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NOTATION
Turbulence modeling damping factor

Streamwise and radial skin friction coefficients, respectively

' w

Nondimensional velocities, f' = ﬁ— and g' =
e ref

Shape factor

Metric coefficients for the £, n, and { coordinates,
respectively

Geodesic curvatures of the curves n = constant and
£ = constant, see Eq. 4

Geometric parameters, see Eq. 5

Mixing length approximation

Solution coefficient terms, see Eqs. 16 and 17

Static pressure in the fluid

Reynolds number at 0.7-radius, see Eq. 27
Velocity components in the £, 7, and n directions, respectively

Reynolds stresses |

Reference velocity

Cartesian coordinate system where x is the axis of rotation
(positive displacement measured aft), z is upward positive, }
and y forms a right-handed orthogonal system, see Figure 1 !

Fraction of chord, measured from leading edge
Nondimensional radius, fraction of tip radius

Angle between the £ and n surface coordinates
Limiting streamline angle

Boundary layer thickness




[
m

nla 712: n3

b, ¢

2

Displacement thickness

Eddy viscosity factor in turbulence model, see Eq. 21

Directional cosines between the systems (x, y, 2)
and (£, n, Z)

Streamwise momentum thickness

Fluid kinematic viscosity

Blade surface coordinate system, £ is the nondimensional fraction
of chord measured from the leading edge, n is the nondimensional
radius as a fraction of tip radius, and 7 is the outward normal
to the blade surface, see Figure 1

Fluid density

Transformed boundary layer coordinates, see Eq. 10
Shear stress in the £ and n directions, respectively

Two-component vector potential, see Eq. 12

Constant angular velocity of the propeller

vi




A DIFFERENTIAL PREDICTION METHOD FOR THREE-DIMENSIONAIL
LAMINAR AND TURBULENT BOUNDARY LAYERS OF
ROTATING PROPELLER BLADES

Nancy C. Groves and Ming S. Chang

David Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20084-5000

ABSTRACT

A general formulation is given for
the three-dimensional boundary-layer flow on a
rotating propeller blade. The basic equations
are presented in a nonorthogonal coordinate
system which rotates with the blade. Finite
difference methods are used to develop a com-
puter code for solving the laminar and tur-
bulent boundary-layer equations. The Reynolds
stress tensor is modeled by an algebraic eddy-
viscosity formulation. In general, the
equations are solved numerically using the
standard Keller box method. However, regions
of flow reversal across the boundary-layer are
computed by the characteristic box method. A
companion geometry computer code, developed to
model propeller geometry characteristics, and
an existing inviscid flow code for computing
propeller blade pressures are combined with the
boundary-layer computer code to form an effi-
cient computation scnheme. For a given
potential-flow solution, a typical
boundary-layer soluytion of 690 grid points
requires 64 seconds CPU time on a CYBER 176
computer.

Computed results are presented for several
d>trde geowetries. The rotating segment solu-
tion compdres well with analytical and experi-
mental data. Predictions for a model propeller
also compare favorably with experimental
data and illustrate that two-dimensional theory
may provide adequate predictions for applica-
tionc where crossfiow effects are not impor-
tant. eometry effects of warp and skew arp
<hown to be small for the houndary-layer pre-
1retrons an three model propellers,

L._INTRODUCTLON
The ability to predict local flow proper-
ties on propeller blades will aid in the hasic
understanding of propulsor performance and
cavitation. Knowledge of propeller viscous
phenomena at model scale, such as laminar and
turbulent separation, prior to testing, will
Tead to selection of test canditions
appropriate to simulate prototype performance.
etermination of the flow-field velocity
distributions near the tip will improve the

)

basic understanding of propeller tip vortex
cavitation and provide information for defining
the position of the shed vortex sheet in the
inviscid propeller model.

This paper describes a general method fcr
calculating the three-dimensional boundary
layer around propeller blades. The solution is
divided into three calculations (1) potential
flow, (2) geometric parameters, and (3, boun-
dary layer flow. The potential flow computer
code adopted is the Brockett (1981) code for
use at design conditions. The geometry and
boundary layer codes are modifications of the
codes developed by Cebeci, et al. (1978) for
calculating three-dimensional laminar and tur-
bulent boundary layers on ship hulls. The
significant modifications to the Cebeci, et al.
(1978) formulation, for propeller blade
boundary-layer applications, include the addi-
tion of the Coriolis and centrifugal forces due
to rotation, the use of a coordinate system
appropriately describing propeller surfaces,
and the specification of appropriate initial
conditions.

The present houndary-layer formulation
predicts both laminar and turbulent flow using
the differential solution method. The earlier
calculation methods of hoth Groves (1981), for
propeller blades, and Arakawa, et al. [1983),
for axial flow pump blades, compute only tur-
bulent flow using a momentum inteqgral solution
method. There is much discussion regarding the
merits of each of the solution methods. The
momentum integral method requires considerably
less computation time, The differential
method is generally considered to give a more
accurate and complete prediction of the flow
characteristics. However, the major advantage
of the present solution procedure is its capa-
bility of predicting laminar flow. This region
is particularly important for model propeller
applications where a large region of the flow
over the blades is laminar. Additionally,
laminar flow predictions are necessary for
instability.

