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NOTATION

A Turbulence modeling damping factor

Cfo, Cfr Streamwise and radial skin friction coefficients, respectively

f', g' Nondimensional velocities, f' - - and g' = w
ue  Uref

H Shape factor

hi, h2, h3  Metric coefficients for the , r, and C coordinates,
respectively

Ki, K2  Geodesic curvatures of the curves n = constant and
= constant, see Eq. 4

K1 2, K2 1  Geometric parameters, see Eq. 5

1. Mixing length approximation

mI through m 1 7  Solution coefficient terms, see Eqs. 16 and 17

p Static pressure in the fluid

R Reynolds number at 0.7-radius, see Eq. 27
n

u, v, w Velocity components in the , , and n directions, respectively

uIVI, V'W' Reynolds stresses

Urf Reference velocity

x, y, z Cartesian coordinate system where x is the axis of rotation
(positive displacement measured aft), z is upward positive,
and y forms a right-handed orthogonal system, see Figure I

x Fraction of chord, measured from leading edgec

XR Nondimensional radius, fraction of tip radius

CL Angle between the and n surface coordinates

B Limiting streamline angle

6 Boundary layer thickness

V



6Displacement thickness

E Eddy viscosity factor in turbulence model, see Eq. 21m

Tl1 T2 13 Directional cosines between the systems (x, y, z)
and (C, T, C)

l Streamwise momentum thickness

v Fluid kinematic viscosity

I, r, Blade surface coordinate system, C is the nondimensional fraction

of chord measured from the leading edge, n is the nondimensional

radius as a fraction of tip radius, and is the outward normal

to the blade surface, see Figure 1

P Fluid density

a, sI  Transformed boundary layer coordinates, see Eq. 10

TI, T 2  Shear stress in the and n directions, respectively

Two-component vector potential, see Eq. 12

2Constant angular velocity of the propeller

vi
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A DIFFERENTIAL PREDICTION METHOD FOR THREE-)IMENSIONAL

LAMINAR AND TURBULENT BOUNDARY LAYERS OF
ROTATING PROPELLER BLADES

Nancy C. Groves and Ming S. Chang

David Taylor Naval Ship Research and Development Center

Bethesda, Maryland 20084-5000

ABSTRACT basic understanding of propeller tip vortex
cavitation and provide information for defining

A general formulation is given for the position of the shed vortex sheet in the
the three-dimensional boundary-layer flow on a inviscid propeller model.
rotating propeller blade. The basic equations This paper describes a general method for
are presented in a nonorthogonal coordinate calculating the three-dimensional boundary
system which rotates with the blade. Finite layer around propeller blades. The solution is
difference methods are used to develop a com- divided into three calculations (1) potential
puter code for solving the laminar and tur- flow, (2) geometric parameters, and (3, boun-
bulent boundary-layer equations. The Reynolds dary layer flow. The potential flow computer
stress tensor is modeled by an algebraic eddy- code adopted is the Brockett (1981) code for
viscosity formulation. In general, the use at design conditions. The geometry and
equations are solved numerically using the boundary layer codes are modifications of the
standard Keller box method. However, regions codes developed by Cebeci, et al. (1978) for
of flow reversal across the boundary-layer are calculating three-dimensional laminar and tur-
computed by the characteristic box method. A bulent boundary layers on ship hulls. The
companion geometry computer code, developed to significant modifications to the Cebeci, et al.
model propeller geometry characteristics, and (1q78) formulation, for propeller blade
an existinq inviscid flow code for computing boundary-layer applications, include the addi-
propeller blade pressures are combined with the tion of the Coriolis and centrifugal forces due
boundary-layer computer Lode to form an effi- to rotation, the use of a coordinate system
cient computation scheme. For a given appropriately describing propeller surfaces,
potential-flow solution, a typical and the specification of appropriate initial
boundary-layer solution of 6% qrid points conditions.
requires 64 seconds CPU time on a CYBER 176 The present boundary-layer formulation
computer. predicts both laminar and turbulent flow using

Computed results are presented for several the differential solution method. The earlier
nl,,de geometries. The rotating segment solu- calculation methods of both ^roves (q81), for
tiOn c)mpdres wenl with analytical and experi- propeller blades, and Arakawa, et al. (1983),
mental data. Predictions for a model propeller for axial flow pump blades, compute only tur-
also compare favorahly with experimental bulent flow using a momentum integral solution
data and illustrate that two-dimensional theory method. There is much discussion regarding the
nay provide idequate predictions for applica- merits of each of the solution methods. The
ti')nc where crossflow effects are not impor- momentum integral method requires considerably
tant. ',eometry effects of warp and skew aro less computation time. The differential
,hnwn to be small for the boundary-layer pre- method is generally considered to give a more
1'(tions on three model proneller%. accurate and complete prediction of the flow

characteristics. However, the major advantage
1._INTRODUC TION of the present solution procedure is its capa--

bility of predicting laminar flow. This region
The ability to predict local flow proper- is particularly important for model propeller

ties on propeller blades will aid in the basic applications where a large region of the flow
understanding of propulsor performance and over the blades is laminar. Additionally,
cavitation. Knowledge of propeller viscous laminar flow predictions are necessary for
phenomena at model scale, such as laminar and instability.
tuirbulent separation, prior to testing, will A similar differential calculation scheme
lead to selection of test conditions has been developed by Itoh, et al. (1984) for
appropriate to simulate prototype performance. predicting the three-dimensional laminar and
')etermination of the flow-field velocity turbulent boundary-layer flow on the rotating
distributions near the tip will improve the blades of axial flow pumps. The present calcu-



lation procedure varies from their method in rotating sector and Morris (1981) for a
two major respects. First, Itoh, et al. (1984) rotating helical blade. Overall, the turbulent
use an orthogonal coordinate system to repre- predictions agree well with both the experimen-
sent an axial flow pump blade. While this tal data of Lakshminarayana, et al. (1972) and
system simplifies the governing flow equations, the analytical values of Cham and Head (1969)
it encounters difficulties in grid generation for the limiting case of a rotating disk.
for blades which deviate from a fan shape. A Discrepancies occur in the limiting streamline
more general surface coordinate system defined angle 0 which is consistently over-predicted by
in terms of Xc, fraction of chord measured from the present method. The second blade evaluated
t leading edge, and xR, fraction of tip is a model propeller designed at DTNSRDC by
radius, is chosen for the present study. The Denny (1968) and tested in the DTNSRDC 12-in.
use of this coordinate system alleviates any water tunnel by Jessup, et al. (1984). Both
problems associated with the calculation grid. two- and three-dimensional calculations were

