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The TRACE Model of Speech Perception

James L. McClelland Jeffrey L. Elman
Carnegie-Mellon University University of California, San Diego

ABSTRACT

We describe a model called the TRACE model of speech perception. The model is based on the
principles of interactive activation. Information processing takes place through the excitatory and inhibi-
tory interactions of a large number of simple processing units, each working continuously to update its
own activation on the basis of the activations of other units to which it is connected. The model is called
the TRACE model because the network of units forms a dynamic processing structure called 'the Trace',
which serves at once as the perceptual processing mechanism and as the system's working memory. The
model is instantiated in two simulation programs. TRACE I, described in detail elsewhere, deals with
short segments of real speech, and suggests a mechanism for coping with the fact that the cues to the iden-
tity of phonemes vary as a function of context. TRACE II, the focus of this article, simulates a large
number of empirical findings on the perception of phonemes and words and on the interactions of
phoneme and word perception. At the phoneme level, TRACE II simulates the influence of lexical infor-
mation on the identification of phonemes, and accounts for the fact that lexical effects are found under
certain conditions but not others. The model also shows how knowledge of phonological constraints
can be embodied in particular lexical items, but can still be used to influence processing of novel, non-
word utterances. The model also exhibits categorical perception and the ability to trade cues off against
each other in phoneme identification., At the word level, the model captures the major positive feature of
Marslen-Wilson's COHORT model of speech perception, in that it shows immediate sensitivity to infor-
mation favoring one word or set of words over others. At the same time, it overcomes a difficulty with
the COHORT model: it can recover from nderspecification or mispronunciation of a word's beginning.
TRACE II also uses lexical information to segment a stream of speech into a sequence of words and to
find word beginnings and endings, and it simulates a number of recent findings related to these points.
The TRACE model has some limitations, but we believe it is a step toward a psychologically and compu-
tationally adequate model of the process of speech perception.

The work reported here was supported in part by a contract from the Office of Naval Research (N-00014-B2-C-0374), in part by a
grant from the National Science Foundation (BNS-79-24062), and in part by a Research Scientist Career Development Award to
the first author from the National Institute of Mental Health (5-KOI-MHOO385). We would like to thank Dr. Joanne Miller for a
very useful discussion which inspired us to write this article in its present form. An anonymous reviewer was extremely helpful in
alerting us to several useful papers in the literature. We would also like to thank David Rumelhart for useful discussions during the
development of the basic architecture of TRACE and Eileen Conway, Mark Johnson, Dave Pare, and Paul Smith for their assis
tance in programming and graphics.
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Consider the perception of the phoneme /g/ in the sentence 'She received a valuable gift.' There are
a large number of cues in this sentence to the identity of this phoneme. First, there are the acoustic cues
to the identity of the /g/ itself. Second, the other phonemes in the same word provide another source of
cues, for if we know the rest of the phonemes in this word, there are only a few phonemes that can form
a word with them. Third, the semantic and syntactic context further constrain the possible words which
might occur, and thus limit still further the possible interpretation of the first phoneme in 'gift'.

There is ample evidence that all of these different sources of information are used in recognizing
words and the phonemes they contain. Indeed, as Cole and Rudnicky (1983) have recently noted, these
basic facts were described in early experiments by Bagley (1900) over eighty years ago. Cole and Rud-
nicky point out that recent work (which we consider in detail below) has added clarity and detail to these
basic findings, but has not lead to a theoretical synthesis that provides a satisfactory account of these and
many other basic aspects of speech perception.

In this paper, we describe a model whose primary purpose is to account for the integration of multi-
ple sources of information, or constraint, in speech perception. The model is constructed within a frame-
work which appears to be ideal for the exploitation of simultaneous, and often mutual, constraints. This
framework is the interactive activation framework (McClelland and Rumelhart, 1981; Rumelhart and
McClelland, 1981, 1982). This approach grew out of a number of earlier ideas, some coming first from
research on spoken language recognition (Morton, 1969; Marslen-Wilson and Welsh, 1978; Reddy, 1976),
and others arising from more general considerations of interactive parallel processing (Anderson, 1977;
Grossberg, 1978; McClelland, 1979).

According to the interactive-activation approach, information processing takes place through the
excitatory and inhibitory interactions among a large number of processing elements called units. Each
unit is a very simple processing device. It stands for a hypothesis about the input being processed. The
activation of a unit is monotonically related to the strength of the hypothesis for which the unit stands.
Constraints among hypotheses are represented by connections. Units which are mutually consistent are
mutually excitatory, and units that are mutually inconsistent are mutually inhibitory. Thus, the unit for
/g/ has mutually excitatory connections with units for words containing /g/, and has mutually inhibitory
connections with units for other phonemes. When the activation of a unit exceeds some threshold activa-
tion value, it begins to influence the activation of other units via its outgoing connections; the strength of
these signals depends on the degree of the sender's activation. The state of the system at a given point in
time represents the current status of the various possible hypotheses about the input; information process-
ing amounts to the evolution of that state, over time. Throughout the course of processing, each unit is
continually receiving input from other units, continually updating its activation on the basis of these
inputs, and, if it is over threshold, it is continually sending excitatory and inhibitory signals to other units.
This 'interactive activation' process allows each hypothesis both to constrain and be constrained by other
mutually consistent or inconsistent hypotheses.

Criteria and Constraints on Model Development

There are generally two kinds of models of the speech perception process. One kind of model,
which grows out of speech engineering and artificial intelligence, attempts to provide a machine solution
to the problem of speech recognition. Examples of this kind of model are HEARSAY (Reddy, Erman,
Fennell, and Neely, 1973; Erman & Lesser, 1980), HWIM (Wolf & Woods, 1978), HARPY (Lowerre,
1976), and LAFS/SCRIBER (Klatt, 1980). A second kind of model, growing out of experimental
psychology, attempts to account for aspects of psychological data on the perception of speech. Examples
of this class of models include Marslen-Wilson's COHORT Model (Marslen-Wilson and Welsh, 1978;
Marslen-Wilson and Tyler, 1980; Nusbaum and Slowiaczek, 1982); Massaro's feature integration model
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Massaro & Oden, 1980a, 1980b; Massaro, 1981; Oden & Massaro, 1978); Cole and Jakimic's (1978,
1980) model of auditory word processing, and the model of auditory and phonetic memory espoused by
Fujisaki and Kawashima (1968) and Pisoni (1973, 1975).

Each approach honors a different criterion for success. Machine models are judged in terms of
actual performance in recognizing real speech. Psychological models are judged in terms of their ability to
account for details of human performance in speech recognition. We call these two criteria computational
and psychological adequacy.

In extending the interactive activation approach to speech perception, we had essentially two ques-
tions: First, could the interactive-activation approach contribute toward the development of a computa-
tionally sufficient framework for speech perception? Second, could it account for what is known about
the psychology of speech perception? In short, we wanted to know, was the approach fruitful, both on
computational and psychological grounds.

Two facts immediately became apparent. First, spoken language introduces many challenges that
make it far from clear how well the interactive activation approach will serve when extended from print to
speech. Second, the approach itself is too broad to provide a concrete model, without further assump-
tions. Here we review several facts about speech that played a role in shaping the specific assumptions

• .embodied in TRACE.

Some Important Facts about Speech

Our intention here is not to provide an extensive survey of the nature of speech and its perception,
but rather to point to several fundamental aspects of speech that have played important roles in the
development of the model we will describe here. A very useful discussion of several of these points is
available in Klatt (1980).

Temporal nature of the speech stimulus. It does not, of course, take a scientist to observe one
fundamental difference between speech and print: Speech is a signal which is extended in time, whereas
print is a stimulus which is extended in space. The sequential nature of speech poses problems for a
modeler, in that to account for context effects, one needs to keep a record of the context. It would be a
simple matter to process speech if each successive portion of the speech input were processed indepen-
dently of all of the others, but in fact, this is clearly not the case. The presence of context effects in
speech perception requires a mechanism that keeps some record of that context, in a form that allows it to
influence the interpretation of subsequent input.

A further point, and one that has been much neglected in certain models, is that it is not only prior
context, but also subsequent context, that influences perception. (This and related points have recently
been made by Thompson, 1984; Salasoo and Pisoni, in press; and Grosjean and Gee, 1984). For exam-
ple, Ganong (1980) reported that the identification of a syllable-initial speech sound that was constructed
to be between /g/ and /k/ was influenced by whether the rest of the syllable was /Is/ (as in 'kiss') or /Ift/
(as in 'gift'). Such 'right context effects' (Thompson, 1984) indicate that the perception of what comes in
now both influences and is influenced by the perception of what comes in later. This fact suggests that
the record of what has already been presented cannot not be a static representation, but should remain
remain in a malleable form, subject alteration as a result of influences arising from subsequent context.

Lack of boundaries and temporal overlap. A second fundamental point about speech is that the
cues to successive units of speech frequently overlap in time. The problem is particularly severe at the
phoneme level. A glance at a schematic speech spectrogram (Liberman, 1970; Figure 1) clearly illustrates
this problem. There are no separable packets of information in the spectrogram like the separate feature

.o7
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Figure 1. A schematic spectrogram for the syllable baindicating the overlap of the information
specifying the different phonemes. Reprinted with permission from Liberman (1970).

bundles that make up letters in printed words.

Because of the overlap of successive phonemes, it is difficult, and we believe counter-productive, to
try to divide the speech stream up into separate phoneme units in advance of identifying the units. A
number of other researchers (e.g., Fowler, 1984; Ilatt, 1980) have made much the same point. A superior
approach seems to be to allow the phoneme identification process to examine the speech stream for
characteristic patterns, without first segmenting the steam into separate units.

The problem of overlap is less severe for words than for phonemes, but it does not go away comn-
pletely. In rapid speech, words run into each other, and there are no pauses between words inruin
speech. To be sure, there are often cues that signal the locations of boundaries between words -- sop
consonants are generally aspirated at the beginnings of stressed words in English, and word initial vowels
are generally preceeded by glottal stops, for example. These cues have been studied by a number of inves-
tigators, particularly Lehiste (e.g., Lehiste, 1960, 1964) and Nakatani and collaborators. Nalcatani &
Dukes (1977) demonstrated that perceivers exploit some of these cues, but found that certain utterances
do not provide sufficient cues to word boundaries to permit reliable perception of the intended utterance.

.4 Speech errors often involve errors of word segmentation (Bond and Games, 1980), and certain segmenta-
tion decisions are easily influenced by contextual factors (Cole and Jakimic, 1980). Thus, it is clear that
word recognition cannot count on an accurate segmentation of the phoneme stream into separate word
units, and in many cases such a segmentation would perforce exclude from one of the words a shared seg-
ment that is doing double duty in each of two successive words.

.. .. . .
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Context-sensitivity of cues. A third major fact about speech is that the cues for a particular unit
vary considerably with the context in which they occur. For example, the transition of the second for-
mant carries a great deal of information about the identity of the stop consonant /b/ in Figure 1, bu. that
formant would look quite different had the syllable been Wbig or 'bog' instead of 'bag. Thus the context
in which a phoneme occurs restructures (Liberman, 1970) the cues to the identity of that phoneme. The
extent of the restructuring depends on the unit selected, and on the particular cue involved. But the prob-
lem is ubiquitous in speech.

Not only are the cues for each phoneme dramatically affected by preceeding and following context.
They are also altered by more global factors such as rate of speech (Miller, 1981), by morphological and
prosodic factors such as position in word and in the stress contour of the utterance, and by characteartics
of the speaker such as size and shape of the vocal tract, fundamental frequency of the speaking voice, and
dialectical variations (see Klatt, 1980, and Repp and Liberman, 1984, for discussions).

A number of different approaches to the problem have been tried by different investigators. One
approach is to try to find relatively invariant -- generally relational -- features (e.g., Stevens and Blumstein,
1981). Another approach has been to redefine the unit so that it encompasses the context, and therefore
becomes more invariant (Fujimura and Lovins, 1978; Wickelgren, 1969; Klatt, 1980). While these are
both sensible and useful approaches, the first has not yet succeeded in establishing a sufficiently invariant
set of cues, and the second may alleviate but does not eliminate the problem; even units such as demisyll-
ables (Fujimura and Lovins, 1978), context-sensitive allophones (Wickelgren, 1969), or even whole words
(Klatt, 1980) ae still influenced by context. We have chosen to focus instead on a third possibility: that
the perceptual system uses information from the context in which an utterance occurs to alter connec-
tions, thereby effectively allowing the context to retune the perceptual mechanism on the fly.

Noise and indeterminacy in the speech signal. To compound all the problems alluded to above,
there is the additional fact that speech is often perceived under less than ideal circumstances. While a slow
and careful speaker in a quiet room may produce sufficient cues to allow correct perception of all of the
phonemes in an utterance without the aid of lexical or other higher-level constraints, these conditions do
not always obtain. People can correctly perceive speech under quite impoverished conditions, if it is
semantically coherent and syntactically well-formed (Miller, Heise, and Lichten, 1951). This means that
the speech mechanisms must be able to function, even with a highly degraded stimulus. In particular, as
Thompson (1984), Norris (1982), and Grosjean and Gee (1984) have pointed out, the mechanisms of
speech perception cannot count on accurate information about any part of a word. As we shall see, this
fact poses a serious problem for one of the best current psychological models of the process of spoken
word recognition (Marslen-Widson and Welsh, 1978).

Many of the characteristics that we have reviewed differentiate speech from print -- at least, from
very high quality print on white paper -- but it would be a mistake to think that similar problems are not
encountered in other domains. Certainly, the sequential nature of spoken input sets speech apart from
vision, in which there can be some degree of simultaneity of perception. However, the problems of ill-
defined boundaries, context sensitivity of cues, and noise and indeterminacy are central problems in vision
just as much as they are in speech (cf. Marr, 1982; Barrow and Tenenbaum, 1978; Ballard, Hinton, and
Sejnowski, 1983). Thus, though the model we present here is focussed on speech perception, we would
hope that the ways in which it deals with the challenges posed by the speech signal will be applicable in
other domains.
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The Importance of the Right Architecture

All four of the considerations listed above played an important role in the formulation of the
TRACE model. The model is an instance of an interactive activation model, but it is by no means the
only instance of such a model that we have considered or that could be considered. Other formulations
we considered hinply did not appear to offer a satisfactory framework for dealing with these four aspects
of speech (See Elman and McClelland, 1984, for discussion). Thus, the TRACE model hinges as much
on the particular processing architecture it proposes for speech perception as it does on the interactive
activation processes that occur within this architecture.

Interactive activation mechanisms are a class too broad to stand or fall on the merits of a single
model. To the extent that computationally and psychologically adequate models can be built within the
framework, the attrbctiveness of the framework as a whole is of course increased, but the adequacy of any
particular model will generally depend on the particular assumptions that model embodies. It is no
different with interactive activation models than with models in any other computational framework, such
as expert systems or production systems.

The TRACE Model

Overview

The TRACE model consists primarily of a very large number of units, organized into three levels,
the feature, phaneme, and word levels. Each unit stands for an hypothesis about a particular perceptual
object occurring at a particular point in time defined relative to the beginning of the utterance.

A small subset of the units in TRACE II, the version of the model we will focus on in this paper, is
illustrated in Figures 2 and 3. Each of the three figures replicates the same set of units, illustrating a
different property of the model in each case. In the figures, each rectangle corresponds to a separate pro-
cessing unit. The labels on the units and along the side indicate the spoken object (feature, phoneme or
word) for which each unit stands. The left and right edges of each rectangle indicate the portion of the
input the unit spans.

At the feature level, there are several banks of feature detectors, one for each of several dimensions
of speech sounds. Each bank is replicated for each of several successive moments in time, or time slices.
At the phoneme level, there are detectors for each of the phonemes. There is one copy of each phoneme
detector centered over every three time-slices. The each unit spans 6 time slices, so units with adjacent
centers span overlapping ranges of slices. At the word level, there are detectors for each word. There is
one copy of each word detector centered over every three feature slices. Here each detector spans a stretch
of feature slices corresponding to the entire -ngth of the word. Again, then, units with adjacent centers
span overlapping ranges of slices.

Input to the model, in the form of a pattern of activation to be applied to the units at the feature
level, is presented sequentially to the feature-level units in successive slices, as it would if it were a real
speech stream, unfolding in time. Mock-speech inputs on the three illustrated dimensions for the phrase
'tea cup' (/tik'p/) are shown in Figure 2. At any instant, input is arriving only at the units in one slice at
the feature level. In terms of the display in Figure 2, then, we can visualize the input being applied to suc-
cessive slices of the network at successive moments in time. However, it is important to remember that
all the units are continually involved in processing, and processing of the input arriving at one time is just
beginning as the input is moved along to the next time slice.

.".., .'-." :.. . "'.i"?'.-'.,......,'.."'....""....'...........".................-..".....".-....•. ..........-....-..............-. ........-....,".....-..._, ., ,. . , " ':
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Figure 2. A subset of the units in TRACE 11. Each rectangle represents a different unit. The labels
indicate the item for which the unit stands, and the horizontal edges of the rectangle indicate the portion
of the Trace spanned by each unit. The input feature specifications for the phrase 'tea cup', preceeded
and followed by silence, are indicated for the three illustrated dimensions by the blackening of the
corresponding feature units.
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Figure 3. A) The connections of the unit for the phoneme /k/, centered over time slice 24. The rec-
tangle for this unit is highlighted with a bold outline. The /k/ unit has mutually excitatory connections to
all the word and feature level units colored either partly or wholly in black. The more coloring on a units'
rectangle, the greater the strength of the connection. The 1k/ unit has mutually inhibitory connections to
all of the phoneme level units colored partly or wholly in grey. Again, the relative amount of inhibition is
indicated by the extent of the coloring of the unit; it is directly proportional to the extent of the temporal
overlap of the units. B) The connections of the highlighted unit for the high value on the Vocalic feature
dimension in time slice 9 and for the highlighted unit for the word /1v! starting in slice 24.
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The entire network of units is called 'the Trace', because the pattern of activation left by a spoken
input is a trace of the analysis of the input at each of the three processing levels. This trace is unlike
many traces, though, in that it is dynamic, since it consists of activations of processing elements, and these
processing elements continue to interact as time goes on. The distinction between perception and (pri-
mary) memory is completely blurred, since the percept is unfolding in the same structures that serve as
working memory, and perceptual processing of older portions of the input continues even as newer por-
tions are coming into the system. These continuing interactions permit the model to incorporate right
context effects, and allow the model to account directly for certain aspects of short-term memory, such as
the fact that more information can be retained for short periods of time if it hangs together to form a
coherent whole.

