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THE DOWLING WALL PRESSURE-SPECTRUM ANALOGY APPLIED TO AN

ISOTROPIC TWO-LAYERED ELASTIC MEDIUM

* t NTRODUCT ION

* The relative turbulent-boundary-layer wall pressure-spectrum character-
istics on an elastic medium were predicted by Dowling through the solution of
the Lighthill equation using Green's functions. The analogy is extended in
this report to include a general two-layered isotropic elastic wall. The elas-
tic wall is treated as a viscoelastic material through the use of complex
shear and Young's moduli. The relative pressure-spectrum characteristics are
given on the top surface of the layer of the elastic medium in contact with
water and also at the surface between the two elastic layers. Air is assumed
to be the fluid in contact with the back surface of the two-layered elastic
wall. The effect of elastic-wall moduli and damping on the strength and loca-
tion of surface-pressure singularities is shown to be rather significant.

BACKGROUND

The generation of noise produced by turbulent flows over elastic surfaces
is the subject of much current research. Flow noise over aircraft bodies, jet
noise, and noise generated by flow over underwater vehicles are but a few
examples of problems in this area. In this report, we have extended the work
of Dowlingl-a to the analysis of the relative wall pressure spectrum on the
surface of a two-layered elastic medium under a turbulent boundary layer in
water. The other surface of the elastic medium is exposed to air at rest.
Such an infinite configuration approximates that which occurs in a water tun-
nel with isotropic structural walls covered by an isotropic viscoelastic mate-
rial. In the next section of this report, we derive the wall pressure spectrum
due to turbulent flow by means of a Green-function analogy applied to Light-
hill's equation describing the density field in the fluid. The following sec-
tion incorporates the properties of the elastic layers into the expression for
the surface pressure spectrum through the boundary conditions at the interface

rci between the fluid and elastic medium. Our model also includes the effect of
S0r. ~- turbal]nx,-boundary-layer shear stresses at the elastic surface. In the final

section, we'exami".the tructure of the pressure spectrum on a bare steel
plate at S and 10 kHz.Then, we compare this to the pressure spectrum on the
surface of two different viscoelastic layers applied to the steel plates. The
results show that the propagation speeds of compressive, shear, and flexural
waves in the elastic layers govern the location of singularities in the pres-

sure spectra. It is also shown how damping can affect the strength of the
singularities and the level of the local maxima. C\,k

. . C:.. .- -)... . .. .
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SOLUTION TO LIGHTHILL EQUATION

The analogy derived for predicting the pressure spectrum on a single
elastic layer through the solution to the Lighthill equation and elasticity
equations is given in detail by Dowling. 3 In this section, we outline the gen-
eral method of solving the Lighthill equation so we can show how the pressure
spectrum couples to the two-layered elastic medium in the following section.

Our model is shown in figure 1.* For the flow speeds of interest in our
underwater applications, the effect of the convected flow field is small and,
therefore, does not appear as a parameter in the final analogy. Likewise, the
boundary-layer thickness appears as a nondimensional parameter in the final
equation for the pressure spectrum and not as an explicit variable. Also, we
consider only surfaces whose mean displacement is linearly disturbed from rest
position as this allows us to make some simplifications in the application of
the Green-function solution at the surface and in linearizing the momentum
equation. The assumptions and simplifications above allow us to proceed to
solve the relative turbulent-boundary-layer wall-pressure problem.

The Lighthill equation describing the model in figure 1 is

- c2y (p - 0) ayiay j  viv(

+ p - c 2 (p - O0 ij -oij ii,j=1,2,3.

CConsidering the source term on the right-hand side as a linear disturbance, we
can apply the technique of Green functions to solve

Superposition of this Green function with the source term will yield the den-
sity perturbations in the fluid and on the surface of the upper elastic layer.

The density perturbation given by taking the integral over the entire

volume yields

(P - P-)( t) fG a G ' d3 dT . (3)

v

Application of Green's theorem to equation (3) will give the volume and surface
integrals,

*All figures have been placed together at the end of this report.