The second variation from the work of Itoh, et made for this blade. The results show that
al. (1984) is the specification of the initial two-dimensional theory can adequately predict
conditions at the leading edge and the hub. the measured data as well as three-dimensional
Itoh, et al. (1984) applied the usual leading theory with the exception of the crossflow.
edge and hub conditions for three-dimensional The final geometries investigated are an
boundaries to compute the growth for a rotating unwarped, a warped, and a skewed model propeller,
blade. Their computation diverged. In order examined earlier by Groves (1981), with no
to obtain meaningful results, they applied an experimental boundary-layer data available.
averaging process to both the leading edge and The current predictions show little variation
the hub and developed an iterative procedure to in the predicted local skin friction coef-
obtain these average values within a certain ficient for the three blades.
accuracy. In the present study, the leading
edge and hub conditions are handled dif- 2. COORDINATE SYSTEMS
ferently. The methods proposed in this paper
d6 not require an iterative procedure and the Figure I depicts a typical propeller blade
solution converges quickly for all grid points, and hub configuration. In practice, there are
The details of the procedures are discussed in N symmetrically-saced identical blades
Section 5. attached to the hub, but, for clarity, only one

The boundary-layer equations are solved is shown in Figure 1. The propeller rotates
numerically using the Keller (1970) two-point with the constant angular velocity I about the
finite-difference method and the characteristic x-axis. The Cartesian x, y, z, coordinate
box procedure (see Bradshaw, et al. (1981)) for system is fixed in space and does not rotate
computing regions of reverse crossflow. A tur- with the blade. In this system, x is the axis
bulence model is required for closure of the of rotation, with positive displacement
turbulent boundary-layer equations. The zero- measured aft; z is taken as upward positive;
order eddy-viscosity model with gradual trar- and v forms a right-handed orthogonal system as

sition, given by Cebeci and Smith (1974), is shown in Figure 1. In the present calculltion
adopted here. scheme, the blade geometry and potential velo-

Even though the present analysis allows cities are initially specified in the Cartesian

computation of the three-dimensional laminar system by the Brockett (I81) lifting surface
and turbulent boundary-layer on the complex pro- computer code.
peller blade geometry, two desirable flow pre-
dictions are beyond the scope of this study.
These are the complex hub interaction and the
flow transition calculation. No hub interac- I

tion is considered and the location of t'an-
sition is an input parameter to the conputer
code determined by the user. It should be o
noted that the restriction of computing at ri vv~
design conditions only is a limitation of the

grockett (1981) formulation and not of the v
boundary-layer formulation. The boundary layer /
may be computed with any potential flow and

issociated blade offsets. Finally, there is no
distinction in the boundary-layer solution pro-
cedure between the pressure and suction blade
surfaces. The differences between the surfaces
are accounted for in the potential flow and
geometry calculations.

Results of the propeller blade boundary-
layer calculation are presented for several
geometries. The first blade studied is the
large chordlength segment investigated experi-
mentally and analytically by Lakshminarayana,
et al. (1972). The laminar predictions for the
blade are in agreement with the computed
results of both Ranks and Gadd (062) for a Fig I Schematic of Blade Coordinatr Systems

,2-,h m ( m ~ m m ~ m m
mmm mm mmm m m m



Although the Cartesian coordinate system L-MOmentum:
could be used for the boundary-layer solution
procedure, a system fixed to the blade surface u au + wau + vau - K1u~cot. + K2w2csca
and rotating with the blade is chosen for its v'- at T 3n 3C
convenient representation of the complex
geometry. The surface coordinates F, n, and c +Kl2uw + 2a(w+ucosci)nlcsca + 02(n2ncOtacsca) (2)
are defined with E equal to the nondimensional
fraction of chord measured from the leading -Csc 2 a-p cotmcsca ap_ *
edge; n equal to the nondimensional radius as a hi a ) + h2 3nP) ac
fraction of the tip radius; and c equal to the
outward normal to the blade surface. These
coordinates are also illustrated in Figure 1, n-M0mentum:
where a is shown as the angle between the and aw w aw
n surface coordinates. The velocity components --u -- +-- W - K2w2cota + K u

2
csca

u, v, and w are defined in the {, c, and n h I a2 7,2
directions, respectively.

The C and n coordinates, the Cartesian 2uw 2S1(u+wcosa)n CscL - 2 n1qCSC 2 (3)
offsets on the blade reference surface (i.e., + K 2
no blade thickness), and the velocity com-
ponents in a helical reference frame are stan- 2  a OCSCa r
dard quantities produced by the Brockett csC2__ +o
lifting surface (1981) computer code. In pre- + a C _ h t .P ac
paration for its use in the present computation
system, the Brockett code (1981) has been In these equations, u, v, and w represent
modified to calculate the Cartesian offsets on the velocity components in the &, , and n
the actual blade surfaces and the velocities in directions, respectively, a is the angle between
the Cartesian reference frame. The surface the surface coordinates and n, and a is the
offsets are needed to define certain derivative constant angular velocity. The metric coef-
quantities i.e., the metric coefficients, ficients hI and h2 were defined in the previous
geodesic curvatures, etc., used in the section. The quantities K1 and K2 are the
boundary-layer solution. Metric coefficients, geodesic curvatures of the curves ij=constant
denoted by hl, h2 , and h3 for the , n, and r and .=constant, respectively, and are defined
coordinates, respectively, correlate surFace by
distances between the Cartesian and surface
coordinate systems. As is typical practice in 1 a(h2cos') ah1  (4a)
boundary-layer formulations, the boundary layer KI - h sin , a -

thickness is assumed to be small and the .-. 1 2
coordinate is assumed to measure distance along
the surface normal. Therefore, the metric h3  --
is set to unity with no loss of generality. _ (hlCO5 ) ah2  (4o)
The remaining metric coefficients are defined K2  h h sin., 3)7
as 2 -

a7 7- The parameters KI? and K?1 are defined in terms
of the geometry as

h2 I ,'

