
AD-AI56 B19 LET'S OCT SERIOUS - AKIT SOFTVARE(UI AIR COMMN AND I/I
STAFF COLL VUXAELL AFI AL J R HEOLAND APR 85
ACSC-85-1'30

UNCLASSIFIED P/O 9/2 NL

IhimllllllllEEIIIIIIIIIIIIIu
*uuuuwIIIII



111112.

1-2 14



Let's aet serious..

A. I....... ... .....
T..C.FIGHTER.SQUADRON 6.. SFTAR DEVELOPMENT .......

1 V



DISCLAIMER

The views and conclusions expressed in this
document are those of the author. They are
not intended and should not be thought to
represent official ideas, attitudes, or
policies of any agency of the United States
Government. The author has not had special
access to official information or ideas and
has employed only open-source material
available to any writer on this subject.

This document is the property of the United
States Government. It is available for
distribution to the general public. A loan
copy of the document may be obtained from the
Air University Interlibrary Loan Service
(AUL/LDEX, Maxwell AFB, Alabama, 36112) or the
Defense Technical Information Center. Request
must include the author's name and complete
title of the study.

This document may be reproduced for use in
other research report s or educat ionil pursuits
contingent upon the Iollowiug stipulations:

-- Reproduct ion rights do :iot extend to
any copyrighted material that may ne contained
in the research report.

-- All reproduced copies must contain the
following credit line: "Reprinted by
permission of the Air Command and Staff
College."

-- All reproduced copies wust contain the
name(s) of the report's author(s).

-- it format modification is necessary to
better serve the user's needs, adjustmer,ts may
be made to this report--this authorization
does not ext end to ( livr gIhted informat iorl ur

- rat eri . 'The t ol lowi ii), !-t toment must
I ccomlnia y t lt mt,,I iI ii,, d ,l,,, um ,nt : "A .1 lit t-11

VA7rom Air (ommand anid Staf t Lesea rch Repoi I
TAB - (number) entitled (title) by
un-Hd ' author) ."

$. tfication

-- This notice must be included with any

eproduced or adapted portions of this
:;t-wtributlon/ d ocument.

AvAll1blity Codes

Dist 
Specl



, I.

"1

R Ell' tRi VI B ER 8 5 1 130

COM S2I~ (>1 rius . About Softw, uuc

) ' 1i Ao .JAMES 1- HE LAND, usAF

i ( '. U i, A i)VISOR Ai~xOR ROBERI' WIA:f , C\(;SC ' F )

IADVISOR

>W r ~it, to the faculty in partial fulfilhment of
requiremtrnts for graduation.

Af[i 1 '(.MMANDI AND STAFF COLLEGE

AIR UNIVERSITY

MAXWELL AFB, AL 36112

I' ,

'I
-- -*-- -



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
l REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b OECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

85-1130

6&. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)ASCS/IEDCCj_ ____
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

MAXWELL AFB AL 36112

3.. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO NO

I I TITLE Iln-lud. .SYcuritv Clasification)

Let's Get Serious About Software
12. P RSONAL AUTHOR(S)

lIegazd , James It., Major, USAF
13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT Mr. )avl IS PA(E COUNT

FROM TO 1.985 Aprill7
16S. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS IContsnue on reverse if necessar and identify by block number,

d FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if necessary and identify by block number,

This guide translates applicable Air Force and TAC data processing requirements

into language and examples fighter crews can relate to and understand. It

provides information on methods of programming, documenting, and submitting

software to TAC. It is designed to help get fighter squadron software into

TAC widh distributioi ai(I prevent wasted efforts.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED X SAME AS RPT 0 DTIC USERS C3 UNCLASSIFIED

22w NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
( Include .4 te Cadet

ACSC/EDCC Maxwell AFB AL 36112 (205) 293-2483

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

0



Once you open a can o/ worms, PREFACE
the only way to recan them is
to use a larger can ZYMEROY'S FIRST LAW

STOP -- Have you written any computer programs for your unit?

Did you know you are required by AFR 300-3 to send any
significant software program including all programs over 200
lines to your MAJCOM Small Computer Technical Center within
30 days after completing it? Did you know that includes
programs you may have modified too? Did you know the
Tactical Air Command (TAC) Small Computer Technical Center
(SCTC) will make your software available TAC-wide? Did you
also know that if your program and software don't meet the
requirements specified in TACP 300-11, it won't get into the
TAC Small Computer Software Catalog? But wait. Don't start
your best guns defense yet.

This handbook provides a foundation for understanding
software development. It can be used in several ways to suit
your needs. If you have not developed a program and are
interested in doing so, start at the beginning and press the
attack. You will not become a seasoned programmer, but will
understand the methodology of software development. Then,
you will be ready to select and learn a computer language,
then translate problems into solutions with the aid of the
computer. If you have a finished program, refer to Chapter
Four and Appendix One to ensure your documentation is
up to -speed. Chapter Five will help you understand the
process involved in submitting your package to TAC. By the
way, If you happen to be a fighter squadron operations
officer or commander, you can use this guide to understand
and manage your unit small computer programmers.

Ok - Now that you have the Rules of Engagement:

You're cleared in hot.

"I t. " I: I -



ABOUT THE AUTHOR Judgement comes from experience,
experience comes from poor Judgement

ROBERT E. LEE'S TRUCE

Major James Hegland had his first introduction to computers
In November 196. He attempted to pursuade a Control Data
3600 to convert miles per hour to kilometers per hour. The
results were expressed in hours per hour. Later as an
engineering student, after many long winter nites at the
computer center, he was able to employ the IBM 360, in ways
yet to be repeated (and he's not talking either). As a ROTC
graduate from North Dakota State, he eventually became a
Weapon Systems Officer in the F-4, logging over 1200 hours in
Big-Ugly. He has been a pogue, instructor, and evaluator.

While in the Republic of Korea, he was the Chief of the 51st
Tac Fighter Wing Scheduling Shop. He developed a computer
program that presented the wing's flying hours and sortie
effectiveness to the House Armed Services Sub-Committee during
their fact-finding tour in 1984.

When he PCSed, the flying hour computer program was "trashed"
because no one else could get it to run. He vowed not to
let that happen again.

