_AD-A157 399 THE ANALYSIS OF SUBJECTIVE JUDGMENT MATRICES(U> RAND
CORP SANTA MONICA CAR G CRAWFORD ET AL. MAY 85
RAND/R-2572-1-AF F49620-82-C-0018

UNCLRSSIFIED F/G 12/1







Approved for Public Release; Distribution Unlimited

No Restrictions o |

\lhtrtcu ommmctco Vectsrs (Mathematics)_
Eigenvectors

7 Comparison, ’ - N\
2 Statistical mlm. ‘ :

see reverse side




i

!
b
kal

P e g 6 ik St b

iﬁ.ﬁvl‘»- ‘iw;ﬂr‘ A: . porecs o

VL

" "‘“8“&"‘ R i

u mu tot gquantityiag uhjocun
l“ mlqmt nt.i izes the dosimaat sigeavector. 6 . -
~ -8 matrix of paired cospatrisoas. The 1

i motnclcmud%c:ll«;t”
rchtin to the others. The scale is bised
; oa a matrix of subjective paired : o ‘ ~
: ' '~ cosparimngs. - Thesas Ssaty tt}ﬂou tbis LT o |
to be a uetqz taoal . for an ' ,
. M.qutcuaa. structufes in lny n{.umz ' ThT
and industrial applicatioas: by ntinkhg : 1 .
~EhE "scali u*qqﬁ iavel of g toced - - .
probles, this procedsre yicl.ols the relative
hpett“co of the elements at the bottom
; Y g “thke hlerarchy to> the goals or
‘ outﬂi’" it the top level. The geometric

’ 880" yector is computationully eagier thay, SR
and statistically preferable to the ;
eigenvector. Ferther, the geometric meama . = !

vector is applicable to a vider claas of

probleas and has the advaatage of arisiag

fros comsoa statistical asd sathesatical
“S6delE. “The mtatistical. ) B
theoretically aad cnpiricauy duontniwﬁ Bu, um-u

N

3
s ?%‘

? A«nsston ror ) .
" FTIS GRAMI : - .
DTIC TAB :

. Jusuneauon________‘ . *
By. ;
Distridution/ ;
_Availability Codes - e
Avail and/opr
D1 Special
1 \




1

- e

RIS NUAY Lt SO

R-25721-AF

The Analysls of Subjective
Judgment Matrices

Gordon Crawford, Cindy Willioms

May 1985

A Project AIR FORCE report
prepared for the
United States Alr Force

N e P S T W T ; - 3
4 nh TN, %y S T W R A g .ﬂ“_‘ IR p& v,
Ik ) RO TN A -

R R AL
x“;"‘,‘:\_' L,

N




Ry

G

PREFACE

There is a growing litersture and interest in methods for quantifying subjective judg-
ments. Several ongoing Air Force efforts utilizing subjective judgment have come to the
authors’ attention. Mission Area Analysis requires subjective estimates of a large number of
parameters. Long-range planning repeatedly draws on judgments about the future importance
and worth of plans and geographical areas. The Constant Quest project, directed by the
' Readinees/NATO Coordination Board, highlighted the importance of subjective judgments in
evaluating command and control systems.

Thomas Saaty of the University of Pennsylvania has advanced a popular tool for quan-
tifying and scaling the worth of a set of objects or entities. For problems that fit the Saaty
framework, this report details an improvement on Saaty’s “eigenvector” techmique that is
easier to use and more amenable to statistical inferences.

This report was prepared under the Project AIR FORCE research study effort, “Evolving
Concepts for Long-Range Planning.” It was originally published in 1980 and has been
_expanded, clarified, and updated in 1985, as part of the Project AIR FORCE Resource Manage-
ment Program’s concept formulation and exploratory ressarch activity.
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SUMMARY

Lot {B,Es, ..., E,} be s collection of abjc ‘s or entities that are in some sense compa-
rable. The E; may be alternstive plans to achieve some goal, alternative objects thet have
some comparable utility, or ganerally a collection of entities that have varying dogrees of some
common valus. A vector Uy, Uy, . .., Uy is called a ratio acale for the collection if, for each i
and j, u;/u; is the ratio of the value of E; to the value of E;.

An important application of ratio scales is in the study of hierarchies. &mthatfor
each level of a hierarchy there is a ratio scale for the value of gbjects at that level relative to
any object at the next level wp. The ratio scales for various levels can be combined multiplica-
tively to give a view of the entire hierarchy. Because hierarchies are used to model complex
systems in many important military and industrial applications, the estimation of the ratio
© Suppose that a ratio scale uy,us, . . ., Uy, 4 > 0, for objects E1,E,, . . ., E, exists but is
not known. Let ay, i,j = 1,2, ...,n be subjective estimates of u;/u; made by a judge. In par-
ticular, we assume a; = 1 for each i, and a; ~ 1/a5. The matrix 4 = [a;] of subjective pair-
wise comparisons is called a judgment matrix.!

If the judge is perfectly consistent in making estimates, the matrix 4 will satisfy the con-

Gj0; = ap foreach i,j,k .

If this condition is met, any column of the matrix A gives a ratio scale for {E,,Ey, . .., E, }.
However, judgments are frequently inconsistent, and judgment matrices rarely satisfy the con-
sistency criterion. A mathematical procedure is required for estimating an underlying ratio
scale based on an inconsistent judgment matrix A.

Thomas Saaty (1977a-d) argues that the “dominant” right eigenvector corresponding to
the maximal eigenvalue should be used to estimate the underlying scale. The argument is:
The dominant eigenvector is a continuous function of the elements of the matrix, and, if the
matrix is consistent, the eigenvector gives the unique (to within scalar multiplication) acale.
Thus, if the elements of the matrix get perturbed slightly in the process of being subjectively
quantified by a judge, the dominant eigenvector will return a scale only slightly different from
the scale of an underlying consistent judgment matrix.

Although the classical analyst may worry about uniform continuity or other erudite intri-
cacies of this argument, we are worried about a more basic oversight: The eigenvector is not
the only continuous vector-valued function of judgment matrices that yields the correct scale
when the matriz happens to be consistent. There are many others, including the vector of row
sums, the vector of the inverse of column sums, any column of the matrix, and the whole ring
generated by positive linear combinations of these and other solutions.

We are aware of the desirable properties of the eigenvector in characterizing a linear
operator and its spectral decomposition, but the immediate relevance of these properties to this
estimation problem seems open to question. In most estimation problems, the wealth of statis-
tical literature on estimation procedures and their properties has enhanced understanding of

n m.mhmmwmmm-twmwwm The remainder of the
metriz is defined by the above relationship.
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the problem. Below we relate this particular préblem to well-known statistical models. The
geometric mean vector® v = 04,0y, . . ., Uy, given by

- v'-Hay“
' o J=1

MM&MMWMMWMWWM
cigenvector, has several other desirable traits: In certain circumstances, it is statistically
mwpmmwmmamﬁamdwmmm
statistical distributions. In empirical studieé reported here it seems to do as well as, or better
Mtbmmhrmpnhrviuunkom In addition, it is supported by a Hterature
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I. INTRODUCTION

Over the past three decades, psychometric, military, and industrial researchers have
directed considerable effort to the quantitative analysis of subjective data. Analytic tools
building upon the subjective judgments of experts have been used in such diverse fields as
energy policy analysis, marketing research, economic forecasting, and military planning. Prob-
lems amenable to the analysis of subjective information abound, and numerous methods have
been proposed for acquiring and treating judgmental data.

One question that arises in the treatment of subjective data is how to construct a scale of
relative merit for a collection of objects or activities based upon subjective comparisons of each
pair in the collection. For example, consider a collection of three objects, labeled A, B, and C.
Suppose that an expert believes A has twice the merit of B, B has three times the merit of C,
and A has six times the merit of C. It is natural to construct a scale of relative merit for A, B,
and C as (1, 1/2, 1/6). However, suppose that the expert says A has twice the merit of B and
B has three times the merit of C, but A has only four times the merit of C. In this case, it is
not so easy to decide upon a scale for A, B, and C. This sort of inconsistency is common in
human judgments, especially when complicated issues are involved.

Thomas Saaty of the University of Pennsylvania has developed a matrix eigenvector pro-
cedure for constructing scales of merit based on inconsistent pairwise comparisons. The
method has been applied in a wide variety of planning and decision problems.