3. BOUNDARY LAYER E:jUATIONS * cos, K2  (a

The steady, incompressble boundary 2
layer equations for rotational flow in a non- 1
orthogonal coordinate system are given by K*i K2
Yamazakl (1981). The equations are identical . sin, h-
to those presented by Cebeci, et al. (1Q78),
with tne addition of two terms in the ,nomentu,
equations representing the centrifugal and COS, I (5b)
Coriolis forces. The governing equations, Iusing the surface coordinates ., ., and ;, are:

Continuity: The remaining parameters in the boundary layer
equations are:

a (0h2sinu) . 3_(whIsin-1) ) static pressure in th., fluid
an fluid density

shear stress in the -direction,

+ a (vhlh 2 sina) 0 i' V '

. .3



T2 . shear stress in the n-direction, (6) where * and # are defined as
2 - - - " I (vs Ue)1'/ h sina f(E,n,o) (12)

v kinematic viscosity of the fluid

Rv', ' Reynolds stresses * ue hlsin g( n,o)
- constant angular velocity of propeller

n1n I n3 - directional cosines between the and Uref is a reference velocity.
systems (x. y, z) and (E, n, c) The potential velociiies u, v, and w are

rewritten using the vector potentials 0 and *,
The boundary layer thickness is denoted by 6 the Reynolds stresses are rewritten in terms of
and the boundary layer is defined in the region the eddy viscosity factor cm, and the boundary-
04C46. The boundary conditions are: layer edge conditions are applied to eliminate

the pressure terms. The transformed F- and n-
C=0, u-v-wZO equations are

C-momentum: (bf')'+ m1ff'- m2 (f,1
2 - msf-g"

The pressure gradients are determined from the
momentum equations at the edge of the boundary + Nmf,-g - %(g,) 2 + ml - m13 f - _m14g'+ m15
layer. The edge equations are

al fL + af -- l (3

&-momentum: ml0(f-a{- fO{) 7g-T- fm,- na (13)

Ue aue + we e - K1ue
2cta + K2we2csca n-momentum:

hI a h2 an (bgi'-' + mlfg"- m4 f'g" - m3(g-i
2 
+ n6gg,"

+ K12uewe + 2o(we+uecaS )ancsca (8) "-mg(f)2 + m12 + m16 f'+ ml3g'- m17

+ Q2 ncosacsc2c = -csc2 f a e- 1  g -g + g g"-S (14)

1 In these equations, primes denote differen-

+ cotacsca a Pe', tiation with respect to a and
' U f I = -m

Ae uref'V 111

n-momentum:

The coefficient terms nI through m12, identical
to those given by Cebeci, et al. (1978), areUe awe We awe

hl a + h2 ar - K2weCota + Klue
2
cscl M I "I +S aue -SI n

+ - "n 7 h2sin)
I e m 1?

+ K 21uewe -
2

,(ue+wecOsc) -,csca (9) sl "Ue
2  'F T-U -siK I cote

csc 2 a 'Pe\ cotcsca /Pe M3  -siK2  refot

- a
2
n2 ncsc2a = h -I + hi -- 7 c-3

Transformed variables are defined as m sIK21
4

e1 Uref aUe Uref

ndu = Vs 'dt sl hjd en ; -~-T
7

*sK 2vs , (0 i5~~~u~
0 (10)

Sl I Ue-1hl sin. Uref
A two component vector potential is introduced h 1sin u -' e
withI eI

uh2sin' - (11) l Uref (16)

whisini : t
hs- -Uref 2

MR sIK? U csc.,

4
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6 geometry, and the specification of initial con-
XqO91 ditions in order to begin the calculation pro-

cedure. Typical boundary layer computations
5 use a grid of 30 chordwise and 23 radial points

thereby covering the entire blade surfa:e. For
this grid size, 64 seconds CPU time on a CYBER
176 computer are required for a complete

4 calculation.

72-DEG WARP Overall, the predicted boundary-layer
72-DEG SKEW parameters are shown to give reasonable

3 "agreement with experimental data for both
simple (rotating disk and rotating helical
segment) bodies and a model propeller. The

I \largest discrepancies between the current pre-
dictions and experimental data and previous

ZERO-WARP theories occur for the limiting streamline
angle B which is overpredicted in the turbulent

region. For the rotating segment, this para-- meter is shown to be correctly computed by the
differential method in the laminar region. For
turbulent flows, momentum integral methods,

I . which include a modified entrainment function
0 02 0.4 0.6 0.8 1.0 to account for rotational effects, have been

XC shown (see Banks and Gadd (1962) and Groves
(1981)) to improve the prediction of tan6. The

SUCTION SURFACE viscosity coefficient in the present differen-
tial method has not been modified. The value
of tanB may be reduced if the eddy viscosity

Fig. 16 - Variation of Streamwise Skin Friction Coefficient were modeled more preci sely.
on Three Model Propellers The analysis of model Propeller 4119 has

provided insight into the boundary-layer calcu-
lation on propeller blades. First, the large
extent of laminar flow on the model blade

chord value xC = 0.18. The design advance necessitates the capability of a laminar calcu-
coefficient Jv of all three models is 0 889 and lation procedure and an instability prediction
the flow conditions are v = 1.191 x 10-6 m

2
/s method to determine the transition location.

(1.28 x 10-5 ft
2
/sec), V-16.9 m/s (55.3 Figures 9 through 13 show that two-dimensional

ft/sec), and Q = 391.5 rad/sec. theory can be used for the prediction of
Figure 16 shows the predicted skin fric- boundary-layer parameters such as chordwise

tion coefficient on the suction surface for the velocity profiles, shape factor, and chordwise
three model propellers at the fraction of skin friction. However, applications involving
radius value xR = 0.91. This location crossflow, such as the instability calculation
corresponds to streamline 14 used for com- or tip vortex investigations, require the full
parisons in the earlier work of Groves (1981) three-dimensional computation. Figures 4 and
where the turbulent boundary layer is computed 14 show the dangers of using a partially
using momentum integral methods. The present rotating three-dimensional calculation.
results predict only a slight increase in the Incorrect values of the crossflow velocities
skin friction coefficient for the warped and and tan6 are predicted when rotation is
skewed blades. This contradicts the results included in the potential-flow solution and not
obtained by the integral method of Groves included in the boundary-layer solution.
(1981) where the skin friction coefficient was Calculations of the three-dimensional
predicted to increase by nearly 30 percent for boundary-layer characteristics of three model
the zero warp blade. An investigation into the propellers of varying geometry indicate only
momentum integral coding has identified an slight differences in the skin friction
error in the specification of certain geometry parameters; see Figure 16. This result,
parameters for these blades and thus leads to contrary to the earlier momentum integral
the different and erroneous earlier conclusion result of Groves (1981), led to the discovery
of :Iroves. of a geometry error in the earlier computer

code.
8. CONCLUISIONS The results in this paper are encouraging.

