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FOREWORD 

Knowledge of sea-floor characteristics is required to interpret 
deep-sea processes correctly. This technical report discusses the 
use of spectral models in describing, analyzing and predicting sea-floor 
roughness. 
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ABSTRACT 

Description, Analysis and Prediction of Sea-ELoor Roughness 

Using Spectral Hodels 

CHRISTOPHER GENE POX 

A method has been developed which allows a valid statistical model 

of the variability of oceanic depths to be derived from digital bathy- 

metric soundings. Existing bathymetric contour charts represent low- 

frequency, deterministic models of the sea floor. To describe the 

higher frequency variability, or roughness, of the sea floor requires 

the development of a valid stochastic model. The statistical model of 

sea-floor roughness is also a valuable tool for predicting acoustic 

scattering and in addition contains a wealth of geological information 

for interpreting deep-sea processes. 

To allow the variability of depths to be described as a function of 

scale (spatial frequency), the amplitude spectrum is employed as the 

fundamental statistic underlying the model. Since the validity of the 

amplitude spectrum depends upon the assumption of a statistically sta- 

tionary sample space, a computer algorithm operating in the spatial 

domain was developed which delineates geographic provinces of limited 

statistical heterogeneity. Within these provinces, the spectral model 

iv 



is derived by fitting the amplitude estimates with one or two power law 

functions. 

The distribution of the model parameters is examined for a test area 

adjacent to the coast of Oregon. The distribution of roughness corre- 

sponds generally with the various physiographic provinces observed in 

the region. Additional complexities are apparent in the roughness model 

which can not be inferred by simply studying the bathymetry. These pat- 

terns are related to geological processes operating in the region. 

In many cases, the roughness statistics are not constant when 

observed in different directions, due to the anisotropic nature of the 

sea-floor relief. A simple model is developed which describes the 

roughness statistics as a function of azimuth. The parameters of this 

model quantify the anisotropy of the sea floor, allowing insight into 

the directionality of the corresponding relief-forming processes. 

Finally, the model is used to successfully predict the roughness of a 

surface at scales smaller than those resolvable by surface sonar 

systems. The model regression line (derived from a hull-mounted sonar) 

is compared to data from deep-towed sonars and bottom photographs. The 

amplitude of roughness is predicted to within half an order of magnitude 

over five decades of spatial frequency. 
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Introduction 

The contour map of oceanic depths, or bathyraetrlc chart, has pro- 

vided a fundamental tool for Inferring deep-sea processes, both sedl- 

mentologlcal and tectonic. The Identification of the major features of 

the sea floor led to more elaborate geophysical studies and such unify- 

ing theories as sea-floor spreading. The efforts of numerous Instltu- 

tlonv world-wide have produced comprehensive coatour charts of global 

bathymetry, which have formed the basis of further geophysical survey 

efforts. 

The method of contouring has the mathematical equivalent of fitting 

a continuous surface to discrete three-dimensional data. In the case of 

bathymetrlc contours, the discrete data are usually In the form of vari- 

ably spaced and randomly oriented ship tracks along which are discrete 

soundings at some Interval. Modem soundings are normally estimated 

from surface ships using acoustic sounders In which the two-way travel 

time of a pulse of sound Is Interpreted as a depth at a discrete point. 

Geometric spreading of the sound with depth causes a large area of the 

sea floor to be Insonlfled (often called the "footprint"), and the meas- 

ure of the first significant return of sound to the ship Is Interpreted 

as a sample of the shallowest depth from this large Insonlfled area. 

The uncertainties In the precise location of the measured depth, the 

sound velocity structure of the water column and the positioning of the 

ship at sea, combine to Introduce a noise component Into the output sig- 

nal. The random noise of measurement. In addition to the uncertainty of 

Interpolation between often widely spaced samples and ship tracks. 



Imposes  a physical  limit on both   the vertical   (depth)   accuracy and  the 

spatial resolution possible  In utilizing bathyraetrlc contouring methods. 

Despite    Its    Inherent   uncertainties,    a   bathyraetrlc   contour   chart 

does  provide an absolute  estimate  of   depth at all points  in space.     In 

the   terminology  of numerical modelling,   a contour  chart  can be  consid- 

ered  a   "deterministic  model"   of   sea-floor   topography.      Because   such  a 

model   is   analogous   to  fitting  a  least-squares   surface   through  randomly 

spaced,   noisy   data,   it   is   by   nature   a   smoothed   representation  of   the 

actual   submarine    topography.       The   degree   of   smoothing   required    (or 

equivalently    the   cutoff   frequency   for   low-pass   filtering   of    spatial 

frequency)   depends   upon   the  accuracy,   resolution,   and   density   of   data 

used   in   the   contouring.     Van  Wyckhouse   (1973)   demonstrated   the   deter- 

ministic   aspect   of   bathymetrlc   charts   with    the   creation   of   SYNBAPS 

(Synthetic Bathymetrlc Profiling System), a data base containing depths 

on an evenly  spaced  grid.     The grid cell spacing of 5'   of  latitude and 

longitude used  for  SYNBAPS,   seems   to  represent a workable  estimate  of a 

suitable   interpolation   Interval   for   deterministic   modelling.      Recent 

work  at   the   O.S.   Naval  Oceanographic   Office  has   extended   this   5'   grid 

world-wide. 

There are also some practical considerations, in addition to the 

physical limitations, in determining submarine topography to high spa- 

tial frequencies. Survey instruments such as deep-towed sleds incorpo- 

rating stereo photography, narrow-beam sounders and side-scan sonar, are 

able to map small areas of the sea floor with high resolution. However, 

it is practically impossible to extend these surveys globally, due to 

the operational difficulties and the great expense of these methods. 

Another practical difficulty of extending deterministic, gridded models 



to a smaller grid cell spacing Is the storage requirements of the data. 

For example, the 5' gridded data set extended from yO'S to yO'N being 

developed by the Naval Oceanographic Office will require approximately 

five million storage locations. To extend this grid to the order of 100 

meters spacing (assuming this was determinable globally) would require 

approximately 5 x 10^0 storage locations. 

In light of the physical and practical limits of describing high 

spatial frequency sea-floor topography deterministically, the apparent 

alternative is some probabilistic (stochastic) model describing the dis- 

tribution of features in a statistical sense rather than determining the 

exact locations of depths. To be useful, this stochastic model must 

describe, with a reasonable number of parameters, most of the true vari- 

ability of a region of sea floor. Using a stochastic representation of 

high frequency feature distribution in combination with the lower fre- 

quency deterministic models being developed, an essentially complete 

description of the sea floor is possible. The development of such a 

stochastic model of sea-floor topography is the intent of this 

dissertation. 



2.  Appllcatloas 

In addition to the Intellectual satisfaction of completing the des- 

cription of sea-floor depths, a stochastic model of high spatial fre- 

quency submarine topography, or surface roughness, has many practical 

scientific and engineering applications. Many of the most direct appli- 

cations are in the field of underwater acoustics. Clay and Medwin 

(1977) provide one of the best physical descriptions of the interaction 

of an acoustic signal with a rough surface. Matthews (1980) reviews the 

importance of relative scale in acoustic bottom interaction. Briefly, 

the relative spatial frequencies of the incident acoustic signal and the 

bottom roughness determine whether the surface acts as a reflector or as 

a scatterer of energy. This relationship illustrates the necessity of 

describing bottom roughness in terms of spatial frequency. 

The importance of acoustics to marine geophysical surveying systems 

cannot be overstated. Sea-floor bottom loss of sonar and seismic sys- 

tems, ranging of side-scan sonars, and signal strength of outer beams on 

multibeam sounders all depend heavily on bottom roughness. In naviga- 

tion applications, the roughness of the sea floor has an impact on the 

backscattering of Doppler sonar, as well as determining the background 

noise for navigation by bottom features. A major application for the 

U.S. Navy of bottom roughness information is as environmental input into 

long-range acoustic propagation models, used in submarine and surface 

ship tracking. For engineering applications, the a priori knowledge of 

the spatial frequency composition of the bottom could be used in 



computer-aided design of future sensing systems, as well as aid In main- 

taining coherent signals for underwater communication systems. 

Another field with significant applications for sea-floor roughness 

Information Is physical oceanography. This requirement led to the 

extensive work of T. H. Bell. Planetary Rossby waves are strongly 

affected by bottom roughness In long wavelengths (Rhlnes and Bretherton, 

1973). The propagation of long surface waves such as tides and tsunamis 

are also affected (Rhlnes, 1977). Bell (1973, 1975a) showed that the 

Interaction of deep ocean currents and bottom topography may lead to the 

generation of Internal gravity waves In the oceans, a major Influence In 

ocean dynamics as well as submarine operations. 

Another geophysical application is in the general field of survey 

design. Davis (1974) has formulated a method which, with a knowledge of 

the spectral content of the field being measured, allows a predetermined 

survey accuracy to be attained. Briefly, the two-dimensional (or In 

some applications, three-dimensional) spectral content estimates are 

used In algorithms which prescribe preferred track spacing, sampling In- 

tervals and trackorlentatlon. The method has been successfully applied 

to gravity, magnetic and physical oceanographlc surveys. The availabil- 

ity of an adequate spectral content model for submarine topography would 

make this technology available for bathymetrie survey design. 

In the detection of anomalous features In a field, the "normal" 

background variability must be removed by filtering to aid detection. 

This method has been applied successfully In magnetic anomaly detection 

and theoretically could be applied to bathymetrie anomaly detection. 

McDonald, Katz and Fans (1966) applied this concept to submarine detec- 

tion, specifically In the search for the nuclear submarine Thresher. 



There are many applications of sea-floor topography modelling to 

the geologic Interpretation of seafloor processes. Deterministic models 

Illustrate that sea-floor relief is often decidedly anlsotroplc. This 

Investigation will provide insight into the systematic nature of such 

spatial patterns and at several scales. Hayes and Conolly (1972) demon- 

strated the value of spectral techniques in studying the complex topog- 

raphy of the Australian-Antarctic Discordance. Since many geological 

processes result in linear features of characteristic wavelengths, an 

accurate, frequency-dependent, stochastic model could provide the capa- 

bility of decomposing such features and delineating their geographic 

distributions. It is anticipated that many important but totally 

unforeseen relationships will be discovered in exploiting this higher 

frequency model in the same manner that numerous fundamental relation- 

ships were discovered through the generation of global bathymetrlc 

charts. 



Previous Vork 

Although a great deal o£ quantitative geomorphology has been done 

on terrestrial landscape, as well as on lunar and planetary landscapes, 

relatively little quantitative study has been done on sea-floor morphol- 

ogy. Only since the late 1950's, when acoustic sonar systems became 

commercially available, has It been possible to attempt such statistical 

studies of bathymetry. The continuing refinement of sonar and naviga- 

tional systems has given recent Investigators even greater opportunities 

for success. Equally Important has been the development of large dig- 

ital computers and efficient statistical algorithms such as the fast 

Fourier transform, which allow sophisticated statistical analyses on 

large volumes of data, which were Impractical until recently. 

The work of previous Investigators is somewhat sparse and inconsis- 

tent, and is reviewed only briefly here. More information is given in 

later sections as It becomes pertinent to various aspects of the study. 

Some of the earliest studies were done by Agapova (1965), who generated 

mean, variance, skewness, and kurtosls statistics from measurements of 

slopes of a transect of the mid-Atlantic ridge. Heezen and Holcorabe 

(1965) were able to describe physiographic provinces over a large por- 

tion of the North Atlantic Ocean. After rejecting spectral and filter- 

ing techniques, these authors developed a method of comparing the spac- 

ing of adjacent peaks and troughs. In effect, the method calculates the 

average distribution of slopes without regard to spatial frequency. 

Krause and Menard (1965) studied depth distributions from 15 pro- 

files in the east Pacific Ocean and found them to be normally distrlb- 



uted. In studying normalized autocorrelation functions derived from the 

same profiles, the authors found no regularity with respect to lag. The 

profiles were used for delineating provinces on the basis of height ver- 

sus width ratio of the abyssal hills. Smith et^al^ (1965) continued the 

work of Krause and Menard (1965) and concluded that the distribution of 

depths is Gaussian when observed in distinct wavebands of 2 to 16 nauti- 

cal miles. Larson and Spiess (1970) later used a deep-towed instrument 

package to study the distribution of slopes in a small area of the east- 

em North Pacific. Krause, Grim and Menard (1973) generated simple 

cumulative frequency plots of slopes In two areas of the East Pacific 

Rise. They found a very consistent power law foinu to describe these 

distributions and concluded that marine geomorphology could be described 

using only a few parameters. 

Ueldell (1966) generated spectral estimates of bathymetric, mag- 

netic and gravity profiles from the Atlantic and Indian Oceans. All 

spectra showed a "red-noise" character, that is, a decrease of power 

with Increasing spatial frequency. The comparison of the various 

spectra was shown to be a valuable tool in investigation of complex 

geophysical problems. McDonald and Katz (1969) in their study of the 

directional dependence of roughness developed a polar autocorrelation 

function. Hayes and Conolly (1972) used spectral analysis as an inter- 

pretive tool in an area south of Australia. Distinct linear trends were 

interpreted by projecting randomly oriented tracks into north-south and 

east-west profiles and Investigating the consistency of the resulting 

spectra. 

Clay and Leong (1974) rigorously described the relationship between 

surface roughness and the coherence of acoustic reflections.  The dura- 



tlons of returned pulses from hull-mounted sonars were used to estimate 

RMS roughness of microtopography (<0.2 km). Histograms of spectral 

estimates (perlodograms) were generated by hand and shown to map con- 

sistently in an area southwest of Spain. 

Bell (1975b), also analyzing data from the eastern North Pacific 

Ocean, used power spectral techniques to generate composite estimates 

from several sources. He discovered a functional relationship for power 

versus spatial frequency of the form ax*^ (power law form) to be consis- 

tent over a large range of observation scales. In a later paper (Bell, 

1978), this relationship was shown to hold for an enlarged data base, 

which is also confined to the same geographic area. The importance of 

anlsotropy was recognized, and an initial look at the aspect ratios of 

submarine features was presented. 

Berkson (1975) generated spectra from a variety of bottom types and 

attempted to fit these with a power law form. Although a wide variety 

of coefficients were calculated, the power law form seemed to be consis- 

tent over many types of topography. Akal and Hovem "(1978) generated 

two-dimensional spectra of sea-floor roughness from two sets of stereo- 

pair bottom photographs and a contoured bathymetric chart. They noted a 

remarkable consistency of form in all three spectra. Matthews (1980) 

developed a deterministic approach to describe bottom roughness. The 

North Atlantic and North Pacific Oceans were divided Into 30 x 30 nau- 

tical mile squares and the maximum relief calculated. These cells were 

then grouped by range of relief (0-1100 ra, 1100-1900 m, >1900 m) and the 

results mapped. Recently, Naudin and Prud'homme (1980) quantitatively 

described bottom morphologies from several areas based on multibeam 



sonar data collected by the SEABEAM system. Most recently, Berkson and 

Matthews (1983) have extended the work of Berkson (1975) and included 

estimates of sediment-basaltic interface roughness. 
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4.  Statistical Considerations 

In order to develop a useful model of sea-floor roughness, one must 

select, from a seemingly infinite variety of available methods, an 

approach which Is both suitable and tractable. In addition to consider- 

ing the nature of the sea floor Itself, one must also consider such 

aspects as data resolution, computer storage capacity, statistical 

validity, and compatibility with various applications. Often, the 

choice of a particular method Involves trade-offs between several of 

these considerations. In the following sections, many of these funda- 

mental considerations are addressed, and an Initial approach to devel- 

oping this particular model Is presented. 

Statistical Measures of Roughness 

If one considers surface roughness to be the variability of heights 

(or depths), the realm of statistics offers a multitude of measures to 

describe the roughness of a surface. Perhaps the most fundamental sta- 

tistic available to describe roughness would be one of the standard 

measures of data dispersion, such as the root mean square, standard 

deviation, or variance. These measures have the advantage of producing 

a simple parameter to describe the variability of depths In a given sam- 

ple. The major disadvantage of such simple measures Is that they do not 

provide Information for roughness in terms of wavelength, and the sta- 

tistic derived depends upon the sample spacing and length of sampling as 

well as the actual roughness of the surface. 
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To Illustrate the Importance of having control over frequency 

dependence, consider two examples. If a generally flat surface which 

contains a high frequency roughness component of wavelength X, were sam- 

pled at spacing \ or any integer multiple thereof, each sample would 

fall at precisely the same depth and yield a variance of zero. Mathe- 

matically, all values of X would be identical, therefore the mean 
-in 
X » —  Z Xi would be equal to all X' s and therefore 

n 1-1 ^ 

n      _ 2 
2  (Xi - X)'' 

Var (Xi) - ^'^ ^ . I  0 

Although this example presents an extreme case, it is obvious that to 

assure an accurate measure of the variance at a given frequency, the 

sample spacing must be less than that corresponding wavelength, and the 

sample length long enough to sample all portions of the cycle. 

A more important shortcoming of these standard dispersion measures 

occurs at the longer wavelengths. Consider a generally smooth but 

broadly sloping surface. Examples from the deep sea might Jbe a conti- 

nental rise or an abyssal fan. Since these dispersion measures record 

the average variation of individual samples from the sample mean, it is 

obvious that a relatively long sample would span a greater range of 

depths and produce a larger dispersion statistic than a smaller sample 

located in the same data. In this case, the measure of roughness would 

depend largely on the sample length. 

Many acoustic models of bottom interaction use the more general 

dispersion measure of the root mean square (RMS) roughness. In these 

acoustic models, this value represents the RMS variation of depth about 

some predicted value, normally the smoothed bathymetry. 

12 



i£i ^H - xi) 1 
RMS roughness - [ ■—: J 2 

where X^ represents a predicted value of depth at point 1. By measuring 

the roughness relative to a predicted depth, rather than a simple mean 

as In the case of the standard deviation, the effect of long wavelength 

slopes on sampling Is reduced. This Improved measure does not, however, 

provide control over the distribution of roughness with frequency. 

Since the reflection or scattering of an Incident acoustic signal on a 

surface Is dependent upon spatial frequency, this often used parameter 

appears Inadequate. 

Another possible measure of roughness Is termed the "roughness 

coefficient" by Bloorafleld (1976), and has the form 

"f^ (X, - X, ,)' 
1=1   ^   ^  '■ 

Si ^^1 - ^>^ 

Because this measure (also referred to as the von Neumann ratio and the 

Durbln-Watson statistic) Is normalized by tlie total sum of squares of 

the residuals, the dependence on sample length Is minimized. However, 

because this measure also depends on the squared differences of adjacent 

points, it measures only the variability of the signal at a wavelength 

corresponding to the sampling Interval. This roughness coefficient then 

is essentially a ratio of the high frequency variability of a signal to 

Its long-terra trend, an Interesting statistic, but not adequate for a 

complete stochastic model. 

Several statistical  functions exist which describe  the sample vari- 

ability as a function of discrete data spaclngs or lags   (see Chatfleld, 
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1980).      Perhaps   the   simplest   £uactloa   of   this   type   Is   the  roean  cross- 

product of  terms at given lags k 

°k - SIk Sk ^i   • ^i-^ "  E[(Xi)(Xi-k)] 

This function (called simply the autocorrelation function In electrical 

engineering literature; see Bracewell, 1978) Is both unnormallzed and 

uncentered (the mean Is not removed). Because It depends on absolute 

magnitude values (In this case, the total water depth), this simple 

measure can be Improved for the purposes of roughness modelling by 

removing the sample mean, which yields the autocovarlance function 

Y(k) » E[(XI - X) (Xi-k - X)] 

It Is obvious that at a lag of k-0, (Y(0)) IS simply the sample vari- 

ance. By normalizing the autocovarlance by the sample variance Y(0), 

one derives the noirmallzed autocorrelation function 

p(k) - Y<^)/Y(O) 

Notice the equivalence between the normalized autocorrelation function 

at lag k*l, (p(l)) and the roughness coefficient described previously. 

In comparing the roughness of two different samples, It Is undesirable 

to normalize by the sample variance, therefore, the autocovarlance func- 

tion provides the best measure of variability with frequency (centered, 

but unnormallzed). 
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Fully describing the variability of a process with Its autocovarl- 

ance function requires values at all n lags. By taking the Fourier 

transform of either the autocovarlance or the unnorraallzed autocorrela- 

tion function, the process can be expressed more concisely as a function 

of frequency. This measure Is the well known power spectral density 

function and can be estimated directly from the data with Fourier trans- 

forms. Besides providing a concise expression for the roughness as a 

function of frequency, the power spectrum also has many useful proper- 

ties which are described In Chapter 6 of Bracewell (1978). One theorem 

of particular Interest Is the derivative theorem which states that If a 

function f(x) has the transform F(s), then Its derivative f'(x) has the 

transform 12irsF(s). In this application, given the power spectrum of 

depths as a measure of roughness, the distribution of slopes (first 

derivative of depth) can be directly calculated. 

An additional measure of bottom roughness, which Is particularly 

favored by those Interested In acoustic modelling of bottom Interaction, 

Is the two-point conditional probability distribution function 

P(hi,h2|rj,r2). This function defines the probability of measuring two 

heights (hj and h2) given two distance vectors (ri and ro). TX/o consld- 

eratlons make this approach intractable. First, the description of the 

function requires a large number of parameters to be retained. Sec- 

ondly, complete two-dimensional data are required to adequately generate 

the function. This type of survey data is rarely available and only in 

areas which have been surveyed using multibeam sonar. 

The power spectral density function appears to be the best choice 

of statistical measure for bottom roughness, and it will underlie the 

stochastic model generated in this study.  For convenience, the ampll- 
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tude spectrum (square root of power spectrum) will be used. \Jhen 

properly normalized, the amplitude spectrum allows the amplitude of 

component sinusoids to be expressed In simple length units, which can be 

Interpreted more easily than units of length-squared. The method of 

calculation will follow Davis (1974) with proper windowing, prewhlten- 

Ing, etc. As will be discussed in later sections, the simple and 

consistent functional form of spectra of topography allows relatively 

easy description and manipulation of the model. Also, recent work by 

Brown (1982, 1983) has shown the value of working in the frequency 

domain In modelling scattering from rough surfaces. 

Validity of Measurement Over Large Areas 

In generating the variance, autocovarlance, or power spectrum from 

a discrete sample, only one realization of an infinite number of possi- 

ble realizations within the population is observed. The degree to which 

this realization is valid over the entire population depends upon the 

degree of homogeneity of the process. The condition of spatial homoge- 

neity is generally known as "stationarlty" and the population being 

described referred to as a "stationary process". The term "process" is 

used in the statistical sense of the variation of data with either time 

or space. In the case of sea-floor topography, the depths vary as a 

function of space. 

Stationarlty is normally defined in two ways (see Chatfleld, 1980; 

Popoulis, 1962). A spatial series is said to be "strictly" (or "first- 

order") stationary if the joint distribution of the process does not 

depend upon position. This implies that the mean and variance do not 
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depend on position. The less restrictive definition of "weakly" (or 

"second-order") stationary processes requires the mean to be constant 

and the autocovariance function to depend only on lag, not on position. 

This second definition has somewhat greater application, however, it is 

still too restrictive for general use with a spatial process as varied 

as submarine topography. 

Consider a broadly sloping surface, such as an abyssal fan. The 

mean depth in this province would by definition vary with position, and 

therefore would not satisfy the first requirement for stationarlty. Yet 

if the process is homogeneous in higher spatial frequencies, one might 

prefer to treat this province as a homogeneous area for modelling. In 

practice the existing deterministic model could be used to describe the 

low-frequency trend. The sample data could be high-pass filtered to 

remove the non-stationary trend before generation of a spectrum. 

The presence of a low-frequency trend in samples of geophysical 

data is quite typical. In almost any length sample of a natural proc- 

ess, there are frequency components present with wavelengths greater 

than the sample length. In most natural systems, there is a finite 

limit on the rate of change of the process, causing the longer wave- 

length components to be also of greater amplitude. This typical spec- 

trum of natural processes was termed a "red-noise" spectrum by Shapiro 

and Ward (1960), an analogy to the red color of low frequency visible 

light. 

Although the red-noise spectrum Is the usual form In natural sys- 

tems, Figure 4-1 illustrates schematically that the presence of non- 

stationary components (in this case the statistical mean) can occur at 

any frequency and is dependent upon the horizontal extent of the sample. 
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Figure 4-1 Schematic illustration of the scale dependence of station- 
arity. All traces are derived from the same function (B), 
however the inferred stationarity of the mean would be dif- 
ferent depending upon the scale of observation. Observed 
at the scale of frame A, the mean is obviously non-station- 
ary.. However, the mean appears stationary at the larger 
scale of B or the smaller scale of C. In most natural sys- 
tems, the non-stationary components occur in the partially 
resolved low spatial frequencies. This difficulty can be 
handled analytically by defining homogeneous provinces on 
the basis of stationarity and prewhitening of the spectra. 

18 



In order to generate a stochastic model of sea-floor topography, we must 

ensure that the process is stationary within some limit and over some 

defined area, with respect to the statistical parameters being calcu- 

lated. Ideally, this Is accomplished by identifying homogeneous prov- 

inces based upon these criteria. Davis (1974) developed such a "prov- 

ince picker" for use in geophysical survey design, and his method is 

illustrated in Figure 4-2. 

By actively defining provinces which are weakly stationary in the 

frequency band of Interest, one Improves the validity of the statistical 

measures generated within each province. In addition, by delineating 

province boundaries, one can also alleviate the problems associated with 

the least-squares or averaging nature of Fourier transforms. In gener- 

ating a power spectrum from a data set, the operator must select the 

length and location of the sample series to be transformed. The result- 

ing spectrum will reflect the average frequency composition over the 

sample. If the sample spanned two distinct statistical processes, the 

result would provide the average composition of the two provinces, and 

would accurately represent neither. By confining one's samples within 

the boundaries of a homogeneous province, one insures a valid and repre- 

sentative statistic. These concepts will be discussed in detail in 

Chapter 5. 

Functional Representation of Spectra 

One property which makes the Fourier transform, both continuous and 

discrete, such a powerful analytical tool is its ability to express a 

spatial process in the spatial frequency domain both exactly and com- 
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Figure 4-2 Schematic Illustration of the method developed by Davis 
(1974) for delineating homogeneous roughness provinces 
within a given spatial waveband. The original signal (A) 
is band-pass filtered at a pre-selected wave band of Inter- 
est to produce B. The now centered data of B Is full-wave 
rectified by taking the absolute value of all terms to pro- 
duce C. This output is low-pass filtered (smoothed) to 
yield the continuous function of D. Finally, this function 
is contoured at some selected Interval (not necessarily 
linear) to delineate the boundaries of provinces X, Y, and 
Z in frame E. 
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pletely. This complete correspondence between domains allows detailed 

analyses to be made on the spectra with the assurance that there is an 

exact analog in the spatial domain. In order to maintain this corres- 

pondence, it is necessary to retain the complete transform, (both ampli- 

tude and phase components) in the spatial frequency domain. In the case 

of discrete data and transforms, it would be necessary to retain all of 

the degrees of freedom present in the original data set. 

In the creation of a probabilistic model, it makes little sense to 

retain as much information in the model as was present in the original 

data. Presumably, one would prefer to use the original data as a deter- 

ministic model. Also, the purpose of the model is to describe the gen- 

eral high frequency structure of the sea floor, rather than to analyze 

in detail the individual frequency components. Finally, the restric- 

tions of computer storage space require a limited number of parameters 

in the model. 

All of the above considerations argue strongly for a severe paring 

of information in the frequency domain model. The phase spectrum, which 

requires fully half of the information in the spatial frequency domain, 

defines the origin in space of all component sinusoids of the amplitude 

spectrum and adds very little insight into the general structure of the 

sea-floor. An analysis of bathyraetric phase spectra presented in Chap- 

ter 5 will show that the phase is In fact randomly distributed. For the 

purpose of this model, no phase spectra will be retained, as none of the 

previously stated applications require phase information. 

All measured data contain a component of random noise. Remotely 

sensed data are especially susceptible to measurement noise, the partic- 

ular noise problems in measuring oceanic depths having been mentioned in 
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the Introduction. The presence of noise in the spatial data manifests 

itself in two ways in spatial frequency spectra. Inaccuracies of verti- 

cal measurements in the spatial domain result in the presence of a hori- 

zontal "white-noise level" in all amplitude or power spectra. This 

problem will be treated in detail in the following section. Uncertainty 

in the location of features in the spatial domain results in the scat- 

tering of amplitude estimates about the true frequency spectrum. These 

distinctions in the sources of error are somewhat artificial since the 

vertical and horizontal uncertainties are interdependent. 

Figure 4-3 reproduces a typical amplitude spectrum of depths. The 

red-noise character of the distribution as well as the scattering of 

amplitude values is apparent. The spectrum was derived from data col- 

lected by the U.S. Naval Oceanographic Office using SASS (Sonar Array 

Subsystem), and represents the highest resolution bathyraetric informa- 

tion currently available from a surface ship (see Glenn, 1970). Control 

over relative horizontal location (navigational accuracy) of soundings 

is especially good due to the use of large, stable surveying platforms 

(in this case, USNS Dutton) and SINS (Ship's Inertial Navigation 

System). The degree of scattering of amplitude estimates would pre- 

sumably be greater in less sophisticated systems. 

Several methods come to mind to smooth this somewhat noisy spec- 

trum. A simple moving average taken over the amplitude estimates in the 

frequency spectrum would smooth the data. However, information would be 

lost from the high and low frequency extremes of the spectrum, while the 

density of data in the intermediate frequencies would not be reduced. 

The use of spectral windows or lag windows could be used both to smooth 

the spectrum and decrease the data density.  The use of data windows in 
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Figure  4-3 Illustration of a typical amplitude spectrum of sea floor 
topography. A profile of the data, collected by SASS on 
the Gorda Rise, is presented above. The spectrum shows 
clearly the power law form as a linear fit on log-log plot. 
Possible extrapolations of the trend are shown as dashed 
lines beyond the fundamental  and Nyquist frequencies. 



the smoothing of spectra is discussed in many texts (see for example 

Bloomfield, 1976) and will not be discussed in detail here. The spec- 

trum presented in Figure 4-3 was in fact generated using the method of 

Davis (1974) which utilizes prewhitening as well as low-pass filtering 

of the spectral estimates. 

Another method of smoothing this rough spectrum is through the use 

of regression techniques. Calculating a continuous mathematical func- 

tion to describe the distribution of amplitudes would produce a smooth 

representation of the spectrum while, depending upon the complexity of 

the function used to fit the data, greatly reducing the number of param- 

eters retained in the model. This least-squares representation will be 

used in this study. 

By describing the spectrum with a simple, continuous mathematical 

function, one can more easily take advantage of the many symmetry prop- 

erties of the Fburier transform described by Bracewell (1978). For 

example, Rayleigh's Theorem (or Parseval's Formula for discrete series) 

states that the integral of the power spectrum equals the integral of 

the squared modulus of the function, or 

r if(x)i^ dx - r iF(8)i^ ds 

This is equivalent to stating that the total energy in one domain is 

exactly equal to the total energy in the other. If one were interested 

in the total energy in a particular band of frequency (in order to study 

the bottom interaction of sound of a particular wavelength, for exam- 

ple), the high and low frequencies of the band pass would become the 

limits of integration of the power spectrum. With the spectrum repre- 
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seated as a simple function, this definite integral could be evaluated 

analytically to derive the RMS variability for a discrete waveband. 

Having decided to use functional representations as the basis of a 

stochastic model of sea-floor roughness, the selection of a suitable 

functional form for the spectra becomes crucial. In order to minimize 

the size of the model, the simplest functional foinn which is justified 

by the data should be the best. An examination of Figure 4-3 as well as 

many other spectra presented later, would suggest the use of a simple 

straight line fit to the data. In light of the scatter in this already 

smoothed data, no higher order functional form is justified. 

The normal form for fitting a straight line to data Is the estima- 

tlon of the coefficients a and b in the equation 

y - b X + a 

Notice  in Figure 4-3,  however that the data are plotted versus logarith- 

mic scales.    The regression equation would  therefore be written, 

A A 

log A ■ b log s + log a 

where A =• amplitude and s » frequency.  This equation can be rewritten 

in terms of A as. 

a . 8^ 

This inferred relationship between amplitude and frequency is often 

termed a "power law** or *'power function** relationship.  Appropriate 
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regression techniques must be selected In order to assure a proper 

regression fit to the power law form. Of prime concern Is whether the 

residuals are minimized In log-log space or linear-linear space. The 

methods used in this study with accompanying theory and computer soft- 

ware are presented as Appendix A. 

The power law form seems to represent the best model for describing 

sea-floor topography in the spatial frequency domain. Its simplicity 

permits the frequency structure of a sample profile to be described 

using only two parameters, a considerable reduction of the original, 

deterministic data. Extensive work by Benolt Mandelbrot (1982) has 

produced a theoretical basis for this consistent relationship, formu- 

lated in terms of fractal dimension, a parameter functionally related to 

coefficient b above (see Berry and Lewis, 1980). Bell (1975b) discov- 

ered the same power law relationship in data from the Pacific Ocean that 

including lower spatial frequencies than those of Interest in this study 

(see Pig. 4-4). Notice that Figure 4-4 plots power spectral density, 

rather than amplitude as in Figure 4-3 and other example spectra. 

Because the vertical axis in both plots is logarithmic, this exponentia- 

tion appears graphically as a linear transformation. Mathematically, 

the squaring of amplitude represents a simple doubling of the slope, 

i.e., multiplication of the b term by a factor of two. 

Bell (1975b) finds a fairly consistent relationship at many size 

scales, with the slope of the log transformed power spectrum of b = 

-2. Although this value probably represents a good mean estimate, the 

examination of many spectra in this study will show an accountable var- 

iation in this value. Berkson (1975) also discovered a significant 

variation of regression coefficients for spectra generated from dlffer- 
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Figure 4-4 Spectral estimates collected by T. H. Bell (1975b) from 
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illustrates the power law form of submarine topography 
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trum is plotted versus power (amplitude squared) which 
results in a doubling of the ordinate and the slope of an 
amplitude spectrum. Refer to Bell (1975b) for data 
sources. 
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ent bottom types.   Analyses presented in Chapter 5 will link this 

"universal" relationship 

-1 
A <■ a . s 

to the absence of stationary provincing techniques. 

Extension of Spectra into High Frequencies 

The component of random noise present in all empirical data, 

includes uncertainties from many possible sources in the total meas- 

urement system. There are uncertainties associated with the measuring 

device itself, for example, the errors in the timing of the arrival of a 

sonar pulse. The interference of external sources, such as radio waves, 

may also affect the measuring instruments. The nature of the environ- 

ment between the detection device and the process being sampled may 

introduce error, such as the variability of sea water sound velocity in 

bathymetric surveying. The truncation of significant digits in the 

storage of digital data introduces a finite level of noise, often called 

"round-off error." All of these sources combine to form a total noise 

level for a measured data set. 

With the exception of round-off error, which is calculable, the 

source of these random errors can not be decomposed. However, using 

spectral techniques the level of the total noise can be estimated. It is 

a well-known property (see Bracewell, 1978, Chapter 16, for a complete 

discussion) that the spectrum of a randomly generated signal varies 
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about a constant value. This makes Intuitive sense, since one would not 

expect any particular frequencies to dominate a random series. Again in 

analogy to the spectrum of visible light, this random component of a 

signal is often called "white noise", reflecting the equal contribution 

of all frequencies. 

In the same way that Rayleigh's or Parseval's theorems can be used 

to relate energy in one domain to energy In the other, the level of 

noise in a spatial signal can be estimated from the amplitude of the 

noise level of an amplitude spectrum. The noise level in the spatial 

domain is normally expressed as a simple dispersion measure of the vari- 

ability of the data, in this case, the oceanic depths. The following 

formula relates the white-noise level of the power spectrum to the root 

mean square. 

