AD-A156 934 NDNLINERR EQUATIONS FOR DYNAMICS OF PRETMISTED BEAMS
NDERGOING SMALL STR.. (U) NATIONAL RERONUATICS AND
. SPHCE ADMINISTRATION MOFFETT FIELD C.. D H HODGES
UNCLASSIFIED HMAY 85 NASA-R-9833 NASA-TFP-2478 F/6 28/11




- . - - - - AR S A ARG SR LA AR A S SC AT oA G i S s S
PR NT v A Nl D S AR AR RN A S S Ue T A R A N 'R G Mak Nl a4 v 4 - >
AMCANR R A B

L ¢

0 =M

i
- j

[ P
o 20

. GE e AR B e S ]

iy
re

ol

3

'
il

ey

2 s pee

MICROCOPY RESOLUTION TEST CHART

NALBURIAC 0 E T rANPARDN a4

Cliaiars

AT e s 0 "‘".'-‘T‘KK
. .




NASA

2470

Technical
Paper

AVSCOM
Technical

Report
84-A-5

May 1985

AD-A156 934

.........

Nonlinear Equati_ons for
Dynamics of Pretwisted
Beams Undergoing Small

| Strains and Large Rotations

Dewey H. Hodges

DTIC

ELECTE
JUL1 11985 °
G

D ON _STATEMENT A

Appreved fer public releasel
BDiswibution Ualimited

85 6 18 139




ORI B M 5 Ml et i TSt g vl St B A G SO dENM A~ A A 2% 0 -0 I S ol el st A N A i S R S i g Lt e A L A At |

NASA

Technical :
Paper i
2470 '

AVSCOM
Technical Nonlinear Equations for

Report Dynamics of Pretwisted
84-A-5 Beams Undergoing Small
1985 Strains and Large Rotations

.
{
K
Ri
K
[}
j
p

Dewey H. Hodges

Aeromechanics Laboratory

USAAVSCOM Research and Technology Laboratories
Ames Research Center

Moffett Field, California

T1IC TAB
1 Unannounced i}
Justification __ _ _ |

3 Acceggion Fof
CNTIS  GRAXI
g

By
_Qistr;butiont

Availability Codes
~ avall and/or
Dist | Special

X - o N
’ l’v'

' L] :

I\‘, "'/”
:

Natona Asronantics -~

and Seace Agninistrahon

'i
'

Scientitic and Technical
Information Branch

:
y
b
b
f
o
-
L- -

@

SAAEOIDAP
L -

R
S . e TN e Y e . . S e R - ]
PP PO P S SPURE SR U SO Srt e, U e e C i U B S SO R UG SRR S L U U UL NI WU L SV




2

P

T T,

NONLINEAR EQUATIONS FOR THE DYNAMICS OF PRETWISTED BEAMS :;
UNDERGOING SMALL STRAINS AND LARGE ROTATIONS
Dewey H. Hodges

Ames Research Center
and
Aeromechanics Laboratory
U.S. Army Research & Technology Laboratories - AVSCOM

SUMMARY

Nonlinear beam kinematics are developed and applied to the dynamic analysis of
a pretwisted, rotating beam element. The common practice of assuming moderate rota-
tions caused by structural deformation in geometric nonlinear analyses of rotating
beams has been abandoned in the present analysis. The kinematic relations that
describe the orientation of the cross section during deformation are simplified by
systematically ignoring the extensional strain compared to unity in those relations.
Open cross section effects such as warping rigidity and dynamics are ignored, but
other influences of warp are retained. The beam cross section is not allowed to
deform in its own plane. Various means of implementation are discussed, including a
finite element formulation. Numerical results obtained for nonlinear static problems
show remarkable agreement with experiment.

1. INTRODUCTION

It is now widely recognized that aercelastic analysis of helicopter rotor blades,
particularly of hingeless and bearingless rotor blades, requires the incorporation of
kinematical nonlinearity (ref. 1). The main reason for this requirement is that the
stability and response of such systems depend strongly, in some cases, on the cou-
pling between bending and torsion motion. This important coupling cannot be obtained
accurately without consideration of the kinematical nonlinearities.

A brief history of the developments of nonlinear equations of motion for rotat-
ing beams prior to 1974 is given in reference 1. These developments are generally
concerned with slender beams, with the effects of shear deformation iginored. Since
1974, the major contributions to this subject have been those of Kaza and Kvaternik
(ref. 2), and Rosen and Friedmann (ref. 3). The equations of motion developed in
references 1-3 are very similar. 1In references 1 and 3 an ordering scheme is used
that limits the kinematical development to moderate rotations. 1In reference 2 the
nonlinearities are limited to the second degree in the displacement variables. These
two different methods of specifying '""moderate rotations" in references 1-3 are vir-
tually equivalent for this problem.

In a general-purpose analysis, a single set of equations is desirable - one that
is valid for all values of the equation parameters, within some range. When moderate
rotations are assumed, situations can easily arise in which the solution violates the
assumption of moderate rotations. One example is the case of a thin beam for which
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- the ratio of bending stiffnesses is small compared to unity. In order to avoid this o
. problem, certain ad hoc modifications to the equations of reference 3 were intro- N
o duced and were necessary in order to produce the excellent correlation obtained in i
s reference 4 with experimental data for large displacements of an end-loaded canti- ~
N lever. For example, magnitudes of the beam bending and torsion stiffnesses had to

be specified before the equations could be put into final form for solution.

Ideally, the magnitude of parameters in the equations for general-purpose analyses _
o~ should not influence the equations themselves. Such an ideal is evidently not pres- K
o ent in the ordering schemes of references 1 and 3 or in any arbitrary a priori .
. restriction to second-degree nonlinearity, as in reference 2.