A similar differential calculation scheme
has heen developed by [toh, et al. (1984) for
predicting the three-dimensional laminar and
turbulent boundary-layer fiow on the rotating
hiades of axial flow pumps. The present calcu-




Yation procedure varies from their method in
two major respects. First, Itoh, et al. (1984)
use an orthogonal coordinate system to repre-
sent an axial flow pump blade. While this
system simplifies the governing flow equations,
1t encounters difficulties in grid generation
for blades which deviate from a fan shape. A
more general surface coordinate system defined
in terms of xc, fraction of chord measured from
1. 2 leading edge, and xp, fraction of tip
radius, is chosen for the present study. The
use of this coordinate system alieviates any
problems associated with the calculation grid.
The second variation from the work of Itoh, et
al. (1984) is the specification of the initial
conditions at the leading edge and the hub.
Itoh, et al. (1984) applied the usual leading
edge and hub conditions for three-dimensional
boundaries to compute the growth for a rotating
blade. Their computation diverged. In order
to obtain meaningful results, they applied an
averaging process to both the leading edge and
the hub and developed an iterative procedure to
obtain these average values within a certain
accuracy. In the present study, the leading
edge and hub conditions are handled dif-
ferently. The methods proposed in this paper
d6 not require an iterative procedure and the
solution converges quickly for all grid points.
The details of the procedures are discussed in
Section 5.

The boundary-layer equations are solved
numerically using the Keller (1970) two-point
finite-difference method and the characteristic
box procedure (see Bradshaw, et al. {(1981)) for
computing regions of reverse crossflow. A tur-
bulence model is required for closure of the
turbulent boundary-layer equations. The zero-
order eddy-viscosity model with gradual tran-
sition, given by Cebeci and Smith (1374), is
adopted here.

Even though the present analysis allows
computation of the three-dimensional laminar
and turbulent boundary-layer on the complex pro-
peller blade geometry, two desirable flow pre-
dictions are beyond the scope of this study.
These are the complex hub interaction and the
flow transition calculation. No hub interac-
tion is considered and the location of tran-
sition is an input parameter to the computer
code determined by the user. It should be
noted that the restriction of computing at
design conditions only is a limitation of the
Brockett (1981) formulation and not of the
boundary-layer formulation. The boundary layer
may be computed with any potential flow and
1ssoriated blade offsets. Finally, there is no
distinction in the boundary-layer solution pro-
cedure between the pressure and suction blade
surfaces. The differences between the surfaces
are accounted for in the potential flow and
geometry calculations.

Results of the propeller blade boundary-
layer calculation are presented for several
geometries. The first blade studied is the
Targe chordlength segment investigated experi-
mentally and analytically by Lakshminarayana,
et al. (1972)., The laminar predictions for the
blade are in agreement with the computed
results of both Ranks and Gadd (1962) for a

rotating sector and Morris (1981) for a
rotating helical blade. Overall, the turbulent
predictions agree well with both the experimen-
tal data of Lakshminarayana, et al. (1972} and
the analytical values of Cham and Head (1969)
for the limiting case of a rotating disk.
Discrepancies occur in the limiting streamline
angle B which is consistently over-predicted by
the present method. The second blade evaluated
is a model propeller designed at DTNSRDC by
Denny (1968) and tested in the DTNSRDC 12-in.
water tunnel by Jessup, et al. (1984}. Both
two- and three-dimensional calculations were
made for this blade. The results show that
two-dimensional theory can adequately predict
the measured data as well as three-dimensional
theory with the exception of the crossflow.

The final geometries investigated are an
unwarped, a warped, and a skewed model propeller,
examined earlier by Groves (1981), with no
experimental boundary-layer data available.

The current predictions show little variation
in the predicted local skin friction coef-
ficient for the three blades.

2. COORDINATE_ SYSTEMs

Figure 1 depicts a typical propelier blade
and huh configuration. In practice, there are
N symmetrically- spaced identical blades
attached to the hub, but, for clarity, only one
is shown 1n Figure 1. The propeller rotates
with the constant angular velocity i: about the
x-axis. The Cartesian x, y, z, coordinate
system is fixed in space and does not rotate
with the blade. In this system, x is the axis
of rotation, with positive displacement
measured aft; z is taken as upward positive;
and y forms a right-handed orthogonal system as
shown in Figure 1. In the present calcy'ition
scheme, the blade geometry and potential velo-
cities are initially specified in the Cartesian
system by the Brockett (1981) lifting surface
computer code.
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Fig. 1 - Schematic of Blade Coordinate Systems




Although the Cartesian coordinate system
could be used for the boundary-layer solution
procedure, a system fixed to the blade surface
and rotating with the blade fs chosen for its
convenient representation of the complex
geometry. The surface coordinates £, n, and ¢
are defined with £ equal to the nondimensional
fraction of chord measured from the leading
edge; n equal to the nondimensional radius as a
fraction of the tip radius; and ¢ equal to the
outward normal to the blade surface. These
coordinates are also illustrated in Figure 1,
where a is shown as the angle between the £ and
n surface coordinates. The velocity components
u, v, and w are defined in the £, ¢, and n
directions, respectively.

The £ and n coordinates, the Cartesian
offsets on the blade reference surface (i.e.,
no blade thickness), and the velocity com-
ponents in a helical reference frame are stan-
dard quantities produced by the Brockett
11fting surface (1981) computer code. In pre-
paration for its use in the present computation
system, the Brockett code (1981) has been
modified to calculate the Cartesian offsets on
the actual blade surfaces and the velocities in
the Cartesian reference frame. The surface
offsets are needed to define certain derivative
quantities f.e., the metric coefficients,
geodesic curvatures, etc., used in the
boundary-layer solution. Metric coefficients,
denoted by hy, hy, and h3 for the ¢, n, and ¢
coordinates, respectively, correlate surface
distances between the Cartesian and surface
coordinate systems. As {s typical practice in
boundary-layer formulations, the boundary layer
thickness is assumed to be small and the
coordinate 1s assumed to measure distance along
the surface normal. Therefore, the metric hj
is set to unity with no loss of generality.

