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Abstract. We propose several methods based on combinations of deflation techniques and polyno-
mial iteration methods, for computing small invariant subspaces of large matrices, associated with
the eigenvalues with largest (or smallest) real parts. We consider both Chebyshev polynomials and
least-squares polynomials for the acceleration scheme and we propose a deflation technique which
is a variant of Wielandt's deflation that does not require the left eigenvectors of the matrix. As an
application we compare our methods on an example issued from a bifurcation problem and show
their efficiency when the number of eigenvalues required is small.
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1. Introduction

1.1. Previous work on solving large nonsymmetric elgenvalue problems
Many important problems in engineering require the computation of a small number of eigen-

values with algebraically largest (or smallest) real parts of a large nonsymmetric real matrix A.
Of the few typical examples reported in [26] we only mention the important class of bifurcation
problems [12], from which we will draw our main test example. From the numerical point of view,
nonsymmetric eigenvalue problems can be substancially more difficult to deal with than the sym-
metric ones. Perhaps this is one reason for the lack of significant progress on procedures for treating
nonsymmetric matrix eigenproblems.

There have been mainly three basic methods for solving large nonsymmetric eigenvalue prob-
lems investigated so far. The first is Bauer's subspace iteration method and its many variations [2,
6, 11, 32, 33, 35]. An important drawback of this method, recognized both in the symmetric case
[17, 18], and the nonsymmetric case [27, 26] is that it may be exceedingly slow to converge. Another
weakness of the subspace iteration method is that it computes the dominant eigenvalues of A, i.e.,
those having largest modulii, whereas in many important applications it is the eigenvalues with
largest real parts that 'are wanted. This difficulty, however, can be obviated by using Chebyshev
acceleration as is suggested in 1261. The second method is due to Arnoldi [1, 27] and is essentially
an orthogonal projection method on the Krylov subspace {vi,Av1 ,...A"- 1 v1). Thus, Arnoldi's
method is a generalization of the symmetric Lanczos algorithm. Its main drawback is that, unlike
the symmetric Lanczos algorithm, the growth of computational time and storage becomes excessive
as the number of steps increases. Variations on the basic scheme have been proposed [27], which
lead to oblique projection type techniques [28], but their theory is not well understood and we will

not consider them here.
The third method is the nonsymmetric Lanczos method [7, 14, 19, 20, 34] which is another

generalization of the symmetric Lanczos algorithm due originally to Lanczos himself. It produces
a tridiagonal matrix whose eigenvalues can be taken as approximations to the eigenvalues of A. At
the difference with Arnoldi's method, this is not an orthogonal projection method, but an oblique
projection method [28]. Parlett, Taylor and Liu [201 have suggested an elegant solution to the
problem of breakdown which has given a bad reputation to the Lanczos method in the past [35].
Cullum and Willoughby [7] extend their symmetric Lanczos algorithm without reorthogonalization,
to the nonsymmetric case and suggest a new method for dealing with the resulting non-hermitian
tridiagonal matrices. On the whole the main difficulty with the Lanczos method is theoretical, as
the method is not quite well understood yet.

To these three basic methods we should add the important shift and invert technique which is
not an algorithm in itself but simply consists of transforming the original problem (A - \I)x = 0
into (A - aI)-1x =-/*x which may be easier to solve if the shift is close to some eigenvalue of A.
Notice that there is a trade-off when using shift and invert, because the basic matrix by vector
multiplication which is usually inexpensive, is now replaced by the more complex solution of a
linear system at every step: the factorization of the matrix (A - aI) is performed only once and
then at every step of any of the above methods, one solves two triangular systems. The cost of
the factorization can be quite high and in the course of an eigenvalue calculation, one needs to use
several shifts, i.e. several factorizations. Shift and invert has now become a fairly standard tool in
structural analysis because there one needs to solve the symmetric generalized eigenvalue problem
Mx = \Kx and since there is at least one factorization to perform anyway, shift and invert no
longer appears expensive [23, 17, 18, 31].

Comparing the limitations of these methods, we should emphasize that subspace iteration is
only able to compute a small number of eigenvalues and associated eigenvectors. To some extent
Arnoldi's method presents the same limitations in practice. The nonsymmetric Lanczos algorithm
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(especially without reorthogonalization or with some form of partial reorthogonalization) is the
only method that has the potential of computing a large number of eigenvalues and eigenvectors
of a nonsymmetric matrix A [7, 19]. On the other hand the Lanczos algorithm requires the use
of both the matrix A and of its transpose. As will be seen next, there are applications where the
matrix A is not available explicitly but the action of multiplying A by a vector is easy to perform,
by use of a finite difference formula. In those cases AT is not available and often cannot even be
approximated with finite differencing.

