
RD-ARi5 917 DERIYATIONAL ANALOGY A THEORY OF RECONSTRUCTIVE 1/1
PROBLEM SOLVING RND EXPE..(U) CRRNEGIE-MELLON UNIV
PITTSBURGH PR DEPT OF COMPUTER SCIENCE J G CRRBONELL

UNCLASSIFIED 85 MAR 85 CU-CS-85-115 N98014-79-C-0661 F/6 5/1@ NL

lUhuEEEEEElhhlE
lUuunuuu

1111111016
liii 1111IJ .2

111.15 .4 _

MICROCOPY RESOLUTION TEST CHART
NATIONTALA N[A[O

CMU-CS-85-1 15

I I."

F

00 Derivational Analogy:
A Theory of Reconstructive Problem Solving

W.) and Expertise Acquisition

Jaime G. Carbonell
Computer Science Department,

Carnegie-Mellon University,
Pittsburgh, PA 15213

5 March 1985

I S

DEPARTMENT
of

* S

COMPUTER SCIENCE

... ... r... - +

EL

Carnegie-M ellon University
f,r -;.. . j:, : J'jr+ b! ,n app,-Oocd

-

.,d i 85 7 03 (0I _di~trl~b !! i unti+ led

C'.U-CS-85-1 15

i

Derivational Analogy:
A Theory of Reconstructive Problem Solving

and Expertise Acquisition

Jaime G. Carbonell
Computer Science Department,

Carnegie-Mellon University,
Pittsburgh, PA 15213

5 March 1985

Abstract

Derivational analogy, a method of solving problems based on the transfer of past experierce to new
problem sikuations, is discussed in the context oi other general approaches to problem soiviny. The
experience transfer process consists of recreating lines of reasoning, including decision sequences
and accompanying justifications, that proved effective in solving particular problems requiring similar
initial analysis. The role of derivational analogy in case-based reasoning and in automated expertise
acquisition is discussed."

O

1 rhs re-earch wvas supported in par, by the Office of Naval Pesewrch (ONRI ,ruder grant numt ",s PIN'001.7')_-C C(361 Ind

NU00)14.82 C.50iy mnil in plrt by a gr:int korn IRM The itihor thar!,s the fi(loww, co',rI; II s fnr G:le-r cIIirllhtf,1rrj-
diSCu t;,;io1' tait hpl j th Iriy the ideas pr:;enlpd in this chaptIer: Jon Coyle. Jill L trkin. Stevcn Minion, ind Al.!n Nv vuil. . "

,~~~~.-.,....'-.i - ,,=i~l~ma,-.. .

DERIVATIONAL ANALOGY

Table of Contents
1, Introduction: The Role of Analogy in Problem Solving I
2. Analogy and Experiential Reasoning 3

2.1. Analogical Transformation of Past Solutions 4
3. The Derivational Analogy Method 6

3.1. The Need for Preserving Derivation Histories 6
3.2. The Process of Drawing Analogies by Derivational Transformation 7
3.3. Efficiency Concerns 11
3.4. Summarizing the Derivational Process 13

4. Incremental Expertise Acquisition 13
4.1. Case-Based Reasoning as a Model of Human Expertise 13
4.2. Automatic Acquisition of Plans and Strategies 15

4.2.1. Enrichment of Case-Based Memory 16
4.2.2. Generalized Plans 1
4.2.3. Strategy Acquisition 16
4.2.4. Fractioning Derivations into Rules 18

5. Concluding Remark 19
6. References 20

2

'/'

TI'

..,.

TABLE OF CONTENTS

List of Figures
Figure 1-1: Problem solving may occur by a) instantiating specific plans, b) analogical 2

transformation to a known solution of a similar problem, c) applying general
plans to reduce the problem, d) applying weak methods to search
heuristically for a possible solution, or e) a combination of these approaches.

Figure 2-1: The transformational analogy process: Solutions to closely related problems 5
are retrieved and modified to satisfy the requirements of the new problem.

Figure 3-1: The transformational analogy process: The derivational traces of similar past 8
problems are replayed, and where necessary modified, to reconstruct a
solution to a similar new problem.

Figure 3-2: A derivational trace: Each reasoning step is justified in terms of previous 12
reasoning steps or external knowledge. When a solution attempt fails, the
cause of failure is propagated back to the branching point from the
successful path and retained.

Figure 4-1: Generalizing plans from analogically related solutions: Solutions derived 17
from a common transformational ancestors from a cluster of positive
exemplars. Failed attempts, and members of other clusters provide the
negative exemplars to an induction engine.

DERIVATIONAL ANALOGY

1. Introduction: The Role of Analogy in Problem Solving

The term "problem solving" in artificial intelligence has been used to denote disparate forms of

intelligent action to achieve well-defined goals. Perhaps the most common usage stems from Newell

and Simon's work [31] in which problem solving consists of selecting a sequence of operators (from a

pre-analyzed finite set) that transforms an initial problem state into a desired goal state. Intelligent

behavior consists of a focused search for a suitable operator sequence by analyzing the states

resulting from the application of different operators to earlier states.2 Many researchers have adopted

this viewpoint [16, 35, 32].

However, a totally different approach has been advocated by McDermott [24] and by Wilensky

[42, 43] that views problem solving as plan instantiation. For each problem posed there are one or

more plans that outline a solution, and problem solving consists of identifying and instantiating these

plans. In order to select, instantiate, or refine plans, additionals plans that tell how to instantiate other

plans or how to solve subproblems are brought to bear in a recursive manner. Traditional notions of

search are totally absent from this formulation. Some systems, such as the counterplanning

mechanism in POLITICS [7, 4], provide a hybrid approach, instantiating plans whenever possible, and

searching to construct potential solutions in the absence of applicable plans.

A third approach is to solve a new problem by analogy to a previously solved similar problem. This

process entails searching for related past problems and transforming their solutions into ones

potentially applicable to the new problem [33]. I developed and advocated such a method [8, 9]

primarily as a means of bringing to bear problem solving expertise acquired from past experience.

The analogical transformation process itself may require search, as it is seldom immediately clear

how a solution to a similar problem can be adapted to a new situation.

A useful means of classifying different problem solving methods is to compare them in terms of the

amount and specificity of domain knowledge they require.