Processing takes place through the excitatory and inhibitory interactions of the units in the Trace.
Units on different levels that are mutually consistent have mutually excitatory connections, while units on
the same level that are inconsistent have mutually inhibitory connections. All connections are bi-
directional. Bi-directional excitatory and inhibitory connections of the unit for /k/ centered over feature-
slice 24 (counting from 0) are shown in Figure 3a; connections for the high value of the feature Vocalic in
slice 9 and for the word/k'p/with the/k/centered over slice 24 are shown in Figure 3b.

The interactive activation model of visual word recognition (McClelland and Rumelhart, 1981)
included inhibitory connections between each unit on the feature level and letters that did not contain the
feature, and between each letter unit and the words that did not contain the letter. Thus the units for T
in the first letter position inhibited the units for all words that did not begin with T. However, more
recent versions of the visual model eliminate these between level inhibitory connections, since these con-
nections can interfere with successful use of partial information (McClelland, 1985; McClelland, in press).
Like these newer versions of the visual model, TRACE likewise contains no between-level inhibition. We
will see that this feature of TRACE plays a very important role in its ability to simulate a number of
empirical phenomena.

Sources of Trace's architecture. The inspiration for the architecture of TRACE goes back to the
HEARSAY Speech understanding system (Reddy et al, 1973; Erman and Lesser, 1980). HEARSAY
introduced the notion of a Blackboard, a structure similar to the Trace in the TRACE model. The main
difference is that the Trace is a dynamic processing structure that is self-updating, while the Blackboard in
HEARSAY was a passive data structure through which autonomous processes shared information.

The architecture of TRACE bears a strong resemblance to the 'neural spectrogram' proposed by
Crowder (1978; 1981) to account for interference effects between successive items in short-term memory.
Like our Trace, Crowder's neural spectrogram provides a dynamic working memory representation of a
spoken input. There are two important differences between the Trace and Crowder's neural spectrogram,
however. First of all, the neural spectrogram was assumed only to represent the frequency spectrum of
the speech wave over time; the Trace, on the other hand, represents the speech wave in terms of a large
number of different feature dimensions, as well as in terms of the phonemes and words consistent with the
pattern of activation at the feature level. In this regard TRACE might be seen as an extension of the
neural spectrogram idea. The second difference is that Crowder postulates inhibitory interactions between
detectors for spectral components spaced up to several hundred msec apart. These inhibitory interactions
extend considerably farther than those we have included in the feature level of Trace. This difference does
not reflect a disagreement with Crowder's assumptions. Though we have not found it necessary to adopt
this assumption to account for the phenomena we will focus on in this article, lateral extension of inhibi-
tion in the time domain might well allow the TRACE framework to incorporate many of the findings
Crowder discusses in the two articles cited.

. .2.
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Context-Sensitive Tuning of Phoneme Units

The connections between the feature and phoneme level determine what pattern of activations over
the feature units will most strongly activate the detector for each phoneme. To cope for the fact that the
features representing each phoneme vary according to the phonemes surrounding them, the model adjusts
the connections from units at the feature level to units at the phoneme level as a function of activations at
the phoneme level in preceeding and following time slices. For example, when the phoneme /t/ is pre-
ceeded or followed by the vowel /i/, the feature pattern corresponding to the /t/ is very different than it is
when the /t/ is preceeded or followed by another vowel, such as /a/. Accordingly, when the unit for /i/ in
a particular slice is active, it changes the pattern of connections for units for /t/ in preceeding and follow-
ing slices.

TRACE I and TRACE 1

In developing TRACE, and in trying to test its computational and psychological adequacy, we
found that we were sometimes lead in rather different directions. We wanted to show that TRACE could
process real speech, but to build a model that did so, it was necessary to worry about exactly what
features must be extracted from the speech signal, about differences in duration of different features of
different phonemes, and about how to cope with the ways in which features and feature durations vary as
a function of context. Obviously, these are important problems, worthy of considerable attention. How-
ever, concern with these issues tended to obscure attention to the fundamental properties of the model
and the model's ability to account for basic aspects of the psychological data obtained in many experi-
ments.

To cope with these conflicting goals, we have developed two different versions of the model, called
TRACE I and TRACE II. Both models spring from the same basic assumptions, but focussed on
different aspects of speech perception. TRACE I was designed to address some of the challenges posed
by the task of recognizing phonemes from real speech. This version of the model is described in detail in
Elman and McClelland (in press). With this version of the model, we were able to show that the TRACE
framework could indeed be used to process real speech -- albeit from a single speaker uttering isolated
monosyllables at this point. We were also able to demonstrate the efficacy of the idea of adjusting feature
to phoneme connections on the basis of activations produced by surrounding context. With connection
strength adjustment in place, the model was able to identify the stop consonant in 90% of a set of isolated
monosyllables correctly, up from 79% with an invariant set of connections. This level of performance is
comparable to what has been achieved by other machine-based phoneme identification schemes, (e.g.,
Kopec, 1984), and illustrates the promise of the connection strength adjustment scheme for coping with
variability due to local phonetic context. Ideas for extending the connection strength adjustment scheme
to deal with the ways in which cues to phoneme identification vary with global variables (rate, speaker
characteristics, etc) will be considered in the general discussion.

TRACE II, the version described in the present paper, was designed to account primarily for lexical
influences on phoneme perception and for what is known about on-line recognition of words, though we
will use it to illustrate how certain other aspects of phoneme perception fall out of the TRACE frame-
work. This version of the model is actually a simplified version of TRACE I. Most importantly, we
eliminated the connection-strength adjustment facility, and we replaced the real speech inputs to TRACE
I with mock speech. This mock speech input consisted of overlapping but contextually invariant
specifications of the features of successive phonemes. Obviously, then TRACE II sidesteps many funda-
mental issues about speech. But it makes it much easier to see how the mechanism can account for a
number of aspects of phoneme and word recognition. A number of further simplifying assumptions were
made to facilitate examination of basic properties of the interactive activation processes taking place
within the model.
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Figure 8. State of the Trace at three different points during the processing of the word 'target'
(/targ't/) and the nonword "trugus' (/tr'g/).

. • - . .. - . . _ .- . _ . . . . -'. . - . . . . . . . . . . . . . • . . , . . . - ' . -. . - - . • - - . " "



The TRACE Model McClelland and Elman
May 7, 1985 23

effects on reaction times, to which we now turn.

Absence of lexical effect in some reaction-time studies. Foss and Blank (1980) presented some
results which seemed to pose a challenge to interactive models of phoneme identification in speech percep-
tion. They gave subjects the task of listening to spoken sent, -aces for occurrences of a particular phoneme
in word-initial position. Reaction time to press a response key from the onset of the target phoneme was
the dependent variable. In one example, the target was /g/ and the sentence was:

At the end of last year, the government ...

The subject's task was simply to press the response key upon hearing the /g/ at the beginning of the word
government.

The principle finding of Foss and Blank's study was that it made no difference whether the target
came at the beginning of a word or a nonword. Later studies by Foss and Gernsbacher (1983) indicate
that other experiments which have found lexical or even semantic and syniactic context effecs on moni-
toring latencies are flawed, and that monitoring times for word initial phonemes are primarily influenced
by accoustic factors affecting phoneme detectability, rather than lexical, semantic or syntactic factors.

The conclusion that phoneme monitoring is unaffected by the lexical status of the target-bearing
phoneme string seems at variance with the spirit of the TRACE model, since in TRACE, the lexical level
is always involved in the perceptual process. However, we have already seen that there are conditions
under which the lexical level does not get much of a chance to exert an effect. In the previous section we
saw that there is no lexical effect on identification of ambiguous word-initial targets when the subject is
under time pressure to respond quickly, simply because the subject must respond before information is
even available that would allow the model -- or any other mechanism -- to produce a lexical effect.

In the Foss and Blank situation, there is even less reason to expect a lexical effect, since the target is
not an ambiguous segment. We already saw that activation curves rise rapidly for unambiguous segments;
in the present case, they can reach near-peak levels well before the acoustic information that indicates
whether the target is in a word or nonword has reached the subject's ear.

The results of a simulation run illustrating these points are shown in Figure 8. For this example, we
imagine that the target is /t/. Note how during the initial syllable of both streams, little activation at the
word level has been established. Even toward the end of the steam, where the information is just coming
in which determines that 'trugus" is not a word, there is little difference, because in both cases, there are
several active word-level candidates, all supporting the word initial /t/. It is only after the end of the
stream that a real chance for a difference has occurred. Well before this time arrives, the subject will have
made a response, since the strength of the /t/ response reaches a level sufficient to guarantee a high accu-
racy by about cycle 30, well before the end of the word, as illustrated in Figure 9.

Even though activations are quite rapid for unambiguous segments, these can still be influenced by
lexical effects, provided that the lexical information is available in time. In Figure 10, we illustrate this
point for the phoneme /t/ in the streams /sikr't/ (the word 'secret) and /gId't/ ("guldut, a nonword).
The Figure shows the strength of the /t/ response as a function of processing cycles, relative to all other
responses based on activations of phoneme units at cycle 42, the peak of the input specification for the /t/.
Clearly, response strength grows faster for the /t/ in /sikrt/ than for the /t/ in /gld't/; picking an arbitrary
threshold of .9 for response initiation, we find that the /t/ in /sikrl't/ reaches criterion about 3 cycles or 75
msec sooner than the /t/ in /gld't/.
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Figure 7. The state of the Trace at several stages of processing the stream consisting of /targj fol-
lowed by a segment ambiguous between /t/ and /d/.

Dependence of the lexical effect on phonological ambiguity. One further aspect of the lexical
effect that was noted by Ganong (1980) deserves comment. This is the fact that the lexical effect on the
identity of a phoneme only occurs with segments which fall in the boundary region between two
phonemes. For segments which are unambiguous examples of one category or the other, the effect is not
obtained. TRACE is entirely consistent with this aspect of the data. The influence of the lexicon is sim-
ply another source of evidence, like that coming from the feature level, influencing the activation of one
phoneme unit or another. When the bottom-up input is decisive, it can preempt any lexical bias effects.
We have verified this in simulations presenting unambiguous tokens of /p/ or /b/, followed either by /lI
or /ISI. In these simulations, the unit for the presented initial segment reaches a very high level of activa-
tion, independent of the following context. When the segment comes at the end of the word, the context
exerts stronger effects, thus accounting for the fact that speech distortions are easier to detect when they
come early in a word than when they come late (Marslen-Wilson and Welsh, 1978). However, even there,
it is possible to override lexically-based activations with clear bottom-up signals, although there may be
some slowing of the activation process which would probably show up in reaction times.

It should be noted that TRACE's account of lexical effects is quite similar to the account offered by
the feature integration theory of Massaro and Oden (1980a). Indeed, Massaro and Oden's model provides
quantitative fits to Ganong's findings. We will make some mention of the slight differences in quantitative
assumptions between the models below. For now, we note a more crucial difference: TRACE incor-
porates specific assumptions about the time course of processing which allow it to account for the condi-
tions under which lexical effects will be obtained, as well as for the influence (a lack thereof) of ,-cal
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But what about the fact that early responses to unambiguous segments can be accurate? TRACE
accounts for this too. In Figure 6 we show the state of the Trace at various different points after the
unambiguous /b/in /bl'g/. Here, the /b/ dominates the /p/ from the earliest point. The analogous result
is obtained, when the stimulus is /p/ in /plg/, and the activation for the initial phoneme is quite indepen-
dent of whether or not the item is a word. The response strength for the case when /plPg/ is presented in
Figure 5 shows that the probability of choosing /p/ is near unity within 12 processing cycles, or 300 msec
of the initial segment, well before the deadline would be reached -- and well before word-identity specify-
ing information is available.

Lexical effects late in a word. In the model, lexical effects on word-initial segments develop
rather late, at least in the case where there is no context preceeding the word. Of course, the exact timing
of the development of any lexical effect would be dependent upon the set of words activated by the
stimulus; if one word predominated early on, a lexical effect could develop rather earlier. In general,
though, word-initial ambiguities will require time to resolve on the basis of lexical information. However,
when the ambiguous segment comes late in the word, and the information that precedes the ambiguous
segment has already established which of the two alternatives for the ambiguous segment is correct,
TRACE shows a lexical effect that develops as the direct perceptual information relevant to the identity of
the target segment is being processed. This phenomenon is illustrated in Figure 7, which shows the state
of the Trace at several points in time relative to an ambiguous final segment that could be a /t/ or a /d/, at
the end of the context /targA/. Within the duration of a single phoneme after the center of the ambiguous
segment, /t/ already has an advantage over /d/. We therefore predict that Fox's results would come out
differently, were he to use word-final, as opposed to word-initial, ambiguous segments. In such a case we
would expect the lexical effect to show up, well within the 500 msec deadline.

b I -S

h ~ b I

b b
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b I g- -b I g -  - I -h I

Figure 6. The state of the Trace at various stages of processing the stream /bIg/.
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Figure 5. The time-course of the build up in the strength of the /p/ response based on activations of
phoneme units in slice 12, in processing an ambiguous /b/ - /p/ segment in _.'g/, and the same segment
in /J'S/. The ambiguous segment is indicated by the '". Also shown is the build-up of response
strength for processing an unambiguous /p/ segment in /pl'g/. The vertical line topped with a ' indi-
cates the point in time corresponding to the center of the initial segment in the input stream. Successive
vertical lines indicate centers of successive phonemes.

information is not available until that point, because the phoneme that signals what the word will be
comes at the very end of the word. The effect takes another few time-slices to begin to influence the
activation of the initial phoneme, because it percolates to the first phoneme by way of the feedback from
the word or words that contain it.

Elimination of the lexical effect by time pressure. Fox (1982) has reported that the lexical effect
on word initial segments is eliminated if subjects are given a deadline to respond within 500 msec of the
ambiguous segment. Though they can correctly identify unambiguous segments in responses made before
the deadline, these early responses show no sensitivity to the lexical status of the alternatives. Similar
findings are also reported by Fox (1984).

Our model is completely consistent with Fox's results. Indeed, we have already seen that the activa-
tions in the Trace only begin to reflect the lexical effect about one phoneme or so after the phoneme that
establishes the lexical identity of the item. Given that this segment does not occur, in Fox's experiments,
until the second or third segment after the ambiguous segment, there is no way that a lexical effect could
be observed in early responses.

................................................-'-.]----:-'..'---.".'..-.' ..-.'---.-'.".-'-- -".-'-..-.'.-..-.•".-....''..'- "-..."
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Figure 4. Phoneme and word level activations at several points in the unfolding of a segment ambi-
guous between /b/ and Ip/, followed by /1/, /-/, and /g/. See text for a full explanation.

and through feedback support to Ip/, causes /p/ to dominate /b/ at the phoneme level. The model, then,
provides an explicit account for the way in which lexical information can influence phoneme
identification.

Two things about the lexical effect observed in this case are worthy of note. First, the effect is
rather small. Second, it does not emerge until well after the ambiguous segment itself has come and gone.
There is a slight advantage of /p/ over /b in frans 2 and 3 of the figure. In these cases, however, the
advantage is not due to the specific information that this item is the word 'plug' -- the model can have no
way of knowing this at these points in processing. The slight advantage for /p/ at these early points is due
to the fact that there are more words beginning with /pl/ than /bl/ in the model's lexicon, and in particu-
lar, there are more beginning with /plY than /bl/. So, when the input is /?I'd/, with the ? standing for the
ambiguous /b/-/p/ segment, the model must actually overcome this slight /p/-ward bias. Eventually, it
does so.

Figure 5 shows the temporal course of buildup of the strength of the /p/ response based on activa-
tions of the phoneme units in slice 12 for two cases in which the initial segment is ambiguous between /p/
and /b/. In one case, the ambiguous segment is followed by /lg/ (as in 'plug"); in the other, it is followed
by /IIS/ (as in 'blush'). Given the model's restricted lexicon, which does not contain the word 'plush',
the lexical effect should lead to eventual dominance of the /p/ response in the first case, but a suppression
of the /p/ response in the second case. The differences between the contexts do not begin to show up
until after the center of the final phoneme, which occurs at slice 30. The reason for this is simply that the

.' -,- .- -, ,- : '. .. ', ' .'.-- " ,"_ .-. .,",- . ., -•, ,'-, . ... ...... . -'.. ,..'-" . -. . . -. - -, , . .. ,', .. -. .
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The present section consists of three main parts. The first focuses on lexical effects on phonemeidentification and the conditions under which these effects are obtained. Here, we see how TRACE can

account for the basic lexical effect and makes it clear why lexical effects are only obtained under some
conditions. The second part of this section focuses on the question of the role of phonotactic rules -- that
is, rules specifying which phonemes can occur together in English -- in phoneme identification. Here, we
see how TRACE mimics the apparently rule-governed behavior of human subjects, in terms of a 'con-
spiracy' of the lexical items that instantiate the rule. The third part focuses on two aspects of phoneme
identification often considered quite separately from lexical effects -- namely, the contrasting phenomena
of cue tradeoffs in phoneme perception and categorical perception. Here we see that TRACE provides an
account of both effects, as well as details of their time course. All three parts of this section illustrate how
the simple mechanisms of mutual excitation and inhibition among the processing units of the Trace pro-
vide a natural way of accounting for the relevant phenomena. The section ends with a brief consideration
of the ways in which TRACE might be extended to cope with several other aspects of phoneme
identification and perception.

Lexical Effects

You can tell a phoneme by the company that it keeps. 2 In this section, we describe a simple
simulation of the basic lexical effect on phoneme identification, reported by Ganong (1980). We start
with this phenomenon because it, and the related phonemic restoration effect, were among the primary
reasons why we felt that the interactive-activation approach would be appropriate for speech perception,

*as well as visual word recognition and reading.

For the first simulation, the input to the model consisted of a feature specification which activated
/b/ and /p/ equally, followed by (and partially overlapping with) the feature specifications for /1/, then /'/,
then /g/. Figure 4 shows phoneme and word level activations at several points in the unfolding of this
input specification. Each panel of the figure represents a different point in time during the presentation
and concomitant processing of the input. The upper portion of each panel is used to display activations at
the word level; the lower panel is used for activations at the phoneme level. Each unit is represented by a
rectangle, labeled with the identity of the item the unit stands for. The horizontal extension of the rectan-
gle indicates the portion of the input spanned by the unit. The vertical position of the rectangle indicates
the degree of activation of the unit. In this and subsequent figures, activations of the phoneme units
located between the peaks of the input specifications of the phonemes (at slices 3, 9, 15, etc) have been
deleted from the display for clarity (the activations of these units generally get suppressed by the model,
since the units on the peaks tend to dominate them). The input itself is indicated below each panel, with
the successive phonemes positioned at the temporal positions of the centers of their input specifications.
The "' along the x-axis represents the point in the presentation of the input stream at which the snapshot
was taken.

