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PREFACE

There n a vrowing literature and interest In methods for quentIfying ujectiv., judg-
ments. Severel ongoing Air Forme efforts utilizing rAdjective judgment have come to the

1dth,s' attiotion. Mision Anea Analysi reqiesombective e stimates of a large number of
parmetrs.Long-range plannin repeatedly draws on judgments, about the Amue importane

and worth of plane and geographical, areas, The Constant Quet projct, dreted by the
Readinoe/NATO Coordination Board highlighted the importance of su~bjetv AWgment in
evaluating command and control systems.

Thomas Sasty of the University of Pens ai has advanced a popular tool for quan-
tfing and scaling the worth of a set of otjects or entis For problms that fit the Seaity
heaework, this report details an improvement on Seetys *eigenvscto technique that is
easier to ume and more amenable to statistical Infisrenoes.

This report was -rpae under the Project AIR FORCE research. stud e t, 'Evolvng
Concept. for Long-Range Plxmzing.w It was originally published in 1060 and has been
expended, clarifIed and updte in 1965, as part of the Projct AIR FORCE Resource Manage-
ment Program's concept fomlation and exploratory research actiity.



Let 114., An) be a collection of obj( , or entities that we in sow snse compa-
rable The E5 am be alternative plans to achieve some goal, alternative obJects tW hav
so01e COMParabl 4fty, or Psealy a Collection of entiie that have, vatying doPe. of earne

Com . yk. A water uuuv.... . is called a ratio scale for the collection if. fr each i
andj,aa"u is O ao he vauotEvao eluof Ej.

An important appiestimn of ratio scales is in tlw study of hiserchie. Supose that for
each level of a hisrarchy thene is a ratio scale, fier the valu of pjects at that level reltive to
any objec at the next level Wa The ratio scale for various levels can be combined multiplica-
tiv*l to give a view of the entire hierarchy. Because hiearchies are used to model complex
systems in man important military and industrial aplcations, the estimation of the ratio
scales deserves considerable attention.

Suppoee"aaratoseekalus. ,U., Ui>0, for,Jet B,E,..., J.eifsbut is
not known. Let aq. Q~ - 1,2% . .. , n be subjective estimates of ug/uj made by a judge. In par-
ticular, we assume at -1I for each a, and cap - i/eq. The mattrix A - [adi Of subective, pair-
wise comparisons is called a judgment matrix?1

If the udge is perfctl consistet in making estimates, the matri A will satisfy the con-
sistency criterion

aeqjh- afor ech i,j,k

If this condition is met, any column of the matrix A gives a ratio scale for {E1, ES, . . .

However, judgments are frequetl inconsistent, and Judgment matrices rarely sasfy the con-
sistency criterion. A mathematical procedure is required for estimating an underlying ratio
scale based on an inconsistent judgment matrix A.

Thomas Sasty (1977a-) argues that the "dominant right elgnvector crepnigto
the maximal eigenvalue should be used to estimate the underlying scae. The argument is:
The dominant sigenivector is a continuous unction of the elements of the matri, and, if the
matrix is consit, the elgenvector gives the unique (to within scalar mul*iplication) scale.
Thus, if the elements of the matri get perturbed slightly in the proees of being subjctively
quantified by a judge, the dominant sigenvector will return a scale only slightly diflereet from
the scale of an underlying consistent judgment matrix.

Although the classical analyst may worry about uniform continuity or other erudite intri-
cacies, of this argument, we ar worried about a more basic oversit~ The sigenvector is not
the only continuous vector-valued function of jugmn matrices that yields the coa ec scale
when the matri happen to be consistent. There are many others, including the vector of row
sums, the vector of the inverse of column smsr, any column of the matrix, and the whole, ring
gener ,a ted by positive linear combinations of these and other solutions.

We ar aware of the desirable properties of the elgenvector in chrceiiga linear
operator and its spectral decompositi- -on, but the immediate relevance of thes properties to this
estimation problem seems open to quetion In most estimation problems, the wealth of statis-
tical literature on estimation procedures and their properties has enhanced understanding of

~Ia peesd*, as~ is umofy emed to mqq*t doe a( - 1Y2 upw offdbsquIWins The Nnei. of tdo
inak b idmed by th abo"e mekijmh@
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wW aifisthe eoulnity and consistency crteria Saty urns to dinfed the domminat
*Wunwte, bas several other duokab eltat In certain cigubanb, tasu al*
opta and gives rise to an estimata of scalms sd a mumn of comlatacy diet bane knwa
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I. INTRODUCTION

Over the past three decades, psychometric, military, and industrial researchers have
directed considerable effort to the quantitative analysis of subjective data. Analytic tools
building upon the subjective judgments of experts have been used in such diverse fields as
energy policy analysis, marketing research, economic forecasting, and military planning. Prob-
lems amenable to the analysis of subjective information abound, and numerous methods have
been proposed for acquiring and treating judgmental data.

One question that arises in the treatment of subjective data is how to construct a scale of
relative merit for a collection of objects or activities based upon subjective comparisons of each
pair in the collection. For example, consider a collection of three objects, labeled A, B, and C.
Suppose that an expert believes A has twice the merit of B, B has three times the merit of C,
and A has six times the merit of C. It is natural to construct a scale of relative merit for A, B,
and C as (1, 1/2, 1/6). However, suppose that the expert says A has twice the merit of B and
B has three times the merit of C, but A has only four times the merit of C. In this case, it is
not so easy to decide upon a scale for A, B, and C. This sort of inconsistency is common in
human judgments, especially when complicated issues are involved.

Thomas Saaty of the University of Pennsylvania has developed a matrix eigenvector pro-
cedure for constructing scales of merit based on inconsistent pairwise comparisons. The
method has been applied in a wide variety of planning and decision problems.

This report presents an alternative approach that is preferable to the eigenvector pro-
cedure in several important respects. The proposed procedure is derived within a statistical
framework and is compared with the eigenvector method on the basis of theoretical and empir-
ical considerations.

The remainder of this introduction discusses the motivation for dealing formally and
quantitatively with subjective information and provides a brief review of some of the literature.
Section II provides a short, nonrigorous discussion of the eigenvector method and the proposed
method for utilizing subjective judgments in quantitative analysis. An example, illustrating the
use of the two methods as well as similarities and differences in their results, is introduced in
this section and examined throughout the report.

In Section III we give rigorous definitions and develop a framework for treating the esti-
mation problem with classical statistical techniques. Section IV provides a mathematical treat-
ment of the eigenvector method. Section V deals with the application of subjective judgment
methods to the study of hierarchical structures. The example introduced in Section II is con-
sidered in further detail there.

Section VI introduces the geometric mean vector and gives theoretical justification for its
use as an estimator of subjective scales. In Section VII we define a statistical measure of con-
sistency for subjective judgment matrices. Section VIII presents results of a Monte Carlo
study comparing the two methods. Section IX considers in greater detail the example intro-
duced in Section II and expanded on in Section V.

QUANTITATIVE ANALYSIS OF SUBJECTIVE DATA
The quantification of subjective data is essential for dealing with a wide class of problems

whose solution by other methods would be extremely difficult or impossible. Such problems
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we often amorphous and vaguely stated. They involve large, nultiaed issues of importance
to decnionmakm and interest groups with diverse backgrounds and biases. Their outcome.
may determine the allocation of large sums of public money and impinge critically on the pub-
lic interest. Moreover, some facets of the problems may lack any wel-defined, scalar-valued
measures of merit. Even if there are appropriate measures, the collection of relevant objective
data might be prohibitively expensive or imposible.

Such problems frequently aris in the assesment of future needs for Inag og n
As an example, consider the problem of long-range planning in the U.S. Air Force. This prob-
lem invoh-as a great many interrelated issues: the effects of political and economic factors on
national security, the importance of various geographic regions of the world to US. interests,
the threat posed by conflicts of different types in different regions, the current strength of
forces to deal with such conflicts, and so on. Although it might be possible to define objective
yardsticks to deal with some of these issues, it certainly is not possible for all of them For
some issues, subjective judgments of relative importance or value are the only memures avail-
able.

In some problems the best information available is subjective, so why is quantitative
analysis desirable at all? Why not just ask the experts to make plans and decisions based on
an informal, intuitive analysis? In fact, problems that are not amenable to hard analysis are
frequently resolved through intuitive analysis by experts and decisionmakes However, there
are several good reasons for using a formal, quantitative approach in these problems.