1.2. Motivation
In this paper we are concerned only with the problem of computing a very small number of

eigenvalues and their associated eigenvectors or rather their associated invariant subspace. Our
motivation is that in most realistic applications the demand is to compute a very small number of
eigenvalues of A of (algebraically) largest real parts or smallest real parts. In these applications

one wishes to determine whether a certain system governed by a partial differential equation of the
form d

for = F(u,O) (1.1)

where F is a partial differential operator, and 8 some real parameter, is stable for some value of
the parameter 0. Such a system is said to be stable if all the eigenvalues of the Jacobian of F with

41 respect to u, have negative real parts. Hence, all that may be wanted here is to compute one or two
(i.e. a comple pair of) eigenvalues. In most bifurcation problems, one is interested in a singular
phenomenon occuring past a few singular points, turning points or bifurcation points, but their
number seldom exceeds 3 or 4. In other words the number of eigenvalues to compute, i.e. those
that have nonnegative real parts is, say, at most 4 real eigenvalues or 4 complex conjugate pairs.

An important observation is that the Jacobian matrix is often not needed explicitly when an
eigenvalue algorithm that uses the matrix A only through the matrix vector multiplications y = Ax
is employed. This is because the multiplication of the Jacobian J, evaluated at the coordinate u,
times a vector x can be performed at low cost with the help of the difference formula

JX ;e F(u + ex,) - F (u,8) (1.2)

where e is some small and carefully chosen scalar.
The approximation (1.2) has been the main instrument in the success of the so-called matrix-

free Ordinary Differential Equations solvers [3, 5, 9]: the Jacobian is never computed -xplicitly
which results in significant savings both in computing time and storage. A similar principle has also
been employed by Eriksson and Rizzi [8] to compute eigenvalues of various semi-discrete operators
used in compressible fluid flow calculations. On the other hand, if the eigenvalue procedure requires
the use of AT, it is not clear how one can avoid the explicit computation of the Jacobian, since
the transpose of the Jacobian is not easily approximated in a similar way. We should add however,
that this is only valid when the function F(u,O) is some complicated nonlinear function for which
derivatives are particularly hard to calculate. Such examples abound in scientific applications.

1.3. Overview of results
For the above class of problems a combination of polynomial iteration, such as Chebyshev

iteration, with some deflation techniques are quite appropriate. This paper introduces mainly two
methods based on this combination:

. A deflation method which is a particular case of Wielandt deflation. An error analysis of the

deflation technique is proposed. Polynomial iteration is used to provide a good initial vector
for the Arnoldi process. The deflation technique enables us to compute one eigenvalue or a
pair of complex conjugate eigenvalues at a time.
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A polynomial preconditioning technique consisting of iterating with the matrix p(A), where
p is a polynomial, chosen so that its eigenvalue distribution leads to much faster convergence
than would be the case with the original matrix A.

Instead of attempting to compute several eigenvalues of A at once as was suggested in [27, 26,
25] the class of methods propsed in section 2, consists of computing only one eigenvalue at a time

:I~i'" or possibly a pair of complex conjugate eigenvalues at a time. Deflation is then used to compute
the next desired eigenvalues and eigenvectors until satisfied. Our goal is to improve robustness,
sometimes perhaps at the expense of efficiency. The possible non-availability of the transpose of A
as in the above applications, dictates that we choose the deflation technique to be a Wielandt-type
deflation which does not require left eigenvectors. We will show a particular type of Wielandt
deflation which is naturally suited for computing partial Schur forms.

The preconditioning method proposed in Section 4, rests on the idea that all the difficulties in
Arnoldi type methods, come from the poor separation of the desired eigenvalues. The real problem
is that often the desired eigenvalues are clustered while the non wanted ones are well separated,
which results in the method being unable to retrieve any element of the cluster and leads to
very poor performance, often divergence. The usual polynomial acceleration methods consist of
starting the Arnoldi iteration with a good initial vector which is computed from a polynomial
iteration of the form zk = p(A)zo, where p is an appropriately chosen polynomial. However, in
some cases the eigenvalue separation can be so poor that the Arnoldi process seems even unable to
take advantage of a good initial vector and quickly introduces unwanted components. Our idea of
the polynonial preconditioned Arnoldi method is to use the polynomial acceleration differently, by
simply employing the polynomial iteration as an inner loop for the Arnoldi process. In other words
the matrix A is replaced by the preconditioned matrix p(A), whose eigenvalue separation around
the desired eigenvalue is much better than that of-A.

