations were accurate to within 6% 
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Tiie altitudmal angles of pertut'oed rays transmitceu to a receiver upslope 

(0 < 6 < If) are shallower than their unperturbed ray counterparts, i.e. AGQ^^ < 

0; yet the altitudinal arrival angles at R are steeper because of bottom 

interaction.  Similarly, rays launched downslope (-ir < 0 < 0) start more 

steeply than unperturbed rays, A0Q^ > 0, and arrive at shallower angles.  When 

S is directly across-slope from R (S = 0,TT), altitudinal angles are 

insignificantly affected by bottom inclination as shown in Eqs. (9a) and (9b). 

The azimuthal changes indicated in Eqs. (9c) and (9d) show that the tendency of 

the sloping bottom to reflect a ray slightly downslope with each reflection is 

countered with a launch azimuth more upslope than the source bearing 3.  Thus, 

we see that Acfj^^ is positive for 5 in the first and second quadrants (y > 0) , 

and negative for S in the third and fourth quadrants, of the xy-plane shown in 

Fig. 1.  Of course, there is no azimuthal variation when the source is directly 

upslope (3 = TT/2) or directly downslope (3 = 1^/2). 

II.  TRAVEL TIME AND TRANSMISSION LOSS 

First, we develop and examine an expression for the travel time Tf^ for a 

ray with N bottom reflections (and with a specification of Og and Oj^).  If s»i 

is the arc length of the ray, then 

N 
Tjj = S^/c = c-l I  Lj^-N sec \^  . (10a) 

0 

If we define AT^J to be the change in travel time from that in an ogaan with 

horizontal bottom of depth dj^, T^j, then 

^'^ii  = Tv, - T^, , (10b) 

where 

Tfj = (R sec 3j4)c~'' . (10c) 
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Using the angle changes of Eqs. (9) to approximate the h\^^  in Eqs. (5), and 

substituting into Eqs. (10a) and (10b), it can be shown that, to first degree 

terms in a, 

AT{^, = 2NctT^(sin B [ N+aj^hj^]R[ R2 + ( 2N + a^hg + ORh^j^]-!} .     ( 1 Od) 

A suggestion of the accuracy of our approximation can be given for the para- 

meter values used in Sec. I.  In this case, the approximate travel time 

calculated from Eqs. (10b) and (lOd) has been shown to vary with N from 3.1% 

to 11.1% of that predicted by Eq. (10a), in which results of the aforementioned 

numerical solution for ray geometry are used. 

To illustrate travel time variations here, and variations in other 

acoustical quantities subsequently, we shall use the parameter values dj^ = 300 

m, c = 1500 ms"'', and a = 2° .  For convenience, we shall take S and R   in our 

numerical examples to be located on the surface.  Other source and receiver 

depths have been shown to give rise to similar behavior in acoustical 

quantities.  We note that 5 and R  on the surface correspond to the values Cg = 

+ 1 and Oj^ = -1 . 

Figure 2 displays level curves of T5 from Eqs. (lOb)-(lCd) for R fix^d £t 

the origin and for S at (x,y).  The level curves are clearly skewed in tha 

upslope direction.  The observed x-axic symmetry can be seen to come from ihi 

sin 0 term in Eq. (lOd).  Also, tha near-circularity of the lavel curves is 

explained by considering T5 from Eqo (10b) as tha polar equation of a Lim^:c~ 

of Pascal, r = b + a sin 0, with a << b after substituting Eqs. (10c) and 

(lOd).  Travel times for sources equidistant from R are generally longer when 

propagating upslope (B > 0) than when propagating downslope, with longest 

travel time corresponding to directly upslope transmission (3 = TT/2).     When S 

is located in-water of the same depth as that at R (3 = 0 or TT ) , travel tirr'.es 

from sources equidistanc from R are, of course, equal. 
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In Fig. 3, we allow S to assume successive positions along each of four 

paths, ?•],..., P^, which are shown in Fig. 2 and which have the same closest 

point of approach (CPA) to the source, 5 km.  Path P^ represents a track, 

parallel to the shore upslope from R (sound propagates downslope).  Path P9 

is similar, except that the track is downslope from R and the signal propa- 

gates upslope.  Path P3 represents a track directly upslope.  A track at 45^ 

across the slope is represented by path P4.  The symmetry of travel time T5 

about the x-axis can be seen on paths P-] and P2 in Fig. 3.  In contrast, the 

asymmetry of T5 about the y-axis on path P3 is seen from the shift of the 

minimum away from CPA.  This is caused by the fact that arc length is a 

minimum for a source location slightly upslope from B = 0.  When compared to a 

constant depth ocean, a = 0, it can be seen that a source on a track upslope 

of R, such as P-j , generates shorter travel times than one on a path downslope 

from R, such as P2, by hundreds of ms.  On path P3, T5 is larger than T5 (a=0) 

initially, but intersects T5 at CPA and becomes less than the unperturbed 

travel time as 5 moves upslope from R.  On the diagonal path, P4, travel times 

are greater than all other paths initially, become less than thosa on path P3 

after intersection with that path, and then approach the-ct = 0 result as 5 

approaches the y-axis.  We note that on the y-axis both T5 and T5 should be 

equal. 