There are other shortcomings in the equations in references 1-3. For example,
the effects of pretwist are not treated rigorously. An improved treatment of pre-
.. twist effects is presented in reference 5 for a simplified problem involving only
torsion and axial displacement. Additional work is required to incorporate those
analysis techniques into a general, nonlinear, bending-torsion-extension analysis.
In reference 6 exact nonlinear kinematical relationships are developed and additional
insight is presented concerning relationships among the equations of references 1-3.
Finally, in reference 7 it is shown that inconsistencies are virtually unavoidable
in ordering schemes based on displacements and rotations when the magnitude of the
torsion rigidity is small compared to bending stiffnesses.

S A 4 r

Because of the problems with kinematical limitations in the above approaches, it
seems appropriate to model the kinematics of a slender beam without resorting to an
ordering scheme on rotations or to arbitrary restrictions on degree of nonlinearity
allowed in expressions involving displacement. This method would avoid some of the
limitations of previous analyses and circumvent nonrigorous modifications such as

! were found necessary in reference 4. In the present work, the development in refer-
- ence 6 serves as a foundation along with some important observations from references 8
o and 9. Rather than develop the partial differential equations of motion for this

S problem, the objective is to develop a statement of the principle of virtual work for
'.fﬁ dynamic analysis of a rotating beam element with Euler-Bernoulli kinematics. This

) statement will serve as the basis of a Ritz-type modal model for an entire rotor blade
") or of a single, finite element of a rotor blade without having to consider the partial
: differential equations and the natural boundary conditions, which are available from
the statement, if needed.
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Although the results presented here are for the case in which shear deformation

) is neglected, the necessary relations for including shear deformation are included as
9 part of the development. Similarly, with the appropriate constitutive law, effects

: such as orthotropy or anisotropy could be incorporated. The initial curvature of the

elastic axis and effects associated with open cross sections could also be incorpor-

o ated. The detailed development of these topics is reserved for future extensions of
- the present analysis. The present development proceeds as follows: The beam kine-

- matics are developed in section 2 in such a way that the necessity for an ordering

. -
U]
&

® scheme is obviated. This section includes the development of strain-displacement
AR relations and direction cosines of the nominal cross-sectional plane. In section 3
" generalized forces caused by internal loads are developed from a consideration of

the strain energy. Expressions for generalized forces caused by inertial and gravi-
:;;' tational loads are developed in section 4 based on the work done by these loads

pf: through a virtual displacement. Generalized forces caused by a general set of

| applied distributed loads are developed in section 5 similar to the development in
L section 4. A finite element implementation is discussed in section 6. Finally,




numerical results obtained from a finite element calculation of nonlinear static
equilibrium are presented in section 7.

2. KINEMATICAL DEVELOPMENT

In this section, the kinematics for the beam element are developed starting with
the rigid-body motion of the cross-section plane as described in reference 6. Cross-
section warp is then superimposed on the rigid-body motion to obtain the final dis-
placement field. Next, the strain-displacement relations are developed from the
displacement field. The extensional strain is then assumed to be small compared to
unity. This assumption is used to simplify the orientation description and moment
strains considerably, without sacrificing accuracy.

2.1 Development of Displacement Field

First, consider a straight-beam element with the associated coordinate systems
shown in figure 1. It is assumed that the motion of the frame F is known in an
inertial frame I. A set of dextral axes xi, i =1,2,3 1is assumed to originate at
F*, the origin of F. The x,;-axis lies along the elastic axis of the beam element.
Each unit vector bj, i = 1,2,3 1is parallel to the corresponding axis xj. The beam
is assumed to be pretwisted so that the local-beam cross section is rotated by an
angle 6 about the xj;-axis at any point on the x,-axis. At x, =0, 8 1is defined
to be zero so that the major axis is parallel to the x,-axis and the minor axis is
parallel to the x,-axis. Consider an arbitrary material point in the beam prior

to deformation, denoted by M,;. The position vector of My, with respect to F* is

M F* F . F , F
R = xab, + (£, cos 8 - £, sin 8)b; + (£, sin 6 + £, cos 6)b, (1)
Denote the same material point in the deformed beam by M. The position vector of
M with respect to F* is

MF* _  F F P P
R =xby +ub, + &b + ¥(x)INELE)DD, (2)

where repeated Latin indices imply summation from 1 to 3 and repeated Greek indices
imply summation from 1 to 2.

The axes £, and £, are along principal axes for the local cross section at a
point P* on the elastic axis and remain so during deformation. The unit vectors
b, are parallel to the cross-section principal axes at P#%*, which is located at the
origin of a dextral system P. The unit vector bg is defined as bg X bg and is
thus normal to the cross section. The displacemeﬁts uj, i = 1,2,3,_are glong Ei’
respectively. A warp displacement field has been added vectorially to the rigid-body
component of the position following Wempner (ref. 9). The warp amplitude is V¥, and
A 1is the cross-section warp function.

The basis vectors for the P axes are denoted in equation (1) by

P _ F
t_)i - Cl_]l-)-J (3)
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where Cij 1is a 3 x 3 matrix whose elements may be specified by any of several sets
of parameters (ref. 10). All three-parameter descriptions of the rotation have
inherent singularities. Classical Euler orientation angles (called body-two orien-
tation angles in reference 10) have singularities at values of certain angles equal
to zero. The Tait-Bryan orientation angles (called body-three orientation angles in
reference 10) have all singularities at 90°. This fact makes them more amenable to
descriptions of rotation caused by structural deformation than Euler angles, since
the case of no rotation would correspond to no deformation and Euler angles are
singular at that condition (ref. 6). To avoid singularities altogether, at least
four parameters are required to describe the rotation. One of the best known
descriptions is the set of Euler parameters. Euler parameters enable rotation to

be described with four scalar quantities upon which the direction cosine matrix ele-
ments depend quadratically. It is possible to eliminate one of the Euler parameters
algebraically and derive the Rodrigues parameters. There is a singularity at 180°
of rotation in any direction, but this is rarely a problem in deformable structures.
The direction cosines are simple ratios of quadratic polynomials in the Rodrigues
parameters. Furthermore, the inverse operation (i.e., given the direction cosine
matrix, find the parameters) is trivial compared to the same operation with orienta-
tion angles (ref. 10).