This report presents an alternative approach that is preferable to the eigenvector pro-
cedure in several important respects. The proposed procedure is derived within a statistical
framework and is compared with the eigenvector method on the basis of theoretical and empir-
ical considerations.

The remainder of this introduction discusses the motivation for dealing formally and
quantitatively with subjective information and provides a brief review of some of the literature.
Section II provides a short, nonrigorous discussion of the eigenvector method and the proposed
method for utilizing subjective judgments in quantitative analysis. An example, illustrating the
use of the two methods as well as similarities and differences in their results, is introduced in
this section and examined throughout the report.

In Section III we give rigorous definitions and develop a framework for treating the esti-
mation problem with classical statistical techniques. Section IV provides a mathematical treat-
ment of the eigenvector method. Section V deals with the application of subjective judgment
methods to the study of hierarchical structures. The example introduced in Section II is con-
sidered in further detail there.

Section VI introduces the geometric mean vector and gives theoretical justification for its
use as an estimator of subjective scales. In Section VII we define a statistical measure of con-
sistency for subjective judgment matrices. Section VIII presents results of a Monte Carlo
study comparing the two methods. Section IX considers in greater detail the example intro-
duced in Section II and expanded on in Section V.

QUANTITATIVE ANALYSIS OF SUBJECTIVE DATA
The quantification of subjective data is essential for dealing with a wide class of problems
whose solution by other methods would be extremely difficult or impossible. Such problems
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are often amorphous and vaguely stated. They involve large, multifaceted issues of importance

to decisionmakers and interest groups with diverse backgrounds and biases. Their outcomes
; may determine the allocation of large sums of public money and impinge critically on the pub-
5 lic interest. Moreover, some facets of the problems may lack any well-defined, scalar-valued
measures of merit. Even if there are appropriate measures, the collection of relevant objective
Y data might be prohibitively expensive or impossible.
R S\whpmblemﬁoqmntlymnmthemmtofﬁmmnudsforhmommu
As an example, consider the problem of long-range planning in the U.S. Air Force. This prob-
lem involves a great many interrelated issues: the effects of political and economic factors on
: national security, the importance of various geographic regions of the world to U.S. interests,
the threat posed by conflicts of different types in different regions, the current strength of
forces to deal with such conflicts, and so on. Although it might be poseible to define objective
yardsticks to deal with some of these issues, it certainly is not possible for all of them. For
) some issues, subjective judgments of relative unpomnco or value are the only measures avail-

& able.

In some problems the best information available is subjective, so why is quantitative
Y analysis desirable at all? Why not just ask the experts to make plans and decisions based on
4 an informal, intuitive analysis? In fact, problems that are not amenable to hard analysis are

" frequently resolved through intuitive analysis by experts and decisionmakers. However, there
2 are several good reasons for using a formal, quantitative approach in these problems. .

" A formal analytic framework gives structure and definition to an amorphous mass of data.
It allows the decisionmaker to consider relevant information systematically and to examine
options and consequences one at a time. In such a framework, the analyst can break an
unmanageable problem into manageable parts and then synthesize information sbout the parts
in a rational fashion.

A formal analytic framework also permits sensitivity analysis on alternative judgments.
When a problem is considered within a formal framework, tradeoffs among alternative judg-
ments can be spelled out explicitly, and the effects of variations in subjective judgments on
outcomes can be studied. Sensitivity analysis may even provide a basis for resolving different
points of view.

Perhaps the greatest advantage of a formal analysis, especially in governmental policy-
making, is that it is repeatable. Formal analysis provides the audit trial that is so important in
matters involving extensive allocation of public resources and impinging on the public interest.

Research literature on the use of subjective information emphasizes three major issues:
how to elicit meaningful subjective judgments from individuals or groups, how to synthesize
subjective and objective data obtained from various facets of a large problem, and how to con-
a struct measurement scales based on subjective information. Following is a review of some of
e the literature related to each of these issues.

EF N‘J’J" o

ELICITING SUBJECTIVE JUDGMENTS

Methods for eliciting subjective judgments have received considerable attention in opera-
tions research and forecasting literature. Two such methods are war gaming and scenario writ-
ing, both of which are used extensively in military planning to provide insights into possible
future environments and needs.

Much of the literature on eliciting judgments deals with the problem of acquiring a collec-
tive expert opinion free from the usual negative effects of group pressure. An important
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‘method in this category is the Delphi technique, a controlled fesdback procedure originally
developed by ressarchers at The Rand Corporation (Gordon and Helmer, 1864). In Delphi, &
: ' researcher interrogates a group of experts individually concerning their opinions on possible
d future events. The rescarcher assembles means and quartiles for quamtitetive dets thus
| obtained and presents them individually to group members slong with arguments end com-
ments made by other members. Group members can then reviss their judgments. The pro-
cedure is repeated until the range of judgments narrows. The comntrolled fsedback mechanism
! in Delphi makes it possible for a group of experts to avoid the usual social pressures of cpen
discussion. The method has been used in many military and industrial applications (see, eo.g.,
Ayres, 1969; Linstone and Turoff, 1975).
TheDolphtachmthnmmtomunlmﬁm The Probe method
designed by researchers at TRW for forecasting technological events combines Delphi with a
timing chart structure so that events can be considered in sequence (North and Pyke, 1968).
The method of qualitative controlied feedback proposed by Prees (1978) is similar to Delphi in
that it uses a controlled feedback loop to aid groups in arriving at judgments, but it differs in
that at each iteration, members are supplied only arguments and comments from the group,
with no information sbout the quantitative distribution of group answers.
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SYNTHESIZING DATA IN LARGE PROBLEMS

pieces. Oneofthemoutpopuhrofthuemhodshmulﬁ-mibuuuﬁlityﬂnory pro-
vi&ca&ammkfornlwﬁngmopﬁmdmmmnulﬁphmm
some effects of the decision can be measured only subjectively. The expected value of each
alternative is determined as a function of the decisionmaker’s preferences for the possible

NS A iv'-.—«{v-_;lvr
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preferences are determined on the basis of subjective indexes such as sesthetic appeal, and oth-
ers are determined on the basis of ohjective measures such as cost. The alternative with max-
imum expected value is chosen as the optimum decision.
Themathcmatwdfmndahonformulh-attﬁhmmhtythoorymhﬂbymm
and Morgenstern (1947). Application of the theory to business problems was pioneered by
Raiffa and extended by Keeney and others. The theory has been applied to many problems in
industrial, government, and military settings (see Keeney, 1973; Keeney and Nair, 1974; Kel-
ley, 1976; MacCrimmon, 1969; Raiffa, 1969). A book by Keeney and Raiffa (1976) gives an
! excellent treatment of the subject.
d A similar method was applied to military problems in a 1958 Master’s thesis by Wells,
who gives a detailed framework for assessing the relative desirability of existing or proposed
weapon systems. System desirability is determined as a function of feasibility, cost, and an
attribute Wells calls “military worth.” Wherever possible, objective measures are used to
evaluate these three factors, and expert judgments are used where there are no objective mea-
sures. In particular, military worth is an aggregate property evaluated by analysing a complex
hierarchy and subjective scales for several variables. The Honeywell Corporation used Wells'’s
method in a military planning model called PATTERN (Sigford and Parvin, 1965). A detailed
deacription of the method can be found in Wells (1967).
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Seaty proposss that comiplex decision problems be viewed in terms of hierarchiss of

objects or propestiss. At each level of a hierarchy; Sasty.uses subjective judgments to estimate

& merit scals of the objects. Scales from all the levels are combined mathematically to provide
quantitative informaetion sbout the whole problem. The results in this report are applied
mmmuwmmww Hmmhbmwin
Section V.

mmummasummm

Many methods bave been developed for consiructing scales of measuremant based on sub-
joctive data. Several books and hundreds of articles have been written about these methods. A
classic refevence for early contributions, especially for work on psychophysical scales, is
‘Torgarson’s (1958) book.

Churchman and Ackoff (1984) did pioneering work in the area of estimating scales of
values for decision problems. They used a criterion of additive order consistency to estimate
scales from successive subjective judgments. Their paper described several spplications to
industrial problems. wahwmmwumcmmmmmmﬂ-
itary decision problems.

Mmawmwmmmmmammm
wise comparison data. Much statistical work in this area goes under the name “paired com-
perisons.” In the simoplest paired comparison experiment, each of several judges examines a
number of objects two at & time and states which of the two objects is preferred. No indication
of strength of preference is given. Dats from thess paired comparisons are then used in a sta-
tistical model to estimate a scale of preference for the objects. Such an experiment might be
used by marketing researchers to determine the relative taste appeais of several new food
iters.