The figure illustrates the gradual build-up of activation of the two interpretations of the first
phoneme, followed by gradual build-ups in activation for subsequent phonemes. As these processes
unfold, they begin to produce word level activations. It is difficult to resolve any word-level activations in
the first few frames, however, since in these frames, the information at the phoneme level simply has not
evolved to the point where it provides enough constraint to select any one particular word. In this case, it
is only after the /g/ has come in that the model has information telling it whether the input is closer to

I 'plug', 'plus", 'biush' or 'blood' (TRACE's lexicon contains no other words beginning with /ph/ or
/bl^/'). After that point, as illustrated in the fourth panel, 'plug' wins the competition at the word level,

2. This title is adapted from the title of a talk by David . Rumeihart on related phenomena in letter perception. Theme findings are
described in Ruwelhart and McClelland (1982). We thank Dave for his permission to adapt the title.



The TRACE Model McClelland and Elman
May 7,1985 17

Table 3

Parameters of TRACE II
Parameter Value

Feature-Phoneme Excitation .02
Phoneme-Word Excitation .05
Word-Phoneme Excitation .03
Phoneme-Feature Excitation .00

Feature Level Inhibition .04
Phoneme Level Inhibitiona  .04
Word Lave, finhibitiona  .03

Feature Level Decay .01
Phoneme Level Decay .03

Word Level Decay .05

aper 3 time-slices of overlap.

avoid early overcormitment that would prevent right context from exerting an influence under some cir-
cumstances. A low rate of feature-level decay was used to allow feature level activations to persist after
the input moved on to later slices.

The parameter values were held constant at the values shown in the Table throughout the simula-
tions, except in the simulations of categorical perception and trading relations. Since we were not expli-
citly concerned with the effects of feedback to the feature level in any of the other simulations, we set the
feedback from the phoneme level to the feature level to zero to speed up the simulations in all other cases.
In the categorical perception and trading relations simulations this parameter was set at .05. Phoneme-
to-feature feedback tended to slow the effective rate of decay at the feature level and to increase the
effective distinctiveness of different feature patterns. Rate of decay of feature level activations and strength
of phoneme-to-phoneme competition were set to .03 and .05 to compensate for these effects. No lexicon
was used in the categorical perception and trading relations simulations, which is equivalent to setting the
Phoneme- > Word excitation parameter to zero.

The Dynamics of Phoneme Perception

In the introduction, we motivated the approach taken in the TRACE model in general terms. In
this section, we will see that the simple concepts that lead to TRACE provide a coherent and synthetic
account of a large number of different kinds of findings on the perception of phonemes. Previous models
have been able to provide fairly accurate accounts of a number of these phenomena. For example, Mas-
saro and Oden's feature integration model (Massaro and Oden, 1980a, 1980b; Massaro, 1981; Oden and
Massaro, 1978) accounts in detail for a large body of data on the influences of multiple cues to phoneme
identity, and the Pisoni/Fujisaki-Kawashima model of categorical perception (Pisoni, 1973, 1975; Fujisaki
& Kawashima, 1968) accounts for a large body of data on the conditions under which subjects can
discriminate sounds within the same phonetic category. Marslen-Wilson's COHORT model can account
for the time-course of lexical influences on phoneme identification. What we hope to show here is that
TRACE brings these phenomena, and several others not considered by either model, together into a
coherent picture of the process of phoneme perception, as it unfolds in time.

........................................
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identification responses are assumed to be based on readout from the phoneme level. As far as phoneme

identification is concerned, then, a homogeneous mechanism is assumed to be used with both word and
non-word stimuli. The decision mechanism can be asked to make a response either a) at a criterial time
during processing, or b) when a unit in the alternative set reaches a criterial strength relative to the activa-
tion of other alternative units. Once a decision has been made to make a response, one of the alternatives
is chosen from the members of the set. The probability of choosing a particular alternative i is then given
by the Luce (1959) choice rule:

1 00 St

when j indexes the members of the alternative set, and

Si = ek '.

The exponential transformation ensures that all activations are positive and gives great weight to stronger
activations, and the Luce rule ensures that the sum of all of the response probabilities adds up to 1.0.
Substantially the same assumptions were used by McClelland and Rumelhart (1981).

Minimizing the Number of Parameters

At the expense of considerable realism, we have tried to keep TRACE II simple by using homo-
geneous parameters wherever possible. Thus, as already noted, the feature specifications of all phonemes
were spread out over the same number of time slices, effectively giving all phonemes the same duration.
The strength of the total excitation coming into a particular phoneme unit from the feature units was nor-
malized to the same value for all phonemes, thus making each phoneme equally excitable by its own
canonical pattern. Other simplifying assumptions should be noted as well. For example, there were no
differences in connections or resting levels for words of different frequency. It would have been a simple
matter to incorporate frequency as McClelland and Rumelhart (1981) did, and a complete model would of
course include some account for the ubiquitous effects of word frequency. We left it out here to facilitate
an examination of the many other factors that appear to influence the process of word recognition in
speech perception.

Even with all the simplifications described above, the TRACE model still has a number of free
parameters. These parameters are listed in Table 3. It should be noted that parameters are not in general
directly comparable across levels. For example, phoneme-to-phoneme and word- to-word inhibition are
not directly comparable to each other or to feature to phoneme inhibition, since feature level units com-
pete only within a single slice while phoneme and word units compete in proportion to their overlap.