2
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ri 3 2 d3 d T

P-8 ) = JTij
V

2 3'G 3G + p al 4 dy3 d. (4)

The quantities of particular interest to us are the Fourier transforms of
the pressure spectrum taken in time and in the two horizontal'directions. The
Fourier transform taken on the surface integral, only (the overbars denote
transformed variables), is shown by

P [w)(,Ot) = ij ay ) + k ( )1(Okk,) I(O,-k-w)

If the Green function is chosen to make the surface integral vanish, we
arrive at a boundary condition for this Green function, which is

.y-,-w) + Nk,w)( -k,-w) = 0, at y2 = 0 , (6)

where N(t,w) a P0wZ + k Y . The functions Z and Y represent the generalized

impedance functions, Z(k,w) = a2 (2,,w)/p(Ok,w) and =
These impedance functions imply that the elastic deformation and fluid motion
can be described in this linear fashion.

The Green function satisfying the boundary condition in equation (6) can
be obtained directly and its derivative, 32/ayiaYj, is given as

a2G (,r,1,t) = -l foi2 "iw(-t)-ikoy,(Y-x )-iYy2d2rdw (7)
aYia) 7 3 Yj ) (2w)3ic2 T-I e

The function Dij is given as

D . Ky 0 K2 D 2
1,2 2,1 11 2,2

D,1 K K3  D K Y D K2 (8
3,1  01,3 = 3  3,2 = 02,3 3 3,3 3 (8)

The function y is defined as 2w2/c2 - K2 - K )1/ 2 and the appropriate roots to

choose for y when it is real or imaginary depend on the choice of branch cuts
used in evaluating the Green function.

3
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Inclusion of equation (7) into equation (S) will yield, after taking the
trans form,

~~ ~ = - Dij f e - Yy 2 t Y w~y 9

y) i - N) ij%J

In equation (9), the pressure perturbation has been related to the density

change through the expression p = c2(p - p0). This relation implies a simple

* linear compressible (i.e., acoustic) relation of pressure fluctuations to den-
sity fluctuations.

To solve for the total-pressure spectrum, we take the cross correlation
of both sides and obtain

P(k,w) U - N1Jf ef YY2
4 y Y2f ijk'L(y2y'k)dydy; (10)

The nature of Tijkt, the Fourier transform of the tufbulent source terms,
is believed to be such that, in the low-wavenumber region of interest, the
effect of the small displacements at the elastic surface and fluid compressi-
bility do not appreciably alter the spectrum of the turbulent source terms.
Therefore, one can nondimensionalize the pressure spectrum to obtain the final
expression as

() 2U3h5Q (1)
l- N12  0 ijkL.'()

where h is the boundary-layer thickness and U is the free stream velocity
above the boundary layer. The superscript plus denotes the complex conjugate
and Qiikl is the Fourier transform of the cross correlation of the turbulent

source terms. To obtain the nature of the wall pressure spectrum, it remains
only to relate the elastic properties to the impedance functions Z and Y

ELASTIC IMPEDANCE FUNCTIONS

The elastic media described in this model are homogeneous, isotropic, and
infinite in the horizontal directions. Therefore, we can simplify our model
by considering one horizontal component only, since the other horizontal com-
ponent can be obtained by a coordinate transformation applied to the reduced
problem. We are essentially working in two-dimensional space.

For elastic waves in layered media, the velocities are given by
Brekhovskikh.4  Since v iwiu, the displacements will be given here as

4

.Z..
'' . . . . . . . . . . . . . . . . . . . . . . .- "".. ., . , . ' . .-... - .. . .. ... .- . .. . . .. . .. .... ., , ." .. . .. . €. . .. . . . . . . .. . . .
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u V= + Vx; (12)

where 0 and are functions of the material properties of the media;

W2 1/2 2 1/2

*=A sin. k2 + B cs(T2 - k1
2 1 1

and

= C sin( - k y + D cos( Cs - k y

where ci and csi are the compressional and shear wave speeds in the i-th layer.

A, B, C, and D are as yet undetermined coefficients that will be resolved
through application of the boundary conditions. The wave speeds can be related
to the elastic material constants,

i 

2u

C. =

(13)

csi= ,i

where Ai and pi are the Lame constants corresponding to the i-th layers and Pi
is the mass density corresponding to the i-th layer.

With the two-dimensional situation, there are a total of four boundary
conditions to be applied to each interface, continuity of normal stress, tan-
gential stress, normal displacement, and tangential displacement. Denoting
the upper fluid properties with no superscript and the upper medium, lower
medium, and lower fluid with superscript prime, double prime, and triple prime,
respectively, we arrive at 12 boundary conditions.