" If no structuring domain knowledge is available and there is no useful past experience to draw
upon, weak methods such as heuristic search and means-ends analysis are the only tools that
can be brought to bear. Even in these knowledge.poor situations, information about goal
states, possible actions. their known preconditions anid their expected outcomes is required.

" If specific domain knowledge in the form of plans or procedures exists, such plans may be
instantiated directly, recursively solving any Cubprobleins that arise in the process.

2 In means-ends analysis. the cul rent state is compiared to the goal state and one or more operators that reduce the
difference are selected, whereas in hcuristic search, the present state is evaluated in isolation and compared to .alternate
state- resulting frcm the .1pplication or d'if'2rent operatois (to states generated earlier in th .search), and (lip search for a
solutiun continues from Ie highest-ral 'd state.

2....- .

2 INTRODUCTION: THE ROLE OF ANALOGY IN PROBLEM SOLVING

" If general plans apply, but no specific ones do so, the general plans can be used to reduce the
problem (by partitioning the problem or providing islands in the search space). For instance, in
computing the pressure at a particular point in a fluid statics problem, one may use the general
plan of applying the principle of equilibrium of forces at the point of interest (the vector sum of
the forces = 0). But, the application of this plan only reduces the original problem to one of
finding and combining the appropriate forces, without hinting how that may be accomplished in
a specific problem [6, 22].

" If no specific plans apply, but the problem resembles one solved previously, apply analogical
transformation to adapt the solution of that similar past problem to the new situation. For
instance, in some studies it has proven easier for students to solve mechanics problems by
analogy to simpler solved problems than by appealing to first principles or by applying general
procedures presented in a physics text [11]. As an example of analogy involving composite
skills rather than pure cognition, consider a person who knows how to drive a car and is asked
to drive a truck. Such a person may have no general plan or procedure for driving trucks, but is
likely to perform most of the steps correctly by transferring much of his or her automobile
driving knowledge. Would that we had robots that were so self.adaptable to new, if
recognizably related tasksl

General Plan

Weak

Methods

Specific Plans

New Problem Old Problems

Solved

Figure 1.1: Problem solving may occur by a) instantiating specific plans, b) analogical
transformation to a known solution of a similar problem, c) applying general plans to
reduce the problem, d) ap.lying weak methods to search heuristica:ly for a possible
solution, or e) a combination of these approaches.

DERIVATIONAL ANALOGY 3

Clearly, these problem solving approaches are not mutually exclusive; for instance, a "first-

principles" approach can be used to reduce a problem to simpler subproblems, which can in turn be

solved by analogy to recognizably similar past problems, or by any of the other methods. In fact,

Larkin and 1[6, 22] are developing a general inference engine for problem solving in the natural

sciences that combines all four approaches.

As discussed earlier, only direct plan instantiation and weak methods have received substantial

attention by Al practitioners. For instance, Newell and Laird's recent formulation of a universal weak

method [21] as a general problem solving engine is developed completely within the search paradigm.

Expert systems, for the most part, combine aspects of plan instantiation (often broken into small

rule-size chunks of knowledge) and heuristic search in whatever manner best exploits the explicit and

implicit constraints of the specific domain [15, 39, 14, 25, 26]. I am more concerned with the other

two approaches, as they could conceivably provide powerful reasoning mechanisms not heretofore

analyzed in the context of automating problem-solving processes, and allowing the problem solver to

learn from experience. The rest of this chapter focuses on a new formulation of the analogical

problem solving approach.

2. Analogy and Experiential Reasoning

The term analogy often conjures up recollections of artificially contrived problems asking: "X is to Y

as Z is to ?" in various psychometric exams. This aspect of analogy is far too narrow and independent

of context to be useful in general problem solving domains. Rather, I propose the following

operational definition of analogical problem solving consistent with past Al research efforts

[20, 44, 45, 17, 5, 91.
Definition: Analogical problem solving consists of transferring knowledge from past
problem solving episodes to new problems that share significant aspects with
corresponding past experience -- and using the transferred knowledge to construct
solutiops to the new problems.

In oider to make this definition operational, the problem solving method must specify:

" what it means for problems to "share significant aspects",

* what knowledge is transferred from past experience to the new situation,

" precisely how the knowledge transfer process occurs,

" and how analogically related experiences are selected from a potentially vast long term memory
of past problem solving episodes.

There are two distinct approaches to analogical problem solving. The first approach, called

transformational analogy, has been successfully implemented in ARIES (An:logical Reasoning and

Inductive Experimentation System) [9]. The second approach, called dorivtional analogy, is a

• . •- .

4 ANALOGY AND EXPERIENTIAL REASONING

reconstructive rather than transformational method, and is the topic of this paper. Both methods are

analyzed with respect to the four criteria above.

2.1. Analogical Transformation of Past Solutions

If a particular solution has been found to work on a problem similar to the one at hand, perhaps it

can be used, with minor modification, for the present problem. By "solution" I mean only a sequence

of actions that if applied to the initial state of a problem brings about its goal state. Simple though this

process may appear, an effective computer implementation requires that many difficult issues be

resolved, to wit:

1. Past problems descriptions and their solutions must be remembered and indexed for later
retrieval.

2. The new problem must be matched against large numbers of potentially relevant past problems
to find closely related ones, if any. An operational similarity metric is required as a basis for
selecting the most suitable past experiences.

3. The solution to a selected old problem must be transformed to satisfy the requirements of the
new problem statement.

In order to achieve these objectives, the initial analogical problem solver (9] required a partial

matcher with a built-in similarity criterion, a set of possible transformations to map the solution of one

problem into the solution to a closely related problem, and a memory indexing mechanism based on a

MOPS-like memory encoding of events and actions (37]. The solution transformation process was

implemented as a set of atomic transform operators and a means-ends problem solver that searched

for sequences of atomic transformations which when applied to the retrieved solution yielded

potential solutions to the new problem. The resultant system, called ARIES, turned out to be far more

complex than originally envisioned. Partial pattern matching of problem descriptions and searching in

the space of solution transformations are difficult tasks in themselves. Figure 2-1 illustrates the

transformational analogy process.

In terms of the four criteria, the solution transformation process may be classified as follows:

1. Two problems share significant aspects if they match within a certain preset threshold in the
initial partial matching process, according to the built-in similarity metric.

2. The knowledge transferred to the new situation is the sequence of actions from the retrieved
solution, whether or not that sequence is later modified in the analogical mapping process.

