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NONLINEAR EQUATIONS FOR THE DYNAMICS OF PRETWISTED BEAMS

UNDERGOING SMALL STRAINS AND LARGE ROTATIONS

Dewey H. Hodges

Ames Research Center
and

Aeromechanics Laboratory
U.S. Army Research & Technology Laboratories - AVSCOM

SUMMARY

Nonlinear beam kinematics are developed and applied to the dynamic analysis of
a pretwisted, rotating beam element. The common practice of assuming moderate rota-
tions caused by structural deformation in geometric nonlinear analyses of rotating
beams has been abandoned in the present analysis. The kinematic relations that
describe the orientation of the cross section during deformation are simplified by
systematically ignoring the extensional strain compared to unity in those relations.

Open cross section effects such as warping rigidity and dynamics are ignored, but
other influences of warp are retained. The beam cross section is not allowed to
deform in its own plane. Various means of implementation are discussed, including a
finite element formulation. Numerical results obtained for nonlinear static problems
show remarkable agreement with experiment.

1. INTRODUCTION

It is now widely recognized that aeroelastic analysis of helicopter rotor blades,
particularly of hingeless and bearingless rotor blades, requires the incorporation of
kinematical nonlinearity (ref. 1). The main reason for this requirement is that the
stability and response of such systems depend strongly, in some cases, on the cou-

pling between bending and torsion motion. This important coupling cannot be obtained

accurately without consideration of the kinematical nonlinearities.

A brief history of the developments of nonlinear equations of motion for rotat-
ing beams prior to 1974 is given in reference 1. These developments are generally
concerned with slender beams, with the effects of shear deformation ignored. Since
1974, the major contributions to this subject have been those of Kaza and Kvaternik
(ref. 2), and Rosen and Friedmann (ref. 3). The equations of motion developed in
references 1-3 are very similar. In references 1 and 3 an ordering scheme is used
that limits the kinematical development to moderate rotations. In reference 2 the
nonlinearities are limited to the second degree in the displacement variables. These

* two different methods of specifying "moderate rotations" in references 1-3 are vir-
tually equivalent for this problem.

In a general-purpose analysis, a single set of equations is desirable - one that
is valid for all values of the equation parameters, within some range. When moderate
rotations are assumed, situations can easily arise in which the solution violates the

assumption of moderate rotations. One example is the case of a thin beam for which
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the ratio of bending stiffnesses is small compared to unity. In order to avoid this
problem, certain ad hoc modifications to the equations of reference 3 were intro-

duced and were necessary in order to produce the excellent correlation obtained in
reference 4 with experimental data for large displacements of an end-loaded canti-

lever. For example, magnitudes of the beam bending and torsion stiffnesses had to
be specified before the equations could be put into final form for solution.
Ideally, the magnitude of parameters in the equations for general-purpose analyses
should not influence the equations themselves. Such an ideal is evidently not pres-
ent in the ordering schemes of references 1 and 3 or in any arbitrary a priori
restriction to second-degree nonlinearity, as in reference 2.

There are other shortcomings in the equations in references 1-3. For example,
the effects of pretwist are not treated rigorously. An improved treatment of pre-
twist effects is presented in reference 5 for a simplified problem involving only

torsion and axial displacement. Additional work is required to incorporate those
analysis techniques into a general, nonlinear, bending-torsion-extension analysis.

In reference 6 exact nonlinear kinematical relationships are developed and additional
insight is presented concerning relationships among the equations of references 1-3.

Finally, in reference 7 it is shown that inconsistencies are virtually unavoidable
in ordering schemes based on displacements and rotations when the magnitude of the
torsion rigidity is small compared to bending stiffnesses.

Because of the problems with kinematical limitations in the above approaches, it
seems appropriate to model the kinematics of a slender beam without resorting to an
ordering scheme on rotations or to arbitrary restrictions on degree of nonlinearity
allowed in expressions involving displacement. This method would avoid some of the

limitations of previous analyses and circumvent nonrigorous modifications such as
were found necessary in reference 4. In the present work, the development in refer-

ence 6 serves as a foundation along with some important observations from references 8
and 9. Rather than develop the partial differential equations of motion for this

problem, the objective is to develop a statement of the principle of virtual work for
dynamic analysis of a rotating beam element with Euler-Bernoulli kinematics. This
statement will serve as the basis of a Ritz-type modal model for an entire rotor blade

or of a single, finite element of a rotor blade without having to consider the partial
differential equations and the natural boundary conditions, which are available from

the statement, if needed.

Although the results presented here are for the case in which shear deformation

is neglected, the necessary relations for including shear deformation are included as

part of the development. Similarly, with the appropriate constitutive law, effects

such as orthotropy or anisotropy could be incorporated. The initial curvature of the
elastic axis and effects associated with open cross sections could also be incorpor-

ated. The detailed development of these topics is reserved for future extensions of
the present analysis. The present development proceeds as follows: The beam kine-
matics are developed in section 2 in such a way that the necessity for an ordering
scheme is obviated. This section includes the development of strain-displacement

relations and direction cosines of the nominal cross-sectional plane. In section 3

generalized forces caused by internal loads are developed from a consideration of
the strain energy. Expressions for generalized forces caused by inertial and g-avi-
tational loads are developed in section 4 based on the work done by these loads

through a virtual displacement. Generalized forces caused by a general set of
3 applied distributed loads are developed in section 5 similar to the development in
- * section 4. A finite element implementation is discussed in section 6. Finally,
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numerical results obtained from a finite element calculation of nonlinear static
equilibrium are presented in section 7.