In this paper, both Tait-Bryan orientation angles and Rodrigues parameters are
considered. The primary development is executed with the orientation angles because
of the simplicity of the result and the familiarity of the method. Rotations free
of singularity up to 90° are completely acceptable in helicopter blade applications.
For applications in which the 90° restriction is unacceptable, the kinematical
development for Rodrigues parameters is given in the appendix.

The direction cosines are here expressed in terms of Tait-Bryan orientation
angles 94, 1 = 1,2,3 defined as follows. Let basis vectors QE be introduced
beginning with Qg aligned with §§° Then perform sequential rotations 6 about
bj, i =1,2,3 until 9? is aligned with the principal axes of the deformed beam
i» 1 =1,2,3, as shown in figure 2. Other sequences of rotations are possible, but
here 9,-9,-6; 1is used. Direction cosines of the local, deformed-beam, cross-

section principal axes P with respect to F when expressed in matrix form are

C,rCy sacl + slszc3 sasl - Clszc3
= |- - + c.s 4
C c,8; €yC, $,8,8, ¢C,S, c,s,s, (4)
S, =8;C, €16,

where «c¢j = cos 64 and sj = sin 8j. The displacement field is now completely spe-
cified although, as pointed out in reference 6, two of the three angles 6, and 6,
can be eliminated if shear deformation is neglected.

2.2 Development of Strain-Displacement Relations

Now that the displacement field is determined in terms of wuj and 84, it is a
straightforward matter to calculate strain-displacement relations. There are several
strain measures that could be used in this type of analysis. Almansi strain was used
by Hodges and Dowell (ref. 1) in their preliminary development, and Green strain has
been used by almost everyone else. For infinitesimal strains, however, differences
amony, the common definitions of strain are small and are ignored in this
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development. The intent here is to develop a set of strain-displacement relations
that will be linear in elongations and shears, but unrestricted in rotations up to
changes in orientation where singularities are encountered. Thus, it is immaterial
whether it is Green strain or Almansi strain that serves as the starting point since
the relations will be simplified for small strains anyway.
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The independent variables of the vectors BMOF and R (namely, &, £,, and x;)
constitute a nonorthogonal curvilinear coordinate system identical to the one used in
reference 5. The steps followed in reference 5 to derive a set of strain displace-
ment relations from these vectors are as follows:

1. Obtain the covariant base vectors for the undeformed state from equation (1).

2. Obtain the covariant metric tensor for the undeformed state from step 1.

3. Obtain the contravariant metric tensor for the undeformed state from step 2.

4. Obtain the relationship between a local Cartesian coordinate system and
step 1 from step 3.

5. Obtain the covariant base vectors for the deformed state from equation (2).
6. Obtain the covariant metric tensor for the deformed state from step 5.

7. Obtain the Green strain tensor from half the difference between step 6 and T
step 2.

-l

8. Transform the Green strain tensor from step 7 to the local Cartesian coordi-
nate system using step 4.

Sk’

9. 1Ignore elongations and shears with respect to unity in all strain components
(i.e., discard all squares and products of elongations and shears, leaving each
strain component to be a linear combination of elongations and shears).

The details of the algebra, although lengthy, are straightforward and are
omitted in this report. The engineering strain components resulting from these
operations are

f31 = Tt Oy = £ (kg —87) A

L3, T Egp + (A FE(ky - 07)
> (5)

= - 2 2 o 1y2
S33 T Eyy T EN T E K, H (B HEDN(k, - )T/2

+ (6,0, - glkz)(K3 - 86" + A(K3 -oN!

J

The strains at the reference axis, referred to as force strains, are given by

E3i = C1J(63J + UJ!) - 631 (6)

where §&jj is the Kronecker symbol. The curvature-like quantities, referred to 1s
moment strains, are given by
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where, in matrix form,

. B DSNINRNRNLN  § I

nN
w
w
a_a’

w=|-c,s;, ¢, O (8)

Derivatives of the warp function are denoted by i, = ax/aga. A restricted warp
amplitude : = r3 - 8' 1is assumed here instead of the more general formulation in
terms of ¢ explicitly as in reference 5. This assumption results in the neglect
of transverse shear in the outer fibers of the beam. It is interesting to note that
the force and moment strains are very similar to those of Reissner (ref. 8) except
that the ones above are expressed in terms of Tait-Bryan orientation angles instead
of Rodrigues parameters as in reference 8. The moment strains have the dimensions
of curvature, but differ from curvature by a factor of s', where s 1is the length
coordinate along the deformed-beam elastic axis (ref. 6) and ( )' denotes the
derivative with respect to x3. The moment strains also closely resemble those of
Wempner (ref. 9) developed for small deformation of arbitrarily curved beams.

It is possible to eliminate 6, and 6, from the analysis if shear deformation
is ignored, resulting in an Euler-Bernoulli beam model. For this case the vector
tangent to the beam elastic axis, aRMF*/aslg =g» Must remain normal to the local, beam
a

cross section during deformation. Thus, from equation (2)

MF#* F P
3R /as|£a=o = [8,5(0%,/98) + du;/9s]b; = b, (9)
By virtue of equations (3) and (9)
ax au;
3 i
C3i = 831 35 + 755 (10)

Since Cjj 1is orthonormal, C3iC34 = 1. If all derivatives are expressed with respect
to x,; instead of s, an expression for s' is obtained:

' = [ulZ 4+ ul? + (14 ul)?2]i/2 (11) :
From equations (10) and (4) T?
4
—_ ]
s, = ul/s' (12a) »
~
-s,c, = u)/s' (12b) :
c,c, = (1 +up)/s’ (12c¢) g

The angles 0, and 6, can be eliminated from Cij with the following relations
obtained from equations (12)

Ca L w e, . e . e = - S I W Y ce el s
e R NI

NS LT RN

Lo . . . N - . R . N L Sy - .
T S P e e e . - . e ~ AN

~“~ -




_u‘,;_

1
(s'? - u{z)l/z
' v2 12 2 1/2
. - 1+ ug ~ (s uy u, )
1
(s'2 - u{Z)l/Z (s'2 - u{z)l/z
\}
_ 4
S2 S'
(sz _ “{2)1/2
c, = o