He wrote this handbook as a partial atonement for his past
programming transgressions. He is a graduate of the Air
Command and Staff College, Class of 1985.

ii

-- I



WAtn, h/ I/s ./,/s. TABLE OF
N.ai N ,st A .Yt,,n CONTENTS

C"HAPTER ONE INTRODUCTION 1

CHAPTER TWO SOFTWARE DEVELOPMENT 5

CHAPTER THREE PROGRAMMING METHODS t0

CHAPTER FOUR DOCUMENTATION 20

CHAPTER FIVE THE TRANSACTION 26

CHAPTER SIX SUMMARY 29

APPENDICES

APPENDIX ONE 33

APPENDIX TWO 37

APPENDIX THREE 41

READER RESPONSE FORM 43

~iii

- - -- a . - . - _____II____I___II____I___I___I_



I I 
'

LIST OF FIGURES d'ways draw your curves,
then plot your data

FINAOLE'S SEOONP RULE

Figure 1 - Software Development Process 6

Figure 2 - ANSI Flowchart Symbols 8

Figure 3 - Line-Up Card, Takeoff Data 10

Figure 4 - Structured Programming Elements 11

Figure 5 - Structured Programming of Takeoff Data 13

Figure 6 - Top-Down Programming of Takeoff Data 15

Figure 7 - Modular Programming of Takeoff Data 17

iv

-I ... . .. . .... ._ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ ,



Any sufficiently advanced CHAPTER ONE
technology is indistinguishable INTRODUCTION
from magic CLARK'S THIRD LAW

NOTES:
WHAT? ANOTHER BOOK ON SOFTWARE?

l'AC was on the leading edge in acquiring small computers
during the 1970's. Small computers were to help fighter
squadrons automate and streamline flight planning,
scheduling, and weapons delivery computations.
Unfortunately, the commercial products (software) needed to
perform these important tasks were not available. In the
typical TAC fighter squadron, "home-grown" programs built by
unit small computer programmers were only a partial solution.
Poorly organized, or with little or no documentation, many
home-grown programs became useless when the originator
departed station. Air Force data processing regulations were
developed to prevent such "wasted efforts." However, many
fighter squadron small computer programmers were unaware of
the Air Force data processing regulations and requirements.

In response, TAC produced a pamphlet, TACP 300-11, outlining
and standardizing the requirements for writing and
documenting squadron home-grown software. The pamphlet, well
written by Air Force data processing standards, was not
fighter pilot friendly. The critical guidance for producing
quality software was not fully communicated.

This guide translates applicable Air Force and TAC data
processing requirements into language and examples that
fighter crews can relate to and understand. It provides
information on methods of programming, documenting, and
submitting software to TAO. It is designed to help get the
software you create into TAO-wide distribution and prevent
wasting your efforts.

*rh 1 guide is exclusively designed for the small computer
programmer in TAC f ighter squadrons. It is as an area
munition, targeted for members of TAC fighter squadrons with
varied programming experience. It is intended for those with
very little experience and those who are experienced
programmers.

'I'04



WHERE'S THIS ALL GOING?

Chapter One provides an overview and defines software,
program and other terms used in this guide. Chapter Two
introduces life-phases of programs and sof tware and the
process of developing software, using a squadron scheduling
scenario as an example. It is important to flowchart and
design in maintainability -- you find out why in Chapter Two.

Chapter Three describes the three most popular methods of
computer programming and uses a typical flightline example --

calculating takeoff data. Chapter Four introduces documentation
techniques and reviews several aspects of technical
writing to help you describe your program in clear, concise,
meaningf ul terms.

Chapter Five describes how to get unit developed sof tware
into the system for TAC-wide use. The process to request
commercially available software is also described in Chapter
Five. Chapter Six summarizes the handbook.

You should check your documentation with the requirements
outlined in Appendix One before sending it to TAC. Appendix
Two is a guide to current Air Force and TAC regulations that
applies to the fighter squadron computer programmer.
Commanders, operations officers, and squadron small computer
programmers should review them before beginning any software
development efforts.

A reader's response form, the last page of this handbook, is
your opportunity to comment on the helpfulness of this
handbook. When you're through -- rip it out and send it to
TAC/IGIO with your comments.

Now, a few definitions to standardize terminology. The first
two are: program and software. The next segment should
provide a basic understanding of the terms and their use.

WHAT ARE PROGRAMS?

A program is a list of instructions that control the
computer. Programmers write these instructions in source

2code, a specific type of computer "language". The languages
include BASIC, COBOL, FORTRAN, Ada, and others. The terms
source code and program are often used interchangeably.



A program is like a flight scheduler. Just as the scheduler
says when and where you'll fly, a program tells the computer
when and where to process information. The scheduler takes
input in the form of crew names, aircraft, and airspace, and
processes it to produce an output. sorties, hours, and
training. A program is a set of written instructions designed
to take input, process it, and create output in the same
mannet.

THEN, WHAT IS SOFTWARE?

The term software refers to computer programs. A more
correct definition includes the program, the data, and the
associated documentation used in the operation of a computer.
Data is the information put in the machine. It may be a list
of aircrew names and qualifications, birth dates, or
checkride eligibility dates. Documentation is the complete
set of associated guides, user manuals, checklists, and
diagrams needed to use or maintain the program. It is like
the Dash One and associated technical orders needed to fly
and maintain your aircraft-

TYPES OF SOFTWARE

There arc three types of software: system, support, and
applications. System software comes with the computer when
you buy it Called the Operating System, it has only one
function . make the computer work. Support software aids in
developing new programs and includes flowcharting and
documentation routines to make life easier for programmers.

Thdis handbook concentrates on applications software. Typical
applications may include flight planning, scheduling or
weapons computation. TAC further divides applications
o, ftware into safety-of-flight, non-safety-of--flight, and

unit-unique software (these categories are further described
in Chapter Five) Applications software gets the job done,
and i. usually written by people like you (squadron
navigation officer, scheduler, weapons officer, etc.), who
are familiar with the tasks the computer will assist once
prograrriming is complete

3

41

, { ...



SUMMARY

Programs were developed in the TAC fighter squadron in
response to a need, but many programs went unused when the
originator departed the lix. If you write a program, you
are obligated (by Air Force regulation) to send it to your MAJCOM.
This handbook concentrates on software development, and
outlines how you can get your program and documentation
(software) approved and distributed by TAC. The next chapter
starts you on the way to organized software development.

4



If you choose Modular Programming, you'll find the logic is
easy to develop and understand. Complex problems are divided
into simple, manageable elements.

STEPS FOR MODULAR PROGRAMMING

Divide the program into segments.

Ensure modules perform only one task.

Check for cohesion and independence.

Use *calls' from the mainline routine.

Ensure each module has only one entry.

Ensure each module has only one exit.

You can reuse -satements by "recalling" the routine when needed.
You can also create a library of modules and use in other
programs. Modular programming allows other users to easily
unravel and understand your program. It is easy to maintain
and errors are easily traced and fixed.

SUMMARY

When you use an organized method of programming you should
pick one that fits your style. The Lhree most popular
methods are Structured, Top-Down, and Modular. They produce
software that is understandable, reliable, and maintainable.