The variation of travel time from the horizontal bottom state is more 

easily seen in Fig. 4 where we present level curves of the change in travel 

time, AT5, given by Eq. (lOd).  We observe that AT5 > 0, or T5 > T5, when S is 

downslope from R (upslope propagation), as expected.  Besides the casual 

observation that IAT51 increases with range, we see clearly from Fig. 4 that 

AT5 changes jfost rapidly when progressing directly upslope along the x-axis. 

Near R, AT5 changes as much as 50 ms per km when propagating upslope.  Thus, 
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bottom inclination strongly influences travel time, the magnitude of tliis 

influence being determined by the relative bearing of S from R. 

Geometric spreading loss Lj^, for a ray with N bottom reflections and for 

a a   and an specified, can be derived from the equation^^ 

L sJ-" QRN r      3x  3y 
cos 0SN 

3x 

3QSN ^'i'SN 
9y ] 

3*SN 3®SN 
(lla) 

where the partial derivatives are evaluated at x = y = 0, and where 

X = R sin 6 -  [ L]^jj sin <\,^^ 
0 

and 
N 

y = R cos 3 - I     Ly^^  cos (^^sj   . 
0 

(lib) 

(nc) 

Performing the operations indicated in Eq. (11a) on Eqs. (lib) and (11c), and 

making substitutions from Eqs. (1)-(5) and (9), we find that, to lowest order 

terms in a, spreading loss is approximately the square of arc length: 

H 
;cT ]: 

N 
(lid) 

This equation shows that spreading loss varies as the square of travel time. 

Therefore, at fixed R, bottom slope causes Ljj to be larger for signals 

transmitted upslope than for signals propagated downslope, as was seen for 

travel time.  Although both bottom inclination and bearing of S from R affect 

L^,   the variations from the horizontal bottom result are less than 2 dB for 

typical bottom parameters. :,    •- 

In contrast to spreading loss, bottom loss is known to be particularly 

significant in shallow water propagation. ^^^  Thus, bottom slope can be 

expected to have an impact on transmission loss, -20 iog^g AM, where 

A = n L-i/2 
kM  N 

(12) 



14 

is amplitude and Bv.,^ is the reflection coefficient at bottom bounce k. of a ray 

with N bottom reflections (and OQ,   Or^ specified).  We calculate 5)^(,j using a 

Mackenzie bottom model and our previously developed geometric approximations 

for Q]^f^ and i>]^-^-     For numerical examples, the parameters used are typical of a 

sand bottom, so that we take bottom-to-water sound speed ratio to be 1.1653, 

bottom-to-water density ratio to be 1.9522, and an attenuation parameter of 

0.0158.^^  Other bottom parameter values have been shown to generate similar 

acoustical results. 

Level curves of per-ray transmission loss appear in Fig. 5, again for 

surfaced source and receiver and N = 5.  We note that the loss drops as S-rv 

range increases to about 6 km, and then increases with R, although spreading 

loss increases monotonically with R.  This transmission loss behavior is 

attributed to the bottom loss model, in which the steep angles of incidence at 

relatively short ranges cause much greater bottom loss than that due to 

spreading.  As range increases, however, the angle of incidence of a ray 

decreases, causing bottom loss to decrease while spreading loss increases. 

The trancnission loss ultimately increases with range, when spreading loss 

becomes dominant over bottom loss.  This is indicated by., the dashed 81 dB 

level curve shown near the top of Fig. 5.  Rays with smaller N exhibit tiiis 

change in dc:ainance at shorter ranges.  The increasing loss with small range 

values is a consequence of any bottom reflection model which displays 

monotonically increasing loss with increasing ray angle.  For example, the 

Rayleigh-^ and Mackenzie*^-^ models both possess such a characteristic. 