A good reference for the statistical theory of paired comparisons is David’s (1968) book.
AW“MM@&MWWWWMF@M
(1976).

Seaty has proposed another method for estimating subjective scales using pairwise com-
perisons in which a single judge makes pairwise comparisons of a number of objects. For each
pair, the judge states not only which cbject is preferred, but to what degree that object is pre-
ferred over the other. A preference scale is determined for the objects based on an eigenvector
analysis of the matrix of pairwise comparisons.

Saaty has published many articles (see the bibliography) describing the eigenvector pro-
codure for estimating subjective scales and illustrating the usefulness of this procedure in
analyzing complex hierarchical structures. He has applied the procedure in a broad range of
problems in the social sciences (Saaty, 1977b; Sasty and Bennett, 1977; Alexander and Saaty,
1977). The procedure hes also gained acceptance in military applications and is currently
being used as a tool in Air Force long-range planning.

If one assumes that an analysis problem is in the context that Saaty has been writing
ebout, then the results of this report imply that the geometric mean is preferable to the eigen-
vector solution.  However, Veit and Callero (1081) and Veit, Callero, and Rose (1962, 1984)
believe that many problems may not be multiplicative at all and may not fit the Seaty context.




II. PAIBWIBE COMPARISONS, THE JUDGMENT MATRIX, AND
' THE ESTIMATION PROBLEM

Consider the problem of purchasing a new car.! Suppose that a preliminary investigation
yields five specific makes that seem appropriste. The price of each make is known, and
although some other measures of merit may have been quantified (principally performance
measures), the important subjective question of how much each car satiefies the overall needs
is difficult to quantify.

" We will attempt to assign to each make of automobile an estimate of utility in such a way
that if u; is the utility of the ith make, then u;/u; is a measure of the preference of the ith
make to the jth make. The vector u,,us, . . . , Us will be called a ratio scale.

Some aspects of the usefulness of such a ratio scale are immediately apparent. We could,
in this example, choose between the cars on the basis of utility per dollar of initial cost or, with
more foresight, on the basis of utility per dollar of expected life cycle cost.

To estimate the vector of utilities us,us, . . . , us Saaty has suggested the following pro-
cedure (see especially 1977b): We construct a matrix composed of our subje tive estimates of
the ratios of the utilities of all possible pairwise combinations, so that the elements a;; of the
matrix A are our estimates of u;/u;. Thus we know that the diagonal elements are given by
ay=1,i=1,...,5 Additionally, the lower off-diagonal elements are determined by the
upper off-diagonal elements: a; = 1/a;. S

Saaty (1977b) proves that in this case the matrix A has a maximal eigenvalue and a
corresponding eigenvector (the dominant eigenvector) all of whose components are positive.
Saaty proposes, primarily with empirical justification, that this dominant eigenvector be used
as an estimate of the ratio scale.

Suppose that when we form our estimates, the relative utility of Make 1 to Make 2 is 2,
of Make 1 to Make 3 is 1/9, of Make 1 to Make 4 is 1/8 and of Make 1 to Make 5 is 1/7.
Then the first row of our judgment matrix has the form

1, 2, 8, 18 17.

Continuing, suppose that we have filled in the upper off-diagonal of our judgment matrix:
1 2 /5 W8 11 ‘

1 1/ 18 177

1 ] 4

Then, in view of reciprocal symmetry we have

1/ 18 17

2

1
A=-9 9 1 6 4

6

7




0378
0204
w - 5239
1131
.2968

Thus, in this case, our estimate of the utility of the first make is .0378 and of the third
make is .5239, For a detailed treatment of this procedure see Saaty, 1977b; Saaty and Bennett,
1977. ‘ v

This example is discussed in more detail in Sections V and IX, where it is expanded to
illustrate the value of retio soales in analyzing hierarchical structures. In application to hierar-
chies it is assumed that the objects at each level of the hisrarchy depend on the objects of the
next lower level in some way. The procedure ensbies the user to estimate the influence each
object in a level has on all the objects or goals in superior levels.

For problems where the sigenvector procedure is useful there is another estimation pro-
cedure that is preferable in several respects.

mmmmmmamummmuw«
the dominant eigenvector, mmMaWMumhtﬁom

D =~ Uy,Vg, ..., Uy, Where
o = Hay-

mthogaomotmmunofthoelemntninthﬁhmof& In the example above this yields
the following estimates: ‘

oot

Geonitrie

Object Eigenvector Mean Vector
1 0378 0409
2 0204 0810
3 5239 5307
4 1131 1132
5 2058 2842

Compared with the dominant eigenvector, the geometric mean vector

1. Is statistically better;

2. Is easier to calculate;

3. Gives rise to a more meaningful measure of consistency that has known statistical
properties, allowing tests of hypotheses, confidence interval estimation, etc.;

4. Gives rise to estimates of utility with known statistical properties, allowing tests of
hypotheses, confidence interval estimation, etc.;

5. hmpporudbymhmcdhtoumnducﬁbm‘mtbodnofhmdlmgamdthofm
tions of the problem; A

6. Is rooted in a mathematical approach to estimation that provides an intuitive under-
standing of the problem and a means for assessing suitability of the method.




IIl. CONSISTENT MATRICES AND RATIO SCALES

Consider a set of n activities or objects E,E,, . . . , E,, which contribute to some objec-
tive. Suppose the activities can be ranked on a ratio scale (uy,us, ..., u,), 4 > 0, so that
U;/u; measures the degree to which E; is more important than E; in achieving the objective.
In particular, u;/u; > 1 if E; is more important than E;. Let 4 = [o;] be the nxn matrix of
mwhoeompammofE;,Eg,...,E.mnby

U .
3 W e ,-1, ce ey . 3-1
o=y b 2 n 3.1)
Then A has the property that
1 . . '
- — p-lszt'-°o » .2
aj % ij n 8.2)
and in particular

a“—l. i-l,z...,n
A square matrix A with positive entries satiefying (3.2) will be called a judgment matrix.
It follows immediately from (3.1) that
ajaa = ap . 33)
A matrix with positive entries satisfying (3.3) is said to be consistent. It is easy to see that
every consistent matrix is a judgment matrix.
Let A be an arbitrary consistent matrix. Because
7 Gk .
- — for Rk,
G a; any j
every element of A can be determined from the first row of A. It follows that A is a matrix of
rank one with exactly one nonzero eigenvalue. Moreover, it follows from (3.3) that
A% - nA .

Thus any column of A is an eigenvector of A, and the single nonsero eigenvalue of A is n.
Let w = wy,w,, ..., w, be any eigenvector corresponding to the eigenvalue n. For any &,
the kth column of A is an eigenvector corresponding to the same eigenvalue; therefore for each
iand j,
W; = cap
Wj = Cajx

for some ¢ # 0, and therefore




Thue, w is‘a‘zatic sedle for A. In fact, it is clear that there are infinitely many such scales,
each one corresponding to a different scalar muitiple of the kth column of A.
The normalised eigenvector with components
wi

o

: ‘ ie1
is the particular scale that Saaty (1977b) associates with the consistent matrix A.
A ratio scale corresponding to a consistent matrix 4 can be derived in several ways. Any

column of A is such a scale. The vector of reciprocals of elements of an arbitrary row of 4 is
also a ratio scale for A. It is easy to see that the vector r of row sums defined by
]
EDOL”
j=1

an&thepom&icmmvomrvdoﬁmdby

v = p ]./n

also provide ratio scales for A. Whenthuowdumnomnhud,thcymoqultothonor-
malized eigenvector scale for a conamont matrix. '

3 g i 9, | NG g - R 13 R €T R 3
BOP EOF O W W RACK L o A S o O e RN R




e

S e e e

IV. SAATY'S NORMALIZED EIGENVECTOR SCALE

Consider again the activities E,,E,, . . . , E, that contribute to some objective. Suppose a
judge makes pairwise comparisons on some scale of the relative importance of each pair of
activities with respect to the underlying objective. If a;; represents the relative importance of
E; over Ej, so that ag > 1 if and only if E; is more important than E;, it is then natural to
insist that the judge make comparisons in such a way that

1 . .
- — foreachi,j.
@ a5 J

In other words, such a pairwise comparison matrix is a judgment matrix. The ideal pairwise
comparison matrix would also be consistent. For example, if E; is twice as important as E;
and E; is three times as important as E,, one would expect E; to be six times as important as
E,. However, human judgment is often inconsistent, and it is not likely that a judge making
pairwise comparisons will construct a consistent matrix except in cases where the dimension is
small. A simple example in which pairwise comparisons do not result in a consistent matrix is
that of a tournament: X may win against Y and Y against Z, but X may lose to Z.

