
IR-iOil THE LOGLISP PROGRMMING SYSTEMU) SYRACUSE UNIV NY L/4AD-AIS J AROBINSON ET AL. MAY 85 RADC-TR-85-89

UNCLSSIFIED F/G 9/2 NL

mhohhEEmhhhEEI

l. i'w'

[-2-2

imA 1N.l"

U.ZI

RADC-TR'85"89
0 Final Technical Report

0 May 1985

< THE LOGIISP PROGRAMMING SYSTEM

Syracuse University

I

J. A. Robinson, E. E. Sibert and K. J. Greene

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED EDTIC$rELECTE
AUG 1 9 985..

*B

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700
0

o85 a f

... ..

This report tao been reviewed by the RAWC Public Affairs Office (PA) and
*in releasable, to the National Technical Information Service (NTIS). At NTIS
*it will be teleasable, to the general public, including foreign nations.

RAD-TR-85-89 has been reviewed and in approved for publication.

* ~APPROVED: rL 6k '
PHILIP B. TARBELL 111, Captain, US"P
Project Engineer

APPROVED:to

RAYMOND P.* URTZ, JR.
Technical.Director
Comuand and Control Division

FOR THE COMM(ANDER: UA.
RICHARD W. POULIOT
Plane Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
* on a specific document requires that it be returned.

............ ~ .* .. .*.

PREFACE

LOGLISP is basically ZETALISP [Moon, Stallman and Weinreb 1983]
with a logic programming system embedded within it. The LOGLISP
user we have in mind is thus (ideally) someone who is familiar
with ZETALISP (or, at least, LISP); we do not in this manual
address the non-LISP community, beyond some general discussion in
the first few chapters.

Nor do we assume the user is already familiar with logic
programming or the earlier background involving resolution
theorem-proving. The early chapters attempt to provide an
overall view of the essential ideas in a fairly general setting.
In part-icular no prior acquaintance with PROLOG is assumed. In
order to distinguish our work from that of our PROLOG colleagues
(which, and whom, we esteem highly) the logic programming system

* within LOGLISP is called LOGIC. Thus we have:
LOGLISP LOGIC + LISP. The present version of LOGLISP has been
improved considerably over earlier versions, both in the
efficiency of the implementation and in the incorporation of
several new features which we believe will be found useful.

LOGIC differs in a number of ways from the well-known PROLOG
implementations of logic programming [Roussel 1975], [Warren

1977], [Roberts 1917], [Clark 1979]. The most noteworthy
difference is that LOGIC is simply a set of new LISP primitives
designed to be used freely within LISP programs. These

. primitives are invoked in the ordinary LISP manner by function
calls from the terminal or from within other LISP programs. They

!: return their results as LISP data objects which can be subjected
to analysis and manipulation. Each of the logical procedures

* comprising a LOGIC knowledge base is a LISP data object stored
(like the definition of an ordinary LISP procedure) among the
information concerning the identifier which is its name.

Thus one calls LOGIC from within LISP. It is also possible to
call LISP from within LOGIC. The identifiers used as logical
predicate symbols, function symbols and individual constants
within a knowledge base or query can be given a LISP meaning by
the ordinary LISP method of definition or assignment. Some
identifiers (CAR, CONS, PLUS, etc.) already have a LISP meaning

V" imposed by the system. Thus every logic construct (term, or
atomic sentence) is capable of being interpreted as a LISP
construct. During the "deduction cycle" of LOGIC each logic
construct is "evaluated" as a LISP construct, according to a
suitably generalized notion of evaluation, called

. 14

":'"
<i

lh:, :I.

*. .' *.:
I*::** S*..* . .S- S

"LISP-reduction". 1%1

The effect of this LISP-reduction step within each deduction step
is to make available to the LOGIC programmer virtually the full
power of LISP. This makes trivially easy the "building-in" of
"immediately evaluable" notions - but far more than that. In
particular, LOGIC calls can be made from within LOGIC calls.

The design and implementation of LOGIC was partially supported by .
the Rome Air Development Center of the United States Air Force
under contracts F30602-77-C-0121 and F30602-81-C-0024, by the
National Science Foundation under grant MCS-77-20780, and by the
.University of Edinburgh under a grant from the Science Research
Council of the United Kingdom.

%-,°-

i ii

....................

-_ JA.. A--. . AV -

TABLE OF CONTENTS

1. INTRODUCTION 1-1
1.1 QUERIES AND ANSWERS...............1-2
1.2 PROLOG................ 1-4
1.3 LOGIC.......................1-4
1.4 LOGLISP LOGIC'+*LISP..............1-4
1.5 REDUCTION SEMANTICS VS. DENOTATION SEMANTICS 1-5
1.6 LOGIC CAN CALL LOGIC..............1-7

2. NOTIONS AND NOTATIONS................2-1
2.1 EXPRESSIONS. 2-1
2.2 NOTATION FOR DOTTED PAIRS AND-LISTS.......2-2
2.3 NOTATIONS FOR LISP COMPUTATIONS 2-3
2.4 PATHS. STRUCTURES. PRINTABLE EXPRESSIONS *2-5

2.5 ENVIRONMENTS.................2-7
2.6 THE NOTION DEF................2-7
2.7 THE NOTIONS IMM AND ULT.............2-3
2.8 REALIZING EXPRESSIONS IN ENVIRONMENTS 2-3
2.9 11NPRINTABLE RECURSIVE REALIZATIONS OF PRINTABLE

EXPRESSIONS 2-9
2.10 UNIFICATION.................2-10
2.11 SU9STI*TUTIONS *.... 2-11
2.12 IMPLICIT EXPRESSIONS..............2-13
2.13 INSTANCES..................2-14
2.14 VARIANTS...................2-14

3. LOGIC PROGRAMMING IN GENERAL 3-1
3.1 PREDICATIONS.................3-.4
3.2 TERMS 3-
3.3 WORLDS 3-6
3.4 QUERIES....................3-7
3.5 SPECIFYING A WORLD BY ASSERTIONS........3-8
3.6 IMPLICIT CONSTRAINTS AND THEIR SOLUTIONS 3-11 q~

3.7 LUSH RESOLUTION 3-12
3.8 SEPARATION OF VARIABLES.. 3-12
3.9 DEFINITION OF (RES Q ENV D) 3-12

3.9.1 The Computation Of (RES Q Env D) . .. 3-13
3. 10 THE DEDUCTION CYCLE............. 3-13

3.10.1 Failure Nodes: Immediate And Ultimate 3-14
3.10.2 Nondeterminacy Of Deduction Cycle 3-14
3.10.3 Definition Of Solution Cost3-15

3.11 THE DEDUCTION WINDOW. 3-15
3.12 RECORDING DEDUCTIVE HISTORIES FOR LATER

EXPLANATIONS 317

4. LOGIC PROGRAMMING IN LISP 4-.4._1
4.1 LISP-REDUCTION OF LOGIC EXPR6SiONS. 4-1......--
4.2 LISP DEFINITIONS 4-2
4.3 REDUCTIONS AND VALUES. 4-2
4.4 OBJECTS IN LOGLISP 4-5
4.5 REDUCTION AND EVALUATION..... 4-5

4.5.1 Expressions And Their Values4-6
, 4.5.2 Expressions And Their Reductions . 4-6

4.5.3 Side-effects4-7
4.6 SPECIAL FORMS 4-8

4.6.1 Macros. 4-8
4.6.2 Quotations4-9
4.6.3 Listings 4-9
4.6.4 Conjunctions 4-9
4.6.5 Disjunctions4-10
4.6.6 Conditionals 4-10
4.6.7 Sequential Compositions 4-11
4.6.8 Assignments4-12
4.6.9 Selections4-12

4.7 LOGLISP SPECIAL FORMS 4-13
4.8 SIMPLIFYING IMPLICIT CONSTRAINTS--THE FUNCTION

SIMPLIFY- 16 1"
4 4.9 THE EXTENDED DEDUCTION CYCLE 4-16
4.10 CONTROLLING REDUCTION4-17
4.11 SUBSCRIPTED VARIABLES4-17
4.12 UNIFICATION IN LOGLISP4-18

4.12.1 Proper Names 4-18
4.12.2 Special Forms 4-19
4.12.3 Variables As Tails 4-19
4.12.4 The "Don't Care" Symbol . . 4-20

4.13 REDUCTION OF EXPRESSIONS ENDING IN VARIABLES 4-21
4.14 SPECIAL RULES FOR RESOLUTION. 4-21

4.14.1 The Rules .• 4-21
4.14.1.1 Equations4-21
4.14.1.2 Conjunctions .-. 4-22
4.14.1.3 Disjunctions4-22
4..14.1.4 Conditionals 4-22

4.14.2 Controlling The Special Resolution
*Rules 4-23

5. CREATING KNOWLEDGE BASES 5-1
5.1 ADDING A CLAUSE TO THE KNOWLEDGE BASE 5-1

5.1.1 Naming A Clause 5-1
5.2 THE FACTS MODE.. 5-3
5.3 ADDING CLAUSES FROM LISP FUNCTIONS 5-5
5.4 ORDER OF CLAUSES IN THE KNOWLEDGE BASE . . 5-5
5.5 DECLARING ATTRIBUTES OF PROPER IDENTIFIERS 5-5
5.6 ADDING PROCEDURES VIA DEFINE-PROCEDURE . . . 5-7
5.7 CONVENTIONS FOR DISTINGUISHING VARIABLES . 5-3
5.8 CONVERTING VARIABLES TO OTHER CONVENTIONS . 5-9

iv
'.-.

-, -..

=. .

5.9 SUBSCRIPTED VARIABLES IN CLAUSES 5-10.

6. DISPLAYING KNOWLEDGE BASES 6-1
6.1 DISPLAYING THE ENTIRE CONTENTS OF A KNOWLEDGE

BASE

6.2 DISPLAYING A PROCEDURE. 6-2
6.3 DISPLAYING THE SET OF DEFINED PREDICATES . . 6-2-
6.4 DISPLAYING DATA IN WHICH A GIVEN PROPER

IDENTIFIER OCCURS 6-2
6.5 RETRIEVING A PROCEDURE AS A LIST 6-3
6.6 RETRIEVING INDIVIDUAL CLAUSES 6-3
6.7 PRINTING CLAUSE NUMBERS6-5

" 7. EDITING KNOWLEDGE BASES7-1
7.1 REMOVING PROCEDURES FROM THE KNOWLEDGE BASE 7-1
7.2 DELETING CLAUSES 7-1

8. FILING KNOWLEDGE BASES8-1
8.1 RESTORE-LOGIC AND LOAD-LOGIC 8-2

9. DEDUCING ANSWERS TO QUERIES9-1
9.1 ANY, ALL, THE AND SETOF9-2
9.2 ALL9-2
9.3 ANY9-2
9.4 THE 9-2
9.5 SPECIFYING THE DEDUCTION WINDOW .. 9-2
9.6 SETOF 9-3
9.7 NONDETERMINACY OF DEDUCI PROCESS 9-4
9.8 CONTROLLING THE DEDUCTION PROCESS .9..... 9-5

9.8.1 Search Control 9-5
9.8.2 Answer Control. -ists Versus Sets 9-6

9.9 "ONE RESOLVENT" PROCEDURES9-6
9.10 INDEXING CLAUSES FOR QUICK RETRIEVAL 9-6"

9.10.1 Indexing Rules . *...... .. . 9-7
9.11 SUBSCRIPTED VARIABLES IN DEDUCTIONS 9-8

10. MONITORING DEDUCTIONS 10-1
10.1 THE MONITOR FACILITY10-1

10.1.1 Controlling The MONITOR Facility . . 10-2 .
10.,2 THE PURR FACILITY10-3

11. EXPLAINING DEDUCTIONS 11-1
11.1 ALTERNATIVE EXPLANATION MODES. 11-2

11.1.1 Specifying Items To Be Included . 11-2
11.1.2 Specifying Environments To Be Used. 11-3

11.2 LI1ITING EXPLANATIONS 11-4
11.3 OBTAINING EXPLANATIONS IN LISP: 11-5

V.•

*12. INTERACTING WITH LOGLIS 12-1
12.1 RUNNING LOGLISP 12-1
12.2 INITIALIZATION 12-2
12.3 INFORMATION 12-2
12.14 CONTROL 12-3

12.4.1 Control Functions............12-3
12.4.2 Defaults 12-3

12.4.2.1 Deduction Window & Search Defaults 12-4
12.4.2.2 EXPLAIN Defaults...........-4

12.5 ERRORS.....................12-5
12.5.1 LISP Errors.................12-5
12.5.2 LOGIC Errors..................12-5
12.5.3 LOGLISP Utilities.............12-6

REFERENCES............................R-1.

*INDEX...................................Index-1

vi

77 -7 *7 7117 6

$ECU"IT', CLASSIFICATION OF TMIS PAGE

REPORT DOCUMENTATION PAGE
lar REPORT SEC60RITY CL ASSIFICATION 1b. RESTRICTIVE MARKINGS

LNCLASSIFIED N/A
2, SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTION/AVAI LABILITY OF REPORT

N/A Approved f or public release; distribution
20Z. 0& CLASS 0ICATI ONOONG RAOING SCHIECULIE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMEINAS) S. MONITORING ORGANIZATION REPORT NUMUER(S)

N/A
RADC-TR-85-89

*6, NAME OF PERFORMING ORGANIZATION ft. OPPICIE SYMBOL ?a. NAME OF MONITORING ORGANIZATION

Syracuse University rlh~4, Rome Air Development Center (COES)

e. ADDREISS (City. S9440e md ZIP Code) 6 ADDRESS ICUty. SO.t gd ZIP C".e,

313 Link Hall Griffiss AFB NY 13441-5700
Syracuse NY 13210

OWL NAME OFP UNOINGISPONSORING 810. OFFICE SYMBOL 0. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
*ORGANIZATION(frOP616

* R~one Air Development Center (COES) F00-1C02

me. LOORESS lCity. state md ZIP code) 10. SOURCE OP FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
Criffiss AFB NY 13441-5700 a LameNT NO. NO. NO. NO.

62702F 5581 19 14

11. TI TLE fiftelIEA SOCgwity C1604iestionI

TH!E LOGLISP PROGRAMMING SYSTEM
12. PERSONAL AUTHOR(S)
J. A. Robinson, E. E. Sibert, IC. 3. Greene

ill& TYPE OF REPORT 1131%. TIME COVERED 14. OATE OF REPORT (Yr.. No4.. D.,i IS. PAGE COUNT

*Final PROM F.~aL81 TO .Eeh...ti. May 1985 134
16. SUPPLEMENTARY NOTATION

COSATI CODES it SUOJECT TERMS iCOULIRut aR roerIt@ (',econgry and Identfly by Ndock num ber,

rIELO GROUP sue. oR. Loglisp Lisp
19 02 Logic Programming Programming Languages

Prozramming Environments
jIt. ABSTRACT lCaftlave on Pwiri. if rievemt" end identify by Noett awn herP

*~LOCLISP is basically ZetaLisp with a logic programming system, LOGIC, embedded within it.
LOGIC differs in a number of ways from the well-known PROLOG implementations of logic
programming. The most noteworthy difference is that LOGIC is simply a set of new LISP
primitives designed to be used freely within LISP programs. These primitives are invoked
in the ordinary LISP manner by function calls from the terminal or from within other LISP
programs. They return their results as LISP data objects which can be subjected to analysis
and manipulation. Each of the logical prezedures comprising a LOGIC knowledge base is aV LISP data object stored (like the definition of an ordinary LISP procedure) among the
information concerning the identifier which is its name. Thus, one calls LOGIC from within.-
LISP.

*It is also possible to call LISP from within LOGIC. The identifiers used as logical
predicate symbols, function symbols, and individual constants within a knowledge base or

20. OISTRI BUTIONIAVAILASILITY OF A&STRACT 121. ABSTRACT SECURITY CLASSIFICATION

UINCLASSIPIED/UNLIMITED SAME AS RIPT. :OTIC USERS UNCLASSIFIED
22&. NAME OFP1RESPONSIULEK INDIVIDUAL 2.TEPHN MB11 2C.OFFICE SYMBOL

(Inctude A owe Code,
Philin B. Tarbell - C~ant-:a4 USqAV (35 33-54RAC(O

00 FORM 1473, 83 APR EDITION OF I OtAN 73 13 OBSOLETE. UNCLSSIFIED
SECURITY CLASSIFICATION OF TMIS *A,:E

............

UNCLASSIFIED
SICUNITY CLAW PIICATIO4 OP THIS PAGE

query can be given a LISP meaning by the ordinary LISP method of definition or assignment.
Thus, every logic construct is capable of being interpreted as a L SP construct. During
"thededuction cycle"of LOGIC each logic construct is"Oevaluatei as a LISP construct,

according to a suitably generalized notion of evaluation, calledc"LISP-reduction'.' The
effect of this LISP-reduction step within each deduction stev is to make pvailable to the
LOGIC programmer virtually the full power of LISP.

,1,.., ,,....

DTIC
ELECTE

S AUG 19 98
Aceson For 1

NTIS GRA&I
DTIC TAB "

Unan~nounced
just iticatio

AvailatbilitY CodeS

,Avail and/or

|::: I u. o, c In].!;

1:51-- " " " '"

UNCLSSIFIED
SECURITY CLASSIPICATION OP TMIS PAGE

',- ' " ' .' . . . -. ' .' .) :.;..
"

.
. ' -

.
, -

.. . .".. . ."'.".. ."."... .. ". ."-.'.. .'.." " " :" " " ''

CHAPTER 1

INTRODUCTION

Since Kowalski's 1974 paper "Predicate Logic as Programming
Language" [Kowalski 1974) there has been a growing interest in
the use of what he calls "logic programming" as a technique for
specifying computations. This interest has been well served by
the PROLOG programming language, first implemented in 1972 at the
University of Marseille. PROLOG supports a practical version of
logic programming and has been in constant and growing use for
over ten years.

. The logic programming technique -)nsists of formulating
computational specifications as . set of declarative sentences,
each of which is a simple assertion of some truth - conditional
or unconditional, general or particular - which one wishes to
record in a "knowledge base". The sentences are written formally
as "Horn clauses".

A Horn clause has the form

B if Al and ... and An

in which B is the conclusion and the A's are the conditions. If
n n) 0 the Horn clause is "conditional", otherwise
'"unconditional".

Kowaiski writes a conditional Horn clause as

B <- Al ... An

. * and , unconditional one as

B <-

(We shall adopt a slightly more stylized notation for use in the
computer.) Each of the A's and the B is an "atomic" sentence,
i.e., a "predication", written as

(P SI ... Sk)

• ..- 1 -1 -

,.....-..- *. -.- - -. ,

:.-.- - -.. ,.- -. - r - .-.r-r - r , q :- .4-. -. -' . -. -.. .- - - ., . -

in which some predicate P is ascribed to a subject (SI ... Sk).
A subject is a tuple of descr.iptive expressions each of which is
either a proper name, or a variable, or a "term", i.e., an
applicative construction written as

(F Si ... Sn)

in which some operator F is applied to some operand (SI ... Sn).
The operand of a construction is in general a tuple of
descriptive expressions of just the same kind as the subject of a

" predication.

- A Horn clause containing one or more variables is general, while
one containing no variable is particular.

We find it useful to make a slightly different classification of
Horn clauses. kn unconditional particular Horn clause is said to
be a datum. Any other Horn clause is said to be a rule.

The variables in a general Horn clause are treated as if they
were governed by universal quantifiers preceding the Horn clause.
Thus, the Horn clause

(Odd (Product x y)) <- (Odd x) (Even (Sum x y))

should be understood as being preceded by "for all x and y".

1.1 QUERIES AND ANSWERS

A knowledge base thus consists of rules and data.

For example, consider the knowledge base

(Male James) <-
<Male Bill) (-

(Male George) <-
(Parent Bill Mary) <-
(Parent Mary James) <-
(Parent George James) <-
(Parent James Bill) <-
_Father a b) <- (Parent a b) (Male a)

The first seven clauses are data; the eighth is a rule.

Once such a knowledge base is given, the logic programmer can
request answers to queries. It is these requests which invoke
the "logic computations" or deductions which reveal the implicit . -

content of the knowledge base. -1"

- -2 -

...
."'. .. "

. .

.--. ~ * -.... *.

.

A query is a description

the set of all (xl xk) such that (Al and and An)

of a set of tuples which satisfy a given conjunction (the
constraint of the query). (Again, the notation used by our
g--itm-ismore "mechanical" than the informal style followed in
this introduction.)

For example:

the set of all (x y) such that (Father x z) and (Father z y)

The constraint of a query may contain variables in addition to
those occurring in the answer template (xl xk) of the query.
These are to be understood as being governed by existential
quantifiers preceding the constraint.

Thus the above query means

the set of all (x y) such that
there is a z such that
(Father x z) and (Father z'y)

The answer to such a query is then the set of all tuples whose
satisfaction of the given constraint follows logically from the
knowledge base. Thus the answer may be the empty set, or a. set
containing just one tuple, or a set containing many - even
infinitely many - tuples. If the answer set *is infinite, then in
practice some finite subset of it will be supplied, or some other
description of the set will be given.

" Thus the answer to the above query would be

- (James Mary), (George Bill) }

On the other hand the query

the set of all x such that (Female x)

would have the answer

since our little knowledge base has no data or rules about the
predicate "Female". Note that lack of information about "Female"
does not cause an error message to appear. In practice, our ,* "
logic programming system is prepared to report such "undefined
predicates" as errors, and normally does so, but the programmer

1-
- 1-3 -

.- . .. @m_ . , -... • .'.'-.... ,,. . .

can easily suppress such reports.

A logic computation, then, consists of the sequence of events-
*- necessary to construct the answer to some query from the
* information embodied in some knowledge base.

1.2 PROLOG

J These ideas were incorporated into the programming language
PROLOG.

PROLOG implementations of logic programming go beyond the "pure"
• version of it described by Kowalski. They provide certain

"imperative" features by which the programmer car, affect the
deductive computation of the answer to a query, and indeed by
which he can affect the meaning of the query and of the

*assertions in the knowledge base.

These "control constructs" of PROLOG have been found most useful
in practical applications of logic programming and we are in no
sense critical of them. However, we believe that it is one of
the essential ideas of logic programming to make a clean

* distinction between -the "logic" of one's program and its
"control".

1.3 LOGIC

. Accordingly we have implemented a programming language called
- LOGIC, which embodies our idea of the "pure" version of logic

programming featured in Kowalski's writings.

. For those who may wish to avail themselves - while still in some
sense working within a logic programming framework - of a greater
degree of algorithmic control over events, we have embedded LOGIC

. within a system called LOGLISP.

- 1.4 LOGLISP = LOGIC + LISP

- LOGLISP is a marriage of LOGIC with LISP.,

"" A LOGLISP workspace contains everything one expects to find in a
LISP workspace, and can be used purely as such by those who wish

* to ignore the presence of LOGIC in that workspace.

* The same LOGLISP workspace can also be used as a "pure" LOGIC
* workspace, that is, as nothing but a basic logic programming

* environment, in which the assertion/query style of computing can
be conducted in just the Kowalski manner. The logic programming

*. facilities are invoked by making suitably-formed LISP calls on

- 1-4 -
. ..

• , ...-.-. 2... .. '. _... * .. -,.- ..- %., .,€ , ,,? , .. ,. ,

such LISP macros as ASSERT and the query macros ALL, ANY, THE,
and SETOF. These LISP macros, together with further auxiliary
and supplementary LISP macros and functions, comprise the LOGIC
system.

A major advantage of embodying logic programming within LISP in
this way is that the LISP environment is available to the logic

* .programmer as a convenient host facility in which LISP functions
for editing, displaying, monitoring, debugging, inputting and
outputting one's assertions, queries and deductions can be
invoked interactively or under program control.

Since the putting of a query is just the submission of an
* appropriate LISP function call, this can be done either (as in

the PROLOG systems) interactively from the terminal or internally
from within an applications program.

Since the answer to a query is a LISP data object it can either
(as in PROLOG) be displayed on the terminal as a stream or
returned to an internal call as its result and subjected, if
desired, to analysis and manipulation.

Both predicates and operators in logic expressions, can be. given a
LISP meaning by suitable programmer-supplied definitions of them
as LISP function names. Some proper names indeed have 4 LISP
meaning which is present in every workspace as part of LISP

*" itself.

By a benign extension of the "pure" logic programming paradigm,
LOGLISP is capable of recognizing such predicates and operators
during the deduction cycle of LOGIC. The predications and

.. constructions in whose heads they occur are thereby treated as
LISP-meaningful function calls, and are replaced in situ by
appropriate equivalents obtained by "reduction".

1.5 REDUCTION SEMANTICS VS. DENOTATION SEMANTICS

LISP users are accustomed to working with a "read-eval-print"
loop at the top level of interaction with the machine. That is,
the user types in an expression E and the machine prints out the
object D which is denoted by E. The object D is constructed by
evaluating E.

Thus, if the expression

. + (3 4) (4 5))

is typed in, the object

- 1-5 -

!..9

S,.t. *... . S.. . .'v ' i '. '*. . :@ ,: . 9. . .. ,,,,; ;. ., . ., . ,. . ., . .
. . "........." / l i l i l - -i , - - = , , , F . "%

, 32

is printed. If the expression r,

(QUOTE (+ (* 3 4)(* 4 5)))

is typed in, then the object

(. ¢ 3 4)(* 4 5))

is printed.

In the first case, the E we enter and the D 'e get back are
equivalent expressions. They both denote the same number. Some
people (and indeed all LISP manuals) say that "32" is a number.
In fact it is a numeral - an expression - not a number. You can
print it, and numbers can't be printed. So in spite of the
"official" story, in this first case E does not denote D, but
rather both E and D denote the number thirty-two. E and D, that
is, are equivalent expressions, and what LISP does is to take E
and reduce it to D.

In the second case, however, LISP really does accept an E and
* produce the denotation D of E. Quotations really do denote what

they quote. So in this case, E and D are not equivalent, and
* LISP is not simply reducing E to D.

In LOGLISP we have found it necessary to make LISP-reduction,
rather than LISP-evaluation, the process that is applied'to
expressions when LISP is called from LOGIC. Ideally, we would
implement a "read-reduce-print" loop at the top level, rather
than the traditional "read-eval-print" loop, in order to have a
more systematic LISP. However, we have taken it as one of our
design principles that LOGLISP should merely extend, not modify,
LISP as it stands.

* One of the pleasant things about reduction is that it is always ..

defined. For example, the expression

(+ (+ 3 4) x)

reduces to

(+ 12 x)

instead of provoking an error message. Reduction consists of the
persistent replacement of subexpressions according to "rewrite
rules" which are either system-defined (as e.g. the rule
"(* 3 4) 12" defined by the multiplication operation) or

p '-."

1-6

X --%%..%

user-defined (e.g. by naming and defining a function with LISP).

Reduction and instantiation ordinarily interact in a quite
straightforward way. If we substitute 7 for x in "((* 3 4) x)"
we obtain the expression

(+. (* 3 4) 7) _

which reduces to "19". If we make the same substitution in 4-

"(+ 12 x)" we obtain "(+ 12 7)", which also reduces to "19".