In the numerical experiments section we consider an example which is a parameter dependent
problem of the sort described in section 1.2. Problems of that sort are numerous in structural
engineering [4], in aerodynamics (the panel flutter problem [29]), chemical engineering [10], fluid
mechanics (13] and many other fields. Our goal is to demonstrate how the proposed methods
perform on matrices arising from a typical bifurcation problem.

2. A Schur-Wielandt deflation technique

In the nonsymmetric case most deflation techniques require the knowledge of right and left
eigenvectors. However, these deflation procedures of which an example is Hotelling's deflation,
can be ill-conditioned because determining eigenvectors of a matrix can be itself an ill-conditioned
problem. In fact in the defective case there is no basis of the invariant subspace consisting of
eigenvectors and therefore any numerical method that attempts to determine such a basis will
likely be ill-conditioned. As suggested by Stewart [33] it is preferable to work with Schur vectors,
i.e. with an orthonormal basis of the invariant subspace, when dealing with the nonsymmetric
eigenvalue problem. A partial Schur factorization is of the form

AQ = QR

where Q is an N x p complex unitary matrix and R is upper triangular complex matrix. Note that
the order of the eigenvalues A1 , A2 ,... ,,p as they appear in the upper triangular matrix R is crucial.

In fact for a given order the factorization is unique in the usual sense of QR factorizations, i.e. the
columns of Q are uniquely determined up to a sign of the form e'o. Thus, whenever we choose an
ordering of the eigenvalues, we can deal with the Schur vectors without confusion in the same way
that we deal with the eigenvectors of a Hermitian matrix.
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In this section we describe a deflation technique which is a simple variation of Wielandt's
deflation and show that it is very suitable for computing orthonormal bases of invariant subspaces
and the corresponding partial Schur forms. We start our discussion with a one vector deflation
and then we will generalize the technique to several vectors. In the following we denote by 11.11 the
2-norm in CO and by XH the transpose of the complex conjugate of a matrix X. Unless otherwise
stated the eigenvalues are ordered in decreasing order of their real parts (if a conjugate pair occur
then the one with positive imaginary part is first). All eigenvectors are assumed to be normalized
by their Euclidean norms.

2.1. Deflation with one vector
Suppose that we have computed the eigenvalue \ 1 of largest real part and its corresponding

eigenvector ul by some simple algorithm, say algorithm A , which always delivers the eigenvalue
of largest real part of the input matrix, along with an eigenvector. For example, in the particular
case where all the eigenvalues of A are real and positive Algorithm A can simply be the power
method. In this section we consider the simple case where \ 1 is real. It is assumed that the vector
ul is normailized so that Iluill = 1. The problem is to compute the next eigenvalue A2 of A.
An old technique for achieving this is what is commonly called a deflation procedure: a rank one
modification of the original matrix is performed so as to displace the eigenvalue A,, while keeping
all other eigenvalues unchanged. The rank one modification is chosen so that the eigenvalue A2
becomes the one with largest real part of the modified matrix and therefore, Algorithm A can now
be applied to the new matrix to retrieve the pair \ 2 , U2 .

Unlike many other deflation techniques, Wielandt's deflation requires only the knowledge of
the right eigenvector. The deflated matrix is of the form

Al = A -aux, (2.1)

where x is an arbitrary vector such that xHul - 1, and a is an appropriate shift. It can be
shown that the eigenvalues of A, are the same as those of A except for the eigenvalue X1 which is
transformed into the eigenvalue \ 1 - a, see [351.

The particular choice x = ul has the interesting property of preserving the Schur vectors of
A. More precisely we can state the following proposition.

Proposition 2.1. Let ul be an eigenvector of A of norm 1, associated with the real eigenvalue A,
and let

Al =_ A - Hulu. (2.2)

Then the eigenvalues oaAl are A' = A -a and A'. = Ai,j = 2,3.... N. Moreover, the Schur vectors
associated with A,j = 1,2,3... N are identical with those of A.

