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ABSTRACT

Some consequences of a modified repair system for Phillips' (,-.... /

* Appl. Prob. 18, 652-659, Rel. Engineering, 2, 221-231) model for a two-

component system are discussed. In the original model, both components

are repaired whenever a revealed fault occurs; in the modified model

only faulty components are repaired. Specifically (i) the distribution

of time from the initial state up to discovery of an unrevealed fault,

(ii) the expected proportion of time during which there exists an

unrepaired fault, and (iii) the distribution of number of revealed

faults up to and including the one which leads to a discovery of an

unrevealed fault, are obtained. The theory is illustrated by examples,

based on specific distributions for the times between repairs and occurrences

of the two types of faults. A characterization of the exponential

distribution is indicated.

Key Words. Exponential distribution, 'Exponential ifitegral; Gamma
distributions, Geometric distribution,' Regeneration point,
Revealed faults; Unrevealed faults.
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Norman L. Johnson and Samuel Kotz

University of North Carolina University of Maryland
at Chapel Hill, NC 27514 College Park, MD 20742,
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Introduction

In recent papers, Phillips (1979, 1981a,b) has investigated a system

consisting of two modules, faults in one of which can be revealed only on

special inspection, while the other is monitored continuously. A fault

developing in the first module is called 'unrevealed' (U) (until a

special inspection is carried out), while a fault in the second module,

which it is assumed will be detected immediately, is called 'revealed' (R).

It is supposed that a special inspection for a U fault is carried out only

when a R fault occurs. Time for inspection and repair will be neglected

in our analysis, as in our initial paper on this subject (Kotz and Johnson

(i984)) and in Phillips' work.

Phillips' model is based on three random variables: X, the time from

repair of R to next occurrence of R assuming no U present; Y, the time from

repair of U to next occurrence of U, assuming no R present; and Z, the

time from a U fault to the next R fault. X and Y are assumed to be

independent; Z is independent of X but may depend on Y.
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Phillips supposes that both modules are repaired whenever an R fault

occurs - whether there is a U fault or not. Consequently, after each

repair, the system reverts to its initial state, so there is a regeneration

point. Kotz and Johnson (1984) modified this model by supposing that only

failed modules are repaired. When a U fault is found, after an R

fault has called for a special inspection, both modules are repaired

and the system returns to its initial state, (as it always does in the

Phillips'model). If a U fault is not present this does not happen, so

we cannot treat the occurrence of an R fault alone as a regeneration point.

In either model, dependence of Z on Y makes allowance for the fact

that the second module is no longer new when the U fault occurs; the

distribution of Z can also reflect the possible effects of increased stress

on the second module when the first is not functioning properly.

In the present paper we will (i) derive the distribution of time

(T, say) from initial state to discovery of a U fault; (ii) determine the

expected proportion of time there is an unrepaired U fault in the first

module; and (iii) obtain the distribution of the number of R faults up

to and including the one leading to discovery of a U fault. As in our

earlier work, time spent on repair will be ignored. (see Phillips (1981b,

p. 658) for the justification of this assumption). A similar two-component

model has been analysed by Chou and Butler (1983), assuming inspection

to be perfect, in regard to detection of defects, but possibly costly

in its effect on the modules. More recently, Murthy and Nguyen (1985)

also introduce cost considerations in a model wherein there are no

unrevealed faults, but occurrence of a fault in either of the modules

may immediately cause a fault in the other (with known probabilities).

Repair is immediate, and only faulty modules are repaired.
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DISTRIBUTION OF TIME TO DISCOVERY OF A U FAULT

We will use the same notation as in Kotz and Johnson (1984) for

distribution functions, using the notation fw(w) to denote the pro-

bability density function (PDF) of a random variable W, and

S wc) = f fW(t)dt

w

to denote its survival function.

We also introduce f (x) to denote the PDF of the n-fold convolution

of f (x). Then

t
fT(t) = f Sx(Y)fy(Y)f.Y (tly)dy0 I

t y 00
+ f f { I f (T)}Sx(Y-T)fy(Y)fzy (t-TIy-T)d-dy

0 0 n=l

CT represents the time of occurrence of the last R fault preceding the R
b 0

fault leading to discovery of the U fault, and f { fnt)}dt is the
a n=l

expected number of such events between times a and b.)

It would seem reasonable to take

f- y Cy)= f* (y )/S*y)

where f*(.) is a PDF and S*(y) = fo f*(x)dx is the corresponding survival
y

distribution function. This representation allows for the age of the

second module at the time of occurrence of the U fault in the first module,

in a natural way (see e.g. Kotz and Johnson (1981)). As an illustrative

example, take

6
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-2 (x> ;/e>0
f Cx) =e x e x;S )(1

2xx

fx e (x >0; p>0)(2

(The expected values of these distributions are 4 respectively;

usually we would have < e.) For the present we do not specify fy(y).