There was some trial and error in finding the set of parameters used in the reported simulations, but
the qualitative behavior of the model was remarkably insensitive to parameter variations, and no sys-
tematic search of the space of parameters was necessary. Generally, manipulations of parameters simply
influence the magnitude or the timing of one effect or another without changing the qualitative behavior
of the model. Stronger bottom-up excitation speeds things up and can indirectly influence the size of
top-down effects, since, for example, stronger word level activations produce stronger feedback to the
phoneme level. Stronger top-down excitation, of course, directly influences the magnitude of lexical
effects. Stronger values of intra-level inhibition make the model commit itself more strongly to slight early
differences in activation among competing units. There was, therefore, some tuning of this parameter to

~~~~. -. ..................... ',.......,...... ....., .. :.............. ................... ....... .
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left at the end of the previous time slice are computed.

It is important to remember that the input is applied, one slice at a time, proceeding from left to
right as though it were an ongoing stream of speech 'writing on' the successive time slices of the Trace.
The interactive activation process is occurring throughout the Trace on each time slice, even though the
external bottom-up input is only coming in to the feature units one slice at a time. Processing interac-
tions can continue even after the left to right sweep through the input reaches the end of the Trace. Once
this happens, there are simply no new input specifications applied to the Trace; the continuing interac-
tions are based on what has already been presented. This interaction process is assumed to continue
indefinitely, though for practical purposes it is always terminated after some predetermined number of
time cycles has elapsed.

Details of Processing Dynamics

The interactive activation process in the Trace model follows the dynamic assumptions laid out in
McClelland and Rumelhart (1981). Each unit has a resting activation value arbitrarily set at 0, a max-
imum activation value arbitrarily set at 1.0, and a minimum activation set at -.3. On every time-cycle of
processing, all the weighted excitatory and inhibitory signals impinging upon a unit are added together.
The signal from one unit to another is just the extent to which its activation exceeds 0; if its activation is
less than 0, the signal is 0.1 Global level-specific excitatory, inhibitory and decay parameters scale the rela-
tive magnitudes of differnt types of influences on the activation of each unit. Values for these parameters
are given below.

After the net input to each unit has been determined based on the prior activations of the units, the
activations of the units are all updated for the next processing cycle. The new value of the activation of
the unit is a function of its net input from other units and its previous activation value. The exact func-
tion used (see McClelland and Rumelhart, 1981) keeps unit activations bounded between their maximum
and minimum values. Given a constant input, the activation of a unit will stabilize at a point between its
maximum and minimum that depends on the strength and sin (excitatory or inhibitory) of the input.
With a net input of 0, the activation of the unit will gradually return to its resting level.

Each processing time-cycle corresponds to a single time slice at the feature level. This is actually a
parameter of the model -- there is no intrinsic reason why there should be a single cycle of the interactive
activation process synchronized with the arrival of each successive slice of the input. A higher rate of
cycling would speed the percolation of effects of new input through the network relative to the rate of
presentation.

Output Assumptions

Activations of units in the Trace rise and fall as the input sweeps across the feature level. At any
time, a decision can be made based on the pattern of activation as it stands at that moment. The decision
mechanism can, we assume, be directed to consider the set of units located within a small window of adja-
cent slices within any level. The units in this set then constitute the set of response alternatives, desig-
nated by the identity of the item for which the unit stands (note that with several adjacent slices included
in the set, several units in the alternative set may correspond to the same overt response). Word-
identification responses are assumed to be based on readout from the word level, and phoneme-

1. At the word level, the inhibitory signal from one word to another is just the square of the extent to which the senderes activation
eceeds zero. This tends to smooth the effects of many units suddenly becoming slightly activated, and of course it also increases the
dominanc of one active word over many weakly activated ones.
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The connection strengths between the feature level units and a particular phoneme level unit exactly
match the feature pattern the phoneme is given in its input specification. Thus, as illustrated in Figure 3a,
the strengths of the connections between the node for /k/ centered over time slice 24 and the nodes at the
feature level are exactly proportional to the pattern of input to the feature level produced by an input
specification containing the features of /k/ centered in the same time slice.

There are inhibitory connections between units at the phoneme level. Units inhibit each other to
the extent that the speech objects they stand for represent alternative interpretations of the content of the
speech stream at the same point in the utterance. Note that, although the feature specification of a
phoneme is spread over a window of 11 slices, successive phonemes in the input have their centers six
slices apart. Thus each phoneme level unit is thought of as spanning 6 feature level slices, as illustrated in
Figure 3a. Each unit inhibits others in proportion to their overlap. Thus, a phoneme detector inhibits
other phoneme detectors centered over the same slice twice as much as it inhibits detectors centered three
slices away, and inhibits detectors centered six or more slices away not at all.

Word Units and Word-Phoneme Connections

There is a unit for every word in every time slice. Each of these units represents a different
hypothesis about a word identity and starting-location in the Trace. For example, the unit for the word
/kp/ in slice 24 (highlighted in Figure 3b) represents the hypothesis that the input contains the word
'cup' starting in slice 24. More exactly, it represents the hypothesis that the input contains the word
'cup' with its first phoneme centered in time slice 24.

Word units receive excitation from the units for the phonemes they contain in a series of overlap-
ping windows. Thus, the unit for 'cup' in time slice 24 will receive excitation from /k/ in slices neighbor-"
ing slice 24, from /^/ in slices neighboring slice 30, and from /p/ in slices neighboring slice 36. As with the
feature-phoneme connections, these connections are strongest at the center of the window and fall of
linearly on either side.

The inhibitory connections at the word level are similar to those at the phoneme level. Again, the
strength of the inhibition between two word units depends on the number of time slices in which they
overlap. Thus, units representing alternative interpretations of the same sretch of phoneme units are
strongly competitive, but units representing interpretations of non-overlapping sequences of phonemes do
not compete at all.

TRACE II has detectors for the 211 words found in a computerized phonetic word list that met all
of following constraints: a) The word consisted only of the phonemes listed above; b) It was not an
inflection of some other word that could be made by adding '-ed', '-s' or '-ing'; c) the word together
with its '-ed' '-s' and '-ing" inflections occurred with a frequency of 20 or more per million in the Kucera
& Francis (1967) word count. It is not claimed that the model's lexicon is an exhaustive list of words
meeting this criterion, since the computerized phonetic lexicon was not complete, but it is reasonably
close to this. To make specific points about the behavior of the model, detectors for the following three
words not in the main list were added: 'blush', 'regal', and 'sleet'. The model also had detectors at the
word level for silence (/-/), which was treated like a one-phoneme word.

Presentation and Processing of an Utterance

Before processing of an utterance begins, the activations of all of the units are set at their resting
values. At the start of processing, the input to the initial slice of feature units is applied. Activations are
then updated, ending the initial time cycle. On the next time cycle, the input to the next slice of feature
units in applied, and excitatory and inhibitory inputs to each unit resulting from the pattern of activation

................................ .*
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Table 2

Correlations of Feature Patterns

of the Different Phonemes used in TRACE II

phoneme p b t d k g a S r 1 a i u A

p -- .76 .71 .56 .60 .46 .30
b .76 -- .56 .71 .46 .60
t .71 .56 -- .76 .56 .42 .35
d .56 .71 .76 -- .42 .56
k .60 .46 .56 .42 -- .77 .24
g .46 .60 .42 .56 .77 --

s .30 .35 -- .65
S .24 .65 -- .20

r -- .80 .29 .32 .37
1 .80 -- .32 .32

a .29 .32 -- .65 .75 .67
.65 -- .65 .49

u .20 .32 .75 .65 -- .59
A .37 .32 .67 .49 .59 --

Note: Correlations of less than .20 have been replaced by blanks.

Feature Level Units and Connections

The units at the feature level are detectors for features of the speech stream at particular moments in
time. In TRACE II, there was a unit for each of the nine values on each of the seven dimensions, in each
time slice of the Trace. The figures show three sets of feature nodes, in several time-slices. Units for
features on the same dimension within the same time slice are mutually inhibitory. Thus, the unit for the
high value of the vocalic dimension in time slice 9 inhibits the units for other values on the same dimen-
sion in the same time slice, as illustrated in Figure 3b. This figure also illustrates the mutually excitatory
connections of this same feature unit with units at the phoneme level. In the next section we redescribe
these connections from the point of view of the phoneme level.

The Phoneme Level and Feature-Phoneme Connections

At the Phoneme level, there is a set of detectors for each of the 15 phonemes listed above. In addi-
tion, there is a set of detectors for the presence of silence. These silence detectors are treated like all other
phoneme detectors. Each member of the set of detectors for a particular phoneme is centered over a
different time-slice at the feature level, and the centers are spaced three time-slices apart. The unit centered
over a particular slice receives excitatory input from feature units in a range of slices, extending both for-
ward and backward from the slice in which the phoneme unit is located. It also sends excitatory feedback
down to the same feature units in the same range of slices.

*o,.
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Table I

Phoneme Feature Values used in TRACE II

PHONEME POWER VOCALIC DIFFUSE ACUTE CONS. VOICED BURST

p 4 1 7 2 8 1 8
b 4 I 7 2 8 7 7
t 4 1 7 7 8 1 6
d 4 1 7 7 8 7 5
k 4 1 2 3 8 1 4
g 4 1 2 3 8 7 3

s 6 4 7 8 5 1
S 6 4 6 4 5 1

r 7 7 1 2 3 8
1 7 7 2 4 3 8

a 8 8 2 1 1 8
i 8 8 8 8 1 8
u 8 8 6 2 1 8
A 7 8 5 1 1 8

instance of one phoneme will tend to excite the detector for another.

The feature patterns were constructed in such a way that it was possible to create feature patterns
that would activate two different phonemes in the same category (stop, liquid, fricative, or vowel) to an
equal extent by averaging the values of the two phonemes on one or more dmensions. In this way, it
was a simple matter to make up ambiguous inputs, half-way between two phonemes, or to construct con-
tinua varying between two phonemes on one or more dimensions.

The feature specification of each phoneme in the input stream extended over 11 time slices of the
input. The strength of the pattern grew to a peak at the 6th slice and fell off again, as illustrated in Figure
2. Peaks of successive phonemes were separated by 6 slices. Thus, specifications of successive phonemes
overlapped, as they do in real speech (Fowler, 1984; Liberman, 1970).

Generally, there were no cues in the speech stream to word boundaries -- the feature specification
for the last phoneme of one word overlapped with the first phoneme of the next in just the same way
feature specifications of adjacent phonemes overlap within words. However, entire utterances presented to
the model for processing -- be they individual syllables, words, or strings of words -- were preceeded and
followed by silence. Silence was not simply the absence of any input; rather, it was a pattern of feature
values, just like the phonemes. Thus, a ninth value on each of the seven dimensions was associated with
silence. These values were actually outside the range of values which occurred in the phonemes them-
selves, so that the features of silence were completely uncorrelated with the features of any of the
phonemes used.

.'.'.. .-.............'".....,-'-...-...-......,----...... -.-. -.,•. .•.....-..-.......... -........ .

.. . ..n,, ,,,& , -.,,, , ._ .. .. .. . . . . . .... .. . .... . . . . . .".. .".. . . . . ."-.. . .".".. . . . . . . .". .'." " ' " ' -" "'- ""



The TRACE Model McClelland and Elman
May 7, 1985 11

The following sections describe TRACE II in more detail. First we consider the specifications of
the mock-speech input to the model, and then we consider the units and the connections that make up
the Trace at each of the three levels.

Mock-Speech Inputs

The input to TRACE II was a series of specifications for inputs to units at the feature level, one for
each 25 msec time slice of the mock-utterance. These specifications were generated by a simple computer

program from a sequence of to-be-presented segments provided by the human user of the simulation pro-
gram. The allowed segments consisted of the stop consonants /b/, /p/, /d/, /t/, /g/, and /k/, the fricatives
/s/ and S/ ('sh' as in 'ship'), the liquids /1/ and /r/, and the vowels /a/ (as in 'pot'), /i/ (as in 'beet'), /u/
(as in 'boot'), and /A/ (as in "but). 11/ was also used to represent reduced vowels such as the second
vowel in "target'. There was also a 'silence' segment represented by /-/. Special segments, such as a seg-
ment halfway between /b/ and /p/, were also used; their properties will be described in descriptions of the
relevant simulations.

A set of seven dimensions was used in TRACE II to represent the feature level inputs. Five of the
dimensions (Consonantal, Vocalic, Diffuseness, Acuteness, and Voicing) were taken from classical work in
phonology (Jakobson, Fant, and Halle, 1952), though we treat each of these dimensions as continua, in
the spirit of Oden and Massaro (1978), rather than as binary features. A sixth dimension, Power, was
included because it has been found useful for phoneme identification in various machine systems (e.g.,
Reddy, 1976), and it was incorporated here to add an additional dimension to increase the differentiation
of the vowels and consonants. The seventh dimension, the amplitude of the burst of noise that occurs at
the beginning of word initial stops, was included to provide an additional basis for distinguishing the stop
consonants, which otherwise diffmed from each other on only one or two dimensions. Of course, these
dimensions are intentional simplifications of the real acoustic structure of speech, in much the same way
that the font used by McClelland and Rumelhart (1981) in the interactive-activation model of visual word
recognition was an intentional simplification of the real structure of print.

Each dimension was divided into eight value-ranges. Each phoneme was assigned a value on each
dimension; the values on the Vocalic, Diffuseness, and Acuteness for the phonemes in the utterance
/tik'p/ are shown in Figure 2. The full set of values are shown in Table 1. Numbers in the cells of the
Table indicate which value on the indicated dimension was most strongly activated by the feature pattern
for the indicated phoneme. Values range from I = very low to 8 = very high. The last two dimensions
were altered for the categorical perception and trading relations simulations.

Values were assigned to approximate the values real phonemes would have on these dimteusions, and
to make phonemes that fall into the same phonetic category have identical values on many of the dimen-
sions. Thus, for example, all stop consonants were assigned the same values on the Power, Vocalic, and
Consonantal dimensions. We do not claim to have captured the details of phoneme similarity exactly.
Indeed, one cannot do so in a fixed feature set because the similarities vary as a function of context.
However, the feature sets do have the property that the feature pattern for one phoneme is more similar
to the feature pattern for other phonemes in the same phonetic category (stop, fricative, liquid, or vowel)
than it is to the patterns for phonemes in other categories. Among the stops, those phonemes sharing
place of articulation or voicing are more similar than those sharing neither attribute.

The correlations of the feature patterns for the fifteen phonemes used are shown in Table 2. It is
these correlations of the patterns assigned to the different phonemes, rather than the actual values assigned
to particular phonemes or even the labels attached to the different mock-speech dimensions, that deter-
mines the behavior of the simulation model, since it is these correlations that determine how much an

...-.-...-...- .....--.. ,... .-....... ,. .:........-.......,.........:.... ......... . ...
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Figure 9. Time course of growth in the probability of the /t/ response based on activations of
phoneme units in slice 12, during processing of /targ't/ and /tr'gs/. The vertical lines indicate the peaks
on the feature patterns corresponding to the successive phonemes of the presented word.

Studies showing lexical effects in reaction times. Marslen-Wilson (1980) has reported an experi-
ment that demonstrates the existence of lexical effects in phoneme monitoring for phonemes coming at
later points in words. For phonemes coming at the beginning of a word or at the end of the first syllable,
he found no facilitation for phonemes in words relative to phonemes in nonwords (in fact there was a
nonword advantage for these early target conditions). For targets occurring at the end of the second syll-
able of a two-syllable word (like 'secret' -- though the stimuli in this particular experiment were Dutch)
Marslen-Wilson found a 85 msec advantage compared to corresponding positions in non-words. This
compares quite closely with the value of about 75 msec we obtained for the /sikr't/-/g'td't/ example. At
the ends of even longer words, the word advantage increased in size to 185 msec. Marslen-Wilson's result
thus confirms that there are indeed lexical effects in phoneme monitoring -- even for unambiguous inputs
-- but underscores the fact that there is no word advantage for phonemes whose processing can be com-
pleted long before lexical influences would have a chance to show up.

The TRACE model and Marslen-Wilson's COHORT model (Marslen-Wilson and Welsh, 1978;
Marslen-Wilson and Tyler, 1980) offer fairly similar interpretations of lexical effects in phoneme monitor-
ing. Both models account for the growth in the effect as a function of position in the word. As in
COHORT, lexical effects in TRACE depend the point at which the pattern of activation at the word level
begins to specify the identities of the phonemes. In COHORT, there is a discrete moment when this
occurs -- when the cohort of items consistent with the input is reduced to a single item. In TRACE,
things are not quite so discrete. However, it will still generally be the case in TRACE that the size of the

! q o %-%° .. % I* -, 
•

. •.*. .. .o . .. .



The TRACE Model McClelland and Elman
May 7, 1985 26

1 00

0.80 s-kr-t
g-Id-t

UD 0.60
Q)

C:2
o 0.40
CO

S 0.20

0.00 I I I
0 6 12 18 24 30 36 42 48 54 60 66 72

Processing Cycles

Figure 10. Probability of the /t/ response as a function of processing cycles, based on activation of
=- phoneme units at cycle 42, for the stream /sikr't/ ('secret') and /gId't/ ('guldut'). Vertical lines indicate

the peaks of the input patterns corresponding to the successive phonemes in either stream.

lexical effect will vary with the location of the 'unique point', the point at which the bottom-up input
remains consistent with only a single word. However, since Marslen-Wilson's experiments were per-
formed with Dutch words, we have not been able to simulate his experimental demonstration of this effect

. in detail.

TRACE and COHORT make similar predictions in some situations, but not in all. In the next sec-
tion, we consider a phenomenon which TRACE accounts for via the same mechanisms it uses to account

. for the lexical effects we have been considering. Here, the graded feedback from the word level to the
*- phoneme level allows TRACE to account for an effect that would not be predicted by COHORT, unless

additional assumptions were made.

* Are Phonotactic Rule Effects the Result of a Conspiracy?

Recently, Massaro and Cohen (1983) have reported evidence they take as support for the use of
phonotactic rules in phoneme identification. In one experiment, Massaro and Cohen's stimuli consisted of
phonological segments ambiguous between /r/ and /1/ in different contexts. In one context (/ti/) /r/ is
permissible in English, but /1/ is not. In another context (/s.i/) /1/ is permissible in English but /r/ is not.

" In a third context (/Li/) both are permissible, and in a fourth (/v.i/) neither is permissible. Massaro and
Cohen found a bias to perceive ambiguous segments as /r/ when /r/ was permissible; or as /1/ when /I/

.. was permissible. No bias appeared in either of the other two conditions.
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With most of these stimuli, phonotactic acceptability is confounded with the actual lexical status of
the item; thus Iffl and Ifrai/("flee' and 'free') are both words, as is /tri/ but not /tl/. In the /si/context,

however, neither /sli/ or /sri/ are words, yet Massaro and Cohen found a bias to hear the ambiguous seg-
ment as /1/, in accordance with phonotactic rules.

It turns out that TRACE produces the same effect, even though it lacks phonotactic rules. The rea-
son is that the ambiguous stimulus produces partial activations of a number of words ('sleep' and 'sleet'
in the model's lexicon; it would also activate 'sleeve", 'sleek', and others in a model with a fuller lexicon).
None of these word units gets as active as it would if the entire word had been presented. However, all of
them (in the simulation, there are only two, but the principle still applies) are partially activated, and all
conspire together and contribute to the activation of //. This feedback support for the /1/ allows it to
dominate the /r/, just as it would if/sli/ were an actual word, as shown in Figure 11.

The hypothesis that phonotactic rule effects are really based on word activations leads to a predic-
tion: That we should be able to reverse these effects if we present items that are supported strongly by one
or more lexical items even if they violate phonotactic rules. A recent experiment by Elman (1983)
confirms this prediction. In this experiment, ambiguous phonemes (for example, halfway between fb/ and
/d/) were presented in three different types of contexts. In all three types, one of the two (in this case, the
/d/) what phonotactically acceptable, while the other (the /b/) was not. However, the contexts differed in
their relation to words. In one case, the legal item actually occurred in a word ('bwindle'-'dwindle'). In
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Figure 11. State of the Trace at several points in processing a segment ambiguous between /1/ and
/r/, in the context /si/. The units for 'sleep' (/slip/) and 'sleet" (/slit/) are boxed together since they take
on identical activation values.
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a second case, neither item made a word, but the illegal item was very close to a word ("bwacelet"-
'dwacelet'). In a third case, neither item was particularly close to a word ('bwifflie'-dwiffie"). Results of
the experiment are shown in Table 4. The presence of a word similar or identical to one of the two alter-
natives strongly influenced the subjects' choices between the two alternatives. Indeed, in the case where
the phonotactically irregular alternative (*bwacelet') was very similar to a particular lexical item (*bra-
celet'), subjects tended to hear the ambiguous item in accord with the simila lexical item (that is, as a
/b/) even though it was phonotactically incorrect.

To determine whether the model would also produce such a reversal of the phonotactic rule effects
with the appropriate kinds of stimuli, we ran a simulation using a simulated input ambiguous between /p/
and /t/ in the context /luli/. /p/ is phonotactically acceptable in this context, but /t/ in this context
makes an item that is very close to the word 'truly'. The results of this run, at two different points during
processing, are shown in Figure 12. Early on in processing, there is a slight bias in favor of the /p/ over
the /t/, because at first a large number of /pl/ words are slightly more activated than any words beginning
with it/. Later, though, the /t/ gets the upper hand as the word 'truly' comes to dominate at the word
level. Thus, by the end of the word or shortly thereafter, the 'closest word has begun to play a dominating
role, causing the model to prefer the phonotactically inappropriate interpretation of the ambiguous initial
segment.

Of course, at the same time the word 'truly' tends to support /r/ rather than /1/ for the second seg-
ment. Thus, even though this segment is not ambiguous, and the /1/would suppress the /r/ interpretation
in a more neutral context, the /r/ stays quite active.

Trading Relations and Categorical Perception

In the simulations considered thus far, phoneme identification is influenced by two different kinds of
factors, featural and lexical. When one sort of information is lacking, the other can compensate for it.
The image that emerges from these kinds of findings is of a system that exhibits great flexibility by being
able to base identification decisions on different sources of information. It is, of course, well established
that within the featural domain each phoneme is generally signalled by a number of different cues, and
that human subjects can trade these cues off against each other. The TRACE model exhibits this same