Although computed with the present preliminary
This paper presents analysis and results version of the code, comparisons with measured

for computing three-dimensional laminar and data are quite good. Further code modifica-
turbulent boundary layers on the surface of a tions are anticipated to allow the calculation
propeller blade using the differential method, to proceed past the location of turbulent
The solution procedure Is a modification of the separation and to improve the eddy viscosity
Cebeci, et al. (1978) scheme for boundary-layer model. Additional comparisons will be made
calculations on three-dimensional ship hulls. with the experimental data of ltoh, et al.
The major changes to the scheme result from the (Iq84) for a rotating axial flow pump blade.
propeller blade rotation, the complex propeller

14
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a I I a 7.3 Skewed and Warped Propellers

016a COMPUTED In this section, results are presented for

0 3D Q- 4 RAOiSEC 0 the computed boundary-layer characteristics of
02D three analytically-defined propeller blades.

014 3• Q 0RAD,SEC C - These three 0.30 m (Q ft) diameter model pro-
pellers were chosen to investigate the effects

01 of varying geometry on boundary-layer flow.
The propellers, denoted as Model 4381, an

o * unwarped blade; Model 4498, a 72-degree warped0010 oo- blade; and Model 4383, a 72-degree skewed

0
°  

* blade, are depicted in Figure 15. The complete
0 001111geometry of these model propellers is given in

Groves (1981) and is not repeated here.
Since no experimental data exist for

00 0these particular models, the transition loca-
o 000 tion must be estimated. Jnpublished experimen-

*o00 tal results at DTNSROC on a similar geometry
0004 - indicate that the flow over the blades is fully

09 turbulent at a 0.7-radius Reynolds number of

00o2 - 4 x 10. This Reynolds number corresponds to
e tripping the boundary layer at the fraction of

0

02 04 06 as 10

FRACTION OF CHORD. .,

Fig. 13- Varieon of Stremmwiee Momentum Thickness on
Model 4119

10 -- --- - - 0 0 10 F

05 - 00 005 oO

00 o 0 00000 000 (a) Model 4381 wth no warp
COPTD3 D

z 0 < 0 oQOO
O

a Q 00 0 
•  

* a0 5
10t I al L_ _L _

0 02 04 06 08 10

FRACTION OF CHORD ,,

Fig. 14 - Variation of Limiting Streamline Angle on Model 4119

Ibil Model 4498 with 72 degrei' warp

meter is positive for flow with rotation and
negative for flow with no rotation, as pre-
dicted for the radial velocity distribution.

To summarize, the boundary layer charac-
teristics of a propeller blade can be computed
with reasonahle accuracy. Two dimensional
theory gives excellent predictions of the flow

for applications where crossflow is not impor-
tant. Applications where the crossflow is
important, including model propeller studies
where large regions of laminar flow exist and
in the study of instability, require use of the
full three-dimensional equations. The use of
three-dimensional theory without including (c) Model 4381 with 72 degre skew
rotation in the boundary-layer solution should
be avoided. Fig. 1S - Geometry of Three Model Propellers

13
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and the chordwise velocity u. In addition. the
momentum thickness all and skin friction coef- - 0.01 X T

ficient Cf are compared with two-dimensional M Ain.7 CQjj6flj
predictions from a computer code developed by 2 0.040 3-D Q=44 RAD/SEC ,

Cebeci (1978). The radial velocity w and the D 2-D ,'S
limiting streamline angle a are the tw parame- - 3-. Q=0RAD/SEC ,'/
ters shown which are unique to three- z 0.03 BLADE 1 ------
dimensional flow. No measurement has been made _ MILJRI /
of these quantities as yet. A second calcula- I BLADE2 -- .EA.
tion was made using the present method. This i- 0.02 BLADE 3----o.

calculation Is performed with the rotational a a-
effects included in the potential-flow veloci- .
ties but not in the boundary-layer computation. w 0.01 ,P o *

These results, which approximate 
the rotating i1

flow above a solid ground, are also presented. u 0
Figures 9 through 14 show the boundary-layer 0 0.2 0.4 0.6 0.8 1 0

comparisons for Model 4119. The series of FRACTION OF CHORD xc
lashed and dotted lines in Figures ga through
9c represent Jessup's (1984) measured chordwise
velocity profiles for the three blades at three Fig. 1-VaietdomofOblepmoermneThkneeeonfMode4119
chordwise locations, xc = 0.1, 0.4, 0.8,
respectively. The boundary layer is shown to
thicken considerably as the blade trailing edge
is approached. The open circles and squares, 0010
rlenoting the fully-rotational three-dimensional I
calculation and the two-dimensional calcula- *xM=07
tio,, respectively, are both shown to approxi- Q08- o 3 D Q44 RAD/SEC
matp the measured chordwise profiles equally as o20o
we!l. However, the calculation without the u a 30. Q0O RAO/SEC
,jtation in the boundary layer overpredicts the r oo -
velocity. It is further seen from Figure 9
that lisregarling the rotational effects in the
bounlary-layer computation leads to the predic- 0004 -08 .tion of an inward rather than an outward radial - 8 0 4 oo 0
flow. tn inwarl flow contradicts the flow 0
visualization results of Jessup (1984). 0002 S0

30__________ 0 02 04 0 90 10

FRACTION OF COR .

