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A BEHAVIORAL SUMMARY FOR COMPLETELY RANDOM NETS

by Alan E. Gelfand

1. Introduction

Random switching net models have been employed in various

contexts to aid in understanding and simulating aspects of the

behavior of biological systems. two of the most notable examples

are neural net models and genetic net models. The former model

components of the central nervous system and are typically devel-

oped from formal, in the sense of McCulloch and Pitts (19143),

neurons. Discussions are given in Griffith (1971) and in Arbib

(1972). The latter model the genetic structure of cells and have

been presented in a series of papers by Kauffman (1969a, 1969b,

1970, 1971, 1974). Recently Cavender (1977) has noted that switch-

* ing net models can provide behavioral agreement with that of a

* wide range of biological organisms.

As Sherlock (19,79) notes, analytical limitations rather than

* lack of biological relevance have generally tended to hinder the

* impact of this type of modeling enterprise. However, for one

instance, that of a completely random switching net, virtually

* complete mathematical description can be provided. While completely

* random networks are not in themselves taken as plausible models,

they do offer behavioral benchmarks which demonstrate the need to

exercise structural and/or functional control over the net models.

That is, from knowledge of the behavior of very large completely

random switching nets, we learn how to formulate restricted net
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models exhibiting more (real World) plausible behavior. The utili-

zation of "threshold levels" for neurons in a neural net or of

"forcing inputs" to genes in a genetic net are illustrations of

the imposition of such control. The intent of this article is toi present a concise, accessible behavioral summary of the completely

* random situation. While some of the results in the sequel have

* been discussed by others, the primary objectives here are to unify,

clarify and simplify.

A switching net consists of a set of N elements having an

* associated interconnectance structure. Each element has binary

~ - response to input information and at any instant in time the net

is in one of 2N distinct states. The net operates on discrete

(clock) time such that its state at time t uniquely determines its

state at time t + 1. For a completely random net the choice of

successor state to a state is made via an equally likely selection

2from all 2 Npossible net states.

Since the number of net states Is finite and the net is

deterministic, given an arbitrary initial state, the sequence of

* states arising from this initial one must necessarily encounter a

state it had previously been in. Thereafter it must repeat this

intermediate sequence of states. Such a sequence of states is

called a cycle. The number of distinct states in the cycle is

* called the cycle length. For a given net, some (at least one)

. elements will be cyclic but others may be transient occurring

during a run-in prior to cycling. For a given net there may be an

assortment of cycles of varying lengths. Thus each net creates a
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cycle structure (or space) which, for small N, is typically

depicted through a state diagram.

Any net may be described in terms of its transition matrix.

That is, placing net states in one-to-one correspondence with the

integers from 1 through 2 N we can form a 2 N 2 Nmatrix T whose

entries T ij are such that

T ={1 if state i Is successor to state J
ij 0 otherwise

The transition matrix representation of a net shows that any net

may be viewed as a transformation from a set of n = 2 N elements into

itself. This description suffices for examination of the cycle

structure of a net but sacrifices the binary character of the net.

However in the completely random net the binary aspect is immaterial

and thus in the sequel we study the mathematically equivalent form

of the problem, the characterization of the cycle space of a random

transformation on a finite set. Griffith recognizes this equiva-

lence (sec. 8.2.3) in offering several behavioral results. Kauffman

does as well (1970) in discussing the results of simulations of

completely random nets. Amongst the important mathematical efforts

on this problem are the papers of Rubin and Sitgreaves (1954),

Harris (1960), Katz (1955), Kruskal (19514), Folkert (1955), Cull(l9a.,

1978), and Gontcharoff (19144). Chapter 14 of the book by Riordan

(1958) on cycles of permutations is directly relevant. As noted

earlier the reader may find some of the ensuing results across

these references.
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In concluding this section we return to the transition matrix,

T. By definition T has exactly one "1" per column. Suppose T

results in a cycle structure with k transient elements and m cycles

of length rl,r 2 ,r3 ,...,rm, respectively. Then Cull (1978) shows that the

characteristic polynomial of T, IT -)I I , where operations are per-

formed in the real field, will have the form

+ k m r i+ X n (X, - )
i=l

Clearly, Tr(T) gives the number of elements on cycles of length I

and more generally Tr(Tm ) yields the number of states on cycles

whose length divides m. Hence Tr(T n ) equals the number of states

on cycles and n - Tr(T n ) equals the number of transient states.