RiMS - • P/n 

where n = number of data points in series; and P =» the mean power level 

of the white noise. In the case of sonar systems, knowledge of this RMS 

level defines the resolving capability of the system for a given signal 

level. Using these simple spectral techniques, the resolving power of 

the various sounding systems in use today can be calculated and 

compared. 

The red-noise structure of natural systems has been mentioned and 

illustrated previously (see Fig. 4-3). The interaction of natural sig- 

nals with instrument noise takes the form of a decreasing red-noise 

spectrum of the signal "intersecting" the horizontal white-noise level. 

In the spatial domain perspective, lower frequency features tend to have 
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higher amplitude and therefore the signal In these frequencies Is "vis- 

ible" above the RMS noise. The frequency at which the spectrum of the 

signal Intersects the noise level represents the highest frequency that 

is being resolved in the system. 

Figure 4-5 Illustrates these concepts on a spectrum of SASS data. 

Notice that Figure 4-5 shows an obvious noise level while the spectrum 

shown in Figure 4-3 does not. Both sets of data were collected using 

the same sounding system within days of each other, and it is expected 

that the Instrument noise in each is approximately equal. The differ- 

ence is therefore that the data in Figure 4-3 represent a rougher area 

in which the signal energy in the highest frequencies is sufficient to 

maintain the resolution of the signal above the noise. The noise level 

is present in both sample spectra, however, it was never intersected in 

the sample from higher energy sea floor. The ability of a sonar to 

resolve horizontal features depends not only on the horizontal resolving 

power limitations of the instrument (normally limited by the size of the 

"footprint"), but also by the amplitude of features present in the sea 

floor. 

In light of the limitations of noise in all measurement systems, a 

fundamental question in the development of a stochastic model of sea- 

floor roughness from widely available surface sonar, is how far into the 

high frequencies the model can be extended. One could argue that due to 

the persistent exponential form of the spectra noted in this study, as 

well as the work of Bell (1975b), that this functional form can simply 

be mathematically extrapolated into higher frequencies. Rirther justi- 

fication might be provided by the generation of spectra from deep-towed 

instrument packages, bottom photographs, and direct observations, to 
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Figure 4-5 Illustration of an amplitude spectrum of sea floor topog- 
raphy which has encountered the "white-noise" level in the 
data. The spectrum of random noise has the form of a hori- 
zontal line. This noise level, which was derived from data 
collected by SASS, corresponds to a random component in the 
spatial data with root mean square dispersion of 1.9 
fathoms. 
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provide spot checks of the high frequency structure.  This approach will 

be pursued la Chapter 7. 

Effect of Linear Features 

In generating a Fourier transform of topography within a stationary 

province, a one-dimensional statistic is generated from a two- 

dimensional surface. Provided the surface is isotroplc, that is that 

there is no significant directional dependence, statistics derived from 

a one-diraenslonal sample would be equally valid for any orientation. 

Even a cursory examination of a deep-sea bathymetrlc chart reveals 

clearly that the sea floor, at least in the lower spatial frequencies 

presented in a contour chart, is quite anisotropic. There is extensive 

evidence that bathymetrlc lineations also exist to some extent in the 

higher spatial frequency roughness of interest to this study. To com- 

pletely model sea-floor roughness, it is essential to account for 'any 

major directional dependence of the topographic features. 

Figure 4-6 Illustrates the effect of sampling a simple two- 

dimensional periodic function in differing directions. Notice that the 

true wavelength (X) of the feature is sampled only when the sampling is 

exactly perpendicular to strike (9 » 0°). Any oblique angle produces an 

apparent wavelength (X') which is greater than X. At 6 = 90° (a sample 

taken parallel to strike), the feature is not expressed at all (X' - "). 

The apparent wavelength is related to the true wavelength by 

X' - |cos-l9| . X 
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Figure 4-6 Schematic illustration of the effect of directional sam- 
pling on spatial frequency estimation. The figure illus- 
trates the increase of apparent wavelength of a simple 
periodic waveform when sampled at any angle other than 
exactly perpendicular to strike. 
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Notice that the amplitude of the feature Is not affected, provided a 

full wave form Is sampled. 

The effect of directional sampling In the spatial frequency domain 

can be calculated using the previous relationship In combination with 

the similarity theorem of Fourier transforms (see Bracewell, 1978, 

p. 101).  The similarity theorem states that given the transform pair 

f(x) => F(s), then 

f(ax)^ |a|-l F(s/a) 

Applying the geometry for directional sampling of linear features. I.e., 

a -  jcos 91 

f(|cos 9| . x) 3 |co8 e|-^ . F (s/co8 6) 

Because |co8 6| must always be less than one, the effect of oblique 

sampling In the frequency domain Is to shift the amplitude peak to lower 

frequencies, narrow Its width, and Increase Its amplitude. This Is a 

result of the fact that a signal of equal height but lower frequency has 

greater power than Its higher frequency counterpart. It Is Important to 

note that these theorems assume an Infinite continuous signal. In ana- 

lyzing finite length signals. It Is necessary to normalize the spectrum 

by the sample length, that Is, divide each amplitude estimate by the 

number of values In the time series. This normalization preserves the 

true amplitude of the Individual waveforms, and allows comparisons 

between samples of different length. The effect of anlsotropy on sam- 

pling a surface with continuous spectra Is developed In a later section. 
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Several authors have recognized the Importance of anisotropy of the 

sea floor to power spectral studies. Hayes and Conolly (1972) recog- 

nized distinct peaks In their spectral analysis of the bathymetry of the 

Australian-Antarctic Discordance. These groups were normalized to two 

linear trends by projecting the data to simulate north-south and east- 

west samples. Distinct trends were successfully Identified, however, in 

longer wavelengths than the high spatial frequency band of interest in 

this study. Bell (1978) also recognized the Importance of anisotroplc 

features in his study of abyssal hills in the north Pacific Ocean. One 

result reported In his study of the aspect ratios of features in this 

province is that the degree of anisotropy tends to decrease in the 

higher spatial frequencies. Whether or not this is a true relationship 

or the result of resolving limitations will be discussed further in 

Chapter 6. 

Figure 4-7 shows the sample locations for two spectra from the lin- 

ear Mendoclno Fracture Zone in the northeastern Pacific Ocean. Figure 

4-8 presents the profile and amplitude spectrum for line A-A', which was 

sampled perpendicular to strike, reflecting the long wavelength fracture 

zone. Figure 4-9 is the corresponding plots for line B-B*, which paral- 

lels strike and is located in the zone of disturbance. The exponential 

form of both spectra is evident, however Figure 4-10, which shows a com- 

posite of the trend of both spectra, illustrates the differences In 

slope (exponent) of the two spectra. Segment A-A' contains more power 

in the low spatial frequencies, while segment B-B* contains more power 

in the high spatial frequencies. 

Both spectra are valid representations of the spatial frequency 

distribution in this physiographic province, but neither spectrum indl- 

35 



126*38'W 
40* 
30' 

126'16'W 
 1 40* 

126*38'W 126»16'W 

Figure 4-7 Bathymetric chart from the Mendocino Fracture Zone of the 
eastern Pacific Ocean showing the location of the data used 
In Figures 4-8 and 4-9. Notice that both samples lie 
within the same bottom environment, but that A-A' is sam- 
pled across the long axis of the fracture while B-B' is 
sampled along the axis. 
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Although both spectra retain their power law form, there Is 
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appears to contain more high spatial frequency energy, 
while profile A-A' contains more energy In lower spatial 
frequencies. 
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vldually describes the roughness in all directions. The need for a 

dlrectlonally dependent function is obvious. The two-dimensional 

Fourier transform might appear to be appropriate, since it describes the 

two-dimensional roughness of a surface. However, its calculation 

requires a complete two-dimensional grid of data values which is gener- 

ally unavailable. The double Fourier transform, well described in Davis 

(1973), is calculated from two orthogonal one-dimensional spectra. This 

method, especially without the retention of the phase spectra, can not 

unambiguously identify the orientation of trend. Both the two-dimen- 

sional and double Fourier transforms require a large two-dimensional 

matrix to be retained in the model. 

McDonald and Katz (1969) describe a method for estimating autocor- 

relation functions as a function of azimuth 9. A similar approach will 

be attempted here for use with amplitude spectra. By studying the azi- 

muthally dependent distribution of the coefficients derived from the 

power law regression, a and b, it is anticipated that some functional 

form or forms will be revealed to allow modelling of the entire process 

as a function of both spatial frequency (s) and true azimuth (9). If 

a-fj^(9) and b-f^(9) then 

F(9,8) - fa(e) . s^^^^^ 

With this functional form, input Into the model of simple compass 

direction for a given location would return the unique spatial- 

frequency-dependent function coefficients for the amplitude spectrum in 

that particular direction. Evaluation of these 9 dependent functions 

should provide a simple measure of the degree and direction of bottom 

anisotropy. 
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The derivation of the functional form of this 9 dependence would 

best be investigated and verified in areas where complete two- 

dimensional measures of depth are available. Areas surveyed with multi- 

beam sonar systems such as SASS and SEABEAM are ideal for this purpose. 

If a functional form is determined to be consistent, discrete samples 

from randomly oriented tracklines could be fitted with this functional 

model and F(e,s) estimated. Such studies will be presented in Chapter 6 

and Appendix E. 

One complication that could arise due to anisotropic roughness is 

in the use of the province picker for the delineation of stationary 

provinces. In a highly lineated area, the power level of particular 

narrow frequency bands would be directionally dependent. The province 

picker, however, measures total energy (integrated power) rather than 

discrete power, and as mentioned previously, the peak shift due to 

oblique sampling of a linear feature does not affect the total energy 

measured. Unless a major spectral peak is shifted beyond the low cut- 

off frequency of the band pass used in the province picker, the results 

should not be adversely affected by directional sampling problems. Even 

this problem seems unlikely to arise as thus far in all spectra sampled, 

none have shown unusual low spatial frequency peaks such as are seen by 

Hayes and Conolly (1972), and which are probably unique to a few tec- 

tonic provinces such as the Antarctic-Australian Discordance. 
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Summary 

In summarizing the preceding sections, a tentative strategy can be 

formulated for approaching the stochastic modelling of sea-floor 

roughness. 

(1) Delineations of homogeneous provinces, using a province 

picker, such as that developed by Davis (1974), would Insure 

some degree of statlonarlty, and therefore validity, for the 

statistics describing the area. As will be discussed In the 

following chapter, this province-picking algorithm must be 

based on the same statistical measure that underlies the 

model, that is, the frequency spectrum. 

(2) Generation of amplitude spectra from available data within the 

delineated provinces would follow. Sample lengths for spectra 

generation would be confined to within the province boundaries 

defined In stage 1. One-dlmenslonal spectra would describe 

the roughness In several orientations to provide Inout for 

later modelling of topographic anlsotropy. 

(3) Regression analyses would be performed on these amplitude 

spectra to generate the coefficients of the functional form 

chosen to represent the spectra. Preliminary Indications are 

that this form will be one or several power law relationships, 

each of which require only two coefficients to describe. 

(4) Anlsotropy of the bottom would be modelled by studying the 

variation of the coefficients a and b of the power law model 

as a function of direction 6.  In areas where complete Infor- 
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matlon is available in two dimensions, such as a SASS or 

SEABEAM survey area, it might be possible to verify through 

regression analysis a simple 9 dependent function to describe 

a and b. These functional forms, fjj(e)-a and f^(9)-b, could 

then define the best model for estimating model coefficients 

in areas where only randomly oriented track data is available. 

(5) Extension of the functional representations beyond the spatial 

frequency at which the surface sonar encountered its white- 

noise level, would be attempted by studying the spectra of 

deep-towed sonar and bottom photographs. It is anticipated 

that a general functional form, perhaps a simple extrapolation 

of the power law form, will be discovered. In the many areas 

where high resolution bathymetry is not available, this 

extrapolated function should provide the best available esti- 

mate of spatial frequency structure at very short wavelengths. 

(6) Incorporation of the model into existing data sets would be 

the final development stage. This roughness model would be 

calculated for 5' grid cells and merged with the existing 

gridded data sets being developed at the Naval Oceanographic 

Office. All grid cells within a homogeneous province would be 

represented by coefficients generated from data located any- 

where within that province. By integrating this stochastic 

model with the existing deterministic models of oceanic 

depths, an essentially complete description of the sea floor 

will be contained in a single data base. This data base, when 

combined with similar gridded models of sea water sound veloc- 

ity, sediment column sound velocity, sediment thickness, and 
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other geophysical data, would provide a comprehensive environ- 

mental data base for further acoustical, oceanographlc, geo- 

logical, and geophysical modelling and Interpretation. 

The following chapters generally follow the approach presented 

above, beginning with a more rigorous look at the delineation of sta- 

tlonaiTT provinces. The method used for generating valid amplitude 

spectra are fully described In E&vls (1974), and are reviewed only 

briefly. The regression techniques used In the study are described In 

detail In Appendix A. The problems of anlsotropy and extension of the 

model Into high spatial frequencies are discussed in detail in later 

chapters. Throughout, interpretation of the results in terms of geo- 

logical processes are presented. 
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5.  Dellneatloa of Statistically flonogeneous Proviaces 

General Philosophy 

The importance o£ defining statistically homogeneous provinces was 

described in the previous chapter. The validity of frequency spectra, 

and indeed nearly all statistical measures, requires a stationary sample 

space. Unfortunately, truly stationary phenomena are usually only 

available to theoreticians and experimentalists. The statistics of most 

natural phenomena vary in either time, space, or both. It is therefore 

essential in attempting to describe statistically non-stationary phenom- 

ena, to delineate areas in which the statistic being generated varies 

minimally and only within defined limits. In order to accomplish this 

preliminary procedure of "province picking," it is necessary to design a 

detection algorithm which takes account of the phenomenon being des- 

cribed and the statistic being used. 

To illustrate this principle of matching the province detector to 

the statistic being generated, we begin with an elementary statistic. 

As an example, assume that it is necessary to describe the areal distri- 

bution of height of the people of Africa. Assume for this discussion 

that the desired significance of the mean requires samples of at least 

10,000 individuals. One approach might be simply to divide the conti- 

nent into regular square areas and randomly select 10,000 heights from 

each area to generate a mean. The means so generated should indeed rep- 

resent the populations of these arbitrary squares. 
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To illustrate the effect of non-stationarlty on the validity of the 

measured statistic, assume that in a particular sample square, the 

southern region is inhabited exclusively by Pygmies, averaging only 4 

feet tall, while the northern region is inhabited by Watusis, averaging 

7 feet tall. The method just described would predict a single popula- 

tion, averaging 5'6" height, inhabiting the area. In fact, very few of 

the individuals in the population are near this height and our statistic 

has failed to perform its intended function; to describe the areal dis- 

tribution of heights of the population. 

In order to confine our sampling to relatively homogeneous sample 

spaces, it is necessary to detect the boundary between independent pop- 

ulations prior to final sampling. The best method for accomplishing 

this "province picking" is to measure the mean crudely with much smaller 

samples, say ten individuals or even one individual over smaller areas. 

Even these crude measures could be sufficient to define the large gra- 

dient in population mean across the boundary. Notice that the same sta- 

tistical measure (the mean) is used to describe the population and to 

define the province boundary. After the provinces are delineated, sam- 

pling within homogeneous provinces ensures statistical validity, at 

least to the degree that stationarity was confined in the province pick- 

ing procedure. An additional operational advantage of the province 

picking procedure is that very large areas of stationary means might be 

detected which would require only one random sample of 10,000 individ- 

uals to describe a large area, rather than conducting several repetitive 

samplings using the arbitrary grid technique. 

When one uses more advanced statistical measures to describe the 

earth, it becomes necessary to design more complex procedures for homo- 
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geaeous province detection. The method used by Davis (1974) was 

described in Figure 4-2. In this application, the design of optimum 

survey spacing for marine gravity data collection, the statistic used 

was the total RHS energy In a particular spatial frequency band. The 

location of this band In frequency was dictated by later applications of 

the marine gravity data. Construction of a digital model of oceano- 

graphlc sound speed requires delineating provinces In space and time 

based on statistics describing the shape of oceanographlc profiles (T.M. 

Davis, personal communication, 1983). 

In order to delineate stationary provinces for the description of 

sea-floor roughness using frequency spectra, it becomes necessary to 

make a crude estimate of the amplitude spectrum discretely in the spa- 

tial domain. Recall that in transforming to the frequency domain, sta- 

tlonarity has already been assumed, and therefore Fourier transform 

techniques are not appropriate. The method used in this study takes 

advantage of the relationship between band-limited energy in the spatial 

and frequency domains (Parseval's Fbrmula), and the Inferred power law 

form of amplitude spectra of topographic surfaces. Just as amplitude 

spectra represent the amplitude of component sinusoids at discrete fre- 

quencies, an equivalent estimate can be made in the spatial domain by 

band-pass filtering the frequency of Interest and evaluating its ampli- 

tude. While the frequency domain estimate represents the least squares 

average amplitude over the entire length of sample, the amplitude-can be 

estimated discretely in the spatial domain using the Hllbert Transform. 

This Is very similar to the method developed by Davis (1974) for a sin- 

gle frequency band. 
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In order to estimate the full spectrum, It Is necessary to evaluate 

the amplitude at several frequencies, spanning the range of the desired 

spectrum. This Is accomplished by convolving a bank of band pass fil- 

ters, centered at different frequencies, with the data and evaluating 

the amplitude of the band-limited signals discretely. Knowing the 

"power law" functional form of the spectrum In advance, one can fit the 

several amplitude versus frequency estimates at discrete points In 

space, using the Iterative regression technique described In Appendix A. 

The regression coefficients a and b, now available at every point along 

the profile, are often highly variable and must be smoothed. Also, 

because the two parameters are statistically correlated. It Is prefer- 

able to use the exponent of frequency (b) and total band-llmlted RMS as 

detection parameters. Just as the presence of white noise at high fre- 

quencies must not be Included In the regression analysis of the ampli- 

tude spectrum, amplitude estimates at the noise level In the spatial 

domain are also Ignored. The method Is described In detail In Appendix 

B, along with the results of various performance tests on signals of 

known properties used to calibrate the sensitivity of the detector. 

Generation ot  Amplitude Spectra 

Having delineated statistically homogeneous segments of data on the 

basis of their estimated frequency spectra, the next step Is to generate 

amplitude spectra from these segments. Were the spatial domain esti- 

mates adequate, It would not be necessary to generate the spectra at 

all. However, due largely to Instabilities In the slope (b) parameter, 

those estimates are not adequate and true FFT's must be run to estimate 
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the model parameters. Also, the Fourier transform method has the addi- 

tional advantage of estimating the amplitude at many more frequencies 

than the ten bands arbitrarily selected for the spatial domain 

algorithm. 

Since the proper generation of spectra is the basis for the entire 

model, great care has been taken to ensure that the best estimate of the 

true amplitude spectrum are obtained. The techniques used are described 

in detail by Davis (1974) and will only be reviewed here. The computer 

software used in this study was modified from programs provided by T.M. 

Davis and is presented as Appendix D. 

In using a finite length sample to represent an infinite series, 

the observer has in effect multiplied the infinite series by another 

infinite series consisting of zeros beyond the sample and ones at all 

sample locations. The multiplication of this so-called "boxcar" func- 

tion in the spatial domain, causes the true transform of the signal to 

be convolved with the boxcar's transform, a sine function, in the fre- 

quency domain (see Bracewell, 1965). The presence in the frequency 

domain of side lobes on the sine function, causes energy to be "leaked" 

into adjacent frequencies during convolution. Because of the red-noise 

character of spectra of sea-floor topography, this "leakage" tends to 

transfer energy artificially from lower to higher frequency. 

Although the use of tapered windows rather than boxcar sampling 

tends to reduce leakage, the preferred technique uses the method of pre- 

whitening. Tapered windows have a sine function transform with reduced 

sidelobes and a broadened mainlobe, which reduce spectral leakage at the 

expense of spectral resolution. In prewhitening, a specially designed 

high-pass filter is convolved with the signal, modifying it such that 
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its spectrum appears flat, or white, rather than red. When this pre- 

whitened signal is then passed through the Fourier transform, there is 

no preferential transfer of energy in either frequency direction. To 

obtain the "corrected" spectrum which approximates that of the true 

(infinite) signal, the prewhitened spectrum is divided by the Impulse 

response of the prewhitening filter. This operation is equivalent to 

deconvolving the filter in the spatial domain. 

The importance of proper prewhitening can not be overstated. Leak- 

age of energy into high frequencies would cause a consistent underesti- 

mation of the magnitude of b (spectral slope), and degrade the ability 

of the model to estimate high frequency roughness (i.e., overestimatlon 

of amplitude at high frequencies). Figure 5-1 Illustrates prewhitening 

by showing a raw spectrum, prewhitened spectrum, and corrected spectrum 

on one plot.  Further examples can be found in Davis (1974). 

Physical Interpretation of Spectral Model Parameters 

Before examining the distribution of the spectral roughness model in 

selected study areas, it is worthwhile to discuss the physical meaning 

of the model parameters a and b. The proportionality constant a in the 

expression 

;. s^ 

where A « amplitude 

3 > spatial frequency 
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Figure 5-1 Illustration of the importance of prewhitening of amplitude 
spectra. The raw spectrum is the result obtained by simply 
performing a spectral analysis on raw data. The prewhitened 
spectrum is the result of. performing the same analysis on 
data which has been convolved with a special high-pass fil- 
ter. The corrected spectrum results from the quotient of 
the prewhitened spectrum and the frequency spectrum of the 
high-pass filter, and represents an estimate of the spectrum 
of the corresponding infinite signal from which the sample 
data was derived. 
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represents a simple scaling factor for roughness. For a given frequency 

(s) and exponent (b), the amplitude (A) Is proportioned to a. Due to 

the method of calculation of this expression, the actual value of a cor- 

responds to the amplitude of the component sinusoid with a wavelength of 

one kilometer and is usually expressed In meters or kilometers. This 

particular normalization was selected because the one kilometer wave- 

length falls within the sampling of most surface sonar data. For exam- 

ple, the required 0.5 km sample rate would be obtained with a 1 minute 

sonar ping rate on a ship traveling 30 km/hr (or 16 knots). The value 

of a does not necessarily correspond to any particular features in the 

signal, but only to the amplitude of the component sinusoid. 

The interpretation of the exponential parameter (b) is somewhat 

less intuitive. For the case of b - 0, the amplitude of all component 

frequencies is constant and equal to a. This is the well-known "white 

noise" associated with random series such as instrument noise. Such a 

value for b would customarily be interpreted as instrument noise in any 

spectra from sea-floor topography. Values of b > 0 imply that ampli- 

tudes increase at shorter wavelengths, a condition that has never been 

observed in bathymetrie data. What Is consistently observed is the case 

where b < 0, the previously mentioned "red-noise" spectrum, in which 

amplitudes of component sinusoids increase with decreasing spatial fre- 

quency (longer wavelength). This indicates simply that broader features 

have greater height. 

An interesting special case occurs when b - -1. The expression 

A - a • 8^ 
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becomes 

a • 3~1 

or 

or 

A/X 

Simply stated, for b ■ -1, the ratio of amplitude to wavelength (or 

height to width) Is constant and equal to a at all scales. This 

condition was termed "self-slmllarlty" by Mandlebrot (1982) and corre- 

sponds to a fractal dimension of D > 1.5. 

One might visualize the special case b - -1 as a signal which 

appears Identical at all scales of observation. In another sense, the 

signal appears equally "rough" at all scales, the magnitude of roughness 

being prescribed by the magnitude of a. In cases where -1 < b < 0, the 

ratio of height to width tends to decrease at longer wavelengths, 

although the absolute amplitude does Increase. Such signals appear 

rougher at high frequencies. The converse case of b < - 1, Implies that 

the ratio of height to width Increases at longer wavelengths, and there- 

fore the signal appears smoother at high frequencies. Figure 5-2 sum- 

marizes these relationships. 
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Figure 5-2 Relationship of spectral slope parameter (b) to aspect ratio 
(A/x) of sinusoid at different frequencies. For b= -1, the 
aspect ratio remains constant in all frequencies. For b<-l, 
the aspect ratio increases at lower frequencies. For b>-l, 
the aspect ratio Increases at higher frequencies. 
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Although the physical Interpretation of the model parameters a and 

b is clear, an important question remains as to the geological signifi- 

cance of these terms. Why do certain areas of the sea floor have a par- 

ticular representative spectrum, and why do all spectra seem to show 

such a consistent power law form over large ranges of spatial frequency? 

An obvious hypothesis is that the spectral form reflects the unique 

interaction of the relief-forming processes and the materials being 

affected. For example, the formation of new sea-floor crust at oceanic 

ridge crests affects the relief of the new sea floor at all spatial fre- 

quencies. If the relief-forming process is uniform over some geographic 

region and interval of geologic time, there is no reason to suppose a 

change in the statistics of the surface being constructed, although its 

deterministic shape might change. Conversely, if there is a change in 

the relief-forming process (such as the spreading rate) or material 

(perhaps a change in the properties of the magma source), it is likely 

that the resulting relief would also be affected. 

Many geological environments represent a composite of several 

relief-forming processes (tectonic, sedimentary, erosional) and several 

types of material. Such composite reliefs should result in an amplitude 

spectrum reflecting the composite spectra of these several processes and 

materials. If each style of relief is dominant over a different spatial 

frequency band, and each component Spectrum conforms to the power law 

functional form observed in one-component cases, the composite spectrum 

should appear as a set of straight line segments on a plot of log ampli- 

tude versus log frequency. Examples of such composite spectra will be 

shown in a later section. 
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It Is difficult to prove a direct relationship between statistical 

relief and combined process and material, but an Interesting Insight can 

be gained from a study of a highly variable environment, sedimentary 

microtopography. In 1981, Mark Wlmbush of the University of Rhode 

Island deployed stereo camera on a structure on the upper continental 

rise northeast of Cape Hatteras. Stereo-pair bottom photographs were 

taken at an Interval of twenty-seven days. Time-lapse photography 

showed that between the dates of these stereo-pair photographs, the fine 

scale sea-floor relief beneath the structure was altered both by biolog- 

ical activity and episodic bottom current events. 

Two mlcrorelief maps were generated from the stereo-pair images and 

these are illustrated in Figures 5-3 and 5-4. Transects of heights were 

taken at 0.5 cm Intervals (labelled A, B, C, D) across the surface. 

Amplitude spectra all showed the power law form found in spectra at 

lower frequencies, and in addition the spectral parameters showed no 

significant differences in spite of the gross change in the surface (see 

Figure 5-5). This implies that the two surfaces merely represent two 

realissations of the same statistical process. In terms of frequency 

domain analysis, only the phase spectrum is altered by the redistribu- 

tion of features, not the amplitude spectrum. This simple experiment 

does not unequivocally prove a causal relationship between statistical 

relief and process, but it does provide an encouraging result. 

The Phase Spectrum 

To reconstruct a profile or surface from its frequency domain repre- 

sentation, it is not sufficient to model only the amplitude of each com- 
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Figure 5-3 Contour representation of a bottom stereo-pair photograph 
collected on August 16, 1981. Dotted lines represent tran- 
sects used for spectral model generation. 
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DATE OF PHOTOGRAPHYi 7-20-81 
DEPTH OF PHOTOGRAPHY: 3700 m 
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Figure 5-4 Contour representation of a bottom stereo-pair photograph 
collected at the same location as that shown in Figure 5-3, 
but 27 days earlier, on July 20, 1981. The spectral models 
generated along indicated transects were not significantly 
different from those generated from transects of Figure 5-3. 
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Figure 5-5 Amplitude spectrum derived from profile A Illustrated in 
Figure 5-3. Regression lines represent model spectra from 
profiles A,B,C, and D. Differences between these spectra 
are within estimation error. Indicating no significant 
variation in time for the microtopography at this location 
nor significant anisotropy within each sample. 
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ponent frequency. One must, In addition, define the position of each 

component sinusoid relative to some geographic origin. The location of 

each sinusoid in space is expressed by its phase relative to this geo- 

graphic origin, and the composite of all component frequencies with 

their corresponding phases represents the phase spectrum. Since sines 

and cosines are trigonometric functions, phase is normally expressed as 

an angle between - 180° and 180°. 

Results from this study show that within statistically homogeneous 

provinces, the amplitude spectrum can be consistently modelled with a 

single or several power law functions. Although there is some varia- 

bility of the measured amplitude around the simplified model, the calcu- 

lated parameters remain consistent over often large geographic areas. 

However, any two sample profiles are not necessarily Identical or even 

statistically correlated. The differences in the spatial domain man- 

ifestations of identical amplitude spectra can only be due to differ- 

ences in the phase spectra. 

Figure 5-6 illustrates a typical phase spectrum and the statistical 

distribution of Its phase angles, derived from a single bathyraetrlc pro- 

file. Several profiles were examined, which represented a variety of 

geographic locations and geological environments. The variability of 

phase angle with Increasing frequency appeared to be random. A simple 

one-sample runs test was performed on several phase spectra, and all 

proved to be randomly ordered to within 95Z confidence limits. The runs 

test Is a non-parametric method (Siegle, 1956), meaning that no proba- 

bility distribution of the population is assumed. Examination of the 

distribution of phase angles Indicates a uniform statistical distribu- 

tion; that is, a random distribution in which all phase angles are 
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Figure 5-6 Typical phase spectrum from a bathymetric profile collected 
in the Cascadia Basin. The upper diagram plots phase angles 
versus corresponding spatial frequencies. The histogram 
(below) shows the distribution of phase angles by 10-degree 
class intervals. Statistical testing indicates the series 
to be uniformly distributed random noise. 
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equally likely to occur for any frequency coraponent. A Kolraogorov- 

Smlmov goodness-of-fit test was performed on several phase spectra, and 

none were significantly (95%) different from the uniform distribution 

(Slegle, 1956). 

The spatial consistency of the amplitude spectrum and the uniformly 

distributed random nature of the phase spectrum of topography Indicate 

that the differences in bathymetrlc surfaces within statistically homo- 

geneous provinces simply represent multiple realizations of the same 

statistical process. The observed changes in the microtopography 

recorded in Figures 5-3 and 5-A can be modelled by combining two differ- 

ent random phase spectra of the same distribution with the known ampli- 

tude spectrum. With the functional representation of the amplitude 

spectrum for an area, a "typical" profile or surface can be produced by 

generating a uniformly distributed set of random numbers to represent 

the phase spectrum, and performing an Inverse Fburier transformation to 

the space domain. 

The concept of representing the sea floor as a deterministic surface 

combined with stochastic variability was Introduced in an earlier sec- 

tion. In that discussion, the deterministic components appeared as a 

smoothed, long wavelength surface which was combined with a higher fre- 

quency, stochastic roughness component. By describing the higher fre- 

quency components with a spectral representation, we can now visualize 

the amplitude spectrum as being determined (by modelling) and the phase 

spectrum as being a purely random (stochastic) process. 
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Creation of the Model and Interpretation 

Having developed the algorithms for defining quasi-stationary prov- 

inces and generating valid amplitude spectra, these methods were applied 

to an area off the Oregon coast. The area (AZ^N-AS^N, ISCW-iaA^W) was 

selected due to data availability and the variety of geologic environ- 

ments represented within this relatively small area. The area includes 

the continental margin (shelf and slope), Astoria deep-sea fan, Tufts 

Abyssal Plain, Gorda Rise spreading center, Blanco Fracture Zone, the 

Cascadia Channel and numerous seamounts. All spectral estimates were 

generated from data collected on the SASS multibeam sonar system by the 

U.S. Naval Oceanographic Office. Only center beam depths were used in 

this portion of the analysis, in order to simplify processing. 

Figure 5-7 compiles the results of the combined province-picking 

and spectra-generating procedures. The areas delineated by the various 

shading patterns represent stationary provinces with similar ranges of 

the a statistic; that is, the amplitude of the component sinusoid at ^ 

wavelength of one kilometer. In cases of coincident values at crossing 

lines, a simple average was taken, ignoring for this analysis the 

effects of anisotropy. In many cases, provinces separated in the prov- 

ince-picking procedure became recombined in the final spectral model, 

indicating that the provincing algorithm used is more stringent than the 

levels selected for presentation. 

Within each of the larger provinces, the spectral slope parameter 

(b) estimates were averaged and these values shown within the provinces. 

The standard deviation of all estimates within any province was less 

than 0.1 in all but one case shown.  There is one province in which the 
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Figure 5-7 Distribution of roughness in the vicinity of the Gorda Rise, Northwest Pacific Ocean. 



slope parameter Is different la two areas within a single shading pat- 

tern (bottom center of chart). Many roughness province boundaries coin- 

cide with obvious physiographic province boundaries. In these cases, 

the bathymetry was used to trace the province boundaries between sample 

spectra. In many other cases, no boundary was obvious In the bathymetry 

and such tracing was not possible; that Is, what appears as an abrupt 

boundary may represent simply an arbitrary contour of a continuous gra- 

dient. Notice also that the Illustrated bathymetry from Chase et^ al^. 

(1981) was based on a totally different data set than that used for 

spectral model generation, and therefore some provinces appear In the 

model which are apparently unsupported Independently In the bathymetry. 

The gross distribution of the roughness statistic a corresponds 

fairly well with what one would e:q>ect Intuitively. The roughest areas 

(a > 2.5 m) are located at the Gorda Rise crest, Blanco Fracture Zone 

and over most seamounts, In particular the President Jackson Seamounts. 

The li^ast rough areas correspond to the sedimentary provinces of the 

Tufts Abyssal Plain, Cascadla Basin, the Astoria deep-sea fan, and the 

continental shelf. The Cascadla Channel appears as an Intermediate 

roughness province which can be traced very easily through the Blanco 

Fracture Zone and onto the Tufts Abyssal Plain. The Astoria Channel, 

located to the east of the Cascadla Oiannel, Is too narrow (<8 km) for 

this analysis and thus does not appear as a separate province. 

Within this gross distribution of roughness, some more subtle pat- 

terns can be Identified. The continental margin between the shelf and 

abyssal plain appears to be banded with the topography becoming gener- 

ally rougher down slope. This particular continental slope represents a 

slowly converging margin between the North American Plate and the Juan 
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de Rica-Gorda Plate. Carson (1977) and Barnard (1978) have both exam- 

ined this convergent margin In areas to the north o£f the coast of 

Washington, and both present seismic cross-sections of this area. Pre- 

sumably, similar processes are at uork along the Oregon margin. Barnard 

(1978) Infers a change of compression rate from 2.3 cm/year before 0.5 

mybp to a present rate of 0.7 cm/year. Deformation of Cascadla Basin 

sediments Is progressing westward, making the deepest areas of the mar- 

gin also the most recently deformed. This westward progression of 

deformation process Is e]q>res8ed In the bathymetry as a downslope 

Increase In surface roughness. Barnard (1978) classifies the slope ter- 

rain into an upper slope extending to a depth of about 1500 ra, and an 

accretlonary "borderlands" complex of en-enchelon, anticlinal ridges. 

Between these ridges are sediment-filled basins. These physiographic 

divisions, derived by qualitative observation of the geological struc- 

ture of the region, correspond closely to the roughness model generated 

by quantitative methods. 

The Gorda Use is one of the more active areas o'f the world sea 

floor, and a corresponding complexity is evident in the derived pattern 

of bottom roughness provinces. Atwater and Mudie (1973) reviewed the 

tectonic history of the area. Additional history of spreading rate and 

spreading direction changes can be found in Elvers ^ al.* (1973). Much 

of this tectonic history may be peripheral to this study because the 

sea floor affected is now buried beneath the Tufts Abyssal Plain and 

Gorda Deep-Sea Tan  sediments. 