STRUCTURED PROGRAMMING: Approaches programming as a
sequence of segments made up of instructions. It uses three logic
elements: the sequence, choice and loop. The steps are:

Divide the problem into segments

Sequence the instructions so each:

Perform only one specific task.

Complete each task, then continue.

18 Have only one entry/one exit.



I*1

N A'

N A

CALL

RETURN

CALL

REURN

...,.4- A![ Ax-CALL

Figure 7- Modular Programmng of Takeoff Data

17
. . . .



MODULAR PROGRAMMING

If you prepare a mission briefing and assign all navigation
tasks to one individual, all target area tactics to another,
and the briefing slide preparation to a third, you establish
modular activities. Modular programming is a technique used
frequently for designing and writing long, complex computer
programs.

Like Structured and Top-Down, Modular programming evaluate$
the problem and divides it into small segments. The
instructions in each segment perform only one task. For
example, the takeoff section of the Dash One has charts to
perform only one task and forms a module. Modules are often
ref ered to as subroutines. Subroutines are small programs
within a larger program.

All statements in a module should be closely related to each
other, or cohesive. But, each module should be independent
of other modules so when modified or changed, one module

won't impact the statements or logic of other modules.

When you delegate briefing preparation tasks to members of
your flight, you remain the flight lead. You are responsible
for directing and tying the briefing together. The main program
directs the flow of logic through the modules. It uses call
statements to activate the other modules (or subroutines). When the
operation in that module is completed, the "return"
instruction transfers action back to the main program. Just as
you are the point of contact for your flight, each module 'has only
one entry and one exit.

Now, use Modular programming techniques and determine the
segments (input, process,. output) for the takeof f data
example. Divide the segments until only a single task is
accomplished within a module. You can identify one subroutine
as Gross Weight and *call" it from the main program.

The Takeoff Speed, Distance and Nose Wheel Liftoff are
subroutines and can be "called" f rom the main program.
The Max Abort calculations are "called" likewise. The
Dash One tables are represented by the information used in

16 calculating the answers. For the exercise in programming, draw
the flowchart and check your answer with Figure 7,



TAKE OF F
DATA

PROGRAM

IPTCALCULUTION OUTPUT

G~~ES T AKEOFF TAKEOFF NOE Mx

NF. l2wONANCE [(~l~EDGH D IRSSVT AN ELIT EN

AT 17
/R " L E N T



TOP-DOWN PROGRAMMING

When planning a complex mission, you might first outline the
overall events and then begin the detailed work. With
several crew members assigned to a mission, you can split up
the tasks. The Top-Down method also divides and conquers a
problem. A difficult problem is reduced to smaller
components.

Top-Down programming designs the program in stages. The
flowchart looks like an organizational chart. The top levels
oversee the lower levels. When a Top-Down program is run,
all the details at the lowest level of the first branch are
completed, then the next higher level of the same branch is
done. All tasks in the first branch are accomplished, then
the next branch starts at the lowest level. When running,
the f low of a Top-Down program is left-to-right,
bottom-to-top. Results are "fed uphill" as in the wing
organization. Note: When using Top-Down, you don't have to
use the ANSI standard flowchart symbols.

STEPS OF TOP-DOWN PROGRAMMING

Design in levels: overview first - then details.

Design first, then select a programming language.

Save all the detail work for the lower levels.

Check each level as its written.

Identif y the broad functions or tasks of the program. For
example, basic program functions used in calculating takeoff
data are: (I) Input, (2) Calculation, (3) Output. These
branches form Level 1 of your f lowchart. Divide these
f unctions into smaller, more detailed subf unctions, Level
2 elements, for the Input branch, include the gross weight,
temperature, and field information. Calculating the Takeof f
Speed and Distance is also on Level 2 - the Calculation branch.

Level 3 supports Level 2. For example, USAF Form 365F,
f uel, and mission ordnance inputs are subordinate to Level

14 2 gross weight input information. The weather briefing,
and the field information also support Level 2 inputs. For
an exercise in Top-Down, try and draw the flowchart. If your
answer is like Figure 6, you've got Top-Down in your sights.



ORDNANCE, TEMIPERATUORE
F IfLD ELIEVAT ION/LENGTPU A1WE6HF/

WET OR DRY

L ,I O ATE TA E~ I -OF

K-4,CULATE TAKEOFF DIGT

TIALCULATE Nw L

0 F IAl (I I, AT I AX AllIlk.,

JUfT PIT (RO5SS WE OPT
TAKEOFF SPEED/DISTAN[I

NOSE WHEEL LIFT OFF
MAX AB3ORT

No

Figure 5. Structured Programming of Takeoff Data

13

4)



When you write a program for the line-up card, assess the

input and output requirements, then develop the process.

INPUTS

Aircraft basic weight, fuel, ordnance
Weather pressure and temperature
Environment runway length, elevation, wet or dry

OUTPUTS

Grows Weight
Takeoff Speed
Takeoff Distance
Nose Wheel Liftoff Speed (NWLO)
Max Abort Speed (wet or dry)

Aircraft basic weight (from the USAF Form 36SF Aircraft
Weight and Balance) with fuel and mission ordnance added
gives Gross Weight. The weather information (from the DoD
Form 178-1) provides the temperature, density, and pressure
information. Field information is in the Flight Information
Publications (FLIP). Normally you use the Dash One to
calculate takeoff data, but for this exercise in programming,
write out the sequence of logic and draw a flowchart. Don't
worry about the details of Dash One formulas. Keep the f low
from start to finish, one task at a time.

When using the structured programming method, determine the
steps the segments will depict, then use the three basic
elements: sequence, choice, and loop, to organize the
solution. An example of a Structured Programming solution of
the takeoff data problem is in Figure 5.

Takeoff data calculation is easily programmed into a
structured format. This method breaks a problem into logical
sections and simplifies programming by using three basic
elements: sequence, choice, and loop. The benefits
associated with the Structured Programming method are it:

Encourages programming discipline.

12 Has fewer logic errors.

Is easily modified and maintained.

.~...-4'



STRUCTURED PROGRAMMING

Many of the first f ighter squadron "home-grown" small
computer programs were "pasted" together using ANSI flowchart
symbols with little regard to logical organization. The
result -- many programs were difficult to read, understand, or
maintain for anyone other than the creator. In the late
1960's a standardized method was developed -- Structured
Programming.

Structured Programming concentrates on one of the most
error-prone factors in programming -- logic. A structured
program is made up of segments (sets of instructions written
in source code) executed f rom start to finish. This method
simplifies most complex programs and makes them more readable
and understandable. They are simple to develop, maintain, and
modify. The logic of Structured Programming uses three basic
elements:- the sequence, choice, and loop (Figure 4.).