Reduction agrees with evaluation in the cases where the terminal
expression is "an atom which denotes itself" - such as a numeral,
or T, or NIL. It disagrees with evaluation in the cases (such as
quotation) where evaluation of E produces a D which is not
equivalent to E. LOGIC looks to LISP-reduction to transform
predications and constructions into equivalent predications and
constructions.

1.6 LOGIC CAN CALL LOGIC

The effect of this LISP-reduction step, performed once in every
iteration of LOGIC's deduction cycle, is to give the LOGIC
programmer the means to invoke very nearly the full power of LISP

.* from within logic expressions.

This fact, together with-the previously mentioned fact that LOGIC "'-
calls are simply certain LISP calls, means that it is very easy
to initiate subordinate deductions during a deduction, by making
recursive calls on LOGIC from within LOGIC.

* Thus LISP is not only a rich and convenient host environment for
LOGIC programming, but also a partner in the novel hybrid style
of "LOGLISP" programming in which LISP and LOGIC call each other,
and themselves, recursively.

The following chapters describe LOGLISP in full. The background
ideas are explained in detail, and the design and implementation

* are presented * both "top-down" and "bottom-up". Examples of
. applications of LOGLISP are given which illustrate its novel

capabilities.

LOGLISP runs on the DEC-10 under the TOPS-1O operating -system
using a version of Rutgers-UCI LISP, essentially that described
in [Meehan 1979], and on the LMI Lambda using Zetalisp [Moon and
Weinreb 80].

- 1-7 -

e % 4.

.5..

| '-' '. .',.' -•-. .'.-.-- -- , .'.. % - ,'. % . . .-. .,...-..-.-. .-.- -.-.-..: -.,.,. ,..- . ,, - :,.- --.- :, .- .-..,;...',.v,. ;.,,-,.'. -. ,-. *.. . *..,-.. .,,,.,.,,.,.,,.,, ,- .,.... ...

CHAPTER 2

NOTIONS AND NOTATIONS.

"- In this manual we are concerned with computations whose data are
expressions. It will be useful to have the basic ideas and
notational conventions available from the outset, and in this
chapter we discuss the most important of these. The general
framework is that of LISP, augmented in certain ways to
accommodate the needs of LOGIC.

2.1 EXPRESSIONS

LISP has two kinds of expression: atoms and dotted pairs. For

* the purposes of LOGIC we further divide the atoms into two kinds:
" variables and proper names. Therefore we have three kinds of
*' expressions:

-variables
proper names
dotted pairs

A variable is an identifier which begins with a lower ease
letter. (This is our usual convention. We allow the programmer
to choose others when appropriate.) A proper name is any atom
which is not a variable (in particular, strings and numerals are
proper names).

A dotted pair is a composite expression with two immediate
constituents, called its head and its tail, both of which are
expressions. We have three formal predicates, for use in writing
algorithms, which correspond to the three kinds o.f expression.

(VARIABLE u) = T if u is a variable, NIL otherwise
(NAME u) T if u is a proper name, NIL otherwise
(CONSP u) T if u is a dotted pair, NIL otherwise

* We follow LISP's convention that truth is denoted by T, falsehood
*by NIL.

-2-1 -

. .

S........ *-....

- - - - - - ---. , , ' ' -' , S ' -. . , , i , -=t ,, *'
'

i ' ' '..• o . ' ;. . . - J + - , '
o

.

2.2 NOTATION FOR DOTTED PAIRS AND LISTS

We use the notation of LISP, which we review briefly here.

. The dotted pair whose head is the atom A and whose tail is the
: atom 17 is written

(A . 17)
I.

More generally, we express any dotted pair by writing its head,
then a dot, then its tail, all enclosed in parentheses. Thus

((A . 17) • (B C))

is the dotted pair whose head is (A . 17) and whose tail is
(B . C).

A considerable notational economy is achieved by identifying
" certain expressions as lists and writing them without dots. All

lists are dotted pairs except for one, which is the proper name:
- NIL. NIL is known as the empty list, and may also be written:

". Lists other than () are said to be nonempty. A nonempty
list, is any dotted pair whose tail is a list. A nonempty list
may be written by writing its one or more components in order,
with a left parenthesis before the first component and a right
parenthesis after the last. The head of a list is its first

-* component, and in general the (i + 1)st. component of a list is
the ith component of its tail. Thus the list

(0 . (2 . (4 . (6 . (3 . (BINGO . NIL))))))

has six components and would be written

(0 2 4 6 8 BINGO)

Note that the tail of a nonempty list is just the list of its
remaining components after the head has been removed.

Both list- and dot-notations are blended together in the
convention whereby, e.g.,

(A . (B . (C (D . (E . (F G))))))

car, be written

(A B C D E F G)

- showing that it is like a nonempty list in having successive
components, but unlike a list in that its "final tail" is not