The remaining metric coefficients are defined
as

¢ .l 21
L

n
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3. BOUNDARY LAYER EGUATIONS

The steady, incompressible boundary

layer equations for rotatiunal flow in a non-
orthogonal coordinate system are given by
Yamazaki (1981). The equations are identical
to those presented by Cebeci, et al. (1978},
with the addition of two terms in the momentu=
equations representing the centrifugal and
Coriolis forces. The governing equations,

using the surface coordinates &, -, and [  are:

Continuity:

3 {uhzsina) | 3 (whysina)

14 an

. g_(vhlhzs‘lnu) =0 )
- - . T

£ -Momentum:
-“ﬁ-—g% + ;7% + "4;-‘;- - K1u2cota + K2w2csca

+K1zuw + 2a{wrucosalnycsca + 02(npncotacsca) (2)

-¢sca 2 (.E) , Sotacsca 3 (R) , 2
hL 3E\p h2 an\p/ 3t

n-Momentum:
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+ K21uw - ZQ(U*HCOSa)nlCSCu -0 nzncsc a (3)

. cscla 3.(2) , Sotacsca 2 2>+ 319
T h2  an\p m SE(p kI

In these equations, u, v, and w represent
the velocity components in the £, ¢, and n
directions, respectively, a 1s the angle between
the surface coordinates ¢ and n, and 2 is the
constant angular velocity. The metric coef-
ficients hy and hy were defined in the previous
section. The quantities Ky and Ky are the
geodesic curvatures of the curves n=constant
and f=constant, respectively, and are defined
by

1 "a(hgc05m) an (4a)
Kl Thh sina | 3%, T e
12 )
1 “alhycosa) ahz_ (4v)
K2 > h sina an e
12 -

The parameters Kip and Kpy are defined in terms
of the geometry as

EPY (5a)
+ CO0Sa Kz + " oo
. Lo
217 Sina T R0 h, o
1 s (5b)

The remaining parameters in the houndary layer
equations are:

5 = static pressure in the fluid

oo fluid density

+ = shear stress in the :-direction,
- A

N cT - u'v’




T, * shear stress in the n-direction, (6)

1 _" —_—
- vy ey
2 v TS vw

v = kinematic viscosity of the fluid

u'v’, v'w” = Reynolds stresses

1 = constant angular velocity of propeller
n,n_, n_ = directional cosines between the
1727 3 gystems (x, y, 2) and (£, n, ¢)

The boundary layer thickness 1s denoted by &
and the boundary layer is defined in the region
0<g<8. The boundary conditions are:

¢=0, u=vaw=0
t38, u=uple,n), wewelg,n) (7}

The pressure gradients are determined from the
momentum equations at the edge of the boundary
layer. The edge equations are

£~-momentum:;
Ue ] Ue we 3Ue

- Kluezcotu + szezcsm

h 3 h 2
p % 2 "

+ Kj2UgWa + Zn(wemecow)nlcsc:x (8)
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h AL \p
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n-momentum:

Up 3We W IWe
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Transformed variables are defined as
£
e e
E=6, n=n, dg-= v—sl' de, sy = hldg
o (10)

A two component vector potential is introduced
with

uhpsing = g¥ (11)
: _ 3¢
vhlsmx Yy
. 3 ]
vhlhzsina = -<3€4 5;)

where y and ¢ are defined as

v = (vslue)lfl h,stna flc,n,0) (12)

ref

¢ = (vslue)ld h1sina g{g,n,o0)

and uyef 1s a reference velocity.

The potential veloc!:ies u, v, and w are
rewritten using the vector potentials ¢ and ¢,
the Reynolds stresses are rewritten in terms of
the eddy viscosity factor ey, and the boundary-
layer edge conditions are applied to eliminate
the pressure terms, The transformed ¢- and n-
equations are

c-momentum: (bf-“)*+ mff - - mp(€-)2 - mgf-g”
+mgfcg - mg(g)2 + myy - m3fs - magT+ ms

_ g Lof Laf ,,__9_\
-mm\f Y3 - f-~ ) m7 g an an (13)

n-momentum:
{bg* <)~ + mfg-"~ mgf’g” - my(g-)2 + mgaq”"
-mg(£*)2 + mp + mgf s m3gT- my

=M5 f‘—g- 9° +m, g "—-g (18)

In these equations, primes denote differen-
tiation with respect to ¢ and
em

24 g My = m
f ver 3 uref’ b 13 (%)

The coefficient terms i through my, identical
to those given by Cebeci, et al. (1978), are
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Fig. 16 - Variation of Streamwise Skin Friction Coefficient
on Three Model Propellers

chord value xc = 0.18. The design advance
coefficient Jy of all three models is 0,889 and
the flow copditions are v = 1.191 x 10-6 m2/s
(1.28 x 10-5 ft?/sec), ¥=16.9 m/s (55.3
ft/sec), and 2 = 391.5 rad/sec.

Figure 16 shows the predicted skin fric-
tion coefficient on the suction surface for the
three model propellers at the fraction of
radius value xp = 0.91. This location
corresponds to streamline 14 used for com-
parisons in the earlier work of Groves (1981)
where the turbulent boundary layer is computed
using momentum integral methods. The present
results predict only a siight increase in the
skin friction coefficient for the warped and
skewed blades. This contradicts the results
obtained by the integral method of Groves
(1981) where the skin friction coefficient was
predicted to fncrease by nearly 30 percent for
the zero warp blade. An investigation into the
momentum inteqral coding has identified an
errgr in the specification of certain geometry
parameters for these blades and thus leads to
the different and erroneous earlier conclusion
of Lroves.

