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Y A BEHAVIORAL SUMMARY FOR COMPLETELY RANDOM NETS
by Alan E. Gelfand

1. Introduction

Random switching net models have been employed in various

. contexts to aid in understanding and simulating aspects of the

' behavior of biological systems. Two of the most notable examples
are neural net models and genetic net models. The former model
components of the central nervous system and are typically devel-
oped from formal, in the sense of McCulloch and Pitts (1943),

. neurons. Discussions are given in Griffith (1971) and in Arbib

- (1972). The latter model the genetic structure of cells and have
been presented in a series of papers by Kauffman (1969a, 1969b,
1970, 1971, 1974). Recently Cavender (1977) has noted that switch-

ing net models can provide behavioral agreement with that of a
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wide range of biological organisms.

As Sherlock (1979) notes, analytical limitations rather than
lack of biological relevance have generally tended to hinder the
impact of this type of modeling enterprise. However, for one
instance, that of a completely random switching net, virtually
complete mathematical description can be provided. While completely
random networks are not in themselves taken as plausible models,
they do offer behavioral benchmarks which demonstrate the need to
E exercise structural and/or functional control over the net models.

S That 1s, from knowledge of the behavior of very large completely

random switching nets, we learn how to formulate restricted net
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models exhibiting more (real world) plausible behavior. The utili-
zation of "threshold levels"” for neurons in a neural net or of
"forcing inputs” to genes in a genetic net are illustrations of
the imposition of such control. The intent of this article is to
present a concise, accessible behavioral summary of the completely
random situation. While some of the results in the sequel have
been discussed by others, the prihary objectives here are to unify,
clarify and simplify. - o

A switching net consists of a set of N elements having an
assoclated interconnectance structure. Each element has binary
response to input information and at any instant in time the net
is in one of 2N distinct states. The net operates on discrete
(clock) time such that its state at time t uniquely determines its
state at time t + 1. For a completely random net the choice of
successor state to a state 1s made via an equally likely selection

from all ZN

possible net states.

Since the number df net states 1s finite and the net is
deterministic, given an arbitrary initial state, the sequence of
states arising from this initial one must necessarily encounter a
state it had previously been in. Thereafter it must repeat this
intermediate sequence of states. Such a sequence of states is

called a cycle. The number of distinct states in the cycle 1is

called the cycle length. For a given net, some (at least one)

elements will be cyclic but others may be transient occurring

during a run-in prior to cycling. For a given net there may be an

assortment of cycles of varying lengths. Thus each net creates a
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cycle structure (or space) which, for small N, is typically
depicted through a state diagram.

Any net may be described in terms of its transition matrix.
That 1s, placing net states in one-to-one correspondence with the

N N

integers from 1 through 2N we can form a 2 x 2 matrix T whose

entries TiJ are such that

7 = 1 1f state 1 is successor to state ]
i) 0 otherwise

The trénsition matrix representation of a net shows that any net

may be viewed as a transformation from a set of n = 2N elements into
itself. This description suffices for examination of the cycle
structure of a net but sacrifices the binary character of the net.
However in the completely random net the binary aspect is immaterial
and thus in the sequel we study the mathematically equivalent form
of the problem, the characterization of the cycle space of a random
transformation on a finite set. Griffith recognizes this equiva-
lence (sec. 8.2.3) in offering several behavioral results. Kauffman
does as well (1970) in discussing the results of simulations of
completely random nets. Amongst the important mathematical efforts
on this problem are the papers of Rubin and Sitgreaves (1954),
Harris (1960), Katz (1955), Kruskal (1954), Folkert (1955), Cull(1971,
1978), and Gontcharoff (1944). Chapter 4 of the book by Riordan
(1958) on cycles of permutations 1is directly relevant. As noted
earlier the reader may find some of the ensuing results across