How may we obtain a matrix H from T such that Tr(H m ) eauals the

number of states on cycles whose length is exactly m? Let

Cm = {primes <m which appear in the prime representation of m)

(i.e. appear with a power > 1) and let Nm = number of elements in
N

C m . The numter of subsets of Nm is 2 m and the number of subsets

' " . ° . ° - " m " - " I " . • . o " - " . " o " . " a " , , . . . , • . . • . . . , . . • ,Im .-. . - m., - . . - , -. . . - .. . - - . . . . - . . . . . - , .- , - . . '. ' , . . . . . o - - > . . , . ., . ,
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of size k is (km ) E Nmk. At a given k let J index the subsets of

size k so that the 2 m subsets may be denoted by Ckj , k = 0,1,2,

...*Nm, J - 1,2,...,Nmk* Let gkJ equal m divided by the product

of all the elements in Ckj. Then

Theorem. For each m, m = 1,2,...,n, let

Nm  Nmk
H M I (_1)k TkJ

k=O J=l

Then Tr(H ) = number of states on cycles whose length is
m

exactly m.

Proof. A direct inclusion-exclusion argument.

2. Random Transformations and Cycle Structure Random Variables

The selection of a random (equally likely) transformation T

is conveniently accomplished as a sequence of n independent multi-

nomial trials where the jth trial chooses the successor to state J

in an equiprobable fashion from amongst the n elements. Then,

with respect to cycles of length 1, Tr(T) is distributed binomial

(n, 1) with limiting distribution Poisson (1). But what aboutn

longer cycles or, more generally, the nature of the cycle structure

of such a random transformation? We will examine the distributions

of:

(i) the number of cycles of a specified length

(ii) the number of cycles

, ,. . ,%. - ,,... ,... ... '.-. .o".-.. .-.-.. .- -, ...- "



(iii) the number of cyclic states

(iv) the length of a cycle.

These issues are not easily pursued through the matrices Tm and Hm .

We may readily study the moments of the random variables in

(i) - (ii) through the n x n array of random variables.

n nD 1 .. .. ...D l

nl nn

where

n Ji if state xi is on a cycle of length r

ri 0 otherwise.

Let

n(2)lDnA
(2)n,r D = number of states on a cycle of length r

(3) Bn,r - r 1 An,r - number of cycles of length r

n n 1 if state xi is cyclic(4) C i I ri =  0 if transient

n n

(5)AU -n a number of cyclic states
n ii nr i-l



n

(6) V B = number of cycles.
r~l n,r

For any fixed r the joint distribution of Dnl...,Dn orri rn

of any subset will be that of a collection of dependent inter-

changeable random variables. The marginal distribution of any

Dn is directly
ri

(7) P(D 1) = n-I (r-l)'. n- r  n-(r+l)(n
(7) p(Dni = 1) = (r-l)

ri (r-1)r nrr-rl n

where (n)r is the falling factorial of r terms starting at n.

Immediately, then (with - as n -)

(8) E(An,r ) = n-r (n)r , 1

(9) E(Bn,r ) 
= r- 1 n-r ( r  r- 1

(10) E(Cn) n 1  n-" n n-r (n)r  0

ral
n

(11) E(Un) - r n-r (n)r

(12) E(V ) n r I nr (n)
n r- n r

The limits imply that with increasing number of elements the

probability of any particular element being cyclic tends to 0, but

the expected number of cyclic states and of cycles tends to -.