The ds\;iation from circles of the level curves of Fig. 5 is an influence 

of bottom inclination.  For downs lope propagation (5 upslope from R),   the ray 

angle of incidence at the bottom becomes closer to grazing with each 

successive bottom reflection, the rapidicy of aoproacn to grazing deoendir.g on 
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both a and S bearing H.     For 3 near 0 and ^TT radians, the angles Gj-j^ (and ■f^.\,) 

exhibit minimum (and maximum) deviation from their horizontal-bottom values. 

We observe that the transition from bottom loss dominance to spreading loss 

dominance occurs at shorter ranges for S near 0 or ±Tr, as indicated by the 

closeness of contours.  For example, there is a 10 dB change in transmission 

loss between 4 and 5 km range here, contrasted with a 5 dB change when B = i 

ir/2 rad.  Upslope propagation (S downslope from R) similarly exhibits strong 

dependence on a and 3 through the bottom-loss model, with the primary 

distinction that the steepness of a ray tangent now increases with each bottom 

reflection.  This causes the gradient of transmission loss to be smaller in 

magnitude when propagating upslope compared to downslope.  Thus, for a given 

range, transmission loss for upslope propagation exceeds that for downslope 

propagation.  Qualitatively similar level curves of transmission loss for 

longer range sound transmissions, obtained using normal mode theory, have 

been calculated. ^'^ 

The variation of transmission loss as S assumes successive positions on 

s pecified paths is shown in Fig. 6.  The paths P-] through P^ appear in Fig. 5 

and are the same as on Fig. 2, with each having a CPA of 5 km.  The dashed 

curve in Fig. 6 is the loss for a horizontal bottom (a=0) at depth d^,   for a 

linear path with a CPA of 5 km.  The characteristic dominance of bottom loss 

over spreading loss at short ranges is easily seen in this broken curve.  Path 

Pi is an upslope track (downslope propagation) mainly lying in a region 

dominated by spreading loss, since bottom loss influence dominates in an 

interval of about 2 km on either side of CPA.  We note that transmission loss 

on P^ is less than on the same path when a = 0.  The downslope image of ?i is 

^2'   which lies in a region dominated by bottom influence.  The preeminence of 

the effec- of altitudinal ray angle ■9;^^] is seen in the rapid increase of loss 
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as 3 approaches 7r/2 at CPA.  Overall,, the sloping bottom causes an increase in 

transmission loss and a broadness of the region of bottom Loss domination. 

Path P3 is directly upslope, with minimum transmission loss occurring for 

downslope propagation.  That part of P3 in which bottom loss dominates, from 

its start to about 2 km beyond CPA, also shows the strong influence of bottom 

inclination in changing the spatial variation of transmission loss from the 

dashed curve.  The diagonal trajectory is primarily a bottom loss dominated 

path, with spreading loss determining the quality of variation only in the 

last one km.  In summary, we see here that a sloping bottom intensifies the 

variations in transmission loss for paths lying primarily in a region of 

bottom loss predominance, as for P2 through P4, and reduces variations when 

spreading loss dominates, as for Pi. 

We illustrate the influence of the sloping bottom by displaying relative 

per-ray transmission loss, -20 log-jg (A5/A5), as level curves on a spatial 

grid 14 km square with R at the origin (see Fig. 7).  The interval between 

adjacent level curves is 2 dB in this figure.  When propagating downslope (5 

upslope), the bottom angle causes an increase in signal strength when compared 

to a horizontal bottom.  The converse is true when signa.ls ars propagatad 

upslopeo  The strong influence of bottom inclination is seen from a to^tal 

variation in transmission loss of more than 24 dB over the figure.  Regions of 

small deviation from the horizontal bottom case are caused by two differant 

mechanisms.  First, near the receiver, bottom loss dominates because of steap 

altitudinal ray angles, and is essentially the same in both the unperturbed 

(a=0) and perturbed cases.  Second, at longer ranges, there is dominance of 

spreading loss, which has only small deviations, as discussed earlier.  The 

absence of aa effect of source bearing is seen near the y-axis, where little 
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variation in Q)^T<J  occurs to produce changes in bottom loss.  In the regions of 

bottom loss dominance, however, the influence of 3 on ray angles is expressed 

by more closely spaced level curves, as seen for |3| approaching Tr/2. 

Equations (9)" show that altitudinal angles Q-^^  experience relatively large 

change from Q-^,   while azimuthal angles (j)]^j^ vary only slightly from 3, when 

|6| is near ij/l.     The conspicuous asymmetry of the level curves is caused by 

bottom loss effects and the manner of bottom loss change as discussed before. 

Thus, variation of 6]^^ with 3 is the primary cause of the large changes in 

per-ray transmission loss for propagation over a sloping bottom in regions of 

bottom loss dominance. 