2. KINEMATICAL DEVELOPMENT

In this section, the kinematics for the beam element are developed starting with
the rigid-body motion of the cross-section plane as described in reference 6. Cross-
section warp is then superimposed on the rigid-body motion to obtain the final dis-
placement field. Next, the strain-displacement relations are developed from the
displacement field. The extensional strain is then assumed to be small compared to
unity. This assumption is used to simplify the orientation description and moment
strains considerably, without sacrificing accuracy.

2.1 Development of Displacement Field

First, consider a straight-beam element with the associated coordinate systems
shown in figure 1. It is assumed that the motion of the frame F is known in an
inertial frame I. A set of dextral axes xi , i = 1,2,3 is assumed to originate at
F*, the origin of F. The x3-axis lies along the elastic axis of the beam element.
Each unit vector F, i = 1,2,3 is parallel to the corresponding axis xi. The beam
is assumed to be pretwisted so that the local-beam cross section is rotated by an
angle e about the x3-axis at any point on the x3-axis. At x. = 0, 0 is defined
to be zero so that the major axis is parallel to the x2-axis and the minor axis is
parallel to the x1 -axis. Consider an arbitrary material point in the beam prior
to deformation, denoted by Mo. The position vector of M0 with respect to F* is

MPF* F F FM °F *  x 3t 3 + (Cl cos 0 -2 sin O)b1 + (Ei sin 0 + 2 cos e)b2 (2)

Denote the same material point in the deformed beam by M. The position vector of
M with respect to F* is

RMF* x3 b + uF_ + cab + '(x 3)X(C , )b3 (2)

where repeated Latin indices imply summation from 1 to 3 and repeated Greek indices
imply summation from 1 to 2.

The axes , and E2 are along principal axes for the local cross section at a
point P* on the elastic axis and remain so during deformation. The unit vectors
P are parallel to the cross-section principal axes at P*, which is located at the
origin of a dextral system P. The unit vector bp is defined as bp x bp and is
thus normal to the cross section. The displacements ui , i = 1,2,3, are along bi,
respectively. A warp displacement field has been added vectorially to the rigid-body
component of the position following Wempner (ref. 9). The warp amplitude is T, and
X is the cross-section warp function.

The basis vectors for the P axes are denoted in equation (1) by

P F
b. = C..b. (3)
-1 1J-j
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where Cij is a 3 x 3 matrix whose elements may be specified by any of several sets
of parameters (ref. 10). All three-parameter descriptions of the rotation have
inherent singularities. Classical Euler orientation angles (called body-two orien-
tation angles in reference 10) have singularities at values of certain angles equal
to zero. The Tait-Bryan orientation angles (called body-three orientation angles in
reference 10) have all singularities at 900. This fact makes them more amenable to
descriptions of rotation caused by structural deformation than Euler angles, since
the case of no rotation would correspond to no deformation and Euler angles are
singular at that condition (ref. 6). To avoid singularities altogether, at least
four parameters are required to describe the rotation. One of the best known
descriptions is the set of Euler parameters. Euler parameters enable rotation to
be described with four scalar quantities upon which the direction cosine matrix ele-
ments depend quadratically. It is possible to eliminate one of the Euler parameters
algebraically and derive the Rodrigues parameters. There is a singularity at 180-
of rotation in any direction, but this is rarely a problem in deformable structures.
The direction cosines are simple ratios of quadratic polynomials in the Rodrigues
parameters. Furthermore, the inverse operation (i.e., given the direction cosine
matrix, find the parameters) is trivial compared to the same operation with orienta-
tion angles (ref. 10).

In this paper, both Tait-Bryan orientation angles and Rodrigues parameters are
considered. The primary development is executed with the orientation angles because
of the simplicity of the result and the familiarity of the method. Rotations free -

of singularity up to 900 are completely acceptable in helicopter blade applications.
For applications in which the 900 restriction is unacceptable, the kinematical
development for Rodrigues parameters is given in the appendix.

The direction cosines are here expressed in terms of Tait-Bryan orientation
angles Eri, i = 1,2,3 defined as follows. Let basis vectors b be introduced
beginning with b! aligned with b. Then perform sequential rotations ei about
bl i = 1,2,3 until bP is aligned with the principal axes of the deformed beam
Ti, i = 1,2,3, as shown in figure 2. Other sequences of rotations are possible, but
here 91_02-e3 is used. Direction cosines of the local, deformed-beam, cross-
section principal axes P with respect to F when expressed in matrix form are

C 2 C 3  S 3 c+S 2 C 3  SS+ -s Sc sc[ 1 23 1 2 23!

C = -c2 s3 c3c1 - s1s2s3 c3s I + c1s2s 3  (4)

L -s1 c2  c1c2 J

where ci = cos 6 i and si = sin ei. The displacement field is now completely spe-

cified although, as pointed out in reference 6, two of the three angles 0 and 02

can be eliminated if shear deformation is neglected.

2.2 Development of Strain-Displacement Relations

Now that the displacement field is determined in terms of u i and Oi , it is a
straightforward matter to calculate strain-displacement relations. There are several
strain measures that could be used in this type of analysis. Almansi strain was used *

by Hodges and Dowell (ref. 1) in their preliminary development, and Green strain has
been used by almost everyone else. For infinitesimal strains, however, differences
among the common definitions of strain are small and are ignored in this
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development. The intent here is to develop a set of strain-displacement relations

that will be linear in elongations and shears, but unrestricted in rotations up to
changes in orientation where singularities are encountered. Thus, it is immaterial
whether it is Green strain or Almansi strain that serves as the starting point since
the relations will be simplified for small strains anyway.