A formal analytic framework gives structure and definition to an amorphous ma of data.
It allows the decisionmaker to consider relevant information systematily and to exmine
options and consequences one at a time. In such a framework, the analyst can break an
unmanseble problem into manageable parts and then synthesize information about the parts
in a rational fashion.

A formal analytic framework also permits sensitivity analysis on alternative judgmentL
When a problem is considered within a formal framework, tradeoffs among alternative judg-
ments can be speiled out explicitly, and the effects of variations in subective judgments on
outcomes can be studied. Sensitivity analysis may even provide a basis for resolving different
points of view.

Perhaps the greatest advantage of a formal analysis, especially in governmental policy-
m-aking is that it is repeatable. Formal analysis provides the audit trial that is so important in
matters involving extensive allocation of public resources and impinging on the public interet

Research literature on the use of subjective information emphasizes three major issue
how to elicit meaningful subjective judgments from individuals or groups, how to synthesize
subjective and objective data obtained from various facets of a large problem, and how to con-
struct measurement scales based on subjective information. Following is a review of some of
the literature related to each of these issues.

ELICITING SUBJECTIVE JUDGMENTS

Methods for eliciting subjective judgments have received considerable attention in opera-
tions research and forecasting literature. Two such methods an war gaming and scenario writ-
ins both of which are used extensively in military planning to provide insights into posible
future environments and needs.

Much of the literature on eliciting judgments deals with the problem of acquiring a collec-
tv expert opinion free from the usual negative effect. of group pressure. An important



method in this categor is the Delphi technique, a countrold heek y ue w olbally
developed by eserchers at The Bud Cor oo (Gordon ad 11 -m. 190. In DAL a
researcher intrrogates a goup o epI, individually conwnhi their qe a em eposel
fubtu evnut Tho researcher assembles means and qutes 1w m- ve i thus
obtained and 1presens them Indiiduaily to group members along wiM ampws a ed arn-
menta made by other members. Grop members can then revis their Jud mets. Te pro-
cedure i repeated until the range of judgments narrows. The controlld feedak medanim
in Delphi makes it powes for a group of experts to avoid the usual sociml I e of Gp
discussion. The method has been used in many militry and intrial applications (ae, e.,
Ayres, 1969;, Linstone and Turoff. 1975).

The Delphi technique bas given rise to sVral t TM Probe metod
deigned by researchers at TRW for foecasting technologica evet comies DW* with a
timing chart structure so that events can be considered in mequmnc (North and Pyh. IM).
The method of qualitative controlled eedback proposed by Pres (1979) is siolar to DOW in
that it uses a controlled fmleack loop to aid groups in arriving at judmen but it diffe in
that at each iteration, members ar supplied only agumem and comments from the goup,
with no information about the quantitative distribution of gr aup ansers.

SYNTHESIZING DATA IN LARGE PROBLEMS

Eonomist nd statisticians have propo ed various methads for breaking lre problem.
into smaller pieces and qutat el snthe subject ad Aeie data from the
pieces. One of the most popular of these methode is multi-attibute utility thoy, which pro-
vides a framework for selecting an optimal decision from among multiple shnives when
some efft of the decision can be measured only mjectively. The expected value of sach
alternative is determined as a function of the deiscmonmker's prefrences for the possiie
consequences and the probsbilities that the alternative will Ied to those cmeu . The
probabilities are generally determined from subjective udgments. Some ot the decisiaima 's
preferences ar determined on the basis of subjective indexes such as aethetic appeal, and oth-
ers ae determined on the bais of objective measures such as cost. The alternative wh max-
imum expected value is chosen as the optimum decision.

The mathezical foundation for multi-attribute utility theory was laid by voan Neumann
and Morgenstern (1947). Application of the theory to business problem was pioneered by
Raiffa and extended by Keeney and others. The theory has bees applied to many problem in
industrial, government, and military settings (see Keezy, 1973; Keeney and Nair, 1974; Ke-
Joy, 1976; MacCrimmon, 19W, Raifa 1909). A book by Keeney and Raift (1976) gves an
excellent treatment of the ubject.

A similar method was applied to milftry problems in a 1958 Mates thesis by Wells,
who gives a detailed framework for assessing the relative desirability of eaisting or proposed
wapon systems. System deeirability is determined as a funetion of easibility, cost, and an
attribte Wells calls "military worth.' Wherever possible, objective maee - used to
evaluate these three factors, and expert judgments m used where there ae no objective mea-
sures. In partiular, military worth is an agregate property evaluated by anasing a complex
hierarchy and subjective soa for sevral variables. The Honsywall Corporation used Web's
method in a military planning model called PATTIN (Slgford and Parvin, 196). A detailed
description of the method can be found in Wells (1967).

iME I"''IITMETN'"' ' "'m W ' ' T- ,!" '' -,"-e -,,



taiy mroo as thet saple. decision prolbl e . viewed in term of hierarahies at

a amrt sma ft o06ec61 Sools from all the loul.ave comblned m tmcall to provide
quantitti nm:em aout the whole prob%&m ThS "Ofut in this report are aPple

dihi the ramwork of hIefracheal oualysis up a esm by Seat). Hierarchwes we discussed kn
Se"o V.

hM methuods hae been developed for consituting esas of meaurement based on sub-
jective d"&a Severa boobs and hundred of articles have been witten abouat those metods A
classic reruc fior surl otrIuto, specialy for work on pscoh s m cle is

ToPres (196OW) book.
Churchman sa Ackoff (1964) did pkmnesrlng work in the ia of estimating scales of

values ft decsion problems. They used a criterion of addtv order consistency to estmaste
ss" from succesive subjective *udmeuts. Their paper described several. applications to

indmatial probe.,.. Well and others later applied the Churcman and Acktoff method in mil-

Much. of the iterature o= subjective so"ls concerns the estimation of scoles from Pakr-
wise compaison data. Much statistia work in this mat goes under the name 'paired comn-
Prieom." In. the simplest Pair" comparison experiment, each of svra Judges eamines a
maur of objects two at a time aNd-stats which of the two objects is iseferd. No lu~dt
of etregh of prefonos is given Dat fom these paired comparisons ar then used in a d-
fletical model to stimat a scale of prees for the objects. Soch an experiment mad& he
used by market researchers to determine the relative tsts appeals of ,seva new lood
Items,

A waed vehreno for the statistical theory of paired comparisons is Dervde (1M6) book.
A biblopephy of recent, articles on the subject was compiled by DavideounNd Faquhar

Saaty has pVcpale another method her estimating usotiv sces using -avi om-
parison in which a single Judge makes pairwies comparisons of a number of object.. For ach
pair, the Judge states not only which object is perrdbut to what degree that object is pre-
hored over the other. A preorenos scae is determined for the objects based. on an olgenvector

anlssOf the matrix of pairwies comparisons.
Saoty bes published many articles (sm the bibllopaphy) desciing the elgenvector pro-

celines for esiatindg subjetiv scales and 11ilsting the usftulnes of this procedur in
aayngcomplex hierarchical structures. He has applied the procedure in a broad rag of

problem In the social see (Seaty, 1977b; Iaty and. Bensett, 1977; Alexander and Baoty,
1977). The procedre has also gained acceptance in military application. and is curently
being used as a tool in Air Force long-range planning&

If one sormue that an anali problem is in the context that Sasty hasebeen writing
abot, then the results of this remor imply that the geotric maon is preferable to the usgps-
vecto soluton. -Haoever, Veit and Caller. (1061) and Volt, Callero, and Roe (1962 1IM)
believe that, many problem may not be multlicative at ell and my not fit the Seaty context.



U. PAIRWISE COMPARISONS. THE JUDGMECNT MATRIX, AND
THE ESTIMATION PROBLEM

Consider the problem of purchsaing.a now car.' Suppose that a preliminary investigation
yields five specific makes that sem appropriate. The price of each make is known, and
although some other measures of merit may hae been quantified (principally performance
measures), the important subjective question of how much each car satisfies the overall needs
is difficult; to quantify.

We will attempt to assign to each make of automobile an estimate of utility in Such a way
that if Uj is the utility of the ith make, then ui/uj is a measure of the preference of the Mt
make to the jth make. The vector ul,u2, ... , usa will be called a ratio scal.