2-

~~~- 2-2 - "''

b.. . . • •a . -- ,. -.. . . .-. .-..-. .- , -. . -. . . . ..' , • . .% , .. . • °% " - % % -

. . . . . . ....- ,- -. * .*,.'i-'J*'.
"

.,:*,':. . ',V .'-,- . **,.,- , .-.-. . ,- . -.' , .. -*.''." .- ".- " , . , • .,i ,. ,



NIL. In general, an arbitrary right-associated nest of dotted
pairs

(xl . (x2 .. (xn . xn+1) ...))

is writable as the "dotted list"

(xl x2 ... xn . xn+1)

and as the list

(xl x2 ... xn)

in the special case that xn+1 is NIL.

2.3 NOTATIONS FOR LISP COMPUTATIONS

Although LISP expressions are of interest in themselves, LISP is
a programming language in which certain expressions are
interpreted as programs whose execution yields expressions as
values. The most important of these are the applications. An
application is a list whose head is an identifier, the name of a
function, and whose remaining entries (if any) are expressions
specifying the arguments of the function; the computation thus
denoted is the application of the function named by the head to
the values of the argument expressions.

To illustrate, the function which constructs a dotted pair from
its two argument values is called CONS, and, e.g., the value of
"(CONS 1 2)" is the pair (1 . 2). The decomposition functions
are CAR, which yields the head of the pair which is its argument,

. and CDR, which yields the tail of its argument (both are
undefined for atomic arguments). We have the fundamental
identities

(CAR (CONS u v)) u

(CDR (CONS u v)) = v

where u and v stand for any expressions.

When LISP expressions are interpreted as programs, numerals and
strings are taken to be constants (i.e., to denote themselves) as
also are the identifiers T and NIL. All other identifiers are
variables, except when they appear as function names. We use
quotations to denote other expressions. A quotation is a list of
two components whose head is the identifier QUOTE and whose
second component is an expression. The value of a quotation is
its second component; thus the value of (QUOTE (A . B)) is the
pair (A . B). Though standard, this notation is rather

.. ..'

- 2-3 -

.. .. P. A* S6

"" "" "" . ..'-"...r .; .r,-., ,-.• .. • .-,. -.. •S .. .. . .-. - .. p..*. .... -.. .. . . . . . . . . . '- ,.



. 6

cumbersome and we follow the usual convention that, e.g.,
(QUOTE (A 17)) may be abbreviated as '(A 17).

This said, we can write

(CONS 1 '(2 3 4)) '(1 2 3 4)

(CAR '(1 2 3 4)) = I

(CDR '(1 2 3 4)) = '(2 3 4)

It is not mere pedantry that we have written quotations on the
right of two of these equations. Both sides of such an equation
are to be interpreted as "programs", and in writing such an
equation we claim that the two sides have the same value. It
would be incorrect to write

' * (CONS 'A '(B C)) = (A B C) **

though the casual reader might overlook this slip, since A is not
ordinarily the name of a LISP function. Contrast, though, the

*" equation

(CONS 'CONS '(1 2)) = '(CONS 1 2)

. which is correct, with

:* (COFS 'CONS '(1 2)) = (CONS 1 2) *

which is quite plainly wrong. The value of the left side is the
expression "(CONS 1 2)", while the value of the right is the
expression "(1 . 2)".

Strictly as a matter of taste we shall write variables in LISP %-e

programs with lower case letters. This correct, though
unorthodox, style. is consistent with the conventions we shll

*introduce later for LOGIC programs.

'. Some additional functions will be used for computing with lists.
" The function which concatenates two lists is APPEND, defined by

(APPEND la ib) = if la is () then lb
else (CONS (CAR la) (APPEND (CDR la) lb))

Thus

(APPEND '( 2 3) '(4 5 6)) = '(1 2 3 4 5 6)

• The length of a list is the number of components it has: %

2-4-

77. .. ..

" . ... . . ..... " -,. . .. .- ,-.'-. ....-... ,



(LENGTH lst) if 1st is C) then 0 else 1 + (LENGTH (CDR lst))

,J 2.4 PATHS. STRUCTURES. PRINTABLE EXPRESSIONS

The notion of a path is helpful in understanding the structure of
expressions.

- A path is a function obtained by composing CAR and CDR. The
, length of a path is the number of CAR's and CDR's in the

composition. Thus CAR and CDR are the two paths of length 1.
The four paths of length 2 are the functions

(CAAR u) = (CAR (CAR u)) (CDAR u) = (CDR (CAR u))

(CADR u) = (CAR (CDR u)) (CDDR u) = (CDR (CDR u))

. Among the paths of length 3 is, e.g., the function

(CADDR u) (CAR (CDR (CDR u)))

We spell the names of these function according to the usual LISP
convention, beginning with C, followed by an A or a D for each
CAR or CDR in the composition, and ending with R.

Thus CADDDAAADADAADADDDADADADADDDDDDAR is a path of length 31.
This notation is quite general, but no actual LISP implementation
known to us supports this spelling of paths for lengths greater
than 4.

'. The identity tunction I is the (only) path of length 0.

An expression is said to admit a path p if the result of applying
p to it is defined. Thus, every expression admits I, and every
dotted pair also admits CAR and CDR. Variables and proper names
admit only I, and this fact is their characteristic structural

S-"property. In general the set of all paths admitted by an
expression exp is called the structure of exp, and gi-ves a rather
direct portrayal of exp's "shape".

A useful way to represent an expression is as a connected
directed graph with two kinds of nodes - atoms and dotted pairs.
A node which represents an atom has no out-arcs. A node which
represents a dotted pair has exactly two out-arcs, one labelled
CAR and the other labelled CDR. Each arc impinges upon exactly
one node. Each node which represents an atom is labelled by the
"printname" of that atom. There is a distinguished node called
the root of the expression, from which there is at least one
chain of arcs to every node in the expression. Each such chain
beginning at the root node describes in the obvious way a
composition of the functions CAR and CDR (the one obtained by

."1

- 2-5 -

IL



reading the labels on the successive arcs of the path in reverse
* order). Such a graph G represents the expression exp if the
'" paths admitted by exp are exactly those described by the chains

of G, and if when (p exp) is an atom x, the chain describing p in
". G has x as its terminal node.

An expression may have many - even infinitely many - such
representations as a graph.

Thus the expression whose head is 0 and whose tail is itself can
" be represented by the graph:

CDR
>....... ........ .> .....

CAR

*3

with two nodes, one of which is a dotted pair and the root, the
other of which is the atom 0.

In such an expression-graph two chains are equivalent if they
lead *from the root to the same node. Thus in the above graph
there are two equivalence classes of chains, namely those
describing the paths in

I, CDR, CDDR, CDDDR, ... I

and those describing the paths in

f CAR, CADR, CADDR, CADDDR, ... }

This illustrates how in general the paths admitted by a given
.. expression A are partitioned by each graph G which represents A

into equivalence classes which correspond abstractly to the nodes
of G. The class containing I always corresponds to the root. In
general the system of equivalence classes shows how the structure
of the expression is "shared" when represented by a graph. The
same expression can have different sharing systems, corresponding
to the different graphs which represent it. For example, the
expression whose head is 0 and whose tail is itself can be

" represented by many other graphs, such as the (infinite) tree
whose sharing classes are

2"6...

, ..

~~- 2-6 --

,'.''* * . .* -
. . . . •*

~~- ~ . -*. * ... . .. *-.j.***. *-



{ I }, ( CAR ), ( CDR }, { CADR }, { CDDR },

that is, all singletons. In this representation there is nc
sharing at all.

The printable expressions are those whose structure is finite.
Not all expressions are printable. For example, the dotted pair
whose head is 0 and whose tail is itself is not printable, since
its structure is the infinite set of paths

(1, CAR, CDR, CADR, CDDR, CADDR, CDDDR, ... }

It may be described as the expression which solves the equation

x =(CONS 0 x)

and we may reason about it from this description. We may also
represent it as. a finite (cyclic) graph as discussed above.
However, to attempt to print it would result in a nonterminating
process.

2.5 ENVIRONMENTS

A dotted pair whose head is a variable represents a binding.

A list of such dotted pairs with distinct heads represents an
' environment.

Intuitively an environment is a collection of replacement
instructions coded as dotted pairs, each one saying that a

.. certain variable (its head) is to be replaced by a certain
expression (its tail). An environment which contains all the
bindings of ths environment env (and perhaps other bindings) is

• "called an extension of env.

2.6 THE NOTION DEF

If env is an environment and v is an expression we say that v is
defined in env if, and only if, there is a binding in env whose
head is v. Accordingly we introduce the function DEF by the
scheme

(DEF v env) if v is () then NIL
else if (CAAR env) is v then T
else (DEF v (CDR env))

which computes the truth value that v is defined in env. Note
that if v is defined in env then v is a variable.

- 2-7

.- *



2.7 THE NOTIONS IMM AND ULT

If v is defined in env we say that the immediate associate of v
in env is the tail of the binding in env whose head is v, and we
define the corresponding function IMM by

(IMM v env) if (CAAR env) is v then (CDAR env)
else (IMM v (CDR env))

with the understanding that IMM will never be invoked for a v and
env such that v is not defined in env. The immediate associate
in env of a variable v may itself be a variable defined in env.
In such a case we may wish to track down the ultimate associate
of v in env - namely the first expression in the series

v (IMM v env), (IMM (IMM v env) env) ....

which is not defined in env. Accordingly we define the function
ULT by

(ULT v env) if (DEF v env) then (ULT (IMM v env) env) else v

which computes, for any expression v and environment env, the
ultimate associate of v in env. For example, if env is the
environment

((x y) (y z) (z . (F v (B r s))) (r . (G s)) (s 5))

then the immediate associate of x in env is y, but the ultimate
associate of x in env is (F v (B r s)).

Note. Although we have defined DEF, IMM and ULT for arguments
which are respectively a variable v'and an environment env, it
should be noted that all three functions work when v is any
expression and env is any list of dotted pairs. This comment
will be recalled later when we have defined the function
UNIFY. End of note.

2.8 REALIZING EXPRESSIONS IN ENVIRONMENTS

Given an expression exp and an environment env, we consider the
result of replacing each variable in exp by its immediate
associate in env. This expression is called the realization of
exp in env. To compute the realization of exp in env we use the
function REAL, defined by:

(REAL exp env) if (CONSP exp) then
(CONS (REAL (CAR exp) env)

(REAL (CDR exp) env))

- 2-8

. .. -

. . . . . . . . . . . . . . . . . . . . .



else if (DEF exp env) then (IMM exp env)
else exp

We note that, for example, the realization of (+ x y) in the
environment

((x y) (y , z) (z (F A (B r s))) (r (G s)) (s 5))

is (+ y z).

We are also interested in recursive realizations. For example,
if we start with (+ x y) we obtain each of the following
expressions by repeatedly realizing the previous one in the
environment above:

(+ y z)
(+ z (F A (B r s)))
(+ (F A (B r s)) (F A (B (G s) 5)))
(+ (F A (B (G s) 5)) (F A (B (G 5) 5)))
(+ (F A (B (G 5) 5)) (F A (B (G 5) 5)))

Realizing the final expression in this environment merely
reproduces it. This final expression is therefore by definition
the recursive realization of (+ x y) in the given environment.
In general the recursive realization of an expression exp in an
environment env is defined by:

(RECREAL exp env) if (CONSP exp) then
(CONS (RECREAL (CAR exp) env)

(RECREAL (CDR exp) env))
else if (DEF exp env) then (RECREAL (ULT exp env) env)
else exp

* 2.9 UNPRINTABLE RECURSIVE REALIZATIONS OF PRINTABLE EXPRESSIONS

It can happen that a printable expression may have an unprintable
recursive realization in a printable environment. For example',
in the environment

((x. (0:

the expression x has the recursive realization

(0 (0 (0 . ..

which is the "infinite expression" whose head is 0 and whose tail
is itself.

-2-9-
* . -. ........

* /* .*- .** . . . ... ...

• °.,° i!•-..°.• ...... . -. ...... . . . •.. .. o.. .. °.,.°. .-. .. .



2.10 UNIFICATION

A fundamental notion in logic programming is the operation of
unifying two expressions expa and expb relative to a given
environment env. This operation yields a result, denoted by
(UNIFY expa expb env), which is either the message "IMPOSSIBLE"
indicating that expa and expb cannot be unified with respect to
env, or else is an extension of env in which the recursive
realizations of expa and expb are identical. In the latter case
we say that the environment (UNIFY expa expb env) is th, most
general unifier ("mgu") of expa and expb with respect to env. By
definition, we then have that

(RECREAL expa (UNIFY expa expb env))

• (RECREAL expb (UNIFY expa expb env))

The computation of (UNIFY expa expb env) is defined by

(UNIFY expa expb env)

if env is "IMPOSSIBLE" then "IMPOSSIBLE"
else (EQUATE (ULT expa env) (ULT expb env) env)

where

(EQUATE expa expb env)

if expa is expb then env
else tf (VARIABLE expa) then (CONS (CONS expa expb) env)
else if (VARIABLE expb) then (CONS (CONS expb expa) env)
else if not (CONSP expa) then "IMPOSSIBLE"
else if not (CONSP expb) then "IMPOSSIBLE"
else (UNIFY (CDR expa) (CDR expb)

* (UNIFY (CAR expa) (CAR expb) env))

Note. If in the last line of the definition of UNIFY. we replace
* the argument "env" by the argument

(CONS (CONS expa expb) env)

we strengthen the unification algorithm considerably. It will be
recalled that DEF, IMM and ULT are capable of accepting more
general arguments, and of operating in effect as an associative
retrieval system. When UNIFY is altered in this way, the
"environments" are made to do double duty. We not only record
bindings of variables in them, but also the pairs of expressions
encountered in the final arm of the conditional - i.e., pairs
which must be unified as part of the overall task. We are
saying, in effect, that one of these expressions is to be

2-10 

S~............ .

• ............................................................................................................................. . .v - .-- :
. . . . . . . . . . . . . . ..-.. ..-.- .. .. .- .... - . .. - -,.,,.... " .[.. ...•.- ,.-.. * , .- ,* .,,..-:*," -',,".' "- % '



replaced by the other if it should be encountered later. This
change in the definition of UNIFY guarantees its convergence even
on pathological cases involving complex infinite expressions.
However, the extra overhead may be considered too great to
warrant provision for such pathological cases. In LOGLISP we
have implemented the algorithm essentially as
given. End of note.

The mgu of (P (G x y) x y) and (P a (H b) c) with respect to the

empty environment () is

((y . c) (x . (H b)) (a . (G x y)))

and in this environment both expressions are recursively realized
,* as

(P (G (H b) c) (H b) c)

The mgu of expa and expb with respect to env is intuitively the
most general way that env can be extended to an environment in
which expa and expb can be recursively realized as identical
expressions. It is possible that unifying expa and expb will
make them unprintable. For example, the most general unifier of
the expressions x and (0 . x) with respect to the empty
environment ) is the environment ((x . (0 . x))) in which x is
bound to (0 x). This shows that in general it is possible for .'.-
(UNIFY expa expb env) to be an environment in which the recursive
realizations of expa and expb are identical but unprintable.

2.11 SUBSTITUTIONS

Some readers may be more familiar with the usual treatment of
unification, which is developed in terms of the idea of
substitutions. A substitution is a mapping from expressions to

*expressions which preserves proper names and the dotted pair
structure. More precisely, a mapping s from expressions to
expressions is a substitution if, and only if, it satisfies the
two conditions:

p*s = p for all proper names p,
(CONS x y)*s = (CONS x*s y's) for all expressions x and y.

We denote the result of applying a substitution s to an
expression x by the notation: x's, as illustrated above. An
important property of a substitution is that its effect upon any
expression is completely determined by its effect on the
variables (if any) which it actually changes. By listing those
variables, each equated to its image under the substitution, we

. therefore give a complete description of the substitution. But

- 2-11 -

-.. .- .. * ... * **. * . .

|°. . .. . . . . . . . . . . . . . . .

• " . . . . . .."/ """" """ "".. .- " . "". . . . .""." ." . . . . . . . .." " %"% "_l" . % " %= ,% % % " .i



| -

the information in such a list of equations is just what is
provided by an environment. The list of equations .

v1 al, ... , vn an
.-a,

corresponds to the environment

((vi . al) ... (vn . an))

and conversely. Indeed if s corresponds in this way to the
environment env, then the image x's of any expression x under s
is just the expression (REAL x env). We write [env] for the
substitution corresponding in this way to the environment env.
Thus we have

x*[env] = (REAL x env)

for all expressions x and environments env. In this
correspondence between environments and substitutions, the empty
environment corresponds to the identity substitution (which
transforms every expression into itself).

Composition of two substitutions sa and sb yields a substitution
we denote by sa'sb (read "sa followed by sb") which sends each
expression x into x'(sa'sb) = (x'sa)*sb. If sa is [enval and sb
is [envb], samsb is [envab], where envab is the list of all
distinct bindings calculated by

(CONS v v'sa'sb)

where v is defined in enva or in envb (or both).

*2 An. environment env may be taken as a description not only of
[env] but also of the iterate of [env]. The itera.e s of a
substitution s is the "limit" of the series

s, S, S*s*S,

To find the image x's of an expression x under the iterate of s,
we repeatedly apply s to x until no further changes occur. That
-is, x's is the first expression in the series

X, X5, XiS*S, X* S5S,

which is the same as its predecessor. It turns out that if s is
[env] then x's ~ is (RECREAL x env). If s is [env] then s- is
denoted by (env}. So we have

x'[envl = (REAL x env)
x*(env} = (RECREAL x env)

-:2-12 -

S. ..... .....................................
..- ',. _,,- -...... :..'..'.......... .... ,-. ,....-..............-..,...-.....................-....-.....-...................... . :

v'", e'.'-* ,"." * * ,, ,"-. ' %. -, *-. * :. % . ... .. , .'. < .x ." a.'- .-" '." -",-"



Now in terms of substitution mappings, a unifier of two
expressions expa and expb is a substitution s which maps expa and
expb onto the same expression:

expa's = expbis

and a most general unifier of expa and expb is a unifier u of
expa and expb with the property that,-"[I-;

s =u's

for all unifiers s of expa and expb.

Thus if u is an mgu of expa and expb and s is any unifier of expa
and expb we have

expa's expa'u's =expb'u's expb'sa, r, d

and '

expa'u = expb'u

, so that the common expression onto which s maps expa and expb is
obtainable by applying s to the common expression onto which u
maps expa and expb. The substitution ((UNIFY expa expb env)} is
the mgu of the two expressions expa'fenv) and expb'{env}. Thus
UNIFY is given the two expressions to be unified in an indirect
way.

2.12 IMPLICIT EXPRESSIONS

The way that the two expressions expa*{env} and exp'b*{envl are
given to the UNIFY algorithm is indirect, in "unassembled" form.
This idea of working with expressions not yet (or possibly never)
fully assembled is used extensively in our system. It makes for
computational .economy and also for increased intelligibility. We
think of the list (expa env) as an "implicit" way of giving the
expression expa*[envl. We saythat expa is the skeleton part,
and env the environment part, of the implicit expression
(expa env). For many purposes it is more convenient, as well as
more economical, to deal with such "implicit expressions" than
with the actusl expressions themselves. This is particularly the
case when (expa env) describes an unprintable expression even
though both expa and env are printable - as in the example
previously mentioned when eipa is x and env is ((x . (0 x))).

-2-13-...
K K.K * *].

K . . . . . . . .. . . . .. '

• . .. . . . .. . . ."o• . •.. . ... * .- -•- ° °"•°.- •. .• ° °.. •.• .. ,.K....K, KK K..K - , • , - .



* A * ,t -- v .- b - A AI I A -I A - - m ..

2.13 INSTANCES

We often wish to consider, for some expression x, the various
expressions x*s, where s is some substitution. These are known
as the instances of x. For example, the expressions

(Divides 17 85)
(Divides (Plus a b) (Times 3 c))

are both instances of the expression (Divides p. q) . The first
of them is in fact a ground instance, since it contains no
variables. In general we say that expressions which contain no

*- variables are ground expressions: so a ground instance of x is
an instance of x which happens to be a ground expression.

.- Expressions which contain one or more variables are known as
-. patterns. We often think of a pattern as a way of representing

all of its instances.

2.14 VARIANTS

In the role of a representative of all its instances a pattern is
not unique. Other patterns - known as its variants - have
exactly the same instances. For example, the expressions

(Divides p q) (Divides x y)

"* have exactly the same instances. Each is a variant of the other.
In general R variant of an expression x is an instance x*s of x
under a substitution which maps variables onto variables in

" one-to-one fashion. Such a substitution is called a variation,
" and is the only kind of substitution which has an inverse. If

[env] is a variation then its inverse is [env'], where env' is
. obtained from env by interchanging the head and tail of each of

its bindings. The compositions [env]*[env'1 and [env']*[envl are
then both the identity substitution.

In view of the identity of the set of instances of an expression
with that of any variant of the expression, we often treat mutual
variants as merely different ways of writing the same thing.
However, in some of the computations involving patterns (such as
the unification computation) it is sometimes necessary to take
suitable variants 6f one's data beforehand.

To see why this is so, consider the problem of finding a pattern
*- whose instances are exactly those which are instances of two

given expressions, expa and expb.

- 2-1 -

%-

:... .....-....... :,-.:......... ......... •.........,........ ...... ... A.•._A
-1 A-.. . .." .. .- ." . - - . - ", "-" -" ~ "- " ." "- . "-.-.- " "," -' -. '--• ."-" ". "'- A.; .".- A ,-



For example, if expa and expb are the expressions

(Divides (Plus x y) z) (Divides x (Times x y))

then among their common instances are the expressions

(Divides (Plus 3 4) (Times (Plus 3 4) 5))
(Divides (Plus 0 0) (Times (Plus 0 0)(Exp x y))

and so on. We can get the first instance from expa by the
substitution

x =3, y :4, z = (Times (Plus 3 )5)

We can get it from expb by the substitution

x (Plus 3 4), y 5

However, there is no single substitution s such that
expa's : expb's = this common instance. The difficulty is the

' occurrence of the same variables in both expa and expb. If we
. take a variant of expb which has no variables in common with

those of expa - say, the expression

(Divides p (Times p q))

which we shall call expc - then we can in fact find a pattern
whose instances are exactly those common to expa and expb. To do
this we need only compute the expression

(RECREAL expa (UNIFY expa expc ))

or (which is the same)

(RECREAL expc (UNIFY expa expc ))

which is the-"most general common instance" of expa and expc
and therefore also of expa and expb.

Now the environment (UNIFY expa expc ) is

((p . (Plus x y)) (z (Times p q)))

and so the required expression is

(Divides (Plus x y) (Times (Plus x y) q) )

Every expression which is an instance both of expa and of expb is
an instance of this expression - and conversely. This example

2-15 -

., .>,- .



-~ .-- - - - -- b r~ -- ~ -. ~ -~ -A-- r- rrt. r

illustrates the way in which the unification~ computation solves
the general problem of constructing a pattern whose instances are
precisely those which two given patterns have in common. Of
course, when the two given patterns have n~o common instances, no
such pattern exists. The UNIFY function detects all such cases
by returning "IMPOSSIBLE" instead of an environment.

'II

-2-16-

* . . 5*.* . . . . . * . . -. . . -. * * % ' 5 5* ** . *



-. 4 .-.

CHAPTER 3

LOGIC PROGRAMMING IN GENERAL ,.

Logic programming is a "declarative" computing technique in which
a program consists of one or more assertions. These assertions
are used by the processor as "axioms" from which to deduce
logical consequences.

Once such a set P of assertions has been installed, the processor
- is ready to evaluate expressions of the form

the set of all xl, .. , xn such that C

which in traditional mathematical notation is written

{ xl, . ., xn C }

' Here, C is a sentence expressing a constraint which a tuple
* (xl, ..., xn) must be proved to satisfy, by a chain of deductive

inference steps starting from P.

Such "set of" expressions are called queries. The result of

evaluating a query { xl,...,xn C } is a set

{ Al, . Ak :

..*' of answers Ai, each answer being a tuple (t, ... , tn) for which
- the processor can prove the sentence

C where xl = tl and ... and xn tn

" In logic programming no imperative constructs are used. The
course of events during a logic computation triggered by a query
Q is determined not by the programmer's control instructions (for

*] there are none) but by the machine's pursuit of those deductive
consequences of the program P which may yield answers to Q.

' For example, the program might consist of the assertions stated
'.- in informal English in figure 1. These are numbered for later " .
'. reference. Some of these sentences are "data" recording simple,

particular facts; others are "rules" involving the use of
logical variables x, y, z.

- 3-1 -

.. . . . . . . .

. .; ,'..;.". . -,....... . . .-'.-. . ,..'. : ,... ..- . '-. -....- "-..-"-.. .",."... .-. .-. .,-. .-. ,,.........'..."-.,-.-'..'-.,. .... . ". '...,
. . .. . . . . . . . . . . . . . . . . . . . . . ... .." ". ."."."."'. . ... " ."". "'-."".." 1," .':.'" -. .'.-.; '. ->-'::,- '-'- "'; '.-'.'.



1 Drobny is a champion
2 Drobny is older than Rosewall
3 Rosewall is older than Goolagong
4 If x is older than y and y is older than z

then x is older than z
5 If x was born before y then x is older than y
6 Kelly is a child of Goolagong
7 If x is a child of y then y was born before x
8 Goolagong is female
9 Drobny is male
10 Rosewall is male
11 Rosewall is a champion
12 Goolagong is a champion
13 Connors is a champion
14 Borg is a champion
15 Connors is male
16 Borg is male
17 Borg was born before Connors
18 Connors was born before Kelly
19 Kelly is female
20 Evert is a champion
21 Evert is female
22 Evert was born before Connors

FIGURE 1

' *A logic programming system such as LOGTC is capable of
- constructing the set of all answers to a query about the "world"

described by these assertions. In supplying the answers to such
a query it must in general deduce them from what it has been told
(rather than merely look the answers up). For example, the

*" query:

the set of all x such that x is male
and x is a champion
and x is older than Kelly

would evaluate to the set of answers

[Connors, Borg, Rosewall, Drobny}.

- That these persons are male and champions is explicitly given
among the assertions, but that each of them is older than Kelly
must be deduced. The deductions involved can, if desired, be

- examined by the user. For example, one could request an
explanation of the fourth answer and LOGIC would respond with a
rationale analogous to the informal explanation shown in figure 2
on the following page.

-3-2-

•. . . . . . . ...

. . . . . . . . . . . . . . . . . . . . . . . . . .. .. ,

. .. . . . . . . . . . . . . . . . . . . . .° o

. %"** .; * ** .. • . . .



* To show: Drobny is a male
Drobny is a champion
Drobny is older than Kelly

* it is enough, by assertion 9,

• to show: Drobny is a champion
Drobny is older than Kelly.

* But then it is enough, by assertion 1,

* to show: Drobny is older than Kelly.

• But then it is enough, by assertion 4,

* to show: (there is a y:1 such that)
Drobny is older than y:1
y:1 is older than Kelly.

• But then it is enough, by assertion 2,

* to show: Rosewall is older than Kelly.

• But then it is enough, by assertion 4,

• to show: (there is a y:2 such that)
Rosewall is older than y:2
y:2 isolder than Kelly.

* But then it is enough, by assertion 3,

* to show: Goolagong is older than Kelly.

* But then it is enough, by assertion 5,

. to show: Goolagcng was born before Kelly.

• But then it is enough, by assertion 7,

* to show: Kelly is a child of Go.olagong.

* But then it is enough, by assertion 6
to show: nothing.

"-.End of explanation.

FIGURE 2

S-3

.U

......-........-.. .'..........'.......-...,-..........-..-..-.........-.-....-.......-..-..-..-..-...........-......-......, -. . .. , . '



In the LOGIC system implemented within LOGLISP, the language of
the queries, assertions and explanations is formalized and
artificial. We shall shortly discuss the details of its design.-
Meanwhile, note that an explanation is essentially a proof, which
proceeds in steps all of the same kind. At each step there is a
"constraint list" of simple propositions, all to be shown true.
Any variables in these propositions are considered to be
existentially quantified by quantifiers placed at the beginning
of the constraint list, and the constraint list itself is
considered to be the conjunction of its members. The empty
constraint list (i.e. the empty conjunction) is by convention
true, so that if at some step the list has become empty, the
proof is complete there is nothing left to show. In general,
each inference step consists of three stages:

(1) The selection of a proposition A from the constraint list and
of an assertion from the knowledge base whose conclusion B
will unify with A.

(2) The replacement of A in the constraint list by the
constraints comprising the hypothesis (if any) of the
selected assertion.

(3) The application to the new constraint list of the mcst
general unifier of A and B.

The notion of unification has been defined only for formal
expressions, however, and so to make this account precise we must
now recast it in terms of the formal la-guage of LOGIC. Let us
now survey this formal language.

" 3.1 PREDICATIONS

" The basic unit of the formal language is the predication.
Predications are simple sentences of the subject-predicate form
in which the predicate is written first and the subject second.

* The predicate P may be any "proper identifier" - that is, an