The independent variables of the vectors R 0 and R (namely, E1, 2, and x 3)
constitute a nonorthogonal curvilinear coordinate system identical to the one used in
reference 5. The steps followed in reference 5 to derive a set of strain displace-
ment relations from these vectors are as follows:

1. Obtain the covariant base vectors for the undeformed state from equation (1).

2. Obtain the covariant metric tensor for the undeformed state from step 1. -:

3. Obtain the contravariant metric tensor for the undeformed state from step 2.

4. Obtain the relationship between a local Cartesian coordinate system and

step 1 from step 3.

5. Obtain the covariant base vectors for the deformed state from equation (2).

6. Obtain the covariant metric tensor for the deformed state from step 5.

7. Obtain the Green strain tensor from half the difference between step 6 and
step 2.

8. Transform the Green strain tensor from step 7 to the local Cartesian coordi-
nate system using step 4.

9. Ignore elongations and shears with respect to unity in all strain components
(i.e., discard all squares and products of elongations and shears, leaving each -.

strain component to be a linear combination of elongations and shears).

The details of the algebra, although lengthy, are straightforward and are
omitted in this report. The engineering strain components resulting from these
operations are

31 31 + (1 - 2 )(K 3 - 6')

32 = 3 2 + (A2 + 1 )(K 3 - 6') (5)
E + K- + (2 + 2)(K3 2 " /2

33 3 3 2 1 1 2 1 2 39

(+ 2 1 X 2 )(K 3 -K ')O + X(K3  6')'

The strains at the reference axis, referred to as force strains, are given by

E3i Cij (6 3 j + u!) -6i (6)

where 6 ij is the Kronecker symbol. The curvature-like quantities, referred to "is
moment strains, arp given by
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K= W. (7)

where, in matrix form,

[cc3 3:
w c2s 3  c3  (8)

s s2 0 I

Derivatives of the warp function are denoted by Xa = 9a/a%. A restricted warp
amplitude = - 0' is assumed here instead of the more general formulation in
terms of explicitly as in reference 5. This assumption results in the neglect
of transverse shear in the outer fibers of the beam. It is interesting to note that
the force and moment strains are very similar to those of Reissner (ref. 8) except
that the ones above are expressed in terms of Tait-Bryan orientation angles instead
of Rodrigues parameters as in reference 8. The moment strains have the dimensions
of curvature, but differ from curvature by a factor of s', where s is the length
coordinate along the deformed-beam elastic axis (ref. 6) and ( )' denotes the
derivative with respect to x3. The moment strains also closely resemble those of
Wempner (ref. 9) developed for small deformation of arbitrarily curved beams.

It is possible to eliminate 01 and 02 from the analysis if shear deformation
is ignored, resulting in an Euler-Bernoulli beam model. For this case the vector
tangent to the beam elastic axis, aRMF*/3sIC,=o, must remain normal to the local, beam

cross section during deformation. Thus, from equation (2)

3R / s[ 0 = [63i(3x 3 /as) + ui/aslb bP (9)

By virtue of equations (3) and (9)
ax 3@u.i

2x _ 1 (10)'C3i = 63i -- + - 10
as as

Since Cij is orthonormal, C3iC3i = i. If all derivatives are expressed with respect
to x3  instead of s, an expression for s' is obtained:

, [u 2 +u 2 + (1 + u;)2]1/2 (1)

From equations (10) and (4)

s = u /s' (12a)

-s Ic2  u2/s' (12b)

c~c2 : (1 + u')/s' (12c)

The angles 0o and 0, can be eliminated from Cij with the following relations
obtained from equations (12)
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S = (13a)
(s

, 2 
- u2)1/2

, (s, 2  
,2 12)1/2+ u 3  -S u, -U 2 ".

C I  (13b) i -
(s'

2  
u.2)1/2 (s,

2  U12)1/2 .-

11

u1 (13c)S2  - l

(1 U12)1/2
(S'

c2 = (13d)

niqutions (12), when substituted into the expressions for force strains, yields

(14)

= s' -l1

33
(:,o.,sid,.r ilv inrc 1lebra is required to eliminate e1 and 02  from the moment strains -

it th1 01ovC method i5 used. It is relatively simple, however, to write them directly
It c i : cr1' : t (I in t k-rlms (o f derivatives with respect to s where ( )+ = /Ds().

+-2)1/2C
+ _ + H' (15'

I 2 ( u+2 u+2) 1/2 - (15a)
(1+- , -2 u+ 1 1u

++ 2 +2. 1 /2 + (15b) -

(1 - u1  - u 2  ) 1

+ r + (:.

u -+2-2+ u1uu 1 U +
1 2

u+ +2./2 + 1 21 (15c)
( 1  - t 2  )1 "

X11l k',s.;,k, d in terms of ( )' quantities instead of ( )+ quanti- .
'I i Md antiv lebra. This is unnecessary, however, in light of

-i: i it i i:2 " ill t Ilw ' Kl t 5 ) ct ion .