To get moments of order m, we need the joint distribution of

%'%" % '%'; %..-.-...., , -,-.- •
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any subset of size m of the Dn For any pair, Dn i s Dn n we haveriri si

three cases: (i) r pO s, i 4 J, (ii) r = s, i J 3, (iii) r $ s,

i= J. For i) we have

PDn ,n = I)P(Dri-l Dn=1) = n(r+s+l)(n-i)-1 (n)r+s, r + s <> n

For (ii)
n- ( r + l ) ( n - l ) - l1 ( r - 1 ) ( n ) r + n - ( 2 r + l ) ( n - l ) - lI ( n ) 2r

, r<n/2

P(Dn .1, Dn =1) n-r+l (n-l)-r(r-l)(n) n/2 < r < n

0 , r > n.

For (iii)

P(Dn 1D = 1) = 0.
ri si

In each case using the marginal, (7), we may complete the joint dis-

tribution. Thus covariances between any pair of Dn may be gottenri

and variances and covariances for the variables in (2) - (6) as

well. In particular An,r and An, s (also Bn,r and B n,s ) are nega-

tively correlated but asymptotically uncorrelated. Also as n - -

var(Anr) + r, var(Bn,r) -l r-1 and var(Cn) _ 0. Var(Un). - and

var(V n ) * m but these are most easily shown using results in

Section 4.

As to the joint distribution of any subset of size m of the

Dnri' suppose first that all m variables are in the same row of (1).

Taking mr < n and using the interchangeability of the variables,

---', ' "-'. . -." " " "-". "," -'-" •" " .-'-.......................................-.-•.".".................'-
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we require

Pn,m,r P(States al...,am each on a cycle of length r)

nDn Dn =1

- P(D n 1, D = 1,..., D )

Consider all possible partitions of m with no part greater than r.

If a given partition has parts m1 , ... ,m j, let n(m,...,mij) be the

number of ways to allocate m distinct objects into j like cells

with mi in cell i ( mJ= mi = m). Also associate with
S1 1 2,...,m

the event Enr(ml,...,'mj) defined by (states al,...,am on the same

cycle of length r, states am1+l,...,am1+m 2 on the same cycle of

length r, etc.}. If m is the set of all partitions of m and

J is the set of all partitions of m with no part greater than
m,r

r, then

P n£~ n(ml,...,m j ) P(E nr (mls I,  ))

m,r

where

P(E J)[(n) J 1 (n) -njr -1
n(ml~m2 ,...,mj))=( m-Jr (rl'J (-l) .

Using P we may complete the joint distribution of the m D
n

n,in-l,r ai
Suppose that the m Dnri are all in the same column of (1), say

Din i,D in 'v. ' ' n Then their Joint distribution will be

a .. - ,, a m ..................................................... " "



-(c j+z)
multinomial with associated P n (n) , J = 1,21,...,n.

aj ajJ

Combining the above ideas, we may obtain the joint distribution

any subset of size m of the Dri* We omit the details.

3. Exact Distributions

The exact distribution of U can be obtained following ideasn

given by Rubin and Sitgreaves. Given T, for any state x, let S(x)

be the set of all successors to x, i.e.

S(x) = {x' : T rx = x' for some r > 01.

Then, with k > r + 1,

P(x has k successors, S(x) has cycle of length r, x is not cyclic)

- P(Tx $ x; T2x # Tx, T2x # x; T3x # T2x, T3x # Tx, T3x # X;

Tk-lx TR-2x,...,T k-lx x; T kx = T k-rx)

n-I n-2 n - (k-i) 1 n (k+l) (n)
n n n n

Thus

n
(13) P(S(x) has cycle of length r, x is not cyclic = n((k+l)n)k.

k=r+l

, m' '' - ' -"°" "- -" " " " -" - - -- " " . ." " " . -" , % ," °,- 
" -

.' .. % .- '- -,- "' . . . w" ." ." . "
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But

P(S(x) has cycle of length r, x is not cyclic)

n
I P(S(x) has cycle of length r, x is not cyclic, U n=u)

u=r

n
= I P(S(x) has cycle of length rIx is not cyclic, U n=u)

u=r

P(x is not cyclicU n=u) P(Un=u)

n u-i u-2 u-(r-i) 1 n-u P(Un=U)
u1r 1 u-T u-(r-s) "u-(r- )  n n

n-u

u rnu- n=u).