identifier which is a proper name. (Recall that, in LISP, an
identifier is an atom which is neither a numeral nor a string).
The subject is a list of expressions called terms. Ground (i.e.
particular) terms are essentially noun-phrases which denote
things. A list (Al ... An) of n ground terms denotes the n-tuple

* of things denoted respectively by the component terms Al,
*< An.

[. Predicates denote properties of tuples. (Properties of tuples .,

are often also called relations.) The intuitive meaning of a
ground predication with predicate P and subject A is the
proposition that the tuple denoted by A has the property denoted-

- 3-4 -

-............,. ....*. -. .*
r.. .. . .-. .. . .-.. . °.-.-.---.- . --.. . . .. .- .- . .,..- - .'. .-.-... . .- . .•-. - .- . .... - .- ... . - •. ° .- .. -



by P. We write this formally as the list whose head is P and
whose tail is A.

Thus we might formally write:

Drobny is a champion as (Champion Drobny)

Drobny is male as (Male Drobny)
Drobny is older than Kelly as (Older Drobny Kelly)
Evert is female as (Female Evert)
Evert was born before Kelly as (Before Evert Kelly) -

Kelly is a child of Goolagong as (Child Kelly Goolagcng)

3.2 TERMS

• A term may be either a variable, or a proper name, or a
. construction. Constructions have an operator-operand form. The

operator (which may be any proper identifier) denotes an

operation, and the operand may be any list of terms. When the
construction is a ground expression, its operand denotes a tuple
of things, in just the same way as does the subject of a ground
predication. Constructions are indeed syntactically
indistinguishable from predications, and from LISP applications.

- Their common syntactic form reflects an underlying unity in their
semantics as applicative expressions. We do not, however,
require that predications and terms be meaningful LISP
applications. Each ground construction or ground predication can
be understood as representing the result of applying some
function to some argument(s). In the case of a predication this
means construing a property or relation as a truth function,
namely a function which yields as its result one or other of the
two truth values, TRUE, FALSE (T, NIL in LISP). We write the

" construction with operator F and operand (Al ... An) as the list

(F Al .• An)

whose head is F and whose tail-is (Al ... An).

Ground predications, then, express facts and denote truth values.
" Ground terms express applicative descriptions and denote things.

Both ground terms and ground predications have the same simple,
systematic denotational semantics based on the applicative

-principle.

,'.3

- 3-5 -

",.- -.-. • ;, ,-,.-. ". . . •.-. .... ,.. .... ':....... . . . . .- -..- .-..-.......... :... .. ..... ...-.-....-...-
• V."."- .-"-" .

•
' ' ' * ° ' .- °- " ... " ° 

•
• °"-"-"°"-"*" • -"-°-"•. . "-°

°
"."°. . . " °



.. ." . . .777 .

3.3 WORLDS

A world is a collection of facts "everything that is the case"
in that world. In logic programming a world is represented by a
collection of ground predications.

-, Given a collection W of ground predications as such a world, we
can ask for what substitutions, if any, a given predication Q

P.. (whether ground or not) is "true in W"".

If Q is a ground predication, this is simply the question whether
Q is a member of W. If Q is in W, the answer is then: the
identity substitution.

If Q is a predication pattern, however, this is not quite so
simple a question, and we construe it to mean: for which
substitution operations s is the predication Q*s in W?

For example, the world specified by the assertions in our earlier
example is the set shown in figure 3.

With this world as W, if we ask what are the substitutions for

which the predication

(Male x)

is true in W, we get four "solutions", namely:

x = Drobny
x = Rosewall
x = Borg
x Connors

there being four ground instances of "(Male x)" in W, namely
those corresponding to these four substitutiors. More generally
we can ask a question involving a conjunction of predications.

-3-

.- . .

....,.. - . . .. 4 ft-tf f * *t* *.



(Male Drobny) (Female Goolagong) (Champion Drobny) A-
(Male Rosewall) (Female Evert) (Champion Rosewall)
(Male Borg) (Female Kelly) (Champion Borg)
(Male Connors) (Champion Connors)

(Champion Goolagong)
(Champion Evert)

(Older Drobny Rosewall)
(Older Drobny Goolagong) (Before Borg Connors)
(Older Drobny Kelly) (Before Connors Kelly)
(Older Rosewall Goolagong) (Before Evert Connors)
(Older Rosewall Kelly) (Before Goolagong Kelly)
(Older Goolagong Kelly)
(Older Borg Connors)
(Older Borg Kelly)
(Older Evert Connors) (Child Kelly Goolagcng)
(Older Evert Kelly)
(Older Connors Kelly)

FIGURE 3

If QI,..., Qn are predications, we can ask of a world W

for what substitutions s
is (QI & ... & Qn)*s true in W?

. or mre briefly:

what substitutions satisfy (QI & ... & Qn) in W?

For example in the W of our example the question

what substitutions satisfy
((Male x) & (Champion x) & (Older x Rosewall))

in W?

has the answer

x Drobny

since under this (but no other) substitution the conjunction
becomes true in W.

- 3.4 QUERIES

" In LOGIC we write the query

the set of all X such that QI and and Qn

3 -7, ..,

I__ - 3-7 -

,..... ,



formally as an expression of the form

-', (ALL X Q1 Qn)

in which Qi ... Qn are predications and X is an expression
called the answer template of the query. The answer template may
be any variable, any proper name, or any list of terms. The list
Q = (QI ... Qn) is the constraint list of the query.

For any world W, such a query has a set of answers, which is
represented as a list of expressions. Each expression in this
"answer list" is the instance of the answer template under a

substitution which satisfies the constraint list Q, that is,
which transforms the conjunction (QI & ... & Qn) into one which

'* is true in W. Thus the query

" . (ALL x (Male x)
(Champion x)
(Older x Rosewall))

. has the answer list (in the world of our example)

(Drobny)

since the substitution x = Drobny is the only one which satisfies
the given constraint, while the query

(ALL z (Female z) (Older z Drobny))

* has the empty list

as its answer list since there are no substitutions which satisfy
the constraint

((Female z) (Older z Drobny))

.3.5 SPECIFYING A WORLD BY ASSERTIONS

It is not expected that one should have to specify a world by
explicitly listing, as in figure 3, all of its predications
(although this would in principle be possible for a finite
world). A world is specified indirectly, by giving a collection
of clauses. A clause is a sentence with two main parts: a
conclusion, which is a predication, and a hypothesis, which is a
list of predications. The hypothesis of a clause can be the

; empty list, in which case the clause is said to be an

- 3-8 .

4. .*...-.--. . . . .

. * . . . . . . . . . . .
4 . . .. . . - . .. . . . .. . . . . . . . . . . . . . . . . . .".~



unconditional clause, whereas a clause whose hypothesis is
nonempty is said to be a conditional clause. An unconditional
clause whose conclusion is B is asserted by the command

(ASSERT B)

while a conditional clause with conclusion B and hypothesis
(Al ... An) is asserted by the command

(ASSERT B <- Al & ... & An)

(the arrow and the ampersands are optional "syntactic sugar" and
may be omitted).

A collection of clauses is called a knowledge base. Any such
collection determines a world.

An unconditional ground clause (i.e. a datum) asserted by
(ASSERT B) intuitively says that B is one of the facts in the

* world being described - "B is true". Recall that any clause
which is not a datum is a rule. A rule asserted by the command

" (ASSERT B <- Al & ... & An) says that B is one of the facts in
the world being described provided that Al,...,An all are - "if

Al and ... and An are true then B is true". A rule which is a
clause pattern - a clause containing one or more variables - has

-. the same descriptive effect as would the set of all its ground
- instances. In general this means that a clause pattern is in
"" effect a universally quantified statement. If its variables are

xl,...,xk (say) then the clause asserted by
(ASSERT B <- Al & ... & An) can be read

"for all xl, xk: if Al and ... and An then B",

Indeed, if some of the variables among the xi (say, zl,...,zo) do
not occur in the cQnclusion B while the rest (say, yl,...,yt) do,
the clause asserted by (ASSERT B <- Al & ... & An) may be more
intuitively (but equivalently) read

"for all yl, ... , yt:
if there exist z,...., zp such that Al and ... and An
then B"

In the example of figure 1 there are three such clause patterns.
All the other clauses in figure 1 are data. Figure 4 shows the
series of commands which would set up the knowledge base of
figure 1, numbered to correspond with figure 1. The numbers
would not be typed when entering these commands into the
computer.

-3-9..

....... ... W--.. ..i.. ,.. . . .. . . **.. . . *%*** ..... . * ..>,,....ix..... :iiii:??'-*!i:??!i??::!ii~~?~ii., .., .. .. . _.



1 (ASSERT (Champion Drobny))
2 (ASSERT (Older Drobny Rosewall))
3 (ASSERT (Older Rosewall Goolagong))
4 (ASSERT (Older x z) <- (Older x y) & (Older y z))
5 (ASSERT (Older x y) <- (Before x y))
6 (ASSERT (Child Kelly Goolagong))
7 (ASSERT (Before y x) <- (Child x y))
8 (ASSERT (Female Goolagong))
9 (ASSERT (Male Drobny))

10 (ASSERT (Male Rosewall))
11 (ASSERT (Champion Rosewall))
12 (ASSERT (Champion Goolagong))
13 (ASSERT (Champion Connors))
14 (ASSERT (Champion Borg))
15 (ASSERT (Male Connors))
16 (ASSERT (Male Borg))
17 (ASSERT (Before Borg .Connors))
18 (ASSERT (Before Connors Kelly))
19 (ASSERT (Female Kelly))

. 20 (ASSERT (Champion Evert))
21 (ASSERT (Female Evert))
22 (ASSERT (Before Evert Connors))

FIGURE 4

The knowledge base set up by the commands of figure 4 completely
" deternines the world of figure 3, according to the following

general definition.

DEFINITION

The world determined by a knowledge base D is
the smallest set W of ground predications which
satisfies the two conditions:

(1) if D contains the datum G,
then G is in.W

(2) if G is a ground instance of a rule in D
and the predications in the hypothesis
of G are all in W, then the conclusion
of G is in W.

END OF DEFINITION

3-10 -

S
-. * *b.. . . C . . . . . . . . . .. J

..< .< .:::." -:- -;.j .'- -:-,- .%.,.- .'*. ~ . -...-. :,, .-' .-.- ,. ..-'- . . .' '---- -*% '~ .-'--v --.. ", ".~ ". " .- ."."."."." ".



.. .. T

In effect, this definition describes a process which infers W
from D by a series of wholesale inference steps. First, by (1),
the process constructs outright the set WO, which contains just
those ground predications which are conclusions of data in D.
Then by (2), in general, having constructed the set Wn, this
process constructs Wn+1 by adding to Wn the conclusion of everyground instance G of every rule in D, provided that every
predication in the hypothesis of G is in Wn. Thus the process
constructs a series of bigger and bigger worlds

WO, W1, ... , Wn,

which either ends (with a world that is the same as its
predecessor) or else continues indefinitely. The world W is then
the "limit" of this series, i.e., the union of all of the sets in
it , i.e. the smallest set which includes them all.

Thus the world W is determined by a knowledge base D through a
"bottom up" process of reasoning.

Given such a D, we wish to be able to answer queries about its
world W. In doing so we wish to avoid the brute force method of
generating W bottom up and searching it. It is much. better.,
given a query about W, to reason "top down" about W's contents
without actually constructing W. This turns out to be possible"
through the use of unification, built into a special inference
principle called LUSH resolution. This inference principle can
be applied very efficiently through the use of implicit
expressions, as we shall now see.

3.6 IMPLICIT CONSTRAINTS AND THEIR SOLUTIONS

By an implicit constraint we mean a list (q env) in which env is
an environment and q is a list of predications. The expression
q*tenvl is the corresponding explicit constraint . Now let D be
a knowledge base and let W be the world described by D. We -
denote by (SOL q env D) the set of "solutions of (q env) in D" -
that is, the set of environments xenv which are extensions of env
with the property that all of the predications in q*{xenvl are
true in W.

We wish to calculate (SOL q env D) from (q env) and D.

There are two cases to consider. The first case is when q is
empty. Then (SOL q env D) is simply the set whose only member is
env. Such a (q env) is said to be solved.

The second case is when (q env) is unsolved, i.e., when q is
nonempty.

- 3-11 -

.) -.................................



I- ~ ~ ~ ~ 7 -4 -7.- . . .. -

For this case we use LUSH resolution to represent the desired set
as the union of one or more simpler sets.

- 3.7 LUSH RESOLUTION

For any unsolved constraint (q env), any knowledge base D, the
set

(RES q env D)

is a set (possibly empty) of implicit constraints called the
D-resolvents of (q env). The interest of this set lies in the
fact that we have:

(SOL q env D) (SOL q1 envl D) U ... U (SOL qn envn D)

where (ql envi), .•, (qn envn) are the D-resolvents (if any) of
(q env). In particular it may be that there are no D-resolvents
of (q env). This then means that there are no solutions of -

-. (q env) in D.

3.8 SEPARATION OF VARIABLES

The computation of (RES q env D) requires the determination of a
variant D' of the knowledge base D. D' must have the property
that none of its clauses contains a variable which occurs in
(q env). This "standardizing apart" of the variables in the
constraint from those in the clauses is necessary for the

.. theoretical completeness of the resolution transformation. In
the current implementation D' is selected automatically and
represented implicitly and economically by techniques explained

*[[ in [Robinson.Sibert 198.1.

- 3.9 DEFINITION OF (RES Q ENV D)

The set (RES q env D) is the set of all implicit
constraints calculated as

(CONS (APPEND h (CDR q)) (UNIFY (CAR q) c env))

for which h is the hypothesis of a clause in
D' whose conclusion c unifies with (CAR q) in env.

* The decision to unify (CAR q) with c is entirely arbitrary; one
could equally well choose some other predication of q. Although
a well-informed choice might offer substantial benefits to the
overall computation, we know of no economical way to make such a
choice, so the present implementation uses the simplest method

- 3-12 -

,° . . .. . * * .-. * -

,.. .. ... .. .

> ... ..., .., ...,. ,.... ..• ... + ..... ,.,..,,. .,.,. ,? .',: ..,..,,.. •.., .,,+.. ,.,.. . . . . . .,. ...... .. ,. ... ..... . . . . ................ . ...



available.

3.9.1 The Computation Of (RES Q Env D)

On the face of it, the entire knowledge base D must be searched
in order to extract from it every clause whose conclusion c will
unify in env with the predication p = (CAR q).

Fortunately, this is not necessary. For large D the cost would . -

be prohibitive.

In fact it is possible to store D in such a way that only a
relatively small subset of D need be searched. Note, first, that
the predicate of c must be the same as that of p if c is to unify

-. with p in env. Accordingly, only those clauses need be
considered whose conclusions satisfy this condition, and it is
straightforward to partition D into subsets of clauses ("logical
procedures") whose conclusions have the same predicate. Each

.. logical procedure can be stored on the property list of the
predicate of its conclusion, and thus be retrievable in time
essentially independent of the size of D. The data of each
procedure can be further indexed on the basis of the various
proper identifiers which occur in their conclusions. This is
highly advantageous, since in order that a datum c unify with p V
in env, c must in fact contain every proper identifier which
occurs in p'fenv}. This observation forms the basis of a quite

* selective retrieval technique. In practice it is found that
large procedures consist mainly, if not entirely, of data, so
that the retrieval technique frequently applies just when it will
do the most good.

;. 3.10 THE DEDUCTION CYCLE

, The heart of the LOGIC system is the basic deduction cycle, which
" computes the set (SOL q env D) for a given implicit constraint

(q env) and a given knowledge base D.

. The computation of (SOL q env D) consists of the development of
two sets of implicit constraints, SOLVED and WAITING. Initially,
.SOLVED is empty and WAITING contains the single constraint
(q env). These two sets are then subjected to an iterative
transformation which corresponds intuitively to the construction
of a "deduction tree" whose nodes are implicit constraints. The

* root of this tree is the implicit constraint (q env). The
, successors (if any) of an unsolved node (x e) are the

D-resolvents of (x e). The tips of the deduction tree are the
solved nodes (if any) and the unsolved nodes (if any) which have

-- no D-resolvents. The output of the deduction cycle is the set of
environment parts of the solved nodes of the tree.

- 3-13 -

. .- . ,-*)'-." a .* * . .. . .- . *. .

*-.-.. . .*'--.*~..........



- S

As the tree develops, the solved nodes are collected into the set
SOLVED, and the nodes which have not yet been processed are kept
in the set WAITING. Thus the tree construction is finished when
WAITING finally becomes empty.

The deduction cycle is the following three-step algorithm:

IN: let SOLVED be the empty set and
let WAITING be the set containing only (q env)

RUN: while WAITING is nonempty

do 1 remove some constraint (x e) from WAITING

2 if (x e) is solved
then add (x e) to SOLVED
else add the D-resolvents of (x e) to WAITING

- OUT: return the set of environment parts of SOLVED

In general (SOL q env D) is computed by executing the deduction

* cycle and taking its output as the required set.

Several points are worth noting about the deduction cycle.

*: 3.10.1 Failure Nodes: Immediate And Ultimate

An unsolved node which has no solved nodes as descendants is
" known as a "failure". There are two kinds of failure. An

immediate failure has no descendants at all - because it has no
D-resolvents. An ultimate failure has one or more successors,

* but they too are failures - the entire subtree rooted in an
ultimate failure consists of nothing but failures, and its tips
are all immediate failures. It is an interesting problem to

• .. design implementations of the deduction cycle in which the
* subtrees rooted in ultimate failures are kept as small as

possible without undue extra computation. Ideally, all failures
i" would be immediate and would be recognised as such in constant

(and short) time.

': 3.10.2 Nondeterminacy Of Deduction Cycle

The choice called for in step 1 of the deduction cycle introduces
an element of nondeterminacy. The choice can be made uniformly
and cheaply according to a criterion which is built into the

* system design. In the PROLOG systems, the selection in step 1 is

- 3-14 -

"iI

::::::::::::::::::::::::::::::::::::::.............:...................H:::::: -:"::? ::::::::::::::::::::::::::::::::::::::::::::::::



in effect ruled by a very simple criterion - the first constraint
(x e) is selected from a WAITING which is represented in effect
as a list. [We have to say "in effect" because in fact the
PROLOG systems handle WAITING dynamically in a backtrack mcde of
working which never explicitly realises the whole list at once.]

The selection of the node (x e) in step 1 can (as in the PROLOG
systems) be made according to the "depth first" criterion in

" which the younger members of WAITING are chosen before the older
members. This may sometimes lead to the "depth first runaway"
situation in which one or more nodes in WAITING are never
selected because they are never the youngest. In practice other "_.
considerations (see the discussion below of the deduction window)
preclude an infinite depth first runaway, but even the finite
versions of it which are allowed by the deduction window may be
thought undesirable. Avoidance of depth first runaway can be
economically achieved by letting the selection in step 1 depend
upon a quantity which can be computed once for all for each node
when it is first generated. This quantity is the "solution cost"
of the node.

3.10.3 Definition Of Solution Cost

The solution cost of a node (.x e) is simply a heuristic estimate
of the "cost" (in arbitrary units) of obtaining a solved
descendent of (x e). In LOGIC we estimate this cost as the sum
of (LENGTH x) and the depth of (x e), which is number of nodes
preceding (x e) on its branch of the deduction tree. The
simplest heuristically guided search results from selecting in
step 1 a node of WAITING having minimum solution cost. Our
actual search technique combines this method with a limited

:- depth first search; the details are explained in chapter 9.

3.11 THE DEDUCTION WINbOW

Since in general the deduction tree can be infinite, it is
possible that WAITING should always be nonempty, and hence it is
necessary in these cases to truncate the deduction cycle and
accept the resulting (perhaps incomplete) set of solutions as an

-" approximation to the full set (which may be infinite) .

It is desirable to manage this truncation gracefully and to
provide the LOGIC user with some control over its details. This

* is the reason for the deduction window.

The deduction window is a collection of parameters which can be
set in various ways by the user and which have default values
which are used in the absence of user-provided alternatives.

- 3-15

z "



The deduction window is discussed in more detail in Chapter 9.

Each parameter in the deduction window is used as an upper bound
on an associated quantity measuring some feature of the deduction
cycle. These quantities are TREESIZE, NODESIZE, ASSERTIONS,
RULES and DATA.

- At a given moment in the execution of the deduction cycle
'-" TREESIZE is the total number of nodes which have so far been
. generated. The RUN loop is terminated as soon as TREESIZE

exceeds the bound set for it in the deduction window.

- The implicit constraint (x e) selected in step 1 of the body of
the RUN loop is treated as an immediate failure (hence dropped
from WAITING without progeny) if NODESIZE(x e), ASSERTIONS(x e),
RULES(x e) and DATA(x e) are not all within the bounds specified
for them in the deduction window.

. NODESIZE(x e) is (LENGTH x), the number of predications in the
" constraint list X of (x e).

. ASSERTIONS(x e) is the number of nodes which precede (x e) on the
* branch of -the daduction tree of which it is the current tip.

This number is the same as the number of clauses invoked in its
deduction. It is 0 for the initial node, and is 1 greater than
that of its predecessor for each derived node.

RULES(x e) is a quantity similar to ASSERTIONS(x e), but reflects
the classification of clauses into rules and data.

RULES(x e) is the number of times a rule was invoked in the
deduction of (x e), and

DATA(x e) is the number of times a datum was invoked in its
deduction. We obviously have, for each (x e) in WAITING, that:

DATA(x e) + RULES(x e) ASSERTIONS(x e)

Thus the deduction window serves as a truncation device which
ensures that each particular execution of the deduction cycle
will terminate. It provides the user with both a global
(TREESIZE) and a local (NODESIZE, ASSERTIONS, RULES and DATA)
cutoff control. All the bounds in the deduction window are set

* to system defined default values in the absence of user-defined
* alternatives.

- 3-16 -

. . . ..-. . .. . - .,. . . [... .-

-. ". •.......-..--..... . .......- ,.- -.........-.-.-. .... ......... ..- ,,- ... -..



CHAPTER 4

LOGIC PROGRAMMING IN LISP

LOGIC is related to LISP in two different ways.

First, it is implemented in LISP - that is, the LOGIC system
consists of a collection of LISP functions which live in a LISP
workspace and provide all the logic programming facilities
described in this manual.

i Second, LOGIC in a certain sense contains LISP. This means that
the LOGIC programmer can invoke LISP from within LOGIC calls, by

• incorporating, in clauses and queries, pieces of text which can
be handed over to LISP for processing. To understand how this
works we need to discuss the notion of LISP-reduction.

4.1 LISP-REDUCTION OF LOGIC EXPRESSIONS

The expressions encountered by the LOGIC "processor" during the
deduction cycle are terms and predications arising ultimately
from the constraint list of some query and from the clauses used
in constructing resolvents. However, some of these LOGIC
expressions may also admit an interpretation as LISP programming
constructs. In that case they may have a LISP value, or if not
they may be capable of some LISP-reduction.

For example, the expression

(+ 3 (* 5 4))

. is both a LOGIC term and a LISP construct. In the latter role,
. it is equivalent to, and can be replaced by, its "value", namely
"" the numeral

23

within any ordinary expression e to produce an expression which
has the same meaning as e. Both expressions denote the number
twenty-three.

Such replacements of expressions by others which are their values
are basic equivalence-preserving transformations of ordinary
computation as normally conceived. The presence of free

-4-1 -

. .-. .. .. ......... .' .- . .- . .' • .-.. .-... .-... .-.. .. .. ... ..... .... ....-.. .-.. . ., .. .... . -...--.- .'.-' -.-... .%
',• .'..' .o.., * ..- *°., . ... .-o. .. -. -. ,.-.-.-.. . ....-.-.- * - . . "o , -. '. /

4.0." ""*-. " ' -, '. " . .,''"" "" , .-"- . --". . "-". ..'- .' . . " ," ' , ." ' " .- ,..-.- - .. . ....' ... , '



variables does not invalidate this idea. Thus even though "a"
has no LISP value, the LISP construct

(+ a (* 5 4))
can be reduced; it is LISP-equivalent to and can be replaced by

* the simpler expression

(+ a 20)

* even though the latter is not its "value" as in the first case.
* In general, an expression may well "reduce" to another expression

even when it will not, in the usual sense, "evaluate" to a
"value" .

We refer to this process of replacing a LOGIC expression by one
which is LISP-equivalent to it as "LISP-reduction", or simply as
"reduction" when this will not cause confusion. It can be done
to any expression at any time and is always defined (but may be
merely the identity transformation). When an expression reduces
only trivially, i.e., to itself, we say that it is "reduced".

4.2 LISP DEFINITIONS

Certain definitions are built into LISP itself and come with the
system whenever one sets up a LISP workspace. That is, certain
identifiers are defined as denoting built-in LISP functions (CAR,
CDR, PLUS, etc.) or as the keywords of built-in special forms
(COND, SETQ, PROGN, etc.).

- In addition to these built-in LISP definitions, a LISP workspace
may contain further definitions made by the user. A collection
of such user-coined LISP definitions indeed constitutes a LISP
program.

. 4.3 REDUCTIONS AND VALUES.

The joint effect of the system- and user-imposed definitions in a
LISP workspace is to determine a notion of "reduction".

Every LISP construct is reducible, if only trivially (to itself).
The reduction process produces (intuitively) a "reduction series"

CO, ... , Cn

of LISP expressions, in which CO is C itself, and Ci+1 comes from
Ci by. the replacement of some subexpression R by an equivalent
expression S. We think of this as the invocation of the "rewrite

,-4-2-'

* . :-::::. %K K



rule"

R ~S

as for example the rule

(+ 3 4) 7

We say that Ci is "rewritable", and "rewrites to" Ci+1. Thus a
reduction series consists of one or more expressions the last of
which (if the series terminates) is not rewritable, but each

., earlier expression (if there are two or more) rewrites to the
, next.

* It is in the nature of the concept of reduction that a reduction
series is continued as far as possible, i.e., until an expression
Cn is reached which is not rewritable. Such unrewritable
expressions are often said to be "in normal form" or "normal".
As we said above, usage also sanctions calling them "reduced".

[There are expressions which cannot be reduced to normal form,
because it is always possible to apply further rewrite rules.
For example, if the only rule is

x (F x).

then the reduction series for x is

x, (F x), (F (F x)),

and so x does not have a normal form.]

Thus reduction is always defined. It often coincides with
evaluation - that is, the value of e and the reduction of e are

|. often identical. But this is not always the case and the matter
.. requires some care.

.- For example, the quotation

'(This is an S-expression)

* has as its value the expression

(This is an S-expression)

but it is reduced (as are all quotations), that is, it is its own
) reduction.

. The expression

.--
3

.Z.



(* (+ 3 4) (11 5 x))

has no value (since its second argument expression contains an
occurrence of a variable) but reduces to the expression

(* 7 (U/ 5 x))

These two examples show that although an expression always has a
*, reduction it may or may not have a value, and that even when it

does have a value, this may or may not be the same as its
. reduction.

.  The following two propositions hold in general:

A. If an expression has a value which is
a proper name, its reduction is that proper name.

B. If an expression e has a value v which is
not atomic, or is a variable, the reduction of e is
the expression (QUOTE v), rather than the expression v.

Proposition B is at first a somewhat surprising feature of the
* reduction notion. A little reflection soon shows its

naturalness.

By definition, the reduction of an expression is always a reduced
expression. Moreover, an expression e must be LISP-equivalent to
the reduction of e - and this means that if e has the value v so
must the reduction of e. These two considerations together
require that the reduction of e be (QUOTE v) - the value of which
is v - since the expression v might itself have a value w
distinct from v. Only when v is a proper name is w identical
with v.

Note that one effect of these definitions is to establish a
convention for quoting atoms which differs somewhat from that
used in LISP. As an example, the LOGIC expression

(MEMBER Borg '(Connors Borg Evert))

has value (Borg Evert), being analogous to the LISP expression

(MEMBER 'Borg '(Connors Borg Evert))

* The utility of the LOGIC convention becomes apparent when one
considers a predication such as

(Older Drobny Rosewall)

4-4

* .



which, had LOGIC followed the LISP convention, would have to be

written

(Older (QUOTE Droby) (QUOTE Rosewall))

a rather less palatable form. 1•-

4.4 OBJECTS IN LOGLISP

Before proceeding into a detailed exposition of the interaction
between LOGIC and LISP, we review the classification of LISP
objects imposed by LOGIC. Recall that an object is either atomic
or composite. Atoms are identifiers, strings or numerals.
Identifiers beginning with a lower case letter are variables, all
others are proper identifiers. Proper identifiers, strings and
numerals constitute the class of proper names. For technical
reasons, we prohibit the use of the character "^" in variables,
except for certain "subscripted variables" created by LOGIC,