flexibility, as we shall detail shortly.

Table 4

Percent Choice of Phonotactically Irregular Consonant

Stimulus type Example Percentage of identificatons
as 'illegal' phoneme

legal word/illegal non-word dwindle/bwindle 37%
legal non-word/illegal non-word dwiffle/bwiffile 46%
legal non-word/illegal near-word dwacelet/bwacelet 55%

24 *F,..F(2,34) = 26.414, p < .001



The TRACE Model McClelland and Elman
May 7, 1985 29

trutru ir

ru i

- i
1 lUli- U

r U t tI
I' Pr

r
rr

u 
a

aaa a r
aat - -- a

t t t tI U I i- - lul i- - lul i- -lul i-
P P P P

Figure 12. State of the Trace at several points in processing an ambiguous /p/-/t/ segment followed
by/luli/.

But them is something of a paradox. While the perceptual mechanisms exhibit great flexibility in
the cues that they rely on for phoneme identification, they also appear to be quite "categorical' in nature.
That is, they produce much sharper boundaries between phonetic categories than we might expect based
on their sensitivity to multiple cues; and they appear to treat acoustically distinct feature patterns as per-
ceptually equivalent, as long as they are identified as instances of the same phoneme.

In this a section, we illustrate that in TRACE, just as in human speech perception, flexibility in
feature interpretation -- specifically, the ability to trade one feature of a phoneme off against another --
coexists with a strong tendency toward categorical perception.

For these simulations, the model was stripped down to the essential minimum necessary, so that the
basic mechanisms producing cue tradeoffs and categorical perception could be brought to the fore. The
word level was eliminated altogether, and at the phoneme level there were only three phonemes, /a/, /g/,
and /k/, plus silence (/-/). From these four items, inputs and percepts of the form I-ga-/ and /-ka-/ could
be constructed. The following additional constraints were imposed on the feature specifications of each of
the phonemes: 1) the /a/ and /-/ had no overlap with either /g/ or /k/, so that neither /a/ not /-/ would
bias the activations of the /g/ and /k/ phoneme units where they overlapped with the consonant. 2) /g/
and /k/ were identical on five of the seven dimensions, and differed only on the remaining two dimen-
sions.

o-, - "-" %°• ..' , °' .. . . . . . . . . ... . . .. .
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The two dimensions which differentiated /g/ and /k/ were voice onset time (VOT) and the onset fre-
quency of the first formant (FlOF). These dimensions replaced the voicing and burst amplitude dimen-
sions used in all of the other simulations. Figure 13 illustrates how FIOF tends to increase as voice onset
time is delayed.

Summerfield and Haggard (1977) have shown that subjects are sensitive both to VOT and to FlOF,
and that it is possible to trade one of these cues off against the other. Thus, the boundary between /ga/
and /ka/ shifts to longer VOT's when FI starts off lower rather than higher.

Categorical perception and trading relations among cues have been studied on a variety of different
continua by a variety of different investigators. We have chosen to focus on the VOT and FlOF features,
as exemplified by the /ga/-/ka/ continuum, because there is data on trade-offs between these cues
(Summerfield and Haggard, 1977), and because several categorical perception studies of VOT continua
(using /g/-/k/, /d/-/t/, or /b/-/p/ stimuli) have covaried both VOT and FlOF, if only because FlOF tends
to covary with VOT when realistic stimuli are used (e.g., Pisoni and Lazarus, 1974; Samuel, 1977).
Though the simulations use a /g/-/k/ continuum, we will consider several categorical perception
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Figure 13. Schematic diagram of a syllable that will be heard as /ga/ or /ka/, depending on the point

in the syllable at which Voicing begins. Prior to the onset of voicing, F2 and F3 are energized by aperiod-
ic noise sources, and Fl is 'cut back' (the noise source has little or no energy in this range). Because of
the fact that Fl rises over time after syllable onset (as the vocal tract moves from a shape consistent with
the consonant into a shape consistent with the vowel), its frequency at the onset of voicing is higher for
later values of VOT. Parameters used in constructing this schematic syllable are derived from Kewley-
Port's (1982) analysis of the parameters of formants in natural speech, and are similar to those used in
many perceptual experiments.
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Figure 14. Canonical feature level input for /g/ and /k/, on the two dimensions that distinguish
them, and the patterns used for the five intermediate values used in the Trading Relations simulation.
Along the abscissa of each dimension the nine units for the nine different value ranges of the dimension
are arrayed. The curves labeled /g/ and /k/ indicate the relative strength of the excitatory input to each of
these units, produced by the indicated phoneme. The canonical curves also indicate the strengths of the
feature to phoneme connections for /g/ and /k/ on these dimensions. That is, the canonical input pattern
for each phoneme exactly matches the strengths of the corresponding feature-phoneme connections.
Numbered curves on each dimension show the feature patterns used in the trading relations simulation.

r.

experiments using Id/-lt/ and /b/-/p/ continua, since the same dimensions can differentiate the two
members of both of these other pairs. We will also consider data obtained in experiments on other con-
tinua, using other cues. We could easily have repeated the simulations with other sets of continua; how-
ever, the general qualitative form of the results would be the same. What would vary from case to case
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would be the magnitude of the effect of a step along a given dimension.

The pattern of excitatory input to the VOT and FIOF detectors produced by the canonical mock-
speech /g/ and /k/ used in the simulations are illustrated in Figure 14.

Trading relations. TRACE quite naturally tends to produce trading relations between features,
since it relies on the weighted sum of the excitatory inputs to determine how strongly the input will
activate a particular phoneme unit. All else being equal, the phoneme unit receiving the largest sum
bottom-up excitation will be more strongly activated than any other, and will therefore be the most likely
response when a choice must be made between one phoneme and another. Since the net bottom up
input is just the sum of all of the inputs, no one input is necessarily decisive in this regard.

Generally, experiments demonstrating trading relations between two or more cues manipulate each
of the cues over a number of values ranging between a value more typical of one of two phonemes and a
value more typical of the other. Summerfield and Haggard did this for VOT and F1OF, and found the
typical result, namely that the value of one cue that gives rise of 50% choices of /k/ was affected by the
value of the other cue: The higher the value of FlOF, the shorter the value of VOT needed for 50%
choices of /k/. Unfortunately, they did not present full curves relating phoneme identification to the
values used on each of the two dimensions. In lieu of this, we present curves in Figure 15 from a classic
trading relations experiment, by Denes (1955). Similar patterns of results have been reported in other stu-
dies. In the Denes data, we see clearly that there are cases in which a cue that favors one of the two
phonemes to a moderate degree will give rise to the perception of the other phoneme when paired up with
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Figure 15. Results of an experiment demonstrating the trade-off between two cues to the identity of

/s/ and /z/. Data from Denes, 1955, reprinted and fitted by the model of Massaro and Cohen, 1977.
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a strong cue that favors the other phoneme. An additional finding is the bowing of the curves; they tend
to be approximately linear through the middle of their range, but to level off at both ends, where the
values on both dimensions agree in pointing to one alternative or the other.

To see if TRACE would simulate the basic tradeoff effect obtained by Summerfield and Haggard,
and to see if it would produce the same shape tradeoff curves as have been generally reported, we gen-
erated a set of 25 intermediate phonetic segments made up by pairing each of five different intermediate
patterns on the VOT dimension with each of five different intermediate patterns on the FIOF dimension.
The different feature patterns used on each dimension are shown in Figure 14, along with the canonical
feature patterns for /g/ and /k/ on each of the two dimensions. On the remaining 5 dimensions, the inter-
mediate segments all had the common canonical feature values for /g/ and /k/.

The model was tested with each of the 25 stimuli, preceeded by silence (/-/) and followed by /a-/. In
this and all subsequent simulations we will report in this paper, the peak of the initial silence phoneme
occurred at time slice 6 in the input, and the peaks of successive phoneme segments occurred at 6 slice
intervals. Thus, for these stimuli, the peak on the intermediate phonetic segment occurred at slice 12, the
peak of the following vowel occurred at slice 18, and the peak of the final silence occurred at slice 24. For
each input presented, the interactive activation process was allowed to continue through a total of 60 tm
slices, well past the end of the input. The state of the Trace at various points in processing, for the most
/g/-Iike of the 25 stimuli, is shown in Figure 16. At the end of the 60th time slice, we recorded the activa-
tion of the units for /g/ and /k/ in time slice 12, and the probability of choosing /g/ based on these activa-
tions. (It makes no difference to the qualitative appearance of the results if a different decision time is
used; earlier decision times are associated with smaller differences in relative activation between the /g/ and
/k/ phoneme units, and later ones with larger differences, but the general pattern is the same.)
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Figure 16. The state of the Trace at various points during and after the presentation of a syllable
consisting of the most /g/-like of the 25 intermediate segments used in the trading relations experiment,
represented by /X/, preceeded by silence and followed by /a/, then another silence.
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Response probabilities were computed using the formulas given earlier for converting activations to
response strengths and strengths into probabilities. The resulting response probabilities, for each of the 25
conditions of the experiment, are shown in Figure 17. The pattern of results is quite similar to that
obtained in Denes (1955) experiment on the /s/-/z/ continuum. The contribution of each cue is approxi-
mately linear and additive in the middle of the range, and but the curves flatten out at the extremes, as in
the Denes (1955) experiment. More importantly, the model's behavior exhibits the ability to trade one cue
off against another. For example, there are three different combinations of feature values which lead to a
probability between .82 and .85 of choosing /k/: 1) The neutral value of the VOT dimension coupled
with the most /k/-like value on the FIOF dimension; 2) the neutral value on the FlOF dimension cou-
pled with the most /k/-like value of the VOT dimension; and 3) the somewhat /k/-like values on both
dimensions. In terms of Summerield and Haggard's measure, the value of VOT needed to achieve 50%
probability of reporting /k/, we can see that the VOT needed increases as the FlOF decreases, just as
these investigators found.

Cue trade-offs in phoneme identification are accounted for in detail by the feature integration model
of Oden and Massaro (1978; Massaro and Oden, 1980a, 1980b; Massaro, 1981). While we have shown
how TRACE can account for the basic trade-off effect and the general form of the trade-off curves, we
have not yet attempted the kinds of detailed fits that Massaro, Oden, and collaborators have reported in a
number of studies. The models are, however, quite similar so it seems rather unlikely that cue trade-off
data would be able to discriminate among them. And, both make special assumptions about lack of
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Figure 17. Simulated probability of choosing /k/ at time slice 60, for each of the 25 stimuli used in
the trading relations sim-aation experiment. Numbers next to each curve refer to the intermediate pattern
on tht: F IOF continuum used in the 5 stimuli contributing to each curve. Higher numbers correspond to
higher values of FIOF.
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invariance of cues to phoneme identity in different contexts.

One apparent dissimilarity between the models deserves comment. Whereas cue strengths are com-
bined multiplicatively in the determination of response strengths in the feature integration model, they are
combined additively in the bottom-up inputs to the nodes in TRACE. However, in TRACE, two further
computational steps take place before these inputs result in response strengths. First, the interactive
activation process enhances differences 'ietween competing nodes. Second, the resulting node activations
are subjected to an exponential transformation. Just this second step by itself would transform influences
that have additive effects on node activations into influences that have multiplicative effects on response
strength. Thus, the models would be mathematically equivalent if the interactive activation process were

/g/ /k/

1 2 3 4 5 6 7 8 9 1011

0 1 2 3 4 5 6 7 8 9
Voice Onset Time

/g/ /k/

1 2 3 4 5 6 7 8 9 1011

II

0 1 2 3 4 5 6 7 8 9

F1 Onset Frequency

Figure 18. Locations of peak activations along the VOT and F1OF dimensions, for each of the 11
stimuli used in the categorical perception simulation.
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simply replaced by a linear, additive combination of inputs to the nodes. In quantitative formulations of
the interactive activation process closely related to the ones we use (Grossberg, 1978) what the interactive
activation process does is simply rescale the node activations, preserving the ratios of their bottom-up
activation but keeping them bounded. Though our version of these equations does not do this exactly,
the ways in which it deviates from this would be difficult to use as the basis for an empirical distinction
between the TRACE approach and the feature integration model. Thus, up to a point, we can see
TRACE as (approximately) implementing the computations specified in Oden and Massaro's model. The
models differ, though, in that TRACE is dynamic, and in that it incorporates feedback to the phoneme
level. This allows TRACE to account for categorical perception in an different way.

Categorical perception. In spite of the fact that TRACE is quite flexible in the way it combines
information from different features to determine the identity of a phoneme, the model is quite categorical
in its overt responses. This is illustrated in two ways: First, the model shows a much sharper transition
in its choices of responses as we move from /g/ to /k/ along the VOT and F1OF dimensions than we
would expect from the slight changes in the relative excitation of the /g/ and /k/ units. Second, the model
tends to obliterate differences between different inputs which it identifies as the same phoneme, while
sharpening differences between inputs assigned to different categories. We will consider each of these two
points in turn, after we describe the stimuli used in the simulations.

Eleven different consonant feature patterns were used, embedded in the same simulated /--a-/ con-
text as in the trading relations simulation. The stimuli varied from very low values of both VOT and
F IOF, more extreme that the canonical /g/, through very high values on both dimensions, more extreme
that the canonical /k/. All the stimuli were spaced equal distances apart on the VOT and FIOF dimen-
sions. The locations of the peak activation values on each of these two continua are shown in Figure 18.

Figure 19 indicates the relative initial bottom-up activation of the /g/ and /k/ phoneme units for
each of the 11 stimuli used in the simulation. The first thing to note is that the relative bottom-up excita-
tion of the two phoneme units differ only slightly. For example, the canonical feature pattern for /g/
sends 75% as much excitation to /g/ as it sends to /k/. The feature pattern two steps toward /g/ from /k/
(stimulus number 5), sends 88% as much activation to /g/ as to /k/.

The Figure also indicates, in the second panel, the resulting activations of the units for /g/ and /k/
at the end of 60 cycles of processing. The slight differences in net input have been greatly amplified, and
the activation curves exhibit a much steeper transition than the relative bottom-up excitation curves.

There are two reasons why the activation curves are so much sharper than the initial bottom-up
excitation functions. The primary reason is cormpetitive inhibition. The effect of the competitive inhibition
at the phoneme level is to greatly magnify the slight difference in the excitatory inputs to the two
phonemes. It is easy to see why this happens. Once one phoneme is slightly more strongly activated
than the other, it exerts a stronger inhibitory influence on the other than the other can exert on it. The
net result is that 'the rich get richer.' This general property of competitive inhibition mechanisms was dis-
cussed by McClelland and Rumelhart (1981), following earlier observations by Grossberg (see Grossberg
1978 for a discussion) and Levin (1976); it is also well known as one possible basis of edge enhancement
effects in low levels of visual information processing. A second cause of the sharpening of the activation
curves is the phoneme-to-feature feedback, which we will consider in detail in a moment.

The identification functions that result from applying the Luce choice rule to the activation values
shown in the second panel of Figure 19 are shown in Figure 20 along with the ABX discrimination func-
tion, which will be discussed below. The identification functions are even sharper than the activation
curves; there is only a 4% chance that the model will chose /k/ instead of /g/ for stimulus 5, for which /k/
receives 88% as much bottom up support as /g/. The increased sharpness is due to the properties of the
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Figure 19. Effects of competition on phoneme activations. The first panel shows relative amounts
of bottom up excitatory input to /g/ and /k/ produced by each of the I 1 stimuli used in the categorical
perception simulation. The second panel shows the arzivations of units for /g/ and /k/ at time cycle 60.
Stimuli 3 and 9 correspond to the canonical /g/ and /k/ respectively.

response strength assumptions. These assumptions essentially implement the notion that the sensitivity of
the decision mechanism, in terms of d' for choosing the most strongly activated of two units, is a linear
function of the difference in activation of the two units. When the activations are far enough apart, d' will
be sufficient to ensure near- 100% correct performance, even though both units have greater than 0 activa-
tion. Of course, the amount of separation in the activations that is necessary for any given level of perfor-
mance is a matter of parameters; the relevant parameter here is the scale factor used in the exponential
transformation of activations. The value used for this parameter in the present simulations (10) was the
same as that used in all other cases where we translate activation into responsc probability, including the

-.'- _ .. -. . . . . . .-. *..'.. , .' -.-. t.." " A." "" - ' ' - ' " " ' ' - " '



The TRACE Model McClelland and Elman
May 7, 1985 38

- , 1.20

1.00 -

0.80 -

~ 0.60

0.40

0.20

S 0.00

-0.20I
0 1 2 3 4 5 6 7 8 9 10 11 12

Stimulus

Figure 20. Simulated identification functions and forced-choice accuracy in the ABX task.

Trading Relations simulation.

Some readers may be puzzled as to why TRACE II exhibits a sharp identification function in the
categorical perception experiment, but shows a much more gradual transition between /g/ and /k/ in the
trading relations simulation. The reason is simply that finer steps along the VOT and FlOF continua
were used in the trading relations simulation. All of the stimuli for the trading relations simulation lie
between stimuli 6 and 4 in the categorical perception simulation.

This obviously brings out the fact that the apparent steepness of the identification function depends
on the grain of the sampling of different points along the continuum between two stimuli, as well as a
host of other factors (Lane, 1965). Whether an empirical or simulated identification function will look
steep or not depends on the selection of stimuli by the experimenter or modeler. However, it is worth
noting that the steepness of the identification function is independent of the presence of trading relations,
at least in the simulation model. That is, if we had used more widely separated steps along the the VOT
and FIOF dimension, we would have obtained much steeper identification functions. The additivity of
excitatory inputs would still apply, and thus it would still be possible to trade cues off against each other.

In TRACE, the categorical output of the model comes about only after an interactive competition
process that greatly sharpens the differences in the activation of the detectors for the relevant units. This
interactive process takes time. In the simulation results reported here, we assumed that subjects waited a
fixed time before responding. But, if we assume that subjects are able to respond as soon as the response
strength ratio reaches some criterial level, we would find that subjects would be able to respond more
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Figure 26. The state of the Trace at various points during processing of /parti/.

However, it should be noted that this aspect of the behavior of the model can be over-ridden if there
is bottom-up information favoring the two-word interpretation. Currently, this can only happen in
TRACE through the insertion of a brief silence between the 'par' and the 'tea'. As shown in Figure 27,
this results in 'par' and 'tea' dominating all other word candidates.

What happens when there is no long word that spans the entire stream, as in /barti/? In this case,
the model settles on the two word interpretation 'bar tea', as shown in Figure 27. Note that other words,
such as 'art', that span a portion of the input, are less successful than either 'bar' or 'tea'. The reason is
that the interpretations 'bar' and "art' overlap with each other, and 'art' and 'tea' overlap with each
other, but 'bar' and "tea' do not overlap. Thus, 'art' receives inhibition from both 'bar' and 'tea', while
'bar" and 'tea' each receive inhibition only from "art". Thus two words that do not overlap with each
other can gang up on a third each overlaps with partly and drive it out.

These remarkably simple mechanisms of activation and competition do a very good job of word seg-
mentation, without the aid of any syllabification, stress, phonetic word boundary cues, or semantic and
syntactic constraints. In 189 of the 211 word pairs tested in the simulation experiment, the model came up
with the correct parse, in the sense that no other word was more active than either of the two words that
had been presented. Some of the failures of the model occurred in cases where the input was actually
consistent with two parses, either a longer spanning word rather than a single word (as in "party') or a
different parse into two words, as in 'part rust' ior 'par trust'. In such cases TRACE tends to prefer
parses in which the longer word comes first. There were, however, some cases in which the model did not
come up with a valid parse, that is a pattern than represents complete coverage of the input by a set of
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Cole and Jakimic (1980) discuss these points, and present evidence that semantic and syntactic con-
text can guide segmentation in cases where the lexicon is consistent with two readings ('car go' vs
"cargo'). Our present model lacks syntactic and semantic levels, so it cannot make use of these higher-
level constraints; but it can make use of its knowledge about words, not only to identify individual words
in isolation, but to pick out a sequence of words in continuous streams of phonemes. Word identification
and segmentation emerge together from the interactive activation process, as part and parcel of the process
of word activation.

This section considers several aspects of the way in which word segmentation emerges form the
interactive activation process, as observed in simulations with TRACE II. Before we consider these, it is
worth recalling the details of some of the assumptions made about the bottom up activation of word units
and about competitive inhibition between word units. First, the extent to which a particular phoneme
excites a particular word unit is independent of the length of the word. Second, the extent to which a par-
ticular word unit will inhibit another word unit is proportional to the temporal overlap of the two word
units. This means that words which do not overlap in time will not inhibit each other, but will gang up
on other words than partially overlap each of them. These two assumptions form most of the basis of the
effects we will observe in the simulations.

The boundary is in the ear of the behearer. First, we consider the basic fact that the number of
words we will hear in a sequence of phonemes can depend on our knowledge of the number of words the
sequence makes. Consider the two utterances, 'she can't" and "secant". Though we can say either item in
a way that makes it sound like a single word or like two words, there is an intermediate way of saying
them so that the first seems to be two words and the second seems like only one.

To see what TRACE II would do with single and multiple word inputs, we ran simulation experi-
ments with each individual word in the main 211 -word lexicon preceeded and followed by silence, and
then with 211 pairs of words, with a silence at the begining and at the end of the entire stream. The
pairs were made by simply permuting the lexicon twice and then abutting the two permutations so that
each word occurred once as the first word and once as the second word in the entire set of 211 pairs. We
stress of course that real speech would tend to contain cues that would mark word boundaries in many
cases; the experiment is simply designed to show what TRACE would do in cases where these cues are
lacking.

With the individual words, TRACE made no mistakes -- that is, by a few slices after the end of the