B. CONCLUSTONS

This paper presents analysis and results
for computing three-dimensional laminar and
turbulent boundary layers on the surface of a
propeller blade using the differential method.
The solution procedure 1s a modification of the
Cebeci, et al. (1978) scheme for boundary-layer
calculations on three-dimensional ship hulls.
The major changes to the scheme result from the
propeller hlade rotation, the complex propeller

14

geometry, and the specification of initial con-
ditions in order to begin the calculation pro-
cedure. Typical boundary layer computations
use a grid of 30 chordwise and 23 radial points
thereby covering the entire blade surfaze. For
this grid size, 64 seconds CPU time on a CYBER
176 computer are required for a complete
calculation.

Overall, the predicted boundary-layer
parameters are shown to give reasonable
agreement with experimental data for both
simple (rotating disk and rotating helical
segment) bodies and a model propeller. The
largest discrepancies between the current pre-
dictions and experimental data and previous
theories occur for the limiting streamline
angle g which is overpredicted in the turbulent
region. For the rotating segment, this para-
meter is shown to be correctly computed by the
differential method in the laminar region. For
turbulent flows, momentum integral methods,
which include a modified entrainment function
to account for rotational effects, have been
shown (see Banks and Gadd (1962) and Groves
(1981)) to improve the prediction of tang. The
viscosity coefficient in the present differen-
tial method has not been modified. The value
of tang may be reduced if the eddy viscosity
were modeled more precisely.

The analysis of model Propeller 4119 has
provided insight into the boundary-layer calcu-
lation on propeller blades. First, the large
extent of laminar flow on the model hlade
necessitates the capability of a laminar calcu-
lation procedure and an instability prediction
method to determine the transition location.
Figures 9 through 13 show that two-dimensional
theory can be used for the prediction of
boundary-layer parameters such as chordwise
velocity profiles, shape factor, and chordwise
skin friction. However, applications involving
crossflow, such as the instability calculation
or tip vortex investigations, require the ful}
three-dimensional computation. Figures 9 and
14 show the dangers of using a partially
rotating three-dimensional calculation.
Incorrect values of the crossflow velocities
and tang are predicted when rotation is
included in the potential-flow solution and not
included in the boundary-layer solution.

Calculations of the three-dimensiona!
boundary-layer characteristics of three model
propellers of varying geometry indicate only
slight differences in the skin friction
parameters, see Figure 16. This result,
contrary to the earlier momentum integral
result of Groves (1981), led to the discovery
of a geometry error in the earlier computer
code.

The results in this paper are encouraging.
Although computed with the present preliminary
version of the code, comparisons with measured
data are quite good. Further code modifica-
tions are anticipated to allow the calculation
to proceed past the location of turbulent
separation and to improve the eddy viscosity
model. Additional comparisons will be made
with the experimental data of Itoh, et a).
(1984) for a rotating axial flow pump blade.
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meter is positive for flow with rotation and
negative for flow with no rotation, as pre-
dicted for the radial velocity distribution.

To summarize, the boundary layer charac-
teristics of a propeller blade can be computed
with reasonahle accuracy. Two dimensional
theory gives excellent predictions of the flow
for applications where crossflow is not impor-
tant. Applications where the crossflow is
important, including model propeller studies
where large regions of laminar flow exfst and
in the study of instability, require use of the
full three-dimensinna) equations. The use of
three-dimensional theory without including
rotation in the houndary-layer solution should
be avoided.

13

7.3 Skewed and Warped Propellers

In this section, results are presented for
the computed boundary-layer characteristics of
three analytically-defined propeller blades.
These three 0.30 m {1 ft) diameter mode) pro-
pellers were chosen to investigate the effects
of varying geometry on boundary-layer flow.

The propellers, denoted as Model 4381, an
unwarped blade; Model 4498, a 72-degree warped
blade; and Model 4383, a 72-degree skewed
blade, are depicted in Figure 15. The complete
geometry of these mode! propellers is given in
Groves (1981) and is not repeated here.

Since no experimental data exist for
these particular models, the transition loca-
tion must be estimated. inpublished experimen-
tal results at OTNSRDC on a similar geometry
indicate that the flow over the blades is fully
turbu’lgnz at a 0.7-radius Reynolds number of
4 x 10°. This Reynolds number corresponds to
tripping the boundary layer at the fraction of

)