3. The knowledge transfer process is accomplished by copying the retrieved solution and
perturbing it incrementally according to the primitive transformation steps in a heuristically
guided manner until it satisfies the requirements of the new problem. (See [9] for details.)

4. The selection of relevant past problems is constrained by the memory indexing scheme and the
partial pattern matcher.

Since a signiificant fraction .3f problems encountered in mundane situations and in aieas requiring

DERIVATIONAL ANALOGY 5

Partial

New Mapping PreviouslyNew 0Solved

ProblemProbe Problem

Derivation

Solution Solution
to New to O1d

- Transform ProblemProblem___Process_

Figure 2-1: The transformational analogy process: Solutions to closely rela!ed problems are

retrieved and modified to satisfy the requirements of the new probie:n.

substantial domain expertise (but not in abstract mathematical puzzles) bear close resemblance to

past solved problems, the ARIES method proved effective when tested in various domains, including

algebra problems and route planning tasks. An experiential learning component was added to ARIES

that constructed simple plans (generalized sequences of actions) for recurring classes of problems,

hence allowing the system to solve new problems in each recurrent class by the more direct plan

instantiation approach. However, no sooner was the solution transformation method implemented

and analyzed than some of its shortcomings became strikingly apparent. In response to these

deficiencies, I started analyzing more sophisticated methods of drawing analogies, as discu533Cd in

the following sections.

6 THE DERIVATIONAL ANALOGY METHOD

3. The Derivational Analogy Method

In formulating plans and solving problems, a considerable amount of intermediate information is

produced in addition to the resultant plan or specific solution. For instance, formulation of subgoal

structures, generation and subsequent rejection of alternatives, and access to various knowledge

structures are some of the intermediate steps in the problem solving process. But, the solution

transformation method outlined above ignores all such information, focusing only upon the resultant

sequence of actions and disregarding, among other things, the reasons for selecting those actions.

Why should one take such extra information into account? It would certainly complicate the

analogical problem solving process, but what benefits would accrue from such an endeavor? Perhaps

the best way to answer this question is by analysis of where the simple solution transformation

process falls short and how such problems may be alleviated or circumvented by preserving more

information from which qualitatively different analogies may be drawn.

3.1. The Need for Preserving Derivation Histories

Consider, for instance, the domain of constructing computer programs to meet a set of pre-defined

specifications. In the automatic programming literature, perhaps the most widely used technique is

one of progressive refinement [3, 2, 19]. In brief, progressive refinement is a multi-stage process that

starts from abstract specifications stated in a high level language (typically English or some variant of

first order logic), and produces progressively more operational or algorithmic descriptions of the

specification committing to control decisions, data structures and eventually specific statements in

the target computer language. However, humans (well, at least this writer) seldom follow such a long

painstaking process, unless perhaps the specifications call for a truly novel program unlike anything

in one's past experience. Instead, a common practice is to recall similar past programs and

reconstruct the new programming problem along the same directions. For instance, one should be

able to program a quicksort algorithm in LISP quite easily if one has recently implemented quicksort

in PASCAL. Similarly, writing LISP programs that perform tasks centered around depth-first tree

traversal (such as testing equality of S-expressions or finding the node with maximal value) are rather

trivial for LISP programmers but surprisingly difficult for those who lack the appropriate experience.

The solution transformation process proves singularly inappropriate as a means of exploiting past

experience in such problems. A PASCAL implementation of quicksort may look very different than a

good LISP implementation. In fact, attempting to transfer corresponding steps from the PASCAL

program into LISP is clearly not a good way to produce any reasonable LISP program, let alone an

elegant or efficient one. Although the two problem statements may have been similar, and the

problem solving processes may preserve much of the inherent similarity, the resultant solutions (i.e.,

the PASCAL and LISP programs) may bear litt,,D if any direct similarities.

. d. .

DERIVATIONAL ANALOGY 7

The useful similarities lie in the algorithms implemented and in the set of decisions and internal

reasoning steps required to produce the two programs by successively refining the general

specification of the algorithm. Therefore, the analogy must take place starting at earlier stages of the

original PASCAL implementation, and it must be guided by a reconsideration of the key decisions in

light of the new situation. In particular, the derivation of the LISP quicksort program starts from the

same specifications, keeping the same divide and conquer strategy, but may diverge in selecting data

structures (e.g. lists vs arrays), or in the method of choosing the comparison element, depending on

the tools available in each language and their expected efficiency. However, future decisions (e.g.

whether to recurse or iterate, what mnemonics to use as variable names, etc.) that do not depend on

earlier divergent decisions can still be transferred to the new domain rather than recomputed. Thus,

the derivational analogy method walks through the reasoning steps in the construction of the past

solution and considers whether they are still appropriate in the new situation or whether they should

be reconsidered in light of significant differences between the two situations.

The difference between the solution transformation approach and the derivational analogy

approach just outlined can be stated in terms of the operational knowledge that can be brought to

bear. The former corresponds to a person who has has never before programed quicksort and is

given the PASCAL code to help him construct the LISP implementation, whereas the latter is akin to a

person who has programmed the PASCAL version himself and therefore has a better understanding

of the issues involved before undertaking the LISP implementation. Swartout and Balzer [40] and

Scherlis [34] have argued independently in favor of working with program derivations as the basic

entities in tasks relating to automatic programming. The advantages of the derivational analogy

approach are quite evident in programming because the of the frequent inappropriateness of direct

solution transformation, but even in domains whether the latter is useful, one can envision problems

that demonstrate the need for preserving or reconstructing past reasoning processes.

3.2. The Process of Drawing Analogies by Derivational Transformation

Let us examine in greater detail the process of drawing analogies from past reasoning processes.