these references.
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In concluding this section we return to the transition matrix,
T. By definition T has exactly one "1" per column. Suppose T
results in a cycle structure with k transient elements and m cycles ‘
of length rl,rz,r3,:..,rm, respectively. Then Cull (1978) shows that the
characteristic polynomial of T, |T -"AI|, where operations are per-

formed in the real field, will have the form

Clearly, Tr(T) gives the number of elements on cycles of length 1
and more generally Tr(T™) yields the number of states on cycles
whose length divides m. FHence Tr(Tn!) equals the number of states
on cycles and n - Tr(Tn!) equals the number of transient states.
How may we obtain a matrix Hm from T such that Tr(Hm) equals the
number of states on cycles whose length is exactly m? Let

Cm = {primes < m which appear in the prime representation of m}

(1.e. appear with a power > 1) and let Nm = number of elements in
N

Cm‘ The numter of subsets of Nm is 2 M and the number of subsets
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N
of size k is (km) At a given k let J index the subsets of

gmk‘
size k so that the 2 ™ subsets may be denoted by C

Ky» k= 0,1,2,

...,Nm, J =1,2,...,N Let ng equal m divided by the product

mk*
of all the elements in C

Tk Then

Theorem. For each m, m = 1,2,...,n, let

mk g
= kJ
H £1T .

(-1)

I3

N N
k=0 J

Then Tr(Hm) = number of states on cycles whose length is
exactly m.

Proof. A direct inclusion-exclusion argument.

2. Random Transformations and Cycle Structure Random Varilables

The selection of a random (equally likely) transformation T
is convenliently accomplished as a sequence of n independent multi-
nomial trials where the Jth trial chooses the successor to state J
in an equiprobable fashion from amongst the n elements. Then,
with respect to cycles of length 1, Tr(T) 1s distributed binomial
(n, %) with 1limiting distribution Poisson (1). But what about
longer cycles or, more generally, the nature of the cycle structure
of such a random transformation? We will examine the distributions
of:

(1) the number of cycles of a specified length

(11) the number of cycles
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(111) the number of cyclic states

(iv) the length of a cycle.
These issues are not easily pursued through the matrices " and Hm.
We may readily study the moments of the random variables in

(1) - (111) through the n x n array of random variables.

n - .n
_ Dll > & & & o 0 0 Dln
p? p?

A
(1) : )

n e s 00 00 Dn

Dnl * nn

where
n 1l 4if state Xy is on a cycle of length r
D =
ri 0 otherwise.
Let
4 n
(2) A = J D_, = number of states on a cycle of length r
n,r 1=1 1
-1
(3) Bn,r r An,r number of cycles of length r
n 1l 1if state x, is cyclic
(u) Cn = z Dn i
1 ra1 Ti 0 1f transient
n n n
(5) U = J A__= ] C, = number of cyclic states

1

n 121 ™T 4=




n
(6) Vv = ] B = number of cycles.

For any fixed r the Joint distribution of D:l,...,Dgn or

of any subset will be that of a collection of dependent inter-

changeable random variables. The marginal distribution of any

D?i is directly
(7) PR, = 1) = (Ih(r-1)t a7 = an Dy

where (n)r is the falling factorial of r terms starting at n.

Immediately, then (with + as n + =)

-r
(8) E(An,r) = n (n)r + 1

-1 -r -1
(9) E(Bn,r) =r " n (n)r +r

n
(10) E(C™ =nt TnT (n) +»o0
1 rzl r

n -1
(11) E(Un) = rzln (n)r + »

n
(12) E(V) = rzlr'l nT (n), » =,

The 1imits imply that with increasing number of elements the
probability of any particular element being cyclic tends to 0, but
the expected number of cyclic states and of cycles tends to =,

To get moments of order m, we need the joint distribution of
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n n n
ri’ Dri’ Dsj’ we have

three cases: (1) r#s, 1 #J, (i) r =s, 1 #J, (111) r # s,

any subset of size m of the D For any pair,

1 =3J. For (1) we have

n—(r+s+1) (ﬂ-l)-l (n) », I +s<n
P(Dn =] Dn =1) = r+s
ri = "sd 0 s r + s >n
For (11)
n_(r+l)(n“1)-l(r‘1)(n)r+n-(2r+l)(n—l)-l(n)Zr, r<n/2
P(DD,=1, DQy=1) = { " @-1)r-D)(n), , m2<ren
0 , Tr >n.
For (1i1)
n n _ .