Before discussing total field, a brief overview of the relationship among 

its constituents is appropriate.  In Table I, we display the relative 

magnitude Ajj/A^ and the relative per-ray transmission loss -20 log^g (A^/Axj) 

for the first nine ray arrivals at R when S is located upslope at (R,3) = 

(5,-75°) and downslope at (5,+75°).  For these values of 3, 5 lies in a region 

where bottom loss dominates spreading loss.  As N increases, the relative 

amplitude of an unperturbed-state ray compared to that of the strongest H = 1 

ray decreases, while -20 log-jg (A^/A^) becoir.ss signific'aato  This shows that 

large changes in relative transmission loss are associated with ray coaponints 

of less significant magnitude in the total acoustic fieldo We see littl© 

variation in per-ray transmission loss for N _< 3; however, for upslope 

propagation (S downslope), the difference in bottom loss becomes substantial 

at N = 4.  Signals propagating downslope show significant deviation from the 

horizontal-bottom sound channel for N 2. 5.  The quantitative differences with 

N between upslope and downslope propagation arise from the sensitivity of che 

Mackenzie bottom-loss model to incident ray angle at the bottom. 
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We now briefly consider bottom slope effect on incoherent total-field 

amplitude. Specifically, we examine the range R to level curves of trans- 

mission   loss,   -10   log-iQ   A   ,   where 

A2  =   y   A2   , (13a) 
- N 

in which Aj^ is given by Eq. (12).  Similarly, we consider the constant range R" 

to level curves of -10 log-jQ A j^here 

.    A2 = [ A2 (13b) 
N 

is the corresponding amplitude-squared for a horizontal bottom of depth dj^.  We 

use the same parameter values and S-R  placement as before, and consider 

level curve values of 65, 68, and 71 dB.  For each fixed transmission loss 

value, we calculated the percentage change in range, 100 (R-R)/R.  The results 

appear in Fig. 8 as a function of bearing angle 3.  We observe that the range 

to each level curve is greater for downslope propagation (g < 0) and shorter 

for upslope propagation, so that downslope propagation exhibits a larger 

percentage variation.  For the solid curve (71 dB) , R has the constant 'iralue 

6.8 km, while R = 3o8 km for 68 dB, and R = 1.7 km for 65 dB.  Percant changes 

in range varies a total of more than 40% as 3 assumes ail possible "^aiysis for 

the 71 dB contour, reflecting the influence of bottom inclination. 

The primary cause of this variation is the change in ray anglfss at bottom 

reflection points with, for downslope propagation (i.e., 0 < 0), the rays 

starting more steeply than for a horizontal bottom and becoming shallower with 

each bottom bounce.  Table I shows that strong rays have small N, whereas Eqs. 

(9) imply that the strong rays have least change in geometry from the- 

horizontal bo-ttom rays.  Consequentiiy, strong rays exhibit transmission loss 
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close to unperturbed rays.  For both the 71 dB and 58 dB contours, the rays for 

N = 1,2, and 3 dominate the total field; however, other rays contribute at 

least through N = 6.  The lessening of the altitudinal angle at each successive 

bottom reflection causes range to the fixed transmission loss curve to 

increase.  Percent range variation for upslope propagation (i.e., 3 > 0) is 

explained similarly.  Rays with multiple bottom bounces are steeper at 

successive bottom reflections.  This increased loss tends to shorten the range 

to level curves of transmission loss.  At short range (i.e., the 65 dB 

contour), both the rays over a sloping bottom and those over a horizontal one 

are so steep that there is little variation in bottom loss between them.  The 

strong effect of 3 seen in each curve is predicted by its effect on each ray 

from Eqs. (9)• 

III.  COMBINED SLOPE AND FRONTAL EFFECTS 

Oceanic fronts can occur in the continental margin and in other shallow- 

water regions. ■^'-''^^  Such fronts have been modelled numerically (see, for 

example, Ref. 4) and studied analytically for a horizontal bottom.25 ^ 

sloping bottom induces significant variation in acoustical quantities as shown 

in Sec. II, while Ref. 25 demonstrates frontally induced variations in a 

horizontal bottom sound channel.  We examine here the influence of a plane 

bottom which slopes away from shore on sound transmission through a front in 

shallow water. 

We use a model which defines the front as a vertical plane separating 

water masses of constant, but different, sound speed on either of its sides. 

