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ON STRATIFIED VORTEX MOTIONS
UNDER GRAVITY

I. PURPOSE AND SCOPE

Vortex shedding in stratified fluids has been a fascinating subject in atmospheric and oceano-
graphic studies. The "pancake" vortices developed in the late wake of a towed axisymmetric body and
the vortex trails evolved in the lee of certain islands have intrigued researchers because of the coherent
flow patterns generated. The existence of the organized vortex patterns implies the existence of some
stability criteria that govern the generation, evolution and collapse of the flow. In this paper, we use
stability analysis to examine this behavior.

General stability characteristics of a vortex flow with arbitrary density and velocity profiles varying
in both the axial and the radial directions are to be investigated. Since the flow is stratified in both the
axial and radial directions, two force fields, the gravitational and the centrifugal, are affected by the
density variation. A constraint relation exists and requires the pressure to be balanced in both direc-

,* tions. This constraint is responsible for the density variations in both force fields. In addition, the
variation of the velocities in both directions produces two shear layers perpendicular to each other. The
shear layers are responsible for the instability mechanism that might preclude or destroy the organized
vortex patterns. This paper presents an overall view of certain stratified vortex flows and criteria that
govern the motion of the fluid under these circumstances.

Section 2 briefly describes the underlying flow phenomena and the influence of/on the density
* .distribution. Section 3 presents the instability mechanisms that control the motion of the fluid. Section

4 examines the necessary and sufficient conditions for stability, the essential criteria that may govern
. the existence of the vortex motions. These conditions are discussed and interpreted in light of the
* .mechanisms. Section 5 presents the interfacial conditions for discontinuous flow profiles or sharp flow

layers. Finally, section 6 gives two examples with exact solutions to demonstrate the stability behavior
* and section 7 draws the overall conclusions.

II. INTRODUCTION

1. The Phenomena

Vortex patterns which can develop in stratified wakes in the atmosphere and the oceans have
stimulated considerable interest in recent years. Vortex trails generated in the lee of certain islands as
shown in Figure 1 and "pancake" vortices which can evolve in the late wakes of towed axisymmetric

S.bodies as shown in Figure 2 are fascinating because of the organized structures reminincent of the two
dimensional Kirmin vortex street behind a bluff body. The stratified patterns are three-dimensional
owing to their small vertical extent with respect to the generating body size.

When an axisymmetric body is towed through a stratified fluid, vortices are first shed three-
dimensionally. However, the flow soon collapses in the vertical direction because the gravitational
effect inhibits the vertical motion. The resultant vortex structure which can then develop in the late
wake is confined within a relatively thin layer, and can appear reminiscent of the two dimensional Kar-

man vortex street if observed from the gravitational direction.

Manuscript approved February 14, 1985.
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The inhibition of the fluid motion and the development of the horizontal flow patterns can quali-
tatively be examined by the motion of the fluid particles in the gravitational force field. When a sphere
is towed through a stratified fluid, the fluid particles in four locations are of particular interest. Figures
3a and 3b respectively show the top view and side view of a sphere and of the four fluid particles A, B,
C and D being considered. Since the fluid is stably stratified in the vertical direction, the densities of
particles A and B are equal while the density of particle C is lighter than that of particle D. To create a
rotational motion in three-dimensions, particles A and B, and particles C and D have to interchange
their positions. The interchange of particles A and B requires no work to be done in the gravitational
force field. The interchange of particles C and D, however, requires net work to be done which is
equal to the increase of the potential energy at the new locations. Accordingly the vertical motion
becomes suppressed by the gravitational forces and the resultant vortex motion will be confined in a
relatively thin layer.

2. The Density Distribution

The density inhomogeneity plays a very subtle role in generating vortices, internal waves or other
organized flow patterns in stratified fluids. These organized flow patterns exist only in stratified fluids,
no matter how weakly stratified, but not in homogeneous fluids. The fluids in the atmosphere and in
the ocean are very weakly stratified but are capable of supporting these organized flow patterns.

One of the mechanisms for generating the organized flow patterns is the additional restoring force
in stably stratified fluids and will be discussed in the next section. Here we analyze the influence of the
vertical density profile upon the flow behavior by considering the following hypothetical case.

Let a line vortex have an axis of symmetry along the z-axis of a cylindrical coordinate system

(rO,:). The constraint equation of the pressure balance for the present flow is

(Po rfl 2 ) + -- (Pog) = 0 (2.1)az air

where P0 and fl are respectively the density and the angular velocity of the flow. Let us first assume
C that the density is stratified only in the axial direction, i.e., P0 - po(z). The constraint equation

requires the angular velocity to be described by

fl - f(r).J G) (2.2)

where f(r) is an arbitrary function of the radius. The steady-state pressure is now governed by

P(r,z) - f rf 2 (r) dr - g f Po (z) dz. (2.3)

Next consider two vortices, one on top of the other, with a common axis and a common boundary
located at z - Z. The vortex on top has a density P I and an angular velocity flI while the one below
has a density P2 and an angular velocity fl 2. The pressures in each individual region are, respectively,

P,- f r? dr - g f p, dz (2.4)

P2 " f r f' dr-g f P2z.

The pressure balance condition at the common boundary : = Z requires that

P1 (r,Z) - P2 (r,Z).

which implies

f(r) - f (r)

or

p I (Z) fl I(r) - p 2(Z) 2k/(r) - constant. (2.5)

2
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In other words, if the density were restricted to be z-axis dependent only, the angular velocity would be
inversely proportional to the density of the fluid. Such a restriction in turn implies that, for a statically
stable density distribution of a line vortex, the rotational velocity should be large above and small
below. This is apparently not the vortex pattern developed in the late wake behind a towed sphere as
shown in Figure 2, and suggests that the steady-state density will have to be redistributed from its origi-
nal axis-dependent distribution.