In each case using the marginal, (7), we may complete the joint dis-
tribution. Thus covariances between any pair of D:i may be gotten
and variances and covariances for the variables in (2) - (6) as

well. In particular An and A (also Bn

7 n,s and Bn,s) are nega-

r

b ]

tively correlated but asymptotically uncorrelated. Also as n + «
-1 n

var(An,r) - r, var(Bn’r) -r and var(Ci) + 0. Var(Un)* « and

var(vn) + o but these are most easily shown using results 1in

Section 4.

As to the joint distribution of any subset of size m of the

n
ri’

Taking mr < n and using the interchangeability of the variables,

D suppose first that all m variables are in the same row of (1l).

T Tt e N T N L T
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P(States a a_each on a cycle of length r)

n,m,r 12°°"°™m
n n n
= P(D =1, D =1,..., D = 1).
ra, ra, ra,

Consider all possible partitions of m with no part greater than r.
If a given partition has parts ml,...,mJ, let n(ml,...,mJ) be the
number of ways to allocate m distinct obJects Into J like cells

J =
with m, in cell 1 (Zisl my m). Also associate with ml,mz,...,mJ

the event Enr(ml""’mj) defined by {states al,...,aml on the same
cycle of length r, states Q412 9%y 4p OR the same cycle of

1 1 72
length r, etc.}. 1If “ym is the set of all partitions of m and

z{n r is the set of all partitions of m with no part greater than
’

r, then
Pn,m,r = J; . n(ml,...,mj) P(Enr(ml""’mj))
where
P(E yeL(m) 7 n), . n T (e-1)1 200 1 (rom, )17
nr(ml,mz,...,mj) "m Nyp r=1J. 1=1 ~Mmy ). ’

Using P we may complete the Joint distribution of the m Dga

n,m-1,r i.
Suppose that the m D?i are all in the same column of (1), say
p" ph Then their joint distribution will be

021’ ’ ami

p® ,
011
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-(uJ+1)
multinomial with associated P“J = n (n)aj, J =1,2,...,n.
Combining the above ideas, we may obtain the joint distribution

any subset of size m of the Dr We omit the details.

1.

3. Exact Distributions

The exact distribution of Un can be obtained followilng ideas
given by Rubin and Sitgreaves. Given T, for any state x, let S(x)

be the set of all successors to x, i.e.
S(x) = {x' : T'x = x' for some r > 0}.
Then, with k > r + 1,

P(x has k successors, S(x) has cycle of length r, x is not cyclic)

2

= P(Tx # x; T2x # Tx, T2x # x; T3x # T%x, 73x # Tx, T3x # x;

-1y » Tk'zx,...,Tk°lx # x; ™y = Tk-rx)
= E%l . E%E R 2—:—é53ll . % = = (k1) (n),.
Thus
n
(13) P(S(x) has cycle of length r, x is not cyclic = )} n-(k+1)(n)k.

k=r+l
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But
- P(S(x) has cycle of length r, x is not cyclic)
n
= ] P(S(x) has cycle of length r, x is not cyclic, U =u)
u=r
n .
= ]} P(S(x) has cycle of length r|x is not cyclic, Un=u)
u=r
(14)
P(x is not cyclic[Un=u) P(U_=u)
n .
= ° P_-_]L . .u';g. u-(r_l) . 1 . n-u . =
. uzr(l u u-1 *°* u=(r-s) = u=(r-1)’ n P(Up=u)
: n
: = 7 I p(y_=u).
M usp U n

Since (13) and (14) are equal for all r

25 &8 8 1 78

k=r+l

n -1 n -1
= I ()" (n-u)P(U =u) - [ (nu)""(n-u)P(U_=u)
=r u=r#l

whence

(15) P(U = u) = n'(u+l)(n)uu, us=1,2,...,n.