Our simple model includes uniform bur different horizontal currents on both 

sides of the front, as well.  The front is oriented parallel to the shore, 

and we place i' and R on opposite sides of it.  As m previous sections, the 
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sound   speed   at  R   is   c,   while   the   source-side   sound   speed  Cg  is   related   to   c 

by 
Cg   =   c   +  Ac. . {14a) 

It is convenient to introduce the dimensionless sound speed jump A, defined 

by 

A = Ac/c . (14b) 

Typically, the along front currents in shallow water vary in magnitude between 

2 and 16 cms~^ , but magnitudes exceeding 30 cms"' are not uncommon. 31  The 

coordinate system established in Sec. I and depicted in Fig. 1 is maintained 

here, and the equation for the frontal plane is x = Xp.  The distance dp from 

R to the front, along the source-receiver line, is 

dp = -Xp CSC B , (14c) 

where |B1 cannot be zero or TT since ve permit neither S nor R to lie in the 

frontal plane.  The inclination angle 3  of the frontal plane to the S-R line 

is related to the source bearing by 

0* = H(S)Tr - 3 . (14d) 

The quantities  xp?   dp,   and 3     are  shown  in  the  inset of Fig.   9. 

We  extend  the   notation  of  Sec.   I  to  indicate   the  side of  the'front 

(source  or   receiver)   on  which  a quantity  lies,   by appending an  S  or  R sub- 

script.     For  example,   if   the   front  intersects   a  ray path between  the   last 

bottom   reflection  and   R,   the   altitudinal   angle   is   Qxjjjg   before   reaching   the 

front,   and  ©JJIVIR  after   the   ray  passes   through   the   front.     However,   the 

altitudinal   angle  3".]  of   the   rav   tanaent   incident  at   R   is   an   example   of   a 
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quantity whose location is assumed known (on the receiver side of the front) , 

so that no additional subscript is written. 

We determine ray geometry for fixed S and R by tracing a ray forward from 

S through the front to R, assuming that neither a surface nor bottom reflec- 

tion point occurs at the plane of the front.  For any given ray with N bottom 

reflections, we take the front to lie in lobe n of that ray path,  Ray 

tangents on either side of the front are as described in Sec. I:        ' 

1cos2ka cos QQ^S sin ($)Q{^5-sin QQNS sin2ka 

-cos GQNS COS <pQy^s I       , 0 < k < n, 

sin QQNS cos2ka + cos QQNS ^^^ 'f'oNS sin2ka / ,    (15a) 

and 

cos ©N^R sin (Jij^Nj^ cos2(N-k)a + sin Q-^^  sin2(N-k)a' 

A   = I -cos ©NNR '=°s <j)>™t) 1 , n < k < N 
" kN?.   1 

sin 0NNR cos2(N-k)a - cos G^j^j^ sin cfij^j^ sin2(N-k)a/      (15b) 

Two range relations are 

n 

V (R-dp) sin 0 = ); Lj^jjs sin ^j^^g (16a) 
0 

and 
N 

dp sin 0 = j; Lj^NR sin '^^^  , (16b) 
n 

where t^-^g  is the projection on the xy-plane of that portion of the ray path 

in lobe n on the source side of the front, and similarly for L^NR on the 

receiver side of the front. 

The effect of the front on a ray is to bend it, the refraction relation 

oemg-- 
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where 

r = [(1+A)2 - 1 + (AnNS'Mp)^]^/^ " AnNS'^F /       (17b) 

and Mp is the unit normal to the plane of the front on the receiver side.  As 

in Sec. I, we can relate horizontal distances, water depths, and angles by 

using Eqs. (5) on either side of the front.  For example, Bq. (5fa) when 

applied on the source side of the front gives Lj^j^g for 1 _< k _<_ n as a function 

of hj^^s, 0>cNS' "^kNS' =^"^ ^'     ^^ insure continuity of the ray path by matching 

the ray traced backward from R to the ray traced forward from S using the 

refraction relation Eq. (I7a).  To trace from V.,   we need one additional 

relation, ^ 

hiTOR = [^R tan GjjNR + a^^  tan a sin (ji^MpJ 

X [tan GjTOR - tan a sin <J>NNR]~^ • (18) 

The equations derived from Eqs. (6) and Bqs. (15)-{18) form a non-linear 

deterministic system for QQNS' ®NNR' ^onS'   ^^^  "{"NNR- 

Next, we write 

®kNS  = ©N +  EkNS '       0_<k£n     , (19a) 

®kNR  = "QN  +   ^kNR '        n  <_ k _<_ N. , (19b) 