Some aspects of the usefulness of such a ratio scale are immediately apparent. We could.
in this example, choose betwe the cam on the basis of utility per dollar of initial cost or, with
more foresight, on the basis of utility per dollar of expected lif cycle cost.

To estimate the vector of utilities ul,u:, u,s Saty has suggested the following pro-
cedure (oee especially 197Th We construct a matrix composed of our mabjetive estimates of
the ratios of the utilities of all possible pairwise comintins so that the elements .q of the
matrix A are our estimates of ui/uj. Thus we know that the diagonal elements are given by

au-,i - 1~, 5. Additionally, the lower off-diagonal elements are determined by the
upper off-diagonal elements: ai - Vi

Saaty (1977) proves that in this case the matrix A has a maximal eigenvalue and a
correspning s-igenvector (the dominant eigenvector) all of whose components are positv.

Saafty proposes, primarily with empirical justification, that this dominant eigenvector be used
as an estimate of the ratio scale.

Suppose that when we form our stimates, the reative utiity of Make 1 to Make 2 is 2,
of Nake Ito Make 3in 1/, of Mab Ito Make 4 in1/and of Make Ito Make 5is 1/.
Then the first row of our Judgment matrix has the fowm

1, 2, 1/9, M~ 1/7
Continuing, -aoe that we have (Wled in the upper off-diagonal of our Judgment matix:

1 2 149 146 1/7
1 149 14 1/7

1 6 4
1 1)

Then, in view of reciprocal symmetry we have
1 2 1/9 1/6 1/7

1/2 1 140 146 1/7
A- 9 9 1 6 4

6 6 146 1 1/7
7 7 1/4 7 1

"ThS mwp* *a io Cwt Jeuim KunWW md Mow Misbd P..mila et ibm U.& Air Famn DblNciussft
PrpmDod. Sj !-- Aalys D~ydou. bs usd Ia bulb. d"01 in 1&d1im Vend DL.



Costinbg with this aexple we comput the dominat elgenvector, w of this matiji and
Not:.07

We -M.23

.1131

Thus, in this case, our estimate of the utility of the first make is .0678 anid of the third
make is AM23. For a detailed trestueit, of this procedure -e Sat, IOM7 Saty and Bennett,
1977.

i~kszxmple, is discussed in BMWm d"ti in Sections V and MX where it is expanded to
illustrate the valie of raitio sosl" in analing hierarchical structures In aPPlication to hiearm-
chien it ia sawmed that the objects at each level ot tha hierarchy dqpseod on the objects of the
next lower level in sone way. The proedi onable the mw to estimate the inftuece each
object insa level has on all the objects or soals in, spans lovels.

For problem whome the eigssveow procedure is vaN theue is another stimation pro-
cedure that is preferabl in several respects.

Where $"ay would estimate the vutt ofth *9th objet with the ith compomont of
the dominanit emgsnvecto, we a**u that a bette estimator ais ven by the vectr
v - v,v2,...v, where

Vi-Z

is the geometric man of the elements in the ith row of A. In the exampl above this yield
the0 followin etiatsa

Geomet&i
Object Ulgmavector Mean Vector

1 .0378 .0409
2 .0M9 .0610
3 .5239 6807
4 .1131 .1132
5 .29m .284

Compared with the dominant aigenvector, the geometric mean veictor

1. Is statistically better,
2. Is easier to calculate;
3. Gives rise to a more meaningMW measure of consistency that has known statistical

properties, allowing tests of hypotheses, confidence interval estimation, etc.;
4. Gives rise to estimates of utility with known statistical properties, allowing tests of

hypotheses, confidence interval estimation, st&;
5. Is supported by statistical literature discribing methods of handling a wealth of vas-

tions of the problem,
6.Is rooted in a mathematical approach to estimation that provides an intuitiv under-

standing of tha problem and a means for mooneing suitability of the method.



UI. CONSISTENT MATRICES AND RATIO SCALES

Camider a met of n activities or objects 81,Z2, ... -,EZ. which contribute to some objec-
tive, Suppose the activities csn be ranked omi a ratio scale (ul,,..., ,u), 14 > 0, so that
ugAsj measurs the dere to which A i mmzimportant then j in achieving the objective.
In partuAer, ih/u1 >1I if J4 is maneimportant than E1 . Let A - [ijJ be the nxn matrix of
pabirwi comPiparMoS Of HUE23 .. , given by

y ij-1,2....,n .(3.1)

U)

Then A lhes the property that

ax - L ij -1u .... n ,(3.2)

and in particular

A square matrix A with poiieentries stiming (3.2) will be called a jsiiginemt maW=
It follows immediately from, (3.1) that

%Gib aa -(3.3)
A matrix with positive entries, satisfying (3.3) is said to be cmebisnL It is eay to we that
every consistent matrix is a judmit maim

L1t A be an urbitrary consistent matrix. Because

*aA - !- for anyjkh

every element of A can be determined from, the first row of A. It follows that A is a matrix of
rank one with exactly one nonzero, elgenvalue. Moreover, it follows fram (3.3) that

A2 -nA .

Thus any column of A is an eigenvector of A, and the single nonzero wlgsnvalue, of A is s
Let w - W1, W2, - - ., w., be any eigenvector comep ;onding to the eigsnvalue vs. For any k.

the kth column of A is an eigsnvector corresponding to the sam eigsnvalue; therefore for each
i and j,

Wi- ca

for some c * 0, and therefore

Wi

7



Thus. w is tl aegi for A.' In fuk it bs cear that these awe inftely ua such scle.,
eac e cmupuuln to a diferent scalar multiple of the kth column of A.

7Ue normalised eligevector with components

W11

zi

is the Particular scall that Saly (1977b) associte with the consistent matrix A.
A ratio sl corresponding to a consistent matrix A can be derived in several ways. Any

column of A bs such a scale. The vector of reciprocals of elements of an arbitrary row of A is
aboa ratiouscale for A. Itm ay setha t etof r osum sidefned by

r- ioLJ

j-1

and the geometric mean vector v defined byv

v- fl415

also provide ratio scales, for A. When these scaes are normalized, they are eqWa to the nor-
malized, elgenvector wcale for a consistent matrix.



IV. SAATY'S NORMIZED KIGENVECTOR SCALE

consder againth atvitis £1 E1, ... ,E,,thaet cnrbute to momobjetive. Suppossa
judge make. pmirwisn comparimons on some scale of the relative importance of each pair of
activities with 1rv iect to the underlying objective. Uf aq represents the relative inpoitme of
Ejoe psta,4l- fadol fF is more important than E1, it is then natural to
insig that the judge make comparisons W, such a way that

~-- for each i,j.
aij

In other words, much a pandwas compuarmn matrix as a judgment matrix. The ideal pairwise
comparison matrix would also, be consisenL For example, if R, is twice as important a E,
and Ej is three times as important as Eh, one would expect Ej to he six times as imiportant as
Ek. However, human judgment is often inconsistent, and it is not likely that a judge making
pairwise comparisons will construct a consistent matrix except in case where the dimension is
small. A aimple example in which pairwise comparisons do not result in a consistent matrix is
that of a tmarment X maywinaainstYamidYmaginstZ7%but Xmay loeto L

The probem we consider Is thi&e Given an inconsistent, judgment matrix A, how cam we
construct a ratio scale that in somme sam beat reflects, the information in the matrix? Beaty
(197'l) Proposes that the appropriate scale is the normalized elgenvectoi rnotaspoudlinig to the
maximal eigenvalue of A.

Beaty argues as follows: If the judgment matrix A is consistent, then the normalized
igenvect correonding to the single nonzero eigenvahie ni does give the underlyin ratio

gsei. theorem of Frobenhim for matrices with positive entries (Franklin, 1I6) garanteme
that any Judgment matrix him a positive eagenvalue L that exceeds all the other eigenvalues in
absolute value. This maximal agenvalue has an associated eugenvecto that is positive in all
its components.

Now an inconsistent judgment matrix can he viewed as having been derivedl fromn a on-
sistent one by perturbation of some or all of the matrix components. Because the sigeavalues
and eigenvectors of a matrix depend continuously on its components, smell perturbations in
the components will result in small changes in the eigenvaluss and sigenvectors. Thus when
the perturbations of the components are small, the maximal eigenvalue is close to as, and the
corresponding normalized sigenvector is close to the normalized eigenvector of the unperturbed
consistent matrix. Therefore, Beaty selects the suitaly normalized eigenvector associated with
the maximall eigenvalue as the ratio scale creonigto the judgmt matrix.