The problem we consider is this: Given an inconsistent judgment matrix A, how can we
construct a ratio scale that in some sense best reflects the information in the matrix? Saaty
(1977b) proposes that the appropriate scale is the normelived eigenvector corresponding to the
maximal eigenvalue of A.

Saaty argues as follows: IfthoMmthumhbnt,Mthmmﬂmd
eigenvector corresponding to the single nonszero eigenvalue n does give the underlying ratio
scale. A theorem of Frobenius for matrices with positive entries (Franklin, 1968) guarantees
that any judgment matrix hes a positive eigenvalue L that exceeds all the other eigenvalues in
abeolute value. This maximal eigenvalue has an associated eigenvector that is positive in all
its components.

Now an inconsistent judgment matrix can be viewed as having been derived from a con-
sistent one by perturbation of some or all of the matrix components. Because the eigenvalues
and eigenvectors of a matrix depend continuously on its components, small perturbations in
the components will result in small changes in the eigenvalues and eigenvectors. Thus when
the perturbations of the components are small, the maximal eigenvalue is close to n, and the
corresponding normalized eigenvector is close to the normalised eigenvector of the unperturbed
consistent matrix. Therefore, Saaty selects the suitably normalized eigenvector associated with
the maximal eigenvalue as the ratio scale corresponding to the judgment matrix.

Saaty also proposes an index of consistency for judgment matrices. He shows that an
nxn judgment matrix whose only nonzero eigenvalue is n must be consistent, and that the
maximal eigenvalue L for an inconsistent judgment matrix is strictly greater than n. Therefore
he uses the normalized difference

as the index of consistency of an nxn judgment matrix with maximal eigenvalue L. Notice
that the index is zero for consistent matrices and positive for inconsistent ones. Saaty also
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shows that the index increeses as perturbations of the components awsy from consistency
increase.

Unfortunately, the question of how small the perturbations of matrix components must
be to give rise to a given deviation in the maximal eigenvalue is a delicate one. Saaty (1977b)
describes an empirical investigation of this question in which he determines the consistency
indices corresponding to randomly generated judgment matrices of different dimensions. How-
ever, because the eigenvector does not fit into any standard statistical framework, there is no
readily available device against which deviations from consistency can be measured.

Saaty does show (1977b) that the consistency index u reflects the variance in judgmental
errors for an inconsistent matrix in the following sense: Suppose that the pairwise compari-
sons a;; in the judgment matrix A actually arise from perturbations of the ratios of components
of some underlying scale u;,u3, . . . , Uy; ice.,

- —uie'-
@y w i

ei=1+dj.

Saaty shows that for small dj;, 2u is an estimate of the variance of the d;;. Starting from this
estimate, Saaty (1977b) develops a test of the hypothesis of consistency for a judgment matrix.

The choice of & scale to be used in filling in a pairwise comparison matrix is somewhat
arbitrary. Because people find it difficult to rank more than about seven objects at a time,
Saaty recommends a subjective pairwise comparison scale consisting of the integers from one
to nine together with their reciprocals. In this scale, a value of 1 is assigned to pairs of objects
that are equally important. The integers 3, 5, 7, and 9 are associated with descriptive words (9

means “absolute importance,” 5 means “essential or strong importance”), and the integers 2, 4,
6, and 8 are used for intermediate values. Reciprocals of integers are used so that the matrix
of pairwise comparisons is a judgment matrix—that is, is reciprocal symmetric.
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V. APPLICATIONS OF THE RATIO SCALE

Saaty presents numerous applications requiring the estimation of ratio scales from pair-
wise comparison information (see the bibliography). He cites examples in economics, political
mm,andmlporhﬁonphnniu.nnnuinpemdphnniummchachoodun
school or a vacation spot.

One of the most interesting and useful applications of the ratio scale is in the study of
hierarchical systems. A hierarchy is a collection of objects grouped according to levels. Objects
at a given level of the hierarchy depend on objects at lower levels. The objects at one level
may be ranked on a ratio scale according to their importance relative to a given object at the
next higher level. Thus one may construct a system of ratio scales, one scale for each level
relative to every object in the next level up.

Once such a system of ratio scales has been constructed, it can be used to ltudy interac-
tions among all levels of the hierarchy. For example, in a hierarchy consisting of three levels,
we may determine the ranked importance of objects on the lowest level relative to each object
in the highest level. Suppoee for simplicity that the highest level consists of a single object,
that the second level has n objects, and the third has m objects. Let (w,,ws, ..., w,) be the
ratio acale that reflects the importance of objects in the second level relative to the single
object in the first level. Now the objects in the third (lowest) level may be ranked on a ratio
scale relative to each object on the second level. Let

uljvu’jb"-nu-i’ j-l,2,...,n

be the ratio scale for the third level relative to the jth object of the second level. Then, accord-
ing to Saaty, the importance of objects in the lowest level relative to the highest level may be
measured by the vector v;,v3, . . ., Uy, Where

n
v; = Zu;,-wj, i=12,...,m
ja1

In matrix notation, if w ~ wyw;, .. ., w, is the ratio scale for the second level relative to the
single object in the first level, and if
un 412 ,,, Uin

Ugy Ugze ... Ugp

U_ . L]

Umi Un2 ooc Umn

is the matrix whose jth column is the ratio scale for the objects in the third level relative to the
Jth object in the second level, then

v =Uw

gives a scale of importance of objects in the third level relative to the first.

11
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The same procedure may be extended to hierarchies with more than three levels. Thus
knowing only the measures of importance of objects in each level relative to individual objects
in the adjacent higher level, we may deduce their ranked importance relative to objects at all
higher levels. In particular, objects at the lowest level can be ranked according to their impor-
tance relstive to the object (or objects) at the highest level.

As an example, consider the problem of selecting an automobile. (This example is treated
in more detail in Section IX.) The problem can be viewed in terms of the_ hierarchical struc-
ture shown in Fig. 1. The highest level of the hierarchy is the final selection of the automobile.
On the second level are attributes of the automobiles—namely status, cost, economy, and size.
The third level consists of the automobile makes to be considered. The automobiles them-
selves are ranked according to each of the attributes, and the attributes are ranked according
to their importance relative to the overall objective of selecting a car.

Selecting
an
automobile

Fig. 1—Hierarchy for selecting an automobile

Table 1 gives the ratio scales determined from judgments made by one prospective buyer.
The order of automobile preference for this buyer is then given by the product of the matrix
and the vector in Table 1 as follows:

0378 .2703 .3357 .3143 0885 2847TH
0284 4196 .2929 .4630 2425 3703 T
5239 05564 .1071 0696 . .2579 - .1119M
1131 1671 .1600 .1288 4112 .1397D
2988 .0976 .1143 .0343 0934 C

The final ranking reflects the buyer’s perception of the relative status, cost, economy, and size
ofthoﬁvomtomobﬂuomidoroduwalluhisjudgmentofthe relative importance of these
lf:\:mibugsintheuhctionofnn automobile. This buyer’s first choice should be T and his




Table 1
RATIO SCALES

Ratio Scale of Second Lavel Relative to
First Lovel
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2058 .0976 1143
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VI. THE GEOMETRIC MEAN SCALE

Saaty’s examples clearly show that the study of interactions among various levels of a
hierarchy depends heavily upon an assessment of the ranked importance of objects at each
level relative to objects in the level above. The basic building blocks in a hierarchical study are
the ratio scales measuring the relative importance of objects at a given level. One would like
assurance that the estimates of the ratio scales are well grounded in statistical theory and that
they work well empirically. Below we propose a method for constructing a ratio scale based on
pairwise comparisons. That method seems superior to the eigenvector procedure when judged
by the criteria mentioned above.

For n xn judgment matrices 4 = [a;;] and C = [c;;], define

m(A,C) - [é > en a; — tn c,-,-)“’]v2 .

J=1 j>1

It is not difficult to verify that m satisfies the triangle inequality and is a metric on the space
of n xn judgment matrices. Theorem 3 will show that for any n xn judgment matrix A, there
is a consistent matrix C that is m-closest to A. Such a consistent matrix is given by

where

n
=1

that is, v; is the geometric mean of the elements of the ith row of A. We will use the vector v,
suitably normalized, as the estimate of the ratio scale corresponding to A.