SEQUENCE

CHOICE

LOOP

Figure 4. Structured Programming Elements

In a structured program, each segment is a set of
nstructions that:

Performs only one specific task.

Completes each task then continues.

Has only one entry/exit. 1



CHAPTER THREE The amount of expertise varies in

SOFTWARE inverse proportion to the number of statements

DEVELOPMENT understood by the general public GRUMMIDUE'S LAW

NOTES:
This chapter introduces the three most popular methods of

computer programming: Structured, Top-flov, and Modular. The
programming method you choose influences the structure of the
proposed solution. All three methods are efficient and
logical. They produce software designed for easy
understanding, maintenance and reliability. Organized
methods help prevent errors, and if errors occur, they will
be easier to find and fix. Review all three, and pick one
that suits your style.

TAKEOFF DATA EXAMPLE:

All aircrew members fill out a line-up card with mission
takeoff data before each flight (Figure 3).

WE IGHT SPEED DISTANCE LIFTOFF ABORT

GRS AEOF TKOF OEWHE A

Figure 3. Line-Up Card, Takeoff Data

Calculating takeoff data is an example familiar to all
aircrew members and illustrates the process of developing a
computer program. You must define the problem, organize the
solution, write the code, test, and document.

The problem is easily defined -- calculate the takeoff data
using a computer. You can organize the solution with one of

many programming methods and outline it with a flowchart. In
the next few pages, three "tried and true" methods illustrate
the process.

10



The circle is a connector. it takes several paths,
represented by the arrows, and ties them together like a
common turn point for two separate low level routes. The box
represents a process. The oval is used at the beginning or
end of a flowchart. The slanted box represents an input.
The diamond shape is a decision, with a yes or no path
leaving the shape

The~se symbols can be used as you identify and structure the
proposed solution to a problem. When you use these standard
symbols and flowchart, you have taken an important step toward
an organized and documented software.

SUMMARY

Software has three life phases. The most obvious are
development and use phases. Maintenance is the most neglected
aspect. Anytime new features are added or modifications are
made to a f unctioning program you are maintaining it. A
program that can be maintained, survives the inevitable
changes and future adjustments, How well you develop your
software determines how well others will use and maintain it.
The key is using an organized process-

An organized process helps develop useable, maintainable
(quality) software. First define the problem, then organize
the solution. Once organized, write out the solution in
source code. Next, test the program by desk checking the
logic and running it on the computer. Include realistic data
in your testing, and ensure the results are accurate.
Finally, eomplete the documentation.

A flowchart helps develop the solution to a problem. You
should develop your program with an organized method. The
simplest methods are: Structured, Top-Down, and Modular. These
methods are outlined in the next chapter.



FLOWCHARTING

An organized approach will help you develop quality software
A flowchart helps you get organized. A flowchart is a map of
what the program is going to do and shows how it is going to
do it. Think of it as the grease board in the scheduling
shop. Both are used to get thoughts organized, and once
organized, written down in final form. The schedule gets
printed -- the program entered into the computer.

Just as the scheduling grease board in one squadron is
different from another squadron, no two programmers use the
same technique. There are several recognized flowchart
symbols. The American National Standards Institute (ANSI)
identifies the symbols in Figure 2 as standards to use when
flowcharting. These symbols are available on templates to
make drawing flowcharts easier than a "cut and paste" low
level mission.

0-jl
CONNECTOR PATHS PROCESS

TERMINAL INPUT DECISION

Figure 2. ANSI Flowchart Symbols
8



Whe,i organizing sorLware or a program, you musG resolve
the same questions- You sequence the events and determine
step -by--step actions to solve the problem.

Write it out.

After the schedule is outlined and the sequence of events
determined (airlift, maintenance, sortie and crew
requirements), you print it on a scheduling form. The draft
schedule gives you a starting point.

Ah- a programmer, you write the piogram instructions in the
computer language (code) best suited to the problem. Like the
draft schedule, you test it before you start using it.

Test (Check it out).

A successful scheduler checks and rechecks the schedule
before "going to print". You might consult with another
scheduler, a flight commander, or assistant operations officer.
Then, having incorporated the appropriate changes, take it to
the commander.

Software requires the same degree of checking as the draft
schedule. First "desk check" it. Desk checking is reading
the code line-by-line to see if it follows the logic of the
organised solution. Once satisfied with the desk checking,
run it, on the computer and have other operators run it. Test
the data and be sure the results are accurate. When the
program is accurate --- finish the documentation.

Document your results.

A sma(t scheduler keeps a notebook as the deployment schedule
develops to record all lessons learned along the way. You
can use the notes when writing the "after action" report and
continuity folder.

When you begin developing software, start taking notes.
D)ocurmentaion is an after action report and a continuity
folder. P you want to get your program into the TAC system --
it, must be documented.

A valuable tool for organization is the flowchart. It helps 7
V,et 'our thoughts in sequence and is often helpful when
describinig and defining the problem.

o



FIVE STEPS TO SUCCESS

Developing software is like building a flying scheduling
program. Both are organized processes and use the following
steps.

Define the problem
Organize the solution
Write it out
Test (Check it out)
Document your results

The f ive step process of developing sof tware may be
represented by a sequence (Figure 1).

Figure 1. Software Development Process

Define the problem.

If your commander tasked you to plan (develop) a deployment
to Base X, then the flying schedule and the redeployment, you
would have a few questions to answer. For example: How many
sorties will be flown? How many hours available? How many
aircraft available? Has it been done before? Can a previous
approach be applied?

As a programmer and sof tware developer, you answer similar
questions at the outset of the project. Analyze the problem,
determine the specific input, the processing, and output
needed for the application. You should check with the wing
Small Computer Manager (SCM) to see if software exists which
may be used as is or modified to solve the problem.

Organize the solution.

6While working the deployment, you determine types of sorties
and the sequence of mission events, considering crew rotation
and support requirements, airlift, maintenance, etc.



If buildersq buill buildinys the way CHAPTER TWO
some pro.qrammers write programs, SOFTWARE
the first woodpecker tat came along DEVELOPMENT
would des~ro civilizalton WEINBERG'S LAW

NOTEO.
This chapter introduces three life phases associated with
programs and software. The phases are: development, use, and
maintenance. You must consider these phases when creating
.o!tware This chapter also introduces an organized method
of develcping software and emphasizes the importance of using
lowchas

SOFTWARE LIFE PHASES

Imagine yourseif as the squadron scheduler. In the
development phase of the schedule you structure flying
activities on the scheduling grease board and eventually on a
printed form. You do the same thing when developing
software. First the flow and structure of the program is laid
out, t*hen the code is written and entered into the computer.