Baaty also proposes an index of consistency for judgamt matrices. He shows that an
ns x ns judgment matrix whose only nonzero eigenvalue is ns must be consistent, and that the
maximal sigenvalue L for an inconsistent judgment matrix is strictly greater than us. Therefore
he uses the normalized difference

-L-n

n-I

as the index of consistency of an ns x ns judgment matrix with maximal elgenvalue L. Notice

that the index is zeofor consistent matrices and positive for inconsistent ones. Baty also

9
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shows that the index increase as perturbatioes of the components away from consistency
inmasis.

Unfortunately, the question of how small the perturbations of matrix components must
be to give rise to a given deviation in the maximal eivenvalue is a delicate one. Sasty (1977b)
describus an empirical investation of this question in which he determines the consistency
indices cor..espodng to randomly generated judgment matrices of different dimensions. How-
ever, because the eigenvector does not fit into any standard statistical framework, there is no
readily availab device against which deviations from consistency can be meaure.

Saaty does show (197b) that the consistency index i reflects the variance in judgmental
errors for an inconsistent matrix in the following sense: Suppose that the pairwise compari-
sons a% in the judgment matrix A actually arise from perturbations of the ratios of components
of some underlying scale UIu 2, ... , U.; i.e.,

a # U '

eu- I + 4.
Sasty shows that for small 4, 2P is an estimate of the variance of the 4.. Starting from this
estimate, Saty (1977b) develops a test of the hypothesis of consistency for a judgment matrix.

The choice of a scale to be used in filling in a pairwise comparison matrix is somewhat
arbitrary. Because people find it diffiult to rank more than about seven objects at a time,
Saaty recommends a subjectie pairwiMe comparison scale consisting of the integers from one
to nine together with their reciprocals. In this scale, a value of I is assigned to pairs of objects
that are equally impoftant The integers 8, 5, 7, and 9 re associated with descriptive words (9
means "absolute importance," 5 means "essential or strong importance), and the integers 2,4,
6, and 8 are used for intermediate values. Reciprocals of integers are used so that the matrix
of pairwise comparisons is a judgment matrix-that is, is reciprocal symmetric.



V. APPLICATIONS OF THE RATIO SCALE

Saty presents numerous applcations requiring the estimation of ratio scasm from pair-
wise comparison information (se the bibliography). He cites emples m economic political
science, and t planning, as well as in personal planning aro such as choosing a
school or a vacation spot.

One of the most interesting and useful applications of the ratio scale is in the study of
hierarchical systems. A hierarchy is a collection of objects grouped according to level.. Objects
at a given level of the hierarchy depend on objects at lower levels. The objects at one level
may be ranked on a ratio scale according to their importance relative to a given object at the
next higher level Thus one may construct a system of ratio scales, one scale for each level
relative to every object in the next level up.

Once such a system of ratio scales has been constructed, it can be used to study interac-
tions among all levels of the hierarchy. For example, in a hierarchy consisting of three levels,
we may determine the ranked importance of objects on the lowest level relative to each object
in the highest level. Suppose for simplicity that the highest level consists of a single object,
that the second level has n objects, and the third has m objects. Let (w,ws,..., w.) be the
ratio scale that reflects the importance of objects in the second level relative to the single
object in the first level. Now the objects in the third (lowest) level may be ranked on a ratio
scale relative to each object on the second level Let

Ulj'U2s , .... UMJ, ,-..

be the ratio scale for the third level relative to the ith object of the asoad level. T en, sccord-
ing to Saaty, the importance of objects in the lowest level relative to the highest level may be
measured by the vector V142, • ., vM, where

Vi - i.uiw ,  i ,2. .
I1

In matrix notation, if w - ww 2 , .. ., w. is the ratio scale for the second level relative to the
single object in the first level, and if

Uli U12 ... Ulm

U2 1 U2 2 ... u2m

U-

Um1 Um2 ... usn

is the matrix whose jth column is the ratio scale for the objects in the third level relative to the
jth object in the second level, then

v - Uw

gives a scale of importance of objects in the third level relative to the first.

I I 1

f !,'F ' . ~ v r , , - : - . - " ,q V
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The ras procedure may be extended to hierarchies with mor than three levels. Thus
knowing onl the measures of importance of objects in each level relative to individual objects
in the aikwent h level, we may deduce their ranked importance relative to objects at all
higher levels. In particular, objects at the lowest level can be ranked acording to their irnpor-
tono reltive to the object (or objects) at the highest leveL

As an oample, consider the problem of selecting an automobile. (Thi example is trated
i mar detdi in Secton IX.) The problemcan be viewed in temsu of the ierarchical stwo-
tur shown In Fig. 1. The highest level of the hierarchy is the final selection of the automobile.
On the second level ae attributes of the automobiles-namely statst, cot, economy, and sie.
The third level consists of the automobile makes to be considered. Th aimobiles, them-
selves are ranked according to each of the attrilmtes, and the attriluts are ranked scording
to their importance relative to the overall objectiv of selecting a car.

Fig. 1-Hierarchy for selecting an automobile

Table 1 gives the ratio scales determined from judgments made by one prospective buyer.
The order of automobile preference for this buyer is then given by the product of the matrix
and the vector in Table I as follows:

.0878 .2703 .3357 .3143 .0685 .2847 H

.0294 .4196 .2929 .4630 .2425 .3703 T

.5239 .0664 .1071 .0696 . .2579 - .1119 M

.1131 .1571 .1600 .1288 .4112 .1397 D

.2968 .0976 .1143 .0343 .0934 C

The final ranking reflects the buyer's perception of the relative status, cost, economy, and ams
of the five automobiles considered as well as his judgment of the relative importance of these
four attibutes in the selection of an automobile. This buyer's first choice should be T and his
last choice C.
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Table 1

RATIO SCALBS

Ratio Bae of Secmd Lml Relative to
Tait Level

Stra3 .09.
Cost

Naccamy .2679
sina A112

Ratio Sel of 7rd Lee Relative to

AAlbW at the Seood Level

Statu Cot -own v sin

H .0878 .2708 .8857 .3143
T .0294 .4196 .2929 .4630
M .239 .0654 .1071 .096
D .1181 .1571 .1500 .128
C .295 .0076 .1148 4W
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VI. THE GEOMETRIC MEAN SCALE

Saaty's examples clearly show that the study of interactions among various levels of a
hierarchy depends heavily upon an assessment of the ranked importance of objects at each
level relative to objects in the level above. The basic building blocks in a hierarchical study are
the ratio scales measuring the relative importance of objects at a given level. One would like
assurance that the estimates of the ratio scales are well grounded in statistical theory and that
they work well empirically. Below we propose a method for constructing a ratio scale based on
pairwise comparisons. That method seems superior to the eigenvector procedure when judged
by the criteria mentioned above.

For n xn judgment matrices A - [a] and C - [c¢1, define

rn(A,C) - 2;2(-2n GaJ - fn cui)f

It is not difficult to verify that n satisfies the triangle inequality and is a metric on the space
of n x n judgment matrices. Theorem 3 will show that for any n x n judgment matrix A, there
is a consistent matrix C that is m-closest to A. Such a consistent matrix is given by

Vi
c# -- ,

Vi

where

vi - H y

that is, vi is the geometric mean of the elements of the ith row of A. We will use the vector v,
suitably normalized, as the estimate of the ratio scale corresponding to A.

*, The following two invariance properties show that m is a suitable choice of metric for the
space of judgment matrices. Their proofs follow from the definition of m.

Theorem 1 (Invariance under Transpose). (i) LetA - [au ] and C - [cij] be nxn judg-

ment matrices. Then AT and CT are also judgment matrices, and

m(AT,Cr) - m(A,C).

(ii) Let A - [J] be an n x n judgment matrix, and suppose that C - [cV ] is the consistent
matrix that is m-closest to A. Then CT is the consistent matrix that is m-closest to AT.