Since (13) and (14) are equal for all r

n -(k+l) n (k+l)I n (n)k - n- (n)k
k=r+l k-r+2

n n -1
I. (nu) (n-u)P(Un=u) - I (nu) (n-u)P(Un=u)u=r u-r#l

whence

(15) P(Un  U) n (U+l)(n)uu, - 1,2,...,n.

From (15), P(Un - n) a n-n n!. This is seen directly by noting

* that Un n n i.f.f. T is 1-1 and that there are n! such T. Harris

:-. -... ,..'..-..,,-,.*.'.. - . ,.-. - **.,.. .... . ,.... -. .:-. .- - - -.-.- , ..,, ,- *...... . *.. 1• ,*... ..

,.., * nmma Sumn**i u .l- m - * .. n% * * ~* *% S
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offers an alternative developmert of (15) by decomposing the

cycle space of T and employing a convenient identity from Katz.

Using (15) we have the identity

n n-u (n)u u n.
u-i

*: Using (11) and (15) we have

E(Un ) - n E(Un)-I

Similarly we can develop identities for higher moments of Un, e.g.

2E(U ) 2n - E(U n )

The exact distributions of Vn and B may be obtained

through their conditional distributions given Un. Such events

as v cycles resulting from u cyclic states or k cycles of length r

resulting from u cyclic states may be viewed in terms of cycle

classes of permutations of u distinct objects. Riordan, Chapter 1,

is helpful here, e.g., from p. 70-72 we have

(16) a(u,v) E P(Vn - viUn - u) (-),v)u!)

where s(u,v) are Stirling numbers of the first kind. From the

familiar recurrence relationship for such numbers (Riordan p. 33),

we obtain

..... Z
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a(u,v) = u-l(u-l) a(u-l,v) + u-1 a(u-l,v-l)

From (16)

(17) P(Vn - v) - a c(u,v) n(U+l)(n) u
U=V

This distribution is derived in a more complicated form by

Folkert employing the aforementioned Katz identity. Using (12)

and (17) we may create an identity for E(Vn). Similar identitiesn

can be developed for higher moments of Vn . Using a generating

function argument (Riordan p. 71) the wth factorial moments of

Vn given Un can be derived.

.u! 3tw  It-i

E((Vn)wIUn - u)J -
%" 0 ,W > U

tS

At w- 1

(18) E(VnU - u) -
nn r-1

* whence the conditional mean of Vn given Un behaves like log Un

when Un is large.

i

... 1>*. '. ... S v
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Similar computation reveals that the conditional variance of Vn

given Un also behaves like log Un when Un is large.

For the eact distribution of Bn,r (equivalently A n, let

(19) 8(u,r,k) --- P(Bn,r = kIU n n u)

It is straightforward to show that

B(u,r,k) - r-k (k.')-I  (u-kr,r,O)

[w/r]
Since O(w,r,O) = 1 - O B(w,r,k) (C I indicates greatest integer

k=l
in) and since O(w,r,O) - 1 when w < r, B(u,r,k) can be computed

recursively. Thus from (19)

(20) P(B - k) - u I (u,r,k) n(U+l) (n)uu(20) P(n,r uk

From Riordan p. 82-84 we may show that the wth factorial moment of

B given Un - u isSn~r n

r-w w ! u/r)
(21) E((Bn,rwIUn.  = u) - 0 > Cw/r)

At w - 1, E(B =TJ - r , .r < u, and summing both sides,

I < r < u again yields (18). Var(Vn,rfUn - u) = r-1 as well if

2r < u.

In concluding this section we examine the expected length of

a cycle denoted by ECL. We first compute the likelihood of any



15

particular cycle structure under a random T. Let m be the

number of cycles of length t, t = 1,2,...,n, and let m0 = n - tm9 L

= the number of transient states. Then for Emt < n,

P(m cycles of length ., £ = 1,2,...,n, and m0 transient states)

= P(mr0 ,ml,...,mn)

P(ml,...,mnlUn n - m 0) P(Un = n - m0 )

n-r 0  n-r 0 m -(n-m0 +1)
= i 1 ! H * n (n) n- (n-m0 )tm1 L=10

n-mo n-mo m,]-1 (~o I

=[ R : 0 - n! :n 0( (n-mO )

(Note: Sherlock considers the conditional distribution above at

greater length.)