.3 Si,i I-Strain Simp]ification of Kinematics

[,i ausk, the moment strains a re Lomp Iica ted, it is useful to simplify them
t 1irough th dc r iv, t ion of a sma I 1-strain approximat ion. This is accomplished by
ncIect ing the longitud inal strain of the elastic axis with respect to unity in the
direct ion cos ines as we I I as the moment strains. The expression for the longitudinal
force strain s' - I is already linear in the elongation of the elastic axis; the
moment str;ains tha t are to be obtained are then independent of elongation of the
elastic axis (i.e., independent of s'). It is interesting to note that Reissner's
moment stra ins differ from curvatures bv a factor of s' and are independent of s'.
When a and are eliminated, additional s' terms are introduced into the
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equations through equations (13). Simply setting s' = 1 in all places tiat it
occurs in the moment strains and direction cosines removeL the dependence of these

quantities on c33" 

Another way to view this approximation is to expand the strain in a Taylor

series with elongations caused by stretching of the elastic axis as the small param-
eter. This separates elongation into components on and off the elastic axis. When
only the terms linear in elongations are retained, the result is equivalent to having

set s' = 1 in all quantities except C33. Thus strain is considered small compared j
to unity as in the example given in reference 6, p. 32. It is claimed in reference 11
that this sort of approximation invalidates the strain for cases other than inexten-
sional. In reality, a simplification of this sort cannot significantly affect the
accuracy of the mathematical model as long as the strains are small relative to unity,
which they must be for applications of Hooke's law. The resulting simplifications in
the derivation and in the final equations are substantial.

If s' is set equal to I in equations (13) and (15), the result is

u s (1 - u 2) I/2c F uulu"l

K 1 3 1 3 ui + 2_1(6a1 (l - Ui2)1/2 1( - U{2 - U22)1/2 2 1 - ulJ (16a)

u"c (1u- u/s F u'u'u"
+ + 1 / 3 1 + 1 (6b)2 (1 - u2)1/2 (1 - u{ 2 

- u 2 ) 1/a [ 1 - u2J

<- 2 - I/1 2+ Z] (16c)

3 3 (i -u u2 1/ 2

and

-U,
=, 217a)

1 ( - u,2)1/2 17
1

(1 - u' 2 
- u'12)/2

c= 1 2 (1 7b)
(1 -

s 2 = U' (17c)

1 2 1/

= (1 2)/2 (17d)

Note that tht sign of the square root quantities becomes ambiguous when 01 or O2
t'xceeds 90'. Thus, it is imperative in this formulation to restrict orientation

nS iL e t1 Less than 90 °  Also note that i and Cij are now independent of u,;
' must nut be sot equal to unity in the force strain - = ' - 1.

(;Cometric boundary conditions are determined from specified u i and Cij at
l 0 and 3 = ;. Natural boundary conditions may be obtained from the complete

statement of the principle of virtual work as developed in the next three sections.
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3. DEVELOPMENT OF GENERALIZED FORCES CAUSED BY INTERNAL LOADS FROM STRAIN ENERGY

In this section, the internal loads for the beam element are developed from the
strain-displacement relations from section 2 and a conventional constitutive law.
The beam is assumed to be of such a configuration that open-cross-section effects,
such as warping -jft' , are negligible, which is justified for rotor-blade cross
sections. However, the effects of warping are retained in other parts of the inter-
nal loads development. This assumption is helpful in a finite element context since
enforcing kinematical boundary conditions on the warp displa'cement field at finite
element nodes is not possible in the general case of beams being joined at arbitrary
positions and orientations with respect to one another.

The virtual work on the internal loads is obtained from the variation of the
strain energy U as in (ref. 9)

6U (EE33C 33 + Ge3a3a )di d- 1 2 dx (18)
A

where

633 + 1 1 2 + [(2 )(K ') + (C X - X ) 6'K + X6K'3 i 2 1 3 21 1 2 3 3

K31 - F2)S3 (19)

c ( + )5
32 2 1 3

The expressions are greatly simplified if the variations of force and moment strains
are written as

6s u q 6u! (20) S

= 6u" + ' + T, 6u + e. K 66 (21)D< uI  - 4 i3 " u' 01 l 3 a 3

where eijk is the Levi-Cevita permutation symbol and

' 
+  u'

? u.s'-.-
1

3K C Dc, -C2 C DK. -C. "-"
- 2 3 31 32 .1 1"122

I 3 3 1 32
-_ .-- =-2 2

3U C2 3 C 3 3 (1 - C31 2  3
K u C C CC

__3 1 2 ;C ~ 1 11 3 1 32

u1 C
2  I -C C 33  C 3 (l -3 3 3 3 31 )

9
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2I

)K U C cc u"C C C22-- + ____ 32 _ 222
3u C2  2 C 3  23( 23K [C 3 3 J C (I 2uL C31  33  3)

-u, , (2C- 4~. ) 7 .. (
3K U+CC 1 ( 1) + C3 _ CQu - (22)

Ui ' (cont)

1u (C 1 + KG 3 2

3K C.
1 11

3 3

Next, the strains are substituted, equations (5) with 73 given by equation (14),
c1 1),, teqUa ionIs (1b), and the virtual strains gIven in equations (19) into the
stra 10 energy by, equations (18). The resulting expression can be arranged by
terms that multiply £S', 6Ki, and 'K;. These coefficients are denoted by F 3 , Mil

and B, respectively, which are given by

F3  -1) + E2K, - Ee + 3 K 3 - 0,2+ DU0 0' (K 3 - )

-~~ ~e , ' +-~ (K ~6)+ D ~

B 3 C. 3D 3
N+ (SK ) + (K3us 3 . 3 2 3 2 3 (

3 + D0 (s'3 DC, 0

B = 3 . ' + S

3

hese quatintis adr the stress resultants given in terms of the displacements. The
ditributed uxLil for.e is F3; local distributed moments along b' are denoted by
nd he distributed bionent is B, which may be neglected for the class of beams

con>i~eeJ erein. IIhe sect ion properties used in equation (23) are defined by the
~cI Iw it~iite rals )vrthe. cross section.