The following two invariance properties show that m is a suitable choice of metric for the
space of judgment matrices. Their proofs follow from the definition of m.

Theorem 1 (Invariance under Transpose). (i) Let A = [a;;] and C = [c;;] be n xn judg-
ment matrices. Then AT and CT are also judgment matrices, and

m(AT,CT) = m(A,C) .

(ii) Let A ~ [a;;] be an nxn judgment matrix, and suppose that C = [c;;] is the consistent
matrix that is m-closest to A. Then C7 is the consistent matrix that is m-closest to AT,

Theorem 2 (Invariance undcr Change of Scale). (i) Let A ~ [a;] and C ~ [c;] be nxn
judgment matrices and (wy,w,, . . ., w,) a ratio scale. Define

A= [a;,-w,-/w,-]

C - [cﬁw,-/w,-] .
Then A, C’ are judgment matrices, and

14
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m(4, C) - m(4,C) .

(ii) Let A, C, 4, C’ be as in (i), and suppose that C is the m-closest consistent matrix to A.
Then C’ is the m-closest consistent matrix to A’

Recall that we seek a procedure for associating ratio scales to judgment matrices in such a
way that the ratio scales capture the subjective information inherent in the corresponding
matrices. Let A be an nxn judgment matrix. Let C = [c;;] be a consistent matrix that is m-
closest to A, and suppose that v = vy,0s, . . ., U, i8 a ratio scale for C:; i.e.,

We choose vy,vg, . . ., U, as the estimator of the ratio scale corresponding to 4.

Under this association, Theorem 1 guarantees that the scale 1/vy,1/v,, . . ., 1/v, is the
estimator of the scale corresponding to AT. The appeal of this invariance arises in a natural
way: Suppose a respondent put his estimate of u;/u; in the position rj; instead of ;. (There
appears to be nothing intrinsically right or wrong about recording the estimates this way.) In
that case, the estimation procedure should return estimates 1/u; instead of u;. With this con-
vention the estimated value of u; should not depend on an artifact of the way the data are
recorded. It follows from Theorem 1 that the GM procedure has this invariance property. The
EV procedure does not.}

Additionally, Theorem 2 guarantees that our choice of ratio scale is invariant under a
scale change in the judgment matrix. The eigenvector scale also fails this invariance test.

Theorem 3 guarantees that the geometric mean scale gives the m-closest consistent matrix
to any judgment matrix.

Theorem 3. Let A = [a;;] be an n xn judgment matrix. Let C = [c;;] be the consistent
matrix given by

where v; is the geometric mean of the elements of the ith row of A; i.e.,
n
v; -Ha,}"‘, i=12...,n .
je1
Then m(A,C) is the minimal m-distance from A to any n xn consistent matrix.
Proof. For any consistent matrix C = [c;;], we can write

where w = wy,w;, ..., w, is a ratio scale. Thus we seek a scale that minimizes the expres-
sion

é Ylen a; - (2n w; — 2n w,-)]2 .

iel j>i

1See Johnson, 1979, for an excellent discussion of thia lack of symmetry and its relation to the choice between the
right and left dominant sigenvector.
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Boamtheutimtingséaleneedbeknownonlyuptoascalefactor,wemaynormaliuby
imposing the side condition

f[w,--l.

i=l -

Yj=fmay ij=-12...,n,
bj=fnw;, i=12...,n.

Then the problem is to minimize

n n 2
> Iy - & - 3]
i=l j>1
under the side condition
n
Eb,- =0 .
i=1
Because
Yi=-Y 6i=1.2...,n
and
yﬁ"o ’
this is equivalent to minimizing
n n 9
S =3 Flyi - & - )]
i=1 jul

under the side condition
n
Ebi =0.
i=1

Now S is strictly convex in the differences b; — b;, and therefore strictly convex in the vector
b, 50 it has a unique minimum at the point where

S ,
by =0fori=12...,n .
Setting these partial derivatives equal to zero, fork =~ 1,2,...,n

as
b " 2 (o — b + b))

-—-2(éy~'—"bj+ibj) -0,

J=1 j=1
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ie.,

!nw,,--":lT‘—— , k=12...,n.

Consequently the m-distance from A to C is minimized by the vector v given by

This completes the proof of Theorem 3.

Recall that if the matrix A is consistent, then the normalized geometric mean scale is
equal to the normalized eigenvector scale. The two scales are always the same, regardiess of
consistency, if the dimension is less than or equal to three. To gee this in the case n = 3, let

1 a b
A= 1a 1 ¢
16 l/c.l

Then the geometric mean vector for A,

(ab )mr
ve|[ (c/a)!?
(1/b¢ )m

is an eigenvector for A corresponding to the eigenvalue

1/3 173
L-1+(£—) +(—b-) .
b ac

l+x+—l-,
x

Since L is of the form

its value is no less than 3, the dimension of A (with equality in the consistent case). Therefore
w is an eigenvector corresponding to the maximal eigenvalue for A. Hence in the case n = 3,
the normalized geometric mean vector and the normalized eigenvector are the same. This
result does not hold for inconsistent matrices with dimension greater than 3.
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VIl. THE GEOMETRIC MEAN VECTOR AND THE
MAXIMUM LIKELIHOOD ESTIMATOR

We have shown that given an arbitrary judgment matrix A, the geometric mean vector
gives rise to the m-closest consistent matrix to A. The problem of representing a judgment
matrix by a ratio scale can also be cast in the framework of the general linear statistical regres-
sion model. We will show that under suitable assumptions on the distribution of errors in the
expert's judgment, the geometric mean vector is the maximum likelihood estimator for the
ratio scale corresponding to the judgment matrix.

Let A - [a;] be an n xn judgment matrix. We assume that there is an underlying scale

Wy, Wy, . . . , w, whose ratios are perturbed (by errors of judgment) to give the elements of A,
namely

Lo Wi
aj = w; € »
and thus

fn a; = n w; — & w; + tn ¢ , (1.1)
i=1,2....,0j>i.

Regarding the distribution of the error term, the context of the Saaty-Vargas (1983)
approach assumes a multiplicative model—if u = u;,us,...,Uu, is a scale for the entities
{E:}, then the value of E; relative to E; is-given by u;/t;. Accordingly, we have assumed that
errors are multiplicative. Further, this context assumes that if a;; estimates u;/u;, then 1/a; is

an equally good estimate of u;/i;; hence it is appropriate that the distribution of e; be recipro-

cal symmetric in the sense that

P(a <egsb)-P(a <—l-sb) .
€

Just as the normal distribution is a common model for additive errors, the log normal dis-
tribution, for similar reasons, is a common mathematical model for multiplicative errors. Addi-
tionally, it is reciprocal symmetric. We assume that model here. In Section VIII we evaluate
the performance of the GM estimate under a very different error distribution.

We assume that the errors ¢;; are independent and lognormally distributed with means 0
and variances o°. The substitution

[ %n a1, ) [ ] [ &n €11 ]
n a3 fn W fn €32
Y - : ’ B - L] ’ E - :
_2" “u-l.uJ _!n w”J LR“ eu-l.nJ
gives the general linear equation
18
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'Y-XB +E,

where the matrix X has components —1, 0, +1 determined by Eq. (7.1). In this framework it
is well known (Scheffe, 1959) that the maximum likelihood estimate for B = [2n w;] is the
leut-aquaresutimntegivepby

g - Em ay »
B ja
and that the estimate has all of the usual demablepiopertiesofleast—aquameatimatuunder
the general linear hypothesis (unbiased, minimum variance, etc.). Taking exponentials, we find
that the maximum likelihood estimate of w; is given by:

- B
6 = exp(b) = [Jod"™ .

=1

(The same estimate is derived above from the metric m on the space of judgment matrices.)
The procedure outlined above can be modified to solve more general estimation problems.

For example, suppose that instead of a single comparison for each pair of objects E; and E;,
there are n; comparisons, a, k = 1, . . ., n; where n; may be zero (reflecting missing data)
or greater than one (reflecting multiple comparisons, say by different judges). The problem is
thentoﬁndavectorwthntminimizuthelumofsquam:

5-3I 3 E[Rnam -(Rnw. tn w;)]*
i=l j>1 A=l

This generalization does not yield a simple closed-form solution such as the geometric mean
vector, but in practice S can be minimized and w determined using standard least-squares
regression packages.