From (15), P(Un =n) = n"® n!. This i1s seen directly by noting
that Un = ni.f.f. T 1s 1-1 and that there are n! such T. Harris

3 ‘~-’.-'. L a'." n...\".-‘. n’ '!.".'.n\ - '-.
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offers an alternative developmert of (15) by decomposing the
cycle space of T and employing a convenient identity from Katz.

Using (15) we have the identity

-u
uzl n (n)u u=n.

Using (11) and (15) we have
E(U.) = n E(U_)"%
n n ¢
Similarly we can develop identities for higher moments of Un’ e.g.
E(U2) = 2n - E(U.) .
n n

The exact distributions of Vn and B may be obtained

n,r
through their conditional distributions given Un' Such events
as v cycles resulting from u cyclic stétes or k cycles of length r
resulting from u cyclic states may be viewed in terms of cycle
classes of permutations of u distinct objects. Riordan, Chapter &,

is helpful here, e.g., from p. 70-72 we have
u+v =1
(16) a(u,v) = P(vn = len = yu) = (=1) s(u,v)(u!)

where s(u,v) are Stirling numbers of the first kind. From the

X familiar recurrence relationship for such numbers (Riordan p. 33),

we obtain

‘‘‘‘‘‘‘‘‘‘ -l e e

- .‘ al - ~".”>‘-“-" - -
‘4%, RS N N O GRS N NN/ o,

'-‘“". \._'-'-
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alu,v) = ut(u-1) a(u-1,v) + u™t a(u-1,v-1) .

From (16)
‘ e ~(u+l)
(17) P(V, = v) = J a(u,v) n (n), u .
u=v

This distribution is derived‘in a more complicated form by
Folkert employing the aforementioned Katz identity. Using (12)
and (17) we may create an identity for E(Vn). Similar identitlies
can be developed for higher moments of Vn. Using a generating

th

function argument (Riordan p. 71) the w factorial moments of

Vn given Un can be derived.

1 3a%[t(t+1))...(t+u-1)] , w<u
E((v ) IU i} u) . Ue. at" t=1 -
n’w!"n )
0 s WU
At w =1
¥
(18) E(VplUy = w) = r£1 r

whence the conditional mean of Vn given Un behaves like log Un

when Un is large.
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Similar computation reveals that the conditional variance of Vn
given Un also behaves like log Un when Un 1s large.
For the exact distribution of Bn,r (equivalently An,r)’ let

(19) B(u,r,k) = P(B, . = kU = u) .

Py

It is straightforward to show that

B(u,r,k) = r-k(k!)-l B8 (u-kr,r,0) .
(w/r]
Since B(w,r,0) =1 - | B8(w,r,k) ([ ] indicates greatest integer
k=1

in) and since B(w,r,0) = 1 when w < r, B(u,r,k) can be computed

recursively. Thus from (19)

n
(20) P(B_ . = k) = Xkr B(u,r,k) n~ (W) ()Y |
’ u=

th

From Riordan p. 82-84 we may show that the w factorial moment of

Bn,r given Uh = u is

r™, w< [ur]
= ) =

(21) E((B, ), U, ,

s W > [w/r] )

-1
At w =1, E(B) |U ~u)=r

» - € u, and summing both sides,
1 <r < uagain yields (18). Var(Vn’rIUn = u) = r} as well ir
2r < u.

In concluding this section we examine the expected length of

a cycle denoted by ECL. We first compute the likelihood of any
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particular cycle structure under a random T.
number of cycles of length &, £ =1,2,...,n, and let myg =n - Im, ¢

= the number of transient states.

