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ABSTRACT

Some consequences of a modified repair system for Phillips' (-

Appl. Prob. 18, 652-659, Rel. Engineering, 2, 221-231)Jmodel for a two’

component system are discussed. In the original model, both components

are repaired whenever a revealed fault occurs; in thg modified model

LI
only faulty components are repaired. Specifically (i) the distribution
oflfime from the initial state up to discovery of an unrevealed fault,
(ii) the expected proportion of time during which there exists an
unrepaired fault, and (iii) the distribution of number of revealed
faults up to and including the one which leads to a discovery of an
unrevealed fault, are obtained. The theory is illustrated by examples,
based on specific distributions for the times between repairs and occurrences
of the two types of faults. A characterization of the exponential

distribution is indicated.

Key Words. Exponential distribution, “Exponential ifitegral; Gamma
distributions, Geometric distribution, Regeneration point,

Revealed faults; Unrevealed faults.
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A MODIFIED REPAIR STRATEGY

FOR TWO-COMPONENT SYSTEMS WITH REVEALED AND UNREVEALED FAULTS

Norman L. Johnson and Samuel Kotz

University of North Carolina University of Maryland
at Chapel Hill, NC 27514 College Park, MD 20742,
U.S.A. U.S.A,

Introduction

In recent papers, Phillips (1979, 1981a,b) has investigated a svstem
consisting of two modules, faults in one of which can be revealed only on
special inspection, while the other is monitored continuously. A fault
developing in the first module is called 'unrevealed' (U) (until a
Special inspection is carried out), while a fault in the second module,
which it is assumed will be detected immediately, is called 'revealed' (R).
[t is supposed that a special inspection for a U fault is carried out only
when a R fault occurs. Time for inspection and repair will be neglected
in our analysis, as in our initial paper on this subject (Kotz and Johnson
(1984)) and in bhillips' work.

Phillips' model is based on three random variables: X, the time from
repair of R to next occurrence of R assuming no U present; Y, the time from
repair of U to next occurrence of U, assuming no R present; and Z, the

time from a U fault to the next R fault. X and Y are assumed to be

independent; Z is independent of X but may depend on Y.
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Phillips supposes that both modules are repaired whenever an R fault
occurs - whether there is a U fault or not. Consequently, after each
repair, the system reverts to its initial state, so there is a regeneration
point. Kotz and Johnson (1984) modified this model by supposing that only
failed modules are repaired. When a U fault is found, after an R
fault has called for a special inspection, both modules are repaired

and the system returns to its initial state, (as it always does in the

Phillips'model). If a U fault is not present this does not happen, so
we cannot treat the occurrence of an R fault alone as a regeneration point.
In either model, dependence of Z on Y makes allowance for the fact
that the second module is no longer new when the U fault occurs; the
distribution of Z can also reflect the possible effects of increased stress
on the second module when the first is not functioning properly.
In the present paper we will (i) derive the distribution of time
(T, say) from initial state to discovery of a U fault; (ii) determine the
expected proportion of time there is an unrepaired U fault in the first
module; and (iii) obtain the distribution of the number of R faults up
to and including the one leading to discovery of a U fault. As in our
earlier work, time spent on repair will be ignored. (see Phillips (1981b,
p. 658) for the justification of this assumption). A similar two-component
model has been analysed by Chou and Butler (1983), assuming inspection
to be perfect, in regard to detection of defects, but possibly costly
in its effect on the modules. More recently, Murthy and Nguven (1985)
also introduce cost considerations in a model wherein there are no
unrevealed faults, but occurrence of a fault in either of the modules
may immediately cause a fault in the other (with known probabilities).

Repair is immediate, and only faulty modules are repaired.




DISTRIBUTION OF TIME TO DISCOVERY OF A U FAULT

We will use the same notation as in Kotz and Johnson (1984) for
distribution functions, using the notation fw(w) to denote the pro-

bability density function (PDF) of z random variable W, and

[oe)
Sw(w) = [ fw(t)dt
W
to denote its survival function.

We also introduce fn(x) to denote the PDF of the n-fold convolution

of fx(x). Then

t
£.() = ,fo sx(.v)fY(y)f:‘Y(tly)dy
t y ©
RS fn(r)}Sx(y-r)fy(y)ley(t-r[y-r)d‘r- dy
0 0 n=1

T represents the time of occurrence of the last R fault preceding the R
o«

b
fault leading to discovery of the U fault, and f { 2 fn(T)}dT is the
a
n=1

expected number of such events between times a and b.)

It would seem reasonable to take

£ (2¥)= £*(y+2)/S* (y)

where f* () is‘a PDF and S*(y) = f; f*(x)dx is the corresponding survival
distribution function. This representation allows for the age of the-
second module at the time of occurrence of the U fault in the first module,
in a natural way (see e.g. Kotz and Johnson (1981)).~As an illustrative

example, take
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(x>0; 9>0) ()

i
[¢s]
el
(¢}

fXCX) =

frx) = o txe ™Y (x>05 0>0) (2)

€>

(The expected values of these distributions ‘are 28, 2¢ respectively;

usually we would have 9$<8.) For the present we do not specify fY(y).