One interesting feature of the bottom roughness chart presented in 

Figure 5-7 is the very rough ridge crest which terminates abruptly on 

either flank.  The full width of the feature is about 25 km.  Were 



ridge- forming processes constant through time and ridge crest relief 

"frozen" Into the topography, the same roughness would be expected to 

persist, at least In long wavelengths, on older sea floor. The other 

major process affecting the ridge flanks, sedimentation, would be 

expected to affect the short wavelengths Initially (dU3 to their lower 

amplitude), and form a smooth transition zone, not the abrupt boundary 

observed In the roughness pattern. Magnetic data from the area Indicate 

that this zone falls within the Bruhnes-Matayama boundary and must 

therefore represent crust younger than 0.7 my. Recalling that Barnard 

(1978) found evidence of a slowing of compression rate on the continen- 

tal margin at a time younger than 0.5 mybp In areas to the north. It is 

possible that this roughness feature reflects the same change In proc- 

ess, most likely a slowing of spreading rate. Future examination of 

other ridge axes should reveal whether this pattern is unique to the 

Gorda Rise or present under other tectonic conditions. 

Perhaps equally interesting is the abrupt termination of this ridge 

crest at latitude 42°20'N. The roughness values drop (as supported by 

three tracklines) two and three roughness levels at the feature's termi- 

nus. This disruption of the ridge crest falls along a trend which 

encompasses President Jackson Seamounts and other seamounts to the 

northwest, and a major (900 m) bathymetrlc deep to the southeast. The 

break in the ridge crest trend also appears in the bath3rmetric chart. 

Hey (1977) developed a "propagating rift" model to describe the 

plate geometries and magnetic anomaly pattern found on the Juan de Fuca 

Ridge by the Pioneer survey. According to this model, the growing 

spreading center propagates along strike as the dying spreading center 

becomes Inactive and is added to one of the rigid plates. As this proc- 
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ess contiaues through geologic time, a V-pattern of fossil spreading 

centers forms a "propagator wake", as Is Illustrated In Figure 5-8. 

This same pattern Is found In the Isosynchronous magnetic anomaly pat- 

tern. Since this model was proposed, similar processes have been 

observed on other spreading centers. In particular the Cocos-Nazca 

spreading center (Searle and Hey, 1983). 

A propagating ridge crest model offers one explanation for the 

abrupt termination of the Gorda Rise crest shown In Figure 5-7.  In 

order to test this hypothesis, a magnetic anomaly map of the Gorda Rise 

was constructed and Is Illustrated In Figure 5-9. The chart Is based on 

original magnetic anomaly data collected by the D.S. Naval Oceanographlc 

Office. The V-pattem associated with the "propagator wake" Is evident, 

extending to the east and northwest from the rldge crest at 42'N.  The 

direction of the V-pattem Indicates that the rldge crest to tl» north 

Is propagating toward the south at the eiqjense of the southern portion 

of the Gorda Rise crest.  The geometry of the schematic model by Hey 

(1977) for the Juan de FUca Rldge (Figure 5-8), represents a nearly per- 

fect analog to the magnetic anomaly pattern of Gorda Rise (Figure 5-9). 

It would appear that the abrupt termination of the high roughness zone 

shown In Figure 5-7, Is due to Its association with the tip of a prop- 

agating rift system. 

Another feature of Interest In the distribution of the a parameters 

in Figure 5-7 la the existence of east-west trends of selected roughness 

provinces on the rldge flank. One might have expected roughness prov- 

inces to align themselves sub-parallel to the rldge strike, perhaps 

reflecting changes In processes through time being felt along the length 

of the ridge axis.  This Is the case with the very rough central valley 
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Figure 5-8 Schematic Illustration (from Hey, 1977) of the pattern of 
isochronous seafloor resulting from a southward propagating 
rift. Double lines represent active spreading centers, 
dashed lines are fossil spreading centers, heavy line is 
active transform fault, and dotted lines are associated 
fracture zones. Diagonal trend lines Indicate the so-called 
"propagator wake". 
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Figure 5-9 Magnetic anomaly chart of the Gorda Rise area. Positive 
anomalies are shown in black; negative anomalies are shown 
in white. The northeast-southwest trending Gorda Rise is 
obvious as is the northwest-southeast trend of the Blanco 
Fracture Zone near the northern limit of the chart. Compare 
the inferred "propagator wake" (indicated by dashed lines) 
to the theoretical model of a propagating rift illustrated 
in Figure 5-8. 
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portion. The east-west trend of roughness Indicates Instead relief- 

forming processes which act relatively constantly through time, but 

quite variably along the ridge strike. Prancheteau and Ballard (1982) 

describe the along-strlke variability of processes along the East 

Pacific Rise, and relate the changes to distance from the ridge crest/ 

fracture zone Intersection. The change In process Is expressed by the 

relative Importance of fluid lava flows and pillow lava flows. These 

petrologlc changes are In turn associated with the elevation of the rift 

valley along the ridge crest; topographic highs are associated with high 

ratios of fluid lavas and topographic lows associated with pillow lavas. 

Indeed the shallowest portion of the Gorda Ridge segment is located near 

latitude 42*45'N, which shows relatively low roughness values as one 

would expect from the sheet-like flow of fluid lavas. Ridge flank areas 

become rougher adjacent to deeper axial valley segments, which might 

reflect the rougher surface of pillow lavas. Although other explana- 

tions for the trend of roughness on the ridge flanks could be put forth, 

the distributions found in this study are consistent, although not nec- 

essarily typical. Extension of the model to more thoroughly investi- 

gated ridge crests should shed light on this particular hypothesis. 

The patterns apparent in the distribution of a are not as evident 

when one examines the distribution of the spectral slope (b). It is 

clear that the "universal" value of -1 for the spectral slope inferred 

by Bell (1975b) and others is not supported by this modelling effort. 

The reason for this discrepancy is not readily apparent, however the 

attention given to defining stationary sample space in this study does 

represent one major difference in method. In order to test this hypoth- 
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esls, amplitude spectra were generated for several profiles In the Gorda 

Rise area which spanned nniltiple stationary provinces. The effect of 

these extensions was to reduce the degree of statistical homogeneity of 

each profile. The computed spectral slope (b) parameters for the 

resulting amplitude spectra converge consistently to the value b ■ -1.0 

as longer profiles are tested. Figure 5-10 Illustrates one such long 

profile extending nearly 500 km from the Oregon coast. The profiles 

analyzed by Bell (1975b) were often much longer. No formal statistical 

argument for this convergence to b ■ -1.0 will be attempted here, how- 

ever, it would appear that the concatenation of multiple profiles of 

differing spectral characteristics results In a profile which resembles 

a random walk. The need to define statistically homogeneous sample 

spaces before generating statistics is clearly demonstrated. 

Most slope values shown in Figure 5-7 cluster about -1.5 with the 

exception of the smooth ridge axis segment south of 42*'20'II. The two 

large sedimentary provinces are represented by two values for spectral 

slope. Figure 5-11 Illustrates a typical amplitude spectrum from these 

sedimentary provinces. The spectrum clearly separates into two distinct 

straight-line segments of different slope. The average values of these 

distinct slopes for all profiles is given in the corresponding boxes 

(see Figure 5-7). If the hypothesis is accepted that the characteristic 

spectral slope of amplitude spectra of sea-floor topography represents a 

dominant relief-forming process, these spectra should represent areas 

where two processes are at work, affecting the relief in different spa- 

tial frequency bands. It is likely that the higher frequency band rang- 

ing from X > 2.5 km and with b <- -.6, represents the sedimentary regime 

A 

In these areas.  The lower frequency process with b < - 1.4, is less 
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Figure 5-10 Amplitude spectrum of a long bathymetric profile, which 
encompasses several statistically homogeneous provinces. 
The inclusion of non-stationary segments into the analyses 
results in a spectral slope parameter which approaches D= 
-1.0. 
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Figure   5-11    Typical   amplitude   spectrum  of  profiles  collected  on   the 
— Tufts    Abyssal    Plain.        Spectrum    shows    two    distinct 

straight-line segments * which Intersect at a spatial 
frequency of ~0.4 cycles/km. The longer wavelength 
portion is described by b » -1.847, a » 0.0294 m. The 
shorter wavelength segment is described by b = -0.541, S = 
0.113 m. Profiles from the Cascadia Basin province have 
similar spectra, however the model parameters are slightly 
different. 
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obvious, but may well represent an underlying tectonic e££ect due per- 

haps to the compresslonal nature of the area overprinting a long wave- 

length relief on the smooth sediment. 

This general correspondence of b < -1 In tectonic provinces, and -1 

< b < 0 for sedimentary provinces Is found In many areas outside this 

study area. The reason for this general relationship can only be specu- 

lated upon. Recall from the previous section that b < -1 requires that 

the ratio of height to width of component features, Increase at longer 

wavelengths. If one envisions tectonic relief forming processes, the 

entire morphology Is constructed and then eroslonal and sedimentary 

processes begin smoothing small features first, progressing to con- 

stantly larger scales. In sedimentary processes, one can envision a 

smooth layer of sediment being affected by bottom current Interaction 

for example. This constructive process begins ait the highest spatial 

frequencies and progresses to larger scales. This is In agreement with 

the relationship of -1 < b < 0, In which the ratlb of height to width of 

component features Increases at shorter wavelengths. 

The study area Illustrated In Figure 5-7 was selected because of 

Its rich geological diversity. As such, the distribution of roughness 

provinces Is correspondingly complex. To allow a comparison with a more 

tectonlcally stable area of the world ocean floor, a large number of 

trackllnes off the United States east coast were analyzed to compare a 

passive continental margin. Although the trackllne density was not ade- 

quate for a complete chart to be drawn, one Interesting relationship was 

discovered. An extremely large area of the continental margin, compris- 

ing most of the continental rise, was found to have In common a very 

distinct amplitude spectrum.  Figure 5-12 Illustrates a typical ampll- 
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Figure 5-12 Typical amplitude spectrum of profiles collected on the 
Continental Rise, east coast U.S. All fourteen profiles 
examined In this province (shown In Figure 5-13) show 
nearly Identical patterns. The two linear segments^ In 
this example Intersect at ~0.3 cycles/km., with b = 
-1.813, t= 0.0142 m. for the longer wavelength model, and 
S « -.524, a = 0.0645 m. for the shorter wavelength 
model. 
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tude. spectrum from this large province, and shows the same two-process 

nature of the spectrum in Figure 5-11. In fact, this spectrum Is almost 

Identical to the measured spectra from the Tufts Abyssal Plain and the 

Cascadla Basin. 

Figure 5-13 shows the location of profiles with this characteristic 

spectrum. Some of these profiles are over 200 tun long, and the profiles 

are distributed over an area more than 1000 nm In extent. The total 

standard deviation for the spectral parameters In all fourteen profiles 

was only 0.15 for the slope (b) parameters and 0.02 meters for the 

Intercept (a) parameters. These values apply to both the lower fre- 

quency and higher frequency line segments. The area may well extend 

even further northeast or southwest. Profiles are only broken by sea- 

mounts or deep-sea channels associated with submarine canyons. As such, 

one can see that the areal extent of a roughness province with a given 

level of allowed non-statlonarlty, can vary from hundreds of thousands 

of square miles to the slopes of a single seamount. 
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Figure 5-13 Location of bathymetrlc profiles showing nearly Identical anplltude spectra. Bathyaetry Is 
autonatlcally contoured (In meters) fron the f1ve-«1nute gridded Digital Bathynetrlc Data 
Base (DBDB) produced by the Naval Oceanographic Office. H marks the location of the HEBBLE 
area. W marks the location of the bottom photographs Illustrated In Figures 5-3 and 5-4. 



6.  Aolsotropy of Surfaces 

The necessity of dlrectlonally treating anlsotroplc surfaces was 

Introduced In Chapter 4. Any statistic generated from a one-dlmenslonal 

profile of a two-dimensional surface Is only valid In all directions If 

that surface Is Isotropic. This chapter examines the Importance of 

anlsotropy In detail. A simplified theoretical model of the effect of 

anlsotropy on the frequency spectra of dlrectlonally sampled profiles Is 

formulated and tested. Such spectra are generated for two areas of the 

sea floor where complete, two-dimensional bathymetrie data are available 

from multlbeam sonar. An Identical study Is performed on data from 

side-scan sonar. These results are then compared to the theoretical 

model. Next, th^ possibility of estimating such two-dimensional func- 

tions from randbmly oriented bathymetrlc profile data Is discussed. 

Theoretical Model 

Before examining the effect of anlsotropy on measured frequency 

spectra derived from actual bathymetrlc profiles, it is instructive to 

examine a very simple theoretical model of this effect. Several of the 

concepts introduced in Chapter 4 will be utilized. There it was shown 

that the effect of one-dimensionally sampling a sinusoid which has been 

extended to two dimensions (see Figure 4-6), is to stretch the true 

wavelength as, 

X' - Icos'^e] . X 
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where ^' * apparent wavelength 

X > true wavelength 

6  a angle of sampling (0° •■ perpendicular 

to linear trend) 

This relationship can then be combined with the similarity theorem 

of Fourier Transforms to yield the transform pair 

f (|co8 ej • x) rj |co8e|"i • F (s/cose) 

Recall that these relationships were formulated for a single component 

wave form extended to two dimensions. Actual sea-floor topography has a 

spectrum which is continuous and conforms to a power law functional form 

A - a • s^ 

To extend the model to the continuous case, one can envision gener- 

ating a topographic profile (or other signal with continuous power law 

form, such as a random walk model), and extending all points on the pro- 

file to the second dimension. This surface is then sampled in various 

directions and the spectrum of each profile evaluated for a and b above. 

Combining the above relationships yields 

f(|co8 e| • x) D |cos e|"l . a • (s/cos 9)^ 

or equivalently 

W 



f (|co8 6|~^ • x) i:> |co8 9| • a • (s • COS 9)^ 

or 

P (s, 9) - |co8 9] • a • (s • cos 9)^ 

where F(s, 9) Is the Fourier transform of f(|cos9|~* • x) expressed 

In terms of 9 and s. The coefficient a can now be expressed as a func- 

tion of 9 as 

a(9) -  |cos9|   •  a 

which can be generalized to 

a(9) - |COS(9-9Q)| • a 

where 9. is the azimuth perpendicular to the linear trend. Notice 

that for 9 ■ 9^, that is a profile generated perpendicular to trend, 

|cos(9-9^j)| « 1 and F(s,9) - a • s^, the original function. For 9-9^ - 

*90-, |co8(9 - 9^) I . 0° and F(s,9) - 0, that is, for profiles sampled 

parallel to strike, the series is a constant (normalized to zero) and 

therefore contains no energy. The parameter b is independent of 9. 

Figure 6-1 illustrates the hypothetical "plane wave" surface that is 

used in this simple model. As a test of the above theory, radial tran- 

sects of the surface were generated and the resulting profiles input to 

the standard Fourier transform routines used throughout this study. 

Figure 6-2 depicts the sampling patterns used to generate the profiles. 
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Figure  6-1 Graphic representation of an elementary theoretical model 
for anisotropic surfaces. The surface Is created by gener- 
ating a random walk (with theoretical amplitude spectrum of 
A = a-s"^) in the x (90" azimuth) direction. These values 
are simply extended to the second dimension, creating a 
lineated surface with strike = 0*. Viewpoint is from the 
southwest. 
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Figure  6-2    Radial   sampling  pattern   used  to   generate  one-dimensional 
amplitude spectra from various azimuths on a surface. 
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Figure 6-3 plots the value of a ("intercept") and b ("slope of spec- 

trum") as a function of azimuth. The resulting spectral estimates are 

fitted with the above model. Approaching azimuths of 0" and 180", the 

profiles nearly parallel the linear trend and the results are unreli- 

able, due to the small number of depths available for analysis resulting 

In a very narrow frequency band width used In the model regression. 

The coefficients b(6) do not show any relationship to the trend, as 

predicted by theory. This does not Imply that directional dependence in 

b(6) Is never found In spectra from sea-floor profiles. If a surface 

had two or more distinct signals (perhaps due to differing relief- 

forming processes) superimposed, cyclical behavior In b(6) would be pos- 

sible. For example, envision a hypothetical surface composed of an Iso- 

troplc two-dimensional signal with spectra slope b^(9), overlain by a 

simple linear trend (like the one described above) with spectral slope 

bg(6). Perpendicular to trend, b(8) would be some combination of b^(e) 

and bQ(9) depending on their relative amplitudes. Parallel to trend, 

b(6) would equal just b^(6), in this example, since the linear trend 

with slope bg(6) is constant in the direction parallel to strike. The 

example spectra from the Mendoclno Ftacture Zone presented in Chapter 4 

Illustrate this effect. Appendix E examines a series of artificially 

generated surfaces and their spectral characteristics. 

In the results shown in Figure 6-3, the parameter a(d) shows the 

expected relationship to co8(e-6^)^eg - 90", as predicted by theory. 

This model cosine function can be used to parameterize the surface 

anisotropy. The model sinusoid is generated by an Iterative regression 

technique (see Appendix C.2) which determines the following equation 
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Figure 6-3 Distribution of spectral parameters versus azimuth of samp- 
ling for theoretical surface shovm In Figure 6-1. The 
upper series represents the slope of the spectrum In log- 
log space and varies randomly around the theoretical value 
of -1 as predicted by theory. Near 0° and 180°, the esti- 
mates become unstable due to poor sampling. The lower ser- 
ies represents the Intercept of the spectrum in log-log 
space (or the coefficient of frequency) and agrees well 
with the sinusoid model predicted by theory. Notice the 
maximum intercept, and therefore total spectral energy, 
corresponds to a sample taken perpendicular to strike 
(azimuth = 90°). 
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a(9) " u + V • co8(2 • (9-QQ)) 

the three term regression technique yields estimates for u, v, and 6^. 

These terms have definite physical meaning. u represents the simple 

mean roughness level of the surface, that is the mean a(6) of the signal 

sampled in all directions. This could be visualized as the "Isotropic" 

component of the surface, v determines the amplitude of the sinusoidal 

component of the regression model and represents a measure of the degree 

of anlsotropy of the surface. 6 estimates the normal to the true azi- 

muth of the linear trend. Frequency Is not estimated since the perio- 

dicity of 1 cycle/180° is known. 

Unfortunately, it is not possible to decompose more than one linear 

trend in a surface using this method. Envision a surface consisting of 

two linear trends of differing orientation (6^ and 6g), "anlsotropy" 

levels (v/^ and vg), and "isotropy" levels (u;^ and Ug). The surface, 

being a simple linear combination of the two component trends can be 

expressed as 

a(9) » (u^ + UB) + VA • cos(2 • (9-9^)) + VB • co8(2 • 9-9B)) 

In this example, u^ and u^ are both presumably equal to zero for "per- 

fect" linear trends. However, even in non-perfect cases in which some 

energies are available parallel to strike, the u components are linearly 

combined and can not be differentiated. The "anisotropy" components 

also combine linearly to yield another sinusoid whose amplitude and 

phase are dependent on the relative amplitudes and phases of the orlg- 
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laal sinusoidal components.  Appendix C presents a geometric proof o£ 

this relationship. 

In the case where two or more linear trends are present In a sur- 

face, the form of a(6) will show a simple sinusoid with phase and ampli- 

tude which can not be uniquely decomposed Into component sinusoids. If 

an estimate of the azimuth and amplitude of one of the trends could be 

produced Independently, this component could be removed and the remain- 

ing component sinusoids analyzed. It should be emphasized that the 

Inability to decompose component trends In no way invalidates the model. 

It simply complicates the interpretation of the model statistics In 

terms of formation processes. 

Multiple linear trends can only be decomposed In cases where the 

trends are sufficiently band-limited to appear as distinct peaks In the 

frequency spectrum. This approach allows decomposed trends to be 

uniquely Identified by spectra generated In two orthogonal directions, 

as was shown by Hayes and Conolly (1972). Their work clearly shows such 

trends In the large scale topography of the Antarctic-Australian 

Discordance. In examining a great many spectra of small-scale (X <8 km) 

topography during the present study, no significant spectral peaks have 

been observed, even in topography which is highly lineated at the larger 

scales. This result may be due in part to the presentation of these 

spectra in log-log form. 

Comparison of Theoretical Rinctional Fbrms with Multibeam Sonar Data 

The previous section developed a simple theoretical model of the 

effect of linear trends on frequency spectra from profiles sampled at 
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varyiag azimuths on an anisotroplc surface. Figures 4-7-10 illustrated 

the effect of linear features on two bathytnetrlc profiles collected at 

near right angles. To test the validity of the theoretical model to 

actual bathjnaetry, it is necessary to sample regularly around the com- 

pass at a single location on the sea floor. This is only possible for 

areas which have complete areal bathymetrie coverage of high spatial 

resolution. 

The most practical Instruments available for obtaining such data 

are the multlbeam sonar systems. These systems, which provide a "swath" 

of discrete soundings on a line perpendicular to the ship's track, allow 

complete coverage of an area. By conducting surveys in which the paral- 

lel survey tracks are spaced so that the outer beams of adjacent tracks 

overlap or are nearly juxtaposed, a complete two-dimensional survey can 

be performed. Very few of such data sets are currently available. How- 

ever, two data sets from contrasting geologic environments were made 

available for this study (see Chapter 5, Section B). Both surveys were 

conducted by the U.S. Naval Oceanographlc Office using the SASS multi- 

beam sonar system (Glenn, 1970). The recent acquisition of the academic 

SEABEAM systems should provide more full-coverage surveys in the future. 

New techniques for processing side-scan sonar data from the SEAMARC-1 

system allow similar two-dimensional analyses to be performed at smaller 

scales. 

Figure 6-4 presents the contoured bathymetry from the Gorda Rise 

area of the northeast Pacific Ocean. Contours were created automati- 

cally and only appear where supported by multlbeam soundings. The 

coverage is generally complete with the exception of a small area on the 

western margin of the chart and small gaps between swaths.  This chart 



Figure 6-4 Index maps showing the location of two-dimensional SASS 
bathymetry data used In study of azimuthal dependence of 
topographic spectra. The data are In the vicinity of the 
crest of the Gbrda Rise In highly llneated topography. 
Central coordinates are 42°53.5'N, 126''40'W. Contour 
Interval Is 10 fathoms. 



was created aslag a grid spacing o£ 0.25 minutes of longitude and lati- 

tude (~460m X ~300m), well above the resolving capability of the SASS 

system. 

The area shown in Figure 6-4 was selected to test the effect of 

anisotropy on one-dimensional amplitude spectra. The data set is 

located in the vicinity of the ridge crest, which was identified as a 

quasi-stationary province by the methods described in Chapter 5. The 

lineation of the topography is obvious on the index chart and trends 

approximately N25''E. 

Figure 6-5 represents graphically the test area. Although the grid 

spacing used for the illustration is 0.1 minutes of latitude and longi- 

tude, the profiles were generated from a grid with spacing of 0.05 min- 

utes (~100m), which approaches the resolving limit of the SASS system 

for these water depths and noise level conditions. Again the sampling 

pattern shown in Figure 6-2 was used to generate radial profiles of 256 

points. No ensemble averaging was used. 

The spectral parameters a(6) and b(6) are plotted versus azimuth in 

Figure 6-6. The results agree closely with the theoretical model devel- 

Oped in the previous section. Notice first that the parameter b(6), 

plotted above in these diagrams and labelled "Slope of Spectrum", shows 

no systematic fluctuation with azimuth, as predicted by theory. Note 

also that the mean slope is -1.24, well below the -I.O slope of the ran- 

dom walk (Markov process) model. The large variability of this param- 

eter could be reduced by ensemble averaging of several spectral esti- 

mates, created by offsetting the center of the sampling pattern. The RMS 

variability would be reduced by 1/ / N , where N is the number of esti- 

mates (see Chapter 7). 
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1000 SASS Bathymetry - Gorda Rise 

Figure 6-5 Graphic representation of SASS bathymetry data projected 
onto an evenly-spaced grid. Illustration uses 128 x 128 
points spaced at 0.1 minutes of latitude and longitude 
without cartographic projection. Fourier analysis was per- 
formed on 256 points from a 0.05 minute grid. Measured 
strike of the lineations is approximately 25° azimuth. 
Viewpoint is from the northeast. 
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Figure 6-6 Distribution of spectral parameters versus azimuth for 
Gorda Rise spreading center bathymetry shown in Figure 6-4 
and 6-5. Spectral slope parameter (above) shows no appar- 
ent functional relationship to azimuth as predicted by 
theory (notice that the mean slope is -1.24, well below 
-1.0, which would correspond to a Markov process). The 
intercept parameter (below) clearly shows the effect of 
seafloor anisotropy and generally conforms to the sinu- 
soidal model. Model parameters are as follows: mean ampli- 
tude = 1.68 m, amplitude of sinusoid = 0.51 m, azimuth of 
maximum energy = 115°  (perpendicular to observed strike). 
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The results for a(9) also conform reasonably well to the model pre- 

diction. The values, plotted below and labelled "Intercept", represent 

the amplitude (in meters) of the Fourier component at a wavelength of 1 

kilometer. The mean intercept is 1.68 meters. Indicating a relatively 

rough topography, and corresponding to the "Isotropic" term u in the 

model. The anlsotropy of the surface is obvious from the large ampli- 

tude (0.51 meters) of the model sinusoid (the v term). The maximum 

value of the model occurs at an azimuth of 6^ - 115°. This corresponds 

to the normal to the linear trend (which was measured as 25° in the 

full-coverage chart) as expected. These values fully parameterize the 

effect of surface anisotropy on the frequency domain description. 

Although the functional models for b(8) and a(e) appear to be of 

the proper form, there are some obvious variations in the measured par- 

ameters from the model. In order to give an intuitive impression for 

the degree that the generalized model departs from the actual measured 

spectrum. Figure 6-7 Illustrates a "worst case" example in which the 

modelled a(e) differs from the observed a(9) by ~0.5 m. The selected 

profile is from 9 - 115° (see Figure 6-6). Plotted with the measured 

spectrum is the regression line derived from the functional model, 

rather than the least-square fit usually shown. The model-derived spec- 

trum provides an excellent representation of the spectrum and appears to 

fall well within the estimation noise of the spectrum, even in this 

"worst case" example. 

The second study area is shown in Figure 6-8. This data set repre- 

sents a totally different style of sea-floor topography due to the geo- 

logic environment, which is controlled by sedimentological processes 

rather than the tectonic setting of the Gorda Rise.  The broad trend of 
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Figure 6-7 Example amplitude spectrum from the Gorda Rise crest sampled 
at azimuth 115 degrees. The straight line segment through 
the spectrum represents the model prediction, rather than a 
least squares fitted line. As seen in Figure 6-6, this 
particular aziimith represents a large deviation of the 
fitted parameters from the model sinusoid. The model line 
still appears to fall well within estimation noise, even for 
this "worst case" example. 
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Figure 6-8 Index map showing the location of two-dimensional SASS 
bathymetric data used In study of azimuthal dependence of 
spectra of topography. The data are on the upper continen- 
tal rise off the coast of Delaware, USA, and represent a 
relatively flat, non-1Ineated surface. Central coordinates 
are 38°24'N, 72"04'W. Contour interval Is 1 fathom. 
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slope toward the south-southeast Is veiTr long wavelength and not 

Included In the analysis. The small channels traversing the slope are 

due presumably to downslope transport of sediment and represent an 

apparent linear trend with wavelength of approximately 10-15 kilometers. 

This is at the low frequency limit of the present analysis, but might 

indicate such a trend in shorter wavelengths. Figure 6-9 graphically 

illustrates the data set (in this case gridded at 0.1 minutes of lat- 

itude and longitude), and shows this linear trend due to down-slope 

processes. Coincidentally, the survey track was run quasi-parallel to 

this  trend which could further complicate interpretation. 

The distribution of sp^ectral parameters with azimuth are plotted in 

Figure 6-10, in the same format as the previous plots. Notice again 

that the parameter b(6) plotted above shows no functional relationship 

to azimuth B, as predicted by theory. In this case, the mean value of 

the b(e)'8 is -1.05. The intercept parameter a(e) reflects the rel- 

atively smooth, isotropic nature of this sample of the sea floor. In 

this case, the mean amplitude of 0.097 meters is less than 6Z of the 

same parameter in the Gorda Rise area. The "anisotropy" term, v in this 

case is estimated at 0.0063 meters, only IX of the value for the Gorda 

Rise. Uith these almost isotropic conditions, the estimate of the azi- 

muth of maximum energy cannot be made with any fidelity. 

The final test area represents an intermediate level of both gen- 

eral roughness and degree of anisotropy. The data were collected by the 

SEAMARO-1 side-scan sonar system, which is a deep-towed instrument 

developed by W.B.F. Ryan of Lament-Doherty Geological Observatory. The 

vehicle is towed at approximately 500 m above the sea floor and collects 

data from side-scan sonar and from down-looking sonar.    The depth of  the 
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SASS Bathymetry —Continental Rise 
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Figure 6-9 Graphic representation of SASS bathymetry data projected 
onto a 128 x 128 point grid. Grid spacing Is 0.1 minutes 
of latitude and longitude and Is presented without cartog- 
raphic projection. Visible In the surface are spikes assoc- 
iated with sonar processing noise and smooth areas where 
surface was Interpolated between tracks. Viewpoint Is from 
the southwest. 
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Figure 6-10   Distribution of spectral parameters versus azimuth for con- 
— tinental   rise   bathymetry   shown   In   Figures   6-8   and   6-9. 

Spectral slope (above) shows no apparent functional rela- 
tionship to azimuth and has a mean slope of -1.05. The 
Intercept parameter (below) reflects the relatively smooth, 
isotropic nature of the surface. Model parameters are as 
follows: mean amplitude = 0.097 m, amplitude of sinusoid - 
0.0063 m, azimuth of maximum energy ' 120°. Due to the low 
level of anisotropy, the azimuth direction Is not signif- 
icant. 
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vehicle Is continuously measured. F^rre and Ryan (1984) have developed 

a method of combining these sources of information into a detailed con- 

tour chart of bathymetry. These contours, when evaluated for depth on 

an evenly spaced grid, comprise the data set used in this study. 

Figure 6-11 illustrates a contour chart of the study area, which 

encompasses the Carteret Canyon, continental slope, and upper continen- 

tal rise. The smaller area outlined was used to produce the spectral 

parameters illustrated in Figure 6-12. The data grid uses a spacing of 

only 5 meters and represents much higher resolution than the surface- 

derived sonar data in the other two examples. Unfortunately, due to 

round-off errors producing a white-noise level of 0.3 meters in the data 

(only whole meter depths were retained), most spectra were only above 

noise to the 100 m wavelength band, similar to the resolution of SASS. 

Figure 6-12 illustrates the results of the azimuthal dependence of 

spectra study. The slope parameter (b) shows a mean of -1.88, lower 

than the other two study areas. The data also indicate what might be an 

example of azimuthal dependence of b, such as that observed on the 

Mendocino Fracture Zone and discussed in Chapter 4 and Appendix E. The 

intercept (a) parameters are u « .87 m, v > .23 m and relative azimuth 

(9 ) - 85", which represent a level of roughness and anisotropy inter- 

mediate to the previous two examples. Because the original survey was 

collected at an azimuth of 140**, the true azimuth of anisotropy is 45°. 

In conclusion, the simple theoretical model of the effect of linear 

trends on frequency domain statistics, can adequately describe anisot- 

ropy in three test areas. The parameter b(6) appears to be independent 

of azimuth in at least two areas, although quite noisy. The sinusoidal 

construction of the intercept parameter as 
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Figure  6-11  Bathymetry  of  the  continental   slope/Carteret  Canyon  area 
—  derived from SEAMARC-1 side-scan sonar processing.    Section 

used for azimuth study Is outlined. Data Is from Farre and 
Ryan (1984). Heavy lines Indicate the path of the sonar 
vehicle. 
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Figure 6-12 Distribution of spectral parameters versus azimuth for con- 
tinental slope/submarine canyon bathymetry shown in Figure 
6-11. Spectral slope (above) has a mean value of -1.88, 
although it ma(y also contain a cyclical component not noted 
in other examples. The intercept parameters (below) repre- 
sent an intermediate level of both mean roughness and 
anisotropy between those of the Gorda Rise and Continental 
Rise examples. Model parameters are as follows: mean 
amplitude = 0.87 m, amplitude of sinusoid * 0.23 m, azimuth 
of maximum energy = 85°. Due to the direction of sampling, 
true azimuth on the earth corresponds to 45"*. 
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a(e) - u + V • co8(2 • (e-eg)) 

allows the background, or Isotroplc, roughness, as well as the degree of 

anlsotropy and its trend to be quantified, and therefore compared In 

different areas. 

If one assumes this simple model of anlsotropy to be true, at least 

In some cases, an Interesting Insight Into the effect of scale on 

anlsotropy can be seen In the mathematics. The assumption of a constant 

value of b(9) at all azimuths can be envisioned as a family of lines In 

log-*log space of constant slope whose levels vary with azimuth. The 

orthogonal azimuths which represent the extremes of anlsotropy, would 

maintain a constant spacing In amplitude at all frequencies In log-log 

space. That Is, If at a given frequency the amplitude In one direction 

were twice that of the normal azimuth, that relationship would remain 

constant at all frequencies. 

In examining bathymetry and other geological data, It often appears 

that anlsotropy decreases at shorter wavelengths. Bell (1975) reached 

that conclusion In studying the aspect ratio of shapes of seamounts of 

different sizes. Much of the validity of this statement depends upon 

how anlsotropy Is defined. As stated above, If a relative doubling of 

amplitude In the orthogonal direction occurs at one scale, this same 

doubling should occur at all scales. However, If one considers the 

absolute difference In amplitudes In orthogonal directions, at long 

wavelengths the difference between perhaps one and two meters of ampli- 

tude represents one meter of difference, while at very short wavelengths 

this same relationship might appear as the difference between one and 

two centimeters.  Although the proportional relationship of amplitude 
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(doubling) Is constant, the absolute difference decreases exponentially, 

depending upon the value of b. Since the ability to resolve amplitude 

is limited, the ability to resolve anisotropy at small scales is also 

limited and could lead to an erroneous conclusion concerning anisotropy 

at high frequencies. These relationships do not apply in cases where b 

varies regularly with azimuth, such as those discussed in Appendix E. 

Estimation of TWo-Dimensional Spectra from Randomly 

Oriented Ship Track 

An alternative method for describing the topographic roughness of a 

surface over all azimuths is with the two-dimensional amplitude spec- 

trum. The method involved is quite similar to that used in the one- 

dimensional case, but prewhitening requires a circularly symmetric high- 

pass filter, and a two-dimensional Bast Fourier Transfoxrm algorithm is 

used. Perhaps most important to the practical use of this method is the 

requirement for a complete two-dimensional array of data (depths) as 

input. 

As mentioned previously, complete areal bathymetric surveys are 

available in very few areas of the world ocean. To be practical, such 

surveys must use a multibeam sonar array such as SASS or SEABEAM, and 

tracks must be spaced so that adjacent swaths are Juxtaposed. Of the 

areas presented in the previous section, the Gorda Itise survey shown in 

Figure 6-4 indicated the highest degree of anisotropy and was therefore 

selected for two-dimensional FFT analysis. 

Figure S-'IS Illustrates the results of generating a two-dimensional 

amplitude spectrum from the gridded bathymetric data shown in Figure 
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TWO-DIMENSIONAL AMPLITUDE SPECTRUM 
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Figure 6-13 Two-dimensional amplitude spectrum from the Gorda Rise area 
illustrated in Figure 6-5. Log-transformed amplitude esti- 
mates, computed via a two-dimensional Fourier transform, 
are represented by light contours drawn every 0.5 order of 
magnitude. The heayy lines represent amplitude estimates 
predicted by the four-parameter, azimuthally dependent 
model derived for the area. 
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6-5. Amplitude estimates appear as Irregular contours. The amplitude 

values were log transformed before plotting, and these values are plot- 

ted at Integer Increments. Contours are drawn each .5 order of magni- 

tude of amplitude. The data set, and therefore Its amplitude spectrum. 

Is oriented with the columns parallel to longitude and rows parallel to 

latitude. 