With the schedule complete: crews, aircraft and missions
aligned, it is used to produce sorties, hours, and training.
When you run your program, manipulate data, or make a
printout, of the output,, you are in the use phase.

Most often forgotten is the maintenanee phase. A scheduler
holds options and anticipates possible changes. A good
programmer anticipates reconstruction and refinement of
software. When you add new code or routines to a program,
improve 's feaures, or make it run smoother, you are

naifitaiuir, g it.

HNcw 3o yoi iesign in maintainability? How do you ensure the
final product is easy to use? The answer to both of those
questicns i:3 in the development phase -- how you develop your
Software,. The secret is -- use an organized process. The
rext, section presents five steps to help you successfully
develop useful and maintainable software.

5



TOP-DOWN PROGRAMMING: Top-Down also looks at a
program as a series of segments in a tree-like fashion, like a
wing organizational chart. The steps for Top-Down:

Design in levels: overview first - then detailis.

Design first, then select a programming language.

Save all the detail work for the lower levels.

Check each level as its written.

MODULAR PROGRAMMING: Modular uses subroutines to
ease the task of the programmer. Instructions are
written in segments that perform only one task. You may
include pretested routines f rom a library. The modular
programming steps:

Divide the program into segments.

Ensure modules perform only one task.

Check for cohesion and independence.

Use "calls' from the mainline routine.

Ensure each module has only one entry/ one exit.

Pick one of the three methods and, like the scheduler in the
deployment example, keep notes as you develop your program.
With the notes --- begin documentating your program. This
chapter organized your programming. The next chapter provides
clues you can use to create organized documentation.

19



CHAPTER FOUR An ounce of image is worth

DOCUMENTATION a pound of performance

NOLAN'S PLACEBO

NOTES:
This chapter describes techniques for creating documentation.

Sof tware documentation communicates factual information to
the program user. Your documentation may be TAC's
introduction to you as a programmer. To sell your solution
and get TAO-wide distribution, you must document well. You
produce good documentation by using two major rules:

Plan from the beginning.

Anytime you sit down to program, organize and
outline your thoughts, intentions and direction.
Write them down -- keep notes.

Make it readable.

Your documentation will be better understood if
the language and writing style are based on
good technical writing standards.

Documentation comes in many forms, but may be broadly
categorized as external or internal. External documentation
includes user's manuals, reference cards, and technical
manuals. External documentation helps during use and
maintenance of your software. Internal documentation
includes screen menus or internal comments and remark
statements. Screen menus help the user through the steps of
a program. Comments cr remarks are statements built into the
program. These statements communicate with the maintainers
and modifiers of your program.

MANUAL ORGANIZATION

The biggest mistake you can make with a user's guide or
technical manual is to "not plan the project." The
organization must make sense to the user. Each
organizational element of a manual has a specific purpose.
The main purpose is giving the user instructions. Giving

20 instructions rests on three key points:

You must understand the process you are instructing.
You must communicate the sequence of instruction.
You must pick words your audience can understand.



When you organize you should consider: relevance, sequence,

balance, and the format of the documentation.

RELEVANCE

What role does It play? Is your target audience made of
experienced or novice users? The answers influence the type
of writing, organization, and level of detail in the manual.
Include only related or pertinent information in the manual.

SEQUENCE

Arrange the material to meet the needs of the users. You may
need to sequence information based on Input or processing
requirements of the program. Sequence appropriately.

BALANCE

The amount of material should not vry excessively from one
operating feature of the sof tware to another. Don't
shortchange important subjects because you think most users
will not use a feature or an operation seems obvious to you.

FORMAT

Use different type faces or fonts (bold, italic, underlined),
to give the reader variety, but be consistent. Make all
chapter headings, subsections, and organizational elements
consistent with each other. Arrange text on the page to
highlight important points. Leave plenty of room for users'
notes. Make your solution accurate and attractive.

WRITING STYLE AND READABILITY

Your style and skill impact the readability of your
documentation. If a user must read the manual to make the
program work, then the harder it Is to read,the harder the
program wil be to use. Skillful writing isclear, coherent,
and concise. Your manual must ref lect these qualities, Or
you fail your readers. Make the instructions interesting and
relevant to the user.

Here are a few tips for writing documentation. Air Force
Pamphlet AFP 13-2, Communicating To Manage in 7'omorrow's 21
Air Force (The Tongue and Quill], is a great reference for
"polishing up" your writing skills.



Get Organized. Before briefing a mission, you get organized.
You must first start with a plan - then communicate that
plan. Software documentation follows the same process as a
mission briefing. You use topic sentences and overviews to
communicate the plan to your reader.

Choose the right wording. Don't try to dazzle the reader. You
are writing for f ighter crews, so keep the words short,
f amiliar, and to the point. Use common words instead of
computer jargon, acronyms, or symbols.

DON'T USE: USE:
component part
f acilitate help
terminate exit
initialize start
purge erase
minimize reduce
bug error
power down turn off
% percent
hex hexidecimal
1pm lines per minute
RAM random access memory
boot start up
interface connection
utilize use

Paceing. When giving a mission briefing, you don't go into
detail on the formation landing and skimp on the area
tactics. When you get to the really tough stuff in your
manual -- take your time. Don't spend four pages on how to
insert a disk into the disk drive, then gloss over the real
"meat" of the program.

Comparisons and Examples. Relate to what your readers know.
Use similes, explicit comparisons using the words as or like.
For example, when you put a disk into the disk drive, it's
like putting brE~d into a toaster. You can use analogies,
describing one thing by drawing comparisons to another.
Describing the pacing of a mission briefing as similar to
pacing In a manual is an analogy. A third method of making a

22 comparison is the metaphor. The metaphor is a comparison you
imply rather than state outright. To say your program -is,
#smarter than the average wingman', is a metaphor.

41



Tone How you to express yourself In the manual is tone.
A "friendly tone" helps communicate the instructions and is
less formal For a less formal Lone:

Give instructions as if you were standing there
talk to your user.

Be sympathetic and helpful. Accept responsibility
for how well they use the manual.

Write in the second person. Use "you" and 'your'
throughout the manual for friendlier tone.

Voice. Keep your writing clear and direct. If you use
'1passive voice" it creates lifeless, hard to read
Iinstructions. Write in active voice. Put the subject before
the verb and the object after. Compare:

'The program may begin after inserting the
disk into the primary drive unit.'

with

'Put the disk in drive A.'

Both give the same Instruction, but which is more direct,

vital, and alive?

Tense. Keep your text simple. Use consistent verb tense. If
you continually shift from present to past tense, the readers
will lose their train of thought.

Attention to Detail. Be consistent. Don't use monitor in
the first half and then change to video display. Don't spell
disk one way then try disc later on. Don't use
abbreviations until after you've defined and identified them.
Once identified use only the abbreviation. Proof read,
proofread, proof-.read your draft.