BOUNDARY CONDITIONS

At the Surface y = 0

Boundary conditions at the surface y = 0 are

• = a (a,, + ,,ho + 2u'132 2,u 2' ( ,, 2,.22 3x2  y2 Iax y]

= -[Xt(k2 + y'2) + 2I It2JB+2iik'

10y18 2PkpsC

4% S
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01W2~ = 2 20,~~ 32  2 ) 2iW'k y'A' + Wvy1 k2)Df

V = 2.=iw(ao I. +~) iwy'A' - wk 1 D'

and

V, n iw(.'t- - C -W~k B' - iwys.C'

At the Surface y a T

Boundary conditions at the surface y = Tare

CI2 =Ge2; -[XI(k2 + Y 12) + * y-] sin y'T1 + B' cos y 'T)

+ 2iik 1 y(C' cos y'r1 - Do sin ;l

+ 2iIu"k Y itCi cos y"T1  D"' sin S

01 "'02 2ii'k 1 y'(A' cos y'T, B' sin y'T 1 )

+ Uy;2- k2)(C' sin y;T, + Do Cos YSIT1

=2iullkly"it(All cos y"T1  B" sin T

+ ~" (~2 1) (cf sin y'vT 1 + D"' cos T

=Vol; yo (A' cos Y'T1  B' sin y'T1) + ik 1 (C' sin ysT D' cos Y-1

x y"(A" cos y"T, - B" sin y"T) + ik 1 (C" sin y"T, + D0" cos ",

and

1 v"; ik(A sin y-T B'8 cos Y')- yC cos *fT +0' sin T)

= ik(All sin yIT1 + B" cos Y"T1) -y'l(C" cos y"T, D"' sin 'T)

Jb
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At the Surface y = T2

Boundary conditions at the surface y = 2 are

p = a22 1 [ 2( + y # ) 2y 12] (A" sin y"T + B" cos y"T2).p1 22 1 ) k2 1 . 2 1.y2 2i 2)

+ 2i" "k yll(C" cos y"T - 0" sin y"T2)

12' = " = 2iw"k 1y"(A" cos y"t2 - B" sin Y"t 2)

+i2- k2 to 4,n Y"T + 0" cos Y"T
" 1)CS 2 s 2)

Vil= Vol = iwy" A" cos y"T 2 - 6" sin y"T 2 ) - k(C" sin ysT 2 + D" cos ys T)

and

fil = wl( o " - D"' sin YsT2)
V " = -Jkll siny"T2 - B" cos y - iwys" cos 2 " s

FURTHER REDUCTION OF THE SYSTEM

Linearization of the momentum equation in the fluid results in two rela-
tionships that further reduce the system of equations. These relationships
express tangential velocity, normal stress, and tangential stress as

-a 1 2  k~p
V= 12 -- (14)

1 (iwv)112 ow

On the lower surface, since the lower fluid is air at rest, the relationship
between normal velocity and normal stress can be described as

V2 P '11

Using equations (14) and (15) in the boundary-condition equations and assem-
bling the result in matrix form, we arrive at

p.

p. o *

r%- ~ Z x ~-~ - -.. -
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all al' a,3 a1,12A -

a2 , a2  . . . . . . B' 0

" . . . .C ' 0'. 3,1

* * * *D' 0

I .• • • 0 • •B1, 0
**= 0 (16)

* . " ." . CI, 0

S* • • • •D" 0

12

v V2* . . * * . . r*,2  0
12

a 2,1 . . . . a12 ,12  p' 0
L/

The system of equations can be solved by inverting the A matrix and dividing
the unknown variables by P, the surface pressure on the upper elastic layer,