Proof. Let
AU = UR (2.3)

be the Schur factorization of A, where R is upper triangular and U is orthonormal. Then we have

AIU = (A - orutuf ]U =UR - aulef =U[R -o'7ete H

The result follows immediately.
I

2.2. Deflation with several vectors
Let u1,u 2 .... u1 bt a set of Schur vectors associated with the eigenvalues A,A 2 .... Ai. We

denote by U) the matrix of column vectors ut, U2. ... u,. Thus,

U, [U , U2 .  U,]
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is an orthonormal matrix whose columns form a basis of the eigenspace associated with the eigen-
values A1, A2 ,... Aj. We do not assume. here that these eigenvalues are real, so the matrix U, may
be complex. An immediate generalization of Proposition 2.1 is the following.

Proposition 2.2. Let Ei be the p x p diagonal matrix E, = Diag{o'1,a 2 ,. .. i}. Then the
eigenvalues of the matrix

are A = Ai - oi for i < j and A = Ai for i>j. Moreover, its associated Schur vectors are identical
with those of A.

Proof. Let (2.3) be the Schur factorization of A. We have

AU = [A- Ur EiUH]U = UR - UiEiE

where Ei = [el, e2,... ei]. Hence
AiU = U[R - EijE]

and the result follows.
I

It is interesting to note that the preservation of the Schur vectors is analoguous to the preser-
vation of the eigenvectors under Hotelling's deflation, in the symmetric case, see [35]. The above
proposition suggests a very simple incremental deflation procedure consisting of building the matrix
Uj one column at a time. Thus, at the j-th step, once the eigenvector Yj+1 of A, is computed by
the appropriate algorithm A we can orthonormalize it against all previous ui's to get the next Schur
vector ui+l which will be appended to Ui to form the new deflation matrix Uj+i. Clearly, ui+l is
a Schur vector associated with the eigenvalue A,+1 and therefore at every stage of the process we
have the desired decomposition

AU, = UiRi , (2.4)

where Ri is some j x j upper triangular matrix. The corresponding algorithm will be described in
detail shortly.

With the above implementation, we may have to perform most of the computation in complex
arithmetic. Fortunately, when the matrix A is real, this can be avoided. In that case the Schur form
is traditionally replaced by the quasi-Schur form, in which one still seeks for the factorization (2.4)
but simply requires that the matrix R,, be quasi-triangular, i.e. one allows for 2 x 2 diagonal blocks.
In practice, if A,+1 is complex, most algorithms do not compute the complex eigenvector Yj+i
directly but rather deliver its real and imaginary parts !YR, Yn' separately. Thus the two eigenvectors
YR ± iyl associated with the complex pair of conjugate eigenvalues AI,.+, A,+2 = A,+1 are obtained
at once.

Thinking in terms of bases of the invariant subspace instead of eigenvectors, one important
observation is that the real and imaginary parts of the eigenvector, generate the same subspace
as the two conjugate eigenvectors and therefore there is no point in working with the (complex)
eigenvectors instead of these two real vectors. Hence if a complex pair occurs, all we have to do
is orthogonalize the two vectors YR, yll against all previous ui's and pursue the algorithm in the
same way. The only difference is that the size of U, increases by two instead of just one in these
instances.

We can now sketch the Schur-Wielandt deflation procedure for computing the p eigenvalues of
largest real parts.

5



Algorithm: Progressive Schur- Wielandt Deflation (PSWD)

(1) Initialize:

j :=0, Uo {0), o : 0.

(2) Compute next eigenvector (s)

Call algorithm A to compute the eigenvalue Ai+1 (resp. the conjugate pair of eigenvalues
j+1,,i+2 --=ki+i) of largest real part of the matrix Ai  A - UjEiUJ', along with

an eigenvector y (resp. the real part and imaginary part YR, Y of the complex pair of
eigenvectors). Choose the next shift ai+t, and define Ei+1 := Diag {1,a2 .... i+l)-

(3) Orthonormalize:

Orthonormalize the vector y (resp. the vectors YR, yr) against the vectors u1, U2, ...u,, to
get ui+t, (rees. ui+l, ui+2 ).

Set Ui+1 := [Ui , ui+], j j + 1, (resp. Uj+ 2 :=[Ui, U+ 1 , Uj+2, j: j + 2.)

(4) Test:

If j<p goto 2, else set p:= j, compute Rp: UHAUp and exit.