5

(a) Madel 4381 with no warp

%

tb} Model 4498 with 72 degrer warp

S
N

{c) Model 4387 with 72 degree skew

Fig. 15 - Geometry of Three Mode! Propellers



and the chordwise velocity u. In addition, the
momentum thickness 811 and skin friction coef-
ficient C¢ are compared with two-dimensional
predictions from a computer codé developed by
Cebect (1978). The radial velocity w and the
limiting streamline angle 8 are the two parame-
ters shown which are unique to three-
dimensional flow. No measurement has been made
of these quantities as yet. A second calcula-
tion was made using the present method. This
calculation is performed with the rotational
effects included in the potential-flow veloci-
ties but not in the boundary-layer computation.
These results, which approximate the rotating
flow above a solid ground, are also presented.
Figures 9 through 14 show the boundary-layer
comparisons for Model 4119. The series of
dashed and dotted lines in Figures 9a through
9c represent Jessup's (1984) measured chordwise
velocity profiles for the three blades at three
chordwise tocations, x. = 0.1, 0.4, 0.8,
respectively. The boundary layer is shown to
thicken considerably as the blade trailing edge
is approached. The open circles and squares,
denoting the fully-rotational three-dimensional
calculation and the two-dimensional calcula-
tion, respectively, are both shown to approxi-
mate the measured chordwise profiles equally as
well. However, the calculation without the
ratation in the boundary layer overpredicts the
velocity. Tt is further seen from Figure 9
that disregarding the rotational effects in the
bouniary-layer computation leads to the predic-
tion of an inward rather than an outward radial
flow. an inward flow contradicts the flow
visualization results of Jessup (1984).
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Considerable scatter is noted in Figure 10
for the measured shape factor parameter H.
Nevertheless, the overall character of the
variable is reasonably well-predicted by the
various theoretical methods, including the
three-dimensional boundary layer without rota-
tion. The displacement thickness, shown in
“igure 11 {s again well-predicted by two-
dimensional flow theory and three-dimensional
flow theory with rotation. Without the rota-
tional effects, three-dimensional flow is shown
to underpredict the displacement thickness.

Jessup (1984) does not present measure-
ments for either the streamwise skin friction
coefficient C¢ or the momentum thickness 9yi.
Comparisons of the calculated values of C¢ and
31) are given in Figures 12 and 13. Agqain,
two-dimensional theory agrees well with three-
dimensional predictions with rotation and both
disagree somewhat with three-dimensional pre-
dictions with no rotation.

Finally, the tangent of the limiting '
streamline angle g is compared in Fiqure 14 for
the three-dimensional calculations with and
without rotation. Unsurprisingly, this para-

. / ; ‘-~--~-a‘w’z




8, taken from Cham and Wead (1969), shows com-
parisons of experimental data with several
calculation methods. The circled asterisks
denoting the present predictions are in good
agreement with both previous theories and
measured data.

In summary, the present differential
method solution procedure has been shown to
accurately predict both 1aminar and turbulent
boundary-layer characteristics on a simple
three-dimensional blade. The previous momentum
integral methods of Groves (1981) and Arakawa,
et al. (1983) could not predict laminar flow, a
region important in model propeller and insta-
bility applications. The limiting streamline
angle for turbulent flow is overpredicted,
perhaps indicating that a change in the eddy
viscosity model is needed to account for the
rotation.

7.2 Propeller 4119

DTNSRDC Model Propeller 4119 (see Denny
(1968) for the complete mode) geometry) was
evaluated experimentally on the suction surface
by Jessup, et al. (1984) in the DTNSRDC 24-in
water tunnel, The three-bladed unskewed, pro-
peller model has a 0.30 m (1 ft) diameter with
a hub radius of 0.03 m (0.1 ft). The design
advance coefficient J, of the mode) is 0.833
where Jy = V/(nD) and V equals the onset
speed, n is the constant rotational speed in
revolutions per unit time, and D is the rotor
diameter. The flow conditions set for Jessup's
(1984) experiments are the kinema&;g viscosity
of 68° fresh water v = 1,00 x 10-5m</s (1.08 «x
10-5 ft2/sec), the onset velocity V = 1.83 m/s
(6.0 ft/sec) and the rotational speed o = 44
rad/s (7 rev/sec). These conditions yield g
0.7-radius Reynolds number of R, = 7.3 x 10
where

2y = (0.7 ¥ ﬂ”'\z

v Jv (27)

v

and (clg,7 = 0.14 m (0.46 ft) is the blade
chord at 0.7 radius.

The 0.7 radius was chosen for comparison
with Jessup's (1984) experiments since the
measured data are most complete at this radius.
Flow visualization techaigues predict fully
turbulent flow begins in the region between
fraction of chord values x. of 0.5 to 0.6, The
present theoretical eddy viscosity mode! {ncor-
porates an intermittancy region of gradual
transition from laminar to turbulent flow. The
use of an intermittancy region requires an
early specification of the transition location
to the computational scheme. It has heen
determined by trial and error that an input
transition location to the computational proce-
dure of xo = 0.43 yfelds fully turbulent flow
at the chord values x; of 0.5 to 0.6.

The boundary-layer characteristics com-
pared with experimental data are the streamwise
displacement thickness

'
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the flow parameters calculated by
Lakshminarayana, et al. (1972},

Figures 5a and 5b show the momentum
thickness as a function of chordwise posftion
for fraction of radius, xg, values of 0.72 and
0.93, respectively. The streamwise momentum
thickness is defined as

=% I T
11 ;(1 ue) ue 9°

The dotted lines denoting the present calcula-
tion and the dashed lines denoting the calcula-
tion of Lakshminarayana, et al. are in close
agreement. The experimental data are denoted
by the circular symbols. At the radial loca-
tion r/R = 0.72 showa in Figure 5a, all calcu-
lation methods overpredict the measured values
of 81y for 2 radians < 8 <5 radians. However,
agreement between experiment and theory is
quite good for the early stages of turbulence,
8 « 2 radians, and for the blade trailing edge,
3 + 5 radians. The experimental data shown in
Figure 5b at the radius r/R = 0.93 are more
scattered. Agreement between experiment and
theory at this radius is reasonable only for
4 < 2 radians.