which will be explained later.

*4.5 REDUCTION AND EVALUATION

. Generally speaking, the "applicative" expression
e = (f el ... eN) has a value if f is the name of a function
(defined in LISP) and el, ... , en have values. for which f is
defined. In this case the reduction of e is the value of e,
quoted when necessary as explained above. [The value of
(f el ... eN) is obtained by APPLYing f to the values of the

w. expressions eil.

The reduction of an applicative expression which does not have a
value is in general obtained by replacing occurrences of its
immediate subexpressions by occurrences of their reductions.

We proceed now to a precise definition of the notion of
reduction.

We shall speak of expressions as though they were explicitly
represented. In fact, in the LOGLISP system we compute the
reduction of an expression directly from its implicit
representation, as economically as we can. The resulting
reduction is also represented implicitly, with the same
environment part.

- - 4-5

•.. ...-. .

...........

. . . . . . . . . . . . . . . . .

• .-. , .. . .. '- .,, ..-...,,..,-. ,. -.-... ,-..- ,, ,...,. ..- ,.-.,L ,,,.. ... . ..-.. .,...,.. .-. .,.,. ...... .,.. .-. ,.... ...-- , ,



5--

• 4.5.1 Expressions And Their Values

Excepting certain special forms which are discussed below, we say
that the expression e (f el ... eN) has value v if

• "(AND (SYMBOLP f) (FBOUNDP f)), the contents of f's function cell .%%
(fc) is a lambda expression, el, ... , eN have values, and v is
the result of APPLYing fc to the values of el, eN, e.

.- NOTE: Currently, LOGLISP will not properly evaluate expressions
of the form (f el ... eN) where f is a user defined special form.

-. (A user defined special form is a function whose formal arglist
contains one or more of the keywords &QUOTE, &REST, &KEYWORD, or
&EVAL.)

S.%

- The value of a proper name is the proper name itself.

- A variable has no value.

i* 4.5.2 Expressions And Their Reductions

.- •Again with the exception of certain special forms, an expression
e of the.form (f el ... eN) has the reduction r if

(a) e has the value v, in which case r is v, if v is a proper
name; otherwise r is (QUOTE v)

or e has no value, but

(b) f is a proper identifier, in which case r is
(f el' ... eN'), where ei' denotes the reduction of ei.

(c) otherwise, r is e itself.

Note that atoms, whether variables or not, are reduced.

Note further that every expression (f el ... eN) in which f is a
variable, a number, or, indeed, anything except a proper
identifier, has no value, and is reduced. This may be justified
intuitively on the ground that one doesn't know what to do in
such a case. We could, in fact, have extended the notion of

. reduction to allow f to be a lambda expression, say, but we have
not chosen not to do so. Such an extension would have
complicated matters significantly with no great advantage in
flexibility.

--4-5-.

- -. " * . * . -*'- . ". .

.-:,.-.-.:.:.... :...¢.:.L,.,:.:..,..: ,,.............-....v...'.............,.......... ........... ........... .. . ...... .. .. .



4.5.3 Side-effects

Reducing an expression which has a value and whose (LISP)
evaluation produces one or more side effects causes those
effects. Note that the reduction of such an expression is either
a proper name or a quotation -- an expression which has the same
value but whose evaluation produces no side effects. To
illustrate, reducing

(SETQ A (+ (SETQ B (* 2 3)) x)

yields the expression

(SETQ A (+ 5 x))

having assigned 5 as the (LISP) value of the identifier B. If
this expression is later instantiated to

(SETQ A (+ 6 (* 4 5)))

and that expression reduced, the reduction is 26, with the effect
of assigning 26 to the identifier A. Observe that such effects
may be separated in time, owing to the non-deterministic nature
of the search performed by LOGIC. The computation of the
reduction of any one expression is, on the other hand, an
"atomic" act within this search, no matter how complex the
expression, and any effects will occur in the order one would
expect in LISP evaluation.

*- Run-time error messages are a particular kind of side-effect
which may arise while reducing an expression. When they arise,
these are produced by the LISP interpreter, and may be dealt with
in the usual ways provided by LISP', as well as by some additional
means provided with LOGLISP and described in Chapter 12. As an "
example, an attempt to reduce

(+ A 2)

. causes the computation to be broken with a "NON-NUMERIC ARGUMENT"
message, since the proper name A has itself as value, and +
requires that its. argument values be numbers. One might suppose
that such an expression should be regarded as having no value,
and hence reducing to itself, but to adopt such a policy in the
present implementation would be quite impractical.

4-7

:::,: -~~~~~.. ........,.....-.-....-..,.- . . ......................................... ....... :....

, ~~. ...... . - .. '.. . . . . ,. ... ... ,.,...,.,"....•.,,-,"..,-,-" '."..-.•.......-.



---- -- J -- h -J 2 "U

-* 4.6 SPECIAL FORMS

In addition to the expressions just considered there are several

special forms which require separate treatment. Most of these
are special forms of LISP.

Since the syntax of special forms is the same as that of
applicative forms whose function designator is atomic, LISP users
often slur over the distinction. It is, however, most important
to remember that the LISP value of a special form is NOT obtained
by "applying the function denoted by its head to the object
denoted by its tail" - that being how the LISP value of an

.- APPLICATIVE form is obtained.

* There is a special process set up for obtaining the LISP value of
each special form, to which a LISP. interpreter switches on

- recognizing the keyword (COND, SETQ, PROGN, QUOTE, etc.) of that
" special form.

This little homily would not be necessary if the syntax of
applicative forms were designed in the same way, and applicative
forms were tagged as such by a keyword, say, APP. The high

* frequency of applicative forms in programs would make such a
* convention burdernsome. No one wants to have to write

(APP + (APP * 3 4) (APP SIN 30))

instead of

(+ C 3 4) (SIN 30))

. 4.6.1 Macros

Let (FSYMEVAL f) be a macro definition fin. The expression
* e (f el ... eN) is first reduced to the macro expansion of e as

defined by fmn. The expression e has a value only if the *macro
* expansion of e has a value.

*-Some examples: (in the context of the following macro definition)

* (DEFMACRO M (X Y) "(+ C* ,X ,X) ,Y))

(M 2 x) is reduced to C+ 4 x) .
(M (+ 1 2) 5) evaluates to 14.

S(M (+ 1 x) (+ 1 2)) reduces to (1 C* (+ 1 x) (+ 1 x)) 3).

- 4-8 -

! N* .A ' '.... .



- _ ! .~ . . < . -. . - . . . , . - , . . - , . , - - . . . , . . . . . . . . . . . . . . . ., .- 

4.6.2 Quotations

(QUOTE v) or (FUNCTION v)

Each of these forms is reduced.

Each has the value v.

Each of these forms is "immune" to instantiation, that is,
(QUOTE v)*s is (QUOTE v), for any substitution s, even though v*s
may be different from v.

Ii (F-L args. exprs)

This form is reduced, and, like the QUOTE and FUNCTION forms, it
is immune to instantiation. See (Meehan 1979, p.57] for details
on the use of F-L in LISP.

4.6.3 Listings

(LIST el ... eN)

(LIST) has the reduction NIL.

If el,... eN have the values vl, ... , vN then (LIST el . N) 
* has the reduction (QUOTE (vi ... vn)).

* If not all of the ei's have values, then (LIST el ... eN) has the
reduction (LIST ell ... eN'), where ei' denotes the reduction of
ei.

" This is just what one one would expect.

* 4.6.4 Conjunctions

*. (AND el .. • eN)

'" (AND) reduces to T.

(AND e) reduces to the reduction of e.

If el has the value NIL then (AND el ... eN) reduces to NIL.

If el has a non-NIL value then (AND el ... eN) reduces to the
reduction of (AND e2 ... eN).

• If el has no value then (AND el ... eN) reduces to
(AND el' e2 ... en), el' being the reduction of el.

- -9 -

-.5

.. .° -.• - . = .. . ° . . .. =. . % . - -o % -.. . . . . . . .... . . . . . . . .° % . . " " . . % % " .•. ° -
. ." ...-.. .- *".*..."' ,. . . . . . ..".. . . . . .... ,..... . ,.. .... '.... .. .,°...,.... -. ... .. , % ,\.". - .,

• - " " - -- ° = 'C °,. % % " .. " ='"= "% ".. °% . . ... . *- . a ." . . ... *.,-* °'. " "



- - - - - . -- '-' C. -- - -- -'- - .s.- - --.--'-

All of this corresponds to LISP usage, the conjuncts being taken
in order and only as far as necessary to determine the result.

* 4.6.5 Disjunctions

- (OR el ... eN)

*" (OR) reduces to NIL.

(OR e) reduces to the reduction of e.

If the value of el is non-NIL then (OR el eN) reduces to the
- reduction of el.

If el has the value NIL then (OR el ... eN) reduces to the
reduction of (OR e2 ... eN).

- If el has no value then (OR el ... eN) reduces to
(OR el' e2 ... en), el' being the reduction of el.

All of this corresponds to LISP usage, the disjuncts being taken
in order and only as far as necessary to determine the result.

4.6.6 Conditionals

(COND ql ... qN)

;" (COND) reduces to NIL.

,-" If ql is (eO ... eM) then:

if eO has no value then (COND ql .. , qN) reduces to
* (COND (eO' ... eM) .. qN), where eO' is the reduction of eO;

if eO has the non-NIL value v, then (COND ql ... qN) reduces to
the reduction of (PROGN (QUOTE v) el ... eM) [note that
(QUOTE v), rather than simply v, is needed here since it is
possible that M = 0];

if eO has the value NIL then (COND ql ... qN) reduces to the
• .reduction of (COND q2... qN).

All of this conforms to customary LISP practice, since PROGN
mimics the sequential evaluation of the expressions in a

* conditional "arm".
.' - '

- 4-10 .



* 4.6.7 Sequential Compositions

(PROGN el . .. eN)

(PROGN) reduces to NIL.

"* (PROGN e) reduces to the reduction of e.

If el has no value then (PROGN el ... eN) reduces to the
reduction of (PROGN el' e2 ... eN), el' being the reduction of
el.

If el has a value then (PROGN el ... eN) reduces to the reduction
of (PROGN e2 ... eN), and the side-effect, if any, of evaluating
el occurs.

(PROG1 el ... eN)

(PROG1) reduces to itself.

(PROGI e) reduces to the reduction of e.

If el has no value then (PROGI el . eN) reduces to
(PROGI el' e2 ... eN), el' being the reduction of el.

- If el has the value v then (PROGI el ... eN) reduces to the
reduction of (PROGN e2 ... eN (QUOTE v)), and the side-effect, if
any, of evaluating el occurs.

(PROG foc sl ... sN)

PROGs are always reduced.

There is no reasonable way to carry out a reduction of a PROG
analogous to the reduction of PROG1 or PROGN expressions, and the
necessity of assignment to the local identifiers of the PROG

-. would lead to limited utility of such a construct, even if we
-- were to define some notion of reducibility for PROGs. PROG may,

of course, be used freely in the definitions of functions invoked
. from LOGIC.

4-11~

"- ,-il A -

* ~ ~ - 4 i -- .•... '

" . . . .. . . . . . . . . . . . . . . . .,- *



4. 6.8 Assignments

(SETQ ident e)

If e has the value v and ident is a proper identifier then
(SETQ ident e) reduces to v, and assigns v to ident as a side
effect. Of course, any other side effect of evaluating e also
occurs.

If e has no value then (SETQ ident e) reduces to (SETQ ident e'),
where e' is the reduction of e. The assignment side effect does
NOT occur.

Note that assignment (and indeed any other side effects) should
be used with some caution in LOGIC, since the order in which
evaluations are performed is determined in part by the heuristic
search methods, and thus is not readily predictable.

Observe too that in order to obtain the LISP value of an
- identifier ident one must write "(EVAL ident)", not just "ident".

-. That is, "(EVAL ident)" reduces to v (or to (QUOTE v), as the
case may be), where v is the value of ident. If ident has no
LISP value (that is, is "unbound") the attempt to reduce
(EVAL ident) will produce the LISP error message "UNBOUND
VARIABLE". Ideally, in this case, (EVAL ident) would simply be
returned as its own reduction. However, the present
implementation takes the more practical view that such a course

". would be too costly to justify (the overhead involved in the
extra testing being possibly quite considerable).

4.6.9 Selections

(SELECTQ e (ql sl) ... (qN sN) u)

Here sl, ... , sN are lists of expressions.

. The reduction of the SELECTQ expression is basically the same as

. that of the expression

' (COND ((OR (MEMQ q1 '(T OTHERWISE)) (EQ e q1)) . sl)

(iOR (MEMQ qN '(T OTHERWISE)) (EQ e qN)) . sN))

except that reductions are expressed with SELECTQ and e is
evaluated just once at the beginning. If one of the selection

- keys qi is a list (ii ... im) then the corresponding disjunct of

- 4-12 -

. .. . . ... ...- ;-.. .. . . . . . . . . . .... . . . . . . .... . . . . . . . .... . . ..--. . . . ...-. ... .-.-. .,. '..:-:..;''..:'.,. '.. "i '. "" . ". .". : ;.,. , ",.",. -> !



the COND predicate is

(MEMQ e (LIST il ... im))

4.7 LOGLISP SPECIAL FORMS

The remaining special forms do not occur in conventional LISP.
They provide means by which the LOGIC programmer may control the
interaction between LOGIC and LISP in order to deal with various
unusual circumstances.

These special forms deal with the issues raised by the fact that
. LISP objects can meaningfully be interpreted not only (1) as LISP

programs capable of being (in all cases) reduced and (in many
cases) evaluated, but also (2) as LOGIC expressions acting as -
part or all of a predication or clause.

The LISP programmer is accustomed to this situation. One of
* LISP's most distinctive features is that all LISP programs are

also LISP data objects. The device of quotation permits the LISP
programmer to coin a name for any expression e by simply writing:
(QUOTE e). The name of this name is (QUOTE (QUOTE e)), and so

' on.

In LOGLISP we have to deal with the fact that LISP and LOGIC are
"mutually embedded" but are organized on rather different
semantic principles. LISP is based on the idea of denotation and
its main semantic operation is EVAL. LOGIC is based on reduction
and substitution (instantiation).

The process of constructing the LISP-reduction of an expression
is actually carried out by code written in LISP (although the
user need no-t be aware of this). This code invokes LISP's EVAL
and APPLY under suitable safeguards and does its best to provide,

- in LISP-reducing e, the effects and the outcome that e may* call
for as a meaningful LISP construct. However, since reduction of

- e is NOT identical to evaluation of e in every case, the LOGLISP
programmer must either stay away from those cases where the
notions diverge or else master the differences and the tools we
provide for exploiting these.

These tools consist of the following family of "quotation"
" constructs. Each provides a way of "immunizing" an expression e

during the reduction process, in a way similar to the way in
which (QUOTE e) "immunizes" e from being evaluated during the
evaluation process.

Since these forms do not occur in LISP, it is not already

- - .'% ,

.:.: ...,... .. .. .-.. . :. .....

",", -. -;". .% , 4. - 13% % 
o  

' % - .o... . -' "."% o . .% % % % - .

• . . - . " .. % -, % . % " ° ,o % ,o . . . - ° . , , • . . - - . " o ° - - . .1w .



established what, if any, their values are. Hence in the
following discussion we shall give in each case not only the
reduction but also (where appropriate) the value.

(LOGIC-EXPRESSION e) (short form: (LOGIC e) ]

Intuitively, (LOGIC-EXPRESSION e) specifies that the result of
evaluation is to be interpreted as a LOGIC expression rather than
as a LISP object. The most obvious effect of this is to suppress
the quoting of non-atomic values which would otherwise occur.

" If e has the value v, and if v has the value w, then
(LOGIC-EXPRESSION e) reduces to w (or to (QUOTE w), as the case
may be) and also has w as its value. If v has no value, then
(LOGIC-EXPRESSION e) reduces to. the reduction of v.

If e has no value (LOGIC-EXPRESSION e) has no value, but reduces
- to (LOGIC-EXPRESSION e') where e' is the reduction of e.

Put differently, when e has a value v, we reduce -.

(LOGIC-EXPRESSION e) by treating v as a LOGIC expression and
reducing v. In practice it often happens that v is reduced, in

"- which case (LOGIC-EXPRESSION e) reduces to v.

(LISP-OBJECT e) [short form: (LISP e) -

(LISP-OBJECT e) is reduced, but has the value e.

. In this respect, (LISP-OBJECT e) is like (QUOTE e). However, "
(LISP-OBJECT e) differs from (QUOTE e) in that (LISP-OBJECT e) is
subject to instantiation, that is, (LISP-OBJECT e)*s is

*(LISP-OBJECT e*s ) for all substitutions s.

Note. Logicians will recognise this as the device of
" q-asi-quotation" which first appears in W'. V. 0. Quine's
Mathematical Logic (1940). The point of it is that one often
needWs tFo'consTdI pieces of text which are "quotation schemas"- -
i.e., they are just like quotations except that they contain one
or more "slots" awaiting further specification. Thus
(QUOTE (+ x 2)) names the expression which is a 3-list whose
successive elements are the atoms "+", "x" and "2"; whereas
(LISP-OBJECT (+ x 2)) is an expression which can become
(LISP-OBJECT (+ 3 2)), or (LISP-OBJECT (+ 5 2)), etc., by
substitution for "x". End of note.

* - 4-14 -

* A-.-
.....................,,. .-....-......... ..... . ... .. ...,- . ,_ .,-.... , . .. . .

. ° -. . - ,.°. ' , . * * *- *. * * ... . - . . . -. ° .' .. . ° - q Ih ° " U.'. .' . .'. "

," .' '.-.' -. '.'J '3. - .. . - . • - - . ,, . U" * * ." * *, " .' - i ' -' ' ''' ' '';



(QUOTE-ONLY-IF-GROUND e) [short form: (GROUND e) ]

The form (QUOTE-ONLY-IF-GROUND e) is similar to (LISP-OBJECT e),
but has a value only if no variables occur in e. More precisely,
(QUOTE-ONLY-IF-GROUND e) is reduced, but has a value only if no
variable occurs in e, in which case its value is e.

(LOGIC-GR e)

(LOGIC-GR e) is equivalent to (LOGIC (QUOTE-ONLY-IF-GROUND e)).
It follows that if any variable occurs in e then (LOGIC-GR a) has
no value and is reduced.

If no variable occurs in e then the reduction and value of

(LOGIC-GR e) are those of e.

(IRRED e)

(IRRED e) has no value, and its reduction is e (not the reduction
of e). This form may be used to suppress reduction of an
expression which may not be reduced.

(Variable e)

(Variable e) has value and reduction T if the expression e
(instantiated) is a variable, value and reduction NIL otherwise.
"Variable" is, in fact, the name of a MACRO defined by

(DEFMACRO Variable X) '(VARIABLE ,X))

We shall illustrate a few applications for these forms. First,
. consider the expression

(LOGIC (SUBST (GROUND x) (GROUND y) (GRO.UND z)))

" which, as it stands, has no value and is reduced. Suppose now we
" instantiate itusing the substitution

x (+ (VAR A) 3)
y = (VAR Q)
z = (<= (VAR Q) 10)

-. to obtain the expression

(LOGIC (SUBST (GROUND (+ (VAR A) 3))
(GROUND (VAR Q))
(GROUND (<: (VAR Q) 10)

-4-15-
:..

~ ~....----------
-. .:-..- .--C .- ,.-,**



,,. .. . . . . - - -.--..- -- . .-- .

where VAR is not the name of a LISP function. Since no variables
• .now occur in the GROUND expressions these now have values, hence

" so does the expression (SUBST ... ), and hence the whole reduces
,- to

(<: (+ (VAR A) 3) 10)

4.8 SIMPLIFYING IMPLICIT CONSTRAINTS--THE FUNCTION SIMPLIFY

If c = (q env) is an implicit constraint then (SIMPLIFY c) is the
implicit constraint which results from reducing one or more of
the predications in c and dropping them if they reduce to "true".
Specifically, (SIMPLIFY c) is the result of the following
three-step algorithm:

4.,

1 let q be (CAR c) and env be (CADR c)

2 while q is nonempty

do let b*{env} be the reduction of
(CAR q)*env}

if b*{env} is "true"
then replace q by (CDR q)
else return (LIST (CONS b (CDR q)) env)

3 return (LIST NIL env)

By "true" we mean any expression which has a value that is not
NIL.

4.9 THE EXTENDED DEDUCTION CYCLE

In the actual LOGIC cycle of our LOGLISP system we include a step .
of simplification in step 1 of the RUN loop. The full

. description of the loop is then:

RUN: while WAITING is nonempty

do 1 remove some c from WAITING
and let (x y) be (SIMPLIFY c)

2 if (x y) is solved
then add (x y) to SOLVED
else add the resolvents of (x y) to WAITING .

- 4-16 -

' ', ~~~........ ........... ......-..-.. .. ',. ...-..... . .. ".. . ...-. , .,.",-.. -* .'-



* Note that the predication resolved away is the one which was just
processed by SIMPLIFY and that it is therefore a reduced
expression. In particular it may be the expression NIL (i.e.
the LISP representation of falsehood). In this case, there will
be no resolvents forthcoming and (x y) will therefore be a
failure.

4.10 CONTROLLING REDUCTION

It is sometimes helpful to inform LOGIC that an expression is
reduced, either because it is known in advance that reduction
will merely reproduce the expression itself, or because reduction
would for some reason be inappropriate. This can be accomplished
by invoking the LISP MACRO IRREDUCIBLE with a command of the form

(IRREDUCIBLE idl ... idn)

idl,...,idr, being proper identifiers. This having been done, any
expression of the form (idk ... ) will thereafter be treated as
reduced, regardless of the nature of its subexpressions. The

effect of IRREDUCIBLE can be undone with

(REDUCIBLE idl ... idn)

(REDUCIBLE is also an MACRO). REDUCIBLE will not, however,
repeal the system-mandated immunity of PROGs to further
reduction.

- These matters are discussed further in Chapter 5, Creating
- Knowledge Bases.

" 4.11 SUBSCRIPTED VARIABLES

We have mentioned before that the variables occurring in clauses
are, in effect, renamed before resolution so as to prevent
unintended identification of variables in different clauses.
This is accomplished by "subscripting" the variables in the
clauses with appropriately chosen non-negative integers.
Ordinarily this subscripting is hidden from the user, and is, in

- fact, performed implicitly and quite economically. Subscripted
. variables may, however, appear in answers to queries, and are

routinely seen when monitoring deductions (see Chapter 10). In"-
" such cases, the subscripted variable is an identifier whose print
" name consists of an ordinary variable suffixed by one or more

subscripts, each subscript consisting of a "^" followed by one or
more digits. Examples are x^7 and date^3^17. Such variables,
generated by the system, are the only variables which may contain
"'". User-coined variables may not contain "^".

-4-17-

• .-. *-°,

. . . . . . . . . . . . .. . . . .l,-
~ *%4 ~ .~.4 .~ ~ 4. . . . . . . ~.* ****-.*'.*-"

. 4 . 4* *, .N ,* * .. - - - . . .- ".* "



4.12 UNIFICATION EN LOGLISP

There are a few points worth noting about the LOGLISP
implementation of unification.

*First of all, there is no check performed to see if a unification
has created any cycles. Such a check would, if routinely made,

* be time-consuming. It appears that in normal LOGIC programming
the check is unnecessary. Since unification is confined to the
cases where the input expressions do not have variables in

*common, cycles can arise only if clauses or queries are
formulated ir certain unusual ways.

The use of implicit representations throughout irn any case makes
* it possible to work with some infinite (cyclic) expressions as

though they were finite (which in a suitable sense they are). It
* is only wher. a sophisticated user *wishes to exclude such

expressions from the domain of discourse that their detection
becomes necessary.

Of course, any process (such as a naive recursive realization)
which seeks to traverse every path in such an expression will run
or. indefinitely, and the user will.want to avoid this situation.
In designing LOGLISP we have assumed that any user deliberately
creating such expressions will be sophisticated enough to use
LISP to protect himself without being lectured at by us. We have
further assumed that any user inadvertently creating such
expressions will prefer to take the error messages or other
indications of his mistake which LISP will provide - in place of
the expensive LOGLISP overhead which would be needed to protect
him from them.

~4.12.1 Proper Names

Two proper names, say al and a2, are considered to be unifiable
heiff (= al a2 where could be defined by the macro

(DEFMACRO ==(X Y)
-(OR (EQL ,X ,Y)

(EQUAL ,X MY)

*This produces just the effect one wants, but note that distinct
identifiers with the same PNAME are not unifiable (it cannot be
the case that both are INTERNed). The integer 1 unifies with the
floating-point numeral 1.0, on the other hand, and distinct
occurrences of the same floating-point numeral are unifiable.

-4-18-

. . . . . . .. . . . . . . . . . . . .. necessary ** * ... - - --- '

~",*



- .. - - -. ,'

4.12.2 Special Forms

Expressions in QUOTE, FUNCTION, and F-L are treated specially by
the unifier. (QUOTE el) unifies with (QUOTE e2) if and only if
(EQUAL (QUOTE el) (QUOTE e2)), and similarly for (FUNCTION fl)
with (FUNCTION f2). (F-L . el) unifies with (F-L e2) if and
only if el and e2 are the same list.

In addition to these cases, expressions of the form (CONS el e2)
may unify with expressions (QUOTE (a . d)). In attempting to
unify two such expressions any logic variables appearing in
(a . d) will be treated as "constants". Let us define q[v] as
follows: if v is a proper name then q[v] is v, otherwise q[v] is
(QUOTE v). In attempting to unify (CONS el e2) with
(QUOTE (a . d)) the unifier proceeds by attempting to unify el
with q[a], then, if successful, unifying e2 with q[d]. Variables
in el and e2 will be bound to subexpressions of a and d, QUOTEd
when appropriate. Some examples will make things clear. The
expression

(CONS x y)

unifies with

(QUOTE (A B C))

with mgu x A, y (QUOTE (B C)). To take a more complicated
case,

(CONS (CONS F x) (CONS u v))

unifies with

(QUOTE ((F (A B)) C D))
with mgu

x (QUOTE ((A B))), u C, v (QUOTE (D))

Expressions in QUOTE, FUNCTION, and F-L are not otherwise.
unifiable. It should be remarked that an expression like
(F A QUOTE (B)) does not contain a quotation, merely an
occurrence of the constant QUOTE.

* 4.12.3 Variables As Tails

Ordinarily, an expression is either an atom or a list, but one ,.
* may, in fact, introduce expressions which are composite but not

lists. The only useful expressions of this class are those for
which repeated CDR's eventually yield a variable, an example

- 4-19 "

.......................



being (P (F x) y) We remark that the definitions of
unification and resolution given in chapters 2 and 3 do not
actually require that non-atomic expressions be lists.

In a sense, there is really nothing special about a composite
expression which is not a list, but such expressions are
sufficiently unusual that further discussion may be in order.
Expressions of this sort are particularly useful in dealing with
operators which take a variable number of arguments. To
illustrate, the expression

(+ x y)

unifies with

(+u 7)

with mgu

x u, y (7)

and also unifies with

(F u 3) 7 (G A B))

with mgu

x (F u 3), y :(7 (G A B))

Thus a simple, but still rather flexible, rule for solving
equations involving sums may be asserted by

(ASSERT (=: (+ x y) z) <- (:: x (- z (+ y))))

4.12.4 The "Don't Care" Symbol

The identifier [], called the "don't care" symbol, unifies with
any expression whatever, but such a unification introduces no
bindings. The effect is as though each occurrence of [] were
replaced by a new variable not appearing elsewhere in the
expressions to be unified, except that the implementation
benefits from use of the don't care symbol.

- 4-20 -

.. . . . . ... .. . .
I!I~ I Iil ', IIi. I . "1i. 

I
-. i .I .' ' 1 1 ll 1iliiIl I I I I .- .... I 1t1 .Il

I
.i I



.. ."

To illustrate, the expression

(P [ x [1)

unifies with

(P (F 1) (G A) 7) ,. -
with mgu

x (G A)

4.13 REDUCTION OF EXPRESSIONS ENDING IN VARIABLES

The reduction of an expression (f el ... eN . v) will now be
explained. Such an expression has a value if and only if f is
the name of a MACRO and the macro expansion has a value.

If f is a proper identifier, but not the name of a MACRO, then

* the expression has no value but reduces to (f el' ... eN' . v),
where the ei' are the reductions of the ei.

The sequentially evaluated LISP forms, those formed with AND, OR,
" COND, PROGN, PROGI and SELECTQ, may also involve variable tails.
*: Reduction proceeds as described before, stopping when a variable

tail is encountered. Such expressions may have a value if the
"evaluation path" avoids variable tails entirely.

4.14 SPECIAL RULES FOR RESOLUTION

The system "automatically" incorporates a number of special rules
applicable to certain predicate symbols. In most cases these
rules are just economical implementations of computations that
could be achieved with ordinary clauses, but the rule for
CONDitional expressions constitutes a fundamental extension of

. the system, as it introduces a form of "negation as failure".

Application of any of the rules can be enabled or disabled at

will by the user.

4.14.1 The Rules

.- Each of the rules is introduced by an informal, clause-like
description, followed by discussion and, in some instances, a
nearly equivalent formulation with actual clauses.

4.14.1.1 Equations .

- -21 -

. . -. .. , .. ,.•..-. . ...... "."."".......... . .- ,.. ..-.. .-.. .4 t- .. ;.. . " .. '.. .... ............ ...............-.... ..



* (=: el e2) <- "el and e2 are unified"

The rule is just the reflexive law of equality, and amounts to

(ASSERT (=: x x))

4.14.1.2 Conjunctions-

(AND pl ... pN) <- pl & ... & pN

Bearing in mind that (AND) reduces to T, the rule for AND amounts
to

(ASSERT (AND x y) <- x & (AND . y))

4.14.1.3 Disjunctions -

(OR pl ... pN) <- pi, for i = 1 ... N

Again, bear in mind that (OR) reduces to NIL. The rule for OR is
practically equivalent to the two clauses

(ASSERT (OR x • y) <- x)
(ASSERT (OR x y) <- (OR y))

except that resolvents for all of the disjuncts are obtained in
one step.

4.14.1.4 Conditionals -

(COND (pl q1) ... (pN qN)) <- pk & qk,
for the first k such that pk is provable

Let us refer to the constraint from which (COND ... ) was selected
for resolution as the "original constraint". The control
mechanism, in fact, begins by attempting to prove pl. If it
succeeds in doing so, it introduces a new resolvent consisting of
qk and the other predications of the original constraint in the
environment which proved pl. (Such a resolvent will eventually
be produced for each proof of pl, if the search continues so
long.) If all attempts to prove pl terminate in failure then the
control mechanism attempts to prove p2, and so on. All of these
searches are carried out within the heuristic limitations imposed
on the problem at the beginning. These searches are, moreover,
carried out "in parallel" with searches for other solutions to
the initial problem, in accordance with the standard heuristic,
so that depth-first runaway will be avoided to the extent

- 4-22 -

I 'S.
•..e e2-. ''. ' . .. . . .'-. . . ..S , ,V - -' S-* ,.. , ;-*, - '. '. o * .. , '...- ' * .- . , - ., ,. , - . - - ,

.', .-. :.- , *.-.*... . . ., .. -; . :. . l , ; ~ i m ,i , ..... ,,, :,.''.: h 2 , , . _., .,. .,...v'.:' ,,'. .. ... ... • .- *-.' -*,-.'.: .-* ..*...',,'-..; *, ,