A few additional details on the implementation of each step of the algorithm are now given.
First, we point out that the above algorithm has as a parameter the algorithm A , which delivers
the eigenvalue(s) with largest real part(s) with its (their) associated eigenvector(s). We will discuss
various choices of this algorithm in the next section. The shift aj+l in step 2, is chosen so that the
eigenvalues A1, A2 .... \p will in turn be the ones with largest real parts during the algorithm. There
is much freedom in choosing the shift but it is clear that if it is too large then a poor performance
in step 2 of the algorithm will result. Ideally, we might consider choosing a so the real part of
the eigenvalue just computed, i.e. A, coincides with that of the last eigenvalue Av. This yields
aj+l = Re(Ai - AN). Clearly, this value is not available beforehand but it suffices to have a rough
estimate. Practically, we found it convenient and not restrictive in any way to take all shifts equal
to some equal value a determined at the very first step j = 1. The matrix Ei then becomes al.

For step 2, we will give more detail in the next sections on how to compute the eigenvectors y
or the pair of conjugate eigenvectors YR ± iyjr. A crucial point here is that the matrix Ai is never
formed explicitly, since this would fill the matrix and is highly ineffective. Clearly, if p is large
the computational time of each matrix by vector multiplication becomes very expensive. Another
potential difficulty which we consider in detail later is the building up of rounding errors.

In step 3, several possibilities of implementation exist. The simplest one which we have adopted
in our codes consists in a modified Gram Schmidt algorithm which allows for up to two reorthogo-
nalizations depending on level of cancellation. Another more expensive method of orthogonalizing
a set of vectors which is somewhat more robust is the Householder algorithm.

Before exiting in step 4, the upper triangular matrix Rp is computed. For brievety we have
omitted to say in the algorithm that one need only to compute the upper quasi-triangular part
since it is known in theory that the lower part is zero. Note, that the presence of 2 x 2 diagonal
blocks requires a particular treatment. Alternatively, we may compute all the elements of the upper
Hessenberg part of R,, at a slightly higher cost. However, as will be seen in Section 2.3, this is
not necessarily the best choice. In the presence of round-off, the matrix Rp= UHAUP is slightly
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different from the Schur matrix, and computing its eigenvalues correponds to applying a Galerkin
process onto the subspace spanned by the block Up.

2.3. Error Analysis
In this section, we propose a few a posteriori error bounds in order to analyse the stability of

the deflation technique. Typically, at each step j - 1, 2, .. p of the deflation process we compute
an approximate eigenvalue Aj and an associated normalized eigenvector yy of the matrix A-_ -
A - U.j._j UJ!. As a convention we define A0 to be the matrix A. The approximate eigenpair
satisfies the relation

Ai-lyi = Aiyi + qi, j = ,...p (2.5)

where the residual vector qi is some vector of small norm and is assumed to include both the
effects of approximation and rounding. It is assumed that the matrix Up is orthonormal to working
precision. Our purpose is to provide some information on the accuracy of the Schur basis U. and
possibly of the eigenvalues obtained from the approximate eigenvalues A\,j = ,...p.

At step number j, the vector yy is orthogonalized against u 1 , u2. ... , ui. 1 to obtain the jth
approximate Schur vector ui. This is realized by a Gram-Schmidt process and as a result the
following relationship between the vectors u' and yi holds:

j
#ijui = yi j = 1,2,...p.

i=1

Denoting by bi the vector of p components 0i,2,,... , 3i, 0,0, ... .0, the above relation can be
rewritten as

Ub = .

Replacing this relation in (2.5), we have

(A - U.j_..j1 U 'f)Upbj = AjUpbj + qj,

or
AUpbj =U,. . u'jr U,,b + AUpbi+qj . (2.6)

Although there are only p - 1 shifts ao used when p eigenvalues are computed, it is convenient to
define a -E 0 and

Sp =_ Diag (a, a2... I p-tsOp).

Then (2.6) becomes

AUpbj = Up [Lp+ (.\i- a)IIbi+ iii, j= , .. p.

Let Bp be the p x p upper triangular matrix having as its column vectors the bs, Ep the N x p
matrix having as its column vectors the q s and A, = Diag(Aj, A2.... Ap}. Then the above relation

translates into the matrix relation:

AUpBp = Up [SpBp + Bp(Ap - r,,)] + E,, (2.7)

which we rewrite in a final form as

AUp Up [%-p + Bp (, - Ep) B ] + EpBP' (2.8)

7

:::: ": =. ;-'t~ :,.. ., .:,: _:tT ."- .- -; -:_ . " i:- '; ,:i ... ... (:i: :.:i: . :, :-: i. i: 2 :



!_ 
, ~~~~~~~~~~ - I .- - - . -. -- . -!-L - -- --- -. :'--- : t \ - , - = , - - t -6 , ' . , - .