Theorem 2 (Invariance undcr Change of Scale). (i) Let A - [ajj] and C - [cj be n x n
judgment matrices and (w1 , w 2 , ..... w) a ratio scale. Define

A - [a w 1 wJ

C' - [c1Vw1/wJ

Then A', C' are judgment matrices, and

14
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m(A', C') - m(A,C) .

(ii) Let A, C, A', C' be as in (i), and suppose that C is the m-closest consistent matrix to A.
Then C' is the m-closest consistent matrix to A'.

Recall that we seek a procedure for associating ratio scales to judgment matrices in such a
way that the ratio scales capture the subjective information inherent in the corresponding
matrices. Let A be an n x n judgment matrix. Let C - [cij ] be a consistent matrix that is m-
closest to A, and suppose that v - vV 2, ... v- is a ratio scale for C; i.e.,

Vi
CuV - - *Vi

We choose v1, v2 ,.... vn as the estimator of the ratio scale corresponding to A.
Under this association, Theorem I guarantees that the scale 1/,1/6, ,.. . , 1/, is the

estimator of the scale corresponding to AT. The appeal of this invariance arises in a natural
way- Suppose a respondent put his estimate of u/u in the position rji instead of rV. (There
appears to be nothing intrinsically right or wrong about recording the estimates this way.) In
that case, the estimation procedure should return estimates 1/ui instead of ui. With this con-
vention the estimated value of u, should not depend on an artifact of the way the data are
recorded. It follows from Theorem I that the GM procedure has this invariance property. The
EV procedure does not.1

Additionally, Theorem 2 guarantees that our choice of ratio scale is invariant under a
scale change in the judgment matrix. The eigenvector scale also fails this invariance test.

Theorem 3 guarantees that the geometric mean scale gives the m-closest consistent matrix
to any judgment matrix.

Theorem 3. Let A - [ai] be an n xn judgment matrix. Let C - [Cvi] be the consistent
matrix given by

vi
ci - - ,

where vi is the geometric mean of the elements of the ith row of A; i.e.,

n

vi -]ja/", i-1,2, .... n
j-1

Then m (A, C) is the minimal m-distance from A to any n x n consistent matrix.

Proof For any consistent matrix C - [ci], we can write

Wi
cui - -

Wj

where w - wI, w2, .... wn is a ratio scale. Thus we seek a scale that minimizes the expres-
sion

Y 2[fn a, - (n w, - nW)] .
~i-I J>i

'Se Johnon, 1979, for an ecllent dismlon of tha lak of symmetry and its rolation to the choke the
rt and left dombint ein o.



Because the estimating scale need be known only up to a scale factor, we may normalize by
imoigthe side condition

Let

b, - n w5 , i -1,2,...n

Then the problem is to minimize

~~h1 2

i-1 j>1

under the side condition

Because

YJUL-'-Yy ij -1.2,...n

and

Ya - 0

this is equimrlent. to minimizing

i-i j-i

under the side condition
is

Z;bg - 0
i-i

Now S is strictly convex in the differences b, - bp, and therefore strictly convex in the vector
b, so it has a unique minimum at the point where

a-Ofor i-,IA. .. ,n
Obi

Setting these partial derivatives equal to zero, forkh - 1, 2,..

as - 2 ; - bh + b)

- -2(Z;yV - flbh + Zbj) -0
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and therefore, uIDCSe1j - 0

ZYAI nbA
J-1

Thus S in minimized by

n

ifn ,

n

Consequently the rn-istance from A to C is minimized by the vector v given by
X

VA - fla,~j/.
j-1

This completes the proof of Thaeorem 3.
Recall that if the matrix A is consistent, then the normalized geometric meon swale is

equal to the normalized sigenvector scale. The two scales ane always the same, regardless of
consistency, if the dimension is less than or equal to three. To asn this in the ewse as - 3.lot

I a b
A 1 /a 1 Cl

1/b 1/c 1/

Then the geometric mean vector for A,

/(ajb)i/3
-(c/a)

1 "3
(1/b0'/3 )

is an eigsnvector for A corresponding to the elgenvahue

Since L is of the form

its value is no less then 3, the dimesion of A (with equality in the consistent came). Therefore
w is an eigenvector corresponding to the maximal eigenvalue for A. Hence in the case ns - 3,
the normalized geometric mean vector and the normalized eigenvector are the sam This
result does not hold for inconsistent matrices with dimension greater than S.



VI. THE GEOMETRIC MEAN VECTOR AND THE
MAXiMUM LIKELIOOD ESTIMATOR

We have shown that given an arbitrary judgment matrix A, the geometric mean vector
gives rise to the m-closet consistent matrix to A. The problem of representing a judgment
matrix by a ratio scale can also be cast in the framework of the general linear statistical regee-
sion model We will show that under suitable assumptions on the distribution of errors in the
expert's judgment, the geometric mean vector is the maximum likelihood estimator for the
ratio scale corresponding to the judgment matrix.

Let A - [aij] be an n xn judgment matrix. We assume that there is an underlying scale
w1,W2, ... w whose ratios are perturbed (by errors of judgment) to give the elements of A,
namely

wi
- eq+

Wi

and thus

fn In Ri - In wj.+..n en (7.1)

Regarding the distribution of the error term, the context of the Saaty-Vargas (1963)
approach assumes a multiplicative model-if u - ul, us,..., u. is a scale for the entities
(E1}, then the value of E8 relative to Hj is-given by uau,. Accordingly, we have assumed that
errors are multiplicative. Further, this context assumes that if a. estimatei uj/uj, then V/%. is
an equally good estimate of uji/u; hence it is appropriate that the distribution of eg be recipro-
cal symmetric in the sense that

P(a<e-sb)-P(a < e- sb

Just as the normal distribution is a common model for additive errors, the log normal dis-
tribution, for similar reasons, is a common mathematical model for multiplicative errors. Addi.
tionally, it is reciprocal wymmetric. We assume that model hem. In Section VII we evaluate
the performance of the GM estimate under a very different error distribution.

We assume that the errors eg are independent and lognormally distributed with means 0
and variances #2. The substitution

rn 01.2 n w R el,2

00

Y- B- • , H.-

n .Ln W3 J Rfn et-.1,-

gives the gneral lum estion

Is
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Y- X + ,

where the matrix X has component. -1,0, +1 determined by Eq. (7.1). In this framework it

is well known (Scheffe, 1959) that the maximum likelihood estimate for B - [in w,] is the
least-squares estimate given by

and that the estimate has all of the usual desirable properties of least-squares estimates under
the general linear hypothesis (unbiiased, minimum variance, etc.). Taking exponentials% we find
that the maximum likelihood estimate of wi is given by:

A - I a

J-1

(The same estimate is derived above from the metric m on the space of judgment maties)
The procedure outlined above can be modified to solve more general estimation problems.

For example, suppose that instead of a single comparison for each pair of ob E and E1 ,
there are n comparisons, a, k - 1..., where ng may be ero (reffetin missing data)
or greater than one (reflecting multiple comparisons, say by different judges). Tim problem is
then to find a vector w that minimizes the sum of squarm

S- 2;jZA aj&-(nwi-fn wj)]2
i-i j> h-i

This generalization does not yield a simple closed-form solution such as the geometric mean
vector, but in practice S can be mini,ized and w determined using standard least-sqams
regression packages.

Regardless of the values of %, the geometric mean estimation procedure leads to a
natural measure of consistency for judgment matrices that is well grounded in statistical theory
and can be used in hypothesis testing. Let 0' be the residual mean square

2 S
C. f -

where d.f. is the number of independent observations minus the number of linearly indepen-
dent parameters.

Note that if nij - 1, then

n(n - 1) ) -(n - 1)(n - 2)
2 2

Then s2 is an unbiased estimator of 62 (the variance of the perturbations) and hence is a
natural measure of consistency of A.

Recall that if nu - 1, then Scan be viewed as the squared distance fromA to the m-
* closest consistent matrix. Therefore S is zero when A is consistent, is clse to zero when A is

close to consistent, and is far from zero when A is far from consistent. Moreover, because S
depends entirely on ratios, it is invariant under scale changes and transpose in the sense of
Theorems 1 and 2.