From (1), £_(x) = g-2n n-1 X798 an 1y
5, (x) = (ea tge ™8 srx) = (1ro toe™?
also, I £ ()=t e ] (xe™H™ by n-n)
n=1 n=1
. gl e—x/e .%(ex/a ) e-x/e) - % 8-1(1_8-2x/e)
Hence,
t
£.(0) = IO (1+8 1y)e'y/ef\{(y)&zte't/d"{(1+q:‘1y)e')'/(b}'ldy
tY o1 1, -21/8 -(y-1)/8
cf 7 Lett e T Puve - de £,(y)
0o o -
. 3_2(t-r)e'(t'1)/:[{1+@_1(y-1)}e_(y'T)/®]'ldr dy

R R
- 3%y e‘t/v j 1+8° 1v £.(y)

0 1+4 Yy

;oa-1 -1
« exp{-(8" -9 dyldy

-1.-2 - vty -
. % 57 ly"%e t/¢j [7 (1-e 21/8)
- 0

.__(Lll (e-0)f, (expl-(67 ooy s 07 THaT dy  (3)
(Y 7)

The expression for frp(t) looks formidable, but can be simplified for

some particular choices of fY(y).




PROPORTION OF TIME THERE IS AN UNDISCOVERED U FAULT

At the time of the first R fault after occurrence of a U fault,

both modules are repaired, and the system starts again from its initial
state. So the log-run proportion of time there is an undiscovered U

- i
fault is the same as the expected proportion of time this is so in a single

cycle to discovery of the first U fault. This is E{I]/E[T], where T
denotes time to first discovery of a U fault. (Note that it is not
E{2/T], which would give undue weight to the proportions for small values
of T.)

We can, in principle, evaluate E[T] from the PDF, fT(t), as

ek w &

0

[t £ (t)dt.
0 T

E[T]

0

Since I = T-Y, E[Z] = E[T] - E[Y] and, of course E[Y] = [ y fY(y)dy.
0

In general, however, evaluation of E[T] is difficult because of the {
complexity of fT(t) (see (3)). Considerable simplification results if Y

has an exponential distribution

fYWJ=*‘1€Y“‘ (y>0; w>0) (4)

whereby we can avoid using fT(t) explicitly. Because of the lack-of-

memory property of the exponential distribution, the system reverts to

P I

its initial state after any repair, and in particular after the first

ULV

repair of an R fault, whether or not there is a U fault to be

repaired at the same time. So we need only evaluate E[Z']/E[T'] where T
is the time to first occurrence of an R fault, and Z' is the time (which

may be zero) there is a U fault before any R' fault occurs. We have

x

t
E[Z'] = f fo Sy (¥) £y (Y)LE* (£)/8* (y) F(t-y)dy dt (5)
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o ©
and  E(T] = [ | Sy(E () {£*(1)/S*(y} t dy dt + [ ¢S (t)f, (t)de .
0 0 ° 0

The firxst and second terms on the right-hand side correspond to

the R fault being preceded, or not (respectively) by a U fault. Also

from (5) B
ety = e - g yE (y) S, (y)/S*(y) }f £r(t)de + [ t S, (t)f,(t)dt
0 y 0
e e Ty, (NSO + Sy (N E () dy )
0
Inserting the PPF's from (1), (2) and (4), and putting 9-1 + w_l = 3-1

we have from (5)

47 1 ay/e -l ey/w -2 - 1o oy/b.-
E[_] - f )1 (l*:‘ y)e )/ . e)’/-&.q) tet/®{(1+¢> ly)e Y/¢} l(t-)’)d)/dt
0 0
21 Tl 1 -1 . t/ ¢
= (we7)7 [ gt exp{- (37007 )y [ t(t-y)eT Pdrdy
0 1+3 7y Yy
© -1
2.-1 , 1+28 3, - -1..2 2 - -y/8
= (we) _:_TTX"[2$ {1eo™ly + 1(o y)7h - ¢y(l+g IY)]e Y/ dy
0 1+ 7y .
R L -1 ~y/3
= ——;TTL (2+0 “y)e Y “dy
0 1+2 7y
SO 1 1e37 Yy oy
=T T ey 2 0e ™ A
0 1+ 'y
-1 , -1 2 -1 -1 -1, /8, -
=l eeah gt e s saeeThE s The ) ()
where El(WF = f t-l e”"Mdx is the exponential integral (see Appendix I),
1 .
> 1 -y/u 1 /8 z t/e -2, -t/
Also, from (6),E[Tﬁ = E[Zﬁ [ yew e W (1ea7 y)e Y Fdy » [ te i e 4t
0 0
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The ratio E[Z]/E(T] depends only on the ratios 6:¢:w. The following
table gives a few illustrative values. It should be remembered that
the expected values of the three distributions (1), (2) and (4) are

28, 2% and w respectively (not 6,¢ and w).