For convenience, we define
zp a E(2.9)

and
-- =p + B - rp)B;' (2.10)

Observe that when ai = Ai, i = 1,... p - 1 then the matrix Up diagonalizes partially the matrix A
ifEP =0.

At the final stage of Algorithm PSWD, there are two ways of post processing before exiting.

" Either one accepts the values \i, i = 1, ... p as approximate eigenvalues and does not attempt
to improve them. The representation of the section of A in the approximate invariant subspace
Up is taken to be the matrix Cp defined by (2.10).

" Or one performs a final Galerkin projection onto the subspace spanned by Up in order to
improve the current approximations. This is done by replacing the approximate eigenvalues
Ai, i = 1,.. .p by the eigenvalues of the matrix Rp = U,, AU.
We will mainly focus our attention on the second approach, which is more attractive. In

this case the Galerkin process involves some extra work, since the computation of the matrix
Rp itself costs us p2 inner products. However, since p is small this is negligible as compared
with the total work incurred during the whole computation. Note that Rp is a full matrix with
small lower triangular part, and one might still want the partial Schur form corresponding to the
improved eigenvalues. This is easily done by computing the Schur factorization of the matrix Rp,
Rp = QpSpQH and then defining the new Up matrix by U,,,,. = UpQp.

Consider any N x (N - p) matrix W - [w1 , W2,... WV-p] which complements the matrix Up
into an orthonormal N x N matrix, i.e., so that the matrix [Up, W] is orthonormal. The matrix
representation of the matrix A in this new basis is such that

A[Up, W] = [Up, W] Rj X12)
w W Zp X¥2 2

in which X 12 = UHAWX 22 = WHAW, and Zp, Rp have been defined above.
The above equation indicates that [Up, W1 almost realizes a Schur factorization of A when Zp

is small. I fact, the factorization can be rewritten in the following form:

A- [Up, W] (WH 00) [Up,IH = [U0,,V] (R X22)[U,' ,W ]H. (2.11)

When a Galerkin correction step is taken, then the approximate Schur factorization corresponds
to taking Up as the basis of the eigenspace and Rp as the representation of A in that subspace. As
a consequence, in the approach using a correction step, equation (2.11) establishes that the final
result is equivalent to perturbing the initial matrix A by a matrix which is unitarily similar to the
matrix 0 o0).
Thus, the eigenvalues of R will be good approximations of those of .4 if they are well conditioned.
whenever the norm of WrZP is small. The first case (no correction) can be treated in the same
way and one can easily prove that the perturbation matrix is unitarily similar to

(VHZ,, 0)

8



This analysis proves that the key factor for the stability of the deflation method is the way in which
the norm of Zp increases.

We now wish to provide a result which establishes an a-posteriori upper bound of the Frobenius
norm of Zi as j increases. The column vectors zi,j = 1,2,. .. p of Zp satisfy the relation:

Ii = ZIAiJz;

from which we derive the upper bound

i-i

Using the Cauchy-Schwartz inequality for the last term on the right-hand side we get

•_ 1/2 ._ . /2

Since we have assumed that the eigenvector yj, which is orthogonalized against the previous u>,
is of norm unity, an important observation is that the sum of the squares of the /ij is one and
/3ii represents simply the sine of the angle Oj between yy and the subspace spanned by the vectors
ui, i = 1,...j- 1. Therefore, denoting by pi the Frobenius norm of the matrices Zi, i = 1,...p the
above inequality reads

sin(0j) Izi < n + cos(0i)p- .1..

Adding the term sin(Oj)pj_j to both sides and using the inequality (a2 + b2) 1/ 2 < a + b for the
resulting left hand-side we obtain

sin(O9)pj - 1171A + (sinOi + COSj)Pj-.,

which is restated in the following proposition.

Proposition 2.3. The Frobenius norms pj of the matrices Z,,j = 1.... p satisfy the recurrence
relation

Pi < (1 + cot o,)pi- + 11,7A (2.12)- sinO1'

where 0j is the acute angle between the eigenvector Yi obtained at the j1 h deflation step and the
previous approximate invariant subspace span{Uj-l } and where ?j, is its residual vector.