MFrom (1), f (x) 2n x ?n1e -xO/ (2n-W)

-xlIx~ -x/e -) e-x
S x)=(1+ e; S*(x) = (l+(Px~
X

Also, f~ n X) I e X/e ((xe 1)2111 / (2n-l)!}

- 1 eX/e .I eX/e - x/0) =1-lCl-e -2x/1)

Hence,

f Ct) ft(+- 1 ye- y/e f (YI- 2 tet/ [r(1ly e-y/ J-ld
T0 (e ye Y). e ~ ye Id

t j1y 1.(+ 1 Cy--u)}1 (y-tc)/ef y

0 0

2D (t-T)e-( /j~ 1.-1I -- r)/e 1dT dy

t-2 t/* 1 y (y) exp{'-C -P )yjdy

0 1+0 y

e- e-/ f tf y(1-e 2/
0 0

(Y-1-1
(t-T~)f (y)exp{-(e 4 )y+8 e TdT dy (3)

The expression for fT(t) looks formidable, but can be simplified for

some particular choices of f (v).



PROPORTION OF TIME THERE IS AN UNDISCOVERED U FAULT

At the time of the first R fault after occurrence of a U fault,

both modules are repaired, and the system starts again from its initial

state. So the log-run proportion of time there is an undiscovered U

fault is the same as the expected proportion of time this is so in a single

cycle to discovery of the first U fault. This is E[Z]/E[T], where T

denotes time to first discovery of a U fault. (Note that it is not

E[Z/'T], which would give undue weight to the proportions for small values

of T.)

We can, in principle, evaluate E[T] from the PDF, f T(t), as

E[T] = f t f T(t)dt.

0

Since Z = T-Y, E[Z] = E[T] - E[Y] and, of course E[Y] = f y fy(y)dy.
0

In general, however, evaluation of E[T] is difficult because of the

complexity of fT(t) (see (3)). Considerable simplification results if Y

has an exponential distribution

f = yJ ey/ (y> 0; ~> 0) (4)

whereby we can avoid using f T(t) explicitly. Because of the lack-of-

memory property of the exponential distribution, the system reverts to

its initial state after any repair, and in particular after the first

repair of an R fault, whether or not there is a U fault to be

repaired at the same time. So we need only evaluate Z[Z']/E[T'] where T'

is the time to first occurrence of an R fault, and Z7 is the time (which

may be zero) there is a U fault before any R' fault occurs. We k4ve

D t
E[:'] f f S (Y)fy(y){f*(t)/S*(y)}(t-y)dy dt (5)

0 0



00 t 00

and E[0] r 0 r SX(Y)fy(Y) {f*(t)/S*(y)} t dy dt + f t Sy(t)fx(t)dt
0 0 0

The first and second terms on the right-hand siae correspond to

the R fault being preceded, or not (respectively) by a U fault. Also

from (5)
cc cc cc

E[T} E[ f yfy(y) {Sx(Y)/S*(y) }f f*Qt)dt + f t Sy(t)fx(t)dt
o y 0

Sc

= E[:] + 0 y(fy(y)Sx(y) + Sy(Y)fX(y))dy (6)
0

-I -i -I
Inserting the PPF's from (1), (2) and (4), and putting e + W = 1

we have from (5)

= (l+e-yv -y/e - e1 t- -l2 y/ 1 (t-y)dydt

0 0

: ( Y -1 - ' expi_( 3-1 - )y} f t(t-y)e dt dy
01I+: y y

, -1 1+ l- + - + I y2 2y(+-y)

0 1+- v

co -1
-1 14+ y 2+O-l y)e-y/= " -1' (2+ y dy

0 1+- y

,c -+

-1 00 1 + :-1(I+ - y + Y)e-Yi dy

0 1+- y

- ,-1 2 + -1 + -1-1)e / - j}  (7)

S + -WX 
E 0

w0
1where E (w) X-1 e wdx is the exponential integral (see Appendix I).

ccc

Also, ~~0 fro 06) -~~=E~+ ~ -/ l .yt/; -2 -t/edAlso, from (6),E[TI = E[Z + f y. e- (l+e- lye- y/dy +f t e -t . t e- dt
0 0

= - -1 -1 -2 2. -y/d
E[(- + { y(l+- ) + y e dy

0

= +2[ - ) + e E[ +
L;UZ te rati. ie (Z

t ie 1ati ,., is th~e same a
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The ratio E[Z]/E[T] depends only on the ratios e: :w. The following

table gives a few illustrative values. It should be remembered that

the expected values of the three distributions (1), (2) and (4) are

2 , 2 ,, and a respectively (not e, and w).

Table 1. E[_-!E[T] = Proportion of Time There is an Undiscovered U Fault
,/e

_/_ 0.4 u.6 0.8 1.0

0.5 0.546 0.654 0.723 0.778

1 0.330 0.440 0.522 0.625

2 0.187 0.270 0.340 0.444

4 0.093 0.141 0.188 0.280

8 0.042 0.066 0.088 0.160

As is to be expected, the longer the expected life time of the first

module () the less proportion of time there is an undiscovered U fault.