To understand the behavior of such a vortex pattern behind an axisymmetric body, one needs to
first investigate the stability characteristics of a general class of flows which have their density and ve-
locity components varying in more than one direction.

III. INSTABILITY MECHANISMS

The hydrodynamic stability of stratified parallel flows has been one of the central problems in
fluid mechanics and has been studied extensively in this century. It is concerned with when and, to a
lesser extent, how the flow patterns are generated, evolve, collapse, and eventually transit to tur-
bulence. These phenomena are basically governed by two instability mechanisms, the Rayleigh-Taylor
instability and the Kelvin-Helmholtz instability as to be discussed as follows.

1. Horizontal Parallel Flows

Ia. Rayleigh-Taylor Instability

The Rayleigh-Taylor instability derives from the equilibrium or constant acceleration state of
fluids with density inhomogeneity. Activated by the body force of the density variation in a force field
(gravitational for example), this instability is concerned with the motion of the fluid particles along the
direction of the force field. We use one simple but important example to demonstration this instability
mechanism.

Consider two equal volume fluid elements within a flow regime in a Cartesian coordinate system
with its z-axis pointing in the opposite direction of gravity as shown Fig. 4. The elements located at

SQ, (zi) has a density equal to pI while the one at Q2 (z 2) has a density equal to P2, and they are both at
rest. If we interchange the positions of the two elements, the work done in the gravitational force field
are,

W1- -Pig (z 2 - z) (3.1)
W2 - P2 g (z 2 - z) (3.2)

where g is the gravitational constant. The total work done due to the exchange is

8 W - (P2 -- P) g (z2 - Z). (3.3)

Instability of the flow, corresponding to positive work done during the interchange, will occur if

P2 > Pl. Another way to view this type of instability is to examine the pressure gradient experienced
by the fluid elements. If the element originally located at Q2 is displaced to Q1, the gravitational force
experienced at its new location is P2g while the prevailing pressure at Q, is Pig. The element will con-
tinue moving downward if P2 > Pi, and the motion is unstable. This is a type of the Rayleigh-Taylor
instability in which the motion of fluids is caused by the force field (or acceleration) and the direction
of the motion is aligned with the force direction.

In the case of PI > P2, stability of the flow, corresponding to negative work done in (3.3), is
assured. This stability denotes an equilibrium state of fluids commonly known as the "statically stable"
distribution of density in stratified fluids. The density gradient along the force direction is a measure of
the "strength" of the stratification. The physical explanation of this measurement is given as follows:

3
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Again consider a stably stratified fluid as in Fig. 4 with p, > P2. If we interchange the positions
of the two fluid elements, the element with density equal to p, experiences excess gravitation forces
while the one with density equal to P2 encounters excess bouyancy forces in their respective new loca-
tions. These forces try to restore the elements to their original equilibrium positions, and thus produce
a forced oscillation of the elements. This oscillation is measured by the well-known Brunt-Viisil fre- A
quency defined as

N: =I P 1- pl/2
1/0 Pz (3.4)

* ~Po dzJ

where p0(z) is the density profile of the flow field. In practice, this frequency is used to indicate how
strongly the fluid is stratified.

l b. Kelvin-Helmholtz Instability

The Kelvin-Helmholtz instability is triggered by the velocity gradients in the shear layer. The in-
stability is caused by the relative horizontal motion within the flow field. We will again use the flow
regime in Fig. 4 with a velocity field to demonstrate this mechanism.

The velocity field U(z) being considered is parallel and unidirectional along the x-axis, and varies
only in the : direction. Consider again that the fluid element originally located at Q1 has a density
equal to p, and a velocity equal to U, while the one at Q2 has a density equal to P2 and a velocity equal
to U2. The fluid is statically stable, i.e., p, > P2. When the two elements are in relative motion a hor-
izontal shear layer will be generated. The excess kinetic energy gained by these two elements may
cause their interchange of position in the gravitational force field, and thus induce instability.

The kinetric energy that deviates from the mean flow is

K--p U1 + P2 " (PI + P2) (Ul + U2) (3.5)

while the work done required to interchange the two elements in the gravitational force field is given in

(3.3). If we use the differential forms such that

Z 1 - Z Z2= - + 8 Z

PI - p0 (z) P2 - p 0 (z) + 8 PO (3.6)

U 1 - U(z) U2 - U(z) +8U

and neglect the inertia effect of the density variations, Eqs. (3.3) and (3.5) can be written as
8 W- - 8 p 0 g8g (3.7)

8K - -L- p0(8 U) 2 . (3.8)

The interchange of the two elements are impossible if 8 W > 8K, i.e.,

- . g >' ITTI (3.9) .

By defining the Richardson number
± 2/1 dU , ,

I. -N z I (3.10)

4



to denote the ratio between the buoyancy effect and the inertia effect Eq. (3.9) can be written as

(3.11)

This is the well-known Richardson criterion for stratified parallel flows stating that the stability of the
flow is assured if the local Richardson number is greater than or equal to a quarter everywhere within
the flow domain, and the precondition (or the necessary condition) for this Richardson criterion is
dp0 < 0, a statically stable density profile in the gravitational force field. The mathematical derivationdz-
of (3.11) was given by Miles (1961) and Howard (1961) using the normal mode method, and will not
be repeated here.

2. Rotating Flows

The instability of rotating flows also has two origins, the centrifugal one and the shear one. The
former is an instability of the Rayleigh-Taylor type while the latter is an instability of the Kelvin-
Helmholtz type. To distinguish the instability of rotating flows from that of horizontal parallel flows,
we will identify them as the centrifugal instability and the shear instability.