It is important to note that since by definition sin 9i = /3ij all the quantities involved in the
proposition are available during the computation and so the above recurrence is easily computable
starting with the initial value Po = 0. The result can be interpreted as follows: if the angle between
the computed eigenvector and the previous invariant subspace is small at every step then the process
may quickly become unstable. On the other hand if this is not the case then the process is quite
safe, for small p. The interesting point is that the above recurrence can pract:cally be used to
determine whether or not there is such a risk of instability. The cause of the potential instability
is even narrowed down to the orthogonalization process. If each newly computed vector yi were
orthogonal to the previous ones then clearly BP would be the identity matrix and there would be

9(
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no risk of amplification of errors. This opens up an interesting possibility. Assume that instead
of computing an approximate eigenpair A,,yi satisfying the relation (2.5) one is able by some
hypothetical procedure to compute a Schur pair directly, i.e., a pair A,, ui satifying the analogous
relation

j-i1

Aj_+u j = Ajuj + F,.ijui - (2.13)
i=l

Then an analysis similar to the one used to establish (2.8) would easily lead to the relation AUP =
UpRp + Ep where Rp is the upper triangular matrix having the diagonal elements \i, i = 1, p and the
off diagonal elements -ii, while Ep is defined as before. Thus, in this case Zp is simply replaced by
Ep and the process is always stable. In a way, however, the difficulty is rejected to the hypothetical
procedure that would compute the Schur pair. As an example, a naive algorithm for computing a
Schur pair would be to compute the eigenpair and then orthogonalize the eigenvector yj against
the previous u's to get u,. By doing so a relation of the form (2.13) is always satisfied and qj and
its norm can be explicitly computed. If JII'iAI is not sufficiently small one goes back to compute the
eigenpair Aj,y, to higher accuracy until 1Ir'ill is as small as wanted. The issue of whether there
exists other methods that delivers directly a Schur vectors, is worth investigating.

3. Deflation techniques for three basic methods
In this section we review a few methods for computing eigenvalues and eigenvectors of large

nonsymmetric matrices which can be used in the inner loops of algorithm PSWD of section 2.2. The
methods are only briefly summarized as they have been fully described elsewhere in the litterature
[1, 27, 26, 251.

3.1. Arnoldi's method with deflation
Arnoldi's method may not be considered as a powerful technique in itself but is a very useful

tool when combined with other processes, such as the ones to be described in the next sections.
Starting with some initial vector v, of Euclidean norm 1, the method generates the finite sequence
of vectors by the recursion:

)

hj+,jvj+l = Avj - hivi, j = 1,... r, (3.1)
o=l

where hj = (Av,,v,),i = 1 .... j and h,+1 ,j is the 2-norm of the right hand-side of (3.1). The
scalars hi, are computed so that the sequence V1, V2 . . . V. is an orthonormal sequence, in effect an
orthonormal basis of the Krylov subspace Km = span{ v, Av,.. Am-IvI}.

Defining Vm as the N x m matrix whose it h column is the vector vi, for i = 1,2,... rn and H,
as the upper Hessenberg matrix whose entries are the coefficients hij computed during Arnoldi's
method, a simple consequence of the relation (3.1) is that

VM1 AVm = H.. (3.2)

Therefore the eigenvalues of Hm constitute the Galerkin approximations of the eigenvalues of .4 on
the Krylov subspace. Moreover, the corresponding approximate eigenvectors are given by

y I M) = V, n1 ~M, (3.3)

where ,in) is an eigenvector of the Hessenberg matrix Hm associated with the eigenvalue A~m )).

This was the basis of Arnoldi's original method presented in [1]. For some details on theory and
practical use of this process see [27].
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6. Summary and Conlcusion
We have presented two classes of methods for computing a few eigenvalues and the correspond-

ing eigenvectors or Schur vectors of large nonsymmetric matrices. The first comprises a deflation
method combined with any type of polynomial iteration. The second can be viewed as a precon-
ditioned Arnoldi method, whereby one uses Arnoldi's method to iterate with a polynomial in A
instead of A itself. These methods are of interest only when the number of eigenvalues to be com-
puted is relatively small, such as when dealing with the stability analysis in nonlinear diferential
equations, or in the analysis of various bifurcation phenomena. In those problems, a (few) right-
most eigenvalues of some Jacobian matrix must be computed in continuation type techniques. It is
clear that the information gathered from previous continuation steps can be used if the marching
parameter varies slowly: in this fashion a good initial vector for the next run is available as well
as a good convex hull of the unwanted eigenvalues and one can expect a relatively moderate extra
work at each new continuation step.