*kNS  = 2  + XkNS '       0 _<_ k _< n   , (19c) 

and 

't'kMR  =   2   +   XkMR '        n £ k ^ N   , (19d) 
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where the overbar oti 0 is an altitudinal angle of the corresponding ray when no 

front and no bottom slope are present.  Thus, the £ and x terms represent 

corrections to altitudinal and azimuthal angles which arise from a sloping 

bottom and/or the presence of a front.  We assume that the angle changes from 

Qj^j and 3 are small relative to unity so that we can approximate the deviations 

by perturbation methods.  Further, the orders of magnitude of the sloping- 

bottom parameter a and the dimensionless frontal parameters A and signed Mach 

numbers Us = - IYSI/^ ^^'^  ^R ~  ~   IYRI/'^ must be specified, so that terms of 

the correct degree are kept in expansions.  In particular, for moderate fronts, 

A = O(10"2),30 ^j^jj fo^ a between 1/2° and 1°, a in radians satisfies A = 6(a). 

However, lugl and \u-^\   are typically 0(10"'*) 31 so that Mach numbers may be 

ignored when only first degree terms in A and a are kept in our expansions. 

Under these conditions, we approximate Aj^^g and Aj^jjj^ from Bqs.  (15). 

Substituting the results into Bqs. (17) gives an approximation for T, and a 

relation between AJ^^JR and A^NS ^° linear terms in a and A.  These results ara 

extended further by additional approximations from Bqs. (19), assuming that 

linear terms in a. A, EQNS/ ^NNR' XQNS' ^^'^  XNNR ^^^ actually of the same 

order.  We use the ratios of the x and y components, and of the z and y 

components, from Eq. (17a), to express angle changes in terms of a. A, and 

angle change at S and R.  Substituting tha results into Eqs. (6) emd (18) and 

then into Eqs. (16), and retaining linear terms in a and A, we find approxi- 

mations of EQNS' ^NNR' XQNS' ^^^   XNNR ^^   terms of a and A.  Under the con- 

ditions that rays are neither very steep nor close to grazing upon incidence 

to the front (A sec^Hjq csc^^* << 1 ) , 25 ^^^^   close to grazing on bottom 

incidence, we have 
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EQNS  =  -a{2N(N+ahj^)R-''   sin  g  cos ¥jj sin ^^} 

+ A   dpR"''   tan   9^     , (20a) 

^NNR =  -a{2N(N+ahR)R~''   sin   g  cos J^ sin T^ 

-   2N  sin  e}   - Ad-dpR-"" )tan "ij,  , (20b) 

XoNS  = °'  2N(N+aj^hj^)R-''   cos   B 

+ A  dj.R"''   sec2  9^ cot  B*       , (20c) 

XNNR = a[ 2NC-N+aj^hj^)R~''   cos   B   -   2N  cos   B   tan  6jj] 

-  A   d-dpR"'')sec2 ,8^  cot  B*     , '     . (20d) 

where dp = dp/dp is a dimensionless distance from R  to the front.  Recalling 

that 9gj^ and 9j^ are always on the source and receiver sides of the front, 

respectively, Bqs. (1) complete the geometric approximations.  The results 

given in Eqs. (20) reduce to those in Sec. I when A = O'-and reduce to those 

in Ref. 25 [for UR = Us = 0] when a = 0.       '   ' 

We calculate travel time from 

        -      n N 
T = c-l E L   sec 9   + c"'' )] L   sec 9   ,     (21a) 
N   S  Q  kNS     IcNS      n ^^^ ^^NR 

and 
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in which the first (and second) term is the travel time from S to the front 

(and from the front to R).  Using the approximations of Bqs. (20) in Eq. (21a) 

and expanding to linear terms in a  and A gives 

^N = TN { ^ + 2Na sin 6 [N+a^^hj^JR 

X [R2 + (2N+ashs+aRhR)"]~ 

- d-dpR-'' )A}  , . (21b) 

where T^  is given by Eq. (10c) and is the travel time in the absence of both 

the front and the sloping bottom. 

To illustrate the influence of a sloping bottom on propagation through a 

front, we calculate T5 with c = 1500 ms"'', Ac = 20 ms~^ , xp = -2 km, dj^ = 300 m, 

and source and receiver on the surface.  The value of Ac is typical of the Slope 

Front in the North Atlantic.32  The results for travel time AT5 = T5 - T5 are 

shown in Fig. 9, for three values of bottom slope a, as S occupies successive 

positions along two paths, each with a CPA 5 km downslope from R.  The solid 

path Pi is uarallel to the shore, whereas the dashed path Py  tracks diagonally 

upslope.  The curves for a = 0 represent the influence of the front in a 

horizontal bottom sound channel.  Note that on path P-j. the front induces 

maximum IAT5I at the beginning (and end) of P-] where S is closest to u (or zero) 