Unlike the velocity in horizontal parallel flows which is mainly responsible for the generation of
the Kelvin-Helmholtz instability, the angular velocity is involved in both the centrifugal and shear
instabilities because of its dual role in stability. While the angular velocity gradient generates shear
which always tends to destabilize the flow, the rotation of fluid creates centrifugal forces which can
either stabilize or destabilize the flow. This behavior was mathematically investigated by Fung (1983,
1984) and is physically interpreted in this section. For discussion simplicity, we consider flow profiles
varying only in the radial direction. The gravitational effects will temporarily be ignored for the discus-
sion in this section.

2a. Centrifugal Instability

As an instability of the Rayleigh-Taylor type, the centrifugal instability is activated by the centrifu-
gal force field created by the rotation of fluid. Unlike the gravitational effect which exerts constant pull
on fluids, the centrifugal effect depends on both the angular velocity and the position of the fluids. We
will, however, apply the basic principle used in the discussion of the Rayleigh-Taylor instability in Sec.
la to demonstrate this force effect.

Consider two equal volume fluid elements located at Q, and Q2 within a flow regime in a cylindri-
cal coordinate system with its z-axis coinciding with the axis of rotation as shown in Fig. 5. The ele-
ment located at Qi has a density p, and as tangential velocity V while the one at Q2 has a density P2
and an tangential velocity V2. When the two particles interchange their positions, the principle of con-
servation of circulation requires that the element originally located at Q, possess a tangential velocity
(r1 Vl)/r 2 and the element originally located at Q2 posses a tangential velocity (r2 V2)/rl. The
corresponding work done by these two elements in the centrifuged force field are,

Pi V 1 r? V?1(W, - + (2 r1)  (3.12)=21[ r1  r2 ~ 2-_!

V2
P2 j V rV2

W 2 2 + (r - r2). (3.13)

Instability of the flow will occur if the total work done by the interchange of the two elements is posi-
tive, i.e., p

8 W-- Pl r2 V? - P2 r2 V' > 0. (3.14)

5 S .



An alternative way to look at this type of instability is to examine the pressure gradient experienced by
the fluid element due to the interchange. If the element originally located at Q1 is displaced to Q2, the
conservation of circulation demands that the element experience a centrifugal force p1(r Vll/r2) 2/r 2 at
its new location. At the same time, the prevailing pressure gradient at that location is P2 V?/r 2. The
element will continue its motion outwards if the centrifugal force it experiences is greater than the pre-
vailing pressure gradient. Equation (3.14) is then satisfied and the flow becomes unstable.

The mathematical derivation of this stability condition was given by Synge (1933) in a differential
form, saying that the necessary and sufficient condition for stability of the flow subject to axisymmetric
perturbations is

>1 0 (3.15)

where

P= 1. d (rV)2] (3.16)
pO r3 dr

is the Rayleigh-Synge discriminant. The discriminant can be separated into two parts and the well-
known Rayleigh-Synge criterion in (3.15) can be written as

= N,2 + ld(rv) >10. (3.17)

r3 dr

Here the "natural" oscillation f-equency, reminiscent of the Brunt-Viiisdli frequency in the gravitational
force field, is defined as

IV, d 0/2 (3.18)
Po r dr

to measure the density variation in the radial direction. It is obvious from the above discussion on con-
dition (3.14) that the Rayleigh-Synge discriminant is composed of two parts that affect the centrifugal
balance, the variation of density in the centrifugal force field, and the conservation of circulation. The
Rayleigh-Synge criterion in (3.15) is therefore a condition for centrifugal stability, a type of "statically
stable" flow profile in the centrifugal force field created by the fluid rotation.

2b. Rotating Shear Instability

As an instability of the Kelvin-Helmholtz type, the rotating shear instability is triggered by the
angular velocity gradient in the shear layer. In the present case, both the centrifugal force field and the
shear layer are created by the rotating velocity itself (Fung 1983), and it is sometimes difficult to
separate the two effects. In addition, the interchange of fluid elements is not restricted to be two-
dimensional as in the case previously discussed. By considering a radius-dependent swirling flow, Fung
& Kurzweg (1975) derived a Richardson criterion for stability of the flow subject to three-dimensional
perturbations. In the absence of axial velocities, their result reduces to

(D - + 4D >j 0 (3.19)

for assured stability. Here 0 - V/r is the angular velocity. It is obvious that condition (3.19) will be
violated if P < 0 In those cases both centrifugal instability (Rayleigh-Taylor type) and rotating shear
instability (Kelvin-Helmholtz type) take place. We can therefore conclude that the precondition
(necessary condition) for the Richardson criterion in Eq. (3.19) is condition (3.15), a requirement for
"statically stable" profiles in the the centrifugal force field. By defining the Richardson number

Jr= NA/r2(-fl (3.20)

6



to represent the ratio between the radial "buoyancy" effect and the angular shear effect, the criterion in
Eq. (3.19) can be written as

...1 (3.21)

Thus, stability of a radius-dependent flow is assured against arbitrary small perturbations if the local
Richardson number is nowhere less than a quarter within the flow domain. It is also clear that the
Richardson criterion will be violated if the density is decreasing radially outwards. As a matter of fact,
Fung (1983, 1984) showed that the instability of the flow will occur if the density is a decreasing func-
tion of radius. In those cases, instability of the flow is no longer restricted to that of the shear origin
only.

It should be emphasized that the Richardson criteria derived for two-dimensional parallel flows
(3.11) and rotating shear flows (3.21) are merely sufficient conditions for stability. Violating those
conditions does not necessary lead to instability.