possible.

The "arms" of the CONDitional expression need not have exactly
two expressions. An arm of the form (pk) is, for purposes of
resolution, equivalent to (pk T), while an arm of the form

* (pk qkl ... qkm) is equivalent to (pk (PROGN qkl ... qkm)).

This treatment of conditionals depends on a feature of the system
not hitherto mentioned, namely the ability to associate a
"continuation" with a node. The continuation is itself just a
node of a somewhat special nature which is not itself available
for computing resolvents. We write a node C with continuation K
as "[C Continuation: K]". The resolvents of CC Continuation: K]
are exactly the nodes [R Continuation: K] such that R is a
resolvent of C.

Let (q env) be a node whose resolvents are desired, let (CAR q)
be p, and suppose that p{env} has the form
(COND (pl q1) ... (pN qN)). We obtain a "resolvent" which is

[((pl) env)
Continuation:
((LOGLISP:CONDITIONAL (ql) (p2 q2) ... )*q' env)]

where q' is (CDR q).
Each proof of pl generates a resolvent (NIL envz) with
the same continuation, from which we "pop up" the
continuation to obtain a resolvent (((ql).q') envz).
If and when all attempts to prove pl fail,

" we pop up the continuation to obtain

(((COND (p2 q2) ... (pN qN)).q') env) ,_-.

SI* which is added to WAITING.

* Continuations are not usually printed when explaining
answers or monitoring deductions, rather the fact
that a node has a continuation is indicated by
printing "CONTINUED". Users
can instruct the system to print continuations in
full by invoking the command (CONTINUATIONS ON).

*i (CONTINUATIONS OFF) returns the system to the normal mode.

4.14.2 Controlling The Special Re-solution Rules

All of the rules may be enabled or disabled by invoking functions
of the form (AUTO-x "flag") where flag may be either :ON or :OFF.
The complete set of control functions for the resolution rules is

- -23 -

• J .. .-.... .

-" ~~~~~~~~~~~~~~~~~~~~~."." '.'.."- '"- "- . "- ". "."- "- """,.............. -......... .. "..
-. ', "., _' ; - , . - . - . % - . - . - . - ' "•' - . ' - .- •-• . .-.-. - . . * . .. - . . -

. . . . .. . . . . . . . . . ... ... . .. ,..-. , ....



*-. L - "

• .(AUTO--= "flag")
"" (AUTO-AND "flag")

(AUTO-OR "flag")
(AUTO-COND "flag")

Each macro returns its argument. T or NIL may be used instead of"

:ON or :OFF. One may also type the nested expression

"(AUTO-AND (AUTO-OR :OFF))

to disable both the AND rule and the OR rule. All of the rules
* are enabled by system initialization, hence by RESTORE-LOGIC (see

the chapter on filing knowledge bases).[>>>Chapter ,"

-4-24-

A "A
*. . . . . . . . . . . . . 4 4.'op.

* *. .. " -".



CHAPTER 5

CREATING KNOWLEDGE BASES

To create a knowledge base one begins with the empty knowledge
base and adds clauses to it one at a time as explained below. Or
one can extend an already existing knowledge base by installing
it in a LOGLISP workspace and adding more clauses to it. The
empty knowledge base is created by executing the command

(START)

which discards any clauses already present and initializes the
LOGIC part of the workspace (without affecting the LISP

*- definitions, if any, which the user may have set up).

5.1 ADDING A CLAUSE TO THE KNOWLEDGE BASE

The assertion command

(ASSERT B <- Al & ... & An)

causes the clause B <- Al & ... & An to be added to the current
knowledge base.

The arrow and the ampersands may be omitted. We shall sometimes
omit them in the examples in this manual.

5.1.1 Naming A Clause

A clause may be given a user-coined name. This is most
• .conveniently done at the time the clause is added to the

knowledge base, using an extended assertion command. Execution
" of the extended assertion command

(ASSERT N B <- Al & ... & An)

adds the clause B <- Al & ... & An to the current knowledge
base, as before, but also ascribes to it the name N. The

* user-coined name N may be any proper identifier. For example,
*: the following four transactions:

(ASSERT (Born Herbrand 12 February 1908))
ASSERTED

S- 5-1 -

*, .. * . . .,-* ' ' * . . . * . .

j,,~~~~~~~~~~~~~~~~~~~~.,......,%................. .. ..'-. .. . ..... ..... .,. .,. ....• ."- ,''.-'"-:-. '.''.-''-, " " "- ," -"".", "" - .' ""-" -' ." ""'. "'. .' •", "' " -"". " -''-.''..'',,'-.''.-''"-" -''"'*



(ASSERT (Died Herbrand 27 July 1931))
ASSERTED

(ASSERT TURINGI (Born Turing 23 June 1912))
ASSERTED

(ASSERT TURING2 (Died Turing 7 June 1954))
ASSERTED

add four clauses to the knowledge base, the first two of which
are anonymous, and the second two of which have been named
respectively TURINGI and TURING2. Note that each assertion .-
transaction is terminated by the message ASSERTED. If the clause
is ill-formed the message returned will be ERROR-Ignored, in
which case the knowledge base is not altered by the transaction.

The clauses making up a knowledge base are organized into groups
called procedures. All clauses in the knowledge base whose
conclusions have the same predicate P are grouped together into a
procedure which is called "the procedure P". It is-thought of,
intuitively, as the portion of the knowledge base which is
relevant to establishing those facts in the world whose predicate
is P.

Assuming that the knowledge base was empty before the above four
clauses were added, the contents of the knowledge base now
consists of two procedures, each containing two clauses.

By invoking the PRINTFACTS command (see the following Chapter on
Displaying Knowledge Bases] the contents of the knowledge basecan be displayed, its clauses organised into procedures. Thus:

I-

(PRINTFACTS)
;Knowledge Base:

(DEFINE-PROCEDURE Born ()
((Born Herbrand 12 February 1908))
((TURINGI (Born Turing 23 June 1912))))

(DEFINE-PROCEDURE Died ()
((Died Herbrand 27 July 1931))
((TURING2 (Died Turing 7 June 1954))))

;End of Knowledge Base.
DONE

- 5-2 -

,.--...-

* 4 . '.:..<, % V -. .. -*- .. ~ -.... . .._ .. .. ..-. *.....-. -.. .......- . . . . . . . ,,:,:.:
• • ". . . .•° .% .' . . " . . .' . . ..•• ". • . °. -. ° .% . -. •°. o.•o. " % •. " ' .o.

l , , w • i.fiL lL~o ,w. P . % • ' °% ' • ° .°% .'% % ° ° ° . . .° , . . ,. • .' • "." ' .° ° .. . % •



If one adds a clause with name N to a procedure which already has
a clause named N, then the name is removed from the older clause
and attached to the new one. A single proper identifier may, I]
however, be used to name as many clauses as one likes, provided
no two of these are in the same procedure.

5.2 THE FACTS MODE

A somewhat more convenient way of asserting a succession of ..-
clauses is provided by the FACTS mode. By executing the command
(FACTS) the user puts the system into the FACTS mode. This is

simply a wait-read-assert cycle which expects successive clauses
to be typed in. The prompt-message Assert> is printed by the
system to signify its readiness to receive the next clause. Thus
the four clauses of our example could have been asserted by means
of the following excursion through the FACTS mode:

(FACTS)
Assert> ((Born Herbrand 12 February 1908))
ASSERTED
Assert> ((Died Herbrand 27 July 1931))
ASSERTED

' Assert> (TURINGI (Born Turing 23 June 1912))
ASSERTED
Assert> (TURING2 (Died Turing 7 June 1954))
ASSERTED
Assert> END-KEY
DONE

Such a FACTS session is terminated by hitting the blue END key in -3 -
response to the Assert> prompt. It should be noted that the
format in which a clause B <- Al & ... & An is typed for input

* to the FACTS mode is the list (B Al ... An) . The first item on
" this list may be the optional user-coined name, as illustrated

above. The list format enables the system to accept inputs which
are too large to fit all on one line. As in the standard LISP
convention, the system reads line after line of typed input until .-
a syntactically complete object has been formed. Thus in the

. following FACTS transaction the three-component clause
* AGE-FORMULA is asserted on several lines, each of which after the

first is prompted by a colon:

.,5-3 -



(FACTS)
Assert> (AGE-FORMULA

(Age person given-year a)
(Born person [l [] birth-year)

.-,ASSERTED (== a (- given-year birth-year)))
• " ASSERTED .

% Assert> END-KEY
DONE

. The clause AGE-FORMULA is now installed as the sole component of
- a procedure Age which computes a person's age in a given year

by looking up the year in which that person was born and
subtracting it from the given year. Note the use of the don't

-.* care symbol ( El ) to match the day and month of birth, neither
of which is needed for the deduction. The contents of the

. knowledge base may again be viewed by executing (PRINTFACTS):

*" (PRINTFACTS)
;Knowledge Base:

(DEFINE-PROCEDURE Born ()
((Born Herbrand 12 February 1908))
((TURINGI (Born Turing 23 June 1912))))

(DEFINE-PROCEDURE Died ()
((Died Herbrand 27 July 1931))
((TURING2 (Died Turing 7 June 1954))))

* (DEFINE-PROCEDURE Age (
(AGE-FORMULA (Age person given-year a) <-

(Born person [] El birth-year) &
a (- given-year birth-year))))

;End of Knowledge Base.
DONE

The "<-" and "&" appearing in AGE-FORMULA are simply "syntactic
sugar" intended to assist the reader in perusing complex clauses.
These may also be typed in clauses given to ASSERT or FACTS, but
we usually don't bother to do so.

An ill-formed clause typed to FACTS will be ignored, and a
message will be typed to inform the user. This HELP message will
also be typed in response to the user hitting the blue HELP key
following the Assert> prompt.

-5-4-

.. . .

: .. . . . . .. . . . ' . - . - * -.- . - . .° .- .-. * . .% .- . % -. -.- -* -. - . '. -.. *.., -. - . . •* *'-,-



5.3 ADDING CLAUSES FROM LISP FUNCTIONS

The assertion function ASSERT is just a LISP MACRO, and as such-
may be invoked by any LISP function. LISP programmers will
usually find it more convenient, however, to use the function
ASSERT* of one argument, whose value should be a list as might be
typed to FACTS (or appear as the tail of an invocation of
ASSERT). If the clause is well-formed it will be added to the
knowledge base and ASSERT* will return NIL. If the clause is
ill-formed it is ignored and ASSERT* returns ERROR.

5.4 ORDER OF CLAUSES IN THE KNOWLEDGE BASE

The order of the clauses within a single procedure is first the
data, if any, in the order in which they were asserted, then the
rules of the procedure, in the order in which they were asserted.
This is the order in which the clauses are printed by PRINTFACTS.

The order of the procedures in the knowledge base is the order in
which clauses for the prodedures were first asserted. This also
is the order used by PRINTFACTS. It should be noted that the
order of procedures is frequently changed by editing (see Chapter

." 7).

5.5 DECLARING ATTRIBUTES OF PROPER IDENTIFIERS

One may ascribe various attributes to proper identifiers in order
-" to influence the operation of LOGIC. An example is :IRRED , the

attribute which indicates irreducibility, and others will be
introduced later. Several methods are provided for declaring

*5 such attributes.

(PROCEDURE "id" "at1" ... "atn") [MACRO]
. (CONSTANT "id" "at1" ... "atn") [MACRO]

* Either of these sets the attributes of the proper identifier id
to (atl...atn), haying first erased any previous attributes.
Thus (PROCEDURE ID) declares that ID has no special properties.
PROCEDURE is intended for use with predicates, CONSTANT for use
with other identifiers, but both names in fact invoke the same
function. PRINTFACTS displays attributes of predicates in a list
following the predicate name in the DEFINE-PROCEDURE statement. . -
The Os following Born, Died, and Age in the above example are
empty attribute lists.

- 5-5 -

F& - ~*.... *.*;.. .*. * *,*.*.-.'



(ADD-DECLARATION "atr" "idi" ... "idn) [MACRO]

adds attribute atr to those already declared for identifiers
idl,...,idn.

. (REMOVE-DECLARATION "atr" "idi" ... "idn") (MACRO]

removes attribute atr from among those presently declared for
identifiers idl,...,idn.

As mentioned earlier, alternative means are provided for
declaring identifiers irreducible.

(IRREDUCIBLE "id1" ... "idn") [MACRO]

declares idl,...,idn to be irreducible (attribute :IRRED ),
retaining any previous attributes.

(REDUCIBLE "id1" . "idn") [MACRO]

" erases the attribute :IRRED from idl,...,idn, without affecting
other attributes.

(IRREDUCIBLE* L) [FUNCTION]
(REDUCIBLE* L) [FUNCTION]

The argument L should be a list of proper identifiers. Each
function has the same effect as the corresponding MACRO, for the
identifiers listed.

One may also declare attributes of identifiers while in FACTS
mode. To do so, one types a line of the form

Assert> (id atl .. atn)
DECLARED

in response to the prompt "Assert> " The effect is to declare
atl,...,atn as attributes of id in addition to any previous
attributes' Just as one can enter assertions over many lines, so
one can type such declarations over many lines if it should ever
seem necessary.

The attributes used by LOGIC are :IRRED, :ONERES , :HIST and
(:INDEX . ixl). :IRRED has already been explained. :ONERES and
(:INDEX ... ) will be discussed in Chapter 9, while :HIST is

* treated in Chapter 11. Other attributes may be declared and will
be recorded, but have no effect on the operation of the system.

- 5-6 -

*****,

V.% %' % ". ..V



A short sample session with LOGLISP:

(START)
DONE
(FACTS)
Assert> ((Occupation Herbrand Mathematician))
ASSERTED
Assert> ((Occupation Turing Mathematician))

" ASSERTED
Assert> (Occupation :HIST :ONERES)
DECLARED
Assert> END-KEY
DONE
(PRINTFACTS)
;Knowledge Base:

(DEFINE-PROCEDURE Occupation (HIST ONERES)
((Occupation Herbrand Mathematician))
((Occupation Turing Mathematician)))

;End of Knowledge Base.
DONE

" 5.6 ADDING PROCEDURES VIA DEFINE-PROCEDURE

DEFINE-PROCEDURE is a built in LOGIC macro and as such allows the
user a fourth method (others are ASSERT, ASSERT*, and FACTS) for
entering assertions into the knowledge base. The LISP expression
below

(DEFINE-PROCEDURE p (atl ... atN) asrnl .. asrnM)

macro expands to the following LISP expression

". (PROGN
(ERASEP p)
(PROCEDURE p at1 ... atN)
(ASSERT* (QUOTE asrnl))

(ASSERT* (QUOTE asrnM)))

which first erases the entire procedure p (if it existed) from
* the knowledge base, then assigns attributes atl ... atN to p, and
" finally adds assertions asrnl ... asrnM to the knowledge base.
" The user may enter procedures into the knowledge base by typing

- 5-7 - %b

*.Y."%

*d*,- . . . . . . -- *. . . . .

. . . .. . . . . . . . . . . . . . . . .. C-~



D -vw - - 'I- n- -rV r vn. . .-. '

at a Lisp Listener DEFINE-PROCEDURE macros or, more conveniently,
create, in an editor buffer a collection of macro calls. These
procedures, entered into the editor buffer, can then be installed
by evaluating the buffer (via the extended editor command META-X
"evaluate buffer"). After a procedure p has been entered into
the knowledge base in this manner one can edit it by going into
the editor (using any convenient method of entrance) and
executing the "edit definition" command (META-. p) and reinstall
it by reevaluating the edited expression (via HYPER-CONTROL-E for
example).

5.7 CONVENTIONS FOR DISTINGUISHING VARIABLES

- The normal convention is that symbols beginning with lower case
letters are LOGIC variables, and that all other symbols are
proper identifiers. Other conventions can, however, be adopted.

(VARIABLES "vs") [MACRO]
(VARIABLES* vs) [FUNCTION]

set the variable convention according to vs and return the former
convention. If vs is NIL the convention is not changed, and the
current convention is simply returned. Besides NIL, allowed
values for vs are

1. The atom LC to specify the (default) lower case convention

2. The atom UC to specify that identifiers beginning with upper
case letters are variables

" 3. The ASCII code for a character which will begin all variables

" 4. A single character identifier giving the initial character
for variables

To illustrate, starting with LOGLISP freshly loaded,

. (VARIABLES NIL)-
LC

(VARIABLES ?)

LC

(VARIABLES NIL)

(ASSERT (Member ?x (?x . ?ls)))
* ASSERTED

5-8

-. ~- 5-8 - ii i

.......... '-., :, ... ,.. ...... ...... ,.. ,':.'.,,, .,..., .,:.,.......,,......-:..., .......... :.................,........

. ,• . . o ,*. . .° . . ° ., . . .. . . . o - . ° - . °. . .



-, -
--. - - - - -

* (ASSERT (Member ?x ([ ?is)) <- (Member ?x ?is))
ASSERTED

defines a membership relation on expressions akin to, but not at

all the same as, MEMBER for lists, using the new convention.

It is not intended that one mix variable conventions within a
knowledge base, though it is actually possible to do so in some
situations. The determination that an identifier is or is not a
variable is made at the time the identifier enters the LOGIC part
of the system, as when a clause is entered or a query submitted,
and subsequent changes in the convention cannot alter that
determination.

5.8 CONVERTING VARIABLES TO OTHER CONVENTIONS

Since the programmer may choose from a number of conventions for
distinguishing variables from identifiers, it is sometimes
desirable to assert clauses written with different conventions

* into the same knowledge base, particularly when the clauses in
question have been recorded in files on -disk.- Wde consequently
provide means for converting variables from one convention to
another, so that the resulting knowledge base will exhibit a
uniform convention for naming variables.

" To accomplish this, we allow the user to establish two
. conventions for distinguishing variables from proper identifiers,

ar, "input" convention which will be used to recognize variables
in expressions submitted to LOGIC, and an "output" convention in
which these variables will be represented in the knowledge base.

. (CONVARIABLES "vs") [MACRO]
(CONVARIABLES* vs) [FUNCTION]

establish the input convention according to vs (specified as for
VARIABLES), leaving the previous convention as the output
convention, and return the previous, now output, convention. If

" vs is NIL the input convention is set to the output convention
and conversion is disabled. Variables are converted to the
output convention by prefixing a single character to the print
name: "v" if the output convention is LC, "V" if it is UC, and
the character which distinguishes variables in any other
convention.

When conversion has been enabled by invoking CONVARIABLES the
input convention can be changed using either CONVARIABLES or
VARIABLES. In this mode of operation VARIABLES reports the
previous input mode. The output convention cannot be changed
until conversion has been disabled by (CONVARIABLES NIL).

- 5-9 -

"S th

" 4 * *- .-.*** * ** *%.* . . .

-" "' " '''',''" "; " ,' t 
'z "

"'"" " "" " -'" J -'"-" 
" 

%" "' -" "" ". " " ' "' " . . . . . . . . .. . . . . ."."".".". .".".. .".". .".""".""".".. .".. ."".".. ."i,-':-,,,-'.-.? ',,',";.",., ",; , .- .. ' .;... . .:. 9 :. . . . . . .>. .. . . . . . . . .. ."... ..--.. ....--..-..-.... "... . .-... ..-. .. '..



Note that print names of proper identifiers are never altered,
even if these would be treated as variables in the output
convention. If such identifiers occur they will be treated as
proper identifiers in the knowledge base, but some confusion is
possible when clauses are printed, or if such identifiers are
extracted and later re-entered into LOGIC using LISP.

5.9 SUBSCRIPTED VARIABLES IN CLAUSES

Although it rarely happens in practice, one might attempt to
- assert a clause containing subscripted variables. For technical
. reasons, subscripted variables may not appear in the knowledge

base. If one does attempt to assert a clause containing
*3 subscripted variables, or variables in the sequence genvarl,

genvar2, ... , the system will rename such variables, using
.. variables genvar<numeral>, so that the clause which results ir.

the knowledge base is a variant of the assertion which was
entered, and has no subscripted variables. When a non-standard
variable convention is in effect the generated variables are
adjusted appropriately.

-5-10-

• -. ' -.

. . .:, *A-



CHAPTER 6

DISPLAYING KNOWLEDGE BASES

Various commands are provided for viewing the contents of a

knowledge base.

* 6.1 DISPLAYING THE ENTIRE CONTENTS OF A KNOWLEDGE BASE

The command (PRINTFACTS) causes the system to print out a display
of the entire current knowledge base.

The display is organised into groups of clauses preceded by the
message ";Knowledge Base:". Each group of clauses constitutes a
(logical) procedure. That is to say, the header of every clause
in the group has the same predicate (say, P). A procedure P,
having attributes AT1,...,ATn, naming the collection of clauses
CI,...,Ck, is displayed in the following way:

(DEFINE-PROCEDURE P (ATI ... ATn)
C1

• . -. '

Ck)

where each Ci, having head A and body BI,...,Bm is displayed:

(A <-
B1 &

Bin)

The order in which the clauses appear in the display is data
first, then rules, in the order in which they were asserted
within each class. The display is terminated by the message
";End of Knowledge Base.".

6-1.
S..=-,

a,

... . •....-.....-...... . .........

- . . . . . .. . . . . . . . ..
°. ° -° ° ° -. -. , - . ° • - -° ° - - .. . . . .. . . . . . . . . . . . . . . .-.. .,.. .-.-.. .-.. . . . . .., . - -° .....-.. *

-
-• ° °



6.2 DISPLAYING A PROCEDURE

The command (PRINTFACTSOF P) displays the procedure P in the same
style as that of the (PRINTFACTS) display. If one wishes to
print several procedures P1, ... , PN one types
(PRINTFACTSOF P1 ... PN).

N The command (PRLENGTH P) returns the number of assertions in the
* procedure P:

(PRLENGTH Born)
2.

6.3 DISPLAYING THE SET OF DEFINED PREDICATES

The command (PREDICATES) returns a list of the predicates for
which logic procedures are defined in the current knowledge base.
With the example of the preceding chapter we have:

(PREDICATES)
(Born Died Age)

The command (CONSTANTS) returns a list of the constants which
have been declared. These are proper identifiers other than

" predicates which have special LOGIC attributes.

6.4 DISPLAYING DATA IN WHICH A GIVEN PROPER IDENTIFIER OCCURS

It is often convenient to be able to retrieve and display the set
of data in a given knowledge base in which a given notion occurs
explicitly. Such a set in some sense corresponds to what the
knowledge base says about that notion in a direct way. The
command (PRINTCREFSOF C) displays all data in which the constant
C appears somewhere. These clauses are organized into groups by

*' their procedure name, but the entire procedure is not necessarily
shown (only those of its data are shown which actually contain
C).

..

b-.~ * -. o

WA. S Y M .,. t. ... . . . . . . . .. . . . . . . . -, •
WA . . . . .

. **y.**..* ... *..* .
./ % /...D.* . . .* .~.* * a. . . .* . . .



'I-;
•7 4.r,

Given that:

(CONSTANTS)
(Herbrand Turing)

then

(PRINTCREFSOF Turing)
Turing

(TURING1 (Born Turing 23 June 1912))

(TURING2 (Died Turing 7 June 1954))

". Turing

• 6.5 RETRIEVING A PROCEDURE AS A LIST

- The procedure P may be obtained as a LISP data object, namely, as
the list of its constituent clauses. This list is returned as
the value of the command

(ASSERTIONSOF P)

Each clause B <- Al & ••• &An in the procedure is represented
as the list (B Al ... An). If the clause has the user-coined
name N then it is represented as the list (N B Al ... An). For
example, (ASSERTIONSOF Born) returns the list

(((Born Herbrand 12. February 1908.))
(TURINGI (Born Turing 23. June 1912.)))

* The result of ASSERTIONSOF shares no list structure with the
internal representation of the knowledge base, thus list-altering

. operations such as RPLACA and RPLACD performed on this list will
have no effect on the knowledge base.

6.6 RETRIEVING INDIVIDUAL CLAUSES

One may display one or more individual clauses using a command of
the form

(PRINTNA dsgl ... dsgn) [MACRO]

where dsgl,...,dsgn are "clause designators".

* In its simplest form a clause designator is just a clause name,
" but more elaborate forms may be used to resolve possible

- 6-3 -

°.* .

. . . . .... . . . ..- '..' .' ." ~'*. ° .. .. w ."., . . ..-.-..".-.- - .- . .. ". "- ,-', ".", "..".. ".. .. ., , .. -** , *-,• ', , '. '.,'.* ,



V--.:- PV.-V E 7- -Z X

ambiguities, and indeed to designate any clause in the knowledge
base, whether named or not.

The possible forms for clause designators are shown below. Here

'pred' denotes a predicate, 'name' a clause name, and 'numb' a

positive integer.

name (possibly ambiguous)
(pred name)
(pred numb) (possibly ambiguous)
(pred :DATUM name)
(pred :RULE name)
(pred :DATUM numb)
(pred :RULE numb)

As indicated, some of these forms may be ambiguous, depending on
the state of the knowledge base. Where a number is given, it
specifies the ordinal position of the clause within its class

(rules or data) in the indicated procedure. The concise form
(pred numb) is ambiguous if the procedure for 'pred' has both a
datum 'numb' and a rule 'numb'. The forms (pred :DATUM name) and
(pred :RULE name) are redundant, and either is treated as though
it were (pred name).

PRINTNA prints the indicated clauses and returns the list
(dsgl ..dsgr.) .

An appropriate error message will be printed for any designator'
which is either ambiguous or fails to designate an clause.

For example:

(PRINTNA AGE-FORMULA)
(AGE-FORMULA (Age person given-year a) <-

(Born person [] [] birth-year) &
( = a (- given-year birth-year)))

(AGE-FORMULA)

(PRINTNA (Born 1) (Born 2))
((Born Herbarnd 12 February 1908))
(TURINGI (Born Turing 23 June 1912))
((Born 1) (Born 2))

(PRINTNA (Born 3))
No assertion.
((Born 3))

6*%-4'

p.',*

,*. ...
6 -q "" "'"

* ,- -



One may also retrieve an individual clause as a list. The

function

(ASSERTION dsg) [FUNCTION]

returns a list representing the clause designated by (the value
of) its argument, if there is one, NIL if the argument fails to
designate a clause. Clauses are represented in the same manner
as with ASSERTIONSOF.

6.7 PRINTING CLAUSE NUMBERS

The numbers used to designate anonymous clauses do not ordinarily
appear when these clauses are printed, whereas names of clauses
do appear. If one wants the numbers to be printed as well, the
(LISP) variable *ASRNNUMBERS should be set to any non-NIL value.

To illustrate with a small example:

(PRINTFACTSOF Older)

* (DEFINE-PROCEDURE Older()
((Older Drobny Rosewall) <-)
((Older Rosewall Goolagong) <-)
((Older x z) <-
(Older x y) &
(Older y z))
((Older x y) <-
(Before x y)))

(Older)

(SETQ *ASRNNUMBERS T)
T

(PRINTFACTSOF Older)

(DEFINE-PROCEDURE Older()
(1 (Older Drobny Rosewall) <-)
(2 (Older Rosewall Goolagong) <-)
(1 (Older x z) <-
(Older x y) &
(Older y z))
(2 (Older x y) <-
(Before x y)))

(Older)

%

"- ~- 6-5 - "-.

",. -" ,'-.;'- * , ,*".*-. ....- *.*x .. *-'* -' . .- .'--. . ...-. -.-.. .-.-.-.. ... -. . .. ... . . . ".

F',.' ,'. ,', ,''.. " '.- , . * **.', ,' .- . . -.' - . - .. . ... .'. ", .".',-.- ". .",- . ", ., . ". . .. . -. . ." . - . -. .. . ... . . ' " .,F[Z' "'.''.,'..',.;'.''.,,' '-.'-,>. ', ".-'.,''-.-'.-'.."",,-',."","".. . . ..".".. .- ". .". .".".".-.-.. . .-. ."."-.".. . .".""....... . . .,..,...".-', " "' " -' " ' i'":-- '."w&''a ;a ' '-":"<,"" ' ",'' ,."'-".-,","'-." : . ..-,'. ,",* "-*-: "- -- :-



*Note that data and rules are numbered separately. It should,
, however, be easy to distinguish the two. It is perhaps worth

pointing out that one can properly install a clause by typing

(ASSERT 2 (Older x y) <- (Before x y))

but that the integer "2" is treated as sugar, and consequently
has no effect on the position of the clause in the procedure.

* When *ASRNNUMBERS is non-NIL, ASSERTIONSOF and ASSERTION include
numbers in the lists they return.

"..+

-6-6-

a - A-

-. 5 a SS "N% .%.



* -. 9 . L..'~- .

CHAPTER 7

EDITING KNOWLEDGE BASES

The most convenient place (and in the current implementation the
only place) to edit clauses is in Zmacs, the Lisp editor. To do
this, create the knowledge base in an editcr buffer using

* DEFINE-PROCEDURE, and install it via the extended editor command
META-X "evaluate buffer". To then edit a procedure, simply
reenter the editor, edit the DEFINE-PROCEDURE form and reevaluate
it (one way would be HYPER-CONTROL-E). This method of
interaction allows the user to make use of the extensive editing
capabilities of Zmacs.

7.1 REMOVING PROCEDURES FROM THE KNOWLEDGE BASE

*:: If one wishes to remove one or more procedures P1, .•, PN from
* the current knowledge base one invokes the command

(ERASEP P1 ... PN).

7.2 DELETING CLAUSES

A number of special functions are prov.ided for deleting selected
clauses from the knowledge base. In most cases we provide both
macros for use from the terminal, and functions intended to be
called from LISP functions.

(DELETEN "dsg1" ... "dsgn") [MACRO]

deletes the clauses designated by dsgl,...,dsgn.

- Inappropriate designators are ignored, and DELETEN returns a list
of designators for clauses which were actually deleted.

* (DELETENM dsg) [FUNCTION]

* deletes the clause designated by dsg, if there is one. DELETENM
- returns T if a clause was deleted, NIL otherwise.

N (DELETE: . "cls") [MACRO]., (DELETE=* cls) [FUNCTION]""

Each of these functions deletes the clause which is EQUAL to the
specified clause, if there is one. Clause names and "sugar" in
cls are ignored in determining equality. Either function returns

-7-1 -

.-

,..
' S.. d **.- ' ,,

• " ." .':'2. "'.'':..'.r ' "".- : " "-"- ," - "%'-•-" . *.".-. ' " .": ' ' , *** .- . * -"-- - .-. -. C .. . . -.... "



-- -- - -...- ,VW C -r 17 7u -.

r
i

T if the specified clause was found and deleted, NIL otherwise. r

The following examples illustrate the use of DELETE: and DELETE: *.,
* in the context of the example used earlier:

(DELETE: (Born Turing 2 June 1912))
T
(DELETE:* '((Died Turing 23 October 1954)))

* T

The effect of these is to delete the two clauses giving dates of
birth and death for Turing. Note that when using these to delete
rules the variables specified in the parameter to DELETE: or
DELETE=* must be the same as those appearing in the knowledge
base.

(DELETEA . "cls") [MACRO]
(DELETEA* cls) [FUNCTION]

The argument specifies a clause, as with DELETE: and DELETE:*.
All clauses which are instances of the specified clause are
deleted. Either function returns T if at least one clause was
deleted, NIL otherwise. The predicate of the header of the

"- argument must be a proper identifier, not a variable.

(DELETER . "cls") [MACRO]
(DELETER* cls) [FUNCTION]

These functions are like DELETEA and DELETEA*,
except that only rules will be deleted.

. "-,,..,

(DELETED "cls") [MACRO]
(DELETED* cls) [FUNCTION]

The same, except that data are deleted.

- 7-2 -
,:.
•

.%* ~ .5 %S *. 4 ~S '~./..% j-o . . • *



CHAPTER 8

FILING KNOWLEDGE BASES

• The current knowledge base may be preserved in a file by the

*. LOGIC primitive SAVE-LOGIC.

(SAVE-LOGIC pathname &OPTIONAL (verify T) (compile T) (package

:USER))

" The function SAVE-LOGIC writes to the file (specified by
" pathname) the current knowledge base (using the function

PRINTFACTS) preceded by the two lines displayed below:

-*-MODE: LISP; BASE: 10.; PACKAGE: package-*-

(VARIABLES cony)

The first line is the mode line. The second line is a call on
. the macro VARIABLES with argument cony (the variable convention

in force at the time of the save). SAVE-LOGIC returns the value..- DON E.