(13a)

(13b)

(13¢)

(13d)

Fquations (12), when substituted into the expressions for force strains, yields

€ 0

€30

- , 1
“33

]
)]
I

Considerablv more algebra is required to eliminate 6, and 6, from the moment strains

1

it the above method is used. 1t is relatively simple, however, to write them directly

(14)

'rom relercnce hoin terms of derivatives with respect to s where ( )t = 3/3s( ).
'f%s (1 - u+2)l/2c 8 utytytt
. Y 73 1 3 ++ 1721
o o1z +2 +2y1/2 |V2 + +2 (15a)
’ A (1 = u7e = u') L 1 -u
. 1 2 1
uf+(1 (1 - u'{'z)l/zs3 — utu:ut+w
, U SO SS—— N 1 g : 1
A T (1 - ut? - u+2)1/2 2 1 - ot (15b)
: N Uy 2 L 1
u+ u+u+u+f-
+ i ++ 17271
' - +0 0 ¥aa7e et +2 (15¢)
(- uyt = uyf) 1 - ud
i R Sl ;o he o vxpressed in terms of ()" quantities instead of ( )T quanti-
tie o cooaticon iy oand lenethy algebra.  This is unnecessary, however, in light of
tooe ~de Tt ations in the nest section.

2.3 Small-Strain Simplification of Kinematics

Because the moment strains are complicated, it is useful to simplify them
through the derivation of a small-strain approximation. This is accomplished by
neplecting the longitudinal strain of the elastic axis with respect to unity in the
direction cosines as well as the moment strains. The expression for the longitudinal
force strain s' - 1 is already linear in the clongation of the elastic axis; the
moment strains thiat are to be obtained are then independent of elongation of the

elastic axis (i.e., independent of s'). It is interesting to note that Reissner

'

moment strains differ from curvatures bv a factor of s and are independent of

's
s'.

When 2y and ~, are ¢liminated, additional s terms are introduced into the
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equations through equations (13). Simply setting s' =1 in all places that it
occurs in the moment strains and direction cosines remove:. the dependence of these
quantities on €44,

DEEN

Another way to view this approximation is to expand the strain in a Taylor
series with elongations caused by stretching of the elastic axis as the small param-
eter. This separates elongation into components on and off the elastic axis. When
only the terms linear in elongations are retained, the result is equivalent to having
set s' =1 1in all quantities except €33. Thus strain is considered small compared
to unity as in the example given in reference 6, p. 32. It is claimed in reference 11
that this sort of approximation invalidates the strain for cases other than inexten-
sional. 1In reality, a simplification of this sort cannot significantly affect the
accuracy of the mathematical model as long as the strains are small relative to unity,
which they must be for applications of Hooke's law. The resulting simplifications in
the derivation and in the final equations are substantial.

W | AR, |

tala s a

AR L

If s' 1is set equal to 1 in equations (13) and (15), the result is
u'l's3 (1 - u{z)l/zc3 i u;uz'u'l'ﬂ
= - - ul) + ————— (16a)
1 (1 - ui2)1/2 (1 - Uiz _ UEL)l/z L.2 1 - Uiz_
n _v2ni/2 B RN
. = Y163 a Yy ) S3 " YitYy
<2 T r2y1/2 * 2 2172 |2 + V2 (16b)
(1 - ui®) (1 = u;® - u®) i 1 - u, ]
u' u'u'u"
k., = 8! ~ L ' 4 — 21 (l6c)
3 3 (1 - u!? - u£2)1/2 2 1 - uiz
and
5, = ———2— (17a)

¢, = . (17b)

5, T U{ (17¢) N
“~
2y1/2 J
.= _ '
c, = (1 u; %) (17d) »
-~
R
Note that the sien of the square root quantities becomes ambiguous when 6, or 9, R
exceeds 90°.  Thus, it is imperative in this formulation to restrict orientation K
angles to less than 90°. Also note that - i and Cij are now independent of wu}; -]
s' must not be set equal to unity in the force strain Z.. = s' - 1. ‘ P

Geometric boundary conditions are determined from specified wuj and Cj3; at
%y = 0 and x; = 7. Natural boundary conditions may be obtained from the complete
statement ot the principle of virtual work as developed in the next three sections.
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3. DEVELOPMENT OF GENERALIZED FORCES CAUSED BY INTERNAL LOADS FROM STRAIN ENERGY

In this section, the internal loads for the beam element are developed from the
strain-displacement relations from section 2 and a conventional constitutive law.
The beam is assumed to be of such a configuration that open-cross-section effects,
such as warping rijidity, are negligible, which is justified for rotor-blade cross
sections., However, the effects of warping are retained in other parts of the inter-
nal loads development. This assumption is helpful in a finite element context since
entorcing kinematical boundary conditions on the warp displacement field at finite
element nodes is not possible in the general case of beams being joined at arbitrary
positions and orientations with respect to one another.