IV. STABILITY CRITERIA

In the previous discussion on the instability mechanisms, we were concerned with flow profiles
varying in one direction. In those cases, only one force field and one shear layer exist. When the fluid

is stratified in two directions, the effect of both the gravitational and the centrifugal force fields appear.
The restoring forces in both the axial and radial direction not only exert their influence on their respec-
tive directions, but also interact with each other. The interaction appears as the pressure balance condi-
tion governed by the equations of motion. In addition, when the angular velocity varies in both the
radial and axial directions, the shear effect produced by the velocity gradients not only exerts its influ-
ence but also posseses interactions on both the r - 0 and r - z planes. In other words, two force
fields and two shear layers exist within the flow and interact with each other. Intuitively, the stability
of the present flow should involve one Richardson criterion in the radial direction and one in the gravi-
tational direction. However, the presence of the two force fields, the density stratification in two direc-
tions, and the two shear layers further complicates the problem. We are concerned here with the influ-
ence of these interactions upon the final stability and the resultant stability criteria.

Mathematically, one can apply the normal mode method to vortex flows with profiles varying only
in one direction and obtain a set ordinary differential equations governing the characteristics of the
flow. When the flow profiles varies in two directions, however, the governing equations will no longer
be ordinary. Additional boundary conditions in the second directions are also required, and the resul-
tant system becomes much more complex.

In this section, we will consider mathematically flow profiles of a more general nature to describe
the organized flow patterns developed in the late wake. A general class of vortex flows with their
steady state distributions depending on both the axial and radial coordinates will be investigated.
Necessary conditions for stability of the flows are derived by using the method of generalized progress-
ing wave expansion. The necessary conditions can be interpreted using the physical arguments given in
the preceding discussion on the fundamental instability mechanisms. Sufficient conditions for stability
will also be examined. A new Brunt-Viisili and a new Richardson number can be defined. The
former measures the interaction of the density variation in one direction with the force field in the S
other direction. The latter denotes the ratio between the newly defined Brunt-Vdis l5 frequency and
the interaction of the velocity gradients in two directions.

The stratified vortex flow being considered has a density po(r,z) and angular velocity fl (r,z) in a
cylindrical domain (r,O,z) with the z-axis in the gravitational direction. The fluid is assumed to be
inviscid and incompressible. To satisfy the pressure balance condition anywhere within the flow regime I*
we need the constraint equation

7
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(p r fl 2) + - (po0 g) - 0. (4.1)

The linearized equations for the present flow subject to small perturbations are

oat a 4 a

PO + f-- + -L(rQ) + f L + -L(rfl) . P (4.3)
at 6 1u az j r a0

POa +  -, 0 - - pg (4.4)

at ao &
+ fl + apo _-0 (4.5)at -a + a
ah + fi + a + ai, 0 . ( .6ar r r-o & Z 0  46

Here £ , . f, and , are respectively the perturbation velocities in the r,O,z directions, the perturba-
tion pressure and the perturbation density.

The boundary conditions for the system are

ti=0 at r = RI,R 2  (4.7a)

and

=- 0 at Z- ZZ, (4.7b)
where R,, R2, Z1, and Z 2 are locations of the rigid boundaries. For unbounded flows, the perturbation
velocities will vanish at infinity.

I. Necessary Conditions for Stability

By transforming the linearized equations to a symmetric hyperbolic system and by using the
method of generalized progressing waves expansion, Fung (1985a) derived the necessary conditions for
stability of a general class of compressible flows with profiles varying in both the axial and radial direc-
tions. His results for incompressible flows reduce to the results in the present case, so that the neces-
sary conditions for stability of the flows are

('t > 0 (4.8a)

>g ap 0 (4.8b)

o apj ap- 1 (4.8c)

within the flow domain. Here

r Or Po (r2f )2 (4.9)

reduces to the classical Rayleigh-Synge discriminant in Eq. (3 16) if the density and the velocity of the
flow depend only on the radius.

The physical meaning of these necessary conditions can also be interpreted on the basis of kinetic
energy and work done during the movement of fluid particles in the centrifugal and gravitational force
fields as follows.

8



A

B

(a)

Figure 3a - Top view of a sphere towed
in a stably straified fluid

c

9

D

(b)

Figure 3b - Side view of a sphere towed
in a stably stratified fluid
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Figure 2 - A pattern of vortices in the clouds downstream from the Arctic island of Jan Mayen, east
of Greenland. The vortices were formed by the wind flowing past the mountainous island. The photo-
graph was taken from a NOAA satellite. Photo courtesy of Dr. Emil Simiu of the National Bureau of
Standards.

21
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Figure I - Vortex structure in the wake of a sphere towed through thermally stratified water. The
upper photograph shows the alternate vortex pattern in the horizontal plar at a late time, t = 285
seconds, after the passage of the sphere. The relatively narrow vertical exten, of the wake is shown in
the lower photograph. Photographs courtesy of Dr. Timothy Kao of Catii,. U "versity.
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APPENDIX

Consider a function

F- aX2 + 2bXY + cY 2  (Al)

where X and Y are independent variables, and a,b, and c are arbitrary scalar. All the quantities in Eq.
(Al) are real. The function F can be normalized into

kIS? + k2S2 (A2)

where

k = -- [(a + c) ± /(a + c) 2 - 4(ac - b2)]. (A3)

The function F will always be positive for all values of S1 and S2 if k, and k2 are real and positive, i.e.,

a + c 0 (A4)

ac > b2  (A5)

Eqs. (A4) and (A5) will be satisfied if

a 0 (A6)

c>O (A)

ac b 2  (A8)