VII. EMPIRICAL COMPARISON OF THE TWO METHODS:
A MONTE CARLO STUDY

The geometric mean vector gives an estimate for ratio scales based on pairwise compn-
sons that is eay to calculate, satisfies the theoretical requirements of invariance under scale
change and transpose, and is well rounded in statistical theory. It follows from Section VI
that under certain assumptions on the distribution of the.perturbations, the logarithms of the
geometric mean vector components are the minimum variance unbiased estimators of the loga-
rithms of the underlying ratio scale factors. Thus, if errors have a lognormal distribution, the
GM procedure provides the best estimate of the underlying scale and in particular is preferable
to the EV procedure with respect to the metric given above.

A good procedure should be robust in the sense that it yields good performance when
measured by other relevant metrics and different choices for the distribution of errors.
Although the robustness of the General Linear Model has been widely treated in the literature,
we look here at several very specific comparisons of the performance of the GM and EV pro-
cedures.

In this section we give the results of Monte Carlo trials that compare the EV and the GM
procedures under different choices of error distributions and different choices of metrics.
These studies imply that the EV is a better estimator (in the sense of metrics considered here)
under both choices of distributions of error, The metrics used include measures of rank
preservation, where the EV has been purported to be better than the GM procedure (see.
appendix).

U'

au UJ

Throughout this section theu will be equal to i x R, where the constant R is taken so that
the 14 sum to one.

Let {ej, ij - 1,..., n, j > i} be a collection of positive independent random variables
drawn from a suitable population; we construct a perturbed matrix D with elements

u-.eq for i-1, .... n, i>i

d -1 for i-1,2,...,n, j<i

1 for /-1,2,...,n, j-i
D is a judgment matrix, but because of the perturbations it is typically not consistent. Any
estimate of an underlying ratio scale for D should give rise to a consistent matrix that is in
some sense close to A. Two quite different metrics for closeness' are used in the Monte Carlo

'It has been aestonad in te liteom (Sasty and Vargas, 194, and otbeiz), that Fitns, (1964) ha developed a
metric in with the property that the m-doest conaistent atriz to a aubctive judwnem mat it Is the ocmlstmt
matr conepond to the mazinl oigenve . Typiclly a metric is of interest because it proides an Intuitie
understanding of ti topology of a space-L., it tells you what points an clo to (neighborhoods of) other points,
b hence w W aquime conmye, and to what points. Unfortunately, fhtwe'e compicted metric yise the dI
topology, a vry patolgi eample wherein every point is an open mt, th on w*equnc that conven ar those
whoa terms am all the mme from some point on, and even Saty and Varpes (1964) normsud Him of Am a n ot
exis" It is the ame topology givn by the mtrcthst cas the distance omi two points 1 If the piats am not so
and 0 If thsey ame

20



dut dscribed hem the sum of squae of evzors (MRE)

and thes- of squares of th srore of logerith..;,

where

k the actual normaflusd ratio scale, and

is the estimated ratio scale. In addition we hae looked at several measures of order pneserv-
tiom, where the IV procedure is said to be preferble to the OM procedure.

IThe chokce of populatio haom which the -ultlpIa Il pertutbing random variables ev
are drawn should reflect that in a Judgment matrix the distrition of errors should be recipro-
cel symmetric as mentioned above

We have used two convenient and very dissimilar diuftos satlwin this prrt a log-
normal disrbutdion whose underlying normal distributionm has mean awn, and a distribution
obtained from the ratio of two independent, uniformly distributed (an (cd) where 0 -c c < d)
random vaiables. We consider perkturations eq dawn from populations with distributions of
both of these types.

We computed the sums, of square of error and sums of squares of errors of logarithms
for in~diva trials and then totaled them over the trials for both the geomerk mean vector
and the elgenvecto estimates.

In a comparison of two estimation techniques A and B, it is common to look at the aver-
age or sum of performance meares over some large numaber of trials or, when possile the
expected perfomance with respect to som distriution of errors Becomse most researchers
ae not faced with the problem of routinely analysing thousands of suJective judgment
matrices, thens results may be mieleadiaw Althought A may he preferable to B in the sense of
expeed eros B may be preferab to A 90 percent; of the time, the seeming contradiction,
being explained by B occasionally givin large outliers. When an otutle is suspected, the
researcher may rqjec that method on that trial and look at other mhds Because of these
concerns we have scored. each of the Monte Carlo trials and computed the ftequency with
which the geometric mean outperforms the elgenvector. The perse situation. mentioned
above does not no to occur here. Within experimental error, the geometric mean perform
a well, as, or better than, the elgunvector in the sum of errors and outperforms it in 50 percent
or moeof the traLs
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Ce- ale wulk eum of Siqare Le06 Kim4 ad Logmerma Errors

Table 2 gives the results of the trial that will theoretically favor the geometric mean vec-
tor lognormal errors and the metric given by the sum of the squared errors of logarithms.
The entries in the first column describe the parameters of the Monte Carlo run. The first
nmber ia the dimension of the scale, the second number is the variance of the logarithm of

the error term ejj. The next term is the average "consistency ratio' for the trial--that is, the
difference between the maximal eigmuvalue and the dimension, normalized by the dimension
minus 1. We are uncertain about what the consistency ratio really mean, but the eigenvector
is said to do well when the consistency ratio is lows than .10. Accordingly we have concen-
trated on runs in this realm. The next number give the number of trials. In the cases with
very small log perturbation error we used M00 trials, in the case where the trend seemed clear
We Used 1000 trial.

The eigenvector outperforms the geometric mean in every case, in term of both sum of
errors and the percentage of trials where it was closer to the underlying consistent matrix

Table 2

RATIO SCALES PERTURBED BY LOGNORMAL ERRRS, SUM OF SQUARED
ERRORS OF LOGARITHMS, MONTE CARLO COMPARISON OF GEOMETRIC

MEAN VECTOR AND VIEVCTOR

Perentage of
D~mion Trkia n Which
Varianc, Sum of Squared Siam of Squmvd Geometri Mem Is

(L - n)/(a - 1), Error at LOP, Erro of L0^. Bete in Squared
Number of Trias Geomtr* Mean aaet rmo of LoP

5/.o1/.06S/e00 42A4 42.5 51
5/WM/.1/1 170. 171.7 52
&/.00/.02vm00 377.6 362.1 a
5/.16/.051/1000 135.2 126.4 57
6/5/2f069/1000 210.4 218. 6o
5/.49.165/1000 427.0 44&.6 be
SiLO/MB, 1000 662.2 947.7 61

7/.01/.00/5000 45. 45.3 53
7/.04/7O16/M00 175.9 180A as
7/40e/$8/5000 40U. 4103 55
7/.16/019/100 1509 154. 56
713/ 65/1000 22V. 235L1 so
7/ 4/J~efir 440.6 465.2 a1
7/1.0/45/1000 6152 1101 67

10/.01/.040500 4&4 46.5 53
1O/.W04/sm/50 1864 187.6 as
10WAS6/500 421.9 433.4 OD
l1061VI000 147.7 156.2 a
10/.25.106/1000 34.2 251.6 65
10/AS/.W131000 456. 524.2 so
1OA-O/-516/100 945. 136 76

'tm wwm m b in fPtim ansa Cow#pa meaa mgww The auum w wr ni qi7 ' the
toin4 the usaWW ldt I eIng hb M .smnul

lamm



The prefuience for the sigenvector is weakest when the dimension or the error is =4sH as
would be expected because the methods give the smen answer when the dimension is 3 or lows
or when, the matrix is consistent.

Comparison with Sun of Squared Log Error and Ratio of Uniforma Errors

Table 3 presents the same information for the cae of perubations by ration of uniform
random variables& The variance given is (as above) the variance of the logarithm of the pertur-
bation term. The consistency ratio is deternined empirically and may differ in the third
decimal place. Even with these very different error tems, the geometric mean Vector is prefer-
able in every case and in both measures. Againt, the degree of preference is small when the
methods can be expected to give answers that are very close and becomes much stronger as the
dimension or the variance of errors grows.