XR 0 7
2 F Fig. 12 - Variation of Stroamwise Skin Friction Coefficient

: i . on Model 4119

< 2o Considerable scatter is noted in Figure 10

for the measured shape factor parameter H.
4Nevertheless, the overall character of thevariable is reasonably well-predicted by the

various theoretical methods, including the

three-dimensional boundary layer without rota-
-0- _ _ _ . _ _tion. The displacement thickness, shown in

0 02 0 4 06 08 -0igure 11 is again well-predicted by two-
dimensional flow theory and three-dimensional

FRACTION OF CHORD x, flow theory with rotation. Without the rota-
tional effects, three-dimensional flow is shown

MEASURED to underpredict the displacement thickness.

BLADE 1 -Jessup (1984) does not present measure-
ments for either the streamwise skin friction

BLADE 2 -.... coefficient Cf or the momentum thickness ,)II.
Comparisons of the calculated values of Cf and

BLADE 3 - j are given in Figures 12 and 13. Again,

COMPUTED two-dimensional theory agrees well with three-
dimensional predictions with rotation and both

3 D 2 44 RAD SEC disagree somewhat with three-dimensional pre-
dictions with no rotation.

22 D Finally, the tangent of the limiting
0 3D W 0RAD SEC streamline angle B is compared in Figure 14 for

the three-dimensional calculations with and

Fig. 10 Variation of Shape Faincto on Model 4119 without rotation. Unsurprisingly, this para-

12
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8, taken from Cham and Head (1969), shows corn- 0.0,
parisons of experimental data with several 1 0. xc~o1
calculation methods. The circled asterisks . BLADE 1 ...........
denoting the present predictions are in good 0 BLADE 2 MEASURED
agreement with both previous theories and I (JESSUP
measured data. BLADE 3

In summary, the present differential A
method solution procedure has been shown to 004 00 COMPUTED. 3-D.9Q44 RAD/SEC
accurately predict both laminar and turbulent
boundary-layer characteristics on a simple 0 0 COMPUTED. 2-D

three-dimensional blade. The previous momentum ;u 0.03 - COMPUTED, 3D. Q=o RAD/SEC
integral methods of Groves (1981) and Arakawa,

et al. (1983) could not predict laminar flow, a j

region important in model propeller and insta-
bility applications. The limiting streamline 0.02
angle for turbulent flow is overpredicted, SI u_- "
perhaps Indicating that a change in the eddy -- '.
viscosity model is needed to account for the o0 .--

rotation. U .

7.2 Propeller 4119

0

DTNSRDC Model Propeller 4119 (see Denny 0 0.2 0.4 0.6 0.8 10
(1968) for the complete model geometry) was CHORDWISE VELOCITY COMPONENT, u/Ue
evaluated experimentally on the suction surface OR SPANWISE VELOCITY COMPONENT. w/Ue
by Jessup, et al. (1984) in the DTNSROC 24-in
water tunnel. The three-bladed unskewed, pro- OO 1(b ,
peller model has a 0.30 m (1 ft) diameter with 0090
a hub radius of 0.03 m (0.1 ft). The design
advance coefficient Jv of the model is 0.833 ooe - Q
where Jv - V/(nD) and V equals the onset
speed, n is the constant rotational speed in 007 -
revolutions per unit time, and 0 is the rotor -

diameter. The flow conditions set for Jessup's > 006-
(1984) experiments are the kinema It viscosity R 006
of 680 fresh water v = 1.00 x 10-m* /s (1.08 x 01
10-S ft

2
/sec), the onset velocity V = 1.83 m/s 004 I

(6.0 ft/sec) and the rotational speed a = 44
rad/s (7 rev/sec). These conditions yield # 003 I

0.7-radius Reynolds number of Rn 7.3 x 107 1d
where 2002 Ue Ue\

r ,/o.7,\ 2o 001 - -
(c)0.7 1

Rn Jv (27) c
V 02 0 0.2 04 06 08 10

CHORDWISE VELOCITY COMPONENT, uUe
and (c)0.7 - 0.14 m (0.46 ft) is the blade OR SPANWISE VELOCITY COMPONENT w'U.
chord at 0.7 radius. 030

The 0.7 radius was chosen for comparison 030 X'' 0 8
with Jessup's (1984) experiments since the
measured data are most complete at this radius. 025 -
flow visualization techniques predict fully
turbulent flow begins in the region between
fraction of chord values x of 0 S to 0.6. The 020 -
present theoretical eddy viscosity model incor-
porates an intermittancy region of gradual 0
transition from laminar to turbulent flow. The -
use of an Intermittancy region requires an
early specification of the transition location 0
to the computational scheme. It has been 0o10o
determined by trial and error that an input C ,
transition location to the computational proce- Uw u
dure of xc - 0.43 yields fully turbulent flow 0os * u, Lu

at the chord values xc of 0.5 to 0.6. 
Ia

The boundary-layer characteristics com-
pared with experimental data are the streamwise 0
displacement thickness 0 02 04 06 08

CHORDWISE VELOCITY COMPONENT. u/Ue

S* 
=  1 --u. dc, the shape factor H = 6*/9, OR SPANWISE VELOCITY COMPONENT. w/U,

o) ue F.og S Ve.oc.ty PPAO". ,,i ,, Model PWapUE 4119

11



the flow parameters calculated by 0 4 1 i
Lakshminarayana, et al. (1972).

Figures 5a and 5b show the momentum _ _D
thickness as a function of chordwise position 0 3
for fraction of radius, xR, values of 0.72 and B
0.93, respectively. The streamwise momentum -

thickness is defined as 0 0 2

91 "( - /u dc
,I ue ue01

The dotted lines denoting the present calcula- 0 GROVES. CHANG
tion and the dashed lines denoting the calcula- 0 - 1__
tion of Lakshminarayana, et al. are in close 0 5 1 0 1 5 2 0-106
agreement. The experimental data are denoted Qr