The function F in Eq. (A l) will always be positive if conditions (A6) through (A8) are satisfied. The
conditions in Eqs. (4.8) can then be reached by matching Eq. (4.12) with (Al).
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VII. CONCLUSIONS AND DISCUSSIONS

Through a discussion of both the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, we have
analyzed the instability mechanisms governing a stratified vortex flow possessing two shear layers and
two force fields, the centrifugal one and the gravitational one. Since the present flow distribution varies
in both the axial and the radial directions, the governing equations can no longer be ordinary. To over-
come this difficulty, we have used the method of generalized progressing wave expansion to obtain a
set of three necessary conditions for stability. We have further used integral techniques to obtain a set
of three sufficient conditions for stability. The necessary conditions represent a generalized state of
statically stable flow profiles, a criterion for the instability of the Rayleigh-Taylor type. The sufficiency
conditions denote a generalized form of the Richardson criterion, a ratio indicating the balance between
the generalized "buoyancy" effect induced by the restoring force in the two force fields and the inertia
effect produced by the Kelvin-Helmholtz instability in the shear layer. Two of the necessary and suffi-
cient conditions for stability represent the criteria in their respective directions. The third ones, result-
ing from the constraint relation for a pressure balance everywhere within the flow field, act as a re-
straint to the other two conditions. As a result, the three necessary and sufficient conditions derived
require that the flow be stable in the centrifugal force field, in the gravitational force field, and in the
pressure field that restrains the density variation in the two force fields.

The i;c- -y defined Richardson number J,., greater than a quarter for guaranteed flow stability,
represents a ratio between the inte- tion of the density variation in one direction with the force field in
the other direction, and the interaction of the velocity variation in one direction with that in the other
direction. The former interaction is measured by a new Brunt-VaislaI frequency N,. and determines
the manner in which the density should be stably stratified under the influence of both the force fields.
It is a result of the pressure balance condition. The latter interaction determines whether the presence
of the velocity gradients in the second direction strenghtens or weakens the resultant shear effect. As a
result, the newly established Richardson criterion serves as a constraint on the other two Richardson
criteria and provides a stability condition for all the combinations of density and velocity profiles vary-
ing in both the axial and radial directions.

The angular velocity of the flow plays a dual role in flow stability. The velocity itself, on one
hand, interacts with the density gradient in the radial direction to create a centrifugal force field which
can either stabilize or destabilize the flow. Such an interaction is measured by the Brunt-V~isild fre-
quency N, to represent the restoring force in the radial direction. This is analagous to the interaction of
the axial density gradient with the gravitational force field, which is measured by the Brunt-Vdisili fre-
quency N: to represent the restoring force in the axial direction. The angular velocity gradients, on the
other hand, induce shear effects which, in general, destabilize the flow. However, the final stability
depends on their interaction. For assured stability, the velocity gradients in the radial and the axial
directions must be of opposite sign.

The stability criteria investigated here are for a general class of rotating flows in the gravitational
force field with the velocity and density varying in both the axial and radial directions. The conditions
are therefore valid for the vortex patterns in the late wake, the vortex trails on the lee of certain moun-
tains, and also for a wide range of problems in atmospheric and oceanographic studies.
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where K - kR. Equation (6.4) describes the stability characteristics of the present flow distribution for
all the axial and azimuthal wave numbers. We will consider a particular case as an example. For
k - 0, Eq. (6.4) can be solved for the complex frequency w and the flow is stable if

p2[MO2- (m - 1)fn1]2 + (1 + - )1(m - 1)plfl? - mpBflj >0. (6.5)P1

The stability domain is plotted in Fig. 8 for different azimuthal wave numbers. The stability boundaries
for the axisymmetric mode p2fl - pIf 2 - 0, a mode for the centrifugal instability obtained either by
integrating the Rayleigh-Synge criterion across the interface or by expanding the modified Bessel func-
tions asymptotically in Eq. (6.4), is also plotted to compare with these for the rotating shear instability.
It is obvious that the stability domain for the two types of instabilities are quite different.

The second example to be examined is two uniformly rotating flows with different density, one
above the other as follows:

Pa (r,z) - P, for z > 0
C(r,z)- fl:

po (r,:) - p2 for z < 0 (6.6)

where the quantities with numeric indices are constants. The gravitational effect is included in the
present case. The contraint equation requires that

pifl? - P2l (6.7)

to satisfy the pressure balance at the axial interface. The pressure and the axial velocity perturbations
obtained by solving Eqs. (418) to (4.20) for the flow profile in Eq. (6.6) are

W I k [A,J, (kq, r) + Bj Y.(kq r)I(C, e - Dje - Al

p -[A J.(kq, r) + BY.(kq r) [Cel + Dej j - 1,2 (6.8)

where J,, and Y,, are the Bessel functions of the first and second kinds. For bounded solutions at
infinity, we require

C, - D2- 0. (6.9)

Matching both conditions (5.2) at the interface z - 0, we obtain a relatively simple secular relation
governing the stability characteristics of the flow as follows

P2 [(Mrfl 2 - W)2 
- kg] + P2[uMriI - w) 2 + kg] -0. (6.10)

Solving Eq. (6.10) for the complex eigen-frequency &j, we find the flow will be stable if

kg(Pf - P) - m'pIp 2(f 2 - fl 1 )" > 0. (6.11)

The first term represents the effect of the density variation in the gravitational force field. It is obvious
that Eq '6.11 ) will always be violated if p- < p). a statically unstable state of density distribution. In-
stability of the Rayleigh-Taylor type will take place The second term denotes the shear effect arising
from the angular velocity difference. an instability of the Kelvin-Helmholtz type which always destabi-
lizes the flow.
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The physical intepretation of Eqs. (5.2) can also be reached by similar arguments and will not be
repeated here. Similar to the case of the cylindrical vortex sheet, the deformation of an interface in the
axial direction induces a perturbation to the flow in two ways: the perturbation to the pressure field and
the perturbation to the gravitational force field. Any discontinuity arising in densities should be
included in the jump condition given in Eq. (5.2b).