Grammar and punctuation. Make it clear. Pass your draft copy
to the best reader in the squadron or wing. Even if it costs
you a beer, the squadron adjutant may catch some of the errors you
and other proofreaders missed.

Accept feedback. Listen to your "proofers" and be honest with 23
yourself. Does the text make sense? Then go for it. If not,
grit your teeth and soak up the shot.



INTERNAL DOCUMENTATION

This section provides a set of rules for creating internal

documentation, screen menus and comments or remarks.

SCREEN MENUS

Tie it in with the manual. Any message on the screen should
reflect the same information in the manual. Users unfamiliar
with the program need to feel that someone knows what is
going on, since they may not. If you send message s different
from the manual you add confusion.

Keep the user oriented. Screens and menus should let your
users know where they are in the program. Menus should show
how to get from where they are to where they want to go.

Be Reasonable. Don't f ill the screen f rom top to bottom.
Confusing menus are threatening. Menus should offer only
options actually needed at any one moment. Anticipate your
users' requirements.

Avoid violent language. Avoid violent computer jargon. Words
like fatal, aborted and crashed, have unpleasant connotations
for computers and aircrews.

Be consistent. Keep the terminology standard in the screens
and manuals. If you use Stop to leave the program, don't
change to Exit or Quit.

Provide feedback. If the program takes time to process data
or information, say so on the menu. Let the user know the
system is still working and hasn't "frozen up."

INTERNAL COMMENTS AND REMARKS

Comment statements or remarks are internal documentation
describing the inner workings of a program. Be careful when you
use comments or remarks in your program. Placement is very
important. Put comments near the operation you are explaining.
Comments should highlight the logic structure. You can use blank
and other characters as reference points. This reference helps

24 when you write the external documentation. Comments should contain
useful information, and promote the design of maintainable
programs.



SUMMARY

You must make sure the documentation is accurate and makes sense.
you are responsible for how well the user understands and operates
your program. Well organized and structured documentation really
helps.

Technical writing has many options for the choice and sequence
of words. You must check all aspects carefully. Proofread the
entire package for spelling, grammar, and overall readability.
Compare each screen and menu with the manual. If the words
don't match exactly, you risk losing the user and your credibility.

Ferform an FCF on the package. Get a practice user to ops check
the complete software package. What makes perfect sense to you
may not be so clear to someone new to the program.

After you are satisfied that it is technically accurate,
use the checklist in Appendix One. Be sure your documentation
meets TAC's minimum requirements.

The next chapter explains the process you use to get your
software package into TAC-wide distribution. Good documentation
is an important step.

25

II

• = m m
"

mmm / gm mmm mm m m mmmmm mmm m mm m m k



CHAPTER FIVE Every task takes twice as long
THE TRANSACTION as you think it will take If you

double the time you think it will take
it will actually take four times as long

DEADLINE-DAN'S DEMON

NOTES: SOFTWARE EXCHANGE

TAC has a software exchange program that makes unit-developed
software available to all TAC units. The program is designed to
prevent duplication of effort and reinventing the wheel
As a software developer you have a piece of the action as well.
Once your software package is completed, you are required to submit
it to TAC for eventual distribution. The local Small Computer
Manager (SCM) will help you get through the process. The name
and telephone number of your wing's SCM should be listed in the
unit Small Computer Custodian's Continuity Folder. You should
check with the SCM when you start the software development
process because they are the first reviewer of your documentation
and program. Work with them as you develop your software.

When your'e done, get all information required to support
your program and visit the SCM. You will need a copy of your
program in machine-ready format, on 5 1/4 inch diskette. First,
the SCM checks the program and documentation for compliance
with current TAC directives and regulations. The checklist in
Appendix One, will help ensure the package meets requirements.

Once the package is reviewed by the SCM, they forward
it to the TAC fighter squadron functional manager, TAC/DOZ.
At this point it's all out of your hands. TAC returns a similar
quality replacement diskette in exchange for yours, but be
sure and keep a file copy as a backup.

The software package is evaluated by the TAC Small Computer
Technical Center (SCTC). Documentation is VERY important.
It is the first thing they check at TAC. If you did a good job
you're in there. After the documentation passes the test, the
SCTC runs the program. They check the results and read the
computer code, line-by-line (make sure your comments are appropriate).

With adequate documentation and results as advertised, your
26 program will be certified. The next quarterly issue of the

TAC Software Catalog should list your program. As the
developer, you are responsible for keeping the program
current. Send all updates or modifications you make to TAC
via the wing SCM.

/ M . -



If your software impacts "safety -of--flight*, several extra steps
are required before TAC will distribute it. By regulation, even you
cannot use your program until it is validated. The
example in Chapter Three, calculating takeoff data, requires
the extra steps, since it involves safety--of -flight.

The review process is the same at the wing and MAJCOM level,
for both the safety-of-flight and non-safety-of-flight software.
Once the TAC SOCT has reviewed it, it is sent to the USAF
Tactical Air Warfare Center (USAFTAWC/DOY), for validation.
Next, TAC Standardization and Evaluation (TAC/DOV) certifies
the software package. And finaly, TAC Flying Safety makes a final
review of the documentation. If at any point your software
package fails, it will be returned so you can correct it.
During the process the experts make recomendations to the
identified deficiencies. The review process ensures safety is not
compromised Mad the software is m--,intainable.

HOW TO ORDER SOFTWARE

There are two types of software you can order. The easiest
to acquire is software developed by unit user/programmers
like yourself. Commercial software may be ordered but, is
slightly more involved.

TAC-DEVELOPED SOFTWARE

TAC and other MAJCOM unit -developed software is free.
Guidelines for ordering are in the latest edition of the TAO Small
Computer Software Catalog and TACP 300-11. Find the Functional
Identification Number in the catalog and use it in your
order. Send the order to TAC SCTC through the wing SCM.

TAC will send a copy of the software on a 5 1/4 inch diskette
with all associated documentation. You have 10 working days
to copy the materials and return them to TAC.

COMMERCIAL SOFTWARE

Commercial software is ordered using the Mini-Data Automation
Request (Mini-DAR). The format is in Appendix Three. Before
ordering commercial software, you must justify your
requirement. The wing SCM can assist you in preparing the
Mini-DAR. You must get the Deputy Commander for Operations to 27
sign it, then forward it to your Numbered Air Force and TAO.

r ~**



Numbered Air Force reviews your request and makes a
recommendation then forwards the Mini-DAR to TAC. There, the
request is evaluated by the functional area manager (TAC/DOZ).
If it is valid, TAC Data Automation approves it. Once
approved, a Data Project Directive is generated, and your
order will be processed. If you demonstrated how the
software will be cost effective in your operations, you
greatly improve your chances of approval.