Let m, be the

L

L
Then for Emzz <n,

P(m cycles of length &, £ =1,2,...,n, and m, transient states)

¢

n-m,
= n
| 2=1
n-m,
= 14
| 2=1
(Note:

]
mz.

m"-

P(mo,ml,...,mn)

P(ml,...,mnIUn =

n-mo

n
=1

n-mo

I
L=l

greater length.)

n - mo) P(Un = n - mo)

m
g *

)

\
m

g *

J

-1 i
-(n-mo+1)
n (n)

om (n-mg)
n mo 0

-1
(n-mo) .

Sherlock considers the conditional distribution above at

For the cycle structure (mo,ml,...,mn) the average cycle

length will be (Zml)-l Im % whence

(22)

ECL = § (Imy)™ (Im,2)P(my,m,,...,m )

where the outer sum is over the set {(mo,ml,...,mn):ml > O,Zmlz.g n}.

More directly since zmzz is a value of Un and zmz is a value

of Vn,

ECL = E(V,)™! U ).

It 1s important to note that in determining ECL we have, for a
particular net, defined "average cycle length" assuming cycles to be
equally likely, e.g. 1f a net has 3 cycles of lengths 10, 5 and 3 we

obtain an "average cycle length" = 10 - 3¢ 53+ 3¢ % = 6.

1 1 "Average

cycle length" for a particular net may.also be defined assuming equally

likely selection of a cyclic state.

For the above example we would then

obtain an average cycle length = 10 - %% + 5 . T% + 3 - T% = 7:ET J
Kauffman (1969a) and Cull (1978) study ECL under this latter definition.
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4, Asymptotic Results

| Uesing Harris' idea (p. 1047) we obtain the asymptotic proba-
bility density of U . Letting W = Un//E and using (15) we may
show that wn converges in distribution to a random variable W

having a Rayleigh distribution, i.e.

2 N
fylw) = we ¥ /2 , w>0.

r/2 r+2

r(==), r > -2, we have the

2
asymptotic behavior of all moments of Un’ i.e. E(U;) = O(nr/z).

-1/2

Hence Un E ® ., Since E(wr) = 2

In particular, E(n Un) + ¥Y®/2 (so that the expected number

of transient states, E(n-Un) + ®) and var(n']‘/2 Un) + 2 - m/2.
From remarks after (18), E(Vn) behaves like E(log Un) and

var(Vn)s var E(VnIUn) + E var(Vn[Un) behaves like var(log U )

+ E(log Un)' Since by simple expansions E(log Un) = O(log n)

and var(log Un)- 0(1), we have E(V,) and var(Vn) both 0(log n).
'For ECL, a bivariate expansion of (V;]')Un reveals that the
(E(v))"! E(U_) term dominates and thus that ECL = O((log n)™> /).

Finally we show that the asymptotic distribution of Bn,r is
1). The well-known fact that if X is distributed
th

Poisson (r~
Poisson (A) then the w'® factorial moment of X is AV (see e.g.

Johnson and Kotz, p. 90) means we only need show that

1im E((T_ _).) =r ¥, w=1,2,... . Using (21) and the fact
n-bﬂ
that Un» o we have

n,r’w
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1im E((B, )y) = 1im E(E(B, .)y|Up)

n -+ ® n + o

U
= 1im r™¥ P([7] > w)

n+ e

-W

=pr .
5. Summary
We summarize the results of the previous sections by return-

ing to the completely random net, setting n = 2N

(1) the expected number of cyclic states is of order ZN/2

(11) the expected number of transient states is of order 2N

(111) the expected number of cycles is of order N

(iv) the likelihood that any particular state is cyclic 1is
of order 2°V/2

(v) the expected number of cycles of length r converges to
1l/r

(vi) the expected number of states on cycles of length r

converges to 1
N/2.

(vii) the expected cycle length is of order (N—l)z
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