The tangent of the limiting streamline

Cept :
angle 5, 4 = tan-1 {_ij,IS shown in Figure 6.
\Cfa,
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Fig. 8 - Develop t of the Str Skin-Friction
‘Component.—— A, Cham and Head caiculation using the
entrainment method; —— B, von Karman (1921); — — |
Goldstein (1935); -- —-- , calculation, with isotropic eddy

iscosity; .. 1 ., Theodorsen & Regier (1944). Results taken
from Clauser plots of the present measurements: X 515
rev/min; L , 1000 rev/min; O , 1550 rev/min.

The momentum integral methods of both
Lakshminarayana, et al. {1972) and Groves
{1981) show closer agreement to the measured
values of tang than does the present method.
Figure 7, from the Cham and Head (1969) study
of the turbulent boundary-layer flow on a disk,
shows the discrepancy in various calrulation
methods of the parameter tana. As shown by the
dotted line labeled B and the circular symbols
denoting the present calculation method, the
eddy viscosity model predicts a larger value of
the limiting streamline than do the other tur-
bulence models. Referring to Figure 6 again,
the solid line labeled tang = 1.R4 shows the
exact analysis result of Banks and Gada 11367)
for laminar flow on a rotating segment. The
present calculation agrees well with this line,
Nne further factor to note is that the momentum
integral method of Groves (1981) included a
modification to reduce the entrainment function
from the flat plate value to include the rota-
tional effect. The viscosity coefficient in
the differential method has not been modified.
The current tang prediction may be reduced if a
more precise eddy viscosity model were used.
The final comparison shows the skin fric-
tion coefficient for a rotating disk., Figure

B
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Crossaise and radial velocity profiles are
compared in Figure 4c. Morris's profiles are
shown at chordwise locations of 0, 0.26 and
.52 radians. The present predictions are
shown at & = 13.32 radians as the circle. The
square symbols denote the radial and crosswise
velocity of Banks and Gadd (1962) at 4 = 0,32
radrans. This fiqure shows that the laminar
russaise velocity profile is predicted quite
well and the radial velocity profile is just
slightly underpredicted by the preseat wethod,
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A secoand calculation was tade with tran-
sition set to v = 0.32 radians. This location
is forward of the experimentally determined
transition location of = J.73 radians,
However, with the qgradual trancition mndel used
in the current conputer code, this forward
transition location qives qood agreement with
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visualization techniques, or by assuming tran-
sition empirically. One empirical formulation
which may be used is the_flat-plate critical
Reynolds number, Ry = arls/y = 3 x 105, The
input transition location is overridden if
laminar separation, identified as a negative
streamwise skin friction coefficient, occurs.
Once transition occurs, each succeeding node is
computed as turbulent. Presently, the calcula-

tions stop once turbulent separation is encoun-
tered,

7. COMPUTATIONAL RESULTS AND DISCUSSION

A variety of geometries were considered
during the verification stage of the three-
dimensional boundary-layer computation scheme.
These geometries include a flat plate, a
rotating disk, rotation above the ground, a
skewed and an unskewed rotating segment, an
upwarped model propeller, and three model pro-
pellers, one with warp, one with skew, and one
with neither warp nor skew, 0Overall agreement
with exact solutions and test results is quirte
good. The largest discrepancy with experimental
data occurs for the limiting streamline angle 3
in turbulent flows.

Computationa! results are presented for
the following geometries. A single, nonlifting
blade of large chordlength is examined ini-
trally. Predictions in the initial laminar
flow region are compared with the results of
Banks and Gadd (1962) on a rotating sector and
with Morris's (1981) predictions on a helical
blade. The boundary layer on this blade is
computed a second time with a small laminar
flow region to simylate the test conditions of
Lakshminarayana, et al, (1972). At large chord
length, this blade approximates a rotating disk
and comparisons are shown with turbulent flow
soluttons for a disk, To investigate the lami-
nar flow region more extensively, the flow
about a three-bladed nodel propelier 15 exa-
mined, Transition tor this blade 15 set at 43
perceat of the chord Tength to simylate the
test data of Jessup, et 41, [14984),
romparisons 4re made with the saction surface
measarenents of Jessup, et al, at the fraction
n! radius xp = N7, Fina'ly, the effects on
the boundary layer of the qeometry parametsrs
warp and skew are examined »sing three ande!
nropellers, No experimental results exist for
tnese hlades,

The large chord length rotating segment
examned 15 the hlade qenerated for
investigation of turbulent fiow by
Lakshmnarayana, et al, (1972). The hiade,
shown ian Figure 3, 15 a single nonlifting
rotating sector of 92,6 c¢n (36,6 1n,) draneter
with a 300 degree included angle, The hub
radius s 22,86 ¢n (0,75 ft,). The
pitch/drameter ratio of 9,273 for this blade 15
small enough to approximdte the hlade by a flat
circular disk with g leading and trarling edye
0 degrees apart, Present calcglations gre

perforned using the surface coordinates . {or
xec, fractior of chord), - {or xg, fractrun of
_— - - .
b -

LEADING EDGE

Fig. 3 - Geometry and Coordi of R ing Helical
Segment

radius), and : [(surface normal), For com-
parisons with measured data, the cylindrical
coordinates (r, #, and z) are used where r 1§
the dimensional radius varying in the radial
direction, 3 = 300n./180 radians varying in the
chordwise direction, and z varies along the
surface normal as z = 7.

Lakshminarayana, et al. (1972) tested the
hlade 1n a housing with a 0.20 cm (0.N8in,)
clearance between the blade tip and the wall,
The free-stream onset flow was zero and the
rotational speed of the blade, denoted i,
remained constant at 47 rad/sec (450 rev/min),
The kinematic viscosity v equaled 1.49 x 10-5
m/s (160 x 10-6ft2/sec) which corresponds to
air at 20°C (687F). These conditions, which
yield a Reynolds number based gn tip radius and
tip rotational speed of 7 x 102, are used in
the evaluation of the present method. In addi-
tion, present calculations begin at the blade
surface Yocation 5 = 0.016 radians and
xg = r/R = 0.492.