If the argument verify of SAVE-LOGIC is T (the default), then the
user is asked to confirm the destination of the save. The reason
for this optional verification step is that the SAVE-LOGIC

. function "completes" any ambiguous pathname that the user
supplies. If this completed pathname is not what the user
wished, the verification step allows him to provide a complete
pathname himself.

If the compile argument has value T (the default), then, in
addition to the base being saved in PRINTFACTS format, the file
is compiled and the compiled version is saved (the file having a
.QFASL extension). A compiled knowledge base can be loaded with
the same commands that load a "source" file. The advantage of
compiling is that compiled knowledge bases load two to three
times faster than "source" knowledge bases.

8._
- 8- - -

, -.
" 0"



An example of a call on the SAVE-LOGIC function.

(SAVE-LOGIC "DI;KB")
OK to use: #(FS:LM-PATHNAME LAMI: Dl; KB.LISP#> ># (Y or N)? Y
Saving ...

S~Compiling ...
DONE

8.1 RESTORE-LOGIC AND LOAD-LOGIC

A knowledge base that has been saved can be reinstalled using
*. either of the two functions

(RESTORE-LOGIC pathname &OPTIONAL (verify T) (package :USER))

or

(LOAD-LOGIC pathname &OPTIONAL (verify T) (package :USER)).

A call on LOAD-LOGIC adds the procedures defined in the file to
the existing knowledge base. The function RESTORE-LOGIC,
however, first removes all existing assertions from the knowledge

- base and then installs the file's procedures.

-" An example:

(RESTORE-LOGIC "D1;KB" ) .'
Clearing ...

* OK to use: #(FS:LM-PATHNAME LAMI: Dl; KB.LISP#> ># (Y or N)? Y -
Loading ...
DONE

I Since files created by SAVE-LOGIC are just collections of calls
on the macro DEFINE-PROCEDURE, these files may also be loaded

,. using the LISP primitive LOAD. Further, LISP definitions (i.e.
DEFUNs, DEFVARs, and DEFCONSTs) may be added to files defining
knowledge bases allowing for actual LOGLISP (LOGIC + LISP) files.

, These files may be installed using any of the three primitives:
RESTORE-LOGIC, LOAD-LOGIC, or LOAD.

8-2
• . ,. :°.

.' j......'.,'..-• j..'..-.'. . .-. ". °--;- . * -. ..~ 9 -. ' .. • *.•.. .. - •... .%* . "... %* . .- .- - .-



CHAPTER 9

DEDUCING ANSWERS TO QUERIES

Our informal notion of a query is that it is a description of a
set, in the style: the set of all X such that C. We think of
the process of evaluating such a description as one of deducing
all the different instances X*s of the "answer template" X for
which the condition C*s is true.

This type of query is formalized by the LOGIC primitives SETOF
and ALL.

For convenience we have also implemented two other query
primitives: ANY and THE. ANY intuitively selects, from the set
described, a subset of one or more of its elements (which
particular ones are selected is left undetermined). THE selects
an element of the set (which particular one is selected is left

* undetermined).

Thus, we might ask for: any 3 members of the set of all X such
that C, or: ANY 1 member of the set of all X such that C. In
the latter case, the primitive ANY delivers a singleton set. If
we want the member of that set, rather than the set itself, we
ask for: THE X such that C - just as if there were one and only

, one such element. The primitive THE does not test for such
"existence and uniqueness", however. If no instances of X can be
deduced to satisfy C then the "ANY 1" construct returns the empty
set while the "THE" construct returns the message
"No-solutions-found". "ANY 1" does not care if more than one
instance exists, nor should it. "THE" does not care either - as
it perhaps should, according to the way the ordinary
understanding of the phrase "the ... such that --- " works. We
have preferred to leave the uniqueness issue to the user on the
grounds that to test routinely for non-uniqueness would cost too~~much.""

In the formal treatment of queries sets are represented by lists.
* The user can choose (as explained below) whether these are to be

construed strictly as sets (with the overhead cost of patrolling
for and eliminating duplicate elements) or merely as lists (with
possible repetitions).

- 9-1 -

............... ..................................................................................

,' ,. .. ,. -. % ,,,. . - .-. -,,,. , .... . .. ,.. . . . , ,. . - . . ... . .... ,. ...- *.... . , *- .*.*.,.,.. *._ . . w,.e - .-



- 9.1 ANY, ALL, THE AND SETOF

The deduction machinery of LOGIC is invoked by the deduction
commands: ALL, ANY, THE, and SETOF

The first three are LISP MACROs which may conveniently be invoked
from the terminal or within assertions. SETOF is a function
intended for use by LISP programs.

9.2 ALL

The command (ALL X C1 ... Cn) returns a list of reductions of the
instances of the answer template X with respect to all of the

- environments which satisfy the constraint (Cl ... Cn) in the
current knowledge base. [These environments are called the
solutions of the constraint (Cl ... COn).] If two or more

- --Tut6-ns yield the same answer (in the sense that the answer
expressions are EQUAL) then the list contains just one instance
of the answer, corresponding to the solution obtained first.

The answer template X may be a variable, an atom not a variable,
or a list of expressions. We emphasize that the answers returned
are the expressions (or lists of expressions) obtained by
reducing the instances of the answer template in the solution

- environments, NOT the values of those expressions. The
expressions need not, after all, be evaluable.

9.3 ANY

The command (ANY K X C1 ... Cn) behaves in a similar manner,
- except that no more than K (distinct) instances of X are returned

from among those which the corresponding ALL command would
return. K is expected to be a nonnegative integer.

- 9.4 THE

The command (THE X C1 ... Cn) returns the sole member of the list
(ANY 1 X C1 ... Cn) , if there is one, and is intended for use
only in contexts where it is known that exactly one solution
exists. If no solution exists for the given constraint, THE

* returns the identifier No-solutions-found.

- 9.5 SPECIFYING THE DEDUCTION WINDOW

The constraints appearing in invocations of ALL, ANY and THE need
not consist entirely of predications. They may also contain
control specifications, which affect the nature of the search and
treatment of answers, and limit specifications which determine
the deduction window to be used. The form of a limit

- 9-2 -

*. . . ... ... . . .. .. .........

-,.. -.- .... -... .. -.. . ., .- ,. , .v... . v .. . ,,.., . , .



specification is

:Limit Value

where ":Limit" is one of :TREESIZE, :NODESIZE, :ASSERTIONS,
:RULES, or :DATA and "Value" is a number, the identifier :INF

* (denoting infinity) or a non-atomic expression whose LISP value

is a number or :INF. Note that the first character of the
keyword is ":" -- all keywords are in the user package. It is
most often the case that a user is working in the user package.
In these situations users may omit the ":"s in front of the
keywords. These values determine bounds for the corresponding
parameters of the search window. Thus one might, in the context
of the "tennis" example of Chapter 3, ask for

(ALL x (Male x) (Champion x) (Older x Kelly) :RULES 4 )

to obtain the set of all those who can be deduced to be male
champions older than Kelly with no more than four applications of
rules.

In the absence of any specification the limits are all taken to
0 be :INF, except for :RULES, which is never allowed to exceed a
*- limit determined by the implementation, normally 1500.

*9.6 SETOF

The preceding commands are special adaptations of the basic
general deduction primitive, SETOF.

SETOF takes three arguments. In the command (SETOF S X C) the
arguments S, X and C are (LISP) evaluated before the SETOF
procedure is entered (SETOF is a function).

The first argument S (the "scope indicator") is an expression
" which evaluates either to a nonnegative integer or else to the
. identifier :ALL.

The second argument X is an expression which evaluates to an

answer template.

* The third argument C is an expression which evaluates to a
constraint.

The crnmnand (SETOF S X C) returns a list of the recursive
realizations of the answer template [which is the value of] X
corresponding to the solutions which satisfy the constraint
[which is the value of] C in the current knowledge base. If the

' value of S is :ALL, then all such recursive realizations are in

- 9-3 -

. . .

. . . . . . . . . . . . . .



RD-RI58 Oil THE LOOLISP PROGRAMMING SYSTEMMU SYRACUSE UNIV NY 2/
J R ROINSON El RI. MAY 85 RADC-TR-85-89
F30468-8i-C-0024 N

UNCLASSIFIED F/G 9/2 N

,Mlonossonhh



a!a

1-26 141-

NATIONAL WR OF STANMMM

rmo"w RESCWTIO TEST CtANT

777 . . 7, .. 7. 7 - .1e-*

.p 
.

.5.. *. S** %



the list returned. If the value of S is the integer K, then no 7.-
more than K such recursive realizations are returned. Thus the
command (ALL (x y) (Age x 1928 y)) is equivalent to the command

(SETOF (QUOTE :ALL) (QUOTE (x y)) (QUOTE (Age x 1928 y)))

and both return the list

((Turing 16) (Herbrand 20))

as their result, if the current knowledge base contains only the
assertions HERBRAND1, HERBRAND2, TURINGI, TURING2 and AGE-RULE.
The command

(THE logician (Born logician something February 1908))

returns the result: Herbrand

Recall that the answer template may be a proper name, a variable,
or a list of expressions. In the first case the answer is (with
one exception, explained below) just the answer template. If the
template is a variable, each answer is the reduction of the
recursive realization of the answer template in a solution
environment. If the template is a list of expressions, the
answer is the list of reductions of recursive realizations of

." expressions in the template.

The exceptional answer template is the integer 0. If the
template is 0, SETOF (or any of ALL, ANY, THE) returns the number
of solutions (not answers) obtained during the search. If the
invocation of SETOF limits the number of answers, this limit is
taken as a bound on the number of solutions to be found.

9.7 NONDETERMINACY OF DEDUCTIVE PROCESSES

The order of the items in the lists returned by ALL, ANY and
SETOF is not defined, nor is there defined any rule for selecting
a subset of all instances when less than all are requested.

This non-determinacy is accompanied by a measure of
"concurrency", in that the order in which LISP evaluations will
be performed in the course of various simplifications is also not
specified. The evaluation of a single evaluable expression is,
however, carried out "indivisibly". It is for this reason that
assignment and other side-effect-producing operations must be -.
used with caution in LOGIC.

- 9-4 -

4e .- .d.



L~.

9.8 CONTROLLING THE DEDUCTION PROCESS

Having emphasized the non-determinacy of the deduction process,
we should now point out that the user can, in fact, exercise a
considerable degree of control over it, even to the point of
making it fully deterministic.

The search conducted by SETOF is a heuristically guided search,
each separate step of which is itself a limited depth-first
search, implemented by a backtracking algorithm. Recall that the
estimated solution cost of a node (q env) is computed as.

ASSERTIONS(q env) + NODESIZE(q env)

This cost estimate is used both to guide the heuristic search and

to limit the depth-first search embedded therein. This works as
follows.

For each search a cost increment S is specified, usually by
default. The depth-first search is initiated by selecting a
waiting node of minimum cost, say C. The bactracking routine
then explores the deduction tree starting from the selected node,
recording for later consideration any non-terminal node whose
cost is as large as, or larger than, C + S. When this limited

- depth-first search is completed a new "waiting" node of minimum
cost is selected to begin another round of depth-first search,

.- and so on.

9.8.1 Search Control

- To specify the cost step (i.e. increment) for a particular
- search, one includes a control specification ":CSTEP s" among the

constraints, where s is a positive integer or :INF. Thus
(ANY 2 x (P x 7) (Q x) :CSTEP 6) searches with a cost step of 6.
When no step is specified a default value, depending on the
nature of the search, is used. Searches which seek all answers
use the value rf the LISP identifier *ALLSTEP, initially 64, as
the default. Other searches use the value of *CSTEP, initially

. 4. We take the view that "ALL" searches should be conducted
primarily depth-first, without going so deeply as to run the risk ".
of stack overflow. Searches which may stop with fewer than all
solutions are conducted so as to obtain the less costly solutions
i first.

A pure depth-first search may be obtained as in
- (ALL x (P x 3) (Q x) :CSTEP :INF), or, of course, by adjusting

the default values appropriately.

-9-5-

.

.................................................................



9.8.2 Answer Control. Lists Versus Sets

Normally, answers are reduced as explained earlier, and answers
which duplicate earlier answers (in the sense of EQUAL) are
ignored. To suppress reduction of answers include the control
symbol :ANS-IRRED among the constraints. To require reduction
incorporate the control symbol :ANS-REDUCE. The default control
is given by the value of the LISP identifier *REDUCEANS,

- initially T, indicating that reduction should be performed. The
value NIL indicates that reduction should not be performed.

To disable the check for duplicate answers include the control
symbol :LIST among the constraints. To require the check
incorporate the control symbol :SET. The default control is
given by the value of the LISP identifier *SET, initially T to
specify that the check for duplicates SHOULD be performed. The
value NIL indicates that the check should NOT be performed.

9.9 "ONE RESOLVENT" PROCEDURES

It sometimes happens that the programmer can determine that on
every call of a particular procedure at most one resolvent can
lead to success. Such a determination usually depends both on
the nature of the queries that can be expected and on the nature
of the clauses which constitute the procedure. If it can further
be arranged that this resolvent always results from the first
assertion which yields a resolvent, then one may wish to inform
the system of these facts by declaring the procedure in question
to have the attribute :ONERES. This is done with the command
(PROCEDURE Pred :ONERES), "Pred" being the predicate of the
procedure. If a special rule (see Chapter 4) is in effect for
"Pred", the special rule is considered to come between data and

, rules.

The conditions under which one may appropriately choose to
specify a procedure to be :ONERES may seem rather restrictive,
but they are not uncommon in practice. An inappropriate :ONERES
attribution will, of course, have a drastic effect on the meaning
of a procedure, since the system will indeed compute at most one
resolvent for each call, even if more than one resolvent can lead
to success.

9.10 INDEXING CLAUSES FOR QUICK RETRIEVAL

We mentioned in an earlier chapter that data are automatically
indexed according to the proper identifiers which occur in them
so that LOGLISP can quickly obtain a (usually small) list of
candidates for resolution with a given predication. In fact, the
indexing scheme takes account of FIXNUMs as well, which are

- 9-5 -

A .7



hashed into a convenient number of equivalence classes, normally
47. For technical reasons, this indexing ignores quotations,
whether formed with QUOTE, FUNCTION, or F-L, and expressions of
the form (CONS ... ), since the latter may unify with quotations.
The atom NIL, which occurs very frequently, is also ignored.

The actual indexing method is extremely simple. Associated with
each proper identifier id and each predicate symbol pr in whose

, data id occurs, we maintain a list of the data of pr containing
id, along with a count giving the number of data in the list.
When asked to obtain resolvents for a predication q headed by the
predicate pr, the system scans q for proper identifiers, and
attempts unification with only those data in the shortest of the
associated lists, examining the entire collection of data for pr
in the case that q has no proper identifiers.

9.10.1 Indexing Rules

!* We provide a rather different scheme for indexing rules, which is
invoked only at the direction of the programmer. Rule indexing
for a predicate pr is specified by declaring pr to have an
attribute of the form (:INDEX k1 .-. kN), where the k's are
positive integers and k1 > 2. A predicate can have at most one

"- :INDEX attribute, decla-ing a new one deletes the old. The
integers kl,...,kN define a path into predications headed by pr,
namely, of the kl-th entry, the k2-th entry, of which the k3-th
entry, and so on. To illustrate, if we specify (:INDEX 2 1) for
the predicate "Term", then we select from (Term (F x y) ... ) the
identifier F. To be effective, the path should be chosen so that
the rules of pr have identifiers at the specified position in
their conclusions, identifiers which will serve to classify the
rules into a number of (preferably small) subsets. It is not,
however, mandatory that the path be so chosen, and in fact the
path need not even be defined for all rules of pr. An :INDEX
declaration can never affect the results of a LOGIC computation,
only the performance. An inappropriate :INDEX specification may,
however, be just slightly worse than no indexing at all.

When a predication headed by pr is selected for resolution the
system examines the component of the predication at the location
specified by the :INDEX attribute. If this component is defined
and is a proper identifier or FIXNUM, then the corresponding
rules are used as candidates for resolution. In any other case
LOGLISP will still determine a suitable set of candidates,
possibly all of the rules for the predicate pr.

- 9-7 -

- .- *- ,-.. . . . . . . .. ,

-. . . ". ,



9.11 SUBSCRIPTED VARIABLES IN DEDUCTIONS

We have already mentioned that variables appearing in clauses are
(implicitly) given subscripts when the clauses are used in
deductions, so as to avoid improper identification of variables.

Variables in the query are given the subscript 0.

For an unsubscripted variable, say x, the system identifies x^O
with x, so as to prevent an ugly profusion of 0 subscripts. No
such identification is made for a subscripted variable such as
y^2, however. Such a variable would appear in the deduction as
y-2^O. When resolving a clause with a constraint, variables in
the clause are given a subscript one greater than the largest
subscript used in deducing the constraint. No new subscript is
introduced when resolving with a datum, nor by the special rules
for ::, AND, OR and COND, which introduce no variables.

Variables in answers require somewhat more discussion.

If a variable from the query appears in an answer it appears in
its original form, without the 0 subscript added at the start of
the deduction. If a variable from a clause appears in an answer
the treatment depends on the nature of the query. If it is a
primary query, that is, one invoked from LISP, the variable
simply appears with the subscript given in the deduction. If it
is a subsidiary query, that is, one invoked recursively within
some larger deduction, the query must have resulted from the
reduction of an expression whose variables were given a subscript
i > 0, while in the subsidiary deduction the variable was given a
su'5script j > 0. Such a variable, say x, appears in an answer
(to the subsidiary query) as x'j'i. Since subscripted variables
cannot appear in the knowledge base, this prevents unintended
identification of variables in almost all cases of practical
interest. We should point out, however, that if one clause
causes two subsidiary deductions, and the answers to both contain
variables introduced in the course of these deductions, it is
conceivable that the same variable might appear in answers to
both queries. Even in this case, such variables must appear
inside quotations, and can enter the deductive process only if
they are "exposed" by means of the special construct (LOGIC ...).

At this point the whole subject may seem overwhelmingly
complicated, but we remind the reader that the programmer can
ordinarily ignore the matter completely, and that the
implementation achieves these effects implicitly and quite
economically. In particular, variable identifiers like x^3^2 are
never created in the internal workings of deduction; they arise
only when needed for "export" to LISP. A very common particular

- 9-8 .

-7 %, % =
.'... ..'..',.', *. 'd-..."

..
"o, , '., ,,'.. ,.'..'•.'.=•'%'.., .. . . ","." .' '..' '... . . . . . .. . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . ." " . •° • ." .



case of exportation to LISP is, of course, when the variables are

sent to be printed as part of an output.

* ,. .

.'." %'

-9A

% -9-

. . *A.- ' *°. A o -

* . - .. -* .-' .. . . .. . . .

A-" *, ' - *... ... *.,.';. . .'_ , , - %-.'_.. ... ... A ... .. .. .. , ... , . .



CHAPTER 10

MONITORING DEDUCTIONS

Provision has been made for the optional "viewing" of a deduction
process as it is happening. Ideally such a facility would show
the tree of constraints growing during the execution of the
deduction cycle. This would, however, be somewhat extravagant of
display space, and LOGIC has a more modest version of this idea.

10.1 THE MONITOR FACILITY

Execution of the command (MONITOR :ALL) enables the system to
display each successive selected constraint during the deduction
process.

If the selected (implicit) constraint is (Q E) the display shows
the (explicit) constraint Q*{E}. In order to give the user time
to reflect, the system pauses once each cycle, and resumes on
receiving a suitable input (normally, a C). The predications
comprising the query Q'{E} are displayed as they exist before any
simplification is performed.

It should be noted that when viewing a developing deduction
process in this way one may observe some discontinuity in the
display. This is because the selection mechanism may not always
choose a successor of the previously selected constraint, but
rather "resume" some older constraint whose turn has arrived for
some more "progress". Even when the genetic thread remains

"* unbroken, there may be rather drastic changes in the constraint
owing to the LISP-simplification step of the cycle. The user
will soon become accustomed to the realities of the MONITOR
display, however, and will find it an enlightening tool when

. ,sparingly used to slow down and observe the deductive action.

The command (MONITOR :OFF) disables the MONITOR facility.

* One need not simply continue from the MONITOR pause. The
commands one can give are as follows (the prompt is
"Monitor: (C, X, K, E, or Q)"):

" C - Continue searching
X - Explain deduction

. K - Discard these constraints
• .E - Evaluate an expression

- 1-1 -

" ... ..-. '.W'..*-

-. -.. .. .- ,-.
". ' ... i" " , " . -"--. ."."- . .I -'." - .•-•-"--.•. " -- - . .- •".' ' . ' '.=. ' ' '-e- P ' .. ' .-.... . " . '



Q - Terminate search

Responding to the MONITOR's prompt with the blue HELP key causes
a help message (similar to the five lines above) to be printed.
Any other input is ignored and a new prompt is issued. X, E, and
HELP-KEY leave the system in the MONITOR pause. Both X (Explain)
and E T-Evaluate) ask the user for more input. In the case of X
one may enter explanation qualifiers to specify the mode of
explanation (see the next chapter). After entering E, the system
prompts for the expression to evaluate.

10.1.1 Controlling The MONITOR Facility

One may wish to monitor only selected steps in the deduction. To
do so, one executes the command (MONITOR PI...Pn) for some
predicates P1...Pn. Thereafter, the system will monitor just
those cycles for which the selected constraint begins with a
predication whose predicate is among P1 ...Pn. We say that the
predicates specified have been "flagged" for monitoring. To
monitor empty constraints (successes), flag the identifier NIL,
with, perhaps, other predicates. One can flag additional
predicates by executing a similar MONITOR command, or "unflag"
certain predicates with a command (UNMONITOR P1...Pn).
(UNMONITOR :ALL) unflags all currently flagged predicates.

The (MONITOR :OFF) and (MONITOR :ALL) commands operate
ir.deper.dently of flagged predicates, and without changing the
flags. The command (MONITOR :ON) re-establishes selective
monitoring.

One may also wish to observe constraints after simplification as
well as before. The command (MONITOR 2) causes the system to
print the constraint after simplification, in addition to the
normal display before simplification, provided that the
constraint was altered in some way by simplification. If
selective monitoring is in effect, the decision as to whether the
cycle should be monitored at all is still based on the initial
predicate of the selected constraint, before simplification. The
command (MONITOR 1) restores the normal mode, printing the
constraint before simplification only.

The numerals "1" and "2" can be included in MONITOR commands
which flag predicates, in which case they have the same effect as
when they stand alone. The key words :OFF , :ON and :ALL are not •
recognized in such commands, however, so the command
(MONITOR :OFF Male) would flag the predicates :OFF and Male and
enable selective monitoring.

- 0-2 -



10.2 THE PURR FACILITY

It is often desirable to be able to see in some direct way that
the deduction process is taking place, without necessarily
slowing it down to the extent that the MONITOR facility entails.

The command (PURR :ALL) enables just such a facility, the PURR
facility.

The PURR facility consists of a running display accompanying the
deduction process. It involves the printing of a few single
characters per cycle. No line feed is given after printing
(except at the physical end of a line) so that the characters
form a continuous string. The meaning of each character is as
follows:

Character Meaning

Start of a new query
- (hyphen) Start of a new cycle
P Selected constraint a success
U Selected predication is NIL (false)
R Resolvents of selected constraint obtained
X Selected constraint failed for lack of

resolvents
C A continuation popped up
L Selected constraint failed due to window

limit
] Completion of a query

The PURR facility is disabled by the command (PURR :OFF).

Thus with the PURR facility on the following transaction would
occur:

(ALL (x y) (Age x 1920 y))[-R-R-R-P-R-P]
((Turing 8.) (Herbrand 12.))

The "PURR string" shows that the deduction took six cycles,
invoked four procedures and found two answer environments.

Note that if a query is invoked within the processing of another
query the PURR string will contain nested bracket pairs. As with
the monitor facility, control is based on the initial predicate
of the selected constraint, and predicates are flagged for
purring with commands of the form (PURR P1 ...Pn), unflagged with
commands of the form (UNPURR P1...Pn). Empty constraints
(successes) are selected by flaggig NIL, as with MONITOR. The

- 0-3 -

r." ".J'.

.............................................................................



key words :OFF, :ON and :ALL are used exactly as with MONITOR.
Numerals are allowed in PURR commands, but have no effect.

One may nest calls of PURR and MONITOR, as in
(PURR (MONITOR :ALL)), which enables both PURRing and MONITORing
on all cycles. The same is true of UNPURR and UNMONITOR.

10-4l

5-:-

5- 4 -. 1



CHAPTER 11

EXPLAINING DEDUCTIONS

Once a deduction has been completed an~d its answer list obtained,
one may call for an explanation of the reasoning by which some or
all of the answers were deduced.

*For instance, the following transaction consists of first
constructing the answer list for the query
(ALL (x y) (Age x 1920 y)) and then requesting an explarnation for
the second item.

(ALL (x y) (Age x 1920 y))

((Turing 8.) (Herbrand 12.))

* (EXPLAIN 2)

To show-
((Age x 1920. y))

* it is enough, by
*(AGE-RULE (Age x 1920. y) <-

(Born x H ]birth-yearl) &

* to show:
* ((Born x [1Hbirth-yearl) (:y 1920. birth-yearl)))

*then it is enough, by
(HERBRAND1 (Born Herbrand 12. February 1908.))

to show:
((:y 12.))

then it is enough, by
(REFLEXIVE-LAW (:Reflexive Law))

to show:
NIL
DONE

The (EXPLAIN 2) command causes an explanation of the answer
* (Herbrand 12.) to be printed. The successive constraints leading



- -. °,_- - - -

to the answer are exhibited, and the clause activated to cause
* each transition is shown. The activated clause is shown with

respect to the environment part of the resulting constraint (i.e.
after the activation has extended the environment).

Various further inflections are provided with the EXPLAIN
command. (EXPLAIN :ALL) provides explanations of all answers.

(EXPLAIN NI ... Nk) provides explanations of the N1st, ... , Nk'th
answers. (EXPLAIN) is the same as (EXPLAIN 1).

Explanations can be produced only when the history facility is
enabled, which normally it is not. The history facility is
enabled by (HISTORIES :ALL), disabled by (HISTORIES :OFF).
Enabling the history facility can impose significant overhead on
the system, particularly when the deduction tree must be searched
to great depth.

The answers which one can have explained are those produced by
the most recently completed invocation of ALL, ANY, THE or SETOF.
If there are no such answers EXPLAIN will simply respond -

Nothing to explain
DONE

An attempt to select a non-existent answer will be ignored,
except that a note to that effect is typed.

11.1 ALTERNATIVE EXPLANATION MODES.

The EXPLAIN facility is considerably more flexible than indicated
by the example just discussed, which illustrates only the normal
mode of explanation. One can obtain explanations in a variety of
styles. The variations are specified by typing qualifiers in the
command following the selection of the answers to be explained. :
To illustrate, the command (EXPLAIN 2 :NAMES :FINAL ) would print
a similar sort of explanation, except that only the names of the
clauses would be printed, and the constraints would all be
recursively realized in the solution environment.

11.1.1 Specifying Items To Be Included.

Besides constraints and clauses, one may also instruct the system
to print answer templates at each stage of the explanation,
instantiated and simplified. One may also print names of clauses
rather than printing clauses in full.

When names of clauses are to be printed the system will construct
names for clauses for which the user has not specified names.

11-2 -

* . . ,. . . .. . ,-. -, .;<, . ., . . * , .,,*i



These "manufactured" names have the form (Pred :RULE k) or
(Pred :DATUM k), following the conventions discussed in Chapter
6. User-supplied names are usually taken just as specified, but
one can request "long" names, in which case the name given by the
user is combined with the principal predicate symbol to form a
list "(Pred Name)". Manufactured names are always in the long
format.

The qualifiers which control all this are the following:

:ASSERTIONS Print clauses in full (Default]
:NAMES Print names of clauses