Figure 3- 1 depicts the process of mapping and merging past derivations to solve a new, analogically

related problem. The essential insight is that useful experience is encoded in the reasoning process

used to derive solutions to similar problems, rather than just in the resultant solution. And, a method a
of bringing that experience to bear in the problem solving process is required in order to make this

form of analogy a computationally tractable approach. Here we outline such a method:

1. When solving a problem by whatever means, store each step taken in the solution process. as
llustrated in figure 3-2, including: 0

e The subgoal structure of the problem

0

8 THE DERIVATIONAL ANALOGY METHOD

New Partial Mappings Previous
ProblemPrbe 2

" Replayed" Previou

DDerivations

ProblemProblemm

Soolution

to
Problem1

Fi)u re 3- 1 -'o~mfr~rI nlicgy process: Th? leritionc! traccs of Cifniar past
pr c ~ms re''a e1 r~ erentecssary modified, to reconstruct a solution to a

~ _ ~Cr.'~'J~O *~'~I~ r3 ecson to tawe action, to explore newv po-'siiirtes, or to

Tr r-!cr :!,C: ' jons takjcn (wit4dperndency lirkS to Ole problem
:~r'tc r rJ,rmjtcn therelrcni)

2 REFERENCES

8. Schank, R. C., "The Current State of Al: One Man's Opinion," Ai M.agaztne, Vol. IV, No. 1, 1983,
pp. 1-8.

39. Shortliffe, E., Computer Based Medical Consultatiens: MYCIN, New York: Elsevier, 1976.

40. Swartout, W. and Balzer, R., "An Inevitable Intertwining of Specificaton and Implementation,"
Comm. ACM, Vol. 25, No. 7, 1982.

41. Waterman, D., Hayes-Roth, F. and Lenat, 0. (eds.), Building Expert Systems, Addison-Wesley,
1983.

42. Wilensky, R., Understanding Goal-Based Stories, PhD dissertation, Yale University, Sept. 1978.

43. Wilensky, R., Planning and Understanding, Addison Wesley, Reading, MA, 1983.

44. Winston, P., "Learning by Creating and Justifying Transfer Frames," Tech. report AIM-520, Al
Laboratory, M.I.T., January 1978.

45. Winston, P. H., "Learning and Reasoning by Analogy," Comm. ACM, Vol. 23, No. 12, 1979, pp.
689-703.

DERIVATIONAL ANALOGY 21

17. Gentner, D., "The Structure of Analogical Models in Science," Tech. report 4451, Bolt Beranek
and Newman, 1980.

18. Hayes-Roth, F., "Using Proofs and Refutations to Learn from Experience,' in Machine Learning,
An Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell, eds., Tioga
Press, Palo Alto, CA, 1983.

19. Kant, E., Efficiency in Program Synthesis, UMI Research press, Ann Arbor, Ml, 1981.

20. Kling, R. E., "A Paradigm for Reasoning by Analogy," Artificial Intelligence, Vol. 2, 1971, pp.
147-178.

21. Laird, J. E. and Newell, A., "A Universal Weak Method," Proceedings of the Eight Joint
Conference on Artificial Intelligence, 1983, (submitted).

22. Larkin, J., Reif, F. and Carbonell. J. G., "FERMI: A Flexible Expert Reasoner with Multi-Domain
Inference," Cognitive Science, Vol. 9, 1984 (Submitted).

23. McDermott, D. V. and Doyle J., "Non-Monotonic Logic I," Artificial Intelligence, Vol. 13, 1980, pp.
41-72.

24. McDermott, D. V., "Planning and Acting," Cognitive Science, Vol. 2, No. 2, 1967, pp. 71-109.

25. McDermott, J., "Ri: A Rule-Based Configurer of Computer Systems," Tech. report, Carnegie-
Mellon University, Computer Science Department, 1980.

26. McDermott, J., "XSEL: A Computer Salesperson's Assistant," in Machine Intelligence 10, Hayes,-
J., Michie, D. and Pao, Y.H., eds., Chichester UK: Ellis Horwood Ltd., 1982", pp. 325-337.

27. Michalski, R. S., "A Theory and Methodology of Learning from Examples," in Macnine Learning,
An Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell, eds., Tioga
Press, Palo Alto, CA, 1983.

28. Minsky, M., "K-Lines: A Theory of Memory," Cognitive Science, Vol. 4, No. 2,1980, pp. 117.133. S

29. Mitchell, T. M., Version Spaces: An Approach to Concept Learning, PhD dissertation, Stanford
University, December 1978.

30. Mitchell, T. M., Utgoff, P. E. and Banerji, R. B., "Learning by Experimentation: Acquiring and
Refining Problem-Solving Heuristics," in Machine Learning, An Artificial ntelligence .A pproach, R.
S. Michalski, J. G. Carbonei. and T. M. Mitchell, eds., Tioga Press, Palo Aito, CA, 1983.

31. Newell, A. and Simon, H. A., Human Problem Solving, New Jersey: Prentice-Hal), 1972.

32. Nilsson, N. J., Principles of Artificial Intelligence, Tioga Press, Palo Alto, CA, 1980.

33. Polya, G., How to Solve It, Princeton NJ: Princeton U. Press, 1945.

34. Reif. J. H. and Scherlis, W. L., "Deriving Efficient Graph A gorithms," Tech. report, Carnegie-
Mellon University, Computer Science Department, 1982.

35. Sacerdoti, E. D., "Planning in a Hierarchy of Abst-action Spaces," Artificial Intelligence, Vol. 5,
No. 2, 1974, pp. 115-135.

36. Schank, R. C., "Language and Memory," Cognitive Science. Vol. 4, No. 3. 1980, pp. 243-284.

37. Schank. R. C., Dynamic Memory, Cambridge University Press, 1982.

. ,,,.. . . .
.1'-., . .. "- , " " "'" " imlmm'am mImml i d

" i l

20 CONCLUDING REMARK

processes are means of implementing the latter. Together they form a computational theory of

incremental expertise acquisition, a theory that is still in the process of being implemented, tested,

refined, and reformulated.

6. References

1. Anderson, J. A., "Acquisition of Proof Skills in Geometry," in Machine Learning, An Artificial
Intelligence Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell, eds., Tioga Press, Palo
Alto, CA, 1983.

2. Balzer, R., "Imprecise Program Specification," Tech. report RR-75-36, USC/Information Sciences
Institute, 1975.

3. Barstow, D. R., Automatic Construction of Algorithms and Data Structures Using a Knowledge
Base of Programming Rules, PhD dissertation, Stanford University, Nov. 1977.

4. Carbonell, J. G., "Counterplanning: A Strategy-Based Model of Adversary Planning in Real-World
Situations," Artificial Intelligence, Vol. 16, 1981, pp. 295-329.

5. Carbonell, J. G., "A Computational Model of Problem Solving by Analogy," Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, August 1981, pp. 147.152.

6. Carbonell, J. G., Larkin, J. H. and Reif, F., "Towards a General Scientific Reasoning Engine,"
Tech. report, Carnegie-Mellon University, Computer Science Department, 1983, CIP #445.