Regardlmofthevdmsofnv,themmetncmmmmtwnprwodtmludstoa
natural measure of consistency for judgment matrices that is well grounded in statistical theory
and can be used in hypothesis testing. Let s2 be the residual mean square

2 S
iy A

where d.f. is the number of independent observations minus the number of linearly indepen-
dent parameters.

Note that if n; = 1, then

d.f.--"—('-'z-—l)—(n—l)-("-l);"—z) .

Then s? is an unbiased estimator of o> (the variance of the perturbations) and hence is a
natural measure of consistency of A.

Recall that if n; = 1, then S can be viewed as the squared distance from 4 to the m-
closest consistent matrix. Therefore S is zero when A is consistent, is close to zero when A is
close to consistent, and is far from zero when A is far from consistent. Moreover, because S
depends entirely on ratios, it is invariant under scale changes and transposes in the sense of
Theorems 1 and 2.
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g VIII. EMPIRICAL COMPARISON OF THE TWO METHODS:
' A MONTE CARLO STUDY

h .

§ The geometric mean vector gives an estimate for ratio scales based on pairwise compari-
4 sons that is easy to calculate, satisfies the theoretical requirements of invariance under scale
f change and transpose, and is well grounded in statistical theory. It follows from Section VI
that under certain assumptions on the distribution of the perturbations, the logarithms of the
geometric mean vector components are the minimum variance unbiased estimators of the loga-
rithms of the underlying ratio scale factors. Thus, if errors have a lognormal distribution, the
GM procedure provides the best estimate of the underlying scale and in particular is preferable
to the EV procedure with respect to the metric given above.

A good procedure should be robust in the sense that it yields good performance when
measured by other relevant metrics and different choices for the distribution of errors.
Although the robustness of the General Linear Model has been widely treated in the literature,
we look here at several very specific comparisons of the performance of the GM and EV pro-
cedures.

In this section we give the results of Monte Carlo trials that compare the EV and the GM
procedures under different choices of error distributions and different choices of metrics.
These studies imply that the EV is a better estimator (in the sense of metrics considered here)
; under both choices of distributions of errors. The metrics used include measures of rank
N preservation, where the EV has been purported to be better than the GM procedure (see -
appendix).

P - g
R i i)

Vit itA S

e

u;
Gj = u_, .
Throughout this section the u; will be equal to i x R, where the constant R is taken so that
the u; sum to one.
Let {e;,i,j =1,...,n,j > i} be a collection of positive independent random variables
drawn from a suitable population; we construct a perturbed matrix D with elements

~

WM ]

u;
reij fori=12...,n, j>i
/]

dii =
Y ﬁ l. fori-l,2,...,'l,j<i-
dji

| 1 for i=12...,n, j=3
D is a judgment matrix, but because of the perturbations it is typically not consistent. Any

estimate of an underlying ratio scale for D should give rise to a consistent matrix that is in
some sense close to A. Two quite different metrics for closeness® are used in the Monte Carlo

S E e
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!It has been mentioned in the literature (Sasty and Vargas, 1984, and others), that Fichtner (1984) has developed a
mnmmmmmmmmmmw.mwmmuhmmm
matrix corresponding to the maximal sigenvector. Typwlynmtﬁchofmmbmmitpm&mimﬁﬁn
understanding of the topology of a space—i.e., it tells you what points are close to (neighborhoods of) other points,
hence what sequences converge, mdtowhntpoinu. Unfommmly.mwlmplnmdmkyﬂbthm
mw.lmmmwmhwwnmmthmwmmmlym converge are those
whose terms are all the same from some point on, and even Saaty and Vargas's (1964) normalised limit of A™ does not
oxhéét&;hmmdmwmmmtdhmmmmmliftbpoinummtqul
are.
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study described here: tbmofmolm(ssm
SSE - ‘E(ﬁ W),
_ -1

and the sum of squares of the errors of logarithms;

SSEL - ;‘,(!nl't\a—ln w) ,
-l :

where

u,i=138....,n
is the actual normalized ratio scale, and .
Qi-l,z...,n

is the estimated ratio scale. In addition we have looked at several measures of order preserva-
tion, where the EV procedure is said to be prefersble to the GM procedure.

- The choice of population from which the multiplicatively perturbing random varisbles ¢
are drawn should reflect that in a judgment matrix the distribution of errors ahould be recipro-
cal symmetric as mentioned above:

P(a <Cgsb)-P(¢ <—1-sb) .

We have used two convenient and very dissimilar distributions satiefying this property: a log-
normal distribution whose underlying normal distribution has mean sero, and a distribution

In a comparison of two estimation techniques A and B, it is common to look at the aver-
age or sum of performance measures over some large number of trials or, when possible, the
expected performance with respect to some distribution of errors. Becauss most ressarchers

B may be preferable to A 90 percent of the time, the seeming contradiction
being explained by B occasionally giving large outliers. When an outlier is suspected, the
ressarcher may reject that method on that trial and look at other methods. Because of these
concerns we have scored each of the Monte Carlo trials and computed the frequency with




Comparison with Sum of Squared Log Error and Lognormal Errors

Table 2 gives the results of the trial that will theoretically favor the geometric mean vec-
tor: lognormal errors and the metric given by the sum of the squared errors of logarithms.

" The entries in the first column describe the parameters of the Monte Carlo run. The first
i number is the dimension of the scale, the second number is the variance of the logarithm of
: the error term e;. The next term is the average “consistency ratio” for the trial—that is, the

difference between the maximal eigenvalue and the dimension, normalized by the dimension

J minus 1. We are uncertain about what the consistency ratio really means, but the eigenvector

¢ is said to do well when the consistency ratio is less than .10. Accordingly we have concen-

trated on runs in this realm. The next number gives the number of trials. In the cases with

very small log perturbation error we used 5000 trials, in the cases where the trend seemed clear
we used 1000 trials.? .

The eigenvector outperforms the geometric mean in every case, in terms of both sum of

-
. -

K errors and the percentage of trials where it was closer to the underlying consistent matrix.
4
;: Table 2
;l RATIO SCALES PERTURBED BY LOGNORMAL ERRORS, SUM OF SQUARED
s ERRORS OF LOGARITHMS, MONTE CARLO COMPARISON OF GEOMETRIC
MEAN VECTOR AND EIGENVECTOR
R
_ Percentage of
h Dimension, Trials in Which
A Variance, Sum of Squared Sum of Squared Geometric Mean Is
;@ : (L -n)(n-1), Error of Logs, Error of Logs, Better in Squared
™ Number of Trials Geometric Mean Eigenvector Error of Logs b
”
A 6/.01/.003/5000 424 425 51
X 5/.04/.012/5000 1708 .oma 52
3 8/.08/.028/8000 3716 382.1 8
e 6/.16/.051/1000 135.2 138.4 67
it 8/.25/.080/1000 210.4 2188 a0
5/.49/.185/1000 4270 86 56
5/1.0/.8348/1000 863.3 M7 61
I 1/.01/.006/5000 45.2 453 83
i ‘ 7/.04/.015/8000 1789 1806 85
% 7/.09/.088/8000 4035 4109 ]
R 5 7/.16/.088/1000 160.9 154.5 56
- 7/.28/.005/1000 222.7 235.1 50
] 7/.49/.208/1000 440.6 485.2 6l
b 7/1.0/ 445/1000 9383 1102 L
s 10/.01/.040/8000 4 485 53
& 10/.04/.016/5000 185.4 1876 8
h 10/.00/.006/5000 4219 4334 )
* 10/.16/.087/1000 147.7 168.2 o8
10/.28/.108/1000 242 251.6 [ ]
38 10/.49/.223/1000 4862 5242 )
"y 10/1.0/.516/1000 948.1 13908 ]
t; :
$These rune were mads in Portran on a Compaq personal computer. The principal suthor will gladly supply the
- programs to the reader wishing to evaluate his own sosnarics.
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The preference for the eigenvector is weakest when the dimension or the error is small, as
would be expected because the methods give the same answer when the dimension is 3 or less,
or when the matrix is consistent.