Plotted with the spectrum in heavy lines is the two-dimensional 

spectrum as modelled from one-dimensional profiles by the method 

described in the previous section. Because the gridded data base used 

in the analysis was spaced evenly in latitude and longitude, the spec- 

trum as a function of spatial frequency is necessarily distorted. High 

frequency noise associated with the east-west oriented track lines 

appears as a smearing of the contours in the vertical and horizontal. 

The simple model spectrum explains most of the variance in ampli- 

tude. The lineation of the topography with a strike of 6 » 25° can be 

easily seen as an elongation of the contours in the cross-strike (6 - 

115") direction. The degree of anisotropy (v) term in the model deter- 

mines the elongation of the contours. The model appears to overestimate 

the amplitudes in the high frequencies slightly, which would indicate a 

slightly lower slope (b) value than that derived by the described 

method. An improved fit results if the value b ■ -1.5, the value 

derived for the ridge crest in Chapter 5, is used. Overall, however, 

the natch of the true two-dimensional spectrum with the model is quite 

good. It is questionable whether the additional detail present in the 

true spectrum represents a valuable signal or simply additional noise. 

There are several advantages to the model proposed in this study 

(derived with respect to azimuth) over the two-dimensional FFT method 
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(constructed ia cartesian coordinates). The proposed model requires 

only four parameters (b, u, v and 6^^) to describe the surface rough- 

ness. The two-dimensional spectrum In this case requires a 128 x 128 

array, or 16,384 parameters. In addition, the four parameters used in 

the model have physical meaning attached to them which may prove useful 

in comparisons of different areas. Also, the computer algorithms used 

to generate the model require far fewer calculations than the direct 

transform method. 

Perhaps the most relevant advantage In the azlmuthal model con- 

struction is that the two dimensional nature of the surface can be esti- 

mated from randomly oriented ship tracks. Each profile yields a one- 

dimensional estimate of the amplitude spectrum at the azimuth of the 

ship's heading. Such estimates can be thought of as cross sections 

through the surface contoured in Figure 6-13. For example, the profile 

and amplitude spectrum shown in Figure 6-7 represent a cross section of 

the two-dimensional surface collected at azimuth NllS'E. Given a suf- 

ficient number of such randomly oriented tracks over an adequate range 

of headings, the model can be constructed as described in this chapter. 

Until a great many more multlbeam surveys have been collected, this 

method of estimating the anlsotropy of bottom roughness will remain the 

only available method over most of the world oceans. 
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7.  Prediction of High Rreqnency Roughness 

Having developed a spectral model of sea-floor topography based on 

measurements from surface ship sonar systems, the question remains 

whether this model can be extrapolated Into spatial scales smaller than 

those resolved by the sounding system. This question is particularly 

Important to underwater acoustic applications, where the acoustic fre- 

quencies of interest in a scattering problem do not necessarily corre- 

spond to the spatial frequencies sampled to generate the model. The 

concepts of measurement noise levels were introduced in Chapter 4. In 

this chapter, the effect of estimation errors on prediction will be 

examined, sources of measured high frequency bathymetry Introduced, and 

a simple prediction test presented. 

Source of Error In Spectral Estimates 

The model parameters used to describe the amplitude spectrum of sea- 

floor topography are derived from regression estimates of spectra from 

profiles of noisy data collected in a generally non-stationary environ- 

ment. As such, there is estimation error in the model parameters from 

several sources, which will necessarily result in prediction errors as 

the model is extrapolated to high frequencies. Although many techniques 

are used to reduce these errors, some level of error will always remain. 

Unfortunately, due to the variability of data quality, variable track- 

line spacing, and the presence of some level of non-stationarity in a 

data province, it is not possible to quantify completely the estimation 
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error associated with the model. Only by comparing estimated values 

with values measured In high frequencies over many data sets and geo- 

logic environments, can a reasonable statistical base be assembled to 

assess the prediction capabilities of the model quantitatively. 

The effect of Instrument noise (Illustrated In Figure 4-5) when 

encountered by the signal spectrum, has the effect of reducing the 

spatial frequency range of amplitude estimates available to the regres- 

sion analysis. Certain spectra examined in the course of this study 

varied from complete whlte-nolse spectra to spectra showing only two or 

three amplitude estimates above the noise. Such spectra are of no use 

In model generation. The length of the spectrum available for regres- 

sion analysis depends as well on the length of data available to the 

FFT. Long profiles from large quasi-stationary provinces produce cor- 

respondingly long amplitude spectra and therefore more reliable model 

estimates, ka mentioned In Appendix B, a minimum of one hundred points 

Is allowed In a profile for analysis. The use of a higher minimum pro- 

file length, while Improving regression estimates, would allow more non- 

statlonarl^ In the profile and reduce the ability to resolve small 

provinces. 

No attempt has been made to quantify the level of non-statlonarlty 

(as defined for this study) by examining the mean variability of the 

spatial domain estimates used In province picking (see Appendix B). Due 

to the nature of the sea floor, certain provinces appear over thousands 

of square miles, while others fall smaller than the hundred point mini- 

mum required for analysis and must be combined. Such variability prob- 

ably precludes estimating the degree of non-statlonarlty with any accu- 

racy; we can only attempt to constrain the effect with the province 
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picking procedure. In general, however, one can treat estimates from 

large provinces o£ persistent geological processes as more reliable than 

those generated In a relatively small area. 

One source of error In the model can be quantified, and that Is the 

residual error from the regression. Using standard statistical tech- 

niques (see, for example. Draper and Smith, 1981), the difference In 

Individual amplitude estimates from the regression model estimates can 

be expressed as a root mean square. Errors In this study averaged e. > 

- .03 and e^^ ^ - * .OlSm for a single spectrum. These errors reflect 

many of the errors associated with the model, although they cannot be 

decomposed Into component sources. 

Another Important factor determining the level of error In the 

model Is the number of estimates used In generating a composite spec- 

trum. In the case of an anlsotroplc area, a variety of azimuths dis- 

tributed about the compass allows a better estimate to be made. In gen- 

eral, the ensembllng of N time series composed of signal with noise, 

results in a decrease of noise (as RMS) of 1/ /"¥. In the case of our 

spectral model, the signals are the derived amplitude spectra along an 

azimuth. A simple method of Improving the prediction capability and 

accuracy of this model Is to ensemble-average the amplitude versus fre- 

quency estimates from several proximal and near-parallel tracks. The 

multlbeam sonar provides exactly this capability and future developments 

should take advantage of it. 

Figure 7-1 Illustrates this reduction of estimation error through 

ensemble-averaging of multlbeam sonar derived spectra. For this exam- 

ple, sixteen parallel beams (profiles) from the SASS multlbeam system 

were analyzed for the statistically homogeneous province of the Gorda 
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Rise crest. Each derived E-W profile was 17 km In length and spaced 

approximately 100 m apart. Amplitude spectra vfere generated for each 

profile, and rather than averaging each amplitude estimate, the derived 

regression parameters a and b were assembled for adjacent beams In 

groups of 2, 4, 8, and 16. Figure 7-1 plots for both a and b, the 

estimated parameters for each of the sixteen profiles and the various 

results of ensembllng. The standard error of each set Is plotted as a 

solid line, with the theoretical l/VN relationship shown as a dashed 

line. The derived standard error for the final average of sixteen 

points Is necessarily zero. Similar techniques could be applied In the 

province picking algorithm to Improve reliability. 

Propagation of Error to High Frequency Estimates 

Although the errors associated with the model can not be determined 

with any accuracy, it is still instructive to examine how the errors 

affect the ability to predict amplitude in frequencies beyond the range 

of analysis.  Due to the power law form of the model, 

A - a • 8° where A ■ amplitude 

s ■ spatial frequency 

a, b > regression parameters 

the errors of estimate (error bars) are not linear. It is therefore 

somewhat easier to visualize the function in log A-log s space where the 

error bars are linear. 
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As previously stated, the parameter a represents the Intercept (In 

meters) of the function with frequency log s - 0, or wavelength X » 1 

km. The error associated with a (e^) appears as a constant vertical 

shift of the regression line in log-log space. It Is In fact a multi- 

plicative factor in linear space and has the effect of multiplying or 

dividing the A value by [antllog e^] at any frequency. Since e^ is 

independent of frequency, it is stable over large extrapolations. Since 

all spectra of topography are red noise, the absolute level of estima- 

tion error effectively decreases at higher frequencies (lower ampli- 

tudes). 

The spectral slope parameter b is not Independent of frequency. In 

log-log space, the dlmenslonless b appears as the slope of the linear 

regression line. Error associated with b (c^^) at s « 0, causes an 

increasing prediction error at higher or lower frequencies. The rela- 

tionship in linear space is also multiplicative and depends on frequency 

as multiplying or dividing the A value by [antllog (|log m\ • e^)]. The 

total error of estimate requires linearly combining the two sources e^ 

and e^, which translates into multiplying or dividing the value A(3) by 

[antllog (Eg + |log s| • e^)]. An example of these calculations is 

included in the following section. 

Comparison of Surface Ship Sonar Results to Deep-Towed 

Sonar Results and Results from Bottom Photography 

To quantify accurately the ability of the spectral vaodel derived 

from surface ship sonar systems to predict amplitudes at high spatial 

frequencies requires a large data b«se of small-scale bathymetry pro- 
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files. At present, such a large data base does aot exist, at least for 

the meter-nillllmeter scales of bottom photography. One area of the 

world ocean (near 40'*27'N and 62''20'\l) has been extensively surveyed at 

small scales and this Is the location of the High Energy Benthlc 

Boundary Layer Experiment (HEBBLE). 

The HEBBLE area falls Into the large roughness province of the East 

Coast Continental Rise which was described In Chapter 5 and Illustrated 

In Figures 5-12 and 5-13. K spectral model was generated for this large 

area based on averaging spectral estimates from all profiles Illustrated 

on Figure 5-13. As mentioned previously, the amplitude spectrum for 

this area consists of two segments, the lower frequency model (with a » 

0.0142 m, b ' -1.813) extending to wavelengths of approximately X > 3 

km, and the higher frequency model (with a ■• 0.0602 m, b - -0.603) 

extending from X « 3 km to X > 200 m. 

Data collected by the Deep-Tow sonar system In the HEBBLE area were 

provided by Scripps Institute of Oceanography. The Deep-Tow, which col- 

lects profiles from a height of only 25-50 meters above the sea floor, 

is able to sample bathymetry at a horizontal sample spacing of 5 meters. 

The vehicle is positioned via a transponder navigation system which pro- 

vides relative location to the beacons every five minutes (or approxi- 

mately 270 meters) of track. All depths recorded by the system in this 

area appear to be above the Instrument noise level. 

Digital height data from one stereo-pair bottom photograph col- 

lected in the HEBBLE area were provided by the Oniversity of Washington. 

The data set consists of six horizontal and six vertical transects sam- 

pled at 1 mm spacing. All derived spectra were virtually identical in 

their model characteristics. 
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Figure 7-2 preseats a composite amplitude spectrum showing data 

from all three sources In the HEBBLE area. The SASS derived spectrum 

(from the nearest available trackllne) spans wavelengths of 100 km to 

200 m. The model regression lines, derived from spectra generated 

throughout this large province, are shown as straight line segments. 

The Deep-Tow derived spectrum, spanning wavelengths of 1 km to 10 m. Is 

very well predicted by the model regression line. The lower frequency 

estimates begin to diverge at \= 300 ra,, which may be due to positioning 

distortions from the transponder navigation system, which Is Interro- 

gated at 5 minute (or ~300 meter) Intervals. Finally, the bottom photo- 

graph derived spectrum, spanning wavelengths of 25.6 cm to 2 mm, falls 

approximately .5 orders of magnitude below the regression line. 

The prediction residual of .5 orders of magnitude over 5 decades of 

frequency indicates some combination of errors in parameter estimates a 

and b. If all errors were in a, it would be in error by .5 orders of 

magnitude. Similarly, the error in b would be -.1, using the relation- 

ships described in the last section. The evaluation of several more 

bottom photograph-derived profiles from the same region would allow a 

more quantitative treatment of the model prediction error. It is pos- 

sible that other high frequency spectra may scatter around the predic- 

tion line, due perhaps to actual variability of the microrelief in the 

area rather than error in the prediction model. Visual Inspection of 

the several photograph pairs taken in HEBBLE indicate that other areas 

are in fact rougher than the relatively featureless photo analyzed here 

(Arthur Nowell, personal communication, 1983). 

In any case, the prediction of millimeter scale topographic ampli- 

tude from a surface hull-mounted sonar system to within half an order of 
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magnitude is a surprisingly good result. The ability to predict high 

frequency roughness from a low frequency model appears to be quite pos- 

sible, at least for some areas of the world ocean. One serious caution 

must be taken into account. The successful prediction from the SASS- 

derived spectrum was only possible by identifying the break in slope at 

3 km. Were data only available to that 3 km wavelength, the lower fre- 

quency estimates would have been used, and prediction error of nearly 

six orders of magnitude incurred in estimating the millimeter scale amp- 

litudes. If it is assumed that such slope breaks are due to changes in 

relief-forming processes at various frequencies, then any estimates of 

high frequency roughness exclusively from a lower frequency model pre- 

sume a continui^ of process over all intervening frequencies, and the 

absence of a significant break in the power law form of the spectrum. 
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8.  Smnary and Conclusloas 

A method has been developed to allow a valid stochastic description 

of sea-floor relief to be generated In a.relatively simple statistical 

model. The fundamental statistic used is the amplitude spectrum of spa- 

tial frequency, which is both elementary enough to be generated opera- 

tionally from existing digital bathymetric data bases, and general 

enough to be applied to a variety of engineering applications and scien- 

tific problems. The model allows relatively large areas of the world 

sea floor to be described by as few as two model parameters for simple 

Isotropic surfaces. The difficulties of producing a stationary statis- 

tic in a non-stationary environment are minimized with the use of a spa- 

tial domain provincing technique. The model also accounts for the 

directional dependence of anisotropic surfaces. The results of one sim- 

ple experiment indicate that the model may be extrapolated with high 

fidelity to frequencies beyond the resolving capability of surface ship 

sonar systems. This stochastic model when combined with lower frequency 

deterministic models, such as the gridded bathymetric models developed 

by NAVOCEANO, allows a complete description of the sea-floor relief. 

There are numerous avenues available to improve the model. The use 

of ensembles of either data or derived statistics allows the estimation 

errors of the model to be reduced substantially. The availability of 

multlbeam sonar systems makes this improvement possible Immediately. 

The ensembllng of the statistics from the sixteen beams of the SEABEAM 

system would reduce the estimation error to one quarter the results from 

a single beam. Data derived from very narrow beam sonars allow a higher 

rate of sampling, and therefore a wider frequency band, to be available 
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for model generation. The collection of more complete areal bathymetrlc 

surveys would allow further refinement of the models of sea-floor aniso- 

tropy. Future improvements in deep-towed side-scan sonars and the col- 

lection of additional bottom photographs would allow a quantitative 

estimate to be made of the predictive ability of the model. 

The utility of the model falls into two broad categories; engineer- 

ing application and scientific investigation. The application of the 

model to underwater acoustics is obvious. The model spectrum of the 

surface relief is an important environmental factor in the scattering of 

sound from the sea floor. Efforts are currently underway to develop 

scattering models which utilize such stochastic environmental informa- 

tion. More traditional models require the description of the bottom as 

a faceted surface, which can easily be derived from the derivative spec- 

trum and a knowledge of the probability distribution of depths. Even 

models requiring a fully determined surface can obtain a valid realiza- 

tion by combining the model amplitude spectrum with a randomly generated 

phase spectrum. 

In terms of scientific investigation, the method provides a new 

tool for studying the earth's geological and tectonic processes. The 

resulting patterns of roughness discovered on the Gorda Rise and Oregon 

continental margin illustrate the abili^ of the method to detect inter- 

esting relationships not obvious by simply studying bathymetrlc charts. 

Comparing the distribution of roughness on a variety of spreading cen- 

ters, continental margins and other submarine environments, should yield 

valuable insight into the distribution of geologic processes on the sea 

floor. In the case of the patterns on the Gorda Rise, the distribution 

of roughness may well relate to the lava formation processes, which in 
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turn may be related to the distribution of polymetalllc sulphide miner- 

als foinned in association with hydro thermal vents. 

The ability to quantify the anisotropy of the sea floor also intro- 

duces interesting possibilities for geological investigation. The dis- 

tribution and trend of these measurements provides a new tool for the 

quantitative Investigation of deep-sea processes in various environ- 

ments. Also the relationship between sea-floor spreading rate and 

roughness, long assumed qualitatively, could be quantified and analyzed 

in terms of the operative geological processes. 

Finally, the author hopes that this study represents more than sim- 

ply a study of sea-floor roughness. Much effort has been made to pre- 

sent an approach to modelling natural phenomena which could be applied 

to a wide variety of problems in the natural sciences. As most disci- 

plines within the earth sciences represent a marriage of one of the 

"pure" sciences to the study of the earth, this study represents a 

crossing of natural science with engineering statistical methods. Very 

little such work has been done .by earth scientists in the past, perhaps 

because the earth is rarely as well ordered as the controlled labora- 

tories of the chemist or physicist. Due to the natural variability of 

the phenomena under study, the geologist's attempt to describe the earth 

quantitatively Is particularly difficult. It is hoped that the approach 

and philosophy presented in this attempt will be of use to future 

investigators. 
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Appendix A.l 

Having concluded that the frequency spectrum of submarine topography 

confoirms to a power law functional form, It becomes critical In con- 

structing a model based on this statistic to ensure a valid regression 

fit to the data. Such a regression analysis Is necessary both In fit- 

ting the amplitude spectrum Itself (amplitude as a function of fre- 

quency) and In fitting the energy envelopes for various spatial fre- 

quency bands for use In spatlal-domaln provlnclng. Ve represent our 

power law function as follows: 

y ■ f(a,x,b) ■ ax''  where   y - dependent variable (amplitude) 

X - Independent variable (frequency) 

a,b « regression coefficients 

Ve can use the property of power law functions that they plot linearly 

on log-log axes and recast the function In log-log space as follows: 

log(y) - log(a) + b log(x) 

which can be easily solved by a simple linear regression. Upon deriving 

the coefficients b and log (a), these terms can be reconverted to 

linear-linear space as, 

b - b 

a « antllog (log(a)) 
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to recoastruct our power law form, 

y - ax'^ 

Recalling that the method of least-squares minimizes the total sum 

of squares of residual distance from the observed data to the resultant 

regression curve, the method just described minimizes these distances In 

log-log space. The solution derived In this manner does not minimize 

the total residual distance In linear-linear space, although the esti- 

mates might be quite close. Methods exist for performing the least- 

square fit In either log-log or linear-linear spaces, and these are dis- 

cussed here. The choice of method and the use of weighting schemes 

depend on the distribution of the data being fit as well as the distri- 

bution of the estimation error. In all cases, the error Is assumed to 

reside In the amplitude estimates, rather than In the Independent 

variable. 

In fitting the energy envelope estimates produced In the delinea- 

tion of stationary provinces (see Chapter 5), the regression must be 

performed In linear-linear space without weighting. The errors asso- 

ciated with the envelope estimates (dependent variable), do not depend 

on frequency band (Independent variable) and should not be log-trans- 

formed. In the case of amplitude spectra however. It was shown by 

Blackman and Tukey (1958) that estimation error Is related to the chl- 

squared distribution and that error bars remain constant In log-log 

space. Under these conditions, the regression analysis Is optimally 

performed on log-transformed data. 
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As explalaed la Scarborough (1930), Article 114., the log-transfor- 

matloa of the dependent variable (7) causes the residuals In the least- 

squares residual equations to be o£ unequal weight. In the case of a 

power law function (which Is given as an example In Scarborough (1930) 

and will not be reproduced here), the weighting function Is the squared 

dependent variable (y^). Appendix A.2 presents an ASCII FORTRAN 77 pro- 

gram for doing such a weighted regression analysis In log-log space. 

Because of the chl-square distribution of errors associated with the 

amplitude spectrum, however, the residuals In this case are equally 

weighted and no weighting function Is required. 

In fitting the envelope estimates of discrete band passes for use 

in "province picking," there Is no requirement for log transformation of 

the data or weighting of residuals. This Is the case because the error 

associated with all envelope estimates Is theoretically constant. In 

order to derive properly the regression coefficients a and b In linear- 

linear space. It Is necessary to use an Iterative method. The following 

development Is modified from Scarborough (1930), Article 115., to apply 

to the power law functional form. 

We can express the regression coefficients as the sum of Initial 

estimates and differences as follows: 

a - a^j + Aa 

b - bg + Ab 

where    f^Qth^ - Initial estimates 

Aa,Ab « correction factors 
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It is convenient to use the coefficients derived from performing the 

linear regression on log-transformed data as the initial estimates (a^* 

b ) for the iteration process. If we define a new function in terras of 

estimated coefficients as, 

r  - fCx.a^.bg) - a^x ° 

the discrete values of this approximating function will be, 

y'l - f<Xl.ao'^o> 

y'2 ■ f(5t2,ao,bo) 

y'n ■ f(xn,ao,bo) 

where n is the total number of data pairs used in the regression 

equations. 

Realizing that the coefficients a and b produce the "best fit" solu- 

tions, the minimized residuals are represented as, 

A   A 

Vj - f(xj,a,b) - Ji 
A   A 

Vj - f(x2,a,b) - J2 

where y^^, 72>«**yQ ace the observed dependent variables.  Substituting 

our approximation yields 
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v^ - f(x^, a^ + Aa, b^ + Ab) - y^, i - l,2,...,n 

or 

v^ + yi - f{x^,  a + Aa, b +Ab),l - 1.2,...,n 

Expanding the right side by Taylor's Theorem for the two variables, 

a and b, yields 

3f.      3f- 
v^ + y^ - f(Xj^, a^, b^) + Aa(^) + Ab(^) + ...; 1 - 1,2,...,t 

o       o 

substituting  y'i " f(x , a , b )  we have 

3f      it 
v^ +y^ -y'l +Ab(^) +Ab(^) + ...; 1 - 1,2,...,t 

o      o 

Rearranging terms and dropping higher order derivatives yields 

3f       3f 
''i" '^^^TT^ + ^^^IF"^ + y'l -y^  i -1.2 n. 

o       o 

Ue define 

'l ' y'l ~ ^1        ^ ■ ^'2 ^ 

where  the r's are the residuals for the approximation curve 

y' - f(x ,a^,b^).   Substituting, we can write our residual equations 

as 
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3f 3f^ 
V - Aa(g^) + Ab(g^) + i^i ;  i " 1.2,...,a 

o o 

Since this system of equations Is linear In the correction terras 

Aa and Ab,  these terms can be derived by the method of least-squares. 

At this point, one variation from the description given by 

Scarborough (1930) Is Introduced. Because the linearization of the sys- 

tem of equation Is only valid for small Aa and Ab, It is possible to 

derive correction terms which yield solutions that extend beyond the 

local neighborhood of linearization. Under these circumstances, It Is 

possible that the method will not converge to a valid solution. Oirlng 

any particular Iteration, this non-convergence would appear as an 

Increase In the total sum of squares of the residuals over the previous 

Iterations. 

To ensure a decrease In the total residuals (and therefore a con- 

verging solution) during each Iteration, the correction terms are scaled 

by a term a to yield. 

a « a + aAa 
o 

b - b + oAb 
o 

The scaling term o Is first set equal to one, and the calculated 

total residuals compared to those calculated In the previous Iteration. 

If the residuals do not decrease, the scale factor o Is halved until a 

decrease In the total residuals Is observed. These new a and b become 

the new "Initial estimates" a^, and b,,, which are then used In the next 

Iteration.  The process continues until the values of both Aa and Ab 
A A 

reach some suitable minimum, and a final a and b are derived.  It Is 
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theoretically possible for the solution to converge to a subsidiary min- 

imum and therefore yield a poor model. However, the selection of the 

Initial a^j and b^ by a regression In log-log space makes convergence on 

subsidiary maxima unlikely. An ASCII FORTRAN 77 subroutine for perform- 

ing this algorithm Is presented In Appendix A.3. 

In practice, the regression models for the amplitude spectra (and 

final roughness model) are formulated Interactively with a graphic dis- 

play terminal. The operator can Interactively edit the bathymetrlc pro- 

file under examination as well as control the frequency limits Included 

In the regression analysis. This allows the software to delete whlte- 

nolse levels, Interpolation effects, and other contaminating factors 

from the analysis. The Interactive control also allows the operator to 

detect visually spectra composed of two power law segments, and to fit 

each segment Individually. This interactive software is Included In the 

amplitude spectrum generating software listed In Appendix D. 
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Appendix A.2 

SUBROUTINE P0WWGT(A,B,FIRSTX,DELX,Y,N,ILIST,CT0FF1,CT0FF2) 

C THIS ROUTINE PERFORMS A BEST FIT TO DATA WITH A POWER LAW 
C FUNCTION OF THE FORM Y=A*X**B USING A WEIGHTING METHOD 
C AS DESCRIBED IN SCARB0R0UGH(1930), ART. 114. 
C INPUTS ARE 
C A=COEFFICIENT OF X 
C B= EXPONENT OF X 
C X= ARRAY OF INDEPENDENT VARIABLE VALUES 
C Y= ARRAY OF DEPENDENT VARIABLE VALUES 
C N= NUMBER OF DATA PAIRS OF X AND Y 
C AMIN= MINIMUM VALUE FOR A CORRECTION TO STOP ITERATION 
C BMIN= MINIMUM VALUE FOR B CORRECTION TO STOP ITERATION 
C ILIST= 1 FOR SUMMARY OF ITERATION PROCESS, = 0 , NO LISTING 
C PROGRAMMED BY C.G.FOX-ADVANCED TECHNOLOGY STAFF,NAVOCEANO,4/15/83 

DIMENSION X(1024),Y(1024) 
C 
C    COMPUTE INITIAL ESTIMATE OF A AND B BY PERFORMING A SIMPLE 
C     LINEAR FIT ON LOG TRANSFORMED DATA 
C 

YSQR»1. 
YSQSUM=0.0 
XPROD=0.0 
XSUM=0.0 
YSUM=0.0 
XSQR=0.0 
X(1)=FIRSTX 
DO 10 I=2,N 

10 X(I)=X(I-1)+DELX 
C    WRITE(6,'(80X,2F10.4)') (X(I),Y(I),I=1,20) 

DO 50 J=1,N 
IF(Y(J).LE.O.O) GO TO 50 
YTEMP=AL0G10(Y(J)) 
XTEMP=AL0610(X(J)) 
IF(XTEMP.GT.CT0FF2.0R.XTEMP.LT.CT0FF1) GO TO 50 

C    YSQR=YTEMP*YTEMP 
X PROD=X PROD+(YTEMP*XTEMP*YSQR) 
XSUM=XSUM+XTEMP*YSQR 
YSUM=YSUM+YTEMP*YSQR 
YSQSUM=YSQSUM+YSQR 
XSQR=XSQR+(XTEMP*XTEMP*YSQR) 

50 CONTINUE 

B»((YSqSUM*XPROD)-(XSUM*YSUM))/((YSQSUM*XSQR)-(XSUM*XSUM)) A=(YSUM/YSQSUM)-(B*(XSUM/YSQSUM))       ^ ' v oun A^UH;; 
A=10.**A 
RETURN 
END , 
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Appendix A.3 

SUBROUTINE P0WFIT(A,8,X,Y,N,AMIN,BMIN,ILIST) 
C 
C    THIS ROUTINE PERFORMS A BEST FIT TO DATA WITH A POWER LAW 
C     FUNCTION OF THE FORM Y=A*X**B USING AN ITERATIVE METHOD 
C     AS DESCRIBED IN SCARB0R0UGH(1930), ART. 115. 
C   INPUTS ARE 
C      A=COEFFICIENT OF X 
C      8= EXPONENT OF X 
C      X= ARRAY OF INDEPENDENT VARIABLE VALUES 
C      Y= ARRAY OF DEPENDENT VARIABLE VALUES 
C      N= NUMBER OF DATA PAIRS OF X AND Y 
C      AMIN= MINIMUM VALUE FOR A CORRECTION TO STOP ITERATION 
C      8MIN= MINIMUM VALUE FOR B CORRECTION TO STOP ITERATION 
C      ILIST= 1 FOR SUMMARY OF ITERATION PROCESS, » 0 , NO LISTING 
C    PROGRAMMED BY C.G.FOX-ADVANCED TECHNOLOGY STAFF,NAVOCEANO,4/15/83 
C 

DIMENSION X(10),Y(10) 
C 
C    COMPUTE INITIAL ESTIMATE OF A AND B BY PERFORMING A SIMPLE 
C     LINEAR FIT ON LOG TRANSFORMED DATA 
C 

XN=FLOAT(N) 
XPROD=0.0 
XSUM=0.0 
YSUM=0.0 
XSQR=0.0 

C    WRITE(6,'(2F10.4)') (X(I),Y(I),I=1,N) 
DO 50 J=1,N 
IF(Y(J).EQ.O.O) GO TO 50 
YTEMP=AL0G10(Y(J)) 
XTEMP=AL0G10(X(J)) 
XPR00=XPR0D+(YTEMP*XTEMP) 
XSUM=XSUM+XTEMP 
YSUM=YSUM+YTEMP 

50 XSQR=XSQR+(XTEMP*XTEMP) 
BO=((XN*XPROD)-(XSUM*YSUM))/((XN*XSQR)-(XSUM*XSUM)) 
AO=(YSUM/XN)-(BO*(XSUM/XN)) 
A0»10.**A0 

C 
C   COMPUTE SUM OF SQUARES OF THE RESIDUALS 
C 

POLD=0.0 
DO 100 I=1,N 

100 P0LD=P0LD+((Y(I)-F3(X(I),A0,B0))**2) 
ITERATED 
NBIS=0 
IF(ILIST.EQ.1)WRITE(6,110) 

110 F0RMAT(' ITERATION    # OF BISECTIONS       A       B 
*RESIDUALS**2') 
IF(ILIST.EQ.1)WRITE(6,120)ITERAT,NBIS,A0,B0,P0LD 
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120 FORMAT(• M6,10X,I4,6X,3(4X.F10.4)) 
C 
C   ZERO OUT MATRIX TERMS 
C 

150 A1=0.0 
B1=0.0 
01=0.0 
E1=0.0 
G1=0.0 

C 
C COMPUTE TERMS FOR LEAST SQUARES MATRIX  CONSTRUCTION 
C 

DO 200 1=1,N 
PARTA=F1(X(I),A0,B0) 
PARTB=F2(X(I),A0,B0) 
P0WF=F3(X(I),A0,B0) 
A1=A1+(PARTA**2) 

B1=B1+(PARTA*PARTB) 
D1=D1+(PARTB**2) 
E1=E1+(PARTA*(Y(I)-P0WF)) 

200 G1=G1+(PARTB*(Y(I)-P0WF)) 
C1=B1 

C 
C    COMPUTE CORRECTION TERMS FOR A AND B 
C 

0IVS0R=(A1*D1-B1*C1) 
AC0RR=(D1*E1-B1*G1)/DIVS0R 
BC0RR=(A1*GI-C1*E1)/DIVS0R 

C 
C  CREATE NEW A AND B 
C 

C 

230 A=AO+ACORR 
B»BO+BCORR/AO 

C        COMPUTE NEW SUM OF SQUARES OF RESIDUALS WITH NEW ESTIMATES 
C 

PNEW=0.0 
DO 250 1=1,N 

250 PNEW=PNEW+((Y(I)-F3(X(I),A,B))**2) 

C TEST FOR CONVERGENT SOLUTION(PNEW < POLO) 
C   IF NOT, BISECT CORRECTIONS AND RECOMPUTE 
C 

IF(PNEW.LT.POLD) GO TO 300 
AC0RR=.5*AC0RR 

BC0RR=.5*BC0RR 
NBIS=NBIS+1 
IF(NBIS.GT.IO) GO TO 300 
GO TO 230 

C 
C  TEST FOR MINIMUM CHANGE OF A AND B 
C 

300 IF(ABS(A-AO).GT.AMIN) GO TO 500 
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IF(ABS(B-BO).GT.BMIN) GO TO 500 
GO TO 900 

C 
C        CORRECTION TERM NOT FINE ENOUGH,  START NEW  ITERATION 
C 

500  ITERAT=ITERAT+1 
AO=A 
BO=B 

POLD=PNEW 
IF(ILIST.EQ.1)WRITE(6,520)ITERAT,NBIS,A0,B0,P0LD 

520 FORMATC   M6,10X,I4,6X,3(4X,F10.4)) 
NBIS=0 
GO TO  150 

900 ITERAT=ITERAT+1 
IF(ILIST.EQ.l)WRITE(6,920)ITERAT.NBIS.AO,BO,FOLD 

920 FORMATC   M6,10X,I4,6X,3(4X,F10.4)) 
RETURN 
END 

C 
C 
C        FUNCTIONS TO CALCULATE  POWER LAW FUNCTION AND PARTIAL 
C DERIVATIVES WITH RESPECT TO A AND B 
C 

FUNCTION F1(X3,A3,B3) 
C        CALCULATE PARtlAL OF A*X**B WITH RESPECT TO A 

F1=X3**83 
A3=A3 
RETURN 
END 

C 
FUNCTION F2(X4,A4,B4) 

C CALCULATE  PARTIAL OF A*X**B WITH RESPECT TO B 
F2=(X4**B4)*AL0G(X4) 
A4=A4 
RETURN 
END 

C 
FUNCTION F3(X5,A5,B5) 

C        CALCULATE  POWER LAW A*X**B 
F3=A5*X5**B5 
RETURN 
END 
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Appendix B.l 

Before generating amplitude spectra from a statistically non-sta- 

tionary sample space, such as the sea floor, one must Initially define 

provinces which are relatively homogeneous with respect to the frequency 

spectrum. Since generating an amplitude spectrum directly by Baurler 

transform assumes statlonarlty over the length of the Input series, this 

"province picking" procedure must be performed by estimating the spec- 

trum discretely In the spatial domain. Although the present application 

is new, the concept of estimating spectra In the time/space domain Is 

not. Blackman and Tukey (1958) referred to such estimates as "pilot 

spectra" and describe two methods for their calculation. Godfrey (1967) 

also describes a method, very similar to that detailed here, which Is 

used for predicting non-stationary time series. This section gives 

details of the procedure used In this study, presents performance tests 

of the algorithm, and Include full FDRTBlAN-77 software for performing 

the analysis. 

The Initial step In processing Is Identical to that required for 

running an FFT. The data must be projected onto a straight-line segment 

and Interpolated to even Increments In distance. The straight line is 

generated by a simple least-squares fit of the navigation track; the 

best results are obtained when relatively straight line navigation Is 

Input. Large deviations In the track greatly degrade results. Next, 

points are mapped onto the nearest location on the least-squares line, 

without alteration If they are within a designated "pivot distance," or 

modified according to the local gradient if beyond this distance. 

Finally, the data are Interpolated at a specified interval using a one- 
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dimensional cubic spline, which tends to preserve frequency content. 

The full algoritlm is included in SUBROUTINE MAPCTN. 

The subsequent stage of processing requires band-pass filtering of 

the interpolated data at ten nearly equl-spaced frequency bands. Fil- 

tering is done by sequential application of low-pass and high-pass 

filters, using a non-recursive, symmetric, least-squares filter devel- 

oped by Martin (1957). The frequency response of this bank of filters 

is illustrated in Figure B-1. A review of the performance of the Martin 

filter can be found in McClain and Walden (1979). The filter cutoffs 

are designed to juxtapose at the 100% energy pass level. The total fre- 

quency bank was selected to span .02 - .25 cycles/data interval, or 

wavelengths of approximately 2 - .16 nautical miles for data recorded at 

12 second intervals, or 10 - .8 nautical miles for one minute data. The 

filtering is performed by SUBROUTINE FILTER. 