7. Carbonell, J. G., Subjective Understanding: Computer Models of Belief Systems, Ann Arbor, MI:
UMI research press, 1981.

8. Carbonell, J. G., "Experiential Learning in Analogical Problem Solving," Proceedings of the
Second Meeting of the American Association for Artificial Intelligence, Pittsburgh, PA, 1982.

9. Carbonell, J. G., "Learning by Analogy: Formulating and Generalizing Plans from Past
Experience," in Machine Learning, An Artificial Intelligence Approach, R. S. Michalski, J. G.

Carbonell and T. M. Mitchell, eds., Tioga Press, Palo Alto, CA, 1983.

10. Carbonell, J. G., "The SMOKEY Fire-Diagnosis System," Tech. report, Carnegie-Mellon
University, Computer Science Department, 1985.

11. Clements, J., "Analogical Reasoning Patterns in Expert Problem Solving," Proceedings of the
Fourth Annual Conference of the Cognitive Science Society, 1982.

12. Doyle. J., "A Truth Maintenance System," Artificial Intelligence, Vol. 12, 1979, pp. 231-272.

13. Doyle, J., "Expert Systems Without Computers," At Magazine, Vol. 5, No. 2, 1984, pp. 59-63.

14. Duda. R. 0., Hart, P. E., Konolige, K. and Reboh, 19., "A Computer Based Consultant for Mineral
Exploration," Tech. report 6415, SRI, 1979.

15. Feigenbaum, E. A., Buchanan. E, A. and Lederberg, J., "On Generality and Problem Solving: A
Case Study Using the DENDRAL Program," in Mlachine Intelligence 6, D. Michie, ed., Edinburgh
University Press, 1971.

16. Fikes, R. E. and Nilsson, N. J., "STRIPS: A Ne'wi Approach to the Application of Theorem Pfuving

to Problem Solving," Artificial Intelligonce, '/ol. 2, 1971, pp. 189-208.

• .
.- - _l.ime "

DERIVATIONAL ANALOGY 19

Occurred with high frequency, and was proposed as a rule kernel.

2. Trace justifications - Why must one plan a route, or locate a bridge? The justification for the
former comes from the supergoal goal PLAN-ROUTE(here.destination), and the
justification for the latter comes from the fact that the presence of a river between "here" and
"destination" violates a precondition for land travel.

3. Formulate rule - First, computable predicates must be found to establish the justifications.
These become the condition side of the rule. Then, the justified subsequence of actions,
parameterized to the most general justifiable class of actions or objects becomes the action
side of the rule. In the present example, the resultant rule is:

If GOAL(x) is LOC(x,time-2) = destination
& LOC(x,time-1) = here
& BETWEEN(here,destination) = river
& TRANSPORTATION(x) = land-vehicle

Then FIND(bridge,river)
PLAN-ROUTE(here,bridge)
PLAN-ROUTE(bridge .destination)

Thus, we see that from multiple planning episodes, one can induce the rule that if one must cross a

river, then one should first worry about finding a bridge, and then plan the route according to this

constraint. The rule fractioning process truly requires all three phases: finding relevant sequences,

determining the justifications for these sequences, and actually formulating the rule from this

information. Without a derivational trace, it would not be possible to fraction rules reliably, because

the justifications provided in. the trace are needed for searching out the necessary and useful

conditions for the left-hand-side of the rule. Otherwise, one would have to either postulate that the

recurrent subsequence was totally independent of context (a terrible assumption -- the system would

be searching for bridges when there were no rivers to cross), or completely dependent on context,

requiring that the entire trace up to that point be included in the condition side, rather than just the

causally relevant conditions indicated by the justifications.

5. Concluding Remark

Derivational analogy is a powerful reasoning mechanism, and one that provides the necessary

information for learning to occur in many different forms, from accumulation of cases to formulation

of domain-oriented strategies and sets of deductive rules. It has been remarked that heuristics are

"compiled hindsight", and as such can prove useful in guiding future behavior. But, how can one

take advantage of hindsight unless one recalls past experiences including aspects of one's state of

mind necessary to reconstruct past problem-solving behaviors in new situations? There must be a

retrospective process able to exploit past experience, and a gradual, incremental learning process

that abstracts from that experience more generally applicable chunks of knowledge. The dcrivational

analogy process is one concrete method for realizing the former, and the stra'tegy and rule acqui-tition

18 INCREMENTAL EXPERTISE ACQUISITION

condition to the strategy, and the fact that automobile travel proved successful independent of the

exact compass orientation or identity of the cities within the United States serves to assert the

independence of the strategy from such considerations. In fact, a trial implementation in the route.

finding domain has yielded planning strategies increasingly more appropriate to the task domain.

Applying the same technique to problem decomposition tasks, plan-selection tasks (when multiple

generalized plans exist for a given subproblem), and avoiding the causes of failure under similar

circumstances can also yield automated refinement of the system's behavior. In all cases, the internal

and external justifications provide the means to focus on the functionally relevant aspects of the

phase in the derivation from which the system is attempting to learn. However, unlike the strategy.

selection task above, I have no empirical validation of the utility or feasibility of attempting to produce

better problem decomposition criteria, plan selection methods, or generalized avoidance of recurring

pitfalls. This is currently an active area of exploration.

4.2.4. Fractioning Derivations into Rules

A process akin to "decompilation" is the formulation of generally applicable rules from more

problem specific derivational sequences. Contrary to Anderson [1] and others who view knowledge

compilation as the perhaps the most significant learning strategy, I view the decompilation process to

be at leazt as important. Recall that in case-based reasoning one is given compiled, but fully

annotated, audit trails of the reasoning process .- the derivational traces. The fractioning task is one

of axiomatizing the long, problem-specific traces into individual rules applicable to a much wider

range of situations, although each rule solves only part of the new problem. The difficult aspect of the

task is to bundle the derivationally.related steps into useful rules, assuring that the necessary (and

only the necessary) preconditions are associated with each rule. But its utility lies in the ability to

learn more generally applicable knowledge from specific experiences. The knowledge engineers may

yet have their precious rule sets, but rule sets generated automatically after extended experience with

derivational traces, rather than rules produced and gradually refined by hand at much cost in time

and frustration.

Let us see how rules would be fractioned off from longer derivational traces. The process described

below has been tested only in the route-finding domain thus far, but there it has proven useful.