Comparison with Sum of Squared Log Error and Ratio of Uniform Errors

Table 3 presents the same information for the case of perturbations by ratios of uniform
random varisbles. The variance given is (as above) the variance of the logarithm of the pertur-
bation term. The consistency ratio is determined empirically and may differ in the third
decimal place. Even with these very different error terms, the geometric mean vector is prefer-
able in every case and in both measures. Again, the degree of preference is small when the
methods can be expected to give answers that are very close and becomes much stronger as the
dimension or the variance of errors grows.
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Table 3

RATIO SCALES PERTURBED BY RATIOS OF UNIFORM RANDOM VARIABLES,
SUM OF SQUARED ERRORS OF LOGARITHMS, MONTE CARLO COMPARISON

:§ OF GEOMETRIC MEAN VECTOR AND EIGENVECTOR

“

:’ Percentage of

| Dimension, Trials in Which

) Variance, Sum of Squared Sum of Squared Geometric Mean Is

b (L-n)/(n-1), Error of Logs, Error of Logs, Better in Squared

' Number of Trials  Geometric Mean Eigenvector Error of Logs

Y

3

5 5/.01/.003/5000 423 423 50
5/.04/.012/5000 1678 168.1 51
5/.08/.027/5000 385.5 385.4 50

. 5/.16/.050/1000 134.4 136.0 51

; 5/.25/.081/1000 214.3 . 2198 56
5/.49/.161/1000 425.1 4422 56
5/1.0/.360/1000 8574 969.7 68

A 7/.01/.004/5000 4.3 4.3 51
7/.04/.014/5000 1775 1779 52

) 1/.08/.083/56000 408.2 410.5 53

i 1/.16/.058/1000 145.0 146.0 51

! 7/.28/.084/1000 226.8 2209 55

¢ 7/.49/.196/1000 4833 49268 65

. 7/1.0/.481/1000 908.1 1119 72

10/.01/.004/5000 46.2 48.2 52
10/.04/.016/5000 185.6 186.4 53

Py 10/.00/.087/5000 4158 420.7 55

&, 10/.16/.008/1000 1488 151.3 56

% 10/.25/.106/1000 290.3 239.1 61

* 10/.49/.219/1000 460.2 508.9 06

i 10/1.0/.519/1000 963.3 1274 8




Tebles 4 and 5 consider the sum of squared error metric instead of the sum squared error
of Jogarithms. Lognormal errors have been used in Table ¢ and the ratio of uniform errore in
Table 5. In this metric, which differs substantially from the metric used to justify the
geometric mean, the geometric meen still outperforms the eigenvector in both measures in both
tables in every case except ome. In the “errent”™ case the eigenvector does better by “1” in the
loast significant digit. Given the trend of the results, we conclude that this aberration is the
resuit of experimental error. The pattern mentioned above repeats itselt The big differences
occur when the dimension or the variance of the errors becomes large.

Table 4

RATIO SCALES PERTURBED BY LOGNORMAL ERRORS, SUM OF SQUARED
ERRORS, MONTE CARLO COMPARISON OF GEOMETRIC MEAN VECTOR

AND EIGENVECTOR
Percentage of
Dimension, Trials in
Variance, Sum of Sum of Which Geometric

L -n)/n-1), Squared Error, Squared Error, Moan is Loast

Number of Trialse  Geometric Mean Eigenvector Squares Better
5/.01/.008/8000 1.0 1.2 851
8/.04/.013/5000 6.81 .84 82

8/.00/.098/3000 150 . 181 58

8/.16/.061/1000 .13 : 3.15 62
$/.28/.080/1000 818 480 58
5/.49/.185/1080 161 169 54
$/1.0/.349/1000 3.3 U 58
7/.01/.008/5000 1.00 1.01 52
7/.04/.015/8000 30 896 53
7/.08/.083/6000 894 9.11 5
7/.16/.088/1000 3.33 .43 56
7/.28/.005/1000 4.81 5.08 87
7/.49/.203/1000 9.77 10.7 58
7/1.0/.445/1000 194 233 L}
10/.01/.040/6000 538 539 52
10/.04/.018/5000 2.15 2.18 &3
10/.00/.038/5000 490 5.04 56
10/.1€/.067/1000 1.73 1.83 59
10/.26/.108/1000 2mM 290 61
10/.49/.228/1000 5.18 5.88 64
n

10/1.0/.518/1000 108 14.1




Table 5

RATIO SCALES PERTURBED BY RATIOS OF UNIFORM RANDOM VARIABLES,
SUM OF SQUARED ERROR, MONTE CARLO COMPARISON OF GEOMETRIC
MEAN VECTOR AND EIGENVECTOR

Percentage of
Dimension, Trials in
Variance, Sum of Sum of Which Geometric

(L-n)/(n-1), Squared Error, Squared Error, Mean is Least

Number of Trials  Geometric Mean Eigenvector Squares Better
5/.01/.003/5000 1.7 1.7 50
5/.04/.012/5000 6.73 8.75 51
5/.08/.027/5000 15.7 15.6 50
5/.16/.060/1000 5.38 5.39 51
5/.25/.081/1000 8.40 8.56 53
5/.49/.161/1000 16.1 16.6 56
5/1.0/.360/1000 31.2 35.1 62
7/.01/.004/5000 998 996 50
7/.04/.014/5000 396 3.96 50
7/.08/.033/5000 9.07 9.13 53
1/.16/.059/1000 3.13 3.14 51
7/.25/.094/1000 4.92 4.98 52
7/.49/.196/1000 9.80 106 61
7/1.0/.451/1000 19.1 240 70
10/.01/.004,/5000 531 . 531 50
10/.04/.016/5000 2.14 2.16 51
10/.09/.037/5000 4.76 4.79 53
10/.16/.066/1000 1.73 1.75 62
10/.25/.106/1000 267 2.75 56
10/.49/.219/1000 5.29 5.7 61

10/1.0/.519/1000 10.7 144 4
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IX. EXAMPLE

In this section we discuss the use of the eigenvector and the geometric mean vector in a
specific subjective judgment situation. Estimates of underlying utility vectors and consistency
values derived from the two methods are compared.

Consider the automobile selection problem introduced in Sections II and V. The
hierarchical structure for this problem was given above in Fig. 1.

Subjective judgment data for this example were obtained from one prospective buyer.
The buyer made pairwise comparisons reflecting his perceptions of the relative importance of
the attributes of status, cost, economy, and size in selecting an automobile. Judgments were
made based on the subjective judgment scale developed by Saaty (1977b). The buyer made
comparisons in such a way that the resulting pairwise comparison matrix would be reciprocal
symmetric (i.e., a judgment matrix). The resulting judgment matrix 4 is:

Status Cost Economy Sixe
Status 1 1/ 175 172
Cost 5 1 1 13 -4
Economy 5 1 1 172
Size 2 3 2 1

Next, we constructed judgment matrices from the buyer’s pairwise comparisons of the five
types of automobiles relative to each of the two attributes of status and size:

Subjective Comparison Relative to Status
H

T M D C
H|1 2 179 1/8 117
T|172 1 19 1/8 177
M| 9 9 1 6 4 -B
D| 6 6 1/6 1 177
Ci 1 i 1/4 7 1
Subjective Comparison Relative to Size
H T M D C
H| 1 172 7 3 8
T} 2 1 8 4 9
M|17 118 1 173 3 -C
D|13 1/4 3 1 4
cClis 11» 173 1/4 1

¥

We calculated the eigenvector and the geometric mean vector separately for each of the
three subjective judgment matrices above. Resulting scale estimates for the two techniques are
given in Table 6.
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Notice that the scales determined by the two methods are very close in value. This is as
expected from theoretical considerations, because the two methods give the same results for
consistent matrices and should agree closely for nearly consistent ones.

The results in Table 6 indicate that the prospective buyer considers automobile size to be
considerably more important than status, cost, or economy. He ranks T as having the best size
of any of the cars under consideration.