A'/P -1 -1

B'/P 0

* 0
II. .- k / p W

A 0 (17)

fL J

The coefficients of A are given as

a, = -[A'(k2 yv2) 24y2

a,3 = 2iji'k Y'

a2 ,1 = 2i'kly',

a,= '(y2 " k2)

a =-,
2,9

a3 = iwy'
3,1

8

|iI
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a 3,4= jkiJ

a3,10 1

a4,2  -wk I

a = - wy5

4,3

ak2 , y['k 11 + 2ul y 2]sinl y'T1

a 2  -.[x'(k2 + y#1) + 2uf y o2 cos y'T1

a 5 ,3 = 2iu'kly; Cos YSIT1

a54 = 2ioi'k y; sin ytT1

a5  0(k + ytt2) + 2l~tfyt2]sin y"Ti

a56  k2 + y to 2Iui"yPP2cos y"lT 1

a5  = -2ip"k Y'l cos T

a5  = 2ivs"k v" sin v"'T

a6,1 - 2ip'k Iy'I cos y'T1

a6,2 = -2ip'k 1 Y sin Y'T1

a6  = ply - k2)sin y;Tl

a6  = plys - k2)COS -ys'Tl

a6,5 = -2ipi"kly"l cos IT I

a 6 ,6 -2iu"kly" sin yT

a 7 2 ~"' k2 k~sin y"T1

a6  z -till " k2 kcos y"T1

6, 9Y )
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a7,1 = yl cos y'T 1

a = -y' sin y'T1

=ik1 sin.y T

a7 ,4  ik C YsT

a 7 5 = -y" cos , Tl p

a = -y" sin y"T

7 7 = 1 sin 1

aT 8 =-ik 1 cos ysT

a8, = ik sin y'T I p

8,2  cos y'T1 ,

a8  J = COS yT
a8,3 -YIs YsTI

a8 4 =Y sin ysT,

: a8 ,5 = -ik1 sin y"T I

a8 , 6 a-ik cos y"T ,

a8,7 = y' coS yT

Y" sin YIT 1

ag, 5  A -i" k2 + yI02 + 2miyh'2 sin y"T2

l= ,k2 + t12 + 2,,y,,2]COS y"T2 ,

a 7  2iu"klY'l cos ysT2

a9 ,8 = -2iu kly sin ysT2

a9 ,1 2 = I

a10,5 o 2i3A"kly" cos y"T2

'0 'p 10

'p

"£, .2""''', . ' €. .2'.2''":.:'. ''- :'/?

4' . . _ . _ . ,, ., . . , . . . -, . .
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a 10 ,6  - °2iul"k 1y" sin y"T2

al0,7  I,, (y2 - k2)sin y'T2

a 0 8 • uo @2 - k2 cos ysT2

all5, iwy" Cos y"'T2 ,

al l,6 = -iwy" sin y, r2

a, = -wk sin y 'IT2

al18 - wkl cos y"T
11 s -" P' / 2'"w

al1,1 2  M

a12 ,5 * -wk1 sin y"'r2

a12,6 *wk I cos y"T 2

a1 2  a -iWY1' Cos YT 2 ,1 s S

a12,8 iwy'l sin y"T

a 12,11 '

and

a 12,12 k 1 /P' w

All unlisted coefficients are zero. Since the impedance functions are
desired to complete the pressure analogy, we obtain them from the matrix equa-
tions and express them in terms of the inverted matrix A,

," v2  k

a- (a(a

and

i: '12 -k I

where a.l indicates that particular entry in the inverse matrix A 1 .

%%

-.-
"' ': '' ' '" "" " " " " " ' * " " " " " " . -- -.. . . . % *
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Equation (11) for the pressure spectrum can now be evaluated by substi-
tuting the values of Z(k,w) and Y(k,w), as

DijD+£

P(k,w) i k2 P2U3h5Qijkl

* +PW a-01  + k,(a-1 4  + k,(a-11) + -.(a-l 4) (18)

PRESSURE SPECTRUM RESULTS

Since the manual inversion of a 12 by 12 complex matrix is a formidable
task, the solution to equation (17) was performed by a double-precision com-
plex matrix-inversion subroutine from the comercially-available international
mathematical and statistical libraries (IMSL) on a VAX 11/780 computer. To
check the accuracy of the solution algorithm, the two cases of a single steel
plate of I or 5 cm backed by water at 10 kHz, given by Dowling, are compared
with similar cases here. The pressure spectrum Dowling shows for those cases
are given on the lower face of the elastic slab. To obtain a similar pressure
spectrum, we must alter equation (18).