word, the word that spanned the entire input was more strongly activated than any other word. An
example of this is shown using the item /parti/ in Figure 26. The steam /parti/ might be either one word
('party') two ('par tea', or 'par tee' -- the model knows of only one word pronounced /ti/). At early
points in processing the word, 'par' dominates over "party' and other longer words, for reasons discussed
in the previous section. By the time the model has had a chance to process the end of the word, however,
'party' comes to dominate.

Why does a single longer word eventually win out over two shorter ones in TRACE? There are two
main reasons. First of all, a longer word eventually receives more bottom-up support than either shorter
word, simply because there are more phonemes activating the longer word than the shorter word. The
second reason has to do with the sequential nature of the input. In the case of /parti/, by the time the /ti/
is coming in, the word 'party' is well enough established that it keeps /ti/ from getting as strongly
activated as it would otherwise, as illustrated in Figure 26. This behavior of the model leads to the predic-
tion that short words imbedded in the ends of longer words should not get as strongly activated as shorter
words coming earlier in the longer word. This prediction could be tested using the gating paradigm, or a
cross-modal priming paradigm such as the one used by Swinney (1982).
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There is one aspect of TRACE's behavior which differs from COHORT: Among those words that
are consistent with the input up to a particular point in time, TRACE shows a bias in favor of shorter
words over longer words. Thus, 'priest" has a slight advantage before the /a/ comes in, and 'produce' is
well ahead of 'product' until the /A/ comes in (in phonemes, 'produce' is one shorter than 'product).

This advantage for shorter words is due to the competition mechanism. REcall that word units
compete with each other in proportion to the overlap of the sets of time slices spanned by each of the
words. Overlap is of course symmetrical, so long and short words inhibit each other to an equal extent.
But longer words suffer more inhibition from other long words than short words do. For example, 'pro-
gress" and 'probable" inhibit "product' more than they inhibit "priest' and "produce'. Thus, units for
longer words are generally subjected to extra inhibition, particularly early on when many candidates are
active, and so they tend to suffer in comparison to short words as a result.

We were at first somewhat disturbed by this aspect of the model's behavior, but it turns out to
correspond quite closely with results obtained in experiments by Grosjean (1980) and Cotton & Grosjean
(1984) using the gating paradigm. Both papers found that subjects hearing the beginnings of words like
'captain' tended to report shorter words consistent with what they had heard (e.g., "cap'). However, we
should observe that in the gating paradigm, when the word "captain' is truncated just after the /p/, it will
sound quite a bit like 'cap' followed by silence. In TRACE, this silence would activate silence units at
the phoneme and word levels, and the word-level silence units would compete with units for words that
entend into the silence. it will reinforce the preference of the model for short-word interpretations,
because the detection of the silence will inhibit the detector for the longer word. Thus, there are actually
two reasons why TRACE might favor short-word interpretations over long-word interpretations in a gat-
ing experiment. Whether human subjects show a residual preference for shorter interpretations over
longer ones in the absence of a following silence during the course of processing is not yet clear from
available data.

Frequency and context effects. There are, of course, other factors which influence when word
recognition will occur beyond those we have considered thus far. Two very important ones are word fre-
quency and contextual predictability. The literature on these two factors goes back to the turn of the cen-
tury (Bagley, 1900). Morton's (1969) logogen model effectively deals with several important aspects of
this huge literature, though not with the time course of these effects.

We have not yet included either word frequency or higher-level contextual influences in TRACE,
though of course we believe they are important. Word frequency effects could be accommodated, as they
were in the interactive activation model of word recognition, in terms of variation in the resting activation
level of word units, or in terms of variation in the strength of phoneme to word connections. Contextual
influences can be thought of as supplying activation to word units from even higher levels of processing
than the word level. In this way, basic aspects of these two kinds of influences can be captured. We leave
it to future research, however, to determine to what extent these elaborations of TRACE would provide a
detailed account of the data on the roles of these factors. For now, we turn to the problem of determin-
ing where one word ends and the next one begins.

Lexical Basis of Word Segmentation

How do we know when one word ends and the next word begins? This is by no means an easy
task, as we noted in the introduction. To recap our earlier argument, there are some cuesin the speech
stream, but as several investigators have pointed out (Cole and Jakimic, 1980; Grosjean and Gee, 1984;
Thompson, 1984), they are not always sufficient, particularly in fluent speech. It would this appear that
there is an important role for lexical knowledge to play in determining where one word ends and the next
word begins.



The TRACE Model McClelland and Elman
May 7,1985 49

terms of the ratio of their strength, divided by the strength of "'product'. The curves shown are for the
words 'trot", 'possible', 'priest', 'progress', and 'produce'; these words differ from the word 'product'
(according to the simulation program's stress-less encoding of them!) in the first, second, third, fourth and
fifth phonemes respectively. Figure 25 shows that these items begin to drop out of 'contention' just after
each successive phoneme comes in. Of course, there is nothing hard and fast or absolute about dropping
a candidate in TRACE. What we see instead is that mismatching candidates simply begin to fade as the
input diverges from them in favor of some other candidate. This is just the kind of behavior the
COHORT model would produce in this case, though of course the drop-off would be assumed to be an
abrupt, discrete event.3
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Figure 25. Response strengths of the units for several words relative to the response strength of the
unit for 'product' (/prad'kt/), as a function of time relative to the peak of the first phoneme that fails to
match the word. The successive curves coming off of the horizontal line representing the normalized
response strength of 'product' are for the words "trot, 'possible", "priest', 'progress', and 'produce',
respectively. In our lexicon they are rendered as /trat/, /pas'b'I/, /prist/, /pragr's/, and /pradus/ respective-
ly.

3. The data reported by Tyler and Wessels actually appears to indicate an even more immediate drop-off than is seen in this simula-
tion. However, it should be remembered that the curves shown in Figure 25 are on-line response strength curves, and thus reflects
the lags inherent in the percolation of input from the feature to the word level. The gating task, on the other hand, does not require
subjects to respond on-line. If the input is simply turned off at the peak of each phoneme's input specification, and then allowed to
run free for a few cycles, the dropout point shifts even earlier.
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It should be noted that the details of what word will be most strongly activated in such cases depend
on a number of factors, including, in particular, the distinctiveness of mismatching phonemes. Also, it is
possible to find cases in which a word that corrctly spans a part of a longer string dominates a longer
word that spans the whole string but misses out on a phoneme in one place or another. An item like
'vigorette' may or may not be a case in point. In such cases, though, the most important thing might not
turn out to be winning and losing, but rather the fact that both tend to stay in the game. Such neolo-
gisms can suggest a poetic conjunction of meanings, if used just right: 'He walked briskly down the street,
puffing his vigorette.-

Time course of word recognition in TRACE. So far we have shown how TRACE overcomes a
difficulty with the COHORT model in cases where the beginning of a word has been distorted. In earlier
sections on phoneme processing, some of the simulations illustrate that the model is capable of recogniz-
ing words with underspecified (i.e., ambiguous) initial phonemes. In this section, we examine how well
TRACE emulates the COHORT model, in cases where the the input is an undistorted representation of
some particular word. In particular, we wanted to see how close TRACE would come to behaving in
accord with COHORT's assumption that incorrect words are dropped from the cohort of active candi-
dates as soon as the input diverges from them.

To examine this process, we considered the processing of the word 'product' (/prad'ct/). Figure 24
shows the state of the Trace at various points in processing this word, and Figure 25 shows the response
strengths of several units relative to the strength of the word 'product' itself, as a function of time relative
to the arrival of the successive phonemes in the input. In this Figure, the response strength of 'product'
is simply set to 1.0 at each time slice and the response strengths of units for other words are plotted in
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Figure 24. State of the Trace at various points in processing the word 'product' (/prad'kt/).
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Another problem for COHORT. Grosjean (1985) has recently pointed out another problem for
COHORT, namely the possibility that the subject may be uncertain about the location of the beginning
of each successive word. A tacit assumption of the model is that the subject goes into the beginning of
each word knowing that it is the beginning. In the related model of Cole and Jakimic (1980) this assump-
tion is made explicit. Unfortunately, it is not always possible to know in advance where one word starts
and the next word ends. As we discussed in the introduction, acoustic cues to juncture are not always
reliable, and in the absence of acoustic cues, even an optimally efficient mechanism cannot always know
that it has heard the end of one word until it hears enough of the next to rule out the possible continua-
tions of the first word.

What is needed, then, is a model that can account for COHORT's successes, and overcome these
two important deficiencies. The next two sections show that TRACE does quite well on both counts.
The first of these sections examines TRACE's behavior in processing words whose beginnings and end-
ings are clearly deliniated for it by the presence of silence. The second considers the processing of multi-
word inputs, which the model must parse for itself.

One Word at a Time

In this section we see how TRACE resolves the dilemma facing COHORT, in that it is immediately
sensitive to new information but is still able to cope with underspecified or distorted word beginnings.
We also consider how the model accounts for the preference for short-word responses early in processing
a long word. The section concludes with a discussion of ways the model could be extended to account
for word frequency and contextual influences.

Competition vs bottom-up inhibition. TRACE deals with COHORT's dilemma by using com-
petition, rather than phoneme-to-word inhibition. The esnence of the idea is simply this. Phoneme units
have excitatory connections to all the word units they are consistent with. Thus, whenever a phoneme
becomes active in a particular slice of the Trace, it sends excitation to all the word units consistent with
that phoneme in that slice. The word units then compete with each other; items that contain each succes-
sive phoneme dominate all others, but if no word matches perfectly, a word that provides a close fit to the
phoneme sequence can eventually win out over words that provide less adequate matches.

Consider, from this point of view, our two items 'pleasant' and 'blacelet' again. In the first
instance, 'pleasant" will receive more bottom-up excitation than 'present', and so will win out in the
competition. We have already seen, in our analysis of categorical perception at the phoneme level, how
even slight differences in initial bottom-up excitation can be magnified by the joint effects of competition
and feedback. But the real beauty of the competition mechanism is that this action is contingent on the
activation of other word candidates. Thus, in the case of 'blacelet', since there is no word 'blacelet', 'bra-
celet' will not be suppressed. Initially, it is true, words like blame' and 'blatant' will tend to dominate
'bracelet', but since the input matches 'bracelet' better than any other word, 'bracelet' will eventually
come to dominate the other possibilities.

This behavior of the model is illustrated using examples from its restricted lexicon in Figure 23. In
one case, the input is legal', and the word 'regal' is completely dominated by legal'. In the other case,
the input is lugged', and the word "rugged' eventually dominates, because there is no word lugged' (pro-
nounced to rhyme with 'rugged' -- the word lug' is not in the model's lexicon). Here 'rugged' must
compete with other partial matches of lugged', of course, and it is less effective in this regard than it
would be if the input exactly matched it, but it does win out in the end.
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Perhaps the most direct support for the basic word-recognition assumptions of COHORT comes
from a recent experiment by Tyler and Wessels (1983). They used the gating paradigm of Grosjean
(1980). In this paradigm, subjects are required to guess the identity of a word after hearing successive
presentations of the word. The first presentation is cut off so that the subject hears only the first N msec
(N = 30 to 50 in different studies). Later presentations are successively lengthened in N msec increments
until eventually the whole word is presented. The duration at which half the subjects correctly identify
the word is called the 'isolation point'. Tyler and Wessels report that the isolation point falls very close
to the point where the input the subject has received is consistent with one and only one remaining item.
Considerably more input is required before subjects are reasonably sure of the identity of the word; that
point is termed the *acceptance point'.

It should be noted that the gating task is not a ,imed task, and so it does not provide a direct meas-
ure of what the subject knows as the speech input is unfolding. However, it is now in fairly wide use, and
Cotton and Grosjean (1984) have established that the basic patterns of results obtained in Grosjean's
(1980) pioneering gating experiment do not depend on the presentation of successively longer and longer
presentations of the same stimulus.

A Dilemma for COHORT. Though the COHORT model accounts for a large body of data, there
are several difficulties with it. We consider first the one that seems the most serious: as stated, COHORT
requires accurate, undistorted information about the identity of the phonemes in a word up to the isola-
tion point. Words cannot enter into consideration unless the initial consonant cluster plus vowel is heard,
and they are discarded from it as soon as a phoneme comes along that they fail to match. No explicit
procedure is described for recovering words into the cohort once they have been excluded from it, or
when the beginning of the word is not accurately perceived due to noise or elision.

These aspects of COHORT make it very difficult for the model to explain recognition of words with
distorted beginnings, such as 'dwibble" (Norris, 1982), or words whose beginnings have been replaced by
noise (Salasoo and Pison, in press). From a computational point of view, this makes the model an
extremely brittle one; in particular it fails to deal with the problem of noise and underspecification which
is so crucial for recognition of real speech (Thompson, 1984).

The recognizability of distorted items like "dwibble" might be taken as suggesting that what we need
to do is liberalize the criterion for entering and retaining words in the cohort. Thus, the cohort could be
defined as the set of words consistent with what has been heard or mild (e.g., one or two feature) devia-
tions from what has been heard. This would allow mild distortions like replacing /r/ with /w/ not to
disqualify a word from the cohort. It would also allow the model to cope with cases where the beginning
of the word is underspecified; in these cases, the initial cohort would simply be larger than in the case
where the input clearly specified the initial phonemes.

However, there is still a problem. Sometimes we need to be able to rule out items which mismatch
the input on one or two VOT dimensions and sometimes we do not. Consider the items 'pleasant' and
'blacelet'. In the first case, we need to exclude 'present' from the cohort, so the slight difference between
/ and /r/ must be sufficient to rule it out; in the second case, we do not want to loose the word *bra-

celet', since it provides the best fit overall to the input. Thus, in this case, the difference between /1/ and
/r/ must not be allowed to rule a word candidate out.

Thus the dilemma: On the one hand, we want a mechanism that will be able to select the correct
word as soon as an undistorted input specifies it uniquely, to account for the Tyler and Wessels results.
On the other hand, we do not want the model to completely eliminate possibilities which might later turn
out to be correct. We shall shortly see that TRACE provides a way out of this dilemma.
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these phenomena into a single account that incorporates aspects of the accounts offered for particular
aspects of these results by other models. In the next section, we show how TRACE can also encompass
a number of phenomena concerning the recognition of spoken words.

The Time-Course of Word Recognition

The study of spoken word recognition has a long history, and many models have been proposed.
Morton's now-classic logogen model (Morton, 1969) was the first to provide an explicit account of the
integration of contextual and sensory information in word recognition. Other models of this period (e.g.,
Broadbent, 1967) concentrated primarily on effects of word frequency. Until the mid-seventies, however,
there was little explicit consideration of the time-course of spoken word recognition. Several studies by
Marsen-Wilson and his collaborators (Marslen-Wilson, 1973; Marslen-Wilson and Tyler, 1975), and by
Cole and his collaborators (Cole, 1973; Cole and Jakimic, 1978, 1980) pioneered the investigation of this
problem.

Marslen-Wilson's COHORT model (Marslen-Wilson and Welsh, 1978; Marslen-Wilson and Tyler,
1980) of speech perception was based on this early work on the time-course of spoken word recognition.
The COHORT model was one of the sources of inspiration for TRACE, for two main reasons. First, it
provided an explicit account of the way top-down and bottom-up information could be combined to pro-
duce a word recognition mechanism that actually worked in real time. Secondly, it accounted for the
findings of a number of important experiments demonstrating the 'on-line" character of the speech recog-
nition process. However, several deficiencies of the COHORT model have been pointed out, as we shall
see.

Because TRACE was motivated in large part by a desire to keep what is good about COHORT and

improve upon its weaknesses, we begin this section by considering the COHORT model in some detail.
*= First we review the basic assumptions of the model, then consider its strengths and weaknesses.

There appear to be four basic assumptions of the COHORT model.

1) The model uses the first sound (in Marslen-Wilson and Tyler, 1980, the initial consonant-cluster-
plus-vowel) of the word to determine which words will be in an initial cohort or candidate set.

2) Once the candidate set is established, the model eliminates words from the cohort as each successive
phoneme arrives if the new phoneme fails to match the next phoneme in the word. Words can also
be eliminated on the basis of semantic constraints, although the initial cohort is assumed to be deter-
mined by acoustic input alone.

3) Word recognition occurs when the cohort has been reduced to a single member; in an auditory lexi-
cal decision task, the decision that an item is a non-word can be made as soon as there are no
remaining members in the cohort.

4) Word recognition can influence the identification of phonemes in a word only after the word has
been recognized.

There is a considerable body of data that supports various predictions of the COHORT model. It
has been observed in a variety of paradigms that lexical influences on phoneme identification responses are
much greater later in words than at their beginnings (Bagley, 1900; Marslen-Wilson and Welsh, 1978; Cole
and Jakimic, 1978, 1980; Marslen-Wilson, 1980). We considered some of this evidence in earlier sections.
Another important finding supporting COHORT is the fact that the reaction time to decide that an item

*is a nonword is constant, when measured from the occurrence of the first phoneme that rules out the last
remaining word in the cohort (Marslen-Wilson, 1980).
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Other Phenomena at the Phoneme Level

The literature on phoneme perception includes several further findings we have not yet been able to
consider in detail. The next few paragraphs gives a brief mention of two findings and how they might be
accommodated in the TRACE model.

Effects of global and local context on phoneme identification. In our simulations of trading
relations, we have shown that the criterial value needed on one dimension of stimulus variation can be
affected by other dimensions. Thus, when the onset of Fl is relatively high, shorter voicing latencies are
needed to perceive a sound as unvoiced. Other factors also influence the phoneme perceived as a result of
a particular featural input. The identity of phonemes surrounding a target phoneme, the rate of speech of
a syllable in which a particular feature value occurs, as well as characteristics of the speaker and the
language being spoken all influence the interpretations of features. See Repp and Liberman (1984) for a
discussion of all of these sorts of influences on the boundaries between phonemes.

It has been suggested by Miller, Green, and Schermer (1984) and by Repp and Liberman (1984) that
these different effects may have different sources. In particular, Miller et al suggest that lexical effects and
semantic and syntactic influences on the one hand may be due to a different mechanism than influences
such as speech rate and coarticulatory influences due to local phonetic context.

The assumptions we have incorporated into TRACE make a similar distinction. In TRACE I, we
have accounted for effects of phonetic context by allowing activations of units to influence the feature-to.
phoneme connections in adjacent time slices (See Elman and McClelland, in press, for details). In the dis-
cussion, we will consider ways of extending the connection modulation idea to accommodate effects of
variations in rate and speaker parameters. Our main point here is that connection modulation is quite a
different mechanism than the simple additive combination of excitatory influences that underlies the way
TRACE accounts for trade-offs among the cues to a single phoneme or for the effects of top-down
influences on the phoneme boundary.

Adaptation effects. Another set of phenomena that have been widely studied are the effects of
adapting stimuli on the boundary between phonemes. The initial finding, due to Eimas and Corbit
(1973), was that presentation of a repeating series of items from one phonetic category tended to shift the
boundary between categories, so that cues that formerly gave rise to the perception of the repeated
phoneme would be less likely to do so after adaptation. We have not considered this phenomenon in
detail because there is considerable doubt about its exact source. It used to be common to view these
influences as resulting from fatigue of feature detectors, as suggested initially by Eimas and Corbit. How-
ever, these effects might also be attributed to other processes, such as judgement and decision mechanisms
(Diehl, Elman, & McCusker, 1978; Elman, 1979), or lateral inhibitory interactions in the 'neural spectro-
gram' of Crowder (1978, 1981). Recent evidence suggests that adaptation effects may be occurring at
several different levels, with different mechanisms contributing to the effects at different levels (see
Sawusch, in press, for a discussion). The TRACE framework could be elaborated to incorporate any or
all of the mechanisms that have been proposed to account for adaptation effects; as it stands, though, the
model is silent on these effects.

*. Summary of Phoneme Identification Simulations

We have considered a number of phenomena concerning the identification and perception of
phonemes. These include lexical influences on phoneme identification, and the lack thereof, both in reac-
tion time and in response choice measures; 'phonotactic rule" effects on phoneme identification, and the
role of specific lexical items in influencing these effects; the integration of multiple cues to phoneme iden-

" tity, and the categorical nature of the percept that results from this integration. TRACE integrates all of

. . . . . . . .

.-. "":.. , .'..'% -: .:'." .i.''.' '...''. .... ... ...i .. .. . ... .. ... . ......... . .. .. . ... . .-" "'...''.



The TRACE Model McClelland and Elman
May 7, 1985 42

Figure 21.

There is some evidence bearing on this aspect of TRACE's account of categorical perception.
Samuel (1977) has reported ABX discrimination data that show noticeable minima in the discrimination
function hear the canonical stimuli within each category on a /d/-/t/ continuum. Indeed, Samuel's
account of this effect, though not couched in terms of interactive activation processes, has a great deal of
similarity to what we see in TRACE; he suggests that near-canonical items are more strongly assimilated
to the canonical pattern. Unfortunately the effect we seek is fairly subtle, and so it will be difficult to
separate from noise. In Samuel's experiment, the effect is fairly clear-cut at both extremes of the VOT
continuum in three observers at the end of extensive training, as shown in Figure 22, and even unprac-