1. Find relevant candidates - The first step in the formulation of rules from derivational traces
is to search for candidate subsequences of actions that recur in different, possibly unrelated,
derivational traces in the domain. For instance, the sequence:

LOCATE(bridge),
PLAN-ROUTE(herebridge),
PLAl-ROUrE(bridgedestinatioii)

-. , l . .
.

-. -, . i - - - . - "

DERIVATIONAL ANALOGY 17

SGENERALIZATION

O ~usterlo

+ + T+ solutions with
T1 a common

derivational
ancestor

(T, j) << d T,, rk)

VT 1, TjTk s.t. TIE C 4 TE C &
TIE C *- Tke C

* Members of a cluster = + Instances

* Members of other clusters = - Instances

(or failed analogies serve as -Instances)

to an Induction Engine

Figure 4-1: Oenera!izirg plars frDm 2n2j;.2c Fy rlh dJ Utc..*: Iihthrl ,r. ,; ;rr.n ci

,ornon trn ormalona, pc,'nrr, n ,a ;,,.-Ar of ';ss'v .. .ied
aitt,:npts. in' merbers O (,t i.r Chfrs ci~ov , h '.. .- Q ,n

11duction engine.

S.

16 INCREMENTAL EXPERTISE ACQUISITION

4.2.1. Enrichment of Case-Based Memory

As a system solves problems, or is presented with fully annotated derivations of solutions, its

repertoire of cases increases. Thus, it will be able to derive analogical solutions from these new

experiences. This incremental monotonic increase in its experiential knowledge base provides a

powerful argument in favor of a method such as derivational analogy, which can utilize the

experience directly to solve new problems.

4.2.2. Generalized Plans

Using only the resultant solutions to a large set of analogically related problems (rather than the

entire derivations), generalized plans can be abstracted. This process requires that solutions derived

from a common analogical parent from a set of positive exemplars, and unrelated or failed solutions

form a set of negative exemplars. These sets are given to a general inductive engine [27], or

preferably an incremental one such as Mitchell's version space method [29. 30], which abstracts a

generalized plan from the recurring common aspects of these solutions. Later, the generalized plan

can be instantiated directly - or refined further if more instance solutions are derived. Figure

4-1 summarizes this process, which is discussed at greater length in [9].

4.2.3. Strategy Acquisition

The same method for inducing generalized plans from positive and negative exemplars can be

applied to different parts of the full derivational trace.

Considerations of alternate decision points in derivationally related solutions can yield to the

compilation of domain specific heuristics for making future choices of the same nature. If a particular

decision was part of a successful derivation in several problem solutions, but led to a false path under

other problem solutions, we again have the requisite grist for the induction engine: A set of positive

exemplars in the justifications of the successful decision, and a set of near-miss negative exemplars

in the cases where the same decision proved ineffective. In fact, the cause of failure (propagated

back to the causally related decision point and retained in the derivational trace, as discussed earlier)

provides a set of necessary -- but perhaps not sufficient -- conditions to discriminate between the

positive and negative instances of the decision.

Consider, for instance, the selection of a means of transportation in various problem solving

situations that involve travel. If an automobile was successfully sel=,,tcd three ti,.ies to travel between

cities in the continental United Slates, but was erroneously suggested as a means of traveling

between Boston and London. the strategy for selecting a means of transportation cLin be refin-d. The

cause of failure (no land route between the source and destination) serves to add a necessary

.

DERIVATIONAL ANALOGY 15

didn't think of that situation, but perhaps I can fix the rule...or add a new one..." This ad-hoc iterative

process, slow and frustratingly inefficient as it may be, usually converges upon an acceptable

knowledge base. However, a much more efficient and humane approach is to let the experts do what

they do best: solve problems in their domain of expertise. The only added burden is a reporting

requirement. Each problem solving step, including references to static domain knowledge or to

heuristics of the domain, must be reported explicitly, along with the reason why such knowledge was

used. This process provides external derivational traces that a derivational analogy inference engine

can use to solve similar future problems in an effective manner. Although the derivational method

was originally conceived as a means to reason and learn from one's own past experience, it works

equally well as a means to reason and learn from the experience of a more knowledgeable external

source, such as a human expert, or a worked out problem example in a text book.

Case-based reasoning is particularly prevalent in law .. at least in the British and American systems

of jurisprudence -- and in medical diagnosis and treatment. The idea of case-based reasoning in

expert systems is not new. Schank [38], for instance, advocates this method as superior and closer to

human reasoning than present expert systems. Doyle [13] proposes the notion of emulating the

human master-apprentice process as a means whereby the latter (human or computer) can acquire

expertise by replicating the reasoning processes of former. Here, I propose a concrete computational

mechanism -- the derivational analogy process -- as a means of providing expert systems with the

ability to reason from cases, whether the cases be past experience or externally acquired knowledge.

However, I also believe that human experts can solve problems progressively more quickly and

effectively with repeated experience. Whereas case-based reasoning may reflect accurately a crucial

intermediate stage in the learning process and may account for problem solving behavior in

infrequently recurring situations, some knowledge is gradually compiled into more general processes

abstracted from the concrete cases. That is to say, for the most routine, recurring problems, the

derivational analogy process should produce general plans that can be instantiated directly. The

following section explores learning techniques in derivational analogy.

4.2. Automatic Acquisition of Plans and Strategies

The standard behavioral definition for learning can be paraphrased as:
definition: A system (biological or mechanical) is said to learn if it can modify its behavior
after a set of experiences such that it can perform a task more accuratcly or more
efficiently than before, or it can perform a new task beyond its previous capabilities.

What can be learned in the derivational analogy process, according to this definition? Learning can

occur at many levels, and in many forms.

.- . . .J

14 INCREMENTAL EXPERTISE ACQUISITION

particular expert system. Observing this phenomenon, Edward Feigenbaum uttered his now famous

proclamation "In the knowledge lies the power". How right he was! Fortunately, however, the tacit

assumption that domain knowledge must necessarily be represented as large sets of context-

independent rules is proving to be only an early engineering decision, and a very limiting one at that.

The knowledge must be captured, but the question remains as to the best means of acquiring and

representing it in a computationally effective manner.