The next step of the algorithm requires estimating the instanta- 

neous amplitude of all ten band-passed signals. Davis (1974) used a 

simple full-wave rectification, followed by a low-pass smoother to esti- 

mate the energy envelope. For this study, a true Hllbert transform is 

performed and manipulated to generate the energy envelope. The reader 

Is referred to Kanasewlch (1981) for a full development. Notice that 

the calculation of the envelope via Hllbert transform does require oper- 

ating in the frequency domain. However, because the complete Fourier 

Transform is retained throughout, the requirement of statlonarlty is not 

applicable. The enveloping algorithm is contained in SUBROUTINE ENVEL. 

The envelope generated in the previous step represents a continuous 

estimate of amplitude through space, for each selected frequency band. 

To estimate the full amplitude spectrum at each point on the profile. 
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FREQUENCY (cycles/data interval) 

Figure B-1 Simplified frequency response of the bank of band-pass fil- 
ters used to estimate amplitude spectra discretely In the 
spatial domain. Actual responses Include side lobe leakages 
of less than 5%. 
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all ten amplitude versus frequency estimates are considered. Since the 

power law form of the spectrum Is known, this functional form Is used In 

an Iterative regression procedure described In Appendix A and performed 

In SUBROUTINE POUFIT. The regression coefficients vary widely along the 

profile, and therefore It Is desirable, In order to aid In the detection 

procedure, to smooth these estimates. To save calculation time, this Is 

done by averaging 91 envelope estimates at each frequency before enter- 

ing the regression routine. This process tends to smear the boundaries 

somewhat, but makes detection of provinces more reliable. 

With smoothed estimates of the amplitude spectrum available contin- 

uously along a profile, the final stage of processing Is to detect sig- 

nificant chances In the estimated spectra and on this basis Impose prov- 

Ince boundaries. The regression coefficients a and b represent the 

antllog of the y Intercept, and the slope, respectively, of the spectrum 

projected In log-log space. The spectral slope, b (which Is related to 

the so-called Fractal dlttenslon) Is a worthwhile parameter for province 

detection. A simple algorithm Is run across the slope estimates to 

detect significant, rapid changes (boundaries). 

The regression coefficient a Is correlated to b and therefore does 

not represent an Independent parameter for detection. An alternative Is 

to look at the total, band-limited RMS energy of the estimated spectra 

for significant shifts In total energy. These RMS parameters are easily 

calculated using Parseval's Foirmula (Integrating the power spectrum) 

applied to the estimated spectra. In addition to detecting rapid 

changes as with the slope, the RMS Is contoured to form segments of some 

minimum size. Although these detectors have proven fairly reliable. It 

Is often necessary to Interpret certain boundaries where the various 
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detectors disagree. All of the pertlaent software Is listed in Appendix 

B.2. The program runs with a core size of approximately 540 K bytes, 

and was written in ANSI Standard FORTRAN (1977) for a UNIVAC 1180/2 com- 

puter. The maximum profile length is 4100 interpolated data points and 

145 points are lost from the end of the signal due to filtering. 

Just as an electrical engineer investigates the performance of an 

Instrument by operating on signals of known properties, the same tech- 

nique can be used here to test the performance of the province picker 

algorithm. While an engineer might use a step, ramp, or impulse func- 

tion as input, random signals with known spectral forms are used in this 

analysis. Many of the seemingly arbitrary choices of filters, averaging 

procedures, and other design decisions incorporated into the present 

province picker, were selected through feedback from performance tests 

with known signals. 

An obvious choice of a signal with a known amplitude spectrum is 

random "white noise," with a continuous spectrum of zero slope. There 

are several means of producing such a signal. The simplest is to gener- 

ate pseudo-random noise series of either a normal or uniform distribu- 

tion. Figures B-2 and B-3 illustrate such signals with their spectra, 

which are indeed relatively flat. Notice the large amount of scatter in 

the amplitude estimates. An alternative method of generating "white 

noise" is actually to use a constant amplitude spectrum and uniformly 

distributed random phase spectrum, separate their real and imaginary 

parts, and inverse-transform the signals using the FFT. In this manner 

a perfectly flat, non-varying spectrum is assured, as is illustrated in 

Figure B-4. This is the signal source used in testing for this study, 

and the algorithm is presented in SUBROUTINE UHINOI. 
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Figure B-2 An example of uniformly distributed random noise Is shown In 
upper profile. Its corresponding amplitude spectrum (In 
lower profile) shows the flat (zero slope) form Indicative 
of white noise. Notice the high degree of scatter In ampli- 
tude estimates. The same computer software was used as that 
used for bathymetric data. 
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Figure B-3 An example of normally distributed random noise in the same 
format as Figure B-2. Notice the tendency of values to 
cluster about the mean (normal distribution) and the large 
scatter of amplitude estimates in the amplitude spectrum. 
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Figure B-4 An example of random "white noise" generated using an 
Inverse Fast Fourier Transform. The method of calculation 
forces a perfectly constant amplitude spectrum. This "white 
noise" generator was used for performance testing of the 
province picker algorithm. 
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Figure B-5 Illustrates the performance of the province picker when 

white noise Is Input. Examination of this output results In some Inter- 

esting Insights Into the nature of stochastic processes. Despite the 

known property that the Input signal has a perfectly flat, non-variable 

amplitude spectrum, all ten band-pass filtered signals show large fluc- 

tuations In amplitude. The amplitude recorded In the frequency spectrum 

represents simply an average amplitude computed over the length of the 

Input time series. At any discrete point, the amplitude at a frequency 

could be widely removed from the average value. It was discovered 

through experimentation that these fluctuations were damped when wider 

band-pass filters were used; thus, the overlapping filter bank Illus- 

trated In Figure B-1 was designed. The slope values (plotted above the 

ten band-passed signals) do fluctuate about zero as expected. The 

standard deviation about zero averages about 0.2 over several runs which 

implies (assuming a uOi-Tnal distribution) that a change of ,»lope of -0.4 

can be detected with 95% confidence. Many of the decisions made In gen- 

erating the regression analysis and smoothing, were designed to minimize 

this fluctuation. 

In order to design a province detector properly, it is necessary to 

combine known signals of differing spectral slopes and RMS energies. 

For the purpose of this study, the resulting signal must also have an 

amplitude spectrum with power law form. One method of generating such a 

signal is through a Markov chain with a probability transition matrix 

which allows subsequent events either to raise or lower a constant 

Increment with probability of 0.5 (see Ross, 1980). This signal, which 

is a special case of a random walk, fluctuates about Its initial value 

and has a spectral form of 
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Figure B-5 Example of province picker output with "white noise" input 
illustrated in Figure B-4. The input signal is shown at the 
bottom, above which are the output of ten band-pass filters 
convolved with the data. The lowest signal (Band Pass 1) is 
the lowest frequency pass, while the highest (Band Pass 10) 
is the highest frequency pass. Above each band-passed sig- 
nal is the energy envelope calculated by the Hilbert Trans- 
form method. Notice the large variability in energy for each 
band despite the constant amplitude input. At the top, the 
estimated spectral exponent (slope of log-transformed spec- 
tra) and the band-limited RMS energy calculated along the 
profile are plotted. Standard deviation of the slope par- 
ameter is .2. The algorithm was designed to minimize this 
"natural" variability. 
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It Is now possible with two known signals of different spectral 

characteristics to study the response of the province picker as It 

crosses the boundary between two such signals (provinces). Since It Is 

also necessary to detect changes In total RMS energy without a change of 

slope, each signal can be multiplied by a constant using a corollary of 

the addition theorem of Fourier transforms (see Bracewell, 1965). 

Figure B-6 Illustrates an artificially generated random signal 

which consists of four distinct provinces. The first half of the signal 

Is composed of "white noise" and the second half of 1/s noise generated 

via the random walk technique. Notice the rapid change In the slope 

parameter from 0 to -1 at the boundary, which was easily detected. 

Within each half of the signal, the provinces are again divided 

with the second halves (second and fourth quarters) representing a dou- 

bling of the first halves (first and third quarters). Notice the 

obvious change of RMS energy, although the slope parameter is unaf- 

fected, illustrating the Importance of detecting on two uncorrelated 

parameters. Several false alarms are observed on the derivative detec- 

tor, but the province boundaries derived from contouring (represented by 

straight lines above the RMS energy profile) correspond to the known 

boundaries In the signal. Notice that provinces one and four show the 

same RMS energy level, but are delineated by their differences in spec- 

tral slope. 

As stated earlier, the automatic detection Is an aid to province 

boundary recognition, but in some cases, human Intervention Is needed to 

resolve inconsistencies.  Also, the setting of contour Interval or slope 
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Figure B-6 Example of province picker output with mixed input of known 
signals. The first half of the signal is white noise (A = 
asO), joined to the second half of random walk generated 
noise {A = as"') the amplitude of each half is doubled at 
the mid-point. The break in spectral slope parameter is 
easily detected. The change in level of RMS energy is con- 
toured, as shown by straight line segments above the RMS 
energy profile. 
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threshold car L^ modified by the Investigator depending upon the amount 

of resolution desired. Figure B-7 is a sample profile from real bathy- 

metric data collected by the SASS system in the vicinity of the Gorda 

Rise. Boundaries are less distinct than In the artificially generated 

signal, as one would expect, however distinct changes of RMS energy (and 

in two cases changes of slope) do define quasi-stationary provinces. In 

practice, the slope parameter has offered little Independent information 

for province picking, and therefore, construction of a simplified prov- 

ince detector based on RMS energy alone may prove to be adequate. 
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Figure B-7 Example of province picker output with SASS bathymetry 
Input. Most province boundaries are defined by changes In 
RMS energy level. Data profiles corresponding to each pro- 
vince segment are later Fourier-analyzed to produce model 
parameters. 



Appendix B.2 

C PROGRAM TO SELECT PROVINCES FOR SPECTRUM GENERATION 

C PROGRAMMED BY C.G. FOX.ADVANCED TECHNOLOGY STAFF,NAVOCEANO,5/15/84 

C PROVINCE SELECTION IS BASED ON A SPATIAL DOMAIN ESTIMATE OF THE 
C FUNCTIONAL DESCRIPTION OF THE SPECTRUM BASED ON A POWER LAW MODEL 
u 

C AMPLITUDE= A*FREQUENCY**B 

C THE SPECTRUM PARAMETERS A & B ARE ESTIMATED BY PERFORMING A 
C REGRESSION ANALYSIS ON THE ENERGY ENVELOPES GENERATED ON TEN 
C BAND PASSES OF THE DATA SPACED EVENLY IN FREQUENCY.  PROVINCE 
C BOUNDARY SELECTION IS BASED ON CHANGES IN THE BAND LIMITED 
C RMS LEVEL OF EACH LOCATION ALONG THE TRACKLINE AS DERIVED 
C BY INTEGRATING THE RESULTS OF THE REGRESSION MODEL. 

C PROGRAM CONTROLS ARE ENTERED IN FREE FORMAT FOLLOWING ?XQT 

C JTOTL= NUMBER OF TRACKLINES OF DATA TO BE ANALYZED IN THIS ANALYSIS 
C MAXIMUM IS CURRENTLY SET TO 50 
C 
C IPL0T= 1, PRODUCE PLOT TAPE ON UNIT 10 OF INTERPOLATED DATA 
C OPTIONAL BAND PASS PLOTS, PROVINCES SPECTRAL PARAMETER 
C ESTIMATES, AND PROVINCE BOUNDARIES. 
C OUTPUT CAN GO TO ZETA OR CALCOMP PLOTTER 
C 0, NO PLOT TAPE IS PRODUCED 
C 
C IBAND= 1, PLOT ALL BAND PASSED SIGNALS WITH ENVELOPES 
C 0, NO BAND PASSES 
C IGNORED IF IPLOT=0 
C 
C ISAVE1= 1, SAVE DATA WITHIN EACH PROVINCE ON UNIT 13 FOR LATER 
C ANALYSIS IN FFT PROGRAM. 
C 0, NO DATA SAVED 
C 
C ILIST= 1, PRODUCE COMPLETE LISTING OF ANALYSIS 
C 0, ONLY RUDIMENTARY LISTING IS PRODUCED 

C GRID= DESIRED SPACING OF INTERPOLATED DATA IN NAUTICAL MILES 

c 
C KPTS= NUMBER OF RAW DATA VALUES TO BE ANALYSED IN EACH PROFILE 
C READING OF THE DATA WILL CEASE WHEN THIS NUMBER IS REACHED 
C 
C    DATA INPUT IS CURRENTLY DESIGNED SUCH THAT FOLLOWING THIS CONTROL 
C    CARD, THE PROGRAM EXPECTS A CARD IMAGE CONTAINING THE NAME(LESS 
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C THAN 20 CHARACTERS) OF A FILE IN WHICH IS CONTAINED A LIST OF 
C ALL FILE NAMES TO BE USED IN THE ANALYSIS. AFTER READING THIS 
C FILE NAME, JTOTL FILE NAMES ARE READ FROM THE FILE AND THE 
C PROGRAM AUTOMATICALLY OPENS THESE DATA FILES AS NEEDED. USERS 
C MUST INSURE THAT THE FILE NAME LIST FILE AND ALL DATA FILES 
C ARE AVAILABLE TO THE RUN AT EXECUTION. ONE CONVENIENT WAY 
C TO PROVIDE DATA TO THE RUN IS BY CREATING DATA AND LIST 
C ELEMENTS IN A PROGRAM FILE AND THEN CREATE AN @ADD ELEMENT TO 
C COPY ALL ELEMENTS INTO TEMPORARY FILES BEFORE EXECUTION 
C 
c 

PARAMETER (ISIZ=7000) 
DIMENSION X(ISIZ),Y(ISIZ),Z(ISIZ),AX(ISIZ),AY(ISIZ),AZ(ISIZ), 
1WGT(240),Kl(1000),K2(1000),K3(1000) 
2,FRL0W(10),FRHI6H(10),ENVEST(10),TZ(ISIZ,12) 
3,FRMEAN(10) 
4,ENERGY(ISIZ),TZ11(ISIZ),TZ12(ISIZ) 
EQUIVALENCE(TZ(1,11)JZ11(1)),(TZ(1,12),TZ12(1)) 
CHARACTER*20 FILE(50) 
CHARACTER*20 INFILE 

C     FRHIGH=HIGH FREQUENCY FOR DATA BANDPASS 
C     FRLOW= LOW FREQUENCY FOR DATA BANDPASS 

DATA FRLOW/.002,.023,.044,.065,.086,.107,.128,.149,.170,.191/ 
DATA FRHIGH/.041,.062,.083,.104,.125,.146,.167,.188,.209,.230/ 

C   SET FILTER PARAMETERS FOR BANDPASSES 
FILSLP=.008 
NUMFIL=50 

C    NFIT IS LENGTH OF AVERAGE OVER ENERGY ENVELOPES 
NFIT=91 
C2MAX=0.0 

C     SET PARAMETERS TO CONTROL DERIVATIVE PICKS ON SPECTRAL PARAMETERS 
SLWIN=.4 
SLWID1=1. 
SLWID2=14. 
ENWIN=400. 
ENWID1=20. 
ENWID2=100. 

C     PDEL DETERMINES THE INTERVAL OF RMS ENERGY USED FOR PROVINCE 
C    DETECTION 

PDEL=.03 
C    MIN=MINIMUM NUMBER OF POINTS ALLOWED WITHIN A PROVINCE 

MIN=91 
C    OSCALE=SCALING FACTOR(INCHES/UNIT) OF ORIGINAL DATA FOR PLOTTING 

0SCALE=-1. 
C     ESCALE= SCALING FACTOR FOR ENVELOPE UNITS 

ESCALE=.0001 
READ(5,*) JTOTL,IPL0T,IBAND,ISAVE1,ILIST,GRID,KPTS 

3 IKONT=0 
LTPS=1000 
GRIDKM=GRID*1.852 
IF(IPLOT.NE.l) GO TO 24 

C    INITIALIZE PLOTTER 
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C    USE FOLLOWING CALL FOR CALCOMP PLOTTER OUTPUT 
C    CALL PL0TS(0,0,10) 
C    USE FOLLOWING CALL FOR ZETA PLOTTER OUTPUT 

CALL PLOTS(53,0,-10) 
CALL FACTOR(.5) 
CALL PLOTd.0,1.0,-3) 

C     READ NAME OF FILE CONTAINING LIST OF DATA FILE NAMES 
24 READ(5,'(A20)') INFILE 
25 0PEN(UNIT=18,FILE=INFILE,STATUS='0LD') 

C     READ LIST OF DATA FILE NAMES FROM FILE INFILE 
DO 5 IK=1,JT0TL 
READ(18,'(A20)') FILE(IK) 

5 CONTINUE 
CL0SE(UNIT=18) 

C   READ X,Y,Z, VALUES FOR THIS TRACK.FIRST POINT IS 

^ 440 IKONT=IKONTSI ^'^^'^^^'''"'^ ^^° ^^  "^^ '^^  T"^ ^^D OF EACH TRACK. 
C     ZERO OUT TEMPORARY ARRAYS 

DO 441 J=l,10 
DO 441 I=1,ISIZ 

441 TZ(I,J)= 0.0 
DO 442 I=1,ISIZ 
AX(I)=0.0 
AY(I)=0.0 
AZ(I)=0.0 
Z(I)=0.0 
Y(I)=0.0 

442 X(I)=0.0 
IAVPLT=0 

C    INPUT X(I)=LONGITUDE(DEC. DEG.),Y(I)=LAT,Z(i)=DEPTH 
C    N=# OF POINTS - 1 

IKNT=IKONT 
JPTS=KPTS 
IF(ILIST.EQ.l) WRITE(6,45) FILE(IKONT) 

45 FORMATC OPENING FILE ',A20) 
C    ROUTINE TO READ LAT,LON,DEPTH FROM FILE # IKNT 

CALL PROVRD(JPTS,Y,X,Z,IKNT,FILE) 
4 N=JPTS-1 

IF(ILIST.EQ.l) WRITE(6,'(24H NUMBER OF INPUT POINTS 15)')N 
C     INTERPOLATE DATA ON STRAIGHT LINE 

CALL MAPCTN(GRID,X,Y,Z,N,AX,AY,AZ,JCT) 
IF(ILIST.EQ.1)WRITE(6,'(31H NUMBER OF INTERPOLATED POINTS .16)') 

luCT 
839 C=JCT 

AZAVE=0.0 
C     PLOT INTERPOLATED DATA 

DO 261 1=1,JCT 
261 AZAVE=AZAVE+(AZ(I)/C) 

IF(IPLOT.NE.l) GO TO 26 
XL=(C*.02)+0.5 
DV=50.*6RID 
CALL NEWPEN(l) 
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CALL AXES(0.,0.,12HDISTANCE(NM),-12,XL,0.,1.,0.,DV,-1) 
EV=AZAVE-(3.0/0SCALE) 
DV=1.0/0SCALE 
CALL AXES(0.,-3.,13H0RI6INAL DATA,!#,t.,().,!.,EV,DV,1) 
CALL SYMB0L(XL+.75,-.25,.5,12HINPUT SIGNAL,0.0,12) 
IF(C2MAX.LT.XL)    C2MAX=XL 
CALL PL0T(0.0,(AZ(1)-AZAVE)*0SCALE,3) 
DO 26 I=1,JCT 
AJ=I-1 
C=AJ*.02 
D=(AZ(I)-AZAVE)*OSCALE 
CALL PL0T(C,D,2) 

26 CONTINUE 
DO 27  I=1,JCT 

27 Z(I)=AZ(I) 
IFdPLOT.EQ.DCALL PL0T(0.0,1.0,-3) 
DO 237  IRUN=1,10 
XRUN=IRUN 
ENVMAX=0.0 
IFdPLOT.EQ.l.AND.IBAND.EQ.DCALL PLOT(0.0,4.0,-3) 

C BAND PASS FILTER DATA AT SPECIFIED INTERVAL 
CALL FILTER(AZ,JCT,FRL0W(IRUN),FILSLP,NUMFIL,1,WGT) 
CALL FILTER(AZ,JCT,FRHIGH(IRUN),FILSLP,NUMFIL,0,WGT) 
IF(IPLOT.EQ.l) CALL PL0T(0.0,0.0,3) 
WGTMN=0.0 
XN0RM=((FRHIGH(IRUN)+.2)-FRL0W(IRUN))*(l./GRIDKM) 

C XN0RM=1. 
NTWICE=2*NUMFIL 
DO 31 I=NTWICE,JCT-NTWICE 

C—1 
IF(IPLOT.NE.l.OR.IBAND.NE.l) GO TO 31 

C—1 
AJ=I-1 
C=AJ*.02 
B=(AZ(I)/XNORM)*ESCALE 
IF(I.EQ.NTWICE) CALL PL0T(C,B,3) 
CALL PL0T(C,B,2) 

31 AZ(I)=(AZ(I))/XNORM 
C—1 

IF(IPLOT.NE.l.OR.IBAND.NE.l) GO TO 32 
C—1 

EV=-1.5/ESCALE 
DV=1./ESCALE 
CALL PL0T(0.0,0.0,3) 
CALL AXES(0.,0.,1H ,1,XL,0.,1.,0.,0.,-2) 
CALL AXES(XL,-1.5,13HFILTERED DATA,-13,3.,90.,1.5,EV,DV,0) 
CALL SYMB0L(XL+.75,-.25,.5,9HBAND PASS,0.0,9) 
CALL NUMBER(XL+5.75,-.25,.5,XRUN,0.0,-l) 
CALL PL0T(0.0,0.0,3) 
CALL NEWPEN(2) 

C COMPUTE APPROXIMATION TO ENVELOPE OF BAND PASSED DATA 
32 CALL ENVEL(AZ,JCT) 
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IF(IPLOT.EQ.l) CALL PL0T(0.0,0.0,3) 
ENVAVG=0.0 

C — 1 
IFdPLOT.NE.l.OR.IBAND.NE.l) GO TO 321 

C—1 
DO 44 I=NTWICE,JCT-NTWICE 
AJ=I-1 
C=AJ*.02 
B=AZ(I)*ESCALE 
IF(I.EQ.NTWICE) CALL PL0T(C,B,3) 
CALL PL0T(C,B,2) 
GO TO 322 

321 DO 44 I=NTWICE,JCT-NTWICE 
322 AZ(I)=ABS(AZ(I)) 

IF(AZ(I).GT.ENVMAX) ENVMAX=AZ(I) 
ENVAVG=ENVAVG+(AZ(I)/(JCT-2*NUMFIL)) 

C     ENVELOPE ENERGY IS STORED IN THE APPROPRIATE COLUMNS 
C     OF 2-OIMENSIONAL ARRAY TZ 

44 TZ(I,IRUN)=AZ(I) 
FRDIFF=FRHIGH(IRUN)-FRLOW(IRUN) 
IF(IPLOT.EQ.l) CALL PL0T(0.0,0.0,3) 
IF(IPLOT.EQ.l) CALL NEWPEN(l) 
DO 836 I=1,JCT 

836 AZ(I)=Z(I) 
837 CONTINUE 

C    LINEAR REGRESSION OF TEN ENVELOPE ESTIMATES FOR EACH POSITION 
C      FIRST COMPUTE AVERAGE ENVELOPE 

840 DO 841 1=1,10 
FRMEAN(I)=(((FRLOW(I)+.017)+FRHIGH(I))/2.) 

C   CONVERT CYCLES/DI TO CYCLES/KM 
841 FRMEAN(I)=FRMEAN(I)*(1./GRIDKM) 

FR1=(FRL0W(1)+.017)*(1./GRIDKM) 
FR2=FRHIGH(10)*(1./GRIDKM) 
DO 850 I=NTWICE,JCT-(NTWICE+NFIT) 
DO 846 J=l,10 
ENVEST(J)=0,0 
FIT=FLOAT(NFIT) 
DO 845 K=1,NFIT 
ENVEST(J)=ENVEST(J)+TZ(I+K,J) 

845 CONTINUE 
C    IF(FIT.EQ.O.O) GO TO 846 

ENVEST(J)=ENVEST(J)/FIT 
846 CONTINUE 

C    PERFORM ITERATIVE REGRESSION,. STORE B & A IN 
C     COLUMNS 11 & 12 OF ARRAY TZ 

C    PLOT SLOPE PARAMETER 8 
IF(IPLOT.NE.l) GO TO 859 
CALL PLOTCO.0,4.0,-3) 
CALL AXES(0.0.0.0,IH .1,XL,0.,1.,0.,0.,-2) 
CALL NEWPEN(2) .  .  .  ,  / 
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CALL AXES(XL,-2.0,5HSL0PE,-5,2.0,90.,1.0,-4.0,2.0,-l) 
CALL PLOT(0.0,0.0,3) 

859 AVSLP=0.0 
KKNT=0 
SLWID=SLWID2-SLWID1 
ENWID=ENWID2-ENWID1 
INWID1=IFIX(ENWID1) 
LSWID1=IFIX(SLWID1) 
INWID2=IFIX(ENWID2) 
LSWID2=IFIX(SLWID2) 
DO 877 K=(NTWICE+l)+(NFIT/2),JCT-((NTWICE+l)+(NFIT/2)) 
KKNT=KKNT+1 
C=(K-1)*.02 
B=(TZ(K,ll))/2. 
AVSLP=AVSLP+(TZ(K,11)/(JCT-(4*NUMFIL+(NFIT+1)))) 
IF(IPLOT.NE.l) GO TO 876 
IF(KKNT.EQ.l) CALL PLOT (C,B,3) 
CALL PL0T(C,B,2) 

876 IF(KKNT.LE.LSWID2) GO TO 877 
IF(K.GE.(JCT-(NTWICE+NFIT/2+l+LSWID2))) GO TO 877 
PREAV=0.0 
POSTAV=0.0 

C    DO 8761 KNB=LSWID1,LSWID2 
C    PREAV=PREAV+(TZ(K-KNB,11)/SLWID) 
C8761 P0STAV=P0STAV+(TZ(K+KNB,11)/SLWID) 
C    IF(ABS(POSTAV-PREAV).LT.SLWIN) GO TO 877 
C    CALL SYMB0L(C,-2.,.2,16,0.0,-1) 
C    CALL PL0T(C,B,3) 

877 CONTINUE 
C   PLOT ARRAY OF RMS ENERGY 

IF(IPLOT.EQ.l) CALL NEWPEN(l) 
KKNT=0 
AVENER=0.0 
DO 878 L=(NTWICE+l)+(NFIT/2),JCT-((NTWICE+l)+(NFIT/2)) 

C   CALCULATE BAND LIMITED RMS-FIRST SQUARE FUNCTION AND INTEGRATE 
C    INTEGRAL((A*F**8)**2)=(A**2/(2*B+1)*F**(2*B+1) 

XINTL0=(TZ(L,12)**2/(2.*TZ(L,11)+1.))*FR1**(2.*TZ(L,11)+1.) 
XINTHI=(TZ(L,12)**2/(2.*TZ(L.11)+1.))*FR2**(2.*TZ(L,11)+1.) 

C SINCE SPECTRUM IS SYMMETRIC ABOUT ZERO, CAN EVALUATE INTEGRAL 
C   BY MULTIPLYING EVALUATED RESULT BY TWO 

ENERGY(L)=2.*(XINTHI-XINTL0) 
C     TO CALCULATE MEAN SQUARE, DIVIDE BY WIDTH 

ENERGY(L)=ENERGY(L)/(2.*(FR2-FR1)) 
C     NOW TAKE SQUARE ROOT TO DETERMINE RMS 

ENERGY(L)=SQRT(ENERGY(L)) 
878 AVENER=AVENER+(ENERGY(L)/(JCT-(4*NUMFIL+(NFIT+1)))) 

ENSCAL=4.*AVENER 
IF(IPLOT.NE.l) GO TO 8782 

^CALL AXES(0.0,0.0,10HRMS ENERGY,10,2.,90.,0.5,0.0,AVENER/2., 

CALL PL0T(0.0,0.0,3) 
8782 DO 8781 L=(NTWICE+l)+(NFIT/2),JCT-((NTWICE+l)+(NFIT/2)) 
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KKNT=KKNT+1 
C=(L-1)*.02 
B=ENERGY(L)*(1./AVENER) 
IF(L.EQ.(NTWICE+l)+(NFIT/2).AND.IPL0T.EQ.l) CALL PL0T(C,B,3) 
IF(IPLOT.EQ.l) CALL PL0T(C,B,2) 
IF(KKNT.LE.INWID2) GO TO 8781 
IF(L.GE.(JCT-((NTWICE+NFIT/2+l)+INWID2))) GO TO 8781 
PREAV=0.0 
POSTAV=0.0 
DO 8771 KNB=INWID1,INWID2 
PREAV=PREAV+(ENERGY(L-KNB)/ENWID) 

8771 POSTAV=POSTAV+(ENERGY(L+KNB)/ENWID) 
IF(ABS(POSTAV-PREAV).LT.ENWIN) GO TO 8781 
CALL SYMB0L(C,2,,.2,16,180.0,-1) 
CALL PL0T(C,B,3) 

8781 CONTINUE 

DO 879 I=(NTWICE+l)+(NFIT/2),JCT-((NTWICE+l)+(NFIT/2)) 
RMSSLP=RMSSLP+ABS((TZ(I,11)-AVSLP)**2)/(JCT-(4*NUMFIL+(NFIT-1))) 

879 RMSENG=RMSENG+ABS((ENER6Y(I)-AVENER)**2)/(JCT-(4*NUMFIL+(NFIT-1))) 
RMSSLP=SQRT(RMSSLP) 
RMSENG=SQRT(RMSENG) 

C    WRITE(6,'(4(F8.3,2X))') AVSLP,RMSSLP,AVENER,RMSENG 
IST=(NTWICE+l)+(NFIT/2+l) 
IEND=JCT-(IST-1) 

333 CONTINUE 
C PICK PROVINCE BOUNDARIES,STORE PROVINCE NUMBER FOR EACH POINT IN X 

DO 34 I=IST,IEND 
X(I)=IFIX(SQRT(ENERGY(I))/PDEL)+1 

34 CONTINUE 
C OUTPUT POSITIONS Ot  PROVINCE BOUNDARIES 
C    WRITE(06,50) CUT 
C 60 FORMAT(' PROV.NO TYPE 1ST LAT     LONG   LAST LAT     LONG 
C   1 RMS-FILTERED  CUT=',F7.5) 

IPNUM=X(IST) 
SUM=0.0 
JST=IST 
KST=1 
DO 35 I=IST,IEND 
JPNUM=X(I) 
SUM=SUM+X(I) 
IC=I-JST 
IF(JPNUM.EQ.IPNUM.AND.I.LT.IEND)  GO TO 35 

C IF((IC+1).LT.MIN)  GO TO 35 
JJ=I 

C COMPUTE AVERAGE PROVINCE NO. 
AC=IC+1 
AVE=SUM/AC 
IAVE=AVE 
BAVE=IAVE 
AVE=AVE-BAVE 
IF(AV£.GE.0.5) IAVE=IAVE+1 
IPNUM=IAVE 
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K1(KST)=JST 
k2(KST)=JJ 
K3(KST)=IPNUM 
JST=JJ 
SUM=0.0 
IPNUM=X(JST) 
IF(KST.EQ.l) GO TO 116 
MST=KST-1 
IF(IAVE.NE.K3(MST)) GO TO 116 
K2(MST)=K2(KST) 
GO TO 35 

116 KST=KST+1 
IF(KST.GT.LTPS) GO TO 117 

35 CONTINUE 
GO TO 118 

117 WRITE(06,119) 
119 FORMATC YOU HAVE TOO MANY PROVINCES-INCREASE DIMENSION OR POEL') 

GO TO 500 
C NOW OUTPUT FINAL PROVINCE BOUNDARIES OF AT LEAST MIN. SIZE 

118 K3(KST)=99 
KST=KST-1 

C   SMOOTHE SMALL PROVINCE SEGMENTS 
CALL PRVFIX(K1,K2,K3,MIN,KST) 
J2=l 
DO 36 I=1,KST 
11=1+1 
IF(K3(II).EQ.K3(I)) GO TO 36 
JST=K1(J2) 
JJ=K2(I) 
IPNUM=K3(J2) 
ISDLAT=AY(JST) 
A=ISDLAT 
SELAT=ABS(AY(JST)-A)*60. 
ISDLNG=AX(JST) 
A=ISDLNG 
SELNG=ABS(AX(JST)-A)*60. 
IDLAT=AY(JJ) 
A=IDLAT 
EELAT=ABS(AY(JJ)-A)*60. 
IDLNG=AX(JJ) 
A=IDLNG 
EMLNG=ABS(AX(JJ)-A)*60. 
IDIFF=K2(I)-K1(I) 

C COMPUTE RMS LEVEL OF HIGH PASSED DATA FOR THIS PROVINCE 
C    ALSO AVERAGE SPECTRAL SLOPE AND Y-INTERCEPT 

C3=ABS(JJ-JST+1) 
RMS=0.0 
SLOPEX=0.0 
XINTER=0.0 
DO 37 IE=JST,JJ 
SL0PEX=SL0PEX+(TZ(IE,11)/C3) 
XINTER=XINTER+(TZ(IE,12)/C3) 
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37 RMS=RMS+(ENERGY(IE)/C3) 
ADJUST ENERGY LEVEL IN LOG-LOG SPACE AFTER NORMALIZATION 

XINTER=10**(AL0G10(XINTER)-.5) 
IPNUM=IFIX(SQRT(RMS)/P0EL)+1 
IF(ILIST.EQ.1)WRITE(6,51)I,IPNUM,ISDLAT,SELAT,ISDLNG,SELNG,IDLAT, 

1EELAT,IDLNG,EMLNG,RMS,IDIFF,SL0PEX,XINTER 
LOOP TO INSERT DATA INTO FILE FOR LATER FFT RUNS 
IF(ISAVEl.NE.l) GO TO 49 
ENDMRK=9.999999 
NPTS=JJ-JST 
WRITE(13,46) FILE(IKONT),I,SLOPEX,XINTER,GRID,NPTS 
WRITE(13,50)I,IPNUM,ISDLAT,SELAT,ISDLNG,SELNG,IDLAT,EELAT, 
1IDLNG,EMLNG,RMS 
WRITE(13,47)(AZ(IQ),IQ=JST,JJ) 
XRMS=SRMS(AZ(JST),NPTS) 

46 F0RMAT(A20,I2,1X,F8.3,1X,E9.3,1X,F7.4,I5) 
47 FORMAT(10F8.6) 

WRITE(13,47)ENDMRK 
49 IFdPLOT.NE.l) GO TO 248 

APNUM=.5+IPNUM*.5 
AJ=JST-1 
BJ=JJ-1 
C1=AJ*.02 
C2=BJ*.02 
CALL PL0T(C1,APNUM,3) 
CALL PL0T(C2,APNUM,2) 

50 F0RMAT(I5,I8,4(1X,I4,F6.2),F10.4) 
51 F0RMAT(I5,I8,4(1X,I4,F6.2),F10.4,I6,2F10.6) 

248 J2=II 
36 CONTINUE 

880 IF(IKONT.EQ.JTOTL) GO TO 500 
REPOSITION PLOTTER FOR NEXT PLOT 
IF(M00(IK0NT,4).NE.0) GO TO 882 
C2MAX=C2MAX+15.0 
IF(IPLOT.EQ.l) CALL PLOT(C2MAX,-44.0,-3) 
C2MAX=0.0 
GO TO 440 

882 IF(IPLOT.EQ.l) CALL PLOT(0.0,8.0.-3) 
GO TO 440 

500 IF(IPLOT.EQ.l) CALL PLOT(0.0,0.0,999) 
IF(ISAVEl.GT.O) CL0SE(UNIT=13) 
STOP 
END 
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READER SUBROUTINE FOR PROVPICK 
SUBROUTINE PROVRD(NP,XLAT.XLONG,DEPTH,IKONT,FILE ) 
DIMENSION XLAT(3000),XLONG(3000),DEPTH(3000) 
CHARACTER*20 FILEN 
CHARACTER*20 FILE(20) 
KNTER=0 