II d ,i D H E~ e dF ~ 24

J d 1 t2'(.- '1 2

T d2 dj; D E ATe d~ dC
= 3 1 2 3 'Y Y (3n 1 2

10
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15. Dowell, E. H.; Traybar, J.; and Hodges, D. H.: An Experimental-Theoretical
Studv of Nonlinear Bending and Torsion Deformations of a Cantilever Beam.

J. -Soun-d Vib-., vol. 50, no. 4, Feb. 22, 1977, pp. 533-544.

L6. Greenberg, J. M.: Airfoil in Sinusoidal Motion in a Pulsating Stream. NACA

TN-1326, Jan. 1947.

TABLE 1.- CANTILEVERED BEAM LOADED WITH TIP WEIGHT

PropertyVau
Metric Standard

E 7.2919,110' N/in2 (10.576x10' lb/in .2 )

G 3.022-10'' N/in2  (4.383x1O6 lb/in .2 )
p 2807 kg/in3  (0.1014 lb/in .3)

l1 (Ec3 t/12)
12 (Ect'/12)
c 1.270 cm (0.4999 in.)
t .3178 cm (0.1251 in.)
L 50.76 cm (19.985 in.)

TABLE 2.- ROTOR BLADE PROPERTIES (NACA 0012
AIRFOIL WITH TWO BLADES)

Rotor diameter, in............1.923

Blade length (L), m.............870

Flub offset, %R .......... 9.51

Chord, cm............8.64

Taper.............0
Twist. .............. 0
Maximum tip Reynolds number 600,000

24
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APPENDIX

In this appendix the direction cosines and moment strains are expressed in

terms of Rodrigues parameters. To remove the sign ambiguities of the development in

the text, the direction cosines should be left in terms of u!, i = 1,2,3 so that

C3i = (63i + u!)/s' (Al)

This is not necessary in the text because the use of orientation angles limits the

rotations to be less than 900; furthermore, it makes the computation slightly more

involved. For the use of Rodrigues parameters, we make use of similar relationships

derived in references 8 and 10. The direction cosines in terms of Rodrigues

parameter, $i are

Cij = [(1 - / ij + i/2 + e ijkk]/(l + m m/4) (A2)

After much algebraic manipulation, c, can be eliminated in terms of the third row

of C

iC = (2e a3C + 3 C 3)/(l + C 33) (A3)

The use of equation (Al) then yields

= (2ee 3u + + S' + u) (A4)

which goes to infinity only when the beam rotations due to deformation reach

1800.

The moment strains, as simplified for a straight beam based on those of Reissner

(ref. 8), are
IS

K [(6ij + eijkk /2) k]/( + Z 91/4) (A5)

which can be expressed in terms of u!, u'! , and 4; by differentiation and sub-
stitution of equation (A4) into equation (A5)1 It should be noted that the reference
basis used by Reissner corresponds to the principal axes of the local undeformed

beam, instead of the principal axes of the root used herein. Equation (A5) thus

differs somewhat from Reissner's equation (49) in reference 8.
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remainder of the structure. Results for a droop angle of 0' and precone angles of
0' and 5' are shown in figures 7 and 8. The agreement, again, is very good.

CONCLUSIONS

Nonlinear beam kinematics for small strains and large rotations have been
developed and applied to the dynamic analysis of a pretwisted, rotating beam element.
There are no explicit restrictions on rotation caused by deformation in these equa-
tions-only the extensional strain of the elastic axis is required to be small rela-

tive to unity. The only restriction on the magnitudes of the orientation angles
used in describing the cross-section orientation is that they remain less than 90'.
For applications of the kinematics where larger rotations may be encountered, a

method of overcoming the restriction on the magnitude of rotation, which utilizes

Rodrigues parameters, is presented in the appendix.

In order to be applicable to all existing rotor/hub configurations in helicop-
ters, the analysis needs to be incorporated into a hybrid multibody/finite-element
program. This incorporation is under development. Useful future extensions include

constitutive equations for composite beams and effects of shear deformation, warping

rigidity, and initial curvature.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, California 94035, January 18, 1985
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1.7,

T C e Dullm m1C i m2 C1
iu 6j Cki ekjL 0u 1 1 2i M2 ii"[

6u, 1< * 3KT 1K i<3 (70);u 3 3u" 3u" + 3 3u" u" 93 3u"(

603 symmetric i 3  .
33

To obtain the discretized matrix substitute the shape functions, equation (45), into
equation (70) and integrate over the element using, for example, Gauss-Legendre quad-
rature. The dimension of the discretized matrix will depend on the number of internal
degrees of freedom. Its contribution to the system in terms of nodal degrees of free-
dom is straightforward and can be left to the reader to determine. Similarly, ele-
ments of the gyroscopic matrix can be calculated.

These equations can be programmed either for finite-element computation as they
are or written in a more explicit matrix form. When the equations are linearized
about static equilibrium determined from nonlinear static equations, a convenient
approach is to calculate the mass and gyroscopic matrices explicitly as above and
solve for the stiffness matrix by numerically perturbing the total static general-
ized force.