Table 3

RATIO SCALER PERTURBED DY RATIOS OF UNIFORM RANDOM VARIABLES,
SUM OF SQUARED ERRORS OF LOGARITHMS, MONTE CARLO COMPARISON

OF GEOMETRIC MEAN VECTOR AND KIGENVZCTOR

Pemnamo
DkAsnuon 1'rih in Whieb
Variaes, SuI of Sqare S&m of SqUuI GOOMtIc MINI Is

(L - Wn- 1), Erro Of LIA*% Rro of Logs, Bette in Squere
Number of Trukl Geomi Mean Eign--I--r Errof Logs

5/.01/.003/5= 4W. 42W 50
5/.04/.012/5=0 167.8 168.1 at
6//.0.01)500 3W5. 385.4 50
51-.i1-0OA00ii 134.4 128.0 51
5/325/.091/1000 214.3 219.8 56
61.491.161/ 1000 425.1 442.2 55
5/1.0/ .380O 857A4 908.7 es

7/.01/004/500 44.3 44.3 51
7/.04/.014/5=0 177.5 177.9 52
7/.09/.058/5000 406.2 410. 53
7/.16/=6/ 1000 145.0 146.0 51
7/J5/JMk/1000 225.8 229.9 55
7/.45/.196/1000 453. 492.6 65
7110/A651/1000 9081 1119 72

1O/.01/.004/5=0 46.2 46.2 52
10/.04/.014/5000 185. 1684 53
10/40/81I50 415.5 420.7 55
10/.161AA/00 146. 151.3 55

mWSO100 20 3.1 61
10/.40/M91/100 460.2 506.9 as
10/1-0/.519/ 1000 953. 1274 82



TWin 4 and 5 consider the aw o squard amro metric Intead of the wra squared error
of leprithu Logmmual asrow ha bee. and in Teble 4 and the ratio of uniform awnor in
Table &. b this metric. whioh an~ eubseantlay brm the Metric wd to jiut the
pometric, men, the eeomtrlc man sl outpwftm the eipewecto In both memuree in both
tall In ewey e eopt or& In the errant m e welpvectior dme better by *1 in the
keot siplgaaft digit Oln the tread of the results we conclude that thin aberrstimans the
rmuat f eqsumatul erro. The pet!er mixtloned above repeats itnMelfTe big di~eteces

COIwhen the dimun . cr the variance of the awns become large.

Table 4
RA7lO $CALM FTRUM BY WGNORMAL ERRORS. SUM OF SQUARE

RUR0R% MON' CARLO COMPARISON Of GEOMENTRIC MAN VECTOR
AND EIOUNvprTOR

Vaima, SuM Of sum Of Which OSm.~b
ML - x)(Ax - U). Squard kior, SquaRed n., Mum kla
Nb ef Tuck Gemnetis Mean Me~grc qum big.,r~

5/.01/Mollele 1.70 1.0 51
S IM/MAIIUIS 6"5 6A4 5a
I.U/USNUS 15.0 15.1 a

5/J5/.16/I00 Us1 &5 a6
5/AMWleIoeo Ues Leo 84
5/LO/.845/1UO 815 1"3 56

7/.0l/0S/500 1.00 1.01 a
7/.04/01/S00 US9 $A9 w3
71/.0//O0 &94 9.11 54
7/.16/.0UI 1000 8.88 8.43 56
7/.5/*006/ 000 431 LO06 57
7/.49/*20/1000 9.77 10.7 58
7/1.0/.445/ 1000 19.4 23.8 61

10b/.0/.00/00 me8 im3 52
10/.041./*8000 2.18 16 8
10/050/8000 4.90 8.04 86
10/.16/.067/1000 1.73 1.8 Be
10/Js/.106/1000 VI7 2.90 61
I1/.9/.228000 5.18 S.88 64
101.0/316/1000 10.5 14.1 71
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Table 5
RATIO SCALES PERTURBED BY RATIO$ OF UNIFORM RANDOM VARIABLES,

SUM OF SQUARED ERROR. MONTE CARLO COMPARISON OF GEOMETRIC
M VECTOR AND KIGENVECTOR

Percentege of
Dimenaion, Triala in
Variance, Sum Of Stun Of Which Geometric

(L - n)/(n - 1), Squawed Error, Squared Error, momn is Loosrnt
Number of Trials Geometric Mean Eigauvector Squares Better

5/.01/.003/5m0 1.71 1.71 50
5/.04/.012/5000 6.73 6.75 51
5/.09/.027/5W0 15.7 15.6 50
5/.16/.050/1000 5.38 5.39 51
5/.25/.081/1000 &.40 6.55 53
5/.49/.161/1000 16.1 16.6 55
5/1.0/.300/ 1000 31.2 36.1 62

7/.01/.004/5000 .996 .996 50
7/.04/.014/5000 3.96 3.96 50
7/.09/.033/5=0 9.07 9.13 53
7/.16/.059/1000 3.13 3.14 51
7/.25/.094/1000 4.92 4.98 52
7/.49/.195/1000 9.80 10.6 61
7/1.0/.451/1000 19.1 24.0 70

10/.01/.004/5000 .531 .531 50
1O/.04/.016/5000 2.14 2.15 51
10/.0B/.037/5000 4.76 4.79 53
10/.16/.066/1000 1.73 1.75 52
10/.25/.106/1000 2.67 2.75 56
10/.49/.219/1000 5.29 5.71 61
10/1.0/.519/1000 10.7 14.4 74



IX. EXAMPLE

In this section we discuss the use of the eigenvector and the geometric mean vector in a
specific subjective judgment situation. Estimates of underlying utility vectors and consistency
values derived from the two methods are compared.

Consider the automobile selection problem introduced in Sections I and V. The
hierarchical structure for this problem was given above in Fi 1.

Subjective judgment data for this example were obtained from one prospective buyer.
The buyer made pairwise comparisons reflecting his perceptions of the relative importance of
the attributes of status, cost, economy, and size in selecting an automobile. Judgments were
made based on the subjective judgment scale developed by Saaty (197b). The buyer made
comparisons in such a way that the resulting pairwise oomparison matrix would be reciprocal
symmetric (i.e., a judgment matrix). The resulting judgment matrix A is

Status Cost Economy Size

Status 1 1/5 1/5 1/2
Cost 5 1 1 1A -A
Economy 5 1 1 1/2
Size 2 3 2 1

Next, we constructed judgment matrices from the buyer's pairwm comparisons of the five

types of automobiles relative to each of the two aributes of status and size:

Subjewti Compatison Relative to Status
H T U D C

H 1 2 1/9 1/6 1/7
T 1/2 1 1/9 1/6 1/7
M 9 9 1 6 4 -B
D 6 6 1/6 1 1/7
C 7 7 1/4 7 1

Subetive Comparison Relative to Size
H T M D C

H i 1/2 7 3 8
T 2 1 8 4 9
M 1/7 1/8 1 1/3 3 -C

D 1/3 1/4 3 1 4
C 1/8 1/9 1/3 1/4 1

We calculated the eilgenvector and the geometric mean vector separately for each of the
three subjctive judgment matrices above. Resulting scale estimates for the two techniques are
given in Table 6.
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Notice that the cales determined by the two methods are very close in value. This is a
expected from theoretical considerations, because the two methods give the mime results for
consistent matrices and should agree closely for nearly consistent ones.

The results in Table 6 indicate that the prospective buyer considers automobile size to be
considerably more important than status, cost, or economy. He ranks T as having the best se
of any of the cars under consideration.

Because exact values were available for cost and economy of the five automobile types, it
was not necessary to compute scales for them from pairwise comparisons. The normalized
scale values for the automobiles relative to these two attributes were determined to be:

Cast Rating. Fconomy Ratings

H .2703 .3357
T .4196 .2929
M .0564 .1071
D .1571 .1500
C .0976 .1143

Table 6

COMPARISON OF SCALD ESTIMAT S FOR THE AUTOMOBILE EAMPLE

Normalized
Goometric Consistency Nomaliud Consistency

Matrix mean *2 ig.ectwr

Matrix A
Status 1 1/5 1/5 1/2 .0612 .5660 .05 .1513
Cost I 1 1/3 .2453 .2425
Economy 1 1/2 .2715 .2579
Sim 1 .4019 .4112

Matrix B
Status

H 1 2 1/9 1/6 1/7 .0409 .W650 .0378 .1770
T 1 1/9 1/6 1/7 .0310 .0294
M 1 6 4 .507 .5239
D 1 1/7 .1132 .1131
C 1 .2842 .2958

Matrix C
Size

H 1 1/2 7 3 9 .3152 .1150 .3143 .0417
T 1 8 4 9 .4032 .4630
M 1 1/3 3 .0581 .0696
D 1 4 .1299 .1288
C 1 .0336 .0343
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From each method, we now have scale estimates for the five automobile types relative to
each of the four automobile attributes, as well as a scale of importance of the four attributes.
Scale estimates for the five cars relative to each attribute are used as columns of a 5 x 4
matrix. This matrix is multiplied by the 4-dimensional vector of importance of attributes.
The resulting 5-dimensional vector reflects the prospective buyer's ranking of the five automo-
biles. The calculations for both methods are carried out in Table 7.