The virtual work on the internal loads is obtained from the variation of the
strain energy U as in (ref. 9)
= = £
8U j j:” (E5336€33 + Gesac‘is_3a)d£1 d$2 dx3 (18) , )
0 A .
where
- oy
Se.o = 88" 45 8k, ~ £ 8k + [(E2 4 ED)(. - 8" + (EA - £ X )0"I8c + A6k’ ) o |
““33 ) PR | 12 "1 2 3 271 12 3 3 ]
Seg, = (Xl - £2)6K3 r (19) :ﬂfy
4
Se. = (A + £ )ik ®
32 2 1 3 _) ) :;1
The expressions are greatly simplified if the variations of force and moment strains ﬁjﬁf
dare written as - 'i
<1 _ os' ' E
3s' = ; Su!l (20) { )
du} 1 -
i Y
A
I 9K, .
- = " oY Y ey
Sk g S Suy + 8,807 + oy Sul + ey ,K,86 (21)
)
where €iik is the Levi-Cevita permutation symbol and 'T:i:
-,A‘i.‘J
] N
bst_ Sai t Ui ) =
W, s' ]
1 T
L
-.'~1
K c B -c? ¢ k., =C, ol
%2 3 _ 3132 . L 11 } (22) Ty
w!' c,, ’ du’ 2y " o C 4
p 33 1 Caa(l - C31) 2 33 -
Ik W[ coc,. ¢ oc u"c_ ¢ c? .
1 1 S 2 B 2 11 31 32 ]
du' - C2 - ‘\ C3 - 3 é__ '1
1 - . _ P
33 ! C?l ’ Caa(l C3l) J ]
9
_ '1
{
e et M e e e e e Al a 4 _nia A A A A 5. . SRS SR TV I L‘;_‘.
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" " 2 N
3Kz _ Ul C12 32 + 22C3 U2C21C31C32
c = 3. _—
oup i, [ -t Cis c2,(1 - ci)
" ~ N b "
3K3 . —ultgalb__(2C:_E +C, - C.p) u;(l - C:;) % (22)
= ; — _ : ot
3u ¢ -c¢ 1) ¢ (cont)
3K, {1
i i ,
SUI = '—3~‘ (U’lcsl + U’2'C32) y
< 33

Next, the strains are substituted, equations (5) with ©,; given by equation (l4),
{ bv equations (16), and the virtual strains given in equations (19) into the
strain energy bv equations (18). The resulting expression can be arranged by

terms that multiply 4s', 8ky, and SK;. These coefficients are denoted by F,, My,
and B, respectively, which are given by

.

I3
Fyo= Bg(s' = 1) + By = Epe, 5 (kg = 6% +D8"(y - 08") w
Moo= % L.k, +e E.(s' - 1") + Eﬁ (k. = 6"% + D8"(x, - !
“« ag B e af3 ) e 2 3 g~ "3 -
B, ) 30,06
— H ov e - 3 _ ' _ ' 12
M, T I (s D = e By + 5 (e, =8 + —5— (x - 8") +D8 > (23)
- . _ o S — . 1
: (K3 Ny 4+ [Do(s 1) L&BaDaKB]O
Bo=s (o, - ") +8 J

These quantities are the stress resultants given in terms of the displacements. The
distributed axial force is Fj; local distributed moments along EP are denoted by
My, The distributed bimoment is B, which may be neglected for the class of beams
considered herein, The section properties used in equation (23) are defined by the
Tollewing integrals over the cross section,
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15. Dowell, E. H.;
Studv of Nonlinear Bending and Torsion Deformations of a Cantilever Beam.

J.‘Sound Vib.

, vol. 50,

16. Greenberg, J. M.:
TN-1326, Jan.

1947,

Travbar, J.; and Hodges, D. H.:

no. 4, Feb., 22,

1977, pp. 533-544.

Adirfoil in Sinusoidal Motion in a Pulsating Stream.

TABLE 1.- CANTILEVERED BEAM LOADED WITH TIP WEIGHT
Value
Property
Metric Standard
E 7.2919x10'% N/m?|(10.576x10% 1b/in.?)
¢ 3.022x10'° N/m? | (4.383%x10° 1b/in.?)
o 2807 kg/m>| (0.1014 1b/in.?%)
1, (Ec3t/12)
I, (Eet?/12)
C 1.270 cm (0.4999 in.)
t .3178 cm (0.1251 in.)
L 50.76 cm (19.985 in.)

TABLE 2.- ROTOR BLADE PROPERTIES (NACA 0012

AIRFOIL WITH TWO BLADES)

Rotor diameter, m . 1.923
Blade length (L), m .870
Hub offset, ZR 9.51
Chord, c¢m 8.64
Taper 0

Twist e e e e e e e 0
Maximum tip Reynolds number 600,000
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APPENDIX

In this appendix the direction cosines and moment strains are expressed in
terms of Rodrigues parameters. To remove the sign ambiguities of the development in
the text, the direction cosines should be left in terms of u{, i=1,2,3 so that

C.,. = (8

2i + ui)/s' (Al)

31

This is not necessary in the text because the use of orientation angles limits the
rotations to be less than 90°; furthermore, it makes the computation slightly more
involved. For the use of Rodrigues parameters, we make use of similar relationships
derived in references 8 and 10. The direction cosines in terms of Rodrigues
parameters< ﬁi are

cij = [(1 - ¢£¢2/4)<Sij + ¢i¢j/2 + eijk¢k]/(l + ¢m¢m/4> (A2)

After much algebraic manipulation, ¢, can be eliminated in terms of the third row
of C

d)& = (2e0.83c38 * ¢3c3a)/(l + C33) (A3)

The use of equation (Al) then yields

9o = (2eggauf + ¢ug) /(1 + s’ + uy) (A4)

which goes to infinity only when the beam rotations due to deformation reach
180°.

The moment strains, as simplified for a straight beam based on those of Reissner
(ref. 8), are

K = [(cSij + eijk¢k/2)¢lll/(l + %%/4) (A5)

which can be expressed in terms of ui, $., ug, and ¢; by differentiation and sub-
stitution of equation (A4) into equation 2A5). It should be noted that the reference
basis used by Reissner corresponds to the principal axes of the local undeformed
beam, instead of the principal axes of the root used herein. Equation (A5) thus
differs somewhat from Reissner's equation (49) in reference 8.
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remainder of the structure. Results for a droop angle of 0° and precone angles of
0° and 5° are shown in figures 7 and 8. The agreement, again, is very good.

CONCLUSIONS

Nonlinear beam kinematics for small strains and large rotations have been

developed and applied to the dynamic analysis of a pretwisted, rotating beam element.

There are no explicit restrictions on rotation caused by deformation in these equa-
tions —only the extensional strain of the elastic axis is required to be small rela-
tive to unity. The only restriction on the magnitudes of the orientation angles
used in describing the cross-section orientation is that they remain less than 90°,
For applications of the kinematics where larger rotations may be encountered, a
method of overcoming the restriction on the magnitude of rotation, which utilizes
Rodrigues parameters, is presented in the appendix.