7. RESULTS

In this section, two sets of numerical results are presented along with corre-
sponding experimental data. The numerical results were obtained by exercising a pre-
liminarv version of a multibody/finite-element program presently under development in
which the beam element formulation outlined in section 6 is implemented. The examples
were set up for calculation using only the properties given in this report.

The first. set of data concerns a cantilevered beam loaded with a tip weight
(ref. 15). The properties are tabulated in table 1, and the experimental configura-
tion is described in detail in reference 15. The beam was modeled with one element

and a sufficiently large number of polynomials to achieve convergence. Results for
transverse tip deflections u and u 2 and tip rotation 03 are shown in figures 4-6
along with experimental data. The agreement is good, much better than in reference 15. 0
This good agreement is achieved, however, without ad hoc modifications of the equa-

tions based on the values of beam stiffnesses as is done in reference 4.

The second set of data concerns a cantilevered rotating beam in axial airflow. A
'the air flowing down through the rotor plane is induced by the thrust at collective

pitch setting f, or a two-bladed rotor. Bending and torsion moments were mea- S
sured near the beam root for variable thrust settings. The program was set up to
CAlCtUIlatC a ir lo;ads based on a quasi-steadv aerodvnamic formulation by Greenberg
(ref. 1h) and on uniform induced inflow dte rmi ed from momentum theory. (The
experimental con tiguration is described in ai forthcoming publication by Sharpe
(Sharpe, 1). I. : An Experimental I Inv'stig;t ion of the Flap-Lag-Torsion Aeroelastic
Stab ilitv; (if I Small-Scale tlin g, less h, Ielicoptur Rotor in Hover. NASA TP, to be pub-
I ished in 1985). The rotor properties ire tabulaited in tables 2 and 3.) The rotor
bl;de was mode, led with two uniform e last ic se-meo ts and rigid m.assc!, for the
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RT

6q2 , = R(k,t)C
RT  T

6q 2  csT4

ht, virtual work of forces and moments at the root and tip nodes must equal the vir-

tual work caused by generalized forces at the root and tip of the beam

R R
F 6u =Qi q.

R 5R
M * 
R  p = 6q + Q 6qQ U2 0 2 41 41 (8(68)
T T
FT  Su = Q 3 6qU3 + Q3 2 6q32

T T = q + Q 6q
M 6 QL 6qa +Q426 42

so that

R

F QQ
FRi = i Q

[MRI- eQl- (69)""FT 22TRQ

T3

M.:: Q14MR (69)

24 R R (Z O t) Q2 4

Q

where RT is the transpose of R and the Q's are the generalized forces from the S
discretization of the beam (i.e., coefficients of the 6q's).

The element mass matrix may be written explicitly from equation (39) by collect-

ing coefficients of FU and PF. After simplification, and ignoring rows and columnsassociated with frame degrees of freedom, the mass matrix can be obtained from

19
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cc T'R
3 a

CT'R 1(2

q = sin
42 

T

The forces and moments at the root and tip nodes Must be &-termint-d Irim tht-

generalized forces at the beam root and tip, respectively. First notte thKIt tilt Vr-
tual displacement and virtual rotation of the root node must be idL-)t it.IA t')

of the beam root

R
-6u (t) ='u(Oqt)

where 6 . =6 Py (see eq. 36) . Similarly at the tip

TW

The relations for the virtual displacements are simple first variations of equo-
* tions (55) and (58). The rotations are more involv'-d. The use of equation (36)

evaluated at the root yields

R rK ~ %2+ 6.q 1(65)

wher R .6R 0. In matrix form

'q 12  R

R

6q 2 2  =R(O,t) 
6Ib 2 (66)

41 R34

* where

0 QC 3 -9C3

-'C ~0 C
*R(x 3 t) = 33 31 (67)

31 C 3~ I

A similar relation holds for the beam tip
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Similarly, the rotations must be the same., The direction cosines of R' with
respect to its undeformed position R, CR are

C R'R(t) = C(0,t) (56)

At the tip, the displacements of the node and beam are identical

u T T bF +q F +q F (57)
Ti-i 13-1 23-2 32-3

or

I'.- T
uT q1

. = CTR q (58)T223

T

and the rotations of the tip node CT'R are identical to those of the beam tip
C(Z,t)

T'R TVT TR
C = cT(t)C = C(zt) (59)

Equations (56) and (59) each represent nine equations, but only three are independent.
Three preferred elements to equate are C2 1 , C 3 1, and C 32  since

= ,2)/2 

C 2 1  -( ! sin 3

C 31  u' (60)

C =u'32 U2

and are thus easily expressed in terms of q's at the root and tip. The use of
equations (46), (47), and (60) yields for the root, from equation (56)

1 --31 L

and for the tip, from -siaion (59 [.--.',),] 61177

q 0x2 7 %I

• 2"- , . " """ '



and on the first derivatives

U' (0, t)/2 ; u (kt) = q (t)/19 (47)

The standard linear displacement functions satisfy these conditions for 0:

K1 = l- x..
B2=  x

2 X

and the standard cubic displacement functions satisfy these conditions for T:

T, = 1 - 3x2 + 2x3

2 2
T2 = x - 2x + 2x3

(49)
2 --

T3 3x2 - 2x3

= 
2 + x

3

If N., exceeds 3 or N 3 ,N4  exceed 1, the following higher-order shape functions
allow extra generalized coordinates to be introduced (ref. 13) but still to fulfill
the above end conditions

n+3 x(l - x)Gn(5, 3 ,x)

n 0,1, (50)

Yn+5 = x(1 - x)2Gn(9 5,x)

where Gn is a Jacobi polynomial (ref. 14). At the ends, the displacement and rota-
tion of the nodes are related to generalized coordinates from simple kinematics. Let

R R R T T Tu u b U U b (51)
Ri-i - T i-i

R F T TR Rb.=b. b. C..b. (52)-I - - lJ-J

where CTR depends on the pretwist 0(Z) of the beam element at the tip of the
element.