Initially, a boundary-layer calculation
of the rotating blade was made with transition
set to 1.0 radian to allow a comparison with
the laminar flow predictions of Banks and Gadd
{1962) on a flat sector and of Morris (1981) on
a helical blade. The comparisons with the pre-
dictions of Morris (1981) are valid at large
radii; the twisted hlade used by Morris has not
yet been evaluated with the present method.
Nonetheless, the large radii comparison is
important for validating the radial skin fric-
tion coefficient. Figures 4 a through c show
comparisons with Morris's (1991) calculations at
r/R = 0.95. Fiqures 4a and 4b compare the
streamwise and radial skin friction coef-
ficients

T T
Cfy = ——S , Cfp = r

Y2ouZret VoouZpes

In these definitions, :c and ¢, are the shear

stresses in the chordwise and radial direc-

tions, respectively,  is the fluid density,

and upef is the reference velocity. The solid I3
lines in “igures 1a and 4b denote the Morris

computation and the circles denate the present

calculations. The agreement bhetween the

two prediction methods is excellent,
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The s2lution of the first-order equations
s obtained sising centered finite differences
on a4 net cube and Newton's method., Details of
s procedure may be found in Cebech and
Aradshaw (1977),

The calculation of the blade boundary-
Tayer proceeds as follows. Solution marching
begins at the hub/leading-edge intersection and
3 maves outward along increasing radii to the
trp. Calculations continue in this manner for
successyvely 1ncreasing chordwise stations
untl, finally, the blade trailing edge s
reached. Calculations are made over the entire
hlade surface,

Figure 2 1llustrates the calculation pro-
cedure in more detail, Calculations at the

GENERAL SOLUTION

GENERAL SOLUTION
GENERAL SOLUTION

T o N -

Fig 2 Comp

o HUB‘L\

LEADING EDGE SOLUTION

CHARACTERISTIC BOX

SOLUTION SET FROM (HUB - 1) OR (TIP 1} SOLUTION
CHARACTERISTIC OR REGULAR BOX
REGULAR 80X

leading edge begin as laminar at the node
denoted (A) in Figure 2 and march radially out-
ward, After completing the leading edge, the
solution is obtained at the location of the
next chord and first outward radius from the
hub, node (B) in Figure 2, using a modified
characteristic box method (Bradshaw, et al,
(1981)). The characteristic box, which estima-
tes a solution based on the results at the pre-
vious chordwise pasition lying along the same
streamline, is traditionally applied only in
regions of reverse crossflow. However, this
method has been found to be extremely benefi-
cial for propeller blade application near the
hub in that it eliminates a complex solution of
hub initial conditions.

Once a solution is obtained at location
(B}, the solution is set at the current chord-
wise hub position using the initial conditions

- (¢
(f )H ( )B

u [ U f wa! . .
(9" )y =<———e> fgref . “”e)* (F7y {97y
uref/ ue ue

Computations continue at increasing radral
positions up to the tip using the general box
in regions without reverse crossflow and the
characteristic box in regions with reverse
crossflow. The tip node is always computed
using the general hox., This general solution
pattern is continued along the entire blade,
A transition computation is not incor-
porated in the present houndary-layer scheme
and the location of transition to turbulent
flow is an input parameter supplied by the
user, The location of transition nay be esti-
mated by experimental results, such as flow

4 TURBULENT
SEPARATION

LAMINAR SEPARATION

{ Procedure

4
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For the special case of we = 0, as in the
rotating disk solution reduces the simi-
larity relations reduce to

u _

i Flg,0)

w Ue

uref  uref Gl&,0) (20)
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Vref . e _ 1 g0
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This hub similarity condition is exact for the
cases of laminar flow on a rotating segment and
a two-dimensional swept wing.

By substituting the general similarity
formulations in Equation 19 into the momentum
Equations 13 and 14, the derivative quantities
aw/3n are eliminated and marching can proceed
in the £-direction., Details of the numerical
procedure used in the computer code at the hub
are given in Section 6 in the numerical analy-
sis. The procedure is self-starting and
stable.

The governing flow equations presented tn
Section 4 contain more unknown quantities than
equations. A standard procedure in boundary-
layer solutions is the introduction of a tur-
bulence model to approximate the Reynolds
stress terms -y v and -v w ., Various tech-
nigques have been developed to handle turbulence
modeling, all involving some degree of correla-
tinon with experimental data. The zero-equation
mode! is the simplest approach and does not
require the sotution of any additional dif-
ferential equations, This method assumes the
aljebraic specification of both length scate
and turbulence energy as explained and used
by “ebeci and Smith (1974), The one-ejuation
model solves an equation for the turbulence
energy but uses an algebraic specification for
the length scale., Although this formulation
has been used by Bradshaw, et al. (1976) for
thin shear-layers with considerable success,
its usage is not wide-spread. Two equation
turbulence models, particularly the K-: model,
are experiencing increased popularity. These
models are general, but require the solution of
two differential equations.

For the present work, the simple zero-
equation model of Cebeci and Smith (1974} has
been adopted. An eddy-viscosity factor .q is
defined to relate the Reynolds stresses to the

The theoretical boundary layer is divided
into an inner region and an outer region with a
separate equation defining eqm in each region.
The inner-region formulation is applied from
the wall surface to the location in the boun-
dary layer where both inner and outer equations
predict the same eddy viscosity. From this
location to the edge of the boundary layer, the
outer wall formulation ts applied.