Even though Eqs. (5.1) and (5.2) are derived for flows with an interface in the radial or axial
direction, they are in fact valid for flow profiles with or without discontinuities.

VI. TWO ANALYTICAL EXAMPLES

In the following we will use two examples to demonstration the stability characterics described by
Eqs. (4.18) to (4.20). The first one has an interface in the radial direction while the second one
possesses an interface in the axial direction.

The first example to be examined is a uniformly rotating core surrounded by a potential vortex
with different density. All flow quantities depend only on the radius as follows

fl (r,z) - fl 1

po(r,z) - p, I for 0s r < R

fl (r,z) - fl 2(R/r)2

po(r,z) = P2 - for R ( r < oo. (6.1)

Here the quantities with numeric indices are constants. The gravitational effect is neglected in this

example.

The solutions for the flow profiles in the inner and outer regions are respectively,

N, 2fl I kqrl4'(kqr) 1 1 mfl I kqrK,,'(kqr) 1
2reA, t + Im (kqr) + B -I +

ru N, I. (kqr) N Km(kqr)e

Pi - - (AP (N? - 4fI1.)[Ailr(kqr) + B1 Km(kqr)] e±L-"

and

U2- ik [A21,'(kr) + B 2K'(kr)] e"' k

P2 - P2,[mfl 2(R/r)2 
- cJ[A21,(kr) + B 2Km(kr)] e±t I

Here

N 1 - mf I - w,

412 1/ 12q -. It - Nv (6.2),-

k is the axial wave number and the prime denotes the total derivative with respect to the arguments of
the modified Bessel functions of the first and second kinds, /,, and K,. For bounded solutions at S
infinity and on the axis, we require

A,- B, - 0. (6.3)

Matching both conditions (5.1) at the interface r - R, we obtain the secular relation
p(N' 4n1 ) -p2N11 12 n 2]- p n 2 (6.4):-

Kql,'(Kq) 2mf1i K K',(K) V2 2  (64
+l. (K q ) N 1  Km,.( K)
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and

<P>- + w <Pa g>,- =0 (5.2b)

where <D>- Z+ (Z +0)- (Z-0).

The physical meaning of Eqs. (5.1) and (5.2) can be explained by a simple linear perturbation
method. Assume that the cylindrical vortex sheet located at the radial position R is disturbed such that
the deformed interface is prescribed by

r - R + ij(r,O,z;t) (5.3)

where R > >j. Taking the total derivative of Eq. (5.3) and assuming periodic solutions in Eq. (4.17)
..:: yield y(r,z) u(r,z) (5.4)

ii:.z) - mfl - W

Equation (5.1a) follows if no gap is allowed to exist at the disturbed interface.

The dynamic interfacial condition can also be obtained by examining the equation of motion. The
steady-state form of the Euler equation of motion in the radial direction reads

o == PO rfl' 
(5.5)

* where Po (r,z) is the total pressure. The steady-state total pressures inside and outside the vortex
sheet are respectively

PO(r) > Pot 4l d4 for R1 < r 4 R (5.6a)

P°(r) =fR po 4f12 d4 + f PO24l2 d for R < r <00, (5.6b)

where the subscripts 1 and 2 respectively denote the quantities prescribed in the inner and outer regions
separated by the vortex sheet, and R, is a reference radial location. Let the vortex sheet be perturbed
according to Eq. (5.3). The total pressure is now

Pj -PJ + P] j 1,2 (5.7)

and should be balanced at the perturbed interface, i.e.,

PI(R + ) - P2 (R + ). (5.8)

Subtracting Eqs. (5.6) from Eq. (5.8) and assuming that all the quantities in the mean flow are
bounded and continuous in the interval [R, R + j], we obtain the first order perturbation condition
for dynamical balance evaluated at the undeformed interfaces as follows:

<P>R + <Po rfl 2 > 1(R) - 0. (5.9)

The dynamic interfacial condition (5.1b) follows if periodic solutions for the perturbation quantities in
Eq. (4.17) are assumed once again.

As shown in Fig. (7), the mathematical steps adopted to derive Eq. (5.9) from Eq. (5.8) simply
demonstrate a dissolution of the total pressure force acting at the disturbed surface of the vortex sheet
(Fig. 7a) into the individual force components acting at the steady-state interface (Fig. 7b). As a matter
of fact, Eq. (5.9) also can be reached simply by balancing all the force components acting at a differen-
tial element (RR dO (per unit axial wave length) that experiences the centripetal acceleration induced
by the angular velocity. This procedure of force decomposition clearly demonstrates that the deforma-
tion of the interface described by Eq. (5.3) induces a perturbation to the flow in two ways: the pertur-
bation to the pressure field and the perturbation to the centrifugal force field arising from the azimuthal
velocity. Any discontinuity arising in densities and azimuthal velocity should be included in the jump
condition given by Eq. (5.1b) or (5.9).
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a,b) that N, must be real preceding stability. This frequency can also be viewed as a measure of the
density variation in both the force fields or as a constraint of the pressure balance condition described
in (4.1). The newly defined Richardson number J, now stands for the ratio between the interaction of
the density variations (in one direction) with force fields (in the other direction) and the interaction of
the velocity gradients in one direction with the other direction. The latter is the interaction of the shear
stresses that trigger the shear instability. By using the relation in (4.26), the stability condition in
(4.24c) can be written as

> J, - J. ( -= ,) (4.24d)

Therefore we can immediately conclude the following two arguments for assured stability: [1] the
Richardson number J. must be greater than a quarter, and [2] the velocity gradients in the radial and
the axial directions must be of opposite signs. Unlike the case of two-dimensional stratified flows and
of radius-dependent rotating flows in which velocity gradients always have destabilizing effects, the
present flow possesses an interaction of the velocity gradients which can carry either stabilizing or de-
stabilizing effects depending on the sign of the interaction. In other words, the velocity gradients may
together upset flow stability although the flow is stable in their respective directions. Accordingly, con-
ditions (t4.24c) or (4.24d) can be viewed as a constraint on both conditions (4.24 ab) and provides a
stability constraint to all the combinations and variations of the density and velocity profiles.