2
'v

by the circular symbols. At the radial loca- Fig. 7-Angles ofSurfac Streamlines ona Rotating Disk;
tion r/R = 0.72 showa in Figure 5a, all calcu- I experiment; A, Chain id Head calculatio using the
lation methods overpredict the measured values entrainment method; So calculation with isotropic eddy
of ell for 2 radians e 6 4 5 radians. However, viscosity; C, Banksf&Gadd19m2); D, Goldstein (1935); E, von
agreement between experiment and theory is Kirman (19211.
quite good for the early stages of turbulence,
9 2 radians, and for the blade trailing edge,
o 5 radians. The experimental data shown in , I , ,
Figure 5b at the radius r/R = 0.93 are more 0 GROVES, CHANG
scattered. Agreement between experiment and
theory at th.is radius is reasonable only for 0 0060 - A00046^ -
t, 2 radians. 0O4The tangent of the limiting streamline C0 0040

r Cf r awin Figure W -

angle c. tan-I ( f is shown 6 00r0

54 56 58 60 62 64

MEASURED logl0 R,
Fig. 8 - Development of the Streamwise Skin-Friction

(LAKSHMINARAYANA ET AL I 'Component.- A, Chem and Head calculation using the
entrainment method; -B. von Krman (1921); --

COMPUTED Goldstein (1935); -.-- , calculation, with isotropic eddy
viscosity; t , Theodorsen It Regier (19441. Results taken

LAKSHMINARAYANA ET AL from Clauser plots of the present measurements* X .515

INTEGRAL rev/min; , 1000 rev/min; L3 , 1560 revimin.
DIFFERENTIAL

The momentum integral methods of both
30 I I Lakshminarayana. et al. (1972) and (,roves

tansl 1 80 (1981) show closer agreement to the measurednvalues of tane than does the present method.
25 I Figure 7, from the Cham and Head (1969) study

of the turbulent boundary-layer flow on a disk,shows the discrepancy in various :alrulation

20I~methods of the paraneter tanH. As sh)wn by the

......... ......... dotted line labeled R and the circular symbolsT ...... denoting the present calculation method, the

15 eddy viscosity model predicts a larcjer value ofZ- ' the limiting streamline than do the other tur-

bulence models. Referring to Figure 6 again,
10 0 the solid line labeled tan 1.8, shows the

exact analysis result of Banks and Gado 116?)
I for laminar flow on a rotating segment. The

5 present calculation agrees well with this line.
r9ne further factor to note is that the momentum
integral method of Groves (g981) included a

0 modification to reduce the entrainment function
1 2 3 4 5 6 from the flat plate value to include the rota-

e(rad) tional effect. The viscosity coefficient in
the differential method has not been modified.

r R=074 The current tano prediction may be reduced if a
more precise eddy viscosity model were used.

Fig. -Varation of Limltlng Streamline Angle/ on Rotating The final comparison shows the skin fric-
Helical Segment tion coefficient for a rotating disk, Figure

10
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07 0 1 2 3 4 5 6

0 MORRIS e (red)
GROVES I CHANG (laI f'R 0 72

7 1 I I I
0 /

I 5

0 01 02 03 04 050 (rad) Z.,

I RADIAL SKIN FRICTION COEFFICIENT I'

6o - T - T --- T

- 0 rad
t 0 26 rad MORRIS 2 /H

4 0 0 52 rad 1 0 TRAILING
11 0 32 rad GROVES Et CHANG 1 EDGE

0 32 r-d BANKS 6 GAOD

0 1 2 3 4 5 6

6 Iradi

1b) r R=093

0 02 04 06 08 10 1?

MEASURED O
r w I),h (LAKSHMINARAYANA ET AL

u.i VELOCITY PROFILES
FLAT PLATE

Fig 4 Laminar Flow Comparisons to, Rotating Helical M LAKSHMINARAYANA ET AL
Seqment at r R 0 95 COMPUTED INTEGRAL

I DIFFERENTIAL
rrosswise and radial velocity profiles are

,,I-,ipared in Figure 4 C. Morris's profiles are Fig. 5 - Variation of Momentum Thickness I71 on Rotating
shown at chordwise locations of 0, ).0.26, and Helical Blade
0.62 radians. The present predictions -ire
shown at o- z 1.32 radians as the circle. The A se :,-nd calculation wa5 adde with tran-
square symbols denote the radial and crossmise sition set to j 0 0.39 radians. This location
velocity of Banks and Gadd (196?) at o = 0.32 is forward of the experimentally detprnined
radians. This figure shows that the laminar transition location of , - J.73 radians.
-russwise velocity profile is predicted quite However, with the qradual transition vndol isid
well and the radial velocity profile is just in the current co-nput,,r tode, this forward
slightly underuredicted by the present method. transition location qives qood greement with

9



visualization techniques, or by assuming tran-
sition empirically. One empiric4l formulation
which may be used is the flat-plate critical
Reynolds number, Rx , 0 r2 8/v -3 x 105. The
input transition location is overridden if
laminar separation, identified as a negative Z
streamwise skin friction coefficient, occurs.
Once transition occurs, each succeeding node is
computed as turbulent. Presently, the calcula- 8 m
tions stop once turbulent separation is encoun- I
tered. 4 46.4 m TRAILING EDGE

7. COMPUTATIONAL RESULTS AND DISCUSSION

LEADING EDGE
A variety of geometries were considered

during the verification stage of the three-
dimensional boundary-layer computation scheme. Fig. 3 - Geometry and Coordinates of Rotating Helical
These geometries include a flat plate, a Segment
rotating disk, rotation above the ground, a
skewed and an unskewed rotating segment, an radius), and , (surface nornal). For com-
upwarped model propeller, and three model pro- parisons with measured data, the cylindrical
pellers, one with warp, one with skew, and one coordinates (r, H, and z) are used where r is
with neither warp nor skew. Overall agreement the dimensional radius varying in the radial
with exact solutions and test results is quite direction, :j = 300,,_/180 radians varying in the
good. The largest discrepancy with experimental chordwise direction, and z varies along the
data occurs for the limiting streamline angle o surface normal as z 

= 
_

in turbulent flows. Lakshminarayana, et al. (1972) tested the
Computational results are presented for blade in a housing with a 0.20 cm (O.08in.)

the following geometries. A single, nonlifting clearance between the blade tip and the wall.
blade of large chordlength is examined ini- The free-stream onset flow was zero and the
tially. Predictions in the initial laminar rotational speed of the blade, denoted i,
flow region are compared with the results of remained constant at 47 rad/sec (450 rev/min).
Banks and Gadd (1962) on a rotating sector and The kinematic viscosity d equaled 1.49 x 10