ticed subjects tend to show the effect toward the high end of the VOT continuum, well past the prototype
for/t/.

In summary, TRACE appears to provide a fairly accurate account of the phenomena of cue trade-
offs and categorical perception of speech sounds. It accounts for categorical perception without relying on
the notion tnat the phenomenon depends on read-out from an abstract level of processing; it assumes
instead that the feature level, like other levels of the system, is subject to feedback from higher levels
which actually changes the representation as it is being retained in memory, pushing it toward a canonical
representation of the phoneme most strongly activated by the input.
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Figure 22. Identification and ABX discrimination data from three practiced and three naive subjects
from Samuel (1977).
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not on equivalent scales).

Basically, the Figure shows that the effect of feedback is to make the feature patterns for inputs well
within each category more smiba than those for inputs near the boundary between categories.
Differences between stimuli near the prototype of the same phoneme are almost obliterated. When two
stimuli straddle the boundary, the feature level patterns are much more distinct. As a result, the probabil-
ity of correctly discriminating stimuli within a phoneme category is much lower than the probability of
discriminating stimuli in different categories.

The process of 'canonicalization" of the representation of a speech sound via the feedback mechan-
ism takes time. During this time, two things are happening: One is that the activations initially produced
by the speech input are decaying; another is that the feedback, which drives the representation toward the
prototype, is building up. In the simulations, we allowed a considerable amount of time for these
processes before computing similarities of different activation patterns to each other. Obviously, if we had
left less time, there would not have been as much of an opportunity for these forces to operate. Thus,
TRACE is in agreement with the finding that there tends to be an increase in within category discrimina-
tion when a task is used which allows subjects to base their responses on judgements of the similarity of
stimuli spaced closely together in time (Pisoni and Lazarus, 1974).

It should be noted that it would be possible to account for categorical perception in TRACE
without invoking feedback from the phoneme level to the feature level. All we would need to do is
assume that the feature information that gives rise to phoneme identification is inaccessible, as proposed
by the motor theory of speech perception (Liberman, Cooper, Shankweiler, and Studdert-Kennedy, 1967),
or is rapidly lost as proposed by the 'dual code' model (Fujisaki and Kawashima, 1968; Pisoni, 1973,
1975; Massaro, 1975, 1981). The duel code model, which has had considerable success accounting for
categorical perception data, assumes that phoneme identification can be based either on pre-categorical
information or on the results of the phoneme identification process. Since it is assumed that feature infor-
mation decays rapidly (especially for consonant features -- see below), responses must often be based
solely on the output of the phoneme identification process, which is assumed to provide a discrete code of
the sequence of phonemes. This interpretation accounts for much of the data on categorical perception
quite well. Indeed, it is fairly difficult to find ways of distinguishing between a feedback model and one
that attributes categorical perception to an loss of information from the feature level coupled with a reli-
ance on a more abstract code. Both feedback models and dual code models can accommodate the fact
that vowels show less of a tendency toward categorical perception than consonants (Fry, Abramson,
Eimas, and Liberman, 1962; Pisoni, 1973). It is simply necessary to assume that vowel features are more
persistent than consonant features (Crowder, 1978, 1981; Fujisaki and Kawashima, 1968; Pisoni, 1973,
1975). However, the two classes of interpretations do differ in one way. The feedback account seems to
differ most clearly from a limited feature access account in its predictions of performance in discriminating
two stimuli, both away from the center of a category, but still within it. Here, TRACE tends to show
greater discrimination than it shows between stimuli squarely in the middle of a category.

Standard interpretations of categorical perception can account for increases in discriminability near
the boundary between two categories (where identification may in fact b- somewhat variable), simply in
terms of the fact that marginal stimuli are more likely to give ris. , Zifferent category labels. But
TRACE can account for increases in discriminability at extreme values of feature continua which would
not give rise to different category labels. In TRACE, the reason for this increase in discriminability is that
the activation of the appropriate item at the phoneme level is weaker, and therefore the feedback signal is
weaker, that it is when the input occurs near the center of the category. For example, stimulus I in our
simulations falls below the canonical /g/ stimulus, and therefore activate the /g/ phoneme detector less
strongly than stimuli closer to the canonical /g/. A similar thing happens with the /k/. This results in less
'canonicalization" of the extreme stimuli, and produces a 'W' shaped discrimination function, as shown in
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Figure 21. Differences between patterns of activation at the feature level at cycle 60, for pairs of
stimuli one step apart along the /g/-/k/ continuum used for producing the identification functions shown
previously in Figure 20. The difference measure is the correlation of the two patterns, subtracted from
1.0; thus, if the two patterns correlated perfectly, their difference would be 0.

model. The probability of identifying stimulus x with alternative a in is given by

p ( . ) -S. + Sb.

where S. is the 'strength' of the similarity between a and x. This is given simply by the exponential of
the correlation of a and x:

S= ek,

and similarly for Sbz. (The exponential transformation is required to translate correlations, ranging from
+ I to -I, into positive values, so that Luce's ratio rule can be used. The same transformation is used for
translating activations into response strengths in identification tasks.) Here k, is the parameter that scales
the relation between correlations and strengths. These assumptions are consistent with the choice
assumptions made for identification responses. The resulting response probabilities, for one choice of the
parameter k, (5) are shown in Figure 20 (the exponentiation parameter k, is different than the parameter
k used in generating identification probabilities from activations because correlations and activations are
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quickly to stimuli near the prototype of each category than they can to stimuli near the boundary. This is
exactly what was found by Pisoni and Tash (1974).

The sharpening the model imposes on the identification function, in conjunction with the fact that it
can trade one feature off against another, shows how the model, like human perceivers of speech, can be
both flexible and decisive at the same time. These aspects of TRACE are shared with the feature integra-
tion model (Massaro, 1981). However, the TRACE model's decisiveness extends even farther than we
have observed thus far; feedback from the phoneme to the feature level tends to cause the model to obli-
terate the differences between input feature patterns that result in the identification of the same phoneme,
thus allowing the model to provide an account, not only for sharp identification functions, but also for the
fact that discriminability of speech sounds is far poorer within categories than it is between categories.

Strictly speaking, at least as defined by Liberman, Cooper, Shankweiler, and Studdert-Kennedy
(1967), true categorical perception is only exhibited when the ability to discriminate different sounds is no
better than could be expected based on the assumption that the only basis a listener has for discrimination
is the categorical assignment of the stimulus to a particular phonetic category. However, it is conceded
that 'true' categorical perception in this sense is never in fact observed (Studdert-Kennedy, lIberman,
Harris, & Cooper, 1970). While it is true that the discrimination of sounds is much better for sounds
which perceivers assign to different categories than for sounds they assign to the same category, there is
also at least a tendency for discrimination to be somewhat better than predicted by the identification func-
tion, even between stimuli which are always assigned to the same category. TRACE II produces this kind
of approximate categorical perception.

The way it works is this. When a feature pattern comes in, it sends more excitation to some
phoneme units than others; as they become active, they begin to compete, and one gradually comes to
dominate the others. This much we have already observed. But as this competition process is going on,
there is also feedback from the phoneme level to the feature level. Thus, as a particular phoneme
becomes active, it tends to impose its canonical pattern of activation on the feature level. The effect of
the feedback becomes particularly strong as time goes on, since the feature input only excites the feature
units very briefly; the original pattern of activation produced by the phoneme units is, therefore, gradually
replaced by the canonical pattern imposed by the feedback from the phoneme level. The result is that the
pattern of activation remaining at the feature level after 60 cycles of processing has become assimilated to
the prototype. In this way, feature patterns for different inputs assigned to the same category are rendered
nearly indistinguishable.

An impression of the magnitude of this effect is illustrated in Figure 21, which shows how different
pairs of patterns of activation at the feature level are at the end of 60 cycles of processing. The measure of
difference is simply 1 - rtb, where rb stands for the correlation of the patterns produced by stimuli a
and b. Only the two dimensions which actually differ between the canonical /g/ and /k/ are considered in
the difference measure. Furthermore, the correlation considers only the feature pattern on the feature
units in time slice 12, right at the center of the input specification. If all dimensions are considered, the
values of the difference measure are reduced overall, but the pattern is the same. Inclusion of feature pat-
terns from surrounding slices likewise makes little difference.

To relate the difference between two stimuli to probability correct choice performance in the ABX
task generally used in categorical perception experiments, we once again use the Luce (1959) choice
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Figure 27. State of the Trace after processing the streams /parti/, /par-ti/, /barti/, and /parki/.

non-overlapping words. For example, consider the input /parki/. Though this makes the two words
'par' and 'key", the word 'park' has a stronger activation than either 'par' or 'key', as illustrated in Fig-
ure 27.

This aspect of TRACE II's behavior indicates that the present version of the model is far from the
final word on word segmentation. A complete model would also exploit syllabification, stress, and other
cues to word identity to help eliminate some of the possible interpretations of TRACE II's simple
phoneme streams. The activation and competition mechanisms in TRACE II are sufficient to do quite a
bit of the word segmentation work, but we do not expect them to do this perfectly in all cases without the
aid of other cues.

Some readers may be troubled by a mechanism that does not insist upon a parse in which each
phoneme is covered by one and only one word. Actually, though, this characteristic of the model is often
a virtue, since in many cases, the last phoneme of a word must do double duty as the first phoneme of the
next, as in 'hound dog" or 'brush shop'. While speakers tend to signal the doubling in careful speech, the
cues to single vs double consonants are not always sufficient for disambiguation, as is clear when strings
with multiple interpretations are used as stimuli. For example, an utterance intended as 'no notion' will
sometimes be heard as 'known notion' (Nakatani and Dukes, 1977). The model is not inclined to
suppress activations of partially overlapping words, even when a non-overlapping parse is available. This
behavior of TRACE is illustrated with /bIstap/ (bus top' or 'bus stop') in Figure 28. In this case, higher
levels could provide an additional source of information that would help the model choose between over-
lapping and non-overlapping interpretations.
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Figure 28. State of the Trace at the end of the streams /bustap/ ('bus stop" or ^bus top) and
/bruSap/ ('brush shop).

The simulations we have reported show that the word activation/competition mechanism can go a
long way toward providing a complete interpretation of the input stream as a sequence of words. As a
word is beginning to come in, the model tends to prefer shorter words consistent with the input stream
over longer ones. As the input unfolds through time, however, the model tends to prefer to interpret
streams of phonemes as single longer words rather than as a sequence of short word; and it tends to find
parses that account for each phoneme once. But it does not insist upon this, and will occasionally pro-
duce an interpretation that leaves part of the stream of phonemes unaccounted for or which accounts for
part of the stream of phonemes twice. Often enough, it will also leave an alternative to its "preferred
parse' in a strong position, so that both the preferred parse and the alternative would be available to
higher levels and subject to possible reinforcement by them.

Thus far in this section, we have considered the general properties of the way in which TRACE uses
lexical information to segment a speech stream into words, but we have not considered much in the way
of empirical data that these aspects of the model shed light on. However, there are two findings in the
literature which can be interpreted in accordance with TRACE's handling of multi-word speech streams.

Where does a nonword end? A number of investigators (e.g., Cole and Jakimic, 1980) have sug-
gested that when one word is identified, its identity can be used to determine where it ends, and therefore
where the next word begins. In TRACE, the interactive activation process can often establish where a
word will end even before it actually does end, particularly in the case of longer words or when activations
at the word level are aided by syntactic and semantic constraints. However, it is much harder to establish

I

" " " - " " - "-"- - - " "-" """ " "" " ""- .. . " "" "' "'-i .i.i *. 7.. . . - . .. - -. "-. .. ' : '.- ,



The TRACE Model McClelland and Elman
May 7, 1985 55

the end of a nonword, since the fact that it is a nonword means that we cannot exploit any knowledge of
where it should end to do so.

This fact may account for the finding of Foss and Blank (1980) that subjects are much slower to
respond to target phonemes at the beginning of a word preceeded by a nonword than at the beginning of
a word preceeded by a word. For example, responses to detect word initial /d/ were faster in stimuli like
the following

At the end of last year, the government decided ...

than they were when the word preceeding the target (in this case government) was replaced by a nonword
such as 'gatabont'. It should be noted that the targets were specified as word initial segments. Therefore,
the subjects had not only to identify the target phoneme; they had to determine that it fell at the begin-
ning of a word, as well. The fact that reaction times were faster when the target was preceeded by a word
suggests that subjects were able to use their knowledge of where the word 'government' ends to help
them determine where the next word begins.

An example of how TRACE allows one word to help establish where its successor begins is illus-
trated in Figure 29. In the example, the model receives the stream 'possible target' or 'pagusle target',
and we imagine that the target is word-initial /t/. In the first case, the word 'possible' is clearly esta-
blished and competitors underneath it have been completely crushed by the time the initial /t/ in 'target'
becomes active at the phoneme level (second panel in the upper part of the figure), so there is no ambi-
guity about the fact that this /t/ is at the beginning of the next word. (The decision mechanism would, of
course, be required to note that the model had established the location of the end of the preceeding word.
We have not yet incorporated explicit assumptions about how this would be done.) In the second case,
words beginning and ending at a number of different places, including some that overlap with the location
of the /t/, are partly activated. Thus, the subject would have to wait until he is well into the word 'target'
before it becomes clear that the first /t/ in target is in fact a word-initial /t/.

In reality, the situation is probably not as bleak for the perceiver as it appears in this example,
because in many cases there will be cues in the manner of pronunciation and the syllabification of the
input that will help to indicate the location of the word boundary. However, given the imprecision and
frequent absence of such cues, it is not surprising that the lexical status of one part of a speech stream
plays an important role in determining where the beginning of the next word must be.

The long and short of word identification. One perverse feature of speech is the fact that it is not
always possible to identify a word unambiguously until one has heard the word after it. Consider, for
example, the word 'tar'. If we are listening to an utterance and have gotten just to the /r/ in "The man
saw the tar box', though 'tar" will tend to be the preferred hypothesis at this point, we do not have
enough information to say unequivocally that the word 'tar' will not turn out to be "target' or 'tarnished'
or one of several other possibilities. It is only after more time has passed, and we have perceived either a
silence or enough of the next word to rule out any of the continuations of /tar/, that we can decide we
have heard the word "tar. This situation, as it arises in TRACE with the simple utterance /tarbaks/ ('tar
box') is illustrated in Figure 30. Though "tar" is somewhat more active than the longer word "target'
when the /r/ is coming in, it is only when the word 'box" emerges as the interpretation of the phonemes
following 'tar' that the rival 'target' finally fades as a serious contender.

With longer words the situation is different. As we have already seen in another example, by the
time the end of a longer word is reached it is much more likely that only one word candidate will remain.
Indeed, with longer words it is often possible to have enough information to identify the word unambigu-
ously well before the end of the word. An illustration of this situation is provided by a simulation using
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the utterance 'guitar box' /g'tarbaks/. By the time the /r/ has registered, 'guitar" is clearly dominant at
the word level, and can be unambiguously identified without further ado.

Recently, an experiment by Grosjean (1985) has demonstrated these same effects empirically. Gros-
jean presented subjects with long or short words followed by a second word and measured how much of
the word and its successor the subject needed to hear to identify the target. With longer words, subjects
could usually guess the word correctly well before the end of the word, and by the end of the word they
were quite sure of the word's identity. With monosyllabic words, on the other hand, many of the words
could not be identified correctly until well into the next word. On average, subjects were not sure of the
word's identity until about the end of the next word, or the beginning of the one after. As Grosjean
(1985) points out, a major reason for this is simply that the spoken input often does not uniquely specify
the identity of a short word. In such cases, the perceptual system is often forced to process the short
word, and its successor, at the same time.

Recognizing the words in a short sentence. One last example of TRACE II's performance in
segmenting words is illustrated in Figure 31. The Figure shows the state of the Trace at several points
during the processing of the stream /SiS1t'baks/. By the end, the words of the phrase 'She shut a box,
which fits the input perfectly with no overlap, dominate all others.

This example illustrates how far it is sometimes possible to go in parsing a stream of phonemes into
words, without even considering syntactic and semantic constraints, or stress, syllabification, and juncture
cues to word identification. The example also illustrates the difficulty the model has in perceiving short,
unstressed words like 'a'. This is, of course, just an extreme version of the difficulty the model has in
processing monosyllabic words like 'tar', and is consistent with Grosjean's data on the difficulty subjects
have with identifying short words. In fact, Grosjean and Gee (1984) report pilot data indicating that these
difficulties are even more severe with functions words like 'a' and 'of'. It should be noted that TRACE
makes no special distinction between content and function words per se, and neither do Grosjean and
Gee. However, function words are usually unstressed and considerably shorter than content words.
Thus, it is not necessary to point to any special mechanisms for closed versus open class morphemes to
account for Grosjean and Gee's results.

Summary of Word Identification Simulations

While phoneme identification has been studied for many years, data from on-line studies of word
recognition is just beginning to accumulate. There is an older literature on accuracy of word
identification in noise, but it has only been quite recently that useful techniques have been developed for
studying word recognition in real time.

What evidence there is, though, indicates the complexity of the word identification process. While
the word identification mechanism is sensitive to each new incoming phoneme as it arrives, it is neverthe-
less robust enough to recover from underspecification or distortion of word beginnings. And it appears to
be capable of some simultaneous processing of successive words in the input stream. TRACE appears to
capture these aspects of the time-course of word recognition. In these respects, it improves upon the
COHORT model, the only previously extant model that provides an explicit account of the on-line pro-
cess of word recognition. And the mechanisms it uses to accomplish this are the same ones that it used
for the simulations of the process of phoneme identification described in the preceding section.
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General Discussion

Summary of TRACEs Successes

In this article, we have seen that TRACE can account for a number of different aspects of human
speech perception. We begin by listing the major correspondences between TRACE and what we know
about the human speech understanding process.

1) TRACE, like humans, uses information from overlapping portions of the speech wave to identify
successive phonemes.

2) The model shows a tendency toward categorical perception of phonemes, as do human subjects.
The model's tendency toward categorical perception is affected by many of the same parameters
which affect the degree of categorical perception shown by human subjects; in particular, the extent
to which perception will be categorical increases with time between stimuli that must be compared.
The model also exhibits a W-shaped discrimination function across the VOT continuum, as found
in at least one experiment (Samuel, 1977).

3) The model combines feature information from a number of different dimensions, and exhibits cue
trade-offs in phoneme identification. These characteristics of human speech perception have been
demonstrated in a very large number of studies.

4) The model augments information from the speech stream with feedback from the lexical level in
reaching decisions about the identity of phonemes. These lexical influences on phoneme
identification occur in conditions similar to those in which lexical effects have been reported, but do
not occur in conditions in which these effects have not been obtained.

5) Lake human subjects, the model exhibits apparent phonotactic rule effects on phoneme
identification, though it has no explicit representation of the phonotactic rules. The tendency to
prefer phonotactically regular interpretations of ambiguous phonemes can be over-ridden by particu-
lar lexical items, just as it can in the human perceiver.

6) In processing unambiguous phoneme sequences preceeded by silence, the model exhibits immediate
sensitivity to information favoring one word interpretation over another. It shows an initial prefer-
ence for shorter words relative to longer words, but eventually a sequence of phonemes that matches
a long word perfectly will be identified as that word, overturning the initial preference for the short-
word interpretation. These aspects of the model are consistent with human data from gating experi-
ments.

7) Though the model is heavily influenced by word beginnings, it can recover from underspecification
or distortion of a word's beginning. Recent studies by Salasoo and Pisoni (in press) show that
human subjects are capable of identifying words with highly degraded beginnings.

8) The model can use its knowledge of the lexicon to parse sequences of phonemes into words, and to
establish where one word ends and the next one begins when cues to word boundaries are lacking.

9) Like human subjects, the model sometimes cannot identify a word until it has heard part of the next
word. Also like human subjects, it can better determine where a word will begin when it is pre-
ceeded by a word rather than a nonword.

10) The model does not demand a parse of a phoneme sequence that includes each phoneme in one
and only one word. This allows it to cope gracefully with elision of phonemes at word boundaries.
It will often permit several alternative parses to remain available for higher level influences to choose
among.

In addition to these characteristics observed in the present paper, our simulations with TRACE I
show several further correspondences between the model and human speech perception. Most important
of these is the fact that the model is able to use activations of phoneme units in one part of the Trace to