From equation (17), the ratio p"'/p is given by

P -(a 1 
1) -1 (19)

p 12,1 -kIa24

Substituting equation (19) into equation (18) gives the pressure spectrum on
the lower surface,

D. .j (at'2 k- -(a1, 2
P(kw) Dij - 5Q12,1 - jkZ 2 U3 h 5 qi.

, = i* ow(ajl, 1 ) + kl(a,) + k,(a- 11) + oe a 14). , ) 2 (20)

101,) 9 w 9,)1(0
Figures 2 and 3 are plots of a nondimensional function, F, which shows

the characteristics of the pressure spectrum on the lower surface. The func-
tion, F, is defined as

ka - a
Pkw + Wa ci 12 p w 12-4. (21)

' w(a+Al) k,(a,) - k1(a'l + a-

. The plots show 20 log F versus nondimensional K* - kc/w. These plots compare
exactly with those in Dowling3 of 1- and 5-cm bare .steel plates backed by water
at 5 and 10 kHz, respectively.

The major application of the wall-pressure analogy in this report will be
to investigate the surface-pressure spectrum given by equation (18) for cases

12
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where the upper fluid is water, the lower fluid is air, and the medium is a
combination of viscoelastic and steel materials. The pressure spectrum is
given both on the top surface of the upper layer and on the interface between
the two elastic layers. As a base-case comparison for the material combina-
tions to follow, we show the surface-pressure spectrum on the upper surface of
a 1-in. steel plate at 5 and 10 kHz in figures 4 and S. All pressure spectra
plotted in this report are similar to those in figures 2 and 3 in that they are
plots of the nondimensional function F evaluated at the appropriate surface.
To plot the absolute pressure magnitudes, we would need to know the values of
the Qijkl function. Since very few measurements, if any, have been made of the

turbulent-source cross-correlation terms, our intention here is to show rela-
tive reductions or increases in pressure spectrum and not absolute magnitude.
Also, the structure of the low-wavenumber content of the pressure spectrum can
be examined for local maxima and minima.

It is clear from figures 2 through S that the pressure spectrum always
contains a discontinuity at K+ = 1. At S and 10 kHz in figures 4 and S,
another discontinuity appears moving from right to left across the wavenumber
spectrum as the frequency increases. For S kHz, the flexural wavelength of a
1-in. steel plate in vacuo corresponds to K = 1.36.. At 10 kHz, this value is
close to V = 1. One can see that the flexural wavelength of the plate intro-
duces another singularity into the pressure spectrum. This singularity moves
to lower wavenumbers with increasing frequency until it reaches K = I. At
higher frequencies, the singularity does not appear to move below K = 1. Elas-
tic surfaces that have a flexural propagation speed greater than that of an
acoustic wave in the fluid do not appear to have a double singularity in the
pressure spectrum due to their flexural waves. This detailed behavior is con-
sistent with general theoretical observations of Dowling. 2

Now, we can proceed to investigate the relative dB gains or reductions in
the turbulent wall pressure spectrum as a result of viscoelastic surfaces
applied to the 1-in. thick bare plates. The viscoelastic properties we refer
to are obtained by using a complex shear and Young's modulus with a specified
thickness and mass density. Figures 6 and 7 show the top- and mid-surface
pressure spectrum (mid surface is the interface between the two elastic media)
for a 1-in. steel plate at 10 kHz covered with 3 in. of viscoelastic material
having the properties G = 43 + 4.3i psi, E = 129.1 + 12.9i psi, and p = 0.0001
lb-s 2/in.4. This material represents a fairly "compliant" surface with a den-
sity near that of water.

The singularity due to the flexural-plate speed is now seen to be reduced
in magnitude in the top-surface spectrum at 10 kHz from that of the bare steel
plate but remains quite distinct in the mid-surface spectrum. In the top-
surface spectrum, the elastomer-coated plate demonstrates a noticeable reduc-
tion in the pressure spectrum for wavenumbers 0.S < K < 1. There is a
slightly larger reduction for K > 1.1. This suggests that this candidate
material may actually reduce the level of turbulent "noise." However, in fig-
ure 7, which shows the mid-surface pressure spectrum, the dramatic reduction
from that on the bare plate corresponds, for the most part, to transmission
loss through the layer. Also appearing in figure 7 is a singularity occurring

at K a 0.3. This singularity actually occurs in most of the plots and corre-
sponds to the compressive-wave speed of the steel plate given by
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Except for this singularity, the supersonic regime of the top-surface
pressure in the figure 6 spectrum appears to have a very flat profile. The
rise in pressure level with movement from 0 < K* < 1 for the bare steel plate
does not occur in the case of this covered plate. This particular case indi-
cates a reduction in the top-surface pressure-spectrum level for some super-
sonic wavenumber elements and for all the subsonic wavenumbers shown in this
case.