-5

with Morris's (1981) predictions on a helical m
2
/s (160 x 10-

6
ft

2
/sec) which corresponds to

blade. The boundary layer on this blade is air at 200C (68
0
F). These conditions, which

computed a second time with a small iaminar yield a Reynolds number based pn tip radius and
flow region to simulate the test conditions of tip rotational speed of 7 x 10 , are used in
takshminarayana, et al. (1972). At large chord the evaluation of the present method. In addi-
length, this blade approximates a rotating disk tion, present calculations begin at the blade
and comparisons are shown with turbulent flow surface location s 0.016 radians and
solutions for a dlsk. To investigate the laMi- xR = r/R = 0.492.
nar flow region more extensively, the flow Initially, a boundary-layer calculation
about a three-bladed *odel propeller is exa- of the rotating blade was made with transition
mined. Transition for this blade is set at 43 set to 1.0 radian to allow a comparison with
percent of the chord ifngth to simul.ite the the laminar flow predictions of Banks and Gadd
test data of Jess!,p, et al . l384). (1962) on a flat sector and of Morris (1981) on
omparisons ire made with the s iction surface a helical blade. The comparisons with the pre-

rnapArt'ments of Jessp, Pt al. at the fraction dictions of Morris (1981) are valid at large
o' rldis xp = r).7. ina'ly, the effects on radii; the twisted blade used by Morris has not
5
te boundary layer of the geometry paraileters yet been evaluated with the present method.
war, and skew are examined *ising three 10dp. Nonetheless, the large radii comparison is
propellers. No experioental resmits xIst for important for validating the radial skin fric-
tiesp blades. tion coefficient. Figures 4 a through c show

comparisons with Morris's (l1)9) calculations at
7.1 -Patat nj SPpent r/R = 0.95. Figures 4a and 4b compare the

streamwise and radial skin friction coef-
The large chord length rotating segment ficients

examined is the blade generated for
investigation of turbulent flow by TC Tr
Lakshminarayana, et al. (1972). The blade, Cfi - c ; Cfr
shown in Figure 3, is a single nonlifting 1/pu

2 ref 12pu2ref
rotating sector of 92.6 cm (36.6 in.) dia'ietr
with a 301 degree included angle. The hh In these definitions, ic and Tr are the shear
radi-s is 2?.Hh cn hq./5 ft.). The stresses in the chordwise and radial direc-
pitch/dlameter ratio of 0.273 for this blade i; tions, respectively, p is the fluid density,
small enough to approximate the blade by a flat and Uref is the reference velocity. The solid
circular dlisk with a leading and trailing ,dle lines in cigures la and 4h denote the Morris
100 deqrees apart. Present _alrilatmon- ir,- computation and the circles denote the present
performed using the smrface coorlinatps . (or calculations. The agreement between the
xc. fraction of chord), ( or p, fracti,)n of two prediction methads is excellent.

8



- ml3u - m14w + m15 + ev leading edge begin as laminar at the node
denoted (A) in Figure 2 and march radially out-

m u u ward. After completing the leading edge, the
SmIOu 2- + m7W-au (25) solution is obtained at the location of thenext chord and first outward radius from the

hub, node (B) in Figure 2, using a modified
- icharacteristic box method (Bradshaw, et al.

jbt) - M4uw - m3w2 - nmu2 m12 (1981)). The characteristic box, which estima-
tes a solution based on the results at the pre-

+ ml6u + ml3w - m17 + Ot vious chordwise position lying along the same
streamline, is traditionally applied only in

1lu4w + w w regions of reverse crossflow. However, this
method has been found to be extremely benefi-
cial for propeller blade application near the

mlU + nu w + mlO 2 + M7 w huh in that it eliminates a complex solution of
an +hub initial conditions.

Once a solution is obtained at location
.,'I boundary conditions (B), the solution is set at the current chord-

wise hub position using the initial conditions
- w : at 1i 0

(26)
We (fW) (f)

H B
uref (g )u = I ('g _± !i " e+ (f ) (g )H

The S)lutlon of the first-order equations ' I _ ue 3
is obtainpl ising centered finite differences H Ue Ue

,-n a net rube and Newton's method. Details of
., procelure may be found in Cebeci and Computations continue at increasing radial

;irddShdw (1977). positions up to the tip using the general box
The calculation of the blade boundary- in regions without reverse crossflow and the

liyer proceeds as follows. Solution marching characteristic box in regions .ith reverse
eoyns at the hub/leading-edge intersection and crossflow. The tip node is always computed

,m es outward along increasing radii to the using the general box. This general solution
tl,. Calculations continue in this manner for pattern is continued along the entire blade.
succesively increasing chordwise stations A transition computation is not incor-
uitll, finally, the blade trailing edge is porated in the present boundary-layer scheme
reached. Calculations are made over the entire and the location of transition to turbulent
-lade surface, flow is an input parameter supplied by the

Figure 2 illustrates the calculation pro- user. The location of transition nay be esti-
ePure in more cetail. Calculations at the mated by experimental results, such as flow
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W Ue The theoretical boundary layer is divided
a WeR a u G i awe (19) into an inner region and an outer region with a

an an Uref uean separate equation defining cm in each region.
The inner-region formulation is applied from

For the special case of we - 0, as in the the wall surface to the location in the boun-
rotating disk solution reduces the simi- dary layer where both inner and outer equations
larity relations reduce to predict the same eddy viscosity. From this

location to the edge of the boundary layer, the
u outer wall formulation is applied.
Ue F Eddy viscosity in the inner region is

defined as
w Ue (cm)= L2  uN dw 2co- (

Uref uref G(to) (20) \ - ac 3 (

w where L is a mixing length approximation equal
uref _Ue G to 0.4ci-exp(1-r,/A) A is a damping factor

an an uref equal to 26v,'ti , and Ttw Is the turbulent

This hub similarity condition is exact for the wall shear stress equal to u +f\
cases of laminar flow on a rotating segment and "_ I
a two-dimensional swept wing. 1.