400 FILEN=FILE(IKONT) 
WRITE(6,433)FILEN 

433 FORMATC OPENING FILE ',A20) 
0PEN(UNIT=12,FILE=FILEN,STATUS = '0L0',FORM='FORMATTED') 
DO 420 1=1,NP 

438 READ(12,434-,END=470) XLAT( I) ,XLONG(I) ,IDEPTH 
434 F0RMAT(9X,F12,8,F13.8,I7) 

KNTER=I 

IF(IDEPTH.LE.O) PRINT *,'DATA POINT SKIPPED' 
IF(IDEPTH.LE.O) GO TO 438 
DEPTH(I)=ID£PTH*.0018288 

420 IF(I.LT.30)WRITE(6,*)XLAT(I),XL0NG(I),DEPTH(I) 
GO TO 490 

470 NP=KNTER 
490 CLOSE(UNIT=12) 

WRITE(6,492)NP 
492 FORMATC   NUMBER OF  POINTS  READ =',I5) 

RETURN 
END 
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SUBROUTINE MAPCTN(GRID,X.Y Z N AX AY A7 ^^r) 

C  (X-LONG DECIMAL DEG.,Y=LAT DECIMAL DEG. )FROM A RELATIVELY STRATPHT 
C SEGMENT OF SURVEY TRACK ONTO A STRAIGHT LINE ADJUST THE (Z)VJLS? FOR 
C THE AMOUNT OF SHIFT REQUIRED BY THE MAPPING AND INTERPOLATE HFU   (?? 
C VALUES (AZ) AT AN EQUALLY SPACED DISTANCE SRID IN DEcJSStJAUn^AL MI 
r**^M°Mn^^2^iS!^? POSITIONS AX.AY ALONG THIS STRA GHT L NE' 
C** N=NO.OF ORIGINAL X.Y.Z INPUT PTS., ICT= NO OF OUTPUT pfs 
C** NOTE-SINCE THIS IS A CARTESIAN MAP WH CH DOES NOT ACCoiNf FOR LONP 

c   LM1[T5DE'RANGE.'"°''° '°' '' ''" ''' '''^'''' CSJESGTLIRGE'°'' 
C** NOTE-ORIGINAL*XYZ  DATA  IS  DESTROYED  IN THIS  ROUTINE 
C*** THIS ROUTINE  CALLS GINT,  SPLINE.SPLICO SORTY 

DO 55 1=1,7000 
55 DIST(I)=0.0 

JDIR=1 
IF(ABS(X(N).X(1)).GE.ABS(Y(N)-Y(1))) JDIR=0 
ATER=9999.99 
RAD=0.00029089 
BL0NG=X(1)*60.0 
BLAT=Y(1)*60.0 
DO 1 1=1,N 
IF(JDIR.EQ.1)G0 TO 3 
X(I)=BL0NG-X(I)*60.0 
Y(I)=Y(I)*60.0-BLAT 
GO TO 1 

3 AY(I)=BL0NG-X(I)*60.0 
X(I)=Y(I)*60.0-BLAT 
Y(I)=AY(I) 

1 CONTINUE 
AN=N 

C    MAP INPUT POSITIONS ONTO STRAIGHT LINE TO PREPARE DATA FOR 
C    INTERPOLATION ON AN EQUAL DISTANCE BASIS 

B=0.0 
0=0,0 
D=0.0 
DO 5 1=1,N 
A=A+X(I) 
B=B+X(I)**2 
C=C+Y(I) 

5 D=D+Y(I)*X(I) 
A1=(C*B-D*A)/(AN*B-A**2) 
A2=(C-A1*AN)/A 
IF(ABS(A2).LT.0.000001)A2=0.000001 

C   LEAST SQUARES LINE IS Y=A1+A2X 
C    NOW SEARCH FOR A POINT LESS THAN PIVOT DISTANCE  FROM TRAri^ . mc 

iUM=0.0 
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DO 6 1=1,N 
DIST(I)=ABS((Y(I)-A2*X(I)-A1)/  (SQRT(A2**2+1.0))) 

6 SUM=SUM+DIST(I)**2 
PIVOT=SQRT(SUM/AN) 

C REMOVE POINTS THAT MAY HAVE A BAD POSITION 
XPIV0T=3.0*PIV0T 
J=0 
DO 42 1=1,N 
IF(DIST(I).6T.XPIV0T) GO TO 42 
J=J+1 
X(J)=X(I) 
Y(J)=Y(I) 
Z(J)=Z(I) 
DIST(J)=DIST(I) 

42 CONTINUE 
N=J 
AN=N 
DO 7 1=1,N 
IF (DISTd). PIVOT) 8,8,7 

7 CONTINUE 
8 A3= -1.0/A2 
AX(I)=(A1+A3*X(I)-Y(I))/(A3-A2) 
AY(I)= A2*AX(I) +A1 
AZ(I)=Z(I) 
IA=I+1 

G    NOW WORK BACKWARDS ON TRACK TO PICK UP POINTS THAT FAILED 
C    PIVOT TEST THiLcu 

11 J=I-1 
IF(J)12,12,9 

9 DELZ=(Z(J)-Z(I))/SQRT((X(I)-X(J))**2 +(Y(I)-Y(J))**2) 
AX(J)=(A1+A3*X(J)-Y(J))/(A3-A2) ' ^ n ^) 
AY(J)=A2*AX(J)+A1 

AZ(J)=(DELZ*SQRT((AX(I)-AX(J))**2+(AY(I)-AY(J))**2))+AZ(I) 

GO TO  11 
C NOW WORK FORWARD ON TRACK TO PICK  UP REMAINING  PTS. 

IF   (DIST(I)- PIVOT)  14,14,15 
14 AX(I)=(A1+A'3*X(I)-Y(I))/(A3-A2) 

AY(I)= A2*AX(I) +A1 
AZ(I)=Z(I) 
GO TO  13 

15 J= I-l 

DELZ=(Z(I)-Z(J))/SQRT((X(I)-X(J))**2 +(Y(I)-Y(J))**2) 
AX(I)=(A1+A3*X(I)-Y(I))/(A3-A2) 
AY(I)=A2*AX(I) +A1 

13 JoNTINuf^^*^^'^^^^'^^^^^'^^^"^^^**^^^^^^^^"'^^^^^^**^^^'''^^^^^ 
r    ^?5L/f !^^ ^° ^"'^^ ^"^   INDEPENDENT VARIABLE  IS MONOTONIC AND REMOVE 
C    CLOSELY_SPACED POINTS TO CONTROL SPLINE   INTERPOLATION 

UHVC~U«U 
DO 44 1=2,N 
J=I-1 
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44 DAVE=DAVE+X(I)-X(J) 
DAVE=0.3*(ABS(DAVE/AN)) 
CALL S0RTY(AY,AX,AZ,Y,X,Z,N,1.1,DAVE) 
IF(JDIR.LT.l) GO TO 92 
DO 93 1=1,N 
Z(I)=AZ(I) 
X(I)=AY(I) 

93 Y(I)=AX(I) 
GO TO 94 

92 DO 95 1=1,N 
Z(I)=AZ(I) 
X(I)=AX(I) 

95 Y(I)=AY(I) 
94 CONTINUE 

C RESET ORIGIN TO FIRST MAPPED POINT 
BLAT=BLAT+Y(1) 
BL0NG=BL0NG-X(1) 
DX=X(1) 
DY=Y(1) 
DO 71 1=1,N 
X(I)=X(I)-DX 

71 Y(I)=Y(I)-DY 
C NOW INTERPOLATE ALONG TRACK AT DESIRED GRID SPACING 
C COMPUTE APPROX.LENGTH OF LONGITUDE FOR THIS TRACK 
C USE APPROX. MIDLATITUDE AS BASIS AND TABLE 6(B0WDITCH) 

NN=N/2 
AL=(Y(NN)+BLAT)*RAD 
A=(111415,13*C0S(AL)-94.55*COS{3.*AL)+.O12*COS(5.*AL))/5O.0 

C UNITS OF A ARE METERS/MINUTE OF LONGITUDE 
C COMPUTE APPROX.NAUTICAL MILES/MINUTE OF LONGITUDE 

19 B=A*(1.0/1852.0) 
C CONVERT X COORDINATE OF MAPPED POSITION TO MILES AND COMPUTE DISTANCE 
C DOWN TRACK. 

00 25 I=1,N 
25 DIST(I)=SQRT((X(I)*B)**2+Y(I)**2) 

IF(ABS(X(N)).LT.0.00001) X(N)=0.00001 
THETA=ATAN2(Y(N),(X(N)*B)) 
CALL GINT(GRID,N,0.0,DIST(N),ICT,DIST,Z,AX,AZ) 

C    STORE NEW POSIT OF  INTERPOLATED PT.IN AX(LONG,AY(LAT)  DECIMAL  DEG. 
C    NEW  INTERPOLATED VALUE OF Z IS STORED  IN AZ 

DO 26 1=1,ICT 
AY(I)=(AX(I)*SIN(THETA)+BLAT)/60.0 

26 AX(I)=(BL0NG-(AX(I)*C0S(THETA)/B))/60.0 
RETURN 
END 
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FUNCTION TO CONVERT LATITUDE INTO MERIDIONAL PARTS 
FUNCTION YMP(Z) 
DATA AP/0.7853981634/ 
Y=ABS(Z)*0.290888209E-03 
T=TAN(AP+Y*0.5) 
YM=7915.7045*AL0G10(T)-23.268932*SIN(Y) 
YMP=YM*SIGN(1.0,Z) 
RETURN 
END 
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SUBROUTINE SORTY(X,Y,Z,AX,AY,AZ.K,KODE,JCODE.GRID) 
C Y=INPUT VARIABLE TO BE SORTED,  X,Z=VALUES ASSOCIATED WITH Y 
C K=LENGTH OF  Y,IF K00E=1,VALUES OF  Y WHICH ARE WITHIN  1 GRID  INT OF 
C PREVIOUS VALUE  ARE  REMOVED,IF KODE=0 ALL  VALUES OF Y ARE 
C RETAINED,IF JC0DE=+1,Y  IS SORTED  IN  INCREASING ORDER,IF JC0DE=-1 
C Y  IS SORTED  IN  DECREASING ORDER,OUTPUT  IS SORTED  VALUES OF 
C Y WITH  ASSOCIATED  X  AND  Z 

DIMENSION  Y(20),X(20),Z(20),AX(20),AY(20),AZ(20) 
KB = K 
CODE=JCODE 
J = 1 

129      1=1 
JCT=0 
AY(J) = Yd) 

132 TEMP= C0DE*(AY(J)-Y(I+1)) 
IF((ABS(TEMP))-GRID+0.0001)  122,120.120 

120 IF(TEMP)  121,136,123 
121      1=1+1 

IF((I + 1)  - KB)  132,132,125 
123      JCT = 1 

AY(J) = Yd  + 1) 
AX(J) = Xd + 1) 
AZ(J) = Z(I + 1) 
KT = I + 2 
GO TO 121 

122 IF(KODE) 120,120,136 
136 KD=I+2 

IF (KD-KB) 124,124,139 
139 K=K-1 

KB=KB-1 
GO TO 125 

124 DO 126 JD=KD,KB 
JF = JD - 1 
Y(JF) = Y(JD) 
X(JF) = X(JD) 

126 Z(JF) = Z(JD) 
KB = KB - 1 
K = K - 1 

GO TO 132 
125      IF(JCT)  127,127,128 
127 AY(J) = Yd) 

AX(J) = X(l) 
AZ(J) = Zd) 
KT = 2 

128 J = J + 1 
IF(J - K)  131,133,133 

131      DO 134 KA = KT,KB 
JT = KA - 1 
Y(JT)  = Y(KA) 
X(JT)  = X(KA) 

134      Z(JT) = Z(KA) 
KB = KB - 1 
GO TO 129 
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135 

133 IF(JCT) 137,137.138 
137 KB=KB+1 
138 AY(K) ■■ = Y(KB- 1) 

AX(K) ■■ = X(KB- 1) 
AZ(K) ■■ = Z(KB- 1) 
DO 135 I = 1, K 
Yd) = AY(I) 
X(I) = AX(I) 

5  Z(I) ^ AZ(I) 
RETURN 
END 
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SUBROUTINE GINT(DELX,M,XBGN,XENO,ICT,X,Y,AX,AY) 
C MODIFICATION OF O.RIGIONAL GINT SO THAT  INPUT DATA  IS NOT DESTROYED 
C GENERAL  1-D SPLINE  INTERPOLATION FOR MIN.STORAGE 
C  INTERPOLATES OVER 50  INPUT  PTS WITH OVERLAP 
C DELX=DESIRED   INTERPOLATION   INTERVAL,X AND  Y ARE   INPUT WITH X=INDEP. 
C  VARIABLE,AX  AND AY ARE  OUTPUT,M=LENGTH  OF  X,   XBGN  AND  XENO=DESIRED 
C  BEGINNING AND ENDING VALUES OF AX,ICT=LENGTH OF AX 
C***NOTE  IF M MOD 50 IS LESS THAN  2  INTERPOLATED OUTPUT MAY STOP SHORT 
C OF XEND 
C THIS  ROUTINE  REQUIRES SPLINE AND SPLICO SUBROUTINES 

DIMENSION X(1),Y(1),AX(1),AY(1) 
ICT=(ABS(XEND-XBGN)/DELX)+1.0 
ISECT=M/50 
IA=ISECT*50 
IC=0 
JJ=0 
MM=49 
IF(IA.EQ.O) MM=M 
IF((M-IA).GE.2) JJ=1 

C OVERLAP INTERPOLATION INTERVALS BY 2 INPUT PTS SO SPLINE ROUTINE 
C IS DIMENSIONED TO MAX OF 53 PTS 

JC0NT=1 
KA=1 
KC=MM+1 
IF(IA.EQ.O) KC=KC-1 
K=l 

53 IKT= (ABS(X(MM)-XBGN)/DELX)+1.0 
IF(MM.EQ.M) IKT=ICT 
ATER=9999.999 
DO 26 I=KA,IKT 
AJ=I-1 
XINT=AJ*DELX+XB6N 
IF(XINT.GT.XEND)  GO TO 58 
CALL SPLINE(X(K),Y(K),KC,XINT,YINT,ATER) 
AX(I)=XINT 

26 AY(I)=YINT 
JC0NT=JC0NT+1 
IF(IA.EQ.O) GO TO 56 
IF(JCONT.GT.ISECT) GO TO 55 
JC=JC0NT*50 

57 IMM=MM-1 
K=IMM 
MM=MM+50 
IF(IC.EQ.l) MM=M 
KA=IKT+1 
KC=JC-IMM+1 
GO TO 53 

55  IF(JJ.LT.l) GO TO 56 
IC=1 
JJ=0 
JC=M 
GO TO 57 

58 ICT=I-1 
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RETURN 
56  ICT=IKT 

RETURN 
END 
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SUBROUTINE SPLINE (X,Y,M,XINT,YINT,ATER) 
SEE PENNINGTON REF. FOR DESCRIPTION OF THIS SUBROUTINE 
DIMENSION X(1),Y(1),C(4,53) 
K=0 
IF(X(l)+Y(M)+Y(M-l)+X(M-l)+Y(M-2)-ATER) 10,3,10  ^ 

10 CALL  SPLICO   (X,Y,M,C) 
ATER= X(l)+Y(M)+Y(M-l)+X(M-l)+Y(M-2) 
K=l 

3 IF(ABS(XINT-X(1)).LT.0.00001) GO TO  1 
IF(XINT-X(1))  70,1,2 

70 K=l 
GO TO  7 

1 YINT=Y(1) 
RETURN 

2 IF(ABS(XINT-X(K+1)).LT.0.00001) GO TO 4 
IF(XINT-X(K+1))6,4,5 

4 YINT=Y(K+1) 
RETURN 

5 K=K+1 
IF(M-K)   71,71,3 

71 K=M-1 
GO TO 7 

6 IF(ABS(XINT-X(K)).LT.0.00001) GO TO 12 
IF(XINT-X(K))13,12,11 

12 YINT=Y(K) 
RETURN 

13 K=K-1 
GO TO 6 

11 YINT=(X(K+1)-XINT)*{C(1,K)*(X(K+1)-XINT)**2+C(3,K)) 
YINT=YINT+(XINT-X(K))*(C(2,K)*(XINT-X(K))**2+C(4,K)) 
RETURN 

7 PRINT  101,XINT 
7 CONTINUE 

101 FORMATC    CAUTION  VALUE AT POSITION ' ,F10.2,'WAS EXTRAPOLATED') 
GO TO  11 

RETURN 
END 
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SUBROUTINE SPLICO (X,Y,M,C) 
DIMENSION X(1).Y(1).C(4,53),D(53),P(53),E<53),A(53,3),B(53),Z(53) 
MM=M-1 
DO  2 K=1,MM 
D(K l=X(K+l)-X(K) 
P(K )=D(K)/6. 
E(K )=(Y(K+1)-Y(K))/D(K) 
DO ; 3 K=2,MM 
B(K )=E(K)-E(K-1) 
A(l 2)=-l.-D(l)/D(2) 
A(l, 3)=D(1)/D(2) 
A(2, 3)=P(2)-P(1)*A(1,3) 
A(2, 2)=2.*(P(1)+P(2))-P(1)* A(l ,2) 
A(2 3)=A(2.3)/A(2.2) 
B(2 )=B(2)/A(2,2) 
DO  ^ \ K=3,MM 
A(K, 2)=2.*(P(K-1)+P(K))-P(K -1)^ ̂ A(K-1,3) 
B(K; =B(K)-P(K-1)*B(K-1) 
A(K, 3)=P(K)/A(K.2) 
B(K] =B(K)/A(K,2) 
Q=0( M-2)/D(M-l) 
ACM, l)=l.+Q+A(M-2,3) 
A(M, 2)=-Q-A(M,l)*A(M-l,3) 
B(M l=B(M-2)-A(M,l)*B(M-l) 
Z(M >=B(M)/A(M,2) 
m=> 1-2 
DO 6 I=1,MN 
K=M-I 
Z(K)=B(K)-A(K,3)*Z(K+1) 
Z(1)=-A(1,2)*Z(2)-A(1,3)*Z(3) 
DO   7 K=1,MM 
Q=1./(6.*D(K)) 
C(1,K)=Z(K)*Q 
C(2,K)=Z(K+1)*Q 
C(3,K)=Y(K)/D(K)-Z(K)*P(K) 
C(4,K)=Y(K+1)/D(K)-Z(K+1)*P(K) 

RETURN 
END 
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SUBROUTINE AXES(X,Y,IBCD,NC,AXLEN,ANG,OELTIC,FIRSTV,DELVAL,NDEC) 
C MODIFIED CALCOMP AXIS SUBROUTINE —RANKIN,NOV.1971 
C X,Y COORDINATES OF STARTING POINT OF AXIS   IN   INCHES 
C IBCD AXIS TITLE 
C NC NUMBER OF CHARACTERS   IN TITLE 
C     IF  NC   IS(-),HEADING AND TICKS  ARE   BELOW THE  AXIS 
C AXLEN FLOATING POINT AXIS LENGTH  IN  INCHES 
C ANG ANGLE OF AXIS FROM HORIZONTAL   IN  DEGREES 
C DELTIC DISTANCE  BETWEEN TIC MARKS   IN   INCHES 
C FIRSTV SCALE  VALUE  AT FIRST TIC MARK 
C OELVAL SCALE  INCREMENT 
C NDEC NUMBER OF  DECIMAL  PLACES OF TIC ANNOTATION  PLOTTED(PUNCH 
C -1  IF ONLY  INTEGER(NO DECIMAL POINT)IS  DESIRED) 
C    -2  IF NO ANNOTATION  DESIRED  IE.  ONLY TICKS 

DIMENSION   IBCD(IO) 
A=1.0 
KN=NC 
IF(NC)1,2,2 

1 A=-A 
KN=-NC 

2 XVAL=FIRSTV 
STH=ANG*0.0174533 
CTH=C0S(STH) 
STH=SIN(STH) 
DXB=-0.1 
DYB=0.15*A-0.05 
XN=X+DXB*CTH-DYB*STH 
YN=Y+OYB*CTH+DXB*STH 
NTIC=AXLEN/DELTIC+1.0 
NT=NTIC/2 
DO   10  I=1,NTIC 
IF(NDEC.EQ.-2) GO TO  12 

C      CHANGED NUMBER HEIGHT FROM  .105 TO  .15 
CALL NUMBER(XN,YN,0.15,XVAL,ANG,NDEC) 

12 XVAL=XVAL+DELVAL 
XN=XN+CTH*DELTIC 
YN=YN+STH*DELTIC 
IF(NT)10,11,10 

11 Z=KN 
DXB=-0.07*Z+AXLEN*0.5 
0YB=0.325*A-0.075 
XT=X+DXB*CTH-OYB*STH 
YT=Y+DYB*CTH+DXB*STH 

C        CHANGED HEIGHT FROM  .14 TO  .18 
CALL SYMB0L(XT,YT,0.18,IBC0(1).ANG,KN) 

10 NT=NT-1 
CALL  PLOT(X+AXLEN*CTH,Y+AXLEN*STH,3) 
IF(NDEC.EQ.-2) GO TO  14 
DXB=-0.07*A*STH 
DYB=0.07*A*CTH 
GO TO  13 

14 DXB=-0.05*A*STH 
DYB=0.05*A*CTH 
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13 A=NTIC-1 
XN=X+A*CTH*DELTIC 
YN=Y+A*STH*OELTIC 
DO 20 I=1,NTIC 
CALL  PL0T(XN,YN,2) 
CALL  PL0T(XN+DXB,YN+DYB,2) 
CALL  PL0T(XN,YN,2) 
XN=XN-CTH*DELTIC 
YN=YN-STH*DELTIC 

20 CONTINUE 
RETURN 
END 
FUNCTION SRMS(X,N) 
DIMENSION X(l) 
AVE=0.0 
SRMS=0.0 
DO  10 1=1,N 

10 AVE=AVE+(X(I)/FLOAT(N)) 
DO  20 I=1,N 

20 SRMS=SRMS+((X(I)-AVE)**2) 
SRMS=SRMS/FLOAT(N) 
SRMS=SQRT(SRMS) 
RETURN 
END 
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SUBROUTINE FILTER(X,NP,CUT,H,N,K,WGT) 
C GENERAL  ROUTINE TO' HIGH OR LOW PASS  A SET OF EQUALLY 
C SPACED DATA USING MARTIN FILTERS. 
C X=INPUT DATA AND OUTPUT DATA,NP=NO.OF  POINTS   IN  X,CUT=NORMALIZED 
C CUTOFF OF FILTER  IN  CYCLES/DATA  INTERVAL,H=SLOPE  PARAMETER, 
CN=HALF  LENGTH  OF  FILTER,TOTAL  LENGTH=2N+1, 
C K=1=HIGH  PASS,=0 FOR LOW  PASS. 
C WEIGHTS STORED  IN WGT 

DIMENSION X(1),WGT(1) 
NA=N+1 
WGT(1)=2.0*(CUT+H) 

C CENTER WEIGHT STORED  IN LOCATION  1 
SUM=0.0 
PI=3.1415925 
DO 61  I=2,NA 
P=I-1 
0=1.0-16.0*H**2*P**2 
IF(ABS(Q).GT.0.0001) GO TO 62 
WGT(I)=SIN(2.*PI*P*(CUT+H))/(4.0*P) 
GO TO 61 

62 WGT(I)=((C0S(2.*PI*P*H))/Q)*((SIN(2.*PI*P*(CUT+H)))/(PI*P)) 61 SUM=SUM+WGT(I) ni/\r,  r,, 

DELTA=1.-(WGT(1)+2.*SUM) 
AX=2*N+1 
IF(K.LT.l) GO TO  78 
DO 65  I=2,NA 

65 WGT(I)=(WGT(I)+DELTA/AX)*(-1.0) 
WGT(1)=1.0-(W6T(1)+DELTA/AX) 
GO TO  79 

78 DO 80 I=1,NA 
80 WGT(I)=WGT(I)+DELTA/AX 
79 NB=NP-N 

C CONVOLVE WEIGHTS WITH DATA. 
DO 63 I=NA,NB 
II=I+1-NA 
SUM=0.0 
DO 64 J=1,NA 
J1=I+J-1 
J2=I-J+1 

64 SUM=SUM+WGT(J)*(X(J1)+X(J2)) 
63 X(II)=SUM-WGT(1)*X(I) 

C SHIFT FILTERED DATA TO CORRECT LOCATION AND ZERO ENDS. 
II=NB+1-NA 
DO 67  1=1,11 
J=II+1-I 
L=J+N 

67 X(L)=X(J) 
DO 58  1=1,N 

68 X(I)=0.0 
NC=NB+1 
DO  69  I=NC,NP 

69 X(I)=0.0 
RETURN 
END 
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SUBRQUTINE ENVEL(DATA,NP) 
C THIS ROUTINE  RECEIVES A TIME  SERIES OF LENGTH NP 
C IN ARRAY DATA,  AND RETURNS ENVELOPE ESTIMATES  BASED 
C ON A HILBERT TRANSFORM METHOD AS  DESCRIBED  IN  KANASEWICH 
C (1981),P.   362-368. 
C C.G.FOX,ADVANCED TECHNOLOGY STAFF,NAV0CEAN0-5/12/83 

DIMENSION  DATA(l) 
COMPLEX XDATA(2048) 
NSTART=1 
NPSEG=NP 

10  IF(NPSEG.LE.O)  RETURN 
C PERFORM ENVELOPE  CALCULATIONS  IN SEGMENTS OF  2048 POINTS 

IF(NPSEG.GT.2048) THEN 
NPSEG=NPSEG-2048 
LENGTH=2048 
GO TO  100 

ELSE 
LENGTH=NPSEG 
NPSEG=0 

END  IF 
C TRANSFER  INPUT DATA TO REAL   PORTION OF COMPLEX  ARRAY XDATA 

100 DO  110  1=1.LENGTH 
110 XDATA(I)=(1.0,0.0)*DATA(NSTART+(I-1)) 

C ZERO FILL ARRAY  IF LESS THAN  2048 POINTS 
IF(LENGTH.EQ.2048) GO TO 200 
DO  120 I=LENGTH+1,2048 

120 XDATA(I)=(0.0,0.0) 
C FOURIER TRANSFORM TO FREQUENCY DOMAIN  USING FFT 

200 CALL NLOGNdl,XDATA,-1.0) 
C COMPUTE  HILBERT TRANSFORM   IN THE  FREQUENCY DOMAIN.  THE 
C TRANSFORM  IS COMPUTED AS  I*SGN(OMEGA)*F(OMEGA), WHERE 
C OMEGA=FREQUENCY F(OMEGA)=FOURIER TRANSFORM 
C SGN(X)=1.(X>0),=0,(X=0),=-1(X<0) 
C THIS OPERATION   INDUCES A NINETY  DEGREE  PHASE  SHIFT ON 
C COMPLEX  PLANE.    THE CALCULATION  IS  DONE  BY ZEROING X(l), 
C (OMEGA=0),TRANSFERRING REAL TO  IMAGINARY,MINUS   IMAG TO REAL 
C FOR X(2)-X(N/2),(0MEGA>0),  AND TRANSFERRING MINUS  REAL TO 
C IMAGINARY,AND   IMAGINARY TO REAL  FOR X(N/2+l)  TO X(N). 
C (OMEGA<0) 

XDATA(1)=(0.0,0.0) 
DO 250 1=2,1024 
TEMPR=REAL(XDATA(I)) 
TEMPI=AIMAG(XDATA(I)) 

250 XOATA(I)=CMPLX(-TEMPI,TEMPR) 
DO 260  1=1025,2048 
TEMPR=REAL(XDATA(I)) 
TEMPI=AIMAG(XDATA(I)) 

260 XOATA(I)=CMPLX(TEMPI,-TEMPR) 
C     INVERSE TRANSFORM SHIFTED DATA 

CALL NLOGNdl,XDATA,+1.0) 
C     CALCULATE ENVELOPE AFTER EQUATION 21.3-1 OF KANASEWICH 
C     DUE TO SYMMETRIES IN THE TRANSFORM, IMAGINARY PORTION 
C      OF XDATA IS NEAR ZERO AND CAN BE IGNORED 
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DO 300 1=1,2048 
N=NSTART+(I-1) 

300      DATA(N)=SQRT((DATA(N)*DATA(N)) + (REAL(XDATA(I ))**?)) 
NSTART=NSTART+2048 
GO TO  10 
END 
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SUBROUTINE NL0GN(N,X,SI6N) 
C*****NLOGN COMPUTES THE DISCRETE FOURIER TRANSFORM BY THE FAST FOURIER 
C*****TRANSFORM METHOD.REFERENCE ROBINSON,PAGE 63 
C*****THIS SUBROUTINE CONTAINS 51 STATEMENTS 
C*****N=POSITIVE INTEGER FOR THE POWER OF 2 DESIRED. 
C*****x = INPUT AND OUTPUT DATA ARRAY(COMPLEX ). 
C*****SIGN=-L0 ^OR^FOURIER TRANSFORM.+1.0 FOR INVERSE FOURIER TRANSFORM, 

COMPLEX X,WK,HOLD,Q 
LX = 2**N 
DO 1 I = 1,N 

1 M(I) = 2**(N -I) 
DO 4 L = 1,N 
NBLOCK = 2**(L -1) 
LBLOCK = LX / NBLOCK 
LBHALF = LBLOCK / 2 
K = 0 
DO 4 IBLOCK = 1,NBLOCK 
FK = K 
FLX = LX 
V = SIGN * 6.2831853071796 * FK / FLX 
WK = CMPLX(COS(V),SIN(V)) 
ISTART = LBLOCK * (IBLOCK - 1) 
DO 2 I = 1,LBHALF 
J = ISTART + I 
JH = J + LBHALF 
Q = X(JH) * WK 
X(JH) = X(J) - q 
X(J) = X(J) + Q 

2 CONTINUE 
DO 3 I = 2,N 
II = I 
IF(K.LT.M(I)) GO TO 4 

3 K = K - M(I) 
4 K = K + M(II) 

K = 0 
DO 7 J = 1, LX 
IF (K.LT.J) GO TO 5 
HOLD = X(J) 
X(J) = X(K + 1) 
X(K + 1) = HOLD 

5 DO 6 I = 1,N 
II = I 
IF(K.LT.M(I)) GO TO 7 

5 K = K - M(I) 
7 K = K + M(II) 

IF(SIGN.LT.0.0) RETURN 
DO 8 I = l.LX 

8 X(I) = X(I) / FLX 
RETURN 

END 
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SUBROUTINE PRVFIX(K1,K2,K3,MIN,KST) 
DIMENSION K1(1000),K2(1000),K3(1000),T1(200),T2(200) T3(200) 

C   SUBROUTINE FOR USE WITH THE PROVINCE PICKER PROGRAM 
C    SEARCHES PROVINCE BOUNDARIES FOR SEGMENTS LESS THAN MIN 
C    SEGMENTS ARE INCORPORATED INTO ADJACENT PROVINCES IF THEY 
C     ARE EQUAL-SETS BOUNDARY TO INCLUDE SEGMENT IN ROUGHEST 
C      PROVINCE IF ADJACENT PROVINCES ARE UNEQUAL-DELETES 
C       SEGMENTS AT ENDS OF TRACKLINE 
C   C.G.FOX-LDGO-JULY 6,1982 
C 

MINSAV=MIN 
MIN=0 

10 ISKIP=0 
ICYCLE=0 
MIN=MIN+5 
IF(MIN.GT.MINSAV)MIN=MINSAV 
DO 100 I=1,KST 
IF(ICYCLE.GE.l) 60 TO 95 
IX=I-ISKIP 
11=1+1 

C   TEST FOR ADJACENT PROVINCES OF SAME NUMBER 
IF(K3(I).NE.K3(II)) GO TO 30 
T1(IX)=K1(I) 
T2(IX)=K2(II) 
T3(IX)=K3(I) 
ICYCLE=1 
ISKIP=ISKIP+1 
GO TO 100 

C   TEST FOR MINIMUM PROVINCE SIZE 
30 IDIFF=K2(I)-K1(I) 

IF(IDIFF.LT.MIN)G0 TO 40 
C    NORMAL PROVINCE - STORE IN T ARRAY AND CONTINUE 

ri(IX )=K1(I) 
T2(IX)=K2(I) 
T3(IX)=K3(I) 
GO TO 100 

r   ^^c\I5?T nJ"^^"^^" SIZE-TEST NUMBER OF ADJACENT PROVINCES 
C    IF FIRST OR LAST PROVINCE OF LINE, DELETE    •^•^^^^'^^" 

40 IF(I.NE.KST.OR.IX.NE.l) GO TO 50 
ISKIP=ISKIP+1 
GO TO  100 

C        TEST  IF SURROUNDING PROVINCES  ARE  EQUAL 
50  IF(T3(IX-1).NE.K3(II))  GO TO  70 

C IF EQUAL,  EXTEND SECOND BOUNDARY OF PREVIOUS  PROVINCE 
C TO END OF FOLLOWING PROVINCE ''KUVlNLt 

T2(IX-1)=K2(II) 
ICYCLE=1 
ISKIP=ISKIP+2 
GO TO  100 

C        "SE^IALSEO'PROVIJCE ''''''"''-'" ^'"N"*''^ CLOSER TO 
C    70 IF(T3(IX-1).LT.K3(II))  GO TO  75 
C T1(IX)=K1(I) 
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C T2(IX)=K2(II) 
C T3(IX)=K3(I) 

C IF((K2(II)-K1(II)).GT.IDIFF)T3(IX)=K3(II) 
C GO TO 80 
C 75      T2(IX-1)=K2(I) 
C T1(IX)=K1(II) 
€ T2(IX)=K2(II) 
C T3(IX)=K3(I) 
C IF((K2(II)-K1(II)).GT.IDIFF)T3(IX)=K3(II) 
C BISECT SEGMENT AND PUT HALVES   INTO ADJACENT PROVINCES 

70 K=(K2(I)+Kl(I))/2 
T2(IX-1)=K 
T1(IX)=K 
T2(IX)=K2(II) 
T3(IX)=K3(II) 

80  ISKIP=ISKIP+1 
ICYCLE=1 
GO TO  100 

95  ICYCLE=ICYCLE-1 
100 CONTINUE 

IF(ISKIP.EQ.O.AND.MIN.EQ.MINSAV)  GO TO  500 
KST=KST-ISKIP 
DO  150  1=1,KST 
K1(I)=T1(I) 
K2(I)=T2(I) 

150 K3(I)=T3(I) 
K3(KST+1)=99 
GO TO 10 

500 RETUR^' 
END 
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FUNCTION  DECDEGd.X) 
CONVERT DEGREES-H^IINUTES TO DECIMAL  DEGREES 

DECDEG=ABS(I)+X/60. 
DECDEG=SIGN(DECDEG,I) 
RETURN 
END 
SUBROUTINE  DEGMIN(A,J,B) 

CONVERT DECIMAL  DEGREES(A) TO DEGREES(J)+MINUTES(B) 
J=INT(A) 
B=ABS((A-FL0AT(J))*60.) 
RETURN 
END 
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Appendix C.l 

The addition of two sinusoids of different amplitude and phase, but 

identical wavelength results in another sinusoid of the same wavelength, 

but amplitude and phase which is a function of the amplitudes and phases 

of the component sinusoids. Assuming two sinusoids of differing ampli- 

tudes (v^ and Vg) and phases (9^ and 9g), their sum can be expressed in 

terras of a new sinusoid of amplitude VQ and phase 6_ as 

v^ • co3(e-9^) + Vg • cos(9-9g) = v^ • cos(9-9j,) (c-1) 

Using the addition formula of sinusoids, 

v^ • C039 • cos9^ + v^ • sin9 • sin9^ + Vg • cos9 • cos9g + 

Vg • sin9 • sin9g = v^, • cos9 • cos9^ + v^, • sin9 • sin9^   (C-2) 

Combining terras, and equating sine and cosine terras 

(v^ • cos9^ + Vg • cos9g) • cos9 = (v^ • cosS^) • co89      (c-3) 

and 

(v^ • 3in9^ + Vg • 3in9g) • sin9 = (v^, • sin9(,) • 3in9      (c-4) 

Since C-3 and C-4 are true for any value of 9, the unknown v^. and 9 

are determined from: 
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v^ •   cose^ + VB •   COS9B - V(, •   cos9(, (C-5) 

v^ •   slne^ + vg •   slnSg = v^, •  slnO^, (C-6) 

Squaring both sides and summing equations  C-5 and C-6 removes 

the 9^  teirms   (cos^9  + sin^9 =  1), 

,2  _  V  2   .   (,08^9.   + v-a^   .   cos^9„ +  2   •   V.   •   Vo   • ^C    " ^A    *   *^°^ "A      '^B    *  COS'9B + 2  •  V^  •  Vg  •   cos9^ •   cosSg + 

'A •  ^B •   sln^g^ + vg^  .   sin'^9    + 2  •  v    •  Vg  •  sin9     •   sln9^ (C-7) 

Again using the relationship cos 9 + sin 9 =1, the addition 

formula for cosines, and taking the root of the result gives the 

formula for the VQ  term as, 

V(, - (v^^ + vg2 + 2 • v^ . vg • (cos(9^-9g))V2 (c-8) 

The unknown resulting phase angle QQ  can be derived by dividing 

(C-6) by (C-5), 

^A • «i"®A + ^B * s^'i^B 
^°^C "   (C-9) 

^A * 3^"^A "^ ^B * «°«^B 

or 

,   ^ -1 VA • sln9^ + vg . sin9g 

^C " ta°  I ) (C-10) 

^A • cos9^ + Vg • cos9g 

179 



These general results show the dependence of a sinusoid of given 

wavelength on a linear combination of two other sinusoids of the same 

wavelength. The same combination process could be extended to any number 

of component sinusoids. 