What then would be an alternative means of representing and acquiring domain knowledge? In

order to address this question, I set out to build an expert system and gain first-hand experience, but

keeping in perspective all the different problem solving methods and machine learning paradigms. In

less than a year, with the help one programmer and two domain experts, we produced SMOKEY [10],

a prototype fire diagnosis expert system. In essence, SMOKEY polls multiple remote sensors (heat,

smoke, air-pressure detectors, etc.), and calculates the location, expected spread and critical nature

of a fire on a building or a ship. From this assessment it recommends actions such as signaling safe

exit routes free of smoke, closing down air-circulation ducts before they spread toxic smoke to

unaffected areas, selecting equipment for the fire-fighting team appropriate to the nature of the fire,

and so on. We learned several lessons from this endeavor, and here we focus on the central one: the

utility of case-based reasoning.

Upon interviewing Naval experts for on-board fire diagnosis situations we found that for sizable

fires, they are swamped with too much information coming from all the potentially relevant sensors.

Hence, we played a video-tape simulation of several fires at much-reduced speeds. The results were

amazing: previously sloppy decisions that ignored crucial information vanished, and we recorded

elaborate problem-solving protocols including fairly complete justifications for each action or

decision taken. Unfortunately, one cannot put real fires in slow motion to allow for human reaction

time and memory limitations. Thus, the need for a SMOKEY-like system on a fast processor was

established. Now, the question remained as to how the excellent (slow-motion) problem solving

traces could be converted into the knowledge base of an expert system. And, the key insight was that

perhaps they need not be converted -- only encoded appropriately and fed to a derivational analogy

problem solver and learning module. SMOKEY was built concurrently with the development of the

derivational analogy method, so the expertise acquisition steps discussed below were carried out

largely by hand, rather than in a completely automated fashion.

We found that human experts are incredibly poor at producing general deductive rules that account

for their behavior. When forced to do so by insistent knowledge engineers, they try hard and produce

faulty rules. When later faced with a problem in which the rule fails, the typical response is: "Well, I

," , -

• , - . , - " • . " '. • - .,

DERIVATIONAL ANALOGY 13

3.4. Summarizing the Derivational Process

Derivational analogy bears closer resemblance to Schank's reconstructive memory [36, 37] and

Minsky's K-lines [281 than to traditional notions of analogy. Although derivational analogy is less

ambitious in scope than either of these theories, it is a more precisely defined inference process that

can lead to an operational method of reasoning from particular experiential instances. The key notion

is to reconstruct the relevant aspects of past problem solving situations and thereby transfer

knowledge to the new scenario, where that knowledge consists of decision sequences and their

justifications, rather than individual declarative assertions. To summarize, consider how the process

of derivational analogy can be described in terms of the for criteria for analogical reasoning

presented in the previous section:

1. Two problems share significant aspects if their initial analysis yields the same reasoning steps,
i.e., if the initial segments of their respective derivations start by considering the same issues
and making the same decisions.

2. The justified steps in the derivation may transferred to the new situation, in essence recreating
the significant aspects of the reasoning process that solved the past problem.

3. Knowledge transfer is accomplished by reconsidering old decisions in light of the new problem
situation, preserving those that apply, and replacing or modifying those whose supports are no
longer valid in the new situation.

4. Problems and their derivations are stored in a large episodic memory along the line of Schank's
MOPS [37], and retrieval occurs by replication of initial segments of decision sequences
recalling the past reasoning process.

4. Incremental Expertise Acquisition

Derivational analogy is a fertile computational paradigm that supports various knowledge

acquisition and skill refinement strategies. Thus far, I have focused on the basic problem solving

aspects, but a major motivation behind the reconstructive derivational strategy is the natural manner

in which it can be extended to include incremental acquisition of domain expertise. First, let us dwell

briefly upon case-based reasoning as a major component of human expertise. Then, let us turn to

some concrete methods for acquiring and refining expertise from experience, based upon the

derivational analogy model.

4.1. Case-Based Reasoning as a Model of Human Expertise

The vast majority of present-day expert systems encode their knowledge as a large, amorphous set

of domain-specific rules [13, 26, 25, 39, 411. The "knowledge engineering" task is defined as one of

extracting from the human expert the set of rules that comprise his or her expertise in a particular,

weli-defined domain. The task is by no means easy; quite the contrary. It can take years of laborious

efforts by teams of domain experts and Al researchers in an iterative process of formulating,

evaluating, re-formulating, discarding and refining a sot of rules to develop the knowledge base of a

.I ii .' ." • . . .' ' . - . ' -' . ' " . "

. ; .' " :-' '-" -''n,-'- '-- t r.N r ml' Nl h im-ni ' """ " - -"' " " " -" "" ""- "- "-" -

I.I
12 THE DERIVATIONAL ANALOGY METHOD

aF Decisions

Ia -
Problem " = Justifications

(Ea o r Failure - Cause

* aE :Propagation

(Decompose)
--. .-. **

Cause - -(Instantiate Plan)
Cause a

(Failure)
a* aa (Select Subgoal)

(Apply Operator)

Cause
AF-

4-. ' , (Instantiate

I

. Figure 3.2: A derivational trace: Each reasoning step is justihted in terms of previous reasoning

steps or external knowledge. When a solution attempt faul, the cause of fhilure is

* propagated back to the branching point from the. successful path and retami .

• .. , -- - . - -. ". .V. ,i - - .. ,

DERIVATIONAL ANALOGY 11

old decisions are invalidated in the new problem situation. Exactly what the perseverance
threshold should be is a topic for empirical investigation, as it depends on whether there
are other tractable means of solving this problem and on the overhead cost of
reevaluating individual past decisions no longer be supported which may or may not have
independent justification.

5. After an entire derivation has been found to apply to the new problem, store its divergence from
the parent derivation as another potentially useful source of analogies, and as an instance from
which more general plans can be formulated if a large number of problems of share a common
solution procedure [9].

3.3. Efficiency Concerns

An important aspect of the derivational analogy approach is the ability to store and trace

dependency links. It should be noted that some of the inherent inefficiencies in maintaining global

consistency in a large deductive data base do not apply, as the dependency links are internal to each

derivation with external pointers only to the problem description and to any volatile assumptions

necessitated in constructing the resultant solution. Hence, the size of each dependency network is

quite small, compared to a dependency network spanning all of memory. Dependencies are also

stored among decisions taken at different stages in the temporal sequence of the derivation, thus

providing the derivational analogy process access to causal relations computed at the time the initial

problem was solved.