0 .

TR :6 c ] (53)

0 0 "

where s.. = sin J(2) and co = cos j(2). At the root of the element, the displace-
ments of the node and beam are identical

RR = bF q RURibi i qi bi (54)

or

R
URi q ii (55)
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be discretized in several ways. One way is to use a set of admissible functions in
'a Ritz-type analysis based on equation (44) where all the frame variables are pre-
scribed and RF'*1 and F1I are zero. A variation on that type of development would
be to allow ,-*l and 7I7 to be nonzero, thus collecting frame (i.e., rigid body)
forces and moments from equations (39) and (43) directly. In this case there would
be prescribed and nonprescribed components of each of the kinematical quantities in
equation (26). There are clearly other ways of using the frame motion to advantage.

If a finite-element discretization is used, it should be based on variable-order
shape functions (refs. 12 and 13) to avoid poorly approximating the geometric stiff-
ening term which, in this ana' sis, is calculated from the longitudinal strain
S' - 1. If u3  is crudely approximated, this term will be inaccurate. It should
be noted that in a redundant structure undergoing finite deformation, the geometric
stiffening effect , be calculated from the strain-displacement relations.

In a finite-element implementation the frame motion and forces may be used to
advantage when coupling elements together that are defined in different moving coor-
dinate systems, such as at the interface between rotating and nonrotating components
of a helicopter or at a hinge.

In figure 3, the beam element is shown with the frame F and two nodes R and T
at the root and tip of the beam, respectively. The displacement and orientation of
the beam cross section as a function of x 3 is represented by the displacement and
rotation of the nodes R and T and by a variable number of generalized coordinates
that are kinematically uncoupled from nodal translations and rotations. The beam
displacements at the root and tip, then, must be determined from the nodal
displacements.

The bending displacements u and u2  are to be expanded in C1 -type functions
i and u3 and e3 in C-type functions i, namely

Nz +1u = q_ .(t)Yi(x) ::
1=

N +I

u3 = q3 i(t) i(x) (45)

N +10

3 E q~i(t) i( x )

where x = ::3/, 0 < x < 1, and N i and N are the orders of the shape function
polynomials, N, > 3 and N3 ,N4 > 1. The generalized coordinates qji with

* j = 1,2,3 have the dimensions of length and q,. is dimensionless. The boundary -

conditions on the functions are

u,(O,t) = q .(t) ; ua(Z,t) = a3 (t)

u (0,t) = q t ; u (9,t) = q (t) (46)
33 1 3 32

3 (0,L) 
=  q3 t ((,,t) q42(t
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where the section integrals are defined as .

m 2 p d l d 2  ; i3 2 Ji • dC d 2

(40) '

m rrA d d d 2 ; i ffA r dC1 dE2  1

and

FF.. . .

u u.b. ; u = u.b (41)

5. DISTRIBUTED APPLIED LOADS

In this section, generalized forces caused by distributed applied loads are

S.simply stated for completeness. The applied force F and moment M act on the

* elastic axis so that the virtual work is

f0 F*I F, FI PF
. "- =- F •(6 + u) + M•(. +"

applied loads F (F F

+ [(x3 + u) x FI 6 Fl}dx (42)

or

-6W = f M 6u + 63i66\b dx 3  F F6u dx 3

applied loads a u' -i -

- RFI F dx •F1 [M + (x3 + u) x FJdx3  (43)

As with the inertial loads, the generalized forces can be obtained from the virtual

work and any suitable discretization of u i and -j

6. VARIOUS SCHEMES OF IMPLEMENTATION

The total virtual work may be written as

u W - 6W 0(4
body applied loads = 0 (44)

where the various components of the total virtual work may be obtained from equa-

tions (25), (30), and (43). The kinematical variables u i , i = 1,2,3, and O0 may -

3.
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p._ (= -u + 6 3i6 3)bi (35)

and

6 PF i (36)6 u + 6 .60 bPi

The angular acceleration of P in F, cPF , is simply the time derivative in F of
3 F

PF F.PF K. " KPF = F = L+ + 1 U'Pbt (37)

aUc a I

The generalized forces are now found from the virtual work

SoW = Sj (aMI Ml
body f JJ p_ - g) 6R dC 1 dC2 dx3o A

II Mi F*L F=(a - g) • (SR*+ Fu) + [(x3 + u + )

(aM I -g)]• 6 F I + x(a - g)]•6ie}d d dx (38)
a a jd 1 d2 x3 (8

The generalized forces associated with frame motion are useful in multibody/finite
element applications in which it is necessary to couple bodies together that are
moving relative to each other. These generalized forces are the coefficients of