Table 7

DETERMINATION OF RANKINGS OF FIVE AUTOMOBILES

Make Criterion Final

of Car Statue Cost Economy Sins Scale Scale

Geometric Mean Vector Method
%I

T .0310 .196 .2M .4632 5 .3711

M .M30 .0554 .1071 .0581 x .215 - .10911
D .1I132 .1571 IM.1 29 400 .10

C .2842 .0976 .1143 .0336 .0916

Bipunvector Method

H .0378 .2703 .3357 .3 0.47

T .0294 .4196 .292 .43 .2425 (.3703M .5239 .054 .1071 x .2579 - .1120
.1131 .1571 .150 .1288 .41121 .1 3
.2958 .0976 .1143 .0343 .0934)



Appendix

COMPARISON OF RANK PRESERVATION ABILITIES

We believe the issue of rank preservation is a red herring The EV procedure has been
recommended for analyzing hierarchical structures and quantifying judgments. A procedure
designed to do well in a cardinal estimation problem ought not be judged on the basis of its
capabilities in ordinal or rank estimation problems. If the researcher has an ordinal estimation
problem it would be better and easier to ask the respondent to rank the entities in order of
preference.

Further, the oft-mentioned ability of the EV to do well in this context seems to be based
(Saaty and Vargas, 1984) on the following argument:

There is a natural way to derive the rank order of a set of alternatives from a pairwise com-
parison matrix A. The rank order of each alternative is the relative proportion of its domi-
nance over the other alternatives. This is obtained by adding the elements in each row in A
and dividing by the total over all rows. (Emphasis added)

Everything that has been written in the present context about the analysis of subjective
judgment matrices has dealt with multiplicative problems. The estimates are of ratios, not of
sums or differences. In this context determining rank order by adding elements seems unnatu-
ral. The natural ranking inherent in a subjective judgment matrix for a multiplicative problem
is that obtained by the product of the row entries, not the sum. The GM procedure gives pre-
cisely that ranking, and it outperforms the EV procedure in this measure also.

Although we believed the issue was not worth treating, referees objected to the omission
of rank preservation properties in the comparisons of the two methods, hence its inclusion
here. In Tables A.1 and A.2 we have measured the ability of the GM and EV procedures to
preserve rank. The scenarios are as above: Table A.1 uses lognormal errors and Table A.2
ratios of uniform random variables. Recall that the underlying scales u are proportional to i
and scaled so that they sum to one.

Rank is typically expressed as a vector; we know of no single overwhelmingly natural
scalar measure of rank error. We have used two very different measures, both simple, but
lacking simple descriptions. To fix ideas, let us assume that the dimension of the scale is 5.
We represent the ranking in the underlying scale by 1,2,3,4,5. If we estimate this scale by a
vector v that satisfies

V1 <V2 < V5 < V 3 < V 4

then we represent the ranking of v by 1,2,5,3,4. If v preserves the ranking inherent in u, its
ranking will be the same as that of u.

We have called the measures of rank preservation used below the sum of rank reversals
and the sum of weighted rank reversals. The sum of rank reversals is just the number of times
we count a reversal in ordering as we go from left to right ("1" in the above example, because
5 > 3). The weighted rank reversal measures the degree of displacement from the rank of the
underlying scale. In the above example it is given by

(1 - 1)2 + (2 - 2)2 + (3 - 5)2 + (4 - 3)2+ (5-4)2-6.
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Table A.1
RATIO SCALES PERTURBED) BY LOGNORMAL ERRORS, RANK PRESERVATION

ERROR, MONTE CARLO COMPARISON OF GEOMETRC MEAN VECTOR
AND HIGENVECTOR

Dimension, Sum of Sum of Sum of Weighted
Variance, Sum of Rank Rank Reversal Weighted Rank Rank Reversal

(L - )/n- 1), Reversal Errors, Errors, Reversal Errors, Errors,
Number of Trials Geometric Mean Eigenvector Geometric Mean Higenvector

5/.01/.003/5000 2 2 4 4
5/.04/.012/500 258 260 616 520
5/.09/.028/MJ0 963 971 1964 1980
5/.16/.051/1000 210 '209 426 422
5/.25/.080/1000 629 638 1160 1190
5/.49/.165/1000 825 847 2002 2060
5/1.0/.349/1000 1081 1141 2874 3036

7/.01/.005/5600 14 14 28 28
7/.04/.015/5000 683 694 1372 1394
7/.09/.033/5000 2084 2143 4384 4510
7/.26/.059/1000 712 739 1588 1650
7/.25/.095/1000 911 962 2178 2296
7/.49/.203/1000 1332 1375 3648 3694
7/1.0/.445/1000 1775 1826 5322 5642

10/.01/.040/ 5000 74 .77 148 154
10/.04/.016/5000 1809 1824 3684 3730
1O/.09/.036/500 4350 4446 9590 982
10/.16/.067/1000 1317 1367 3174 333
10/.25/.108/1000 1659 1710 4334 4534
10/.49/.223/1000 2189 2282 6460 6am

*10/1.0/.516/10M 2667 2852 922 10266

In Tables A.1 and A.2 we have given the sum of rank reversal errors and the sum of
* weighted rank reversal errors. (In the tables in this report we started each new Monte Carlo

process with a new random number seed to avoid repeatedly using a sequne of rndom,
numbers that may favor one procedure or the other.)

In Table A.1, with lognormal perturbations, in only two out of 42 compimisons does the
eigenvector outperform the geometric mean. In four other comparisons the methods tied. In

* the remaining 36 pairs, the GM procedure outperforms the EV procedure, and the differences
in performance become more pronounced as the dimension and underlying variance increase.

In Table A.2, where the perturbations are ratios of uniform random variables, the eigen-
vector also does poorly, although a little better than above. Again, the relative performance of
the geometric mean improves as the dimension and the variance of the errors increase. Even
in thes trials, which are dominated by the low variance and consistency ratios that are said to
favor the eigenvector, the few occasions where the eigenvector outperform the geometric mean
seem to be the result of random aberrations, not of any inherent qualities that are pertinent to
estimating ratio scIales.

.~ .~ ..- .
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Table A.2
RATIO SCALBS PUTURDED BY RATIOS OF UNIFORM RANDOM VARIABLES,

RANK PRESEVATION ERROR, MONTE CARLO COMPARISON OF
GEOME1TRIC MEAN VECTOR AND EIGZNVECTOR

Dimension, Sum of umk Of Suan of Weighted
vaian"., Sum of Rank Rank Revered Weighted Rank Rank Reversal

(L - )n - 1), Reveumal Eron, Errol%, ReversalEnnm Errors,El=
Number of Trials Geometric Mm Kipuvecto Geometric Mean Higenvector

5/.O1/.003/W00 0 0 0 0
5/.04/.012/5000 252 248 504 496
5/.0Sf/.027/5000 1069 1074 2164 2172
5/.16/.050/1000 343 340 724 716
5/.25/.081/1000 533 539 11" 1176
5/.49/.161/1000 779 624 1890 2002
5/1.0/.36/1000 1077 1125 2886 3094

7/.01/.004/5M0 4 4 8 a
7/.Od$/.Old/500 6w5 702 1374 1410
7/.0Sf .033/5000 2154 2176 4530 4576
7/.16/.059/1000 715 6M 1558 1548
7/M2/4094/1000 963 938 228 2286
7/.49/.196/1000 1322 1362 3532 3706
7/1.0/.451/1000 1692 1794 5116 5756

10/.01/.004/M00 72 70 144 140
10/.04/.016/5000 1760 1756 3594 356
10.00.037/5=0 4168 4228 e2m 964
10/.16/.066/1000 129 128 3078 3112
10/.25/.106/1000 1632 1661 4264 4400
10/.49/.219/1000 2161 2212 6434 6644
10/1.0/.519/ 1000 2714 2917 9406 10602
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