and where the relative front location dpR~' is smallest.  For a = 0.5° the 

bottom inclination cancels the frontal effect at the ends of the track and 

increases AT5 by more than 50 ms at CPA over that for a = 0°.  When a =  ^°,   the 

bottom angle accounts for more than 140 ms of the value of AT5 at CPA. 
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For S tracking diagonally upslope on path P-, symmetry about CPA 

disappears.  At the end of the track when a = 0°, AT5 is 20 ms more than its 

value at the start of the path.  For larger a we again see an increasingly 

strong influence o*^ the sloping bottom-  Notice that the sloping bottom exerts a 

weaker influence near the end of P2 because B is becoming small, causing the 

inclination induced travel-time change to be small, as was suggested in Fig. 4. 

The strongest frontal effect occurs when relative front location  dpR~^ is 

smallest at the start of P2/ but the inclined bottom effect is large there also, 

because 6 is near 7T/2.  Thus, we see that the peak of AT5 when a ?^ 0 occurs before 

CPA because of the asymmetric variation in frontally induced travel time change. 

A primary qualitative difference in the behavior of AT5 on the two paths 

comes from the manner in which the front affects travel time.  When a = 0, Eq. 

(21b) predicts the behavior we illustrate.  Frontally induced travel time change 

varies as dpR ' and shows symmetric behavior about CPA on P-j , but monotonicity on 

P2.  The change in AT5 induced by the sloping bottom alone on path P-, exhibits the 

same symmetric increase and decrease about the CPA as did the travel-time change 

caused by the front.  These effects are additive when a * 0 and produce curves 

with the same general properties.  In contrast, the variation in AT5 caused by the 

sloping bottom alone is asymmetric about the CPA and has cin increasing and then 

decreasing behavior.  When a ^ 0, the asymmetry is more pronounced, with the 

dominant influence of the sloping bottom determining the illustrated behavior. 

The influence of the front on AT5 is more pronounced for a = 0.5° than for 

a = 1o because the relative magnitude of frontally induced AT5 (a=0) compared to 

that caused by the bottom angle is less when a = 1°. 

Downslope propagation is illustrated by placing S upslope from ^,   and 

adjusting the frontal parameter Ac to correspond to warmer water offshore from the 

front.  We display AT5 for the same three values of a on two paths upsloce from \ 
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in Fig. 10, with c = 1520 ms~\ Ac = -20 ms~^, Xp = 2 km, and other parameters as 

in Fig. 9.  The paths are similar to those previously described, except that P^ is 

parallel to the shore with CPA 5 km upslope from R.     Path P2 again tracks diagon- 

ally upslope with a 5 km CPA to R.  Since we are now transmitting from cold to 

warm water (Ac < 0), the front alone (a = 0) causes AT5 to be positive.  However, 

as seen in Fig. 4, the sloping bottom generates negative AT5 for downslope 

propagation.  The effect of the sloping bottom on the frontal influence for 

downslope propagation is analogous to that for upslope propagation.  Comparison of 

Figs. 9 and 10 reveals that the concavity reversal from upslope to downslope 

propagation is a result of Ac changing sign, with a corresponding change in the 

sloping bottom travel time effect.  The difference in locations of peak (minimum) 

AT5 when a 5t 0 on path P2 is a result of the different locations of peak (minimum) 

AT5 caused by the sloping bottom, as suggested in Fig. 4.  Traversing path P2 in 

Fig. 10 in an opposite direction causes the relative extrema of AT^ to occur 

slightly before CPA as in Fig. 9.  The strong travel time influence, on signals 

transmitted through a shallow water front, of the bottom inclination 

(approximately 150 ms shown) is qualitatively similar whether transmitting upslope 

or downslope. 

As discussed in Sec. II emd in Ref. 24, the sloping bottom exerts a much 

stronger effect on transmission loss than that produced by a front.  Conse- 

quently, we will not consider those combined effects here.  Results of this 

section have shown that bottom inclination has a profound effect on travel 

time changes induced by a moderate strength front in shallow water. 

IV.  SUMMARY 

Effects of a sloping ocean bottom on three-dimensional per-ray arrivals 

at a receiving" point:, and on incoherent total-field transmission loss, are 

examined.  The ocean medium is usually modelled as isospeed, althougn an ocean 
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with two distinct sound speeds is used to examine propagation through a front 

on the continental shelf and parallel to the shore.  The sound source and 

receiver are at arbitrary depths, and their relationship to the sloping bottom 

is arbitrary.  Short range propagation for source-receiver paths having both 

upslope and downslope components are investigated.  New approximations for ray 

geometry over the sloping bottom are found by perturbing from the basic state 

in which the bottom is horizontal with water depth of the receiver. 