Eddy viscosity in the inner region is
defined as

auN w2 Y
SN SIVELA SN 2C0$u<3£ 20 %29y
\ag 3

- -

—
'
v

(em)i = L2

where L _is a mixing length approximation equal
to 0.4¢ 1-exp(l-4/A) , A is a damping factor

equal to 26.u/Tt 1% , and “tw is the turbulent
Ny

- “ s

wall shear stress equal to . /3U> +/3W\

R \g;/’w

+2cosa{3£\ (3!)4“‘0 . In the outer region, the
V3L gy A Ay

eddy viscosity becomes

(tm) = o.oxsel v luge - updie] rgr
o . (23)
where uge qualswéue2 + wol + 2ugwac0sa)l2,

uy equals (u¢ + + 2uwcosa) 2 and ree 1S an
intermittency factor to account for the tran-
sition region between viscous and turbulent
flow.

6. NUMERICAL ANALYSIS

The governing three-dimensional boundary-
layer equations for propeller blades are
solved numerically using the Keller (1970) box
method. This solution technique may he divided
into four steps. Initially, the governing
equations are written as a system of first
order equations by the introduction of trans-
formed variables. The first order equations
are then written in finite difference forn
using central drfferences. Newton's method s
apptied to linearize the difference equatinns
and, finally, the linear systen 15 solved hy
the blaock triangu'ar elimnation method,

New varrables u, v, w, t, and v, detined as

= v o= f

w =1t = g

9= mpu ¢ mgw + mpn -J:»u + my ’7” 24)
are introduced tn reduce the ‘- and : -nonentun

equatinng to first order, The new systen 15

mean velocity profiles by v
Wizt
-u'v = em %g and  -v'w’ = ¢m %¥ (21) (hyd "= mou? - mguw - mgw? e gy
- ) .
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The new terms M3 through m7 account for the
blade rotation and are defined as

m3 = 2851 nycosacsca
Ue

u
mg = 2951 nlcch u;ﬁ

We
M5 T M3t M4 Geer an
Ue [4
M6 “\Uref ma
We

™7 % Mgt M3 ot

The boundary conditions for the transformed
equations are

f=f=9g=9"=0atg=20

fr= 1, §°= we/upef &° 9 7 9=

4. INITIAL CONDITIONS
The propeller boundary-layer solution is
obtained by marching in the radial direction
for chordwise locations increasing from the
leading edge to the trailing edge. In this
manner, the computation covers the entire blade
surface. The solution procedure requires ini-
tial velocity profiltes along two intersecting
planes. These planes are chosen to be the pro-
peller leading edge and hub. Although the
marching hegins at the radial location termed
the hub, the actua) flow at hub/blade intersec-
tion is too complex to be represented by the
boundary~layer analysis. For this paper, the
term hub defines a small radial distance out-
board of the actual hub/blade intersection
where the boundary-layer equations apply.
Since the inftial conditions are not, in
general, known quantities for a given blade
gqeometry, assumptions become necessary to begin
the computation. The remainder of this section
describes the initial conditions adopted in the
present propeller boundary-layer calculation.

For the rotating helical blade, Banks and
Gadd (1962) theoretically show that the
leading-edge similarity function for the
streamwise velocity u satisfies the Blasius
equation. This analysis can be extended for
application to the propeller blade leading-edge
using the equations for the similarity solution
of wedge flow. The leading-edge solution of
this paper is similar to that adopted by Itoh,
et al. (1984) in which the Karman-Pohlhausen
profile is used. However, the current method
computes the crossflow velocity component w at
the leading edge from the n-momentum equation.
Itoh, et al. (1984) set these profiles to zero.
With the present analysis, the governing
equations at the leading edge are

f-momentum: (bf"7) 7+ myFF” - mp(f )2 + my = 0

n-momentum: (bg”")"+ myfg "+ mp = 0

with the same coefficient terms b, m, mp, m
and mp defined in equations 15 through 17.
These equations compute two-dimensional stagna-
tion flow, wedge flow, or flat plate flow at
zero incidence depending upon the specified
external potential flow velocities at the
leading edge. This solution has proven to be
both stable and smooth in the boundary-layer
calculation at the leading edge and does not
require averaging or iterating.

For nonrotating three-dimensional calcula-
tions, the second initial condition is spe-
cified at locations where the crossflow
velocity w equals zero everywhere inside the
boundary layer. For the ship hull (Cebeci, et
al. (1978)) and the arbitrary wing (Cebeci et
al. (1977)), the locations of zero crossflow
are the ship keel and the wing root, respec-
tively. For these regions, the n-momentum
equation is identically equal to zero and the
unknown variables become u, v, and %:». That
is, for w:0, Equation 14 becomes 0=0.

To obtain a solution, a new equation is derived
by differentiating the singular n~-momentum
equation with respect to n. This equation is
called the attachment line equation.

For a propeller blade, the solution w:0
everywhere inside the boundary layer is valid
only for the hlade radius equal to zero and,
therefore, should not be used to begin the com-
putation for arbitrary nonzero radii. I[toh, et
al. (1984) apply the attachment line solution
to the hub of the axial flow pump blade hut
find it necessary to use an iterative method to
obtain a reasonable solution at the hub. In
this paper, the method of a similarity solution
is adopted at the hub as well as at the leading
edge. The similarity relations used at the
present time are:
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