adjust the connection strengths determining which features will activate which phonemes in adjacent parts
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of the Trace. In this way the model can adjust as human subjects do to coarticulatory influences on the
acoustic properties of phonemes (Fowler, 1984; Mann and Repp, 1980).

There is, of course, more data on some of these points than others. It will be very interesting to see
how well TRACE will hold up against the data as further empirical studies are carried out.

Some of the reasons for the successes of TRACE

To what does the TRACE model owe its success in simulating human speech perception? Some of
TRACE's successes simply depend on its ability to make use of the information as it comes in. For
example, it fails to show contexi effects only when a response must be made, or can be made with high
accuracy, before contextual information is available.

There are several other reasons for TRACE's success. One, we think, is the use of continuous
activation and competition processes in place of discrete decisive processes such as segmentation and
labeling. Activation and competition are matters of degree, and protect TRACE from catastrophic com-
mittment in marginal cases, and they provide a natural means for combining many different sources of
information. Of course, this feature of the model is shared with several other models (e.g., Oden and
Massaro, 1978; Morton, 1969), though only Nusbaum and Slowiaczek (1982) have previously incor-
porated these kinds of assumptions in a model of the time-course of word recognition.

Part of the success of TRACE is specifically due to the use of competitive inhibitory interactions
instead of bottom-up (or top-down) inhibition. Competition allows the model to select the best interpre-
tation available, settling for an imperfect one when no better one is available, but overriding poor ones
when a good one is at hand. These and other virtues of competitive inhibition have been noted before
(e.g, Grossberg, 1973; Levin, 1976; Feldman and Ballard, 1982, Ratliff, 1965; von Bekesy, 1967) in other
contexts. Their usefulness here attests to the general utility of the competitive inhibition mechanism.

The elimination of between-level inhibition from the interactive activation mechanism puts us in a
very nice position with respect to one general critique of interactive activation models. It is often said that
activation models are too unconstrained and too flexible to be anything more than a language for con-
veniently describing information processing. We are now in a position to suggest that a restricted version
of the framework is not only sufficient but superior. Interactive activation models could exploit both exci-
tatory and inhibitory connections both between and within levels, but in the original interactive activation
model of letter perception, only inhibitory interactions were allowed within a level. In more recent ver-
sions of the visual model (McClelland, 1985; McClelland, in press), and in TRACE, we have gone even
further, allowing only excitatory connections between levels and only inhibitory connections within levels.
From our experience, it appears that models which adhere to these constraints work as well or better than
members of the more general class that do not. We hasten to add that we have no proof that this it true.
We have, however, no reason to feel that we could improve the performance of our model by allowing
either between level inhibitory interactions, or within level excitation.

Other aspects of the successes of TRACE depend on its use of feedback from higher to lower levels.
Feedback plays a central role in the accounts of categorical perception, lexical effects on phoneme
identification, and 'phonotactic rule' effects.

We do not claim that any of these phenomena, taken individually, require the assumption of a feed-
back mechanism. For example, consider the phenomenon of categorical perception. We use feedback
from the phoneme to the feature level to drive feature patterns closer to the prototype of the phoneme
they most strongly activate. This mechanism, coupled with the competition mechanism at the phoneme
level, accounts for better discrimination between than within categories. However, we could account for
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categorical perception by suggesting that subjects do not have access to the acoustic level at all, but only
to the results of the phoneme identification process. Similarly, lexical effects on phoneme identification
can be accounted for by assuming that subjects (sometimes) read out from the word level and infer the
identity of phonemes from the lexical code (Morton, 1979; Marslen-Wilson and Welsh, 1978; Marslen-
Wilson, 1980). In the case of 'phonotactic rule' effects, other interpretations are of course available as
well. One could, for example, simply suppose that subjects use knowledge of the phonotactic constraints,
perhaps captured in units standing for legal phoneme pairs; and that it is the output of such units that
accounts for the influence of phonotactic regularity on phoneme identification.

We know of no single convincing empirical reason to prefer feedback accounts to other possibilities.
However, we have two theoretical reasons for preferring to retain top-down as well as bottom-up interac-
tions in our activation models. One reason has to do with the simplicity of the resulting decision mechan-
isms. Feedback allows higher-level considerations to influence the outcome of processing at lower levels
in just the same way that lower-level considerations influence the outcome of processing at higher levels.
The influences of lexical and other constraints on phoneme identification need not be pushed out of the
theory of speech perception itself into decision processes, but are integrated directly into the perceptual
process in a unified way. Given top-down as well as bottom-up processing, the decision mechanisms
required for generating overt responses that reflect lexical and other contextual influences are greatly
simplified; no special provision needs to be made for combining lexical and phonetic outputs in the deci-
sion mechanism.

A second reason for retaining feedback comes up when we consider the problem of learning.
Although we have not discussed how learning might occur in TRACE, we have assumed that the
mechanisms of speech perception are acquired through modification of connection strengths. Very
roughly, in many learning schemes, connections between units are strengthened when two units tend to be
activated simultaneously, at the expense of connections between units that tend not to be activated at the
same time (c.f. Grossberg, 1978; Rosenblatt, 1962; Rumelhart and Zipser, 1985). In sucn schemes, how-
ever, there is a serious problem if activation is entirely bottom-up; for in that case, once a particular unit
has been 'tuned" to respond to a particular pattern, it is difficult to retune it; it fires when its 'expected'
pattern is presented, and when it fires, its tendency to respond to that pattern only increases. Feedback
provides a way to break this vicious cycle. If higher levels insist that a particular phoneme is present, then
the unit for that phoneme can become activated even if the bottom-up input would normally activate
some other phoneme instead; then the learning mechanism can 'retune' the detector for the phoneme so
that it will need to depend less on the top-down input the next time around.

In general, the use of feedback appears to place more of the intelligence required for perception and
perceptual learning into the actual perceptual mechanism itself, and to make the mechanisms which exhi-
bit this intelligence explicit. As formulated here, these mechanisms are incredibly simple; yet they appear
to buy quite a lot which often gets pushed into unspecified 'decision' and 'post-perceptual guessing'
processes (e.g., Forster, 1976).

Finally, the success of TRACE also depends upon its architecture, rather than the fundamental
computational principles of activation and competition, or the decision to include feedback. By architec-
ture, we mean the organization of the Trace structure into layers consisting of units corresponding to
items occurring at particular times within the utterance. As we noted in the introduction, this architecture
is one we decided upon only after several other kinds of architecture had failed.

There are three principle positive consequences of the TRACE architecture. First, it keeps straight
what occurred when in the speech stream. Competition occurs only between units competing to represent
the same portion of the input stream. Multiple copies of the same phoneme and word units can be active
at the same time without producing confusion. Furthermore, the architecture permits the same
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competition mechanism that chooses among alternative word interpretations of a single- word utterance to
segment longer utterances into words. No separate control structure, resetting the mechanism at the
beginning of each new word, is required.

Second, the architecture permits both forward and backward interactions. Backward interactions are
absolutely essential if the model is to account for the fact that the identity of a phoneme (or a word; War-
ren & Sherman, 1974) can be influenced by what comes after it as well as what comes before it. Some
kind of record of the past is necessary to capture these kinds of influences, as well as to provide a clear
picture of the sources of the more conventional effects of preceding context, and the Trace construct lays
this out in a way that is both comprehensible and efficient.

Third, the Trace structure provides an explicit mechanism which instantiates the idea that there may
be no distinction between the mechanisms which carry out perceptual processing and those which provide
a working memory for the results of the perceptual process. At one and the same time, the Trace is a per-
ceptual processing system and a memory system. As a result, the model automatically accounts for the
fact that coherent memory traces persist longer than incoherent ones. The coherent ones resonate
through interactive (that is, bottom-up and top-down) activation, while incoherent ones fail to establish a
resonance, and therefore die away more rapidly.

Several of these aspects of TRACE overlap with assumptions made in other models, as mentioned
in previous sections; continuity between working memory and the perceptual processing structures has
been suggested by a number of other authors (e.g., Conrad, 1962), and the notion that working memory is
a dynamic processing structure rather than a passive data structure has previously been advocated by
(Crowder, 1978, 1981) and Grossberg (1978). Indeed, Grossberg has noted that resonating
activation/competition processes can both enhance a perceptual representation and increase the retention
of a representation; his analysis of interactive activation processes in perception and memory captures the
continuity of perception and memory as well as many other desirable properties of interactive activation
mechanisms.

Some Deficiencies of TRACE

Although TRACE has had a number of important successes, it also has a number of equally impor-
tant deficiencies. A number of these deficiencies relate to simplifying assumptions of the simulation
model. It is important to be clear that such deficiencies are not intrinsic to the basic structure of the
model but to the simplifications we have imposed upon it to increase our ability to understand its basic
properties. Certain deficiencies -- such as the assumption that all phonemes are the same length, that all
features are equally salient and useful and overlap an equal amount from one phoneme to another -- are
not present in TRACE I. Obviously a fully realistic model would take account of such differences. Other
factors that should be incorporated in a more complete model include some provision for effects of word
frequency, and some mechanisms for exploiting available cues to word boundaries.

Another deficiency of the model is that the decision mechanisms have not been fully enough ela-
borated. For example, as it stands the model does not provide a mechanism for deciding when a non-
word has been presented. Nor have we specified how decision processes would actually use the informa-
tion available at the word level to locate word-initial phonemes. A related problem is the lack of an expli-
cit provision for variability in the activation and/or readout processes. Incorporating variability directly
into a simulation model would greatly increase the complexity of the simulation process, but would also
increase the model's ability to capture the detailed properties of reaction time distributions and errors
(Ratcliff, 1978).
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So far we have considered deficiencies which we would attribute to simplifying assumptions adopted
to keep TRACE as simple and transparent in its behavior as possible. However, there are some problems
that are intrinsic to the basic structure of the model.

One fundamental deficiency of TRACE is that fact that it requires massive duplication of units and
connections, copying over and over again the connection patterns that determine which features activate
which phonemes and which phonemes activate which words. As we already noted, learning in activation
models (e.g., Grossberg, 1976; Rumelhart and Zipser, 1985; Ackley, Hinton, and Sejnowski, 1985) usu-
ally involves the retuning of connections between units depending on their simultaneous activation.
Given TRACE's architecture, such learning would not generalize from one part of the Trace to another,
and so would not be accessible for inputs arising at different locations in the Trace. A second problem is
that the model, as is, is insensitive to variation in global parameters, such as speaking rate, speaker charac-
teristics and accent, and ambient acoustic characteristics. A third deficiency is that it fails to account for
the fact that one presentation of a word has an effect on the perception of it a very short time later (Nus-
baum and Slowiaczek, 1982). These two presentations, in the current version of the model, simply excite
separate tokens for the same word in different parts of the Trace.

What these deficiencies appear to call for is a model in which there is a single stored representation
of each phoneme and each word in some central representational structure. If this structure is accessed
every time the word is presented, then we could account for repetition priming effects. Likewise, if there
were a single central structure, learning could occur in just one set of units, as could dynamic retuning of
feature-phoneme and phoneme-word connections to take account of changes in global parameters or
speaker characteristics.

However, it remains necessary to keep straight the relative temporal location of different feature,
phoneme and word activations. Thus it will not do to simply abandon the Trace in favor of a single set
of units consisting of just one copy of each phoneme and one copy of each word.

It seems that we need to have things both ways: We need a central representation that plays a role
in processing every phoneme and every word and that is subject to learning, retuning and priming. We
also need to keep a dynamic trace of the unfolding representation of the speech stream, so that we can
continue to accommodate both left and right contextual effects.

We are currently beginning to develop a model that has these properties, based on a scheme for
using a central network of units to tune the connections between the units in the Trace in the course of
processing, thereby effectively programming it 'on the fly'. Similar ideas have already been applied to
visual word recognition McClelland, 1985; McClelland, in press). Our hope is that a new version of the
model based on these ideas will preserve the positive features of TRACE I and TRACE II, while over-
coming their principle deficiencies.

Some General Issues in Speech and Language Perception

There are a number of general issues in speech and language perception. Four questions in particu-
lar appear to lie close to the heart of our conception of what speech perception is all about. First, what
are the basic units in speech perception? Second, what is the percept, and which aspects of the processing
of spoken language should be called perceptual? Third, what is the representation of linguistic rules?
Forth, is there anything unique or special about speech perception? We conclude this article by consider-
ing each issue from the perspective we have developed through the course of our explorations of TRACE.
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What is the perceptual unit? Throughout this article, we have considered three levels of process-
ing -- feature, phoneme and word. At each level, individual processing units stand for hypotheses about
the features, phonemes and words that might be present at different points in the input stream. It is
worth noting that most aspects of the model's performance are independent of the specific assumptions
that we have made about the units, or even the levels. Thus, if we replaced the phoneme level with dem-
isyllables (Fujimura and Lovins, 1978) or phoneme triples (Wickelgren, 1969), very little of the behavior
of the model would change. These units can capture some of the coarticulatory influences on phoneme
identity, and they would reduce some of the word-boundary ambiguities faced by the current version of
the model, but neither coarticulatory influences nor word boundary ambiguities would disappear alto-
gether (see Elman and McClelland, in press, for further discussion).

In fact, interactive activation models like TRACE can be formulated in which each perceptual object
is represented, not by a single unit, but by a pattern of activation over a collection of units. For example,
the phoneme units in each time slice of TRACE might be replaced by a different set of units which did
not have a one-to-one correspondence to phonemes. A phoneme would be represented by a particular
pattern of activation over the set of units (each representing, perhaps, to some conjunction of lower-level
features) rather than by a single unit in the set.

There are some computational advantages of distributed representation compared to our 'one unit
one concept' assumption (Hinton, McClelland, and Rumelhart, in press), but it is very difficult to find
principled ways of distinguishing between local and distributed representational schemes empirically.
Indeed, in certain cases there is an exact mapping, and in general it is possible to approximate most
aspects of the behavior of a local scheme with a distributed one and vice-versa (Smolensky, in press). In
light of this, our use of local as opposed to distributed representations is not perhaps as significant as it
might appear at first glance. What is essential is the information that the representation captures, rather
than whether it does so via distributed or local representation. The use of local representations, with each
node (at the phoneme and word levels, anyway) representing a mutually exclusive alternative makes it
much easier to relate the states of the processing system to overt response categories, but is not otherwise
a fundamental feature of the structure of the model.

What is the percept? At a number of points in this article, we have alluded to ways in which our
conception of perception differs from the usage of other authors. Such concepts as perception are
inherently tied to theory, and only derive their meaning with respect to particular theoretical constructs.
Where does the TRACE model place us, then, with respect to the question, what is speech perception?

For one thing, TRACE blurs the distinction between perception and other aspects of cognitive pro-
cessing. There is really no clear way in TRACE to say where perceptual processing ends and conceptual
processes or memory begin. However, following Marr's (1982) definition of visual perception, we could
say that speech perception is the process of forming representations of the stimulus -- the speaker's utter-
ance -- at several levels of description. TRACE provides such a set of representations, as well as processes
to construct them. On this view, then, the Trace is the percept, and interactive activation is the process of
perception.

Aspects of this definition are appealing. For example, on this view, the percept is a very rich object,
one that refers both to abstract, conceptual entities like words and perhaps at higher levels even meanings,
as well as to more concrete entities like acoustic signals and features. Perception is not restricted to one
or a subset of levels, as it is in certain models (e.g., Morton, 1979; Marslen-Wilson, 1980).

On the other hand, the definition seems overly liberal, for there is evidence suggesting that percep-
tual experience and access to the results of perceptual processing for the purposes of overt responding may
not be completely unconstrained. A number of experiments, both in speech (e.g., Foss and Swinney,
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1973; McNeil and .indig, 1973) and reading (Healy, 1976; Drewnowski and Healy, 1977) suggest that
under certain conditions lower levels of processing are inaccessible, or are at best accessed only with extra
time or effort. On this evidence, if perception is to form representations, and if the representations are
anything like those postulated in TRACE, then perception is quite independent of the experience of the
perceiver and of access to the percept. Put another way, we may choose to define the Trace as the per-
cept, but it is not the perceptual experience. This does not seem to be a very satisfactory state of affairs.

One coherent response to these arguments would be to say that the Trace is not the experience itself,
but that some part or parts of it may be the object of perceptual experience. It seems sensible, for exam-
ple, to suppose that the percept itself consists of that part of the Trace under scrutiny by the decision
mechanisms. On this view, it would not be incoherent to suppose that representations might be formed
which would nevertheless be inaccessible either to experience or to overt response processes. It would be
a matter separate from the analysis of the interactive-activation process itself to specify the scope and con-
ditions of access to the Trace. In our simulations, we have assumed that the decision mechanism could
be directed with equal facility to all levels, but this may turn out to be an assumption that does not apply
in all cases.

How are rules represented? It is common in theories of language to assume without discussion
that linguistic rules are represented as such in the mind of the perceiver, and that perception is guided pri-
marily by consultation of such rules. However, there are a number of difficulties associated with this view.
First, it does not explain how exceptions are handled; it would seem that for every exception, there would
have to be a special rule that takes precedence over the more general formulation. Second, it does not
explain aspects of rule acquisition by children learning language, particularly the fact that rules appear to
be acquired, at least to a large extent, on a word by word basis; acquisition is marked by a gradual spread
of the rule from one lexical item or set of lexical items to others. Third, it does not explain how rules
come into existence historically; as with acquisition, it appears that rules spread gradually over the lexicon.
It is difficult to reconcile several of these findings with traditional rule-based accounts of language
knowledge and language proce'.sing.

Models like TRACE and the interactive activation model of word recognition take a very different
perspective on the issue of linguistic rules. They are not represented as such, but rather they are built into
the perceptual system via the excitatory and inhibitory connections needed for processing the particular
items which embody these rules. Such a mechanism appears to avoid the problem of exceptions without
difficulty, and to hold out the hope of accounting for the observation that rule acquisition and rule change
are strongly tied to particular items which embody the rules.

What is special about speech? We close by raising a question that often comes up in discussions
of the mechanisms of speech perception. Is speech special? If so, in what ways? It has been argued that
speech is special because of the distinctive phenomenon of categorical perception; because of the encoded-
ness of information about one phoneme in those portions of the speech stream that are generally thought
to represent other phonemes; because the information in the speech stream that indicates the presence of a
particular phoneme appears not to be invariant at any obvious physical level; because of the lack of seg-
ment boundaries, and for a variety of other reasons.

Over the last several years, a number of empirical arguments have been put forward that suggest that
perhaps speech may not be so special, or at least, not unique. Cue trade-offs and contextual influences
are, of course, present in many other domains (Medin and Barsalou, in press), and a large number of stu-
dies have reported categorical perception in other modalities (see Repp, 1984, for a discussion). Compu-
tational work on problems in vision have made clear that information that must be extracted from visual
displays is often complexly encoded with other information (Barrow & Tenenbaum, 1978; Marr, 1982),
and the lack of clear boundaries between perceptual units in vision is notorious (Mart, 1982; Ballard, et
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al., 1983). Thus, the psychological phenomena that characterize human speech perception, and the com-
putational problems that must be met by any mechanism of speech perception, are not, in general, unique
to speech. To be sure, the particular constellation of problems that must be solved in speech perception
is different than the constellation of problems faced in any other particular case, but most of the the indi-
vidual problems themselves do appear to have analogs in other domains.

We therefore prefer to view speech as an excellent test bed for the development of an understanding
of mechanism which might turn out to have considerably broader application. Speech is special to us,
since it so richly captures the multiplicity of the sources of constraint which must be exploited in percep-
tual processing, and because it so dearly indicates the powerful influ .,es of the mechanisms of percep-
tion on the constructed perceptual representation. We see the TRACE model as an example of a large
class of massively parallel, interactive models that holds great promise to provide a deeper understanding
of the mechanisms generally used in perception.
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