V. INTERFACIAL CONDITIONS

Even though the previously discussed necessary and sufficient conditions for stability provide us
with some upper bound information on stability or instability, the criteria for flows of this kind do not
yield sufficient knowledge of instabilities for an arbitrary flow profile. Solutions to the governing stabil-
ity equations must be obtained before the detailed instability characteristics for the particular flow pro-
file can be observed. Unfortunately, analytical solutions in terms of well-known functions for the
present vortex flow are very difficult to obtain except in the limit of adjacent layers with different but
constant characteristics. Matching the solutions at the common boundary between two such flow
regions therefore becomes the basis for the analysis of this limiting case. In matching these discontinu-
ous profiles, appropriate interfacial conditions must be used.

Since two force fields exist in the present flow, two sets of interfacial conditions in the radial and
axial directions are required to handle any possible discontinuities or rapid change of profiles within the
flow field. They can simply be obtained by integrating the governing equations in (4.18) to (4.20)
across the corresponding interfaces as follows.

Assume two interfaces located respectively at r - R and z- Z. Integrating Eqs. (4.18) and
(4.20) across the interface at r - R in the radial direction yields

< -0 (5.1a)

and

<P>R < pO rfl2 >R 0 (5.1b)-R

where <P>R - P (R P) - D (R 0). Integrating Eqs. (4.18) and (4.19) across the interface at
z - Z in the axial direction yields

W 0 (5.2a)
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where the Richardson numbers in the radial direction, the axial direction and their interaction are,
respectively, defined as

.1.j = N23/r2 (-f)- (4. 25a)
Or

j.- N2/r 2 (a fl )2 (4.25b)

, - Or (4.25c)

The relation between these three numbers is

J, = 2 J + f J, (4.26)

where

F (4.27)
g

is a Froude number that indicates the ratio between the centrifugal force field and the gravitational
force field, and

E= -i/ (4.28)
Or j zJ

is a ratio between the radial velocity gradient and the axial velocity gradient.

Equations (4.24) provide us with the stability conditions for all combinations of the velocity and
density variations. Equations (4.24 ab) require that both the Richardson numbers J, and J, be positive
as a precondition for stability, indicating positive N, and N2 . This requirement implies that the densityOpo

should be stably stratified in the centrifugal and the gravitational force fields, i.e., "" > 0 and
Or

i- - < 0. For the flow being considered, velocity gradients exist in both the radial and axial direc-
a:

tions, indicating that the shear instability may take place in more than one plane. Equations (4.24 a,b)
therefore represent the stability condition with respect to their corresponding planes. The Richardson
number J, in criterion (4.25a) represents a ratio between the centrifugal restoring force along the radial
direction and the shear effect transverse to the direction, while the Richardson number J, in criterion
(4 25b) denotes a ratio between the buoyant restoring force along the gravitational direction and the
shear effect perpendicular to that direction. The interpretation of the two sufficiency conditions is the
same as those in the two-dimensional stratified flows and the rotating shear flows as previously dis-
cussed. Also like the two-dimensional stratified flows, these two conditions do not restrict the density
variation as long as they are satisfied. In others words, there is no limit on how strong the density is
stratified in the radial and gravitational directions. In fact, for two-dimensional shear flows and radius-
dependent rotating flows, the stronger the density is stratified, the more stable the flow will be. This
characteristic also prevails in the present flow.

The Brunt-VdisAla frequency N, measures the density variation along the centrifugal direction in
the centrifugal force field while the frequency N. measures the density variation along the gravitational
direction in the gravitational force field. Both frequencies must first be real preceding stability, i.e., the
density is stably stratified in both the radial and axial directions. While both N, and N: can be viewed
as the interaction of the density gradient and the force along the same direction, the newly defined

K. Brunt-VdisAl5 frequency N, can be viewed as a measure for the interaction of the density variation in
L one direction with the force field in the other direction. We can conclude from (4.23 a,b) and (4.24
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¢- nVa)-L-op rf2

o ar

= g apo
- Po Oz "

and N = m 02 - w is the Doppler-shifted frequency. The boundary conditions for the system are

u = 0 at r = R1 ,R 2  (4.21a)

and

W= 0 at z = Zt,Z 2. (4.21b)

By using the proper transformation and the complex conjugation, Fung (1985b) derived three
Richardson criteria saying that the stability of the present flow will be assured if

rf)aPo r2 (, )2 > 0 (4.22a)

g Or r
-LPo (f ) 2 > 0 (4.22b)

P0 az 4 az

and Iri2 P _ r2 f8 11 g aPo r~ _ 12
po r 4 Po 4 4 zl+(  2

_Jpo P2 F1z 11 fl
> 2

0P -Lg rl 2- IN - (4.22c)
2 az Fr J 4 ar a

. are all satisfied throughout the flow domain. If we introduce the Brunt-Vdisdild frequencies

N2  rfl 2 p o  (4.23a)po ar
L . g aPo

N2 = (4.23b)
PO Fz

and

N P. -P -r fl 2- o) (4.23c)
N 2p "ar z

to measure the density variation in the radial direction, the axial direction and their interaction in the
centrifugal and gravitational force fields, equations (4.23) can be written as

4. > I (4.24a)

1 (4.24b)
4

and

+ iIi
, - 4 4 •



using the integral method employed by Fung (1983), that the first term in Eq. (4.12) is a differential
representation of a stable centrifugal force field. This mechanism is contained in Eq. (4.8a) which
states that the flow should be stable in the radial direction. Two parts are involved in this first term.
The first part is the variatior, Z density in the centrifugal force field. The second part is the Rayleigh
discriminant representing the effect on the centrifugal force field by conservation of circulation.