The analogical re-derivation process is not inherently space inefficient, although it may so appear at

first glance. The sequence of decisions in the solution path of a problem are stored, together with

necessary dependencies, the problem description, the resultant solution, and alternative reasoning

paths not chosen. Failed paths are not stored, only the initial decision that was taken to embark upon

that path, and the eventual reason for failure (with its causal dependencies), are remembered. Hence,

the size of the memory for derivational traces is proportional to the depth of the search tree, rather

than to the number of nodes visited. Problems that share large portions of their derivational structure

can be so represented in memory, saving space and facilitating the similarity-based indexing process.

Moreover, when a generalized plan is formulated for recurring problems that share a common

derivational structure, the individual derivations that are totally subsumed by the more general

structure can be permanently masked or deleted. Those derivations that represent exceptions to the

general rule, however, are precisely the instances that should be saved and indexed accordingly for

future problem solving [181.

A

10 THE DERIVATIONAL ANALOGY METHOD

exceptions to the best formulated general plans require representation and use of
indiv Iial reasoning episodes.

4. A retrieved derivation is applied to the new problem as follows: For each step in the derivation,
starting immediately after the matched initial segment, check whether the reasons for
performing that step are still valid by tracing dependencies in the retrieved derivation to
relevant parts of the old problem description or to volatile external assumptions made in the
initial problem solving.

e If parts of the problem statement or external assumptions on which the retrieved situation
rests are also true in the present problem situation, proceed to check the next step in the
retrieved derivation.

* If there is a violated assumption or problem statement, check whether the decision made
would still be justified by a different derivation path from the new assumptions or
statements. If so, store the new dependencies and proceed to the next step in the
retrieved derivation. The idea of tracing causal dependences and verifying past
inference paths borrows heavily from TMS [12] and some of the non-monctonic logic
literature (231. However, the role played by data dependencies in derivational analogy is
somewhat different and more constrained than in maintaining global consistency in
deductive data bases.

* If the old decision cannot be justified by new problem situation,

o evaluate the alternatives not chosen at that juncture and select an appropriate one
in the usual problem solving manner, storing it along with its justifications, or

c initiate the subgoal of establishing the right supports in order for the old decision to
apply in the new probiem 3 (clearly, any problem solving method can be brought to
bear in achieving the new subgoal), or

o abandon this derivational analogy in favor of another more appropriate problem

solving experience from which to draw the analogy or in favor of other means of
problem solving.

* If one or more failure paths are associated with the current decision, check the cause of
failure and the reasons these alternatives appeared viable in the context of the original
problem (by tracing dependency links when required). In the case that their reasons for
failure no longer apply, but the initial reasons for selecting these alternatives are still
present, consider reconstructing this alternate solution path in favor of continuing to
apply and mcdify the present derivation (especially if quality of solution is more important
than minimizing problem solving effort).

* In the event that a different decision is taken at some point in the rederivation, do not
abandon the old derivation, since future decisions may be independent of some past
decisions, or may still be valid (via different justifications) in spite of the somewhat
different circumstances. This requires that dependency links be kept between decisions
at different stages in the derivation.

e The derivational analogy should be abandoned in the event that a preponderance of the

- 3 This approach only works if the missing or violated premise relates lo that part of the global state under ccnirol of the
problem solver, such as acquiring a missing tool or resource, ratlher than uridcr the Control of an uLnccovez'.tive exterr il ,gent
or a recalcitrnt environment. The discussion of strategy-bised counterplaonig ,JveS , more (cmr)~t! account nt -ub.Joalhng
to rectily unfulfilted expectations [4, 7].

. ;

OERIVATIONAL ANALOGY 9

o The start of a false path taken (with the reason why this appeared to be a promising
alternative, and the reason why it proved otherwise, again with dependency links to
the problem description. Note that the booy of the false path and other resultant
information need not be preserved.)

o Dependencies of later decisions on earlier ones in the derivation.

* Pointers to the knowledge that was accessed and proved useful in the eventual
construction of the solution

• The resultant solution itself

o In the event that the problem solver proved incapable of solving the problem, the
closest approach to a solution should be stored, along with the reasons why no
further progress could be made (e.g., a conjunctive subgoal that could not be

satisfied).
o In the event that the solution depends, perhaps indirectly, on volatile assumptions

not stated in the problem description (such as the cooperation of another agent, or
time-dependent states) store the appropriate dependencies.

2. When a new problem is encountered that does not lend itself to direct plan instantiation or
direct recognition of a solution pattern, start to analyze the problem by applying general plans
or weak methods, whichever is appropriate to the situation.

3. If after commencing the analysis of the problem, the reasoning process tthe initial decisions
made and the information taken into account) parallels that of past problem situations, retrieve
the full reasoning traces and proceed with the derivational transformation process. If not,
consider the possibility of solution transformation analogy or, failing that, proceed with the
present line of non.analogical reasoning.

Two problems are considered similar if their analysis results in equivalent reasoning
processes, at least in its initial stages. This replaces the more arbitrary context-free
similarity metric required for partial matching among problem descriptions in drawing
analogies by direct solution transformation. Hence, past reasoning traces (henceforth
derivations) are retrieved if their initial segment matches that the first stages of the
analysis of the present problem. Or, to state it differently, problem solving episodes are
judged to be derivationally similar if the state of the reasoner in the initial stages of
solving the latter problem partially recreates the earlier internal state.

The retrieved reasoning processes are then used much as individual relevant cases in
medicine are used to generate expectations and drive the diagnostic analysis.
Reasoning from individual cases has been recognized as an important component of
expertise [38], but little has been said of the necessary information that each case must
contain, let alone providing a simple method of retrieving the appropriate cases in a
manner that does not rely on arbitrary similarity metrics. Here, I take the stand that cases
must contain the reasoning process used to yield an answer, together with dependencies
to the particular circumstances of the problem, pointers to data that proved useful, list of
alternative reasoning paths not taken, and failed attempts (coupled with both reasons for
their failure and reasons for having originally made the attempt). Case-based reasoning is
nothing more than derivational analogy applied to domains of extensive expertise.

o It is important to know that although one may view derivational analogy as an interim step
in reasoning from particular past experience az more gteneral plans are acquired. it is a
mechanism that remains forever useful, since knov4,Jge is al',wVZI3 incomplete and

FILMED

8-85

*DTIC
0