FR Fi and 61Fi and can be obtained in a straightforward manner; the calculation of
these forces is left to the reader. For the generalized forces associated with
'Ii , Su', and ,%, the necessary ingredients are suitable discretizations for u i
and 3  and the virtual work, which is given by

bF /<F*l FI u FL FI F
-6W =b. " 6um{a - g + a x (x 3 + -+ W x [a x (x + u)] + 2w F I

body -1 -3-

F. F } +( LI m F1 PF Fl PFu + }+~ x m+wo x~ x 2)w+ *mw -2w W m.. .. -_ - K- - - _ _K

PF + PF x PF PF FI PF FI \dx*+ x m , x (w' x m,) + ao " mnj - o • ao _mg,/

+P f (; i i mx{F*l Fl F1

+ f -( uc + 6 x * - g + F x (x3 + u) + L
-I 0 3 -- 3) --M --

FL F F F) FL FI FL
FT , (x3 + u)] + 2, F I x F + F + i - I + (. i)

F PF PF Fl PF IF PF PF+ 2(. ) i + (. 4) + ( . i) x + i3,4 - i\ • dx,

13



We must find the acceleration and virtual displacement of the point M where the
position of M with respect to F* is governed by

RMF x 3 + u + (27)

where

Fx3 = X 3 t 3

u = u~b (28)

"" ! = b
-a-cc

The velocity of M in an inertial frame is then

MI =F*I F1 F. PI
I vF +w_ (x 3 +u )+ u W x + (29)_3

where F(') is a time derivative in F. Cross-section distortion P! is to be
neglected. The angular velocity wPI can be written as

PI PF +WFI (30)

Differentiation yields the angular acceleration

PI FI + FI PF +PF (31)

- Now the acceleration can be written in terms of previously developed expressions as

aMI F*I FI F1 [F F F .. P1_a -x 3 + x [_ x (x 3 + u)] + 2w x u+ + 0

•pI PI PI
+ × +PI (a + X) (32)

Substitution of equations (30) and (31) into (32) yields

MI F*I FT FI FT FT F. F..
F1 _ + u + ) + W x [ x (x3 + u + + 2w X u

Fl PF PF PF PF FT PF+2F × (P X + W x (W x) + w x ( x) + x (33)

The virtual displacement is obtained by the replacement of F(') with F6 (), a vari-
" ition in the frame F, in equation (29) and the substitution of 5R and 6 for

v and , respectively, in equations (29) and (30), as in reference-6, which yields

.MI F*T FT F PF (4
.R I

= 6R + 6 x (x + u +) + 6u + 6 P x (34)

where ,,RF* F, and 'FJ = F , These quantities reflect any nonprescribed

mot ion of the frame in inertial space. The angular velocity and virtual rotation of
the cross-section axes P in F (ref. 6) can be written as

12
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-7 -. 7 - - . - Ile

SI

d D r E e 2 C d
12 fL4 ~ JJA

SE 5 E%(2 1 dl 2  ; J 5 Gx + + C -X\)

2
]jd d

B3 (F , CL 1t) CId 2 EC12d 1 2 1 3 11 1 2

= "AEA( 2 )t - ~\2)t, 1 d~2 (cant)

f \ ~ ~ E2=0; [ E =0"

JEXC d 1 dC2  0 ; 5EX dC1 d 2  0
dOz 1 d2

The strain energy is then

cli= 5 [(F3 Ds + M~ 3K 6uC' + F ,s 6u' + e M K066-6int =6U 
=  3 3u(, + i a-7T,' 3u DU F3 O e 3M (1 f

"Ulf Si,, + M30 dx3  (25)

A suitable discretization of u i and 03 is sufficient to obtain generalized forces
in a Ritz-type formulation.

4. GENERALIZED FORCES CAUSED BY INERTIAL AND GRAVITATIONAL LOADS

In this section the generalized forces caused by inertial and gravitational
loads (i.e., body forces) are developed for the beam element. The effects of cross-

section warp on the body forces are negligible and are not considered. It is
assumed that the gravity field g, the velocity of point F* in an inertial frame
vF*I, the acceleration of point -F* in an inertial frame aF*I, the angular velocity
and angular acceleration of frame F in an inertial frame -FI and aFI , respectively,
are given and defined in frame F as

F F*I F*I F F*I F*I F
= gFibi ; a aFi ; v =V Fi bi

(26)

F I = W FIF a F1 F
_ -= Fii ; _ = Fi-_i

a w b ai
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TABLE 4.- BLADE MASS PROPERTY DISTRIBUTION

Inboard Outboard Ms/lgh, Polar moment ofj
station, station, kgm inertia/length,

r/R r/R k/nkg-m 2 /M

0.0185 0.0215 5.214 -

.0215 .0374 .0214 -

.0374 .0407 5.418 5.827xl10 3

.0407 .0440 10.010 7.073xlO~ '
I .0440 .0456 12.745 4.715x103'

.0456 .0555 9.969 6.317x103

.0555 .0608 5.265 1.468xlO-'

.0608 .0634 2.663 2.082xlO-'

.0634 .0951 2.429 2.082x10 3

.0951 1.0000 .343 2.062xl10 4
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0I
Figure 3.- The frame F, root node R, and tip node T for a beam element showing

deflections uR and uT and change of orientation CR 'R, CT'T with respect to
the initial positions and orientations.
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*Figure 7.- mcasured steady blade moments versus blade pitch angle: precone =00,

droop =00, 1000 rpm, soft pitch flexure.
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Figure 8.- Measured steady blade moments versus blade pitch angle: precone =5',
droop =00, 1000 rpm, soft pitch flexure.
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