If the variation in the radial direction is suppressed, Eq. (4.12) reduces to a condition representing
the variation of density in the gravitational force field. This mechanism is contained in (4.8b) which
states that the density profile should be statically stable in the axial direction.

The second term in Eq. (4.12) represents the interaction between the radial and axial variations of
the density in the centrifugal and gravitational force fields. This coupled variation is reflected in condi-
tion (4.8c) representing a requirement for stability imposed on the simultaneous density variations in
the radial and axial directions.

For potential flows, both Eqs. (4.1) and (4.8c) reduce to
a3po, Po rf(1

r " - : - g (4 ,16)

stating that the ratio between the density gradient in the radial direction and that in the axial direction
should be compatible with the ratio between the centrifugal force field and the gravitational force field.

The arguments just presented for the physical mechanisms of the necessary conditions allows us
to conclude that Eqs. (4.8) represent a generalized state of "statically stable" profiles for the steady flow.
To secure stability for the basic flow, it is necessary that the steady-state distribution satisfy (a) the
radial force balance condition, (b) the axial force balance condition, and (c) a pressure balance condi-
tion constraining the variations of density in both the centrifugal and gravitational force fields. As a
result of the third constraint, Eqs. (4.8) do not represent three independent conditions. Either one of
the two conditions in (4.8a) and (4.8b) will have to be automatically satisfied if the other condition and
Eq. (4.8c) are fulfilled.

2. Sufficient Conditions for Stability

Since equations (4.2) to (4.6) are cyclic in 0 and t, and their coefficients depend only on r and z,
we can therefore introduce a solution with the form

I (r,O,z; ) - f(r,Z) exp i (mo - oi 0. (4.17)

Here m is the azimuthal wave number, an integer, and w = w, + iw is the complex eigenfrequency.
Equations (4.2) to (4.6) can then be combined into three first order partial differential equation as fol-
lows:

a~u a m'M U O nPO -- +  1-0- +I2 u m an . + 1 2 f- (4.18)ar NV Or r N az r

PO *, u + (N2 + qT:) w) N (4.19)* 0:

+2mfl
PO (I - P,) - (z w)(4.20)

O r NVr

Here

0P o [p ° (r i l ) 2
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Consider two fluid particles originally located at Q, and Q2 within the flow regime in the r-z
plane as illustrated in Fig. 6. The particle at Q, has a density P0 and a tangential velocity V while the

particle at Q2 has a density Po + 8 po and a tangential velocity V + 8 V. Here V - rfl and 8 - 8r- +
Or

8zi. First we use the energy approach by considering the variation of the total energy as a result of a

perturbation to the system. In the the steady-state, the kinetic and potential energy of the two particles
are given by

K.E. (po V2+ (po+8po)(v +8V)2) (4.10)

and

P.E. po gz + (po + 8po)g(z + 8z).

When the two particles interchange their positions, the kinetic and the potential energy of the perturbed
system are

K.E. PO0 r V2 + (po +8 po) (r + 8r)(V + 8V) 121 (4.11)

and

P.E. Po g(z + 8z) + (po + 8p0) gz.

Here the conservation of circulation has been applied to the resultant kinetic energy in (4.11). If the
perturbation is small, the stability of the system requires

'Pq (Br)2 -- a - a 2 (o rf. 2  (8r) (8z) - -(z) 2 , 0 (4.12)
1Po Or P0oz Pa Oz

everywhere within the flow domain.

An alternative approach to observe the stability characteristics of the system is to examine the
work done by the two particles in the centrifugal and gravitational force fields. When the two particles

interchange their positions, the work done by the particle originally located at Q, is
= ,Po (V2 (r V)2 I

W, P _L + ( 8r + po g8z (4.13)
21 r (r + 8r)3

while the work done by the particle originally located at Q2 is

W - P0 + P0 (V+8 V) 2 . [(r 8r)( V+8 V)]2 r- (p 0 +Bp)gaz. (4.14)• " " = 2 (r + 8r) r3 8r-(0+( o, a (.4

Condition (4.12) can be reached following the argument that the stability of the system requires the

leading terms of the total work done by the interchange of the two particles to be non-negative, i.e.,

W, + W, = 8[fp0 r' V
2 8 r + 8 (po g) 8 >O. (4.15)

The necessary conditions in Eqs. (4.8) can then be recovered if we apply the normalization technique in

the Appendix to the condition in Eq. (4.12).

If the variation in the axial direction is omitted, Eq. (4.12) reduces to the well-known Rayleigh-

Synge criterion in Eq. (3.17), which is a requirement for centrifugal stability. It can also be shown,
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Figure 4 - Coordinate of the fluid elements in the gravitational force field
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Figure 5 - Coordinate of the fluid elements in the centrifugal force field
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Figure 6 - Coordinate of the fluid elements in the centrifugal
and gravitational force fields
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Figure 7 - Dissolution of the total force into the force components at the interface
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