In order to be applicable to all existing rotor/hub configurations in helicop-
ters, the analysis needs to be incorporated into a hybrid multibody/finite-element
program. This incorporation is under development. Useful future extensions include
constitutive equations for composite beams and effects of shear deformation, warping
rigidity, and initial curvature.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, California 94035, January 18, 1985
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To obtain the discretized matrix substitute the shape functions, equation (45), into )
equation (70) and integrate over the element using, for example, Gauss-Legendre quad- s

rature. The dimension of the discretized matrix will depend on the number of internal ool
degrees of freedom. Its contribution to the system in terms of nodal degrees of free- ;;Q
dom is straightforward and can be left to the reader to determine. Similarly, ele- [
ments of the gyroscopic matrix can be calculated. _‘?

These equations can be programmed either for finite-element computation as they
are or written in a more explicit matrix form. When the equations are linearized
about static equilibrium determined from nonlinear static equations, a convenient
approach is to calculate the mass and gyroscopic matrices explicitly as above and
solve for the stiffness matrix by numerically perturbing the total static general-
ized force.

7. RESULTS

In this section, two sets of numerical results are presented along with corre-
sponding experimental data. The numerical results were obtained by exercising a pre-
liminarv version of a multibody/finite-element program presently under development in
which the beam element formulation outlined in section 6 is implemented. The examples
were set up for calculation using only the properties given in this report.

The first set of data concerns a cantilevered beam loaded with a tip weight
(ref. 15). The properties are tabulated in table 1, and the experimental configura-
tion is described in detail in reference 15. The beam was modeled with one element
and a sufficiently large number of polynomials to achieve convergence. Results for
transverse tip deflections wu;, and u, and tip rotation 4§ are shown in figures 4-6
along with experimental data. The agreement is good, much better than in reference 15.
This good agreement is achieved, however, without ad hoc modifications of the equa-
tions based on the values of beam stiffnesses as is done in reference 4.

The second set of data concerns a cantilevered rotating beam in axial airflow.
The air flowing down through the rotor plane is induced by the thrust at collective

pitceh setting -, for a two-bladed rotor. Bending and torsion moments were mea-
surcd near the béam root for variable thrust settings. The program was set up to
caleulate air loads based on a quasi-steady acerodvnamic formulation by Greenberg
(ref. 16) and on uniform induced inflow determined from momentum theorv. (The
experimental contiguration is described in a forthcoming publication by Sharpe
(Sharpe, D. L.: An Experimental Investigation of the Flap-Lag-Torsion Aeroclastic
Stability of a small-Scale Hingeless Helicopter Rotor in Hover. NASA TP, to be pub-
lished in 1985). The roter properties are tabulated in tables 2 and 3.) The rotor

blade wias modeled with two uniform elastic scements and ripgid misses for the

20
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The virtual work of forces and moments at the root and tip nodes must equal the vir-
tual work caused by generalized forces at the root and tip of the beam

R R
Forbu = Qil 943
R R _
M 8y =Qy,8q,, +Q 8q 68)
T T
Fo o« 8u” = Qy;384q3 + Q;,9q,,
T T _
M-Sy o= Qakéqau + Quzéquz
so that
R
Fri =,
T
FT1 Q4
T _ ~TR
Fr, =C Qza
T
FT3 Q32
R
MR1 Q, (69)
MR, = RT(0,0){Q,,
R
MRs Qul

Qyy

cTReT(2,0) ¢ q,,

Q2

where RT is the transpose of R and the Q's are the generalized forces from the
discretization of the beam (i.e., coefficients of the 6&q's).

The element mass matrix may be written explicitly from equation (39) by collect-

ing coefficients of Fg and » . After simplification, and ignoring rows and columns
associated with frame degrees of freedom, the mass matrix can be obtained from
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CT‘R (6.)
= -sin™* |-
quz T'R? 1/
(1 - Cs3y )

The forces and moments at the root and tip nodes must be determined trom the
generalized forces at the beam root and tip, respectively. First note that the vir-
tual displacement and virtual rotation of the root node must be identical to thos
of the beam root

sut(t) = 2u(0,0)

(43

aR(t) = 8y(0,0)

where &y = §£?F (see eq. 36). Similarly at the tip

sul(t) = su(z,b)
T (63)
Sy (E) = 8y(8,0)
The relations for the virtual displacements are simple first variations of equa-
tions (55) and (58). The rotations are more involved. The use of equation (36)
evaluated at the root yields
K 8q
R i 02 .
8. = _— 3
'Ri(t) [T*UZ; 0,t) Z + I q“:] Cij(o’t) (65)
where §1R = 6w§ig§. In matrix form
R
%4y, S¥R1
5a,, p = R(O,E) { sug, (66)
L?q“l awﬁz
where
C 0 T
-2C 4
R(x,,t) = (33 0 C31 (67)
. Cis
0 2 2
A similar relation holds for the beam tip
18
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Similarly, the rotations must be the same. The direction cosines of R' with
respect to its undeformed position R, C are

SRRty = c(o,0) (56)

At the tip, the displacements of the node and beam are identical

T T _ F F F
uTihi = q,,b, *+ 9,40, * qazés (57)
or

(‘
1) e

uTl ql:
| _ R

<uTz> =C <q23? (58)
UT q

T3 \- 32

and the rotations of the tip node cT'R  are identical to those of the beam tip
C(a,t)

TR Z T e™® 2 cnLe) (59)

Equations (56) and (59) each represent nine equations, but only three are independent.