SUMMARY

The process you use to get your software into the TAC
Software Catalog starts with your local SCM. If you need to
purchase commercial software, you must convince not only your
commander, but the Deputy Commander for Operations, Numbered
Air Force, and Headquarters TAC. You must have a convincing
Mini-DAR and follow the format. The SCM is the person you
start with.

THE BOTTOM LINE:

Always check with your local SCM, before you start.

28



The -solution to a problem CHAPTER SIX
changes the problem PEER'S LAW SUMMARY

This handbook is designed for the TAG fighter squadron small
computer programmer. Its objectives: improve the quality and NOTES-
reliability of unit -developed software and help get it into
TAC-wide distribution. Remember that a program Is a set of
instructions that control the computer. Those instructions
are designed to take input, process it, and create useful
output. Sof tware consists of the program, the associated
data, and documentation. To successfully develop sof tware
you need to use an organized process, much like building a
flying training or scheduling program. The five steps are:

Define the problem.

Plan the solution.

Code the program.

Test the program.

Document the program.

Unfortunately, too many programmers don't organize,
flowchart, or document enough. The result -- their good
intentions become wasted efforts when they PCS.

Another failure is to not consider that someday, some other
eager programmer may see an added application for your
program If you correctly designed in maintainability, your
e'fforts will be appreciated by that programmer.

How you elect to describe and organize the solution is based
on your 'style." But, you need an organized method. Three
alternatives are: the Structured, Top-Down, and Modular methods.
Each method has its advantages. The key is pick one -- and
get organized. The Structured method uses three basic
elements: the sequence, the loop, and the choice. Top-Down
reduces complex problems into smaller ones and links them in
an organizational chart f ashion. Modular builds smaller, 2
almost independent, programs that can be called from the main
program.

t. .0



The documentation you develop stays after you PC. It tells
others how to make the program run, what it is supposed to
do, and how to fix it. A common problem with too many
programs has been poor or nonexistent documentation. You can
write very good documentation. A few simple rules to get you
through the challenge:

1. Start at the beginning. When you flowchart and
organize - start the documentation.

2. Write as if you were standing beside your user
talking to them. Use the second person, make then
feel comfortable.

3. Make it readable. Use comparisons your readers can
relate to.

4. You are responsible for how well your readers can
use and understand your product. You must help them.

S. Use comments or remarks to aid maintainers.

6. Use the checklist in Appendix One.

Double check the regulations. The summaries in Appendix Two
are only for guidance. You need to communicate with the data
processing experts. Your wing has a Small Computer Manager.
TAO has devoted an entire office to assist you. If you have
questions start at your wing and work your way to the Small
Computer Technical Center. The same goes for submitting your
software package or ordering sof tware. Start at your base
and "work the system."

Just remember two things when you get tied up in a furball of
"datamation" experts:

ONE: The mission is to FLY and FIGHT.

TWO: Software is a MEANS not in END.
30



APPENDICES

31



APPENDIX ONE

This appendix provides a checklist to ensure your documentation
meets the "TAC Standard." This checklist was developed
from current TAC requirements. A quick cal! to the good
people in TAC/ADUBS will ensure the information is stit
valid.

TAC requires the documentation as a minimum address:

GENERAL DESCRIPTION
SYSTEM DESCRIPTION
ENVIRONMENT
PROGRAM MAINTENANCE

The format is not specified. You should use this outline to
check your documentation, before you visit the local SCM.

GENERAL DESCRIPTION

PURPOSE OF THE PROGRAM. Give a history of the project and
state the requirement the program supports. Don't just give
the title of the program, but be brief.

TERMS AND ABBREVIATIONS. List terms, definitions, or
acronyms that are unique to the program. Don't include
items like names of variables or data code names. Explain
those in the body of the documentation. If you have a ,ong
iist of terms, make an attachment.

PRFOGRAM USE Teli how it is to be used. What results should
a user expect? Are there options available for output, are
there specific requirements to the format of inputs?

PROGRAM OPERATION. Give a step-by-step procedures checklist.
How to load, setup, and successfully run your program.

PROGRAM MAINTENANCE/MODIFICATION Include flowcharts and
other logic diagrams as well as a listing of your source
code A good reason to build in Comments and Remarks.

33



SYSTEM DESCRIPTION

SECURITY AND PRIVACY. If your program accesses, generates,
or uses classified information, describe the items in this
section. If it uses information covered by the Privacy Act,
be sure and mention that as well.

GENERAL DESCRIPTION. If your program is part of a larger
system or data base, explain how it interacts with the other
systems, and limitations, if any.

PROGRAM/SYSTEM DESCRIPTION. Give the details and
characteristics of your program. Include all routines and
subroutines in the description. Make It easy for another
operator to maintain or modify by including information you would
need too:

IDENTIFICATION. Give the program title and version
number.

FUNCTIONS. Describe the program functions and the
methods the program uses to accomplish them.

INPUT, describe the input, including again enough
information for maintenance.

Explain the types of data used in operation, and
the types of records used.

PROCESSING. Describe the processes performed in your
program.

MAJOR OPERATIONS. Include quick reference charts
if needed to explain what happens.

RESTRICTIONS. Did you build in any restrictions?
If you did, explain them.

EXIT REQUIREMENTS. Do you need to close files
bef ore leaving? How do you exit? Let your users know
how to quit the program and not lose any of their
hard work.

34 STORAGE. How much and what type is needed.



OUTPUT. Describe the types of output your product
generates. Screen Dumps are VERY helpful.

INTERFACES. What types of connections are needed?
Printer, cables, RS-232, tell what they'll need to make
it all work the first time,

UNIQUE FEATURES. Give password protection, and other
unique features in this section.

ENVIRONMENT

EQUJIPMENT. What specifically must the user have to make it
run? What operating systems, and what equipment
configurations will work with your package.

SUPPORT SOFTWARE. List the various utilities, and other
support software required to run your program. Include the
version numbers and dates of the support software to ensure
maximum compatibility.

DATA BASE. If your product uses a data base, describe the
nature and content of the data base. If your program
develops a data base include the description of tbe
attributes in SYSTEM DESCRIPTION.

PROGRAM MAINTENANCE

LISTINGS. Include a reference to the location of your
program listings. If you need to explain the logic of the
program, then do so.

PROCEDURES. Give a step-by-step procedure of how to prepare
or modify the inputs, the process or outputs. Include how
you would complete the maintenance task.

ERROR CONDITIONS. List the error codes, what may have caused
them, and possible solutions. If you have discussed error
codes in the SYSTEM DESCRIPTION, you don't need to repeat
them here.