Appendix C.2 contains FORTRAN -77 software to perform an iterative 

fit of a sinusoid to data. 
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Appendix C.2 

SUBROUTINE COSFIT(A,B,PHI,X,Y,N,AMIN,BMIN,PHIMIN,ILIST) 
C 
C THIS ROUTINE PERFORMS A BEST FIT TO DATA WITH A TRIGONOMETRIC 
C FUNCTION OF THE FORM Y=A+B*(C0S(4*PI*(X-PHI))) USING AN ITERATIVE 
C METHOD AS DESCRIBED IN SCARBOROUGH(1930), ART. 115. 
C INPUTS ARE 
C A=CONSTANT 
C B=AMPLITUDE OF SINUSOIDAL COMPONENT 
C PHI= ANGLE OF MAXIMUM AMPLITUDE 
C X= ARRAY OF DEPENDENT VARIABLE VALUES 
C Y= ARRAY OF DEPENDENT VARIABLE VALUES 
C N= NUMBER OF DATA PAIRS OF X AND Y 
C AMIN= MINIMUM VALUE FOR A CORRECTION TO STOP ITERATION 
C BMIN= MINIMUM VALUE FOR B CORRECTION TO STOP ITERATION 
C PHIMIN= MINIMUM VALUE FOR PHI CORRECTION TO STOP ITERATION 
C ILIST= 1 FOR SUMMARY OF ITERATION PROCESS, = 0 , NO LISTING 
C PROGRAMMED BY C.G.FOX-ADVANCED TECHNOLOGY STAFF,NAVOCEANO,8/30/83 

DIMENSION X(1024),Y(1024) 
REAL I9,J9,K9,L9 

C 
C    COMPUTE INITIAL ESTIMATE OF A AND B BY PERFORMING A SIMPLE 
C    LINEAR FIT ON LOG TRANSFORMED DATA 
C 

XN=FLOAT(N) 
XPRCD=0.0 
XSUM=0.0 
YSUM=0.0 
XSQR=0.0 

C    WRITE(6,'(2F10.4)') (X(I),Y(I ).I=1,N) 
C    FIND MEAN LEVEL AND CONVERT X TO RADIANS 

DO 50 1=1,N 
X(I)=X(I)/57.2957795 

50 A0=A0+(Y(I)/XN) 
C   LOCATE LARGEST POSITIVE DIFFERENCE FROM THE MEAN AND ITS PHI 

DO 60 1=1.N 
IF((Y(I)-A0).LT.B0) GO TO 60 
BO=Y(I)-AO 
PHIO=X(I) 

60 CONTINUE 
C 
C   COMPUTE SUM OF SQUARES OF THE RESIDUALS 
C 

POLD=0.0 
DO 100 1=1,N 

100 P0LD=P0LD+((Y(I)-F3(X(I),A0,B0,PHI0))**2) 
ITERAT=0 
NBIS=0 
IF(ILIST.EQ.1)WRITE(6,110) 

110 FORMAT(' ITERATION    # OF BISECTIONS       A        B 
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*PHIO    RESIDUALS**2) 
IF(ILIST.EQ.1)WRITE(6,120)ITERAT,NBIS,A0,B0,PHI0,P0LD 

120 FORMATC ',I6,10X,I4,5X,4(4X,F10.4)) 
C 
C   ZERO OUT MATRIX TERMS 
C 

150 A9=0.0 
B9=0.0 
C9=0.0 
E9=0.0 
F9=0.0 
19=0.0 
J9=0.0 
K9=0.0 
L9=0.0 

C 
C   COMPUTE TERMS FOR LEAST SQUARES MATRIX CONSTRUCTION 
C 

00 200 1=1,N 
PARTA=F1(X(I),A0,B0) 
PARTB=F2(X(I),A0,PHI0) 
PARTP=F4(X(I),A0,B0,PHI0) 
P0WF=F3(X(I),A0,B0,PHI0) 
A9=A9+(PARTA**2) 
B9=B9+(PARTA*PARTB) 
C9=C9+(PARTA*PARTP) 
E9=E9+(PARTB**2) 
F9=F9+(PARTB*PARTP) 
I9=I9+(PARTP**2) 
J9=J9+(PARTA*(Y(I)-P0WF)) 
K9=K9+(PARTB*(Y(I)-P0WF)) 

200 L9=L9+(PARTP*(Y(I)-P0WF)) 
D9=B9 
G9=C9 
H9=F9 

C 
C   COMPUTE CORRECTION TERMS FOR A AND B 
C 

D=A9*E9*I9+B9*F9*G9+C9*09*H9-C9*E9*G9-B9*D9*I9-A9*F9*H9 
AC0RR=(((E9*I9-F9*H9)*J9)+((C9*H9-B9*I9)*K9)+((B9*F9-E9*C9)*L9))/D 
BC0RR=(((G9*F9-D9*I9)*J9)+((A9*I9-G9*C9)*K9)+((D9*C9-A9*F9)*L9))/D 
PC0RR=(((D9*H9-G9*E9)*J9)+((G9*B9-A9*H9)*K9)+((A9*E9-B9*D9)*L9))/D 

C 
C      CREATE  NEW A AND B 
C 

230 A=AO+ACORR 
B=BO+BCORR 
PHI=PHIO+PCORR 

C 
C        COMPUTE  NEW SUM OF SQUARES OF RESIDUALS WITH NEW ESTIMATES 
C 

PNEW=0.0 
DO 250 1 = 1,N 
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250 PNEW=PNEW+((Y(I)-F3(X(I),A,B,PHI))**2) 
C 
C TEST FOR CONVERGENT SOLUTION(PNEW < POLO) 
C   IF NOT, BISECT CORRECTIONS AND RECOMPUTE 
C 

IF(PNEW.LT.POLD) GO TO 300 
AC0RR=.5*AC0RR 
BC0RR=.5*8C0RR 
PC0RR=.5*PC0RR 
NBIS=NBIS+1 
IF(NBIS.GT.IO) GO TO 300 
GO TO 230 

C 
C  TEST FOR MINIMUM CHANGE OF A AND B 
C 

300 IF(ABS(A-A0).6T.AMIN) GO TO 500 
IF(ABS(B-BO).GT.BMIN) GO TO 500 
IF(ABS(PHI-PHIO).GT.PHIMIN) GO TO 500 
GO TO 900 

C 
C   CORRECTION TERM NOT FINE ENOUGH, START NEW ITERATION 
C 

500 ITERAT=ITERAT+1 
AO=A 
BO=B 
POLD=PNEW 
IF(ILIST.EQ.1)WRITE(6,520)ITERAT,NBIS,A0,B0,PHI0,P0LD 

520 FORMATC ',I6,10X,I4,5X,4(4X,F10.4); 
NBIS=0 
GO TO 150 

900 ITERAT=ITERAT+1 
IFdLIST.EQ.DWRITE (6,920) ITERAT,NBIS,AO,BO,PHI0,P0LD 

920 FORMATC ',I5,10X,I4,6X,4(4X,F10.4)) 
C   RECONVERT RADIANS TO DEGREES 

DO 930 1=1,N 
930 X(I)=X(I)*57.2957795 

PHI=PHI*57.2957795 
PRINT *,A,B,PHI 
RETURN 
END 

C 
C 
C   FUNCTIONS TO CALCULATE POWER LAW FUNCTION AND PARTIAL 
C    DERIVATIVES WITH RESPECT TO A AND B 
C 

FUNCTION F1(X3,A3,B3) 
C   CALCULATE PARTIAL OF FUNCTION WITH RESPECT TO A 

Fl=l. 
A3=A3 
X3=X3 
B3=B3 
RETURN 
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END 
c 

FUNCTION F2(X4,A4,PHI4) 
C    CALCULATE PARTIAL OF FUNCTION WITH RESPECT TO B 

F2=C0S(2.*(X4-PHI4)) 
A4=A4 
RETURN 
END 

C 
FUNCTION F3(X5,A5,B5,PHI5) 

e     CALCULATE FUNCTION 
F3=A5+B5*C0S(2.*(X5-PHI5)) 
RETURN 
END 

C 
FUNCTION F4(X6,A6,B6.PHI6) 

C CALCULATE  PARTIAL WITH RESPECT TO PHI 
F4=2.*SIN(2.*(X6-PHI6)) 
A6=A6 
B6=B6 
RETURN 

END 
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Appendix D 

NOTE: Many of the subroutines required by the following 
routines are common to the province selection 
software listed in Appendix B.2. 

C GENERATE AMPLITUDE SPECTRUM OF DEPTHS OUTPUT FROM PROVINCE PICKER 
C PROGRAM IS A SLIGHT MODIFICATION OF THE ORIGINAL CREATED BY 
C T.M.DAVIS, IN WHICH THE INPUTS HAVE BEEN SET WITHIN THE CODE 
C AND ONLY THOSE PARAMETERS NECESSARY FOR DAILY USE HAVE BEEN LEFT 
C FOR INPUT BY THE USER.  INPUT IS EXPECTED FROM UNIT 13, WHICH IS 
C THE UNIT NUMBER USED BY PROVPICK. THE PROGRAM ADDS AN INTERACTIVE 
C GRAPHICS SECTION WHICH ALLOWS MODIFICATION OF THE INPUT SERIES 
C DELETION OF SECTIONS, AND CONTROL OF THE INDEPENDENT VARIABLE FOR 
C REGRESSION ANALYSIS. ROUGHNESS MODEL PARAMETERS A & B ALONG WITH 
C LATITUDE AND LONGITUDE INFORMATION FOR EACH PROFILE ARE OUTPUT 
C TO UNIT 14 FOR LATER USE IN PROVCHART PROGRAM. 
C 

C PROGRAMMMED BY C.G.FOX,ADVANCED TECHNOLOGY STAFF,NAVOCEANO,5/17/84 

C THE FOLLOWING COMMENTS ARE FROM THE ORIGINAL PROGRAM BY T.M.DAVIS 

C 
C PROGRAM TO COMPUTE PREWHITENE.D,CORRECTED AND SMOOTHED AMPLITUDE 
C SPECTRUM CUT,H,N=PARAMETERS TO CONTROL PREWHITENING AND SMOOTHING 
C FILTERS,ANORM=SPECTRUM NORMALIZATION IN TERMS OF DATA INTERVALS 
C XORG,YORG=LOG-LOG PLOT ORIGIN IN POWERS OF 10,ITG=HEADING 
C IUNIT=5 IF CONTROL DATA ON CARDS = TAPE UNIT IF ON TAPE 
C SAME FOR JUNIT FOR INPUT DATA 
C TAPE UNIT 2=0UTPUT 
C CODE IFE0F=1 IF EOF FOLLOWS EACH SET 
C FIRST SET OF FILTER PARAMETERS ARE FOR HIGH PASS PREWHITENING 
C SECOND SET ARE FOR LOW PASS SMOOTHING 
C IF N(l)=-1 COSINE TAPER IS APPLIED,=0 NO TAPER OR PREWHITENING 
C LEAVE HIGH OR LOW PASS PARAMETERS BLANK IF NO FILTER DESIRED 
C INPUT DATA LIMIT IS 2048 PTS,NP=NO.OF INPUT PTS 
C IF ANORM IS BLANK SET TO 1  IN PROGRAM 
C USES SUBROTINE NL06N FROM ROBINSON 
C IN FIRST CONTROL CARD NSETS=NO.0F SETS OF DATA THIS RUN 
C SET KPHA=1 IF PHASE SPECTRUM IS DESIRED 
C IORGN=NO.0F INPUT DATA PT.TO USE AS ORIGIN FOR PHASE SPECTRUM 
C IF PHASE IS DESIRED CODE IPHA=0 IF PHASE IN DEGREES OR CODE IPHA 
C =NO.OF DATA INTERVALS/INCH FOR PLOT IF YOU WANT PHASE IN DATA INT 
C SET JC0DE=1 IF ONLY PLOT OF FINAL SMOOTHED SPECTRUM DESIRED 
C SET JC0DE=-1 FOR NO PLOT AT ALL 
C CODE .ILIST=1 IF YOU DESIRE ONLY LISTING OF SMOOTHED SPECTRUM 
C **IMPORTANT-IF YOU HAVE ALREADY ADDED ZEROES TO THE BEGINNING OR END 
C OF YOUR INPUT DATA AND YOU REQUEST PREWHITENING OR COSINE TAPER 
C YOU MUST CODE IADJ=1 FOR PROPER EXECUTION 
C IMEAN=1 IF YOU WANT THIS MEAN REMOVED 

DIMENSION DATA(4500),ST0(2500).CUT(2),H(2),N(2),ADATA(4100) 
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f 

1,S0ATA(4500),B0ATA(2050),CDATA(2050),PHASE(2050),SMPH(2050) 
COMMON/BOUND/IJPNUM.ISDLAT,SELAT,ISDLNG,SELNG.IDLAT.EELAT 

IIDLNG.EMLNG ' 
CHARACTERM ITH(8),ITG(8) 
CHARACTER*! RESPON 

C REA0(5,*)NSETS,JC00E,IUNIT,JUNIT,IFE0F.GRIDNM 
NSETS=1000 
JC0DE=1 
IUNIT=5 
JUNIT=2 
IFE0F=1 

C GRID SPACING  IS READ FROM DATA FILE 
IF(JCODE.GE.O)    CALL  PLOTS(STO,2500,2) 
CALL  FACTOR(.65) 
JSET=1 
IF(JCODE.GE.O) CALL  PL0T(1.0,0.0,-3) 

C NUMBER OF POINTS  IS READ FROM DATA FILE, MAXIMUM IS HELD TO  2000 
NPTS=2000 
KX0RG=-2 
KY0RG=-7 
AN0RM1=2.0 
CUT(1)=>1.0 
H(l)=.2 
N(l)=3 
CUT(2)=.08 
H(2)=.2 
N(2)=3 
IMEAN=1 
KPHA=0 
IPHA=0 
I0RGN=1 
ILIST=0 
IADJ=1 

245 CONTINUE 
APHA=IPHA 
X0RG=10.0**KX0RG 
Y0RG=10.0**KY0RG 
I0UT=7 

IF(ABS(AN0RM1).LT.1.0E-20)AN0RM=1.0 
CALL PRVOUT(NP,DATA,ITG,XINTER,SLOPEX,GRIDNM) 
GRIDKM=GRIDNM*1.852 

C    XINTER=10**(AL0GI0(XINTER)-(AL0G10(l./GRI0KM)+.5)) 
2451 CT0FF2=.5*(1./GRIDKM) 

CT0FF1=.01*(1./GRIDKM) 
CT0FF1=AL0G10(CT0FF1) 
CT0FF2=AL0G10(CT0FF2) 
CT1SV=CT0FF1 
CT2SV=CT0FF2 

C SAVE  DATA ARRAY  IN SDATA ARRAY 
DO 2452  1=1,NP 

2452 SDATA(I)=OATA(I) 
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25   IF(AN0RM1.GT.1.)AN0RM=1./FL0AT(NP) 
38  IF(CUT(1).NE.-1.0) GO TO  29 

: FUNDAMENTAL FREQUENCY,H(l)=.2,N(l)=3 
CUT(1)=.8/(FL0AT(NP)) 
H(l)=.2 
N(l)=3 
IF(ANORMl.GT.l.) AN0RM=1./(FL0AT(NP)-(2*(N(1)-1))) 

29  IF(IADJ.NE.l) GO TO  383 
: COMPUTE   INDEX OF FIRST NON-ZERO POINT 

28 DO  385 J=1,NP 
K1=J 
IF(DATA(J).NE.O.O)  GO TO  386 

385 CONTINUE 
WRITE(I0UT,82) XORG,YORG,ANORM,ITG 

82^™AT(15H^PL0T ORIGIN X = ,E11.4,4H  Y=  ,E11.4,15HN0RMALIZATI0N  =, 

COMPUTE  INDEX OF LAST NON-ZERO POINT '   ^   ' 
386 DO  391 J=NP,K1,-1 

K2=J \ :. 
IF(DATA(J).NE.O.O) GO TO 392      ' 

391 CONTINUE 
SHIFT DATA TO LEFT AND RECOMPUTE NO,OF INPUT POINTS 

392 NP=K2-K1+1 
DO  393 J=1,NP 
K=K1+J-1 

393 DATA(J)=DATA(K) 
DEMEAN  DATA AND APPLY COSINE TAPER 

383 SUM=0.0 
XNP=NP 
DO  388 J=1,NP 

388 SUM=SUM+DATA(J) 
AVE=SUM/XNP 
IF(N(l).GE.O.AND.IMEAN.EQ.O) GO TO  381 
DO  389 J=1,NP 

389 DATA(J)=DATA(J)-AVE 
CALL  8ATHXS(DATA,NP,GRIDKM) 
IF(N(l).6E.O) GO TO  381 
DO  382 J=1,NP 
AM=J-1 
TNP=NP-1 
TNP=TNP/2.0 
AM=3.14159*(AM-TNP)/TNP 

382 DATA(J)=DATA(J)*0.5*(1.0+C0S(AM)) 
RAISE NO.OF PTS TO A POWER OF 2(M)AND STORE  IN  INP 

DO 5 M=l,12 
I=2**M 
IF(I-NP)5,6.7 

5 CONTINUE 
6 INP=I 

GO TO 9 
7 INP=I 

NPP=NP+1 :' 
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DO 8 J=NPP,INP 
8 DATA(J)=0.0 
9 AINP=INP 

0ELR=1.0/AINP 
DELK=(1.0/AINP)/GRI0KM 

G INP= TOTAL  NO.OF  DATA PTS.TO A POWER OF  2 
C DELR=NORMALIZED FREQUENCY   INTERVAL   IN  CYCLES  PER  DATA  INTERVAL 

WRITE(I0UT,50)DELR,INP,NP 
50 FORMATC   FREQ. INT = ',E8.3,'  POWER OF  2 DATA PTS = M6,'  NO.OF  INPUT 

1 DATA PTS=',I6) 
WRITE(lOUT,560)IORGN 

560 FORMATC  ORIGIN FOR PHASE SPECTRUM  IS  INPUT PT.N0.',I4) 
C NOW STORE  DATA  IN COMPLEX  FORM  IN ADATA 

53 DO  2    J=1,INP 
I=(J*2)-1 
ADATA(I)=DATA(J) 
IA=I+1 

2 ADATA(IA)=0.0 
C COMPUTE AND PLOT NORMALIZED AMPLITUDE SPECTRUM 

CALL NLOGN(M,ADATA,-1.0) 
INX=INP+1 
IF(K0UNT-2)  301,301,302 

C CORRECT FFT OF PREWHITENING FILTER FOR PHASE SHIFT 
302 ANN=N(1) 

CALL TSHIFT(M,ADATA,ANN,DELR) 
DO  303  I=1,INX,2 
JX=(I+l)/2 
J=I+1 
BDATA(JX)=(SORT(ADATA(I)**2+ADATA(J)**2))*AN&RM 
IF(ADATA(I).LT.O.O)  BDATA(JX )=-BDATA(JX) 

303 CONTINUE 
GO TO 204 

301 DO 201  I=1,INX,2 
JX=(I+l)/2 
J=I+1 

201 BDATA(JX)=( SQRT(ADATA(I)**2 +ADATA(J)**2))*AN0RM 
C    COMPUTE ROUGH PHASE SPECTRUM FROM PREWHITENED DATA 
C    OR COSINE TAPERED DATA 

IF(KPHA.EQ,l.AND.N(l).LE.O) GO TO 567 
IF(KPHA.EQ.1.AND.K0UNT.EQ.2) GO TO 567 
GO TO 568 

567 ANN=I0RGN-1 
C    CORRECT PHASE SPECTRUM FOR DESIRED ORIGIN 

CALL TSHIFT(M,ADATA,ANN,DELR) 
DO 569 I=1,INX,2 
JX=(I+l)/2 
B=JX-1 
B=B*DELR*360.0 
J=I+1 
IF(ABS(ADATA(I)).LT.l.E-20) ADATAd )=ADATA(I )+l.E-20 
PHASE(JX)=(ATAN2(ADATA(J),ADATA(I)))*57.295779 

569  IF(IPHA.GT.O.AND,B.GT.O)PHASE(JX)=PHASE(JX)/B 
IF(IPHA.GT.O) 60 TO  541 
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WRITE(lOUT,570) 
570 FORMATC   ROUGH PHASE SP£CTRUM(DEG)' ) 

GO TO 542 
541 WRITE(I0UT,543) 
543 FORMATC ROUGH PHASE SPECTRUM(DATA INTERVALS)') 
542 IF(ILIST.NE.l) WRITE(I0UT,81)(PHASE(J),J=1,JX) 
568 IF(K0UNT-2)202,203,204 
202 WRITE(lOUT,75) 
75 F0RMAT(28H AMP.SPECT.OF ORIGINAL DATA ) 
77 IF(ILIST.NE.l) WRITE(I0UT,81)(BOATA(J),J=1,JX) 
81 FORMAT(lOE11.4) / 

GO TO 206 
203 WRITE(lOUT,76) 

76 FORMAT(30H AMP.SPECT.OF PREWHITENED DATA) 
GO TO  77 

204 WRITE(lOUT,91) CUT(l).H(1),N(1) 
91 FORMATC SPECT.OF PREWHITENING FILTER WITH PHASE REVERSALS CUTOF 

1F=',F5.4,'  H=',F5.4,'  N=',I3) 
DO 92 J=1,JX 

92 BDATA(J) =BDATA(J)/ANORM 
IF(ILIST.NE.l) WRITE(I0UT,81)(B0ATA(J),J=1,JX) 

C   CORRECT SPECTRUM OF FILTERED DATA FOR PREWHITENING FILTER 
DO 93 J=1,JX 

IF(ABS(B0ATA(J)).LT.l.E-20)BDATA(J)=BDATA(J)+l.E-20 
93 BDATA(J)=ABS(CDATA(J)/BDATA(J)) 

WRITE(I0UT,94) 
94 FORMATC FINAL ROUGH CORRECTED SPECTRUM WITHOUT PHASE REVERSALS') 

IF(ILIST.NE.I) WRITE(I0UT,81)(BDATA(J),J=1.JX) ^^vtH^ALb ) 
GO TO 206 

95 CONTINUE 
C SMOOTH FINAL ROUGH CORRECTED SPECTRUM 
C COMPUTE LOW PASS WEIGHTS 

K=2 
IF(N(2).EQ.O) GO TO  330 

C STORE  ROUGH SPECTRUM  IN  DATA 
DO 97 J=1,JX 

97 DATA(J)=BDATA(J) 
GO TO 98 

83 DO 99  1=1,NA 
99 BDATA(I)=BDATA(I)+OELTA/X 

^ M2-^S'-M^.'^°'^ ^'^^^ SMOOTHING WEIGHTS WITH ROUGH SPECTRUM 
No—JX-N(K) 
GO TO  235 

206  IF(JCODE.EQ.l.AND.N(2).GT.O) GO TO  311 
IF(JCOOE.LT.O) GO TO  311 
X=AL0G10  (  DELK/X0RG)*3.0125 
TPP=BDATA(2)/Y0RG 
IF(TPP.LT.l.E-20) TPP=YORG 
Y=-0.5+AL0G10(TPP)*l.35714 
CALL  PL0T(X,Y,3) 
DO  42 J=3,JX-1 
XJ=J-1 

X=AL0G10((XJ*DELK)/X0RG)*3.0125 
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TPP=BDATA(J)/YORG 
IF(TPP.LT.l.E-20) TPP=YORG 
Y=-0.5+ALOGlO(TPP)*1.35714 

42 CALL PL0T(X,Y,2) 
311 IF(K0UNT-2)78,79,95 
78 K0UNT^2 

COMPUTE WEIGHTS FOR PREWHITENING FILTER AND STORE IN BDATA 
IF(N(l).LE.O) 60 TO 95 
K=l 

98 NA=N(K)+1 
BDATA(1)=2.0*(CUT(K)+H(K)) 
CENTER WEIGHT STORED IN LOCATION 1 
SUM=0.0 
PI=3.1415926535898 
COMPUTE REMAINING WEIGHTS 
DO 40 1=2,NA 
P=I-1 
Q=1.0-16.*H(K)**2*P**2 
IF( ABS(Q).GT.0.0001) GO TO 11 
BDATA(I)= SIN(2.*PI*P*(CUT(K)+H(K)))/(4,0*P) 
GO TO 40 

11 BDATA(I)=(( C0S(2.*PI*P*H(K)))/Q)*(( SIN(2.*PI*P*(CUT(K)+H(K)))) 
1 /(PI*P)) 

40 SUM=SUM+BOATA(I) 
CORRECT WEIGHTS FOR UNITY GAIN 
DELTA=1.-(BDATA(1)+2.*SUM) 
X=2*N(K)+1 
COMPUTE FINAL CORRECTED WEIGHTS,HIGH PASS OR LOW PASS 
IF(K.EQ.2) GO TO 83 
DO 41 1=2,NA 

41 BDATA(I)= {BDATA(I)+ DELTA/X)*(-1.0) 
BDATA(1)=1.0-(BDATA(1)+DELTA/X) 
NB=NP-N(K) 
CONVOLVE HIGH PASS WEIGHTS WITH ORIGINAL DATA,STORE IN AOATA 

235 DO 44 I=NA,NB 
IA=I-NA+1 
SUM=0.0 
DO 43 J=1,NA 
J1=I+J-1 
J2=I-0+l 

43 SUM=SUM+BDATA(J)*(DATA(J1) + DATA(J2)) 
44 ADATA(IA)=SUM-BDATA{1)*DATA(I) 

IF(K.EQ.2) GO TO 236 
STORE  PREWHITENED DATA IN  DATA AND FILL  IN  ZEROES 
NJ=NB-N(K) 
DO 51 0=1,NJ 

51  DATA(J)=ADATA(J) 
NJ=NJ+1 
DO 54 J=NJ,INP 

54 DATA(J)=0.0 
PUT WEIGHTS  IN  PROPER ORDER -N.O.N AND STORE  IN CDATA 
JJ=N(K)+1 
DO 52 J=1,JJ 
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J1=J+N(K) .-    ' 
J2=JJ-(J-1) 
CDATA(J1)=BDATA(J) 

52 CDATA(J2)=CDATA(J1) 
C COMPUTE AMPLITUDE  SPECTRUM OF  PREWITENED DATA AND  PLOT 

GO TO 53 
79 CONTINUE 

C STORE HIGH PASS WEIGHTS  IN  DATA AND AMP.SPECT.OF  PREWHITENED 
C DATA  IN CDATA 

JJ=2*N(K)+1 
DO  102 J=1,JJ 

102 DATA(J)=CDATA(J) 
JJ=JJ+1 
DO  104 J=JJ,INP 

104 DATA(J)=0.0 
DO  103 J=1,JX 

103 CDATA(J)=BDATA(J) 
C COMPUTE AMPLITUDE SPECTRUM OF PREWHITENING FILTER 

K0UNT=3 
GO TO 53 

236 CONTINUE 
C OUTPUT SMOOTHED SPECTRUM AND PLOT 

.     FIRST=(N(2)+1)*DELR 
FIRSTK=(N(2)+1)*DELK 
WRITE(I0UT,237) FIRSTK 

237 F0RMAT(38H FINAL  SMOOTHED AND CORRECTED SPECT.     .16HFIRST FREQUENC 
1Y=,E8.3) 

CALL  PARSVL(ADATA,NP,INP,AVE,AN0IS,N(2),AN0RM) 
WRITE(I0UT,491)AVE,AN0IS 

491 FORMATC'     VALUE OF AMP SPECT OF NOISE=',E10.4,'  RMS WHITE NOISE LE 
lvEL=  ,E10.4) 
WRITE(I0UT,81)(ADATA(J),  J=2,IA) 

4911 CALL  P0WWGT(B0,B1,FIRSTK,DELK,ADATA{2).IA-1,0,CT0FF1,CT0FF2) 
BOSAVE=BO 
B1SAVE=B1 

C CALCULATE  RMS FOR WHITE NOISE WITH  INTERCEPT(BO) 

AVE=AVE/ANORM 
AVE=AVE**2 
ANOISE=(AVE*INP)/(NP*INP) 
ANOISE=SQRT(ANOISE) 
WRITE   (I0UT,492)AVE,AN0ISE 

492 FORMATC  AVE=  ',F8.3,'  RMS WHITE NOISE  =  ',F8.3) 
IF(JCODE.LT.O) GO TO 486 
ENCODE(13,601,ITH)  81 

601    FORMATC'SLOPE  =',F6.3) 
CALL SYMBOL(7.5,8.5,.20,ITH,0.,13) 
ENCODE(19,602,ITH)B0 

602 FORMATC INTERCEPT =',E8.3) 
CALL SYMB0L(7.5,8.0,.20,ITH,0.,19) 

C PLOT REGRESSION LINE  FROM POWWGT 
C CALL NEWPEN(3) 

IPLPSS=0 
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603 FIRST1=FIRSTK 
C WRITE(I0UT,'(8HFIRST1=  ,E11.4)')FIRST1 

X=AL0G10(FIRST1/X0RG)*3.0125 
AMP1=B0*FIRST1**B1 

C WRITE(I0UT,'(6HAMP1=  ,E11.4)')AMP1 
TPP=AMP1/Y0RG 
IF(TPP.LT.l,E-20) TPP=ABS(TPP) 

-   Y=-0.5+AL0G10(TPP)*l.35714 
CALL  PL0T(X,Y,+3) 

C CALL  SYMBOL   <  X,Y,.1,32,0.0,-1) 
FIRST1=((IA)*DELK) 

C WRITE(I0UT,'(8HFIRST1=  ,E11.4)')FIRST1 
X=AL0G10(FIRST1/X0RG)*3.0125 
AMP1=B0*FIRST1**B1 

e WRITE(I0UT,'(6HAMP1=  ,E11.4)')AMP1 
TPP=AMP1/Y0RG 
IF(TPP.LT.l.E-20) TPP=ABS(TPP) 
Y=-0.5+ALOGlO(TPP)*1.35714 
CALL  PL0T(X,Y,+2) 

C CALL SYMBOL   (  X,Y..1,32,0.0,-2) V 
C CALL NEWPEN(l) 
C PLOT SPECTRAL  ESTIMATES 

X=AL0G10  (FIRSTK/X0RG)*3.0125 
TPP=ADATA(2)/Y0RG 
IF(TPP.EQ.0.0)TPP=1.E-15 
IF(TPP.LT.l.E-20) TPP=ABS(TPP) i'    -^ 
Y=-0.5+AL0G10(TPP)*l.35714 
CALL  PL0T(X,Y,+3) 

C CALL SYMBOL   ( X,Y,.05,32,0.0,-1) 
DO  238 J=3,IA-1 ;: 
XJ=J-1+N(2) •   , 
X=AL0G10((XJ*DELK)/X0RG)*3.0125 I 
TPP=ADATA(J)/YORG '    I 
IF(TPP.EQ.0.0)TPP=1.E-15 
IF(TPP.LT.l.E-20) TPP=ABS(TPP) i 
Y=-0.5+AL0G10(TPP)*l.35714 ■ 

238 CALL  PL0T(X,Y,+2) 
C 238 CALL  SYMBOL   (  X,Y,.05,32,0.0,-2) 

CALL  PLOT(0.0,0.0,+3) I 
IF(IPLPSS.EQ.l) GO TO  330 i 
IF(LPASS.EQ.l) GO TO  330 ^-        ! 
IPLPSS=1 ; 
BO=XINTER , 
B1=SL0PEX 

r ^ri'-rSM!^,'^^ ^^^^   ^^ '^ ^^^^ ^^ ^PA^^AL  DOMAIN ESTIMATE   IS  DESIRED l* bU   lU  603 
C PLOT AX.IS 

330 IF(ANORM.EQ.l.O)  GO TO  333 
CALL AXES(0.,-.5,'NORMALIZED AMPLITUDE(IN KM)',27,9 5 90 0 

*,1.3514,10.0,0.0,-1) .^/,y.3,yu.u 
GO TO 332 

^^V?'-'-,K?i!^5i°;»;-5''P^^^^°^   ^^^ KILOMETERS)',25,9.5,90.0 ',i.Jbi4,10.0,0.0,-1) 
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332 CALL AXES(0.,-0.5,'FREQUENCY(CYCLES/KIL0METER)',27.12.2,0.0 
*,3.0125,10.0,0.0, -1) 
CALL SYMBOL(4.0,-1.4,.32,ITG,0.0,30) 
AY0RG=KY0RG 
AX0RG=KX0RG 
DO 362 J=l,8 
AA=J-1 
Y=(1.35714*AA)-0.37 
FPN=AY0RG+AA 

362 CALL NUMBERC-.25.Y,.16,FPN,90.0,-1) 
DO  363 0=1,5 
AA=J-1 
X=(3.0125*AA)+0.20 
FPN=AXORG+AA 

363 CALL NUMBER(X,-.25,.16,FPN,0.0,-1) 
00  364 J=l,4 
IB=KX0RG+J-1 
00  364 JC=2,9 
AC=JC 
AA=AC*10.0**IB 
X=AL0G10(AA/X0RG)*3.0125 
CALL  PLOT(X,-.5,3) ' ' 

364 CALL  PLOT(X,  -.46,2) 
DO  365 J=l,7 : .        ' 
IB=KY0RG+J-1 
DO  365 JC=2,9 
AC^JC 
AA=AC*10.0**IB 
Y=-0.5+AL0G10(AA/Y0RG)*l.35714 
CALL  PL0T(0.0,Y,3) 

365 CALL  PL0T(-.04,Y,2) 
CALL  PLOKO.0,-1.0,3) 
CALL  PLOKO.0,-1.0,3) 

C 
C    INTERACTIVE ROUTINE TO MODIFY INPUT STRING 
C 

WRITE(6,3641) 
3641 F0RMAT(T70,'  ARE   YOU SATISFIED WITH THE  DATA SET  BOUNDARIES?'/ 

*T70,'     ENTER E TO END RUN') 
READ(5,3652)  RESPON 
IF(RESPON.EQ.'E') GO TO 487 
IF(RESPON.EQ.'Y') GO TO  3650, 
WRITE(6,3642) 