Table 1. E[Z]/E[T] = Proportion of Time There is an Undiscovered U Fault

YL
2/ : 0.4 u.6 0.8 1.0
0.5 % 0.546 0.654 0.723 0.778
1 : 0.330 0.440 0.522 0.625
2 ,l 0.187 0.270 0.340 0.444
1 ; 0.093 0.141 0.188 0.280
8 ' 0.042 0.066 0.088 0.160

As is to be expected, the longer the expected life time of the first
module () the less proportion of time there is an undiscovered U fault.
The greater the expected value of I, given Y (i.e. the greater 3) the
greater the proportion of time there is an undiscovered U fault. The
rate of increase is more pronounced for larger values of w/%.

The model considered by Philips corresponds to our model with the

addition of the assumption that f..

Y(ziy) = £,(z), independent of y.
-~ I =]

DISTRIBUTION OF NUMBER OF R FAULTS UP TO AND INCLUDING DISCOVERY OF A U FAULT

Denoting the number of R faults up to and including discovery of a U

fault by N, we have

b
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P N= = 1 Tyv){ ( - I =
r[N=n] JO E S y) - s (n)idy E (S, () - Sy ()] (8)
> Y
where Sn(Y) = [ f (y)dy =1 - [ £ (y)dy
y n 0 n

Integrating by parts, we obtain the equivalent formula

Pr(N=n] = fo Sy ) - £ (v) ¥y &)

In particular, in the exponential case, with

fY(y) - Tl (y>0; »>0)

then because of the lack-of-memory property of the exponential distribution,

the distribution of N is geometric with

Pr(N-n} = p(1-P)™ 1 (n=12,...) (9)

where P = Pr{Y<X]. Subject to the condition that the distribution of

Y(>0) is absolutely continuous, the converse is true. That is, if a
distribution of form (9) for N holds, whatever be the density function

f((x), then Y must have an exponential distribution (cf. Grosswald et al

(1980)). A proof is presented in Appendix II.
If X has the distribution (1) then

(n=1,2,...)

b} - o) -
- — T - -

- -1.-2 2 -2
In terms of &, 3 2= = 8 7(¢ 1+w 1) = w (B+w)

Formula (8) is quite general. For example, if

£,0y) = I i VN S (10)

P I W TP

cmtrouy
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and X has distribution {1) then
priven] = L2 fy e (T TR e
0 (2n-1)! (2n-2)1
. J-Z{:ne-(ﬁn-lj S:éfl . (:n_l)e-(ZH-z) 53n} (11)
O R CIRE) RN C T o IS
= (127 e eyt D opem g o0 ) (n=1,2,...)

Using, in (1) and (10), general Erlang distributions, we can generate
systematically, via (8), a family of discrete analogues of these distributions,

of which (11) is a particular case.
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APPENDIX 1
i (1+at) (1+bt) le tdr = b7} J (1+ab”tu) (1eu) "t/ Pgy
0 0
13/b 1 b
= b tet [ {1+ab” (v-l)}v_le_cx/ dv
1
(with v=1+u)
= b1 (c/b f {ab-1+(l-ab-l)v_l}e_cv/bdv
1
= b_l{ac-1+(1-ab'I)El(ab‘l)ec/b}
where El(u) = -Ei(-w) = [ x 1 e™¥dx is the exponential integral (tabulated,
1
for example, in U.S. National Bureau of Standards (1941)).
Putting a=9-1, b=>"! and c=3"! we obtain
oozt ey -1 -1 -1, 6/4,
] T dt = {36 "+ (1-90 )E, (¢8 T)e™ 7}
0 1+¢ "t

This formula is used in equation (7).
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APPENDIX II

We will show that if the distribution of N is of form (9), whatever
the density function fx(x), and Y is absolutely continuous, then Y must
have an exponential distribution.

n-

Take the special case fx(x) = e® (x>0) whenee fn(x) =X 1e'x/ (n-1)!

and S_(y)-S__ (y) = v leY -1y, (12)

If gl(y) and g,(y) are two different density functions of Y giving the

same formula for Pr[N=n] then from (8) and (12)

2ot ey = [ Ve ey ez,

This means that the two density functions cje'ygj(y) {(0<y) with

J

Since the exponential density (e_y) is determined by its moments, and
gl(yj,gz(y) are density functions the density functions cje'ygj(y) are

determined by their moments, whence

!

c e'ygl(y)

bt

e

c,e Vg, (y)

S0 gl(y) = gz(y) (and c1=c2).
Since g(y) = f,(y) = w_le—y/w (0<w;0<y) does satisfy (9), it follows
that gl(y) (g:(y)) must be of this exponential form.
The result clearly holds under the broader conditions that (8) holds for
some Sn(y) - Snll(Y) = yn'lh(y) where h(Y)/{f: h{y)dy} is a density function

determined by its moments,

v

.l.-’-
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c. = 1[: e ygj(y)dy} (j=1,2), have the same moments of positive integer order.
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