Because exact values were available for cost and economy of the five automobile types, it
was not necessary to compute scales for them from pairwise comparisons. The normalized
scale values for the automobiles relative to these two attributes were determined to be:

Cost Ratings Economy Ratings
H .2703 3357
T 4198 2929
M 0554 1071
D 1671 1500
C 0976 1143
Table 6
COMPARISON OF SCALE ESTIMATES FOR THE AUTOMOBILE EXAMPLE
Normalized
Matrix Mean o Eigenvector M
Matrix A
Status 1 1/5 1/6 1/2 0812 5680 0885 1513
Cost 1 1 1/3 2463 2425
Economy 1 12 27115 2579
Sige 1 4019 4112
Matrix B
Status
H 1 2 1/9 1/6 1/7 0409 5550 0378 1770
T 1 19 1/6 1/7 0310 0294
M 1 6 4 5307 5239
D 1 177 .1132 1131
C 1 2842 .2058
Matrix C
Size
H 1 172 17 3 9 3152 1160 3143 0417
T 1 8 4 9 4632 4630
M 1 13 3 0681 05696
D 1 4 .1299 .1288
C 1 0336 0348
! 'f.ﬁ; ! jt ” '?/,' ':‘ 2 R"J';‘:j\ ‘l“‘)i ‘ -L\ql‘al*,' " ;1‘ H"-'.. -A .‘,J‘v. ¥’ T V n:‘-' i"‘
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N From each method, we now have scale estimates for the five automobile types relative to
: each of the four automobile attributes, as well as a scale of importance of the four attributes.
Scale estimates for the five cars relative to each attribute are used as columns of a § x 4

o matrix. This matrix is multiplied by the 4-dimensional vector of importance of attributes.
¥ The resulting 5-dimensional vector reflects the prospective buyer’s ranking of the five automo-
3 biles. The calculations for both methods are carried out in Table 7.
¥
¢ Table 7
3 DETERMINATION OF RANKINGS OF FIVE AUTOMOBILES
X Make Criterion Final
~ of Car Status Cost Economy Size Scale Scale
Geometric Mean Vector Method
~ H /0400 2703 .3357 .3152 0812 2874
~ T 0310 4198 .2020  .4632 2453 3711
N M | 5307 0554 .d0m1 0881 ) x [ 2ns5| - | .108m1
“ D 1132 1571 1500  .1209 4019 .1407
y c 2842 0976 .1143  .0336 0916
_ Eigenvector Method
y H /0878 2703 3357 3143 0885 2847
Y T 0204 4198 .2020  .4630 2425 .3703
: M 5239 0664 1071 069 | x | .257] - | .20
f D | .131 .57 .1500 .1288 4112 .1398
s c 2958 0076 .1143 0343 0834
i l
X
o
%
b,
‘ h
-
2
‘
Q
X
)
Y,
A4
,‘
)
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Appendix

COMPARISON OF RANK PRESERVATION ABILITIES

We believe the issue of rank preservation is a red herring: The EV procedure has been
recommended for analyzing hierarchical structures and quantifying judgments. A procedure
designed to do well in a cardinal estimation problem ought not be judged on the basis of its
capabilities in ordinal or rank estimation problems. If the researcher has an ordinal estimation
problem it would be better and easier to ask the respondent to rank the entities in order of
preference. .

Further, the oft-mentioned ability of the EV to do well in this context seems to be based
(Saaty and Vargas, 1984) on the following argument:

There is a natural way to derive the rank order of a set of alternatives from a pairwise com-
parison matrix A. The rank order of each alternative is the relative proportion of its domi-
nance over the other alternatives. This is obtained by adding the elements in each row in A
and dividing by the total over all rows. (Emphasis added.)

Everything that has been written in the present context about the analysis of subjective
judgment matrices has dealt with multiplicative problems. The estimates are of ratios, not of
sums or differences. In this context determining rank order by adding elements seems unnatu-
ral. The natural ranking inherent in a subjective judgment matrix for a multiplicative problem
is that obtained by the product of the row entries, not the sum. The GM procedure gives pre-
cisely that ranking, and it outperforms the EV procedure in this measure also.

Although we believed the issue was not worth treating, referees objected to the omission
of rank preservation properties in the comparisons of the two methods, hence its inclusion
here. In Tables A.1 and A.2 we have measured the ability of the GM and EV procedures to
preserve rank. The scenarios are as above: Table A.1 uses lognormal errors and Table A.2
ratios of uniform random variables. Recall that the underlying scales u; are proportional to i
and scaled so that they sum to one.

Rank is typically expressed as a vector; we know of no single overwhelmingly natural
scalar measure of rank error. We have used two very different measures, both simple, but
lacking simple descriptions. To fix ideas, let us assume that the dimension of the scale is 5.
We represent the ranking in the underlying scale by 1,2,3,4,6. If we estimate this scale by a
vector v that satisfies

M1 <Va<lp<VlU3g<Vy,

then we represent the ranking of v by 1,2,5,3,4. If v preserves the ranking inherent in u, its
ranking will be the same as that of u.

We have called the measures of rank preservation used below the sum of rank reversals
and the sum of weighted rank reversals. The sum of rank reversals is just the number of times
we count a reversal in ordering as we go from left to right (“1” in the above example, because
6 > 3). The weighted rank reversal measures the degree of displacement from the rank of the
underlying scale. In the above example it is given by

1-12+2-22+(B-52+14-32+(5-4)3>=86.

1
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Table A.1

RATIO SCALES PERTURBED BY LOGNORMAL ERRORS, RANK PRESERVATION
ERROR, MONTE CARLO COMPARISON OF GEOMETRIC MEAN VECTOR

AND EIGENVECTOR
Dime_n;;ﬁ,' - Sum of - ‘éum of Sum of Weighted
Variance, Sum of Rank  Rank Reversal Weighted Rank  Rank Reversal
(L - n)/(n-1), Reversal Errors, Errors, Reversal Errors, Errors,

Number of Trials Geometric Mean Eigenvector Geometric Mean Eigenvector

5/.01/.003/5000 2 2 4 4
5/.04/.012/5000 . 268 260 616 §20
5/.09/.028/5000 963 971 1964 1980
6/.16/.051/1000 210 209 426 422
5/.25/.080/1000 529 538 1160 1190
5/.49/.165/1000 825 847 2002 2060
6/1.0/.349/1000 1081 1141 2874 3036
7/.01/.005/5000 14 14 28 28
7/.04/.015/6000 683 694 1372 1394
7/.09/.033/5000 2084 2143 4384 . 4510
7/.16/.0568/1000 72 789 1588 1650
7/.25/.095/1000 911 962 2178 - 2298
7/.48/.203/1000 1332 1375 3548 3694 .
7/1.0/.445/1000 1775 1826 6322 5642
10/.01/.040/5000 74 MM 148 154
10/.04/.016/5000 1809 1824 3684 3730
10/.09/.036/5000 4350 4446 9590 9832
10/.16/.067/1000 1317 1367 3174 3330
10/.25/.108/1000 16569 1710 4334 4534
10/.48/.223/1000 2189 2282 6460 6048

10/1.0/.516/1000 2667 2852 9228 10266

In Tables A.1 and A.2 we have given the sum of rank reversal errors and the sum of
weighted rank reversal errors. (In the tables in this report we started each new Monte Carlo
process with a new random number seed to avoid repeatedly using a sequence of random
numbers that may favor one procedure or the other.)

In Table A.1, with lognormal perturbations, in only two out of 42 comparisons does the
eigenvector outperform the geometric mean. In four other comparisons the methods tied. In
the remaining 36 pairs, the GM procedure outperforms the EV procedure, and the differences
in performance become more pronounced as the dimension and underlying variance increase.

In Table A.2, where the perturbations are ratios of uniform random variables, the eigen-
vector also does poorly, although a little better than above. Again, the relative performance of
the geometric mean improves as the dimension and the variance of the errors increase. Even
in these trials, which are dominated by the low variance and consistency ratios that are said to
favor the eigenvector, the few occasions where the eigenvector outperforms the geometric mean
soem to be the result of random aberrations, not of any inherent qualities that are pertinent to
estimating ratio scales.
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Table A.2

RATIO SCALES PERTURBED BY RATIOS OF UNIFORM RANDOM VARIABLES,
RANK PRESERVATION ERROR, MONTE CARLO COMPARISON OF

GEOMETRIC MEAN VECTOR AND EIGENVECTOR

Dimension,
Variance,
(L-n)(n~-1),

Sum of

Sum of

Sum of Weighted

Sum of Rank  Rank Reversal Weighted Rank  Rank Reversal

Errors, Reversal Errors, Errons,
Number of Trials Geometric Mean Eigenvector Geometric Mean Eigenvector

Reversal Errors,

5/.01/.003/5000
5/.04/.012/5000
5/.09/.027/5000
5/.16/.050/1000
5/.25/.081/1000
5/.49/.161/1000
5/1.0/.360/1000

7/.01/.004/5000
7/.04/.014/5000
7/.09/.033/5000
7/.18/.058/1000
7/.25/.094/1000
7/.49/.195/1000
7/1.0/.461/2000

10/.01/.004/5000
10/.04/.016/5000
10/.08/.037/5000
10/.16/.066/1000
10/.25/.106/1000
10/.48/.219/1000
10/1.0/.519/1000
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