Three preferred elements to equate are C,,, Cy;» and C,, since

21

C,, = -(1 - ul'z)l/2 sin 6,
Cyy = ug (60)
Cyp, = uy

and are thus easily expressed in terms of q's at the root and tip. The use of
equations (46), (47), and (60) yields for the root, from equation (56)

q

a2 _ R'R
. Can
(61)
R'R
C
q = -sin" 1 |- 21
41 ( R|R2)1/2
1 - C31

and for the tip, from equation (59)
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and on the first derivatives

1 — R v =
uy(0,t) = q ,(0)/% 3 ui(2,8) = q  (£)/2 (47)
. . . . L 71
The standard linear displacement functions satisfy these conditions for B: L
By = 1 - x .
and the standard cubic displacement functions satisfy these conditions for VY:
yo= 1 - 3x* + 2x°
¥, = x - 2x% + 2x°
(49)
Y, = 3x? - 2x°
_ .2 3
W“ = X" + x
If N, exceeds 3 or N,,N, exceed 1, the following higher-order shape functions

allow extra generalized coordinates to be introduced (ref. 13) but still to fulfill

the above end conditions
8n+3 = X(l - X)Gn(5,3,X)
1 n = 0,1, (50)
Yoes = X (1 = x)°G,(9,5,%)
where G, 1is a Jacobi polynomial (ref. 14). At the ends, the displacement and rota-
tion of the nodes are related to generalized coordinates from simple kinematics. Let
R R T T.T
4T upyBy ¥ T by (1)
bY = bt 5 bE = RN (52)
-1 =i -i ij=j
where IR depends on the pretwist 6(2) of the beam element at the tip of the A
element. oo
Sy S5 O o
TR -
C = |-y <4 0 (53) -
0 0 1 =
where s. = sin 9(7) and ¢y = cos 4(2). At the root of the element, the displace- e
ments of the node and beam are identical )
<
B F _ R e
URi2i T 94,05 T 94,0 (54) ]
o w
uR = (55) i
rRi 911 p
16 ]
L




be discretized in several ways. One way is to use a set of admissible functions in

a Ritz-tvpe analvsis based on equation (44) where all the frame variables are pre-
scribed and  -RF*I and : ¥l are zero. A variation on that type of development would
be to allow ~RY*l and < Fl to be nonzero, thus collecting frame (i.e., rigid body)
forces and moments from—zquations (39) and (43) directly. 1In this case there would
be prescribed and nonprescribed components of each of the kinematical quantities in

equation (26). There are clearly other ways of using the frame motion to advantage.

If a finite-element discretization is used, it should be based on variable-order
shape functions (refs. 12 and 13) to avoid poorly approximating the geometric stiff-
ening term which, in this ana’ sis, is calculated from the longitudinal strain
s' - 1. If u,; 1is crudely approximated, this term will be inaccurate. It should
be noted that in a redundant structure undergoing finite deformation, the geometric

stiffening effect musf be calculated from the strain-displacement relations.

In a finite-element implementation the frame motion and forces may be used to
advantage when coupling elements together that are defined in different moving coor-
dinate systems, such as at the interface between rotating and nonrotating components
of a helicopter or at a hinge.

In figure 3, the beam element is shown with the frame F and two nodes R and T
at the root and tip of the beam, respectively. The displacement and orientation of
the beam cross section as a function of x,; 1is represented by the displacement and
rotation of the nodes R and T and by a variable number of generalized coordinates
that are kinematically uncoupled from nodal translations and rotations. The beam
displacements at the root and tip, then, must be determined from the nodal
displacements.

The bending displacements wu; and u, are to be expanded in Cl—type functions
ri,» and wu, and 94 in C°-type functions Bi, namely

N,+1 =
uu = 2: qai(t)wi(x)
i=1
N, +1
; >
U, = 4, (0)8,(0) (45)
i=1
N, +1
6 o=
! q,;(£)B.(x)
3 b1
i=1 * -~/
where x = xa/l, 0 <x <1, and Nj and N are the orders of the shape function
polynomials, N, = 3 and N3,Ny 2 1. The generalized coordinates a4 with
i = 1,2,3 have the dimensions of length and q,: is dimensionless. The boundary
conditions on the functions are
u (0,t) = q (&) ; u, (2,8) = q,(t)
ua(O,L) = qal(t) ; US(Q,,t) = qaz(t) (46)
(0, = ; ¢ h,t) =
,(0,8) =g, (1) 3 3( ) qbz(t)
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where the section integrals are defined as

ﬂ pdg dE, i _U pg -+ & dg, dE,
A A

3]

m =
(40)
m = _0' pf dg) df, 3 1= J.f pEE dE, di,
i A A
and
Fo=ab 3 Fu-upf (41)
- i-1 - i-i
5. DISTRIBUTED APPLIED LOADS
In this section, generalized forces caused by distributed applied loads are
simply stated for completeness. The applied force F and moment M act on the
elastic axis so that the virtual work is
. J’Q ( F*I _F " F1 PF
_01 - N + A +“. . + -
kapplied loads A F (SR w - e )
FI
+ [(x, + u) x F] + 8y " lHdx, (42)

or

J‘Q’ Iy P "‘Q F
“Yapplied loads ~ J T (Bu—('] Sug ¥ ‘531683)91 dxg =) B fudx

2 2
*
S [ VLU S ORI M)

0 0

As with the inertial loads, the generalized forces can be obtained from the virtual
work and anv suitable discretization of u; and H5.

6. VARIOUS SCHEMES OF IMPLEMENTATION

The total virtual work mav be written as

5L - =0 (44)

Owbodv - 6wapplied loads

where the various components of the total virtual work may be obtained from equa-

tions (25), (30), and (43). The kinematical variables uj, i =1,2,3, and 03 may
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(35)

9K 4
PF _ i P
Sy = (——3u& Gu& + 631663)‘91 (36)

The angular acceleration of P in F, gPF, is simply the time derivative in F of

m

£
|

K 3%k,
PF _ F.PF _ i, . i «,e,\.P
@ (_Bu& Uy + 854564 + ——__Bu"Bué uaue)‘gi (37

The generalized forces are now found from the virtual work

()
MI MI
_waody = J; ffA p(é - g) . QB_ dEl d€2 dX3

L
f ﬂ @ -y R ey 4 [(x3 +u+8)
0 A o

x (@ -] -+ g x @ -] - s i, de, dx, (38)