The greater the expected value of Z, given Y (i.e. the greater t) the

greater the proportion of time there is an undiscovered U fault. The

rate of increase is more pronounced for larger values of .

The model considered by Philips corresponds to our model with the

addition of the assumption that f (zly) = f,(z), independent of y.

DISTRIBUTION OF NUMBER OF R FAULTS UP TO AND INCLUDING DISCOVERY OF A U FAULT

Denoting the number of R faults up to and including discovery of a U

fault by N, we have

. .. . . . . . ..
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Pr[N=n] = f fy)"Sn(Y) S - dy Ey[Sn(Y) - Sn1 (y)] (8)
0~ n>' - (-l

where (Y) = 0 f (y)dy 1 f f (y)dy
Y 0

Integrating by parts, we obtain the equivalent formula

0n

In particular, in the exponential case, with

-I -vl,,
fy(y) = 2 e-' (y > 0; W> 0)

then because of the lack-of-memory property of the exponential distribution,

the distribution of N is geometric with

Pr[N-n] = P(1-P) n-i (n=1,2 .... (9)

where P = Pr[Y < X]. Subject to the condition that the distribution of

Y(>O) is absolutely continuous, the converse is true. That is, if a

distribution of form (9) for N holds, whatever be the density function

f(x), then Y must have an exponential distribution (cf. Grosswald et al

(1980)). A proof is presented in Appendix 1I.

If X has the distribution (1) then
-x/ _Xw-) -

Pe e dx = ,so
0

2 2 2 n- (
Pr[N=n]= (I-§-" (- 3 (n,2,...)

In terms of , 0 2 = e-C 2+.

Formula (8) is quite general. For example, if

fyy)=-2 -y/
f (V) - y e (y>0; >0) (103

' ., : . . " "" -...'",, " . :.,. . .. " . - -: :- :: - : " , -i ._ .: .._Y
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and X has distribution Cl) then

00[~ n 2V /w (/ ) 2n- 1 W e 2n-2 /
________ fye y eY/edy

0 (2n-l)! (."n--)!

-2 -- (2n-1) ,,-n+l + (nl(-"n--) 2n,

1 ~-1 2(nl 2~ 1n +2n-1)

3) -1 - 3+ n l (n 1, ,. .

Using, in (1) and (10), general Erlang distributions, we can generate

systematically, via (S), a family of discrete analogues of these distributions,

of which (11) is a particular case.
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APPENDIX I

-1 Ct 130 - -cu/bf (l+at)(l+bt)-le-Ctdt b - I  (l+ab-lu)(l+u)-le du
0 0

00

= b-lec/b f {l+ab-l(v-l)}v - I -cv/bdv

1

(with v=l+u)

- c/b -1 1 1 -cv/b
b e f {ab- +(l-ab- )v- e dv

1

1 b-la- 1+ la"1E~b1Cb

where E.) -E(-) = f x- 1 e- WXdx is the exponential integral (tabulated,* 1 1

for example, in U.S. National Bureau of Standards (1941)).

Putting a=-"- 1 ,) b;t - 1 and c=3 - 1 we obtain

I °°  + ' t -t/' i( B 1 e / {
) ie 'dt = e+(I-0@-I)E 1 o )e

This formula is used in equation (7).

I=
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APPENDIX II

We will show that if the distribution of N is of form (9), whatever

the density function f Cx), and Y is absolutely continuous, then Y must
X

have an exponential distribution.
-x n-1 -/

Take the special case fx(x) = e- (x > 0) whene fn (x) = x e _ (n-l).

and Sn (y)-Sn (y) = yn-l e-Y/(n-l)!. (12)

" If gl(y) and g,(y) are two different density functions of Y giving the

same formula for Pr[N=n] then from (8) and (12)

f0 e-Ygl ( y)ry n dy = y n - l dy (n=l,2,...)

This means that the two density functions c.eg .(y) (0<y) withJ J

S-Yg-
c. = e gj(y)dy} (j=l,2), have the same moments of positive integer order.

Since the exponential density (e-y ) is determined by its moments, and

g1 y),g2Cy) are density functions the density functions cje-Yg.(y) are

determined by their moments, whence

ce-Yg I ( y )  c-v 'y
c 1 e-yn ce"g 2 (Y)

so g1 (y) g2 (y) (and

Since g(y) = fy(y) = w -1'e
-y /  (0< w;O<y) does satisfy (9), it follows

that gI(y) (g2 (y)) must be of this exponential form.

* The result clearly holds under the broader conditions that (8) holds for
hi- . y~n- 1h

some S (y) - S (y) = y h(y) where h(y)/f h(y)dy} is a density function
r:-n n-1 n-0~)f sadniyfnto

determined by its moments.
S

K e '
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