For the cycle structure (mo,ml,...,mn) the average cycle

length will be (Em) ErmL whence

(22) ECL - (Em)-l(Emrtn)P(m0 ,ml,...,mn)

where the outer sum is over the set ((m,,m,,...,mn):mt 0 ,EmL - n).

More directly since EmI1 is a value of Un and EmL is a value

* of Vn,n
ECL E((Vn)-l Un).

It is important to note that in determining ECL we have, for a

particular net, defined "average cycle length" assuming cycles to be

*equally likely, e.g. if a net has 3 cycles of lengths 10, 5 and 3 we

obtain an "average cycle length" = 10 • + 5 + 3 -6. "Average
a3 3

cycle length" for a particular net may.also be defined assuming equally

O likely selection of a cyclic state. For the above example we would then

" obtain an average cycle length 10- 1 + 5. + 3. * a 7.4o.

Kauffman (1969a) and Cull (1978) study ECL under this latter definition.
." . ";,"' ' -, .?" '.' "." "-. .. .' .. ". .' .':'v ....'v ... .- . ".". .. - - ;, . .. . . .
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4. Asymptotic Results

Uing Harris' idea (p. 1047) we obtain the asymptotic proba-
bility density of Un . Letting W = U /I and using (15) we may

n n n
show that Wn converges in distribution to a random variable W

having a Rayleigh distribution, i.e.

fw(w) = weW , w > 0

P 2r/2Hence U Since E(Wr ) = 2 r( i), r > -2, we have thene

asymptotic behavior of all moments of Un, i.e. E(Ur) o(n r/2).

In particular, E(n-I1 U) * i7 (so that the expected number

of transient states, E(n-U n ) * .) and var(n -1/2 U n ) * 2 - w/2.

From remarks after (18), E(V n ) behaves like E(log U n ) and

var(V n)= var E(VniUn) + E var(VnfUn) behaves like var(log U n )

+ E(log U n). Since by simple expansions E(log Un ) n O(log n)

and var(log Un)- 0(l), we have E(V n ) and var(V n ) both O(log n).

For ECL, a bivariate expansion of (V-1 )U reveals that then n
(E(V n ))'- E(Un ) term dominates and thus that ECL - O((log n)-1 A).

Finally we show that the asymptotic distribution of Bn,r is

Poisson (r 1). The well-known fact that if X is distributed

Poisson (A) then the wth factorial moment of X is Aw (see e.g.

Johnson and Kotz, p. 90) means we only need show that

lim E((T ) ) r-w, w - 1,2,... . Using (21) and the fact

that Un* n we have

"-, "-' o -- ',""- " ,'"-,""- ,,,,- ""',"". -"" . * . " ,"'"- "%..* " .- • " • - " " - :•, - .- :•' . ". ".- , .. "- " -*
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lim E((B )w ) - lim E(E(Bn ,r)1 Un)
n l 

n 
n

U
M lim rw P([j] >_ w)

n-w

5 • Summary

We summarize the results of the previous sections by return-

ing to the completely random net, setting n - 2N

(i) the expected number of cyclic states is of order 2N/2

(ii) the expected number of transient states is of order 2N

(iMi) the expected number of cycles is of order N

(iv) the likelihood that any particular state is cyclic is

of order 2
- N/ 2

(v) the expected number of cycles of length r converges to

1/r

(vi) the expected number of states on cycles of length r

converges to 1

(vii) the expected cycle length is of order (N-I)2
N/ 2 "

% ~ ,*~~.~a - j*~ ~-
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-, This paper characterizes the cycle structure of a completely random net.
Variables such as number of cycles of a specified length, number of cycles,
number of cyclic states and length of cycle.are studied. A square array of
indicator variables enables convenient study of moment structure. Additionally,
exact and asymptotic distributional results are presented.
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