Figures 8 and 9 show the same 3-in. viscoelastic coating at 5 kHz. Again,
we see a reduction in the surface pressure at the top surface of the coating
from that on the bare steel plate and a significant transmission loss is evi-

", dent in the mid-surface pressure spectrum. The elastomer appears to have less
of an effect on the pressure spectrum at lower frequencies in that the spec-
trum does not attenuate as dramatically (on the mid-surface at higher wave-
number) for 5 kHz as it did for 10 kHz. On the top surface, the flat level of
the pressure spectrum is, again, seen to be in the supersonic regime. The
examples in figures 6 through 9 show the frequency dependence of the pressure
spectrum for a fixed set of material properties. It is more likely, though,
that real material properties would also change with frequency.

Figures 10 and II show results for a 1-in. steel plate coated with an

elastic material layer having the properties, at S kHz, G a 90,000 psi, E =
252,000 psi, and p a 0.0001 lb-s 2/in.4. In figures 12 and 13, 5 percent damp-
ing has been added to the above shear and Young's moduli. The purpose of using
this particular material is to demonstrate'the effect on the pressure spectrum
when a steel plate is coated with a material having its flexural, compressive,

and shear speeds all in the vicinity of the acoustic-wave speed. When we try
to find surfaces that reduce turbulent-noise levels, we see that a surface
with propagation speeds near the wavenumber region of interest will introduce
additional singularities in the pressure spectrum, as is demonstrated by this
particular material.

One of the most noticeable features in figures 10 through 13 is the
increase in the pressure spectrum at higher wavenumbers over that of the bare
steel plate. This occurs for the damped, as well as the undamped, case. In
addition, the flat level of the pressure spectrum on the top surface for super-
sonic wavenumbers, seen for the softer viscoelastic surface shown in figures
6 and 8, is no longer shown. Instead, the pressure reaches a local maximum
around K * 0.7S. If one looks at the undamped top-surface spectrum versus
the undamped mid-surface spectrum, figures 10 and 11, it is evident that the
pressure spectrum is greater on the mid surface than on the top surface for
K* < 0.75. However, with movement out to K > 2, the pressure spectra at both
surfaces are nearly equal in magnitude.

The effect of a small amount of damping in shear and Young's moduli is
most dramatic in figure 13, the mid-surface pressure. The structure of the
pressure spectrum for I < K* < 1.75 has changed dramatically from the undamped
case in figure II. Nulls not seen before in the pressure spectrum are now

14
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evident. The nulls probably also exist in the undamped case. However, the
very narrow extent of these nulls is such that, for the undamped case, the
finite points used to plot the curve are spaced too far apart to reveal the
nulls. Damping serves to broaden the wavenumber extent of the nulls, giving
enough span so that the nulls now appear.

In both the mid- and top-surface pressure spectra, damping in the coating
appears to control the magnitudes of the singularities but does not change
their location on the wavenumber axis. It would appear that very heavy damp-
ing might remove the singularities for K* > 1. The surface-pressure spectrum
for the lightly damped coating of figure 12, when compared to that for the bare
steel plate, shows a marked difference. However, it is difficult to assess
visually whether the coating results in more or less turbulent noise because
of the complexity of the wavenumber spectra. One final interesting feature is
the fact that damping increases the level of the local maximum in the pressure
spectrum at K = 0.75 for both the top and mid surface. It is not certain why
this is so.

CONCLUSIONS

The Dowling pressure analogy for an elastic medium under a turbulent-
boundary-layer flow has been extended to a two-layered elastic medium. This
analogy predicts the nature of the relative pressure spectrum at any surface
in the elastic medium and can demonstrate graphically the results of different
combinations of isotropic elastic and viscoelastic materials. The assumption
applied in the analogy to the turbulent-source terms limits the range of appli-
cability of the model to low wavenumbers relative to the convective peak. In
addition, large surface motion would violate the assumption of a linear rela-
tionship between structural displacement and fluid velocity. For the low-
wavenumber region, this model provides a unique way of looking at multilayered
systems and their behavior relative to an unspecified turbulent-boundary-layer
loading.