35



The /rst myth of management
is that it esists HILLKRS LAW

APPENDIX TWO
REGULATION SUMMARY

The USAF and TAC regulations in this summary impact all small
computer programmers. It will help you find regulations to
reference and use in your activities. Regulations change,
and many installations supplement them as well, so use this
section only as a guide and not your only source.

Each regulation summary is preceded by an information block.
The information in the block is organized as follow7REG
provides the USAF or TAC alphanumeric designation, OPR
designates the office(s) the regulation effects, and C&A are
agencies you can use for coordination and assistance.

REG: AFR 300-3, Management of Small Computers
OPR: Commander, Unit Small Computer Custodian
C&A: TAC/ADUBS & wing Data Automation managers

This regulation sets policies and procedures, and assigns
responsibilities for buying, using, and managing small
computers. If you currently have, or would like to acquire a
small computer, this is the first regulation you should check
out.

Written from the user's perspective, AFR 300-3 stresses
practical strategies and management actions to minimize
problems and get the most from small computer technology. It
also defines a small computer (costs less than S25,000,
operates in a stand-alone mode, etc.), and outlines your
responsibilities as a user.

Policies contained in AFR 300-3 which support software
development are: duplication of effort r-. _- to& - you must
check with your MAJCOM before starting a project); use of
BASIC as a programming language (para 10d - yes you mayl;
documentation requirements (para 10g - should be developed
as the program is built); and personal use and ownership
rights of developed materials (para 12b A 12c - even if you
do it on your computer but on duty, it belongs to the 37
government). Additionally, the installation, operation
accountability, maintenance, and supplies are addressed.

'........



REG: TACR 55-57, Use of Small Computers
OPR: Commander, functional user
CAA: TAC/ADUBS, wing Data Automation

TACR 55-57 sets policies and procedures unique to the
intelligence and operations communities concerning small
computers. It must be used in conjunction with information
systems regulations. This regulation outlines the process for
validating and certifying software. Three types of software
are described: Standard, Validated, and User-Unique.

Standard software is software that has been validated and
certified by TAC/ADUBS. Software validation is a process
that checks to see if your program will do what it is
supposed to do. If you modify software that was previously
validated, it must be forwarded to TAC for revalidation.

There are two categories of validated software: safety-
of-flight and non-safety-of-flight. If you change non-
safety-of-flight software it loses its validation and becomes
User-Unique. User-Unique also includes software that has
sufficient documentation to make it run, but hasn't been
validated. TACR 55-57 describes special applications for the
fighter squadrons to include: flight planning, combat
mission planning, weapons delivery computation, aircrew
training management, and intelligence area threat information
systems.

The process for submitting your software or changing existing
programs, is outlined in TACR 55-57, and this handbook.

REG: TACR 300-12, Management of Small Computers in TAC
OPR: Commander, functional manager
C&A: TAC/ADUBS and wing Data Automation

This regulation sets policies, responsibilities, and
procedures for managing small computers in TAC. It also
outlines the procedures for acquisition, maintenance, and
accountability of small computer hardware and software. It
applies to all organizations using or planning to use small
computers.

38 TACR 300-12 covers many of the same policies and
responsibilities as AFR 300-3, but further defines them. Use
of MODEMs, unit developed software, and requirements for
working with classified materials are specifically outlined.

I ' -



TAC Regulation 300-12 introduces several guidelines to
software development. First, you must review the TAC
software catalog to avoid duplicating other programmers'
efforts. Second, you must document your software in
accordance with TACP 300-11. TACR 300-12 adds

A. Software may not duplicate or conflict with other
USAF or TAC standard software systems. If you get
coordination and approval from HQ TAC/AD and the
appropriate ADPS manager, you may duplicate the
standard training, experience, and flying hour
systems as a back up to the standard programs.

B. You can use BASIC, FORTRAN, COBOL, PLt, Jovial, or
Pascal languages. A waiver was granted by HQ USAF
for the use of BASIC for TAC unit level computer
programs. The waiver for the use of Pascal is for
specific applications, so check with TAC/ADUBS
before using Pascal.

Appendix One of this handbook outlines the documentation
requirements listed in TACP 300-11. Once written and
documented, you must send your developed software to HQ
TAC/ADUBS, through your local Small Computer Manager. The
TAC software exchange program is outlined in Chapter Five of
this handbook and details are in chapter 2 of TACR 300-12.

REG: AFR 300-10, Computer Programming Languages
OPR: Commander, functional user
CAA: TAC/ADUBS, wing Data Automation

AFR 300-10 sets the policy for USAF activities using or
planning to use computer programming languages and
programming compilers. It defines terms and outlines
responsible agencies to ensure the Air Force standardises
computer programming languages. Air Force policy on structure
programming is outlined in this regulation.

39

* .,.. .. . .2 .



APPENDIX THREE

MINI-DAR FORMAT

NOTE: A Mini-DAR should not exceed two typed pages.

1 IDENTIFICATION: Include your functional office symbol,
project officer name, and phone number.

2. FUNCTIONAL REQUIREMENT: Define the requirement in terms
of how it will help solve yo.r problem. Don't specify
brand-names, but identify the characteristics of the
requirement. If you need to process Privacy Act information,
say so in the requirement statement, or your request may
be delayed.

3. ALTERNATIVES CONSIDERED, Describe what happens
if you don't get the software, as well as the outcome if you
do.

4. RECOMMENDED ALTERNATIVE: Include the rationale for
the alternative chosen. Explain how the choice will
inprove your capability, increase readiness, or combat
capability.

5. COST/BENEFIT ANALYSIS: Show how the costs of buying
software is offset by the increased accuracy, capability,
speed, etc. in the request.

6. FUNDS: Identify the source of the funds. Recognise your
request may very well be an unfunded requirement, and delayed
for funds.

7. IMPACT OF DISAPPROVAL: State the mission impact. Express
in terms of capability.

8 CsRB REVIEW AND APPROVAL: If you are going to use
any base communication cables you'll need to include an AF
Form 1070 and gain approval at base level.

9. CLASSIFIED PROCESSING REQUIREMENT: Indicate if your
requirement includes a need to process classified material. 41

10. SIGNATURE BLOCK: Your Deputy Commander for Operations
and the wing SCM sign the Mini-DAR.

.W.- - m



" -r V _" never lime to do it right.
iut &lways time to do it over

MISKMIN L A W

* lIfkV, d feti rlinutes, rip out this page, and sent it along with your commernl to:
HO f~flGIO. langley RFR, OA 23665-5001

Ids the handbook useful?

Olld f hell)?

lWIould tjou pass it along to another user?

lllhat hanges would you like to see in this guide?

. 43
tn

----------



DATE

FILMED