By substituting the general similarity In the o r n
formulations in Equation 19 into the momentum +2cos(In the outer region, the
Equations 13 and 14, the derivative quantities 'w w
aW/an are eliminated and marching can proceed
in the c-direction. Details of the numerical eddy viscosity become,
procedure used in the computer code at the hub
are given in Section 6 in the numerical analy- (Im) = 0.0168 (Ute - utl)dc Itr
sis. The procedure is self-starting and t (23)
stable, where ute eq lsuW + we- 2uewecosri)san
5. TURBULENCE MODEL ut equals (u. + 2uwcosa.1 ?2 and Ttr is an

intermittency factor to account for the tran-

The governing flow equations presented in sition region between viscous and turbulent
Section 4 contain more unknown quantities than flow.
equations. A standard procedure in boundary-
layer solutions is the introduction of a tur- 6.NUMERICALANALY.SI.
bulence model to approximate the Reynolds
stress terms -u v and -v . Various tech- The governing three-dimensional bOundary-
niques have been developed to handle turbulence layer equations for propeller blades are
model ing, all involving some degree of correla- solved numerically using the Keller ig7O) boxmodeing al inolvng o~h dereeof orrla- method. This solution technique may be divided
tion with experimental data. The zero-equation metho. tes Iol ti the maveivd
model is the simplest approach and does not into four steps. initially, the governing
require the solution of any additional dif- equations are written as a system of first
ferential equations. This method assumes the order equations by the introduction of trans-
aljebraic specification of both length scale formed variables. The first order equations
and turbulence energy as explained and used are then written in finite difference formh
by 'ebeci and Smith (1974). The one-e4uation usil) central differences. Newton's nethod is
model solves an equation for the turbulence applied to linearize the difference equations
energy but uses an algebraic specification for and, finally, the linear syste,1 is solved by
the length scale. Although this formulition the block trlangulir elimination method.

has been used by Bradshaw, et al. (1976) for New variables u, v, w, t, and , detined as

thin shear-layers with considerable success, - .
its usage is not wide-spread. Two equation I - v
turbulence models, particularly the K-E model, .
are experiencing increased popularity. These w = t :
models are general, but require the solution of = nmu m.w + -s 1 7 ?4)
two differential equations.

For the present work, the simple zero-
equation model of Cebeci and Smith (1074) has are introduced to reduce the .- and -rOlentTi
been adopted. An eddy-viscosity factor .m is Pluations to first ordor. The new syste,9 Is
defined to relate the Reynolds stresses to the
mean velocity profiles by u v

-UV w 2 n sw

rmF ad -w ~m~~ 2)hs' 9J y - w 'w



LUe For the rotating helical blade, Banks and
Uref Gadd (1962) theoretically show that the

leading-edge similarity function for the
si streamwtse velocity u satisfies the Blasius

lO hl equation. This analysis can be extended for
application to the propeller blade leading-edge

e W
2  using the equations for the similarity solution

we e n~!of wedge flow. The leading-edge solution of
re1  2 * -f+ \ Uref/ this paper is similar to that adopted by Itoh,

et al. (1984) in which the Karinan-Pohlhausen
we w 2 miD awe profile is used. However, the current method

4 M3 -'- + 9 computes the crossflow velocity component w at
uref * uref) uref a& the leading edge from the n-momentum equation.

m7we awe Itoh, et al. (1984) set these profiles to zero.
+ -With the present analysis, the governing

u2f an equations at the leading edge are

r.-momentum: (bf'')'+ mlff''- m2(f2)2 
+ in1 l 0

The new terms m13 through m1
7 account for the

blade rotation and are defined as n-momentum: (bg")'+ mlfg"+ m12 = 0

m13 =2sI nlcosacsca with the same coefficient terms b, ml, Pv2 , il
ue and m1 2 defined in equations 15 through 17.

These equations compute two-dimensional stagna-
uref tion flow, wedge flow, or flat plate flow at

m14 = 2f0sl nlcsci U--e zero incidence depending upon the specified
external potential flow velocities at the
leading edge. This solution has proven to be

we both stable and smooth in the boundary-layer
m15 = m13 + m14 uref (17) calculation at the leading edge and does not

require averaging or iterating.

ue, 2 For nonrotating three-dimensional calcula-
m16 = u--r) m14  tions, the second initial condition is spe-

cified at locations where the crossflow
we velocity w equals zero everywhere inside the
we boundary layer. For the ship hull (Cebeci, et

m17 = m16 + m13 uref al. (1978)) and the arbitrary wing (Cebeci et

al. (1977)), the locations of zero crossflow

The boundary conditions for the transformed are the ship keel and the wing root, respec-
equations are tively. For these regions, the n-momentum

equation is identically equal to zero and the

f f'= g = g" a 0 at a z 0 unknown variables become u, v, and ±-- . That

f-= 1, g'= We/uref a+ a 0 is, for w-0, Equation 14 becomes 0M0.

To obtain a solution, a new equation is derived

4. INITIAL CONDITIONS by differentiating the singular -momentum
equation with respect to n. This equation is
called the attachment line equation.

The propeller boundary-layer solution is For a propeller blade, the solution w-0
obtained by marching in the radial direction everywhere inside the boundary layer is valid
for chordwise locations increasing from the only for the blade radius equal to zero and,
leading edge to the trailing edge. In this therefore, should not be used to begin the com-
manner, the computation covers the entire blade putation for arbitrary nonzero radii. Itoh, et
surface. The solution procedure requires ini- al. (1984) apply the attachment line solution
tial velocity profiles along two intersecting to the hub of the axial flow pump blade hut
planes. These planes are chosen to be the pro- find it necessary to use an iterative method to
peller leading edge and hub. Although the obtain a reasonable solution at the hub. In
marching begins at the radial location termed this paper, the method of a similarity solution
the hub, the actual flow at hub/blade intersec- is adopted at the hub as well as at the leading
tion is too complex to be represented by the edge. The similarity relations used at the
boundary-layer analysis. For this paper, the present time are:
term hub defines a small radial distance out-
board of the actual hub/blade intersection
where the boundary-layer equations apply. F U--e
Since the initial conditions are not, in ue a, ue
qeneral, known quantities for a given blade
geometry, assumptions become necessary to begin
the computation. The remainder of this section w Ue w ue u We
describes the initial conditions adopted in the .........-:=.... I(- a) + .... --
present propeller boundary-layer calculation. uref Uref ue uref Uref de
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