3642 F0RMAT(T70,'  WOULD YOU LIKE TO ELIMINATE THE ENTIRE SEGMENT?') 
READ(5,3652)  RESPON 
IF(RESPON.EQ.'N') GO TO  3644 
CALL ERASE 
GO TO  3658 

3644 WRITE(6,3643) 
3643 F0RMAT(T70,'  ENTER FIRST,SECOND LOCATIONS(IN KM) FOR TRUNCATION') 

READ(5,*)FIR,SEC 
NFIR=FIR/GRIDKM 
IF(NFIR.LT.O)  NFIR=0 
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NSEC=SEC/6RIDKM 
IF(NSEC.GT.NP) NSEC=NP 

C RECREATE  DATA ARRAY 
DO  3645  ICHG=1,NP 
L0CCHG=ICH6+NFIR 
DATA(ICHG)=SDATA(LOCCHG) 
IF(LOCCHG.EQ.NSEC)  GO TO  3646 

3645 CONTINUE 
C        INTERPOLATE NEW LAT i LON 

3646 SDIFF=FLOAT(NSEC)/FLOAT(NP) 
FDIFF=FLOAT(NFIR)/FLOAT(NP) 
FLAT=DECDEG(ISDLAT,SELAT) 
FLON=OECDEG(ISOLNG,SELNG) 
SLAT=DECDEG(IDLAT,EELAT) 
SLON=DECDEG(IDLNG,EMLNG) 
FNLAT=((SLAT-FLAT)*FDIFF)+FLAT 
SNLAT=((SLAT-FLAT)*SDIFF)+FLAT 
FNLON=((SLON-FLON)*FDIFF)+FLON 
SNLON=((SLON-FLON)*SDIFF)+FLON 

C        RECONSTRUCT  INTO DEGREES AND MINUTES 
CALL  DEGMIN(FNLAT,ISOLAT,SELAT) 
CALL  DEGMIN(FNLON,ISDLNG,SELNG) 
CALL  DEGMIN(SNLAT,IDLAT,EELAT) 
CALL  DEGMIN(SNLON,IOLNG,EMLNG) 
NP=NSEC-NFIR 
CALL ERASE 
GO TO 2451 

C 
C     INTERACTIVE ROUTINE Fo MODIFY REGRESSION FIT TO SPECTRUM 

3650 WRITE(5,3651) 
3651 F0RMAT(T70,'  ARE  YOU SATISFIED WITH THE  REGRESSION FIT?') 

READ(5,3652)RESPON 
3652 FORMAT(Al) 

IF(RESPON.EQ.'Y') GO TO 3656 
WRITE(6,3653) 

3653 F0RMAT(T70,'  ENTER LOG(LOWER FREQUENCY),LOG(UPPER FREQUENCY)') 
READ(5,*) CT0FF1,CT0FF2 
CALL ERASE ' 
LPASS=1 I 
GO TO 4911 

3656 CT0FF1=CT1SV 
CT0FF2=CT2SV 
CALL ERASE 
LPASS=0 

WRITE(14,399)NP,IPNUM,ISDLAT,SELAT,ISDLNG,SELNG,IDLAT,EELAT. 
1IDLNG,EMLNG,B1SAVE,B0SAVE ♦ . . , 

399 F0RMAT(I5,I8,4(1X,I4,F6.2),F6.3,E9.3) 
C PLOT PHASE SPECTRUM 

3658 IF(KPHA.NE.l) GO TO 581 
CALL  PLOT(15.0,0.0.-3) 
X=AL0G10(DELK/X0RG)*3.0125 
Y=ABS(PHASE(2)/30.0) 
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IF(IPHA.GT.O) Y=Y*30.0/APHA 
IBB=4 

IF(Y.LT.8.0.AN0.PHASE(2).GE.0.0) GO TO 552 
IF(Y.LT.8.0.AND.PHASE(2).LT.0.0) IBB=2 
IF(Y.GE.8.0) Y=8.5 
CALL SYMB0L(X,Y,.05,IBB,0.,-1) 
GO TO 553 

552 CALL PL0T(X,Y,3) 
553 DO 571 J=3,JX 

XJ=J-1 

X=AL0G10((XJ*0ELK)/X0R6)*3.0125 
Y=ABS(PHASE(J)/30.0) 
IF(IPHA.GT.O) Y=Y*30.0/APHA 
IBB=4 

IF(Y.LT.8.0.AND.PHASE(J).GE.0.0) GO TO 554 
IF(Y.LT.8.0.AND,PHASE(J).LT.0.0) IBB=2 
IF(Y.GE.8.0) Y=8.5 
CALL SYMB0L(X,Y,.05,IBB,0.,-2) 
GO TO 571 ; 

554 CALL PL0T(X,Y,2) 
571 CONTINUE 
486 CONTINUE 

:    COMPUTE AND PLOT SMOOTHED PHASE SPECTRUM 
IF(N(2).EQ.O) GO TO 579 
DO 572 I=NA,NB ^ 
IA=I-NA+1 
SUM=0.0 
DO 573 J=1,NA 
J1=I+J-1 ■ 
J2=I-J+1 

573 SUM=SUM+BDATA(J)*(PHASE(J1)+PHASE(J2)) 
572 SMPH(IA)=SUM-BDATA(1)*PHASE(I) 

IF(IPHA.GT.O) GO TO 544 
WRITE(I0UT.582) FIRSTK 

^^^ Go'^T0^545^"°°^"" ™^ SPECTRUM(DEG)-FIRST FREQ. = '.E8.3) 

544 WRITE(lOUT,546) FIRSTK 

IF(JCODE.LT.O) GO TO 581    ' 
CALL NEWPEN(l) 
X=ALOG10(FIRSTK/XORG)*3.0125 
Y=ABS(SMPH(2)/30.0) 
IF(IPHA.GT.O)  Y=Y*30.0/APHA 
IBB=4 

IF(Y.LT.8.0.AND.SMPH(2).GE.0.0) GO TO 548 
IF  Y.LT.8.0.AND.SMPH(2).LT.0.0)  188=2 
IF(Y.GE.8.0)  Y=8.5 
CALL  SYMBOL(X,Y,.05,IBB,0.,-l) 
GO TO 549 

548 CALL  PL0T(X,Y,3) "' 
549 DO  574 J=3,IA 

XJ=J-1+N(2) 

195 



X=AL0G10((XJ*DELK)/X0RG)*3.0125 
Y=ABS(SMPH(J)/30.0) 
IF(IPHA.GT.0)Y=Y*30.0/APHA - 
IBB=4 
IF(Y,LT.8.0.AND.SMPH(J).GE.0.0)  GO TO  550 
IF(Y.LT.8.0.AND.SMPH(J).LT.0.0)   IBB=2 
IF(Y.GE.8.0)  Y=8.5 
CALL SYMB0L(X,Y,.05,IBB,0.,-2) 
GO TO 574 -   ' 

550 CALL  PL0T(X,Y,2) 
574 CONTINUE 

C PLOT PHASE  AXIS 
579  IF(JCOOE.LT.O) GO TO 581 

C CALL NEWPEN(l) 
IF(IPHA.GT.O) GO TO 547 
CALL AXES(0.,0.,14HABS  PHASE(DEG),14.6.,90.,1.,0.,30.,-1) 
GO TO 558 

547 CALL AXES(0.,0.,20HABS  PHASE(DATA  INT.),20,8.,90.,1.,0.,APHA,-1) 
558 CALL AXES(0.,0.,ITG,+30,12.2,0.,3.0125,10.,0.,-1) 

CALL  SYMB0L(2.0,-.2,.14,33HTRIANGLE   INDICATES  NEGATIVE   PHASE,0.0, 
1  33) 

581 CONTINUE 
IF(N(2).EQ.0) GO TO  331 

C COMPUTE AMPLITUDE SPECTRUM OF SMOOTHING FILTER 
DELX= 0.01 
DO  239 J=l,51 
AJ=J-1 
XJ=AJ*0ELX 
SUM=0.0 
DO  240  1=2,NA 
AI=I-1 

240 SUM=SUM+2*BDATA(I)* C0S(2.*PI*AI*XJ)      ' 
DATA(J)= SUM+BDATA(1) 

239 C0ATA(J)=XJ 
WRITE(lOUT,241) CUT(2),H(2),N(2) 

241 FORMATC  AMP.SPECT.OF SMOOTHING FILTER  CUTOFF=',F5.4, 
1' H=',F5.4,' N=' 13) 
IF(ILIST.NE.'l) WRlfE(I0UT,242)(CDATA(I),DATA(I),I=l,51) 

242 F0RMAT(8(F5.2,F8.3)) 
331 WRITE(lOUT,243) JSET 
243 FORMATC    END OF DATA SET NO.',13) 

C END FILE  12 
C END FILE  12 

IF(JSET.EQ.NSETS) GO TO  244 ■   - ' 
JSET=JSET+1 
IF(JCODE.LT.O) GO TO 245 

C CALL  PLOT(15.0,0.0,-3) 
GO TO 245 

244 IF(JCODE.LT.O) GO TO 487 
CALL PLOT(0.0,0.0,999) 

487 END FILE 14 
END FILE 14 
STOP 
END 
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C   THIS SUBROUTINE IS A SUPPLEMENT TO FFTID PROGRAM 
C    AND DRAWS A PROFILE OF BATHYMETRIC DATA 
C    C0MPILER(DIAG=3) 

SUBROUTINE BATHXS(DATA,NPTS,GRIDKM) 
DIMENSION DATA(l) 

C   CONVERT DEPTHS IN KILOMETERS TO METERS 
C    WRITE(I0UT,3)(DATA(I),I=1,10) :" 
C 3 FORMATC M0(F10..5,1X)) 

DO  5  I=1,NPTS 
5  DATA(I)=DATA(I)*1000. 

CALL  PLOT(0.,10.,-3) 
C FIND MAXIMUM AND MINIMUM DEPTH 

DEPMIN=0.0 
DEPMAX=0.0 
00  10 I=1,NPTS 
IF(DATA(I).LT.DEPMIN)  DEPMIN=DATA(I) 

10 IF(DATA(I).GT.DEPMAX) OEPMAX=DATA(I) 
CC         ROUND TO NEAREST  100 

DEPMAX=(AINT(DEPMAX/100.)*100.)+100 
DEPMIN=(AINT(DEPMIN/100.)*100.)-100 
IF(GRIDKM.GT.0.0001)  GO TO  11 ' 
DEPMAX=-1.0 
DEPMIN=1.0 
GO TO 12 

11 IF(GRIDKM.GE.O.Ol)  GO TO  12 
DEPMAX=-20.0 
DEPMIN=20.0 

12 YSCALE=-(DEPMAX-0EPMIN)/4. 
C        SETUP AXES 

^CALL  AXES(0..0..'   DEPTH   (IN METERS ) M8.4.0,90. .l.OO.DEPMAX.YSCALE 

XDIST=FLOAT(NPTS)*GRIDKM 
XSCALE=12.805/XDIST 
XINC=1.0 

55 XTICK=XSCALE 
56 IF(XTICK.GT.l.) GO TO 60 

XINC=2.*XINC 
XTICK=2.*XTICK 
60 TO 56 

60 IF(GRIDKM.GT.0.0001) GO TO 70 

*?S'o.fo!i?-°'°-°''°'''''^' ^^' °-^ METERS)'.24.12.805.0.O.XTICK 
GO TO 90' 

70 IF(GRIDKM.GT.0.01) GO TO 80 

*^rO,Lo!3r'°'°''°^^'^''^^ ^^' ^°° METERS)-.24.12.805,0.O.XTICK 
GO TO 90* 

'°srO.?iNc!-ir-°''°''''"'' (IN KILOMETERS)-.24.12.805.0.0.XTICK 
90 00 100 I=i.NPTS 

YVAL=-((DEPMAX-DATA(I))/YSCALE) 
XVAL = (FLOAT(I)*GRIDKM )*XSCALE 
IF(I.EQ.l) CALL PL0T(0.0,YVAL,3) 
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100 CALL PL0T(XVAL,YVAL,2) 
CALL PL0T(0.,-10.,-3) 

CONVERT BACK TO KILOMETERS 
00 105 I=1,NPTS 

105 DATA(I)=DATA(I)/1000. 
RETURN 
END 
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SUBROUTINE  PRVOUKNP,DEPTH, ITG,XINTER,SLOPE,GRID) 
DIMENSION  DEPTH(5000) 

COMMON/BOUND/I,IPNUM,ISDLAT,SELAT,ISDLNG,SELNG,IDLAT.EELAT, 
1IDLNG,EMLNG 

CHARACTER*4  ITG(8) - 
READER ROUTINE  FOR  DEPTH OUTPUT FROM  PROVINCE  PICKER 

READ(13,5,EN0=500)   (ITG(I),L=1,6),SLOPE,XINTER,GRIO.NP 
5 F0RMAT(5A4.F7.3,1X,E9.3.1X,F7.4,I5) 
NP=NP+1 
ITG(7)='   ' . . 
ITG(8)=' 
WRITE(5,55,END=500) (IT6( I ),I=1,6) ,SLOPE,XINTER.GRID,NP 

55 F0RMAT(T70,6A4,F7.3,1X,E10.5,F7.4,I5) 
READ(13,50)I,IPNUM,ISDLAT,SELAT,ISDLNG,SELNG,IDLAT,EELAT 
1IDLNG,EMLNG,RMS 

50 F0RMAT(I5,I8,4(1X,I4,F6.2),F10.4) 
READ(13,6) (DEPTH(I),I=1,NP) 

6 FORMAT(10F8.6) 
IF(NP.GT.2048) NP=2048 
READ(13,7) CHECK 

7 F0RMAT(F8.2) " 
IF(CHECK.NE.9.999999) PRINT 8 

8 FORMATC NINES RECORD DOES NOT CHECK') 
GO TO 900 

500 DEPTH(1)=9.999999 ' " 
900 RETURN 

END 
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SUBROUTINE  PARSVL(DATA,NP,INP,AVE,ANOIS,NWGT,ANORM) 
C    ROUTINE TO COMPUTE THE  AVE  VALUE OF THE LAST  10 PERCENT OF THE 
C    HARMONICS(AVE) OF AN  AMPLITUDE  SPECTRUM(DATA)  AND  USE  THIS  VALUE  WITH 
C    PARSEVALS FORMULA TO COMPUTE THE  RMS WHITE NOISE LEVEL(ANOIS). 
C** NP=THE  NO.OF ORIGINAL   PTS   INPUT TO THE  FFT  USED TO COMPUTE  DATA ARRAY 
C**  INP=THE  NO.OF  POINTS TO A POWER OF  2 USED FOR THE  FFT 
C** DATA= UNNORMALIZED FFT AMPLITUDE  SPECTRUM WITH  UNITS OF 
C**    INPUT  UN ITS/CYCLE/DATA  INTERVAL  AND   IS OF LENGTH(INP/2)+l-2*NWGT 
C** NWGT=LENGTH OF SMOOTHING FILTER YOU USED ON  YOUR FFT  -NWGT..0..+NWGT 

DIMENSION  DATA(l) 
IF(ANORM.EQ.l.) GO TO  11 - ^ 
00  10  1=1,NP 

10 DATA(I)=DATA(I)/ANORM 
11 JX=INP/2+l-2*NWGT 

JT=JX-(JX/10) 
X=0.2*INP 
JX=X-2.0 
T=0.13*INP 
JT=T-2.0 
DIF=JX-JT+1 
ANP=NP 
AVE=0.0 
AVEPS=0.0 
DO  1  I=JT,JX 
AVE=AVE+DATA(I) 

1 AVEPS=AVEPS+DATA(I)**2 
AVE=AVE/DIF 
AVEPS=AVEPS/DIF 

C    PARSEVALS FORMULA  IS MEAN  SQ NOISE=(INP*AVEPS)/(NP*INP) 
ANOIS=SQRT(AVEPS/ANP) 
IF(ANORM.EQ.l.) RETURN 
DO  12  1=1,NP 

12 OATA(I)=DATA(I)*ANORM 
RETURN 
END 
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SUBROUTINE TSHIFT(M,DATA,A,DELF) 
C*****THIS SUBROUTINE CONTAINS 25 STATEMENTS 

C-*-follRllR'TRANSFORS''''' °' ''"' '"''' °' '''' ''° '"''''''' ''^''  °^ "^"^ 

r!!!!!'^ "" ^S'^IK^^  ^  ^"^^^^ ^^ ^QU'^'- TO THE NUMBER OF REAL OR IMAGINARY PARTS C*****    OF THE FOURIER TRANSFORM. U-H^HKI ran 1:5 

S***S^^- YAy?^^^M?pr-T?^'^Tn''!SILf^ °°° ^^°^'^' IMAG-INARY PARTS ARE EVEN. 
WHICH  "" ^"^ ''^^'^^^'^ TRANSFORM OF A FUNCTION 

C*****    HAS BEEN SHIFTED A DATA INTERVALS IN THE +X DIRECTION,SIGN OF A IS 

C*****DELF -= NORMALIZED FREQUENCY INCREMENT. 
DIMENSION DATA(l) 
M2=2*2**M 
PI=3.1415926536 
SFT=2.0*PI*A*DELF 
DO 1 I=1,M2,2 
J=I+1 
TRE=DATA(I) 
TIM=DATA(J) 
K=I/2 
ARG=SFT*K 
CN=COS(ARG) 
SN=SIN(ARG) 
DATA(I)=TRE*CN-TIM*SN 

1 OATA(J)=TIM*CN+TRE*SN 
RETURN 
END 
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Appendix E 

In Chapter 6, a simple model of an anlsotroplc surface was created, 

and the variation of Its spectral characteristics as a function of azi- 

muth was derived analytically and confirmed by empirical results. The 

surface was constructed by generating a random signal of known spectral 

properties and extending each value of the series into the second dimen- 

sion.  In the resulting relationship, 

A = a(9).s^(^> 

The proportionality factor a(e) was shown to vary as a sinusoid and b(9) 

remained constant over all 6. Results from multlbeam-sonar-derlved 

bathymetry Indicated that this simple model is adequate to describe some 

actual surfaces on the earth, such as the Gorda Rise spreading center. 

Beyond this very simple model, a more elaborate surface can be gen- 

erated by summing several signals of differing characteristics at a 

variety of orientations. If one assumes that the simple corrugated 

surface presented in the elementary model of Chapter 6 is the result of 

a dominant, unidirectional process, then these composite surfaces would 

represent areas of the sea floor where several geological processes have 

been active, perhaps acting in different directions. The Gorda Rise, 

particularly at the ridge crest, is dominated by the processes associ- 

ated with crustal formation, and its relief does appear to conform to 

the one-process surface model. 

The relief of the Mendoclno Ftacture Zone shown in Figures 4-7-10, 

although only represented by spectra from two azimuths, indicates a 
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clear difference In spectral slope (b(0)), which would not be expected 

In a simple surface dominated by one process. In fact, the main east- 

west trend of the fracture zone Is produced by tectonic processes which 

are reflected in profiles collected in a north-south orientation. The 

various mass-wasting processes acting down this slope produce a differ- 

ent style of relief which is evident in profiles collected east-west. 

The bathymetry shown in Figure 6-10 from the continental slope might 

also be the results of two processes at work. This is reflected in the 

possible variation of b(9) as shown in Figure 6-11. 

No attempt will be made to derive a general mathematical (geometri- 

cal) form for the azlmuthally-dependent spectra of these multiple com- 

ponent surfaces. Such a treatment would be beyond the scope of this 

study. However, an insight into the nature of these surfaces can be 

gained by examining a few examples. All of the examples following are 

generated using the same algorithms. First, two random signals of spec- 

ified spectral characteristics (a and b) are generated using an inverse 

FFT method. One signal becomes the initial row, and the other the ini- 

tial column, of a 128 x 128 element matrix. Each element of the matrix 

is then computed by summing the appropriate row and column element. 

This method results in a surface which when sampled at 0" azimuth, pro- 

duces one of the input signals displaced by a random constant. For the 

90" azimuth, the other input signal is sampled, similarly displaced. To 

study the spectra of the combined signals in other azimuths, the matri- 

ces were sampled and analyzed in an identical fashion to the bathymetry 

grids of Chapter 6. 

Four examples of two spectral component surfaces are shown in Fig- 

ures E-1 through E-4.  A variety of combinations were used.  Figure E-1 
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Figure   E-1 
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Artificially generated surface composed of two identical 
orthogonal trends, both with spectral slope b= -1.5 and 
spectral intercept a= 1.0. Viewpoint is from' the 
southwest. Below, the variation of parameters a and b are 
shown versus azimuth. 
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Illustrates the characteristics of a surface in which two signals of 

Identical spectral slope (b = -1.5) and intercept (a = 1.0) were com- 

bined in orthogonal directions. Arbitrarily assuming a viewpoint from 

the southwest for all examples, the input signals represent pure signals 

in the east-west and north-south orientations. The resulting surface 

shows a clear northwest-southeast trend. Another realization might 

yield a northeast-southwest trend. With only a knowledge of the result- 

ing surface, an investigator might infer a single process acting at 45** 

or 135° azimuth. The trend actually results from the vector sum of two 

orthogonal processes. 

The distribution of spectral parameters with azimuth clearly 

reflects the departure of this surface from a one process model. The 

spectral slope parameter (b) does show the designated value of -1.5 at 

azimuths of 0°, 90" and 180°, as it must. The corresponding intercept 

(a) parameters dj.30 correspond to the input value of 1.0, indicating 

that these profiles represent uncontaminated samples of the input sig- 

nals. At intermediate azimuths, however, both parameters are consis- 

tently higher than those of the input signal. Whereas in the simple 

model of Chapter 6 the slope (b) parameter remains constant with azi- 

muth, the same parameter shows two clear maxima in the range 0° to 180°. 

The intercept (a) parameter also shows two maxima, rather than the 

single maximum of the corrugated surface model. Figure E-2 presents a 

similar surface in which the intercept (a) parameter in the east-west 

direction has been increased to 1.2. The variation of spectral param- 

eters with azimuth is also very similar to that shown in Figure E-1, 

however the variation of both a and b is amplified. 
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Figure E-2 Artificially generated surface composed of two orthogonal 
trends, both with spectral slopes of b= -1.5, and a=1.0 in 
the N-S direction, a=1.2 in the E-W direction. Viewpoint 
is from the southwest. The variation of a and S parame- 
ters with azimuth are plotted below. 
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In Figure E-3, the Intercept terras (a) are again set equal, but the 

spectral slopes (b) of the component signals differ. The north-south 

component has spectral slope b = -1.5, while the east-west component has 

a spectral slope b = -1.0. The artificial surface was designed to mimic 

the bathymetry of the Mendoclno Fracture Zone. The north-south signal 

dominates the surface, as reflected in an east-west trending contour 

chart. The wavelength associated with the intercept term a, was arbi- 

trarily selected to correspond to a wavelength of two data points. 

Because of the higher angle of negative slope in the spectrum of the 

north-south profile, this trend contains higher amplitudes in all fre- 

quencies lower than one-cycle-per-two-data intervals. Only at the very 

southern limit of the surface, where the north-south signal is rela- 

tively constant,   can  the orthogonal  trend be  detected. 

At higher frequencies, the spectra of the two component signals 

cross over, and the east-west signal contains higher amplitudes and dour 

inates the surface topography. This somewhat complicated set of circum- 

stances is not outside geological experience. For a terrestrial exam- 

ple, envision a long ridge of several kilometers width and perhaps one 

thousand meters height, oriented east-west. On the side of this ridge 

are a series of north-south trending streams and gullies with relief of 

tens-of-meters which shed the runoff from the ridge. If one were to 

travel in the north-south direction, the effect of the streams would be 

minimal, and the long wavelength shape of the ridge would present the 

only obstacle. If one were to travel in the east-west direction on the 

face of the ridge, the obstacles in the terrain would be dominated by 

the lower amplitude, but higher frequency streambeds. This difficulty 

of    travel   represents    in   a   very   direct   sense   the   concept   of   surface 
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Figure E-3 Artificiany generated surface composed of two orthogonal 
trends with identical intercepts of a= 1.0, but spectral 
slopes of b= -1.5 in the N-S direction and b= -1.0 in the 
E-W direction. Azimuthally dependent spectral parameters 
are plotted below. 
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roughness. The artificial surface shown in Figure E-3, as well as the 

Mendocino Fracture Zone shown in Chapter 4, are analogous to this hypo- 

thetical example. 

The computed spectral parameters shown below in Figure E-3 also 

reflect the complexities of this surface. The a(9) parameters appear to 

vary regularly with azimuth, although not following the cosine curve 

derived by simple regression, the variation occurs in spite of the fact 

that the input signals have Identical a's. Only at exactly 90° azimuth, 

does the a parameter jump to the input value. The b(9) values also fol- 

low a complex pattern which is not described by the Illustrated cosine 

curve. Extensive analytical geometry would be necessary to reach an 

understanding of these variations. 

A final artificial surface is presented as Figure E-4. In this 

case, both the spectral slopes (b) and intercepts (a) of the input sig- 

nals are different The construction is identical to that shown in Fig- 

ure E-3, with the exception that the intercept (a) parameter in the 

east-west direction has been increased to 2.0. Between the input values 

at 0", 90**, and 180°, the variation of the spectral parameters appears 

even more complicated than the results from Figure E-3. The combination 

of signals at oblique azimuths, or the combination of more than two sig- 

nals, would result in an even more complex pattern. 

With the insight gained by examining these artificially generated 

surfaces, a more complete analysis of the anlsotropy of the Mendocino 

Fracture Zone can now be conducted. Figure E-5 presents a contour chart 

of the surface used in this analysis, which represents a subarea of the 

base chart shown in Figure 4-7. The digital data, collected by the SASS 

multibeam sonar system, is grldded at a spacing of 0.05 minutes of latl- 
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tude and longitude. Figure E-6 shows a graphic representation of this 

surface and Its spectral parameters as a function of azimuth, In the 

same format as the artificially generated surfaces shown in Figures E-1 

through E-4. 

Compare the bathymetric surface shown in Figure E-6 to the artific- 

ially generated surface shown in Figures E-3 and E-4.  The overall mor- 

phologies are quite similar, with a longer wavelength, higher amplitude 

component in the north-south direction relative to the orthogonal trend. 

This similarity in morphologies is also expressed as a similarity in the 

azimuthally dependent roughness models, although the parameters gener- 

ated from the bathymetric surface are somewhat noisier than the artifi- 

cially generated examples.  In all cases, the slope parameter b is not 

constant with azimuth, as was the case for the surfaces studied in Chap- 

ter 6.  Like the artificial surfaces of Figures E-3 and E-4, the spec- 

tral slope is approximately b - -1.5 in the 0" or 180° azimuth and 

approaches b = -1.0 for the 90* azimuth.  The Intercept parameter In 

Figure E-6 reaches its maximum at 9 =90', similar to the example in 

Figure E-4.  In the case of the Mendoclno Fracture Zone, this parameter 

is approximately doubled in the east-west direction over the north-south 

direction.  This indicates that for wavelengths near 1 km, the Fracture 

Zone surface is twice as rough for 9 = 90' as for 9=0°.  In longer 

wavelengths, this relationship is reversed as evidenced by the much 

higher total relief In the north-south direction.  Such a reversal is 

only possible for near orthogonal trends with different spectral slopes. 

Sinusoidal regression lines, which comprise the basic model of Chapter 

6, are included in Figure E-6 to emphasize how poorly this simple model 

describes the two-trend case. 
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Figure E-4 Artificially generated surface composed of orthogonal 
trends with spectral parameters b= -1.5, a= 1.0 in the N-S 
direction, and b= -1.0, a= 2.0 in the E-W direction. Azi- 
muthally dependent spectral parameters are plotted below. 
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Figure E-5 Contour chart of a segment of the Mendocino Fracture Zone. 
Automatically generated contours are based on SASS muUibeam 
sonar data gridded at 0.05 minutes of latitude and 
longitude. 
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tude and longitude. Figure E-6 shows a graphic representation of this 

surface and its spectral parameters as a function of azimuth, in the 

same format as the artificially generated surfaces shown in Figures E-1 

through E-4. 

Compare the bathymetric surface shown in Figure E-6 to the artific- 

ially generated surface shown in Figures E-3 and E-4. The overall mor- 

phologies are quite similar, with a longer wavelength, higher amplitude 

component in the north-south direction relative to the orthogonal trend. 

This similarity in morphologies is also expressed as a similarity in the 

azimuthally dependent roughness models, although the parameters gener- 

ated from the bathymetric surface are somewhat noisier than the artific- 

ially generated examples. In all cases, the slope parameter b is not 

constant with azimuth, as was the case for the surfaces studied in Chap- 

ter 6. Like the artificial surfaces of Figures E-3 and E-4, the spec- 

tral slope is approximately b = -1.5 in the 0° or 180° azimuth and 

approaches b = -1.0 for the 90° azimuth. The intercept parameter in 

Figure E-6 reaches its maximum at 9 =90°, similar to the example in 

Figure E-4. In the case of the Mendocino Fracture Zone, this parameter 

is approximately doubled in the east-west direction over the north-south 

direction. This indicates that for wavelengths near 1 km, the Fracture 

Zone surface is twice as rough for e = 90° as for 9=0°. In longer 

wavelengths, this relationship is reversed as evidenced by the much 

higher total relief in the north-south direction. Such a reversal is 

only possible for near orthogonal trends with different spectral slopes. 

Sinusoidal regression lines, which comprise the basic nwdel of Chapter 

6, are included in Figure E-6 to emphasize how poorly this simple model 

describes the two trend case. 

213 



1000- 

c o 

a 
2000 

3.0- 

T   2.0- 

G '0 

z 0.0- 

-1.0- 

LU 

0      a      a 

I— u 
LU 

85 

--2 
si 

T    I    I    I    I     I    I    I    I    \    I    I    1    I    1—I—r~ 
0     20     40     60     80     100     120     140    160     180 

AZIMUTH (degrees) 

Figure E-6 Graphic representation of the Mendocino Fracture Zone 
bathymetry shown in Figure E-5 is shown above (viewpoint 
from the southwest). Shown below are the spectral estimates 
versus azimuth for this surface. Compare this example to 
the artificially generated surfaces shown in Figures E-3 and 
E-4. 
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DESCRIPTION OF TERMS 

This informal glossary is included to aid readers who represent 
diverse backgrounds in geology, geophysics, acoustics, statistics, and 
other fields. The descriptions of terms, phrases, and acronyms included 
are intended to reflect their use within this report, rather than a 
general or rigorous definition. 

Amplitude 
The departure of a periodic function from its mean. 

Anisotropy 
Condition of having different properties in different directions. 

Band-limited 
Condition in which a signal contains a finite range of frequency. 
With reference to Fourier analysis, this band ranges from the fun- 
damental frequency to the Nyquist frequency. 

Boxcar function 
A function which equals unity over some finite length and zero 
everywhere else. The multiplication of this function with an infi- 
nite series represents mathematically the sampling of a finite 
series from an infinite process. Sometimes called a rectangle 
function. 

Chl-square distribution 
The probability distribution for the estimation a'-ror of the 
power spectrum. Due to the form of the distribution, the errors 
associated with the amplitude spectrum appear constant when plotted 
on log-transformed axes. 

Coherent signal 
A signal in which the phase relationship of the various frequency 
components is retained. 

Convolution 
A mathematical operation which is equivalent to multiplication in 
the opposite transform domain. 

Deterministic model 
A numerical model in which the mathematical parameters represent 
specific measurable quantities of the process under study. 

Ensemble average 
The mean value of a group of repetitive samplings for a given sta- 
tistical measure. 

FFT 

Fast Fourier Transform. A numerical algorithm for estimating the 
Fourier transform with a greatly reduced number of operations. 
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Fractal dimension 
A topological term which refers to a dimension which which may be 
either integer or fractional. The fractal dimension (D) is related 
to the spectral slope (b) by b=-(5/2-D). Refer to Mandelbrot 
(1982) for a complete discussion. 

Functional form 
Refers to the type of function or functions used as a model for the 
distribution of data in a regression analysis. The term does not 
apply to the calculated parameters used to describe a specific data 
set. 

Fundamental frequency 
The lowest frequency treated in a Fourier analysis, corresponding 
to the inverse of the length of data. 

HEBBLE 
High Energy Benthic Boundary Layer Experiment 

Isotropy 
Condition of having the same properties in all directions. 

Leakage 
In spectral analysis, the transfer of energy from one frequency 
into other frequency bands. 

Linear-linear space 
A two-dimensional coordinate system in which both orthogonal axes 
represent simple evenly-spaced scales. Usually called a rec- 
tangular Cartesian coordinate system. 

Log-log space 
A two-dimensional coordinate system in which both orthogonal axes 
are scaled by evenly spacing the logarithm of the linear scale. In 
this study, all such transformations use base-ten logarithms. 

Magnetic anomaly 
• The departure of the measured magnetic field from some low fre- 

quency model. 

Markov process 
A stochastic process in which the conditional probability state is 
unaffected by the historical state of the system. 

Multibeam sonar 
A bathymetric sounding system in which several discrete soundings 
of the sea floor can be derived by a single discharge of acoustic 
energy. 

NAVOCEANO 
United States Naval Oceanographic Office 

Non-parametric statistics 
Statistical theory in which the probability distribution of the 
underlying data is not assumed. 
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Nyquist frequency 
The highest frequency treated in a Fourier analysis, corresponding 
to the inverse of twice the data spacing. 

Orthogonal 
An orientation in which all axes intersect perpendicularly. 

Phase 
The location of a periodic function along an axis relative to 
some arbitrary origin. 

Planetary Rossby waves 
A large-scale, stable wave motion in the global ocean. 

Power 
The squared amplitude of a periodic function. 

Power law 
A mathematical relationship of the form y=ax''. This function 
plots linearly in log-log space. 

Prewhitening 
A technique which reduces the effect of spectral leakage in ana- 
lyzing non-white-noise signals. 

Process (geological) 
A natural continuing activity or function. 

Process (statistical) 
Any quantity which is defined in terms of its relationship to some 
independent variable, usually time or space. 

Provincing 
Techniques which divide a sample space into discrete regions based 
on some predefined statistical property. 

Random walk 
A stochastic process of independent increments. 

Regression model 
A functional description of a relationship between a dependent 
variable and independent variable(s), usually derived by the method 
of least-squares. 

Round-off error 
The level of uncertainty in a data set due to the finite number of 
digits retained. 

SASS 
Sonar Array Sub-System. A multibeam sonar system operated by the 
U.S. Navy. 

SEABEAM 
A commercially available multibeam sonar system. 
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SEAMARC-1 
A commercially available deep-towed geophysical instrument package. 

Sedimentary process 
Relief-forming process which involves the transportation of 
suspended material. 

Sine function 
The function y = sin(x)/x. 

Sinusoid 
A function having the form of a sine or cosine function, but with a 
variable phase value. 

Spatial frequency 
The inverse of wavelength. 

Spectral intercept 
The intersection of an amplitude spectrum with the amplitude axis. 
This term is specific to this report. 

Spectral slope 
The slope of an amplitude spectrum which has been plotted on log- 
log axes. This value becomes the exponent of spatial frequency 
following transformation to linear-linear space. This term is spe- 
cific to this report. 

Spreading center 
A region of the sea floor where recent crustal material is being 
formed. 

Stationarity 
Although rigorously defined in statistical theory, used in this 
report to imply relative constancy of a particular statistical 
parameter as a function of position; statistically homogeneous. 

Stereo-pair bottom photography 
A photogrammetric technique which allows the measurement of micro- 
relief on the sea floor by analyzing photographic images of a sur- 
face from offset viewpoints. 

Stochastic model 
A numerical model in which the mathematical parameters describe the 
process under study in terms of its random variability. 

Strike 
The bearing of the long axis of a linear trend. 

Tectonic process 
Relief-forming process which involves the deformation of the 
earth's crust. 

White noise 
A random series whose amplitude spectrum is constant with fre- 
quency. 
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