The generalized forces associated with frame motion are useful in multibody/finite
element applications in which it is necessary to couple bodies together that are
moving relative to each other. These generalized forces are the coefficients of
SRF£ and 6¢Fi and can be obtained in a straightforward manner; the calculation of
these forces is left to the reader. For the generalized forces associated with
AV ﬁui, and £%5,, the necessary ingredients are suitable discretizations for uy
and ¢, and the virtual work, which is given by

L
= pF F*1 F1 FI FI FI
Mhoay T By J; su(mia ' - g b ot G b T T K Gyt w2

109

£ f0ox
P i *
*hy f (_1 Sug + 631593)<“" e gk Gy )
0 -

FT FI

Ty 0T+ 2 FL_FT L FI | | F1

x Fg + Fg} + i
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We must find the acceleration and virtual displacement of the point M where the
position of M with respect to F* 1is governed by

*
EMF =Xy tu+g 27) !?
where ’%
F -
X3 = X3b, ) B
o
F 4
u = ub, L (28)
P
J

The velocity of M in an inertial frame is then d
B
* . . .
YMI _ YF L, 9FI X (x, +u) + FE + 9PI x £ + P§ (29) -
wnere F(') is a time derivative in F. Cross-section distortion Pé is to be ff
neglected. The angular velocity QPI can be written as ia
S
F e
FL = JFF 4 T (30) ¥
Differentiation yields the angular acceleration N
‘]
OLPI _ gFI + wFI N u)PF + 0LPF (31) 1.‘1

%
3

Now the acceleration can be written in terms of previously developed expressions as

ML PRI FT G, +w 4T x T X G, + w0+ 2P X B+ Ty g o]
+ EPI x L+ :PI x (_PI x £) (32)
Substitution of equations (30) and (31) into (32) yields
R R T B (e A I DI M
N ZQFI Ty + P WP x g BPF T 6 + gPF ‘g (33)

The virtual displacement is obtained by the replacement of F(') with Fé( ), a vari-
ation in the f{rame F, in equation (29) and the substitution of SR and &y for

v and ., respectively, in equations (29) and (30), as in referencg_6, which yields

M * PF

B T ORI S B YIS AL (34)
where sRE*T < 6Rg§b€ and inI = éwgibi. These quantities reflect any nonprescribed

mot ion of the frame in inertial space. The angular velocity and virtual rotation of
the cross-section axes P in F (ref. 6) can be written as
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1, = J'_]; EE] dg, dt, ; D, ﬂ:\ E(eggyh bg)® dEy dE, e

€

B, = ﬂ E€,Eghg dE, dE, ; J = H GI(E, + 2,2 + (&, - A)?1dE, dE, )
A A

B, = ﬂ; E(5,6,)° db, di, ; ﬂ; Eg 6, d6, 48, 205 I, =1, + 1, .

(24)

(cont) .l

5, = -U EX(E A, = §1A,)de, dg, )

A o

a

w
]

. H ENELE, dE, dE, -
A L
H EAE, dg, dE, = 0 ; ﬂ' EA dg, dg, = F
A A =

The strain energy is then

(@]
!
-

2 os' Iy 3s' . s
—_ N —_ -~ L}
-(Swint = 38U = f F3 au' + Mi a'u" 6ua + F3 3u| 6\.13 + eaBSMaKBGOB '
0 o o 3 -
e N
+ M o Sug 4+ Maae;]dx3 (25) e
QG .'.~_'
-
A suitable discretization of wuj and 6, is sufficient to obtain generalized forces S
in a Ritz-type formulation. L
4. GENERALIZED FORCES CAUSED BY INERTIAL AND GRAVITATIONAL LOADS 7-.
L

In this section the generalized forces caused by inertial and gravitational -
loads (i.e., body forces) are developed for the beam element. The effects of cross- 1
section warp on the body forces are negligible and are not considered. It is .
assumed that the gravity field g, the velocity of point F* in an inertial frame _
vF*l | the acceleration of point ~F* 1in an inertial frame af*Il, the angular velocity 4
and angular acreleration of frame F in an inertial frame “WFL and aFI, respectively, o
are given and defined in frame F as - -

_ oF JFFL _ FXLF JFFL _ FALF
E = BpiD; 2 Fi 21 ° M Fi 21 -
(26) B
FI _ FLF J1 _ FLF o
= YFidi = “ri2i -
11 o
1
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TABLE 4.- BLADE MASS PROPERTY DISTRIBUTION

Inboard Outboard Mass/length Polar moment of
station, | station, ke /m * | inertia/length,
r/R r/R & kg-m?/m
0.0185 0.0215 5.214 -
.0215 L0374 L0214 -_—
L0374 .0407 5.418 5.827x1073
L0407 .0440 10.010 7.073x107°%
.0440 .0456 12.745 4.715x1073
{ .0456 .0555 9.969 6.317x107%
[ .0555 .0608 5.265 1.468x1073
' .0608 .0634 2.663 2.082x10~% )
L .0634 .0951 2.429 2.082x1073 1
; .0951 1.0000 .343 2.062x107" .
o »)
o
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Figure 1.~ Schematic of beam and associated coordinate systems.
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Figure 3.- The frame F, root node R, and tip node T for a I?eam element showing
deflections 1_1R and ET and change of orientation cRR, ¢T'T yith respect to
the initial positions and orientations.
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Figure 4.- Flatwise bending deflection at tip (cm),
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Figure 5.- Edgewise bending deflection at tip (cm).
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Figure 6.- Geometric twist at tip (deg).
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M2 (r=0.12R) ;EXPERIMENTAL RESULTS
PRESENT THEORETICAL RESULTS (r=0.135R)
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Figure 7.- Measured steady blade moments versus blade pitch angle:
droop = 0°, 1000 rpm, soft pitch flexure.
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Figure 8.- Measured steady blade moments versus blade pitch angle: precone = 5°,
' droop = 0°, 1000 rpm, soft pitch flexure.
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