Specifically, we have shown the pressure spectra of two different visco-
elastic materials on a steel plate. The first viscoelastic coating chosen
showed local reductions in the pressure spectrum on the top surface and on the
mid surface. The second viscoelastic coating was chosen to demonstrate that
surfaces which have propagation speeds near the acoustic-wave speed can intro-
duce new structure into the pressure wavenumber spectrum, similar to an obser-
vation by Dowling2 on coatings with sound speeds less than that of the
turbulent fluid.

It was also shown that plate flexural and compressional singularities can
be affected by damping in the elastic layers. This model is intended to pro-
vide a means by which the performance of coatings applied to parent material
can be investigated as to their influence on turbulent-boundary-layer noise

levels. The inclusion of shear waves in the elastic layers and surface shears
due to the turbulent flow make the model more complete for use in predicting
wall pressure spectra.
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Figure 1. Geometry of the Two-Layered Medium and Flow Field
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Figure 2. Lower Surface Pressure Spectrum on a Bare
0.4-in. Steel Plate at 10 kHz
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Figure 3. Lower Surface Pressure Spectrum on a Bare
i-in. Steel Plate at 10 kHz
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Figure 4. Upper Surface Pressure Spectrum on a Bare
1-in. Steel Plate at S kHz
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Figure S. Upper Surface Pressure Spectrum on a Bare
1-in. Steel Plate at 10 kHz
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Figure 6. Upper Surface Pressure Spectrum for a 3-in. Viscoelastic
Coating on a 1-in. Steel Plate at 10 kHz, Coating 1
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Figure 7. Middle Surface Pressure Spectrum for a 3-in. Viscoelastic
Coating on a 1-in. Steel Plate at 10 kHz, Coating 1
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Figure 8. Upper Surface Pressure Spectrum for a 3-in. Viscoelastic
Coating on a 1-in. Steel Plate at 5 kI-z, Coating 1
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Figure 9. Middle Surface Pressure Spectrum for a 3-in. Viscoelastic
Coating on a 1-in. Steel Plate at S kHz, Coating I
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Figure 10. Upper Surface Pressure Spectrum for a 3-in. Elastic
Coating on a 1-in. Steel Plate at S kHz, Coating 2
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Figure 1. Uppere Surface Pressure Spectrum for a 3-in. VicElastic
Coating on a I-in. Steel Plate at 5 kI~z, Coating 2
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22.

"C"

I
I

N -30

0. 0'2 0.i5 0.7 1!0 -T 2 1 ... . . ..15. 00 2.2



TR 7235

REFERENCES

1. A. P. Dowling, "Flow-Acoustic Interaction Near a Flexible Wall," Journal
of Fluid Mechanics, vol. 128, 1983, pp. 181-198.

2. A. P. Dowling, "The Low Wavenumber Wall Pressure Spectrum on a Flexible
Surface," Journal of Sound and Vibration, vol. 88, 1983, pp. 11-25.

3. A. P. Dowling, "Sound Generation by Turbulence Near an Elastic Wall,"
Journal of Sound and Vibration, vol. 90, 1983, pp. 309-324.

4. L. M. Brekhovskikh, Waves in Layered Media, Academic Press, NY, 1960.

b.

'I

23/24
Reverse Blank



W w -7._ 77

TR 7235

INrTAL DISTRIBUTION LIST

Addressee No. of Copies

OUSDR&E (Research & Advanced Technology) 2
ONR. ONR-220, -410, -425AC, -430 4
CNM, MAT-051 1
NRL, Code 5844 (Dr. J. R. Hanse). 5130 (Dr. R. T. Menton) 3
NAVSASYSCOt4, SEA-55x4 1
NAVAIRDEVCEN 1
NOSC, Code 8302. 6565 (LIbrary) 2
NAVSWC 1
DWTNSRDC BETH. Code U31 (Dr. W. Blake. Dr. G. Maldanlk) 2
NAVPGSCOL 1
DTIC 2
BBN (Dr. N. Martin) Contract No. N00140-83-GBA10-00S I
CHASE, INC., Cambridge, MA (Dr. D. Chase) Contract No.

N00140-84-DJA40-001 1



FILMED

10-85

DTIC