Principal features of variations induced by the sloping bottom are 

investigated.  An approximation to change in per-ray travel time is derived 

which demonstrates dependence on source-receiver location over the slope and 

on bottom angle.  In numerical examples, it is shown that the travel time 

change for a ray with five bottom reflections is approximately ± 200 ras at a 

range of about 5 km, where the sign depends upon source-receiver orientation. 

One of the new results from our formulas is that although the sloping 

bottom causes an insignificant change in spreading loss, it induces significant 

changes in per-ray transmission loss through bottom loss effects.  This fact is 

illustrated for a Mackenzie bottom, but it would hold for many other bottom 

models.  Upslope propagation is shown to experience greater transmission loss 

than downslope propagation.  In comparison to a flat bottomed sound channel, a 

bottom inclination angle of 2°   induces a decrease (or increase) of approxi- 

mately 10 dB (or 14 dB) when propagating downslope (or upslope) o-«er a range of 

about 5 km. - 

The range from receiver to level curves of total-field transmission loss 

is examined as a percentage change from the range to corresponding level 

curves in a sound channel with horizontal bottom.  It is found in examples 

that the range varies by over ± 20"^, the sign depending upon down or upslope 

propagation. 
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Finally, we add to the sloping channel a model of a moderate strength 

shallow water front, parallel to the shoreline, and characterized by different 

sound speeds on either side of a vertical plane.  Geometric and travel time 

approximations are developed when bottom slope and relative change in sound 

speed across the front are of the same magnitude.  We find that bottom 

inclination induces significant variations in the travel time chance predicted 

by the frontal model with a flat bottom.  Indeed, numerical examples are 

presented in which bottom slope induces a 400% increase in travel time change 

when a signal is propagated upslope over a range of 5 km. 
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TABLE  I.     Rel-ative  amplitude  and   transmission   loss   (dB)   for   first nine 
rays   incident on  R.     R = 5 km,   S  =  75°   ( Sdownslope), 
B  =  -IS"^   (S upslope);   other  parameters  as   in  Fig.   2. 

Rel.   Magnitude 
-20   log^oCAjj/Ajj) 

Upslope Downslope 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1.00 

0.91 

0.80 

0.66 

0.31 

0.042 

0.009 

0.002 

0.0007 

-0.11 

- 0.43 

- 0.55 

-1.15 

- 4.98 

-14.96 

-18.77 

-20.39 

■20.92 

+ 0.09 

+ 0.25 

+ 0.94 

+ 8.08 

+14.00 

+ 9.41 

+ 7.41 

+ 6.47 

+  5.24 
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FIGURE LEGENDS 

FIG. 1.  (a) Perspective view of typical ray geometry, N = 3. 

(b) Top view. 

FIG. 2.  Level curves of travel time T5 in seconds, with increments of 0,5 s. 

ct = 2°, c = 1500 ms""", dj^ = 300 m, hg = hj^ = 0, N = 5. 

FIG. 3.  Solid curves:  travel time T5 along paths 'P■^   -P4 of Fig. 2. Dashed 

curve:  travel time for a = 0.  Parameters as in Fig. 2. 

FIG. 4.  Level curves of travel time change AT5 in milliseconds with increments 

of 50 ms.  Parameters as in Fig. 2. 

FIG. 5.  Level curves of per-ray transmission loss in increments of 3 dB.  Sand 

bottom and a Mackenzie bottom loss model.  Other parameters as in Fig. 

2. 

FIG. 5.  Per-ray transmission loss along paths P1-P4 of Fig. 5.  Dashed curve 

is a = 0.  Parameters as in Fig. 5. 

FIG. 7.  Level curves of relative per-ray transmission loss, -20 log-jg (A5/'A5), 

in increments of 2 dB.  Parameters as in Fig. 5. 

FIG. 8.  Percent variation in range to level curves of incoherent tctal=-field 

transmission loss.  Loss values ara 65, 68, and..71 dB. ParEi?.siers as 

in Fig. 5. 

FIG. 9.  Variation of AT5 along paths P^ and P2 for thrse values of &,„ 

c  -  1500 ms~', Ac = 20 ms~^, xp = -2 km.  Other parameters ®s in  Fig. 2c 

FIG. 10. Variation of AT5 along paths Pi and P2 for three values of Co 

c = 1520 ms~^, Ac = -20 ms"'', xq- = 2 km.  Other parameters as in Fig. 2. 
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