:UNNAMED Print clauses which lack user-supplied

names, print names where available

:LONG Print all names in long format
:SHORT Print user-supplied names in [Default]

short format

:CONSTRAINTS Print constraints [Default]
:NOCONSTRAINTS Omit constraints

:ANSWERS Print answer templates
:NOANSWERS Omit answer templates [Default]

:CONTINUATIONS Print continuations with constraints
:NOCONTINUATIONS Omit continuations [Default]

If :NOCONSTRAINTS is specified the format of the explanation is
adjusted accordingly. If :NOCONSTRAINTS, :NOANSWERS and :NAMES
are all specified the explanation is simply a list of the names
of the clauses used, with no ornamentation. The default
selection between :CONTINUATIONS and :NOCONTINUATIONS can be
changed by (CONTINUATIONS :ON) or (CONTINUATIONS :OFF).

If *ASRNNUMBERS is non-NIL then anonymous clauses printed ir. "-.
explanations will include numbers, as explained earlier in
Chapter 6.

11.1.2 Specifying Environments To Be Used.

We remarked earlier that the normal explanation shows each step
of the derivation in the environment current at that step. One
can, however, specify other choices as follows:

:INITIAL Use initial (empty) environment
:CURRENT Use current environment [Default]
:FINAL Use final (solution) environment

1 11-3.

. ............. .. .

"- - . . . . . . . . .

I'..'-.:-.--....-'--.-...- ....'-..-.--..-..-.'-...--.. ;.-..:. -'..-:.-.. ... .. . ..'...-.-'... --......-..-..-'.. . . . .. ''.-. ...-....-.. ,..",. .'.-. .



When the :INITIAL environment is specified constraints are shown
in the current environment, as nothing earlier makes any sense,
while clauses are shown in the form in which they appear in the
knowledge base. Note that the :ANSWERS option is useful only in
conjunction with :CURRENT, though other combinations are allowed.

Anything other than a qualifier appearing in the command will be

ignored, with a warning message to that effect typed to the user.

11.2 LIMITING EXPLANATIONS

The full explanation of an answer, as normally produced by
LOGLISP, can be quite lengthy, and one might wish to limit the
explanation by omitting certain uninteresting steps. If one sets
(HISTORIES :ON) then histories recorded by the system will
include only those deduction steps which use clauses from
procedures whose predicate symbol has the attribute :HIST, as
might be declared by the command (PROCEDURE Pred :HIST) [see
Chapter 5]. ".

The following example shows the effect of including only steps .-

using the procedures Age and in the deduction of Herbrand's age
in 1920.

(ADD-DECLARATION :HIST Age :)
. :HIST

* (HISTORIES :ON)
ON

(ALL (x y) (Age x 1920 y))
((Herbrand 12.) (Turing 8.))

(EXPLAIN 2) .7 "

To show:
((Age x 1920. y))

it is enough, by
(AGE-RULE (Age Herbrand 1920. y) <-

(Born Herbrand [I [1 1908.) _&
(: y (- 1920. 1908.)))

to show:
((== y 12.))

then it is enough, by
(REFLEXIVE-LAW (== Reflexive Law))

11-4

. . . .. . . . . . . . . . . .... .

. .. . . . . . . . . . . . . . . . .

' • l . .- .. . . . l i " i i
I

. ." ,* * *il l " Il ,"l ... . "
I

-- " S lI. "-



to show:
NIL
DONE

One observes that the omitted steps are not entirely ignored,
since the bindings these introduce may influence the appearance
of the steps which are retained in the explanation.

11.3 OBTAINING EXPLANATIONS IN LISP.

The system contains a number of functions which allow the LISP
programmer to get at the basic material of the explanations. The
programmer can then format explanatory material in whatever way
he finds convenient. The first argument to each of these
functions is an "answer number", which is the number of the -'

answer to be explained, just as might be typed to EXPLAIN. The
effect on these functions of predicates with the :HIST attribute
is analogous to the effect on EXPLAIN.

(EXPLNAMES ANSNMB)

returns a list of the names, in long format, of the clauses used
to derive the answer, in the order used.

(EXPLASSERTIONS ANSNMB ENV)

returns a list of the clauses used to derive the answer, in the
order used. Here ENV should be one of the atoms :INITIAL,
:CURRENT, :FINAL, to specify the environment in which the clauses
will be shown. Each clause is represented by a list

(Pred Datum/Rule Name/Number Head Tl ... Tl)

where "Pred" is the principal predicate symbol, "Datum/Rule" is
either the identifier :DATUM or the identifier :RULE, according
to the classification of the clause, "Name/Number" is the
user-supplied name or system-manufactured number, and the
remaining entries are the predications of the clause.

(EXPLCONSTRAINTS ANSNMB ENV CONTNS)

returns a list of the constraints arising in the derivation,
beginning with the original query and ending with NIL. Here ENV
specifies the environment as before, except that :INITIAL is
treated the same as :CURRENT. CONTNS should be T if
continuations are desired, NIL otherwise. The entries of the

11-5-

',: : :. . ... -. -.- ,.,-.. ..-..--...... , .... ....... ,..............,..,,,,,...,....,......-... ,.... . ,.
"..- ..'. - . ". -. .- ,. '-.. .. • ..... ", " * .'. '.'.., • , . - .•.•. . . - .. " ...-. .. . - , - , - - -



list returned by EXPLCONSTRAINTS are themselves lists of some
complexity. If the constraint in question has no continuation,
the corresponding entry has the form:

((ql ... qN))

where qi is a predication. If the constraint has a continuation,
but CONTNS is NIL, the entry will have the form

((ql ... qN) CONTINUED)

while if the constraint has a continuation and CONTNS is T, the
entry has the form

((ql ... qN) (pl ... pM) .•.)

where pi is a predication of the continuation, which may itself
be followed by another continuation, and so on.

(EXPLTEMPLATES ANSNMB)

returns a list of answer templates shown in the successive
:CURRENT environments, beginning with the original template and
ending with the actual answer.

All of these functions follow a common convention regarding
exceptions. If the answer number specified does not correspond
to an existing derivation the result is the atom :NO-EXPLANATION.
If the most recent search was performed with the history facility
disabled the result is NIL.

116-.-

- 1 1-6 -- 2-.-

- .-..
. a . -o

*.....



* • .. o

CHAPTER 12

INTERACTING WITH LOGLISP

In the present chapter we discuss the mechanics of running
LOGLISP, obtaining information, controlling the operating modes
and default settings, and some points dealing with errors.

12.1 RUNNING LOGLIS:

Before running LOGLISP, LOGLISP must be loaded. To load LOGLISP,
simply type at a lisp listener the following:

(LOAD "<fs>:<dir>;LOAD")

The Lisp Listener will respond with:

Loading <fs>: <dir>; LOAD.LISP > into package USER
Loading <fs>: <dir>; PACKAG.LISP > into package USER
Loading <fs>: <dir>; GLOBAL.LISP > into package USER

#<FS:LM-PATHNAME "<fs>: <dir>; LOAD.LISP#>">

where <fs> and <dir> are the file system and directory,
respectively, on which the LOGLISP system lives. To complete the
loading process, type:

(LOAD-LOGLISP)

The Lisp Listener will respond with:

Loading <fs>: <dir>; SUPORT.LISP > into package LOGLISP
Loading <fs>: <dir>; USER-INTERFACE.LISP > into package LOGLISP
Loading .fs>: (dir>; ENVIRX.LISP > into package LGLISP
Loading <fs>: <dir>; UNIFCN.LISP > into package LOGLISP
Loading <fs>: <dir>; SUBSCR.LISP > into package LOGLISP
Loading <fs>: <dir>; SHOWNG.LISP > into package LOGLISP
Loading <fs>: <dir>; RDUCTN.LISP > into package LOGLISP
Loading ifs>: (dir>; PROCBS.LISP > into package LOGLISP
Loading <fs>: <dir>; RESLTN.LISP > into package LOGLISP
Loading <fs>: <dir>; HEAPX.LISP > into package LOGLISP
Loading <fs>: <dir>; UNDFPR.LISP > into package LOGLISP
Loading <is>: <dir>; SEARCH.LISP > into package LOGLISP
Loading <s>: <dir>; SCHIFC.LISP > into package LOGLISP
Loading <fs>: <dir>; PRNTNG.LISP > into package LOGLISP

- 12-1 -

* *'. 4..

p



Loadirg <is>: <dir>; EXPLNG•LISP > into package LOGLISP-"

Loading <is>: <dir>; EDITNG.LISP > into package LOGLISP
Loading <is>: <dir>; SAVRST.LISP > into package LOGLISP
Loading <s>: <dir>; CONTRL.LISP > into package LOGLISP
Loading <is>: <dir>; SYSINT.LISP > into package LOGLISP
Loading <s>: <dir>; MISCEL.LISP > into package LOGLISP
Loading <is>: <dir>; MENU.LISP > into package LOGLISP

LogLisp, version V3M1X4-Z
Copyright 1984, Syracuse University
<current time and date>

LOGLISP is now ready to use.

12.2 INITIALIZATION

The system starts out with an empty knowledge base. One may
re-initialize the LOGIC part of the system at any time by
invoking the function START.

(START)

leaves an empty knowledge base and resets the operating mode
controls and system defaults to their standard values. LISP
function definitions, file descriptions, and identifier values
are not changed, except for those values which are used in system
control.

12.3 INFORMATION

When interacting at the top level of LOGLISP, i.e. typing at a
Lisp Listener, brief instructions may be obtained by typing HELP.
A complete list of the functions which constitute the user
interface to LOGIC, along with some other useful functions, is
typed by the command (HELP), which may also be typed at the top
level of LISP. In the MONITOR pause, in FACTS, and other times
when LOGLISP is asking the user for input, help may be obtained
by striking the blue HELP key.

Abbreviated instructions for using any of the LOGIC interface
functions (ASSERT, THE, ALL, ANY, etc.) can be obtained by
invoking the command (DOCUMENTATION 'fn), where "fn" is the name
of the function in question.

1. •

-"- 12-2 - 1'-*

.a
"*' .. '-.- ' .-.' -. ' " ' .-. ' '-.-2-.- '.'""..-" " ." -'.' ...-. " .... . '.. . ...... -...... . .. .'- ... '''
.'..--. - -.--.. , . .--. v -.. , .v ..... --. ---.. -. . -,. ,..,. "." .. '- ., -", .. ,. , , , .- '. . ...- ." .".' -4. ." _- <.,[,.

.-.-...... '. . .'..-.- ." . . .. ... ,- .. ' .. . ,, '. . . . - .-..%- .. ,'a. . '.... . '. '.. ..... ' .' .- . . '....-..' . .. .- ,



12.4 CONTROL "

The earlier chapters of this report mention a number of functions
used to control various operating modes, as well as several
defaults used by the system. In this section we shall summarize
the control functions and explain the treatment of defaults in
somewhat greater detail.

12.4.1 Control Functions

With the exception of PURR and MONITOR (see Chapter 10), all of
the control functions take one argument, which should be :ON or
:OFF, and return the argument after altering the system state
appropriately. These function calls may be nested. To
illustrate, the command (HISTORIES (CONTINUATIONS :ON)) enables
both the recording of HISTORIES and the printing of
CONTINUATIONS.

Several of these functions operate simply by setting the value of
a LISP identifier, in which case NIL represents :OFF, while
anything else represents :ON. (PURR, MONITOR, and HISTORIES use
:ALL to represent the state selected by :ALL.) The identifiers so
used may be changed directly by LISP programs, or accessed by
them as may seem useful. The table which follows lists the names
of the control functions, the initial settings, and, where
applicable, the identifier set by the function.

Function Initial Setting Identifier

PURR :OFF *PURR
MONITOR :OFF *MONITOR
CONTINUATIONS :OFF *CONTINUATIONS
HISTORIES :OFF *HISTORIES
ASK :ON *ASK
AUTO-: :ON [None]
AUTO-AND :ON [None]
AUTO-OR :ON [None]
AUTO-COND :ON [None]

Initial settings are reestablished by START. The facility
controlled by ASK is described below in the discussion of errors.

12.4.2 Defaults

Both in specifying deduction windows and in requesting
explanations the user normally relies on many defaults. These
are not, in fact, determined rigidly by the sytem, but may be
adjusted by the user. The standard default settings are,

V 12-3 ,

- - .. . . . . . . . . . . . . . . . . . . . . <.
-< ........ ... . .



however, restored by (START).

12.4.2.1 Deduction Window And Search Defaults - The defaults for
deduction windows and search parameters are the values of the
LISP identifiers listed below, along with their initial values.

Identifier Initial Value

*TREESIZE :INF
*NODESIZE :INF
*ASSERTIONS :INF
*RULES 1500
*DATA :INF
*CSTEP 4
*ALLSTEP 64

Each of these gives the default value for the corresponding
window limit. The implementation constraint on the number of
rules in a single deduction will be rigorously enforced, even if
*RULES is made larger than this limit.

The values which one may assign to these identifiers are the atom
:INF or any non-negative integer.

12.4.2.2 EXPLAIN Defaults - The default qualifiers for EXPLAIN
are similarly controlled by a collection of LISP identifiers.
The table below shows the identifiers, the set of values each is
allowed to take, and the initial value.

Identifier Value Set Initial Value

*EXPLASSERTIONS (:ALL :SOME NIL} :ALL
*CONSTRAINTS {T NIL} T
*LONGNAMES {T NIL) NIL
*ANSWERS (T NIL) NIL
*CONTINUATIONS IT NIL} NIL
*ENVIRONMENT (:FINAL :CURRENT :INITIAL } :CURRENT

Note that *CONTINUATIONS is controlled by the function
CONTINUATIONS, and affects the monitoring facility as well as
EXPLAIN.

i.i

-12-4-

e.'... P ** I

• ~~~~~~~~~~~~~~~~~~~~~.. . .. .... .-.... -....-..-.... _........... ......... .... .* ,'-.. .. .. ]

*" TA '= -'.- - -' 'J= , a ,, 'w ' .. .n ' - , " - ... -. "n . . .



12.5 ERRORS

Errors can arise either in LOGIC or in LISP.

12.5.1 LISP Errors

Errors detected by LISP will result in entry to the LISP error
handler in the usual way. If the error arose during reduction a
backtrace will show none of the workings of the reduction
machinery, which is probably the best course the system could
take.

All of the LISP facilities for recovery and analysis are
available.

Note that misspelled function names in LOGIC terms will not lead
to undefined function errors, simply to expressions which are not

. evaluable.

Although the LISP recovery facilities are available, one should

not attempt to edit assertions during a break.

12.5.2 LOGIC Errors

Earlier chapters explained how syntax errors are handled by
ASSERT and FACTS. There is one other type of error which can be
detected by LOGIC -- the "undefined predicate" error.

A predicate is considered to be undefined if it has neither a
LISP definition (as a function) nor a LOGIC definition (as a
procedure of one or more assertions). If such a predicate is
encountered during a search, and if the ASK facility is enabled
(as it is initially), the system will ask the user for
instructions, after first printing a message specifying the
undefined predicate.

The prompt for instructions is:

What's next? (C, F, S, E, P, or Q)

The following help text will be displayed if the user strikes the
blue HELP key:

Respond with:
C to continue searching
F to execute FACTS
S to correct spelling
E to evaluate an expression and print the result
P to print the current state ..-e

- 12-5 -

. . . . . . . . . . . . .

. . . . . . . . ** * * * **=**. . . .* * ..... . . .,.. .. ..
. . . . . . . . . . . .. . . . . ... . . . . . . . . . .'. .

. . . . . . . . . . . . . . . . . -... ... . . . . . . . . . . . . . . . . . . . . . .. %.



Q to abandon the search

Anything other than the inputs specified causes the system to
remain in the ASK state. If the user does anything which might
conceivably alter matters, the system will try again to simplify
and obtain resolvents.

The automatic spelling correction attempts to find a predicate
* (defined by LOGIC) which closely matches the undefined predicate.

If successful it informs the user of the chosen predicate, if not
successful it informs the user of that fact. Spelling
corrections are accomplished with RPLACA, so the effect may reach
beyond the immediate situation. When the undefined predicate
occurs as an instance of some variable, spelling corrections are
probably unwise, and the user is warned of such circumstances.
Afterwards it may help to run with (HISTORIES :OFF).

12.5.3 LOGLISP Utilities

Some of the LOGLISP system utility functions may be of use to
programmers. The names of these functions are not reserved.

(VARIABLE e) (FUNCTION]

returns T if e is a LOGIC variable, NIL otherwise. The closely
related form (Variable le") may conveniently be used in
assertions to distinguish variables from other expressions (see
Chapter 4).

(Version) (FUNCTION]

prints a message identifying the version of LOGLISP in use.

(HELP) [FUNCTION]

oprints a classified list of logic system functions.

(RTIMER "lexpr"l) [MACRO]

evaluates Ilexpr"l, prints timing information about the evaluation,
and returns the value thus obtained. RTIMER prints the number of
seconds spent evaluating expr, the number of resolvents computed,
the rate at which they were computed (in LIPS "logical inferences
per second"), the number of simplifications performed, and the
combined rate at which both resolvents and simplifications were
performed ((resolvents + simplifications)/seconds). By a

1-..

S12-6 ,.

-" JJ k e. . .

%" % X %!

"- rturn T i e i a LGIC ariale, IL oherw s• The*S..**p clsl .:*



simplification we mean the evaluation of one predication by
LOGIC. Subsidiary evaluations performed in the course of 2
reduction are n~ot counted as simplifications.

I.-

-12-7-

16'. . . . . .V
. . . . . . . . . . . . . . . . . . . . . .. . . . . . .



W.70.777... -- - . 7._-. ".- ..",." L.-, VI- I t' d . -

REFERENCES

[Boyer-Moore 1972J

Boyer, R. S., The Sharing of Structure in Theorem
Moore, J. S. Proving Programs. Machine Intelligence 7,

Edinburgh University Press, 1972.

;2 [Bruynooghe 1976•

Bruynooghe, M. An Interpreter for Predicate Logic
Programs, Part I. Report CW 10, Applied
Mathematics and Programming Division,
Katholieke Universiteit, Leuven, Belgium.

* [Clark 19791

Clark, K. L., Programmers' Guide to IC-PROLOG. CCD
McCabe, F. Report 79/7, Imperial College,

University of London.

[Colmerauer 1973]

Colmerauer, A., Un Systeme de Communication Homme-Machine
Kanoui, H., en Francais. Rapport, Groupe Intelligence
Pasero, R., Artificielle, Universite d'Aix-Marseille,

- Roussel, P. Luminy, France, 1973.

[Floyd 1964j

Floyd, R. W. Algorithm 245, TREESORT [Ml].
Communications of the Association for
Computing Machinery 7 (1964), p. 701.

[Hill 1974]

. Hill, R. LUSH Resolution and Its Completeness. DCL
Memo 78, Department of Artificial
Intelligence, University of Edinburgh, 1974.

- R-1 -

%:%

e-.. .
. -_ ..., ....,.,,lla.-.lmhillhlh~l % a~l ,id~mh~ldE~ - ..... .,. ... . ... ..



LKowalski 1974ij

Kowalski, R. A., Predicate Logic as Programming Language.
Proceedings IFIP Congress, 1974L.

LKowalski 1979i

Kowalski, R. A., Logic for Problem Solving. Elsevier North

Holland, 1979.

[Meehan 1979]

Meehan, J. A., The New UCI LISP Manual. Lawrence Eribaum
Associates, 1979

* LMoon Stallman and Weinreb 1983]

Weinreb, D., Lisp Machine Manual. Fifth Edition, System
Moon, D., Version 92, January 1983.
Stailman, R.

*LMoon and Weinreb 1980]

Weinreb, D., Lisp Machine Manual. Second Edition,
Moon, D. March 1980.

LRoberts 1977]

Roberts, G., An Implementation of PROLOG. M.Sc. Thesis,
University of Waterloo, 1977.

* LRobinson 1965]

*Robinson, J. A., A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the Association for
Computing Machinery 12, 1965, pp. 23-41.

* LRobinson 1979]

Robinson, J. A., Logic: Form and Function. Edinburgh University
Press and Elsevier North Holland, 1979.

LRobinson-Sibert 1980]

Robinson, J. A., Logic Programming in LISP. Technical Report,
*Sibert, E. E. School of Computer and Information Science,

Syracuse University, November 1980.

R-2 -

- ...................................................................... ............................ ... -

. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kowalski, R. A. Logi*.or*Problem Solvin . *Esve North~...- -- '



-- -- -- - -, ' 4 -. . ;-, -. .'. . - . - - , , . " " , % , , . . . - . . _

[Robinson-Sibert 1981i

Robinson, J. A., LOGLISP Implementation Notes. Technical Report,
Sibert, E. E. School of Computer and Information Science,

Syracuse University, December 1981.

[Robinson-Sibert 1984j

Robinson, J. A., LOGLISP Implementation Notes. Technical Report,
Sibert, E. E. Logic Programming Research Group,

Syracuse University, February, 1984.

LRousse1 1975]

Roussel, P., PROLOG: Manuel de Reference et d'Utilisation.
Groupe d'Intelligence Artificielle,
Universite d'Aix-Marseille, Luminy, 1975.

[van Emden 1977]

van Emden, M. H.,Programming in Resolution Logic.
Machine Intelligence 8, 1977, pp. 266-299.

LWarren 1977-

Warren, D.H.D., PROLOG - The Language and Its Implementation
Periera, L. M., Compared With LISP. Proceedings of a symposium
Pereira, F. on AI and Programming Languages, SIGPLAN

Notices, Vol. 12, No. 8, and SIGART Newsletters
64, August 1977, pp. 109-115.

-R-3-

>... ° '

-.. * . . . . . . .,5 -.. 5S S,.* S 55 5 5"5. *S

"" ,--S .-... "-5. . . . . . - 5

* - .* S S -5. .. -. -. 5~ 5 *. . ."

.s 
5 

% % .. N % ~ . ~ .... .-- S.... %*~I~ S %~*.*-.S,
5

***.S.~ ,~5-, 5.5.

* * 5 5 ** 'h, S 5) *.."*.%°S



* . .. .. . .. °. . . . . . . 12- 3 . , -

*HISTORIES~~~q. ..... 1-

*O T ...

INDEX .,

•ASK... .... .............. .12-3
' CONTINUATIONS............. 12-3 :
' HISTORIES................ 12-3 '
' MONITOR.............. .1- .
' PURR.................... 12-3 .-.

" :ALL .............. 10-2, 10-4, 12-3 to 12-4
- :ANS-IRRED ... ........... .. 9-6

:ANS-REDUCE ..... ........ .9-6
:ANSWERS ..... ........... .11-3 to 11-4
:ASSERTIONS . ."........ 9-3,11-3
:CONSTRAINTS .1. . ....... 11-3
: CONTINUATIONS .. ......... .. 11-3
*CSTEP ............. 9-5
:CURRENT .... ........... .. 11-3, 11-5 to 11-6, 12-4

" :DATA ............. 9-3
- :DATUM ...... ............. 6-4, 11-3, 11-5

:FINAL .... ............. .. 11-2 to 11-3, 11-5, 12-4
:HIST ..... ............. .5-6 to 5-7, 11-4 to 11-5
:INDEX ..... ............. .5-6, 9-7
:INF .. ............ 9-3, 12-4
: .INITIAL .. ............ 11-3 to 11-5, 12-4
:IRRED .... ............. .. 5-5 to 5-6

- :limit .... ............. ... 9-3
-LIST ..... ............ . _9-6

:LONG .............. 11-3
:NAMES 11-2 to 11-3
:NOANSWERS .......... 11-3

' :NOCONSTRAINTS ......... 11-3
:NOCONTINUATIONS .......... .11-3

- :NODESIZE .... ......... 9-3 ,..
:OFF ..... .............. .10-2 to 10-3, 12-3
:ON . .............. 10-4, 12-3

-- :ONERES ............ 5-6, 9-6
• :RULE .... .............. 6-4, 11-3
• :RULES ..... ............ .

: SET ....... ............. 9-6
: SHORT . ......... . 11-3
SOME . . . 12-4

". :TREESIZE . ......... 9-3

- Index-I -

%%6

.. .... .. , , .. ..... ..2.. .A . . v
.-. S.-... .*• - . .- ,..' . #..' .*- • V .' ," 'J "[



---.

:UNNAMED ............ 11-3

:USER ............. 8-1 to 8-2

-- 4-18, 4-20, 4-22

ADD-DECLARATION ........ 5-6
ALL ... .............. 9-1 to 9-5
Alternative explanation modes. . 11-2
AND ..... .............. .4-9, 4-22 -*

Answer control .. ......... .. 9-5
Answers .... ............ .1-2
ANY .............. 9-1 to 9-2, 9-5
ASSERT .... ............. ... 5-1, 12-2
ASSERT* . . . . . . . . . 5-7"
Asserting clauses .. ....... .. 5-1, 5-4, 5-7
ASSERTION. ........... 6-5
ASSERTIONSOF .. ......... 6-3
Assigr.ments ... .......... . I 412
AUTO-== . ... ............ ..- 24AUTO-AND . -24 '"

AUTO-COND ... ........... .4-24
AUTO-OR .... ............ .4-24

Clause indexing . . . . . . . . 9-6
Clause numbers .6........ 6-5
Clause order ... .......... .5-5
COND ..... ........... 4-10, 4-22
Conditionals ....... ...... 4-10, 4-22
Conjunctions .......... 4-9, 4-22
CONS ..... .............. .4-19, 9-7
CONSTANT ............ 5-5
CONSTANTS .... .......... .6-2 to 6-3
CONTINUATIONS ... ......... .. 4-23, 11-3
Control ... .......... 12-2
Controlling reduction. . . .. 4-17

i Controlling the deduction process 9-4
CONVARIABLES ... .......... .5-9
CONVARIABLES ............ 5-9.-....

Declaring attributes ........ .. 5-5
Deduction cycle .. ........ .3-13 to 3-14, 4-16
Deduction window .......... .3-15, 9-2
DEF .............. 2-7
Defaults ............ 12-3
DEFINE-PROCEDURE .. ........ .. 5-2, 5-7, 6-1
DEFMACRO ...... ............ 4-B
DELETE= .... ............ .7-1 to 7-2 -
DELETE=*. . .. ............ .7-1 to 7-2
DELETEA . . . ........ . 7-2

- Index-2 -

. . . . . . . . . ." .



DELETEA.......................7-

DELETEA* .... ............ .7-2
DELETED ............ 7-2:-'DELETED* 7-2"'"

DELETEN .... ............ .7-1
DELETENM .... ............ .7-1
DELETER .... ............ .7-2

: DELETER* ....... . . . . . .. 7-2
Deleting clauses ... ...... .7-1
Deleting procedures ........ .. 7-1
Denotation semantics ........ .. 1-5
Disjunctions ... .......... .4-10, 4-22

* Displaying data .... ........ 6-2
Displaying knowledge bases 6-1
Displaying predicates .. ... 6-2
Displaying procedures ...... .. 6-1
DOCUMENTATION .. ......... .12-2
Don't care symbol .. ....... .. 4-20

. Dotted pairs ...... ........ 2-1

Environments .......... 2-7 to 2-8
EQL ..... .............. .4-18
Equations ... ........... .4-21
ERASEP .... ............. .. 5-7, 7-1
Errors ........ ...... .12-4
EVAL ............. 4-12
Evaluation ...... 4-5
EXPLAIN .... 11-2
Explanation defaults .1.-.... 12-4
Explanations ........... 3-16, 11-5
EXPLASSERTIONS . . ..... 11-5
EXPLCONSTRAINTS .... ........ 11-5
EXPLNAMES . ..... . . . . .. 11-5

. EXPLTEMPLATES .... ......... 11-6
Expressions ... ......... ... 2-1, 2-5, 2-13, 4-6

' F-L . . ............ 4-9, 4-19
FACTS .... ............. .5-3 to 5-4, 5-7
Facts mode . .... .......... .5-3
Failure nodes ......... 3-14

- FUNCTION .... ........... ... 4-9, 4-19

Getting started ........ 12-1
GROUND .... ............. ... 4-15

HELP ....... ......... 12-2, 12-6
Help ..... ............. ... 5-4, 10-2, 12-2, 12-5
HISTORIES ... ........... .11-2, 11-4, 12-3, 12-6

* Histories ... ........... .3-16

- Index-3 -

V,-4..............'.........'"
% % %e.... ..- .... ••.* *.*•.* *,.-...*•% * . . • . .. . %, . .% • • "•

• " ... " % ,'- -. ' .'. ". .. ' * '. . . . .. . . . ."."". .". .".". .,. .- ".. . . . . . . . . . ".. . . .. . ..-" . ."." .--'. ..'-,, .-"-. . " .. .,. - ." ." " "" "



IMM . . . . . . . . . . . . 2-7
Immediate failure nodes .... 3-14
Implicit constraints ........ .. 3-11
Implicit expressions ........ .. 2-13
Indexing clauses ........... .. 9-6
Indexing rules .. ......... .. 9-7

i Initialization .. ......... ... 12-2
Instances ... ........... .2-13"IRRED . -5.-IRE,..................... 4-15"

IRREDUCIBLE .......... 4-17, 5-6
IRREDUCIBLE* .... .......... .. 5-6

Limiting explanations ...... .. 11-4
LISP .............. 4-14
LISP computations .. ....... .. 2-3

* Lisp definitions ......... 4-2....-4
' Lisp errors ... ......... .12-5

LISP-OBJECT ... .......... .4-14
LIST ..... .............. .4-9
Listings .... ............ .4-9
Lists ............. 2-1

" Lists versus sets ........ 9-5..-'-
LOAD ..... .............. .12-1
LOAD-LOGIC ... ........... ... 8-2
LOAD-LOGLISP .......... 12-1
LOGIC........ ... 1-4, 4-14 to 4-15, 9-8
LOGIC + LS. .. .......... 1-4
Logic errors.. ......... 12-5 '
LOGIC-EXPRESSION ........... .. 4-14
LOGIC-GR ..... ............ 4-15 -
LUSH resolution ... ........ .. 3-12

" Macros ..... ........... ... 4-8
META-.. .... ............. ... 5-8:"MONITOR................... 10-1 to 10-2 "MNTR10-1 to 10-2 :

Monitor facility..10-1 to 10-2

Naming clauses ......... 5-1
Nondeterminacy ...... ..... 3-14, 9-4
Notatior ..... ............ ... 2-1, 2-3

Objects .... ............ .4-5
One resolvent procedures . ... 9-6
OR ...... ............... .. 4-10, 4-22

• Paths ..... ........... .2-5
PREDICATES .-. . ........ 6-2
Predications .. ......... 3-4
Printable expressions . . . 2-5

- Index-4 -

,. .. ..

.. , . . . .. . . ..,* .- . . . . . . . .:



.~~. :. : .*... -

PRINTCREFSOF ......... .... 6-2 to 6-3
PRINTFACTS ..... .......... .5-2, 5-4, 5-7, 6-1
PRINTFACTSOF ....... ..... 6-2
PRINTNA .... ............ .6-3 to 6-4
PRLENGTH. .... ........... .. 6-2
PROCEDURE ........... 5-5, 5-7, 9-6, 11-4
PROG ............. . 4-11
PROG1 . . . . . . . ... . . 4-11

PROGN .... ............. .4-11 ".>"
PROLOG .... ............... 1-4
Proper names ... .......... .4-18

* PURR ..... .............. .10-3, 12-3
" Purr ..... .............. .10-2

Queries ............ 1-?, 3-7
Quotations ............. 4-9
QUOTE .... ........... .4-9, 4-13 to 4-14, 4-19
QUOTE-ONLY-IF-GROUND . ..... 4-15

Realizations . .......2-9
Realizing expressions. ..... 2-8
Recursive realizations ....... .. 2-9
REDUCIBLE ... ........... .4-17, 5-6
REDUCIBLE* ..... ........... 5-6
Reduction .... ........... .4-1 to 4-5, 4-17, 4-21
Reduction semantics ........ .1-5
Reduction series .... ........ 4-2 to 4-3
Reductions ........... 4-2, 4-6
REMOVE-DECLARATION ......... ... 5-6

" RES ..... .............. .3-12 to 3-13
Resolution ........... 3-12
RESTORE-LOGIC ... ....... ... 8-2
Retrieving a procedure as a list 6-3

* Retrieving individual clauses . 6-3
RTIMER ...... ............. 12-6
Rule indexing .. ......... ... 9-7
Running Loglisp .... ........ 12-1

SAVE-LOGIC ... ........... ... 8-1 to 8-2
Search control .. ......... .. 9-5
Search defaults ........ 12-4
Selections ... ........... ... 4-12
SELECTQ .... ............ .4-12

- Semantics .. . .......... 1-5
" Sequential compositions . . 4-10
* SETOF ............. .9-2 to 9-4

- SETQ ...... ........... ... 4-12
Side-effects. .............. 4-7
SIMPLIFY .... ............ .4-16

- Index-5 -

. .* *::*....* :

:~~~~~.-. .. . .. . . .. . .... .... ..... ,.. . ............. ::

•... . .. . .-.- ".-".-.. . . . ......... .. . .,-..-* -. .*-.* ,



Simplifying constraints . . . . 4-16
Solution cost .. ......... ... 3-15
Solutions . . ......... . 3-11
Special forms .. ......... ... 4-7, 4-13, 4-18
Special resolution rules . . . . 4-23
Special rules for resolution . 4-21
Specifying a world ......... ... 3-8
START .... .............. 5-1, 5-7, 12-2, 12-4
Structures ... ........... ... 2-5
Subscripted variables ..... ... 4-17, 5-10, 9-8

* Substitutions .. ......... ... 2-11

. Terms .... ............. .3-5
THE .............. 9-2, 9-4

ULT . . .... ........... .2-7
Ultimate failure nodes . . . . . 3-14
Unification .... .......... .2-9, 4-18
UNMONITOR .... ........... .10-2
UNPURR .... ............. ... 10-3
Utilities ........... 12-6

Values ...... ............. 4-2, 4-6
VARIABLE .... ........... .. 4-15, 12-6
Variable .... ............ .4-15
Variable conventions ...... 5-8 to 5-9
Variable sepatation ....... .3-12
VARIABLES .... ........... .5-8, 8-1
Variables ... ........... .4-19
Variables as tails . . ..... 4-19
VARIABLES* ... ........... ... 5-8

* Variants... ........ . 2-14, 3-12
Version ............. 12-6

Worlds .... ............. ... 3-5, 3-8

L . . . ........ .... 5-4

- Index-6 -

,b ., J ?"



MISSION
Of

Rom Air Development Center
RAI)C ptana1 and exeeuate6 wueakh, devetopment, tt and

ected acquihtion ptogwam in 4uppot 0j Cowrennd, Conto
Conication6 and inte.Wgene (c31) a.tzt.ue. Teckco.
and engineeAing 6uPP0,tt wLthin a.4eu 06 .texhn~cat cor petve
iL6 Pk'ovided to ESP P-togum 0jic~u (P06) and otkier ESP
etement6. The p'tincZ pat techic~~at iZA~on amea& m~e
communication6, etectomnetc~ guid4ance and cornt'w, Aux-
veittance 06 gLound and awo4pace objeaa, intetf.Zgence data
eottmttion and handting, in6ohmation Ay6tem technotogy,
i.onohpheLic p.~opaga.tAion, .6otid .6tate acieuce., mitcuave
pky6ZCA and eteC.t'wnic utiabitity, maintainabitZitg and
compatibitityt.



FILMED

I I,

10-85

DTlC

a: .p 
'-'a + t ,:+. . . : , .. . . . . . . .-,. _+_ ;+,. "+ ,.' .. '. +% .*.. .+ . . *..' +' _ . +, . ... ++ + . . . 5 .. . 5* . *~ a