The deflation technique can also be of great help when dealing with the generalized eigenvalue
problem. There, if one uses an Arnoldi (or nonsymmetric Lanczos) method, big savings can be
made by using deflation because it allows to go farther in the spectrum without having to perform
a new factorization of K - aM too soon. In essence the selective orthogonalization technique
developed by Parlett and Scott [17, 301 realizes a similar deflation technique in the symmetric case
in a more economical way. Our analysis of section 2.3 and our experiments indicates that the
Schur-Wielandt deflation is safe to use. The a-posteriori upper bound of of Proposition 2.3, can be
used in practice to determine how accurate a computed basis of an invariant subspace is.
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IZill Upper bound pi

2 0.2679108E-05 0.1161542E-04
4 O.8961249E-05 0. 1857656E-04
6 0.1313459E-04 0.3268575E-04
8 0.1398945E-04 0.6703071E-04
10 0.1397979E-04 0.6776894E-04

Table 1: Comparison of the estimate Frobenius norms of
the errors in the invariant subspaces with the actual norms.

stopping criterion as before it took 922 matrix by vector multiplications for the method ARNLS
to converge with m = 30 and k = 15. As a comparison it took 1204 such multiplications for the
method LSARN used with deflation to deliver all the three pairs of eigenvalues. (400 for the first
pair 532 for the second pair and 272 for the last pair). The Chebyshev/Arnoldi method performed
similarly, taking a total of 1264 matrix-vector multiplications for delivering the three pairs. In the
graph of Figure 3, we have plotted the convergence history of the two methods ARNLS and LSARN.
In LSARN the degree of polynomials is 100, i.e., we compound 5 times a polynomial of degree 20.
Three curves corresponding to the convergence history of each of the three pairs of eigenvalues are
drawn. As before we have plotted the relative error (5.5) of the computed eigenvalue, versus the
accumulated number of matrix by vector multiplications during the run.

For the method ARNLS the eigenvalues are computed simultaneously and we have therefore
graphed the average of the relative errors, over the 3 pairs. Here we have taken m = 30 and the
degree k is set to 15. Since there is little difference between the Chebyshev method CHBARN and
the least-squares method LSARN, we have omitted to plot the results obtained with CHBARN.

5.4. The Frobenius norm error bound
In this test we verify the error bound (2.12) of section 2.3 and in particular show how close

the estimate can be. The test matrix is the same as in the preceding tests but of size N=100,
which corresponds to a discretization of n = 50 interior mesh points. We have computed the 10
rightmost eigenvalues and their associated Schur vectors by using only one method as Algorithm
A , namely LSARN with m = 10, an& polynomial of degree 100 = 5 x 20. Here, the stopping
criterion for each eigenpair is that the actual residual norm be less than e - 10- 5. In other words
the norms of the vectors rli as defined by (2-5) are less than e except for rounding in the actual
computation of this residual which is negligible in view of the fact that E is large compared to the
unit round-off. As soon as a new pair of complex conjugate eigenvalues converged, we computed
the corresponding new Frobenius norm of Zi and the corresponding estimate given by (2.12). The
results are shown in Table 1. The 10 rightmost eigenvalues are all complex and so they appear in
pairs. In this example, in fact in all our tests conducted with this class of test matrices, there is a
good agreement between the estimated norm and its actual value.
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Arnoldi step. All methods are started with the same initial vector which is a random vector. The
results are plotted in figure I.

ARNIT did not show any sign of convergence after a total of 1000 matrix by vector multiplica-
tions. LSARN and CHBARN perform similarly while ARNLS differs significantly in that it starts
more slowly than both LSARN and CHBARN but as soom as a good convex hull of the eigenval-
ues is found, it outpaces all the other methods. Note that for simplicity we have not applied any
complicated heuristic such as varying the Arnoldi dimension m from lower to high values in order
to build the convex hull H more gradually. The ICYCLE paramater in the figure shows the degree
of polynomials used in both CHBARN and LSARN. In this test this was set to 100. However,
for LSARN, the polynomial of degree 100 is obtained by compounding (5 times) a least squares
polynomial of degree 20, as is indicated in the figure.

It is difficult to select a suitable stopping criterion for nonsymmetric eigenvalue problems. In
our case we have adopted to stop as soon as the residual norm is smaller that some tolerance C.
However, the matrices may be scaled differently and we decided to scale the residual norms by
the average singular value of the Hessenberg matrix produced by the projection process. More
precisely, at every step we compute the square of the Fobenius norm fm = Trace (HaH.), and
take as an estimate of the error of the computed pair eigenvalue/eigenvector the number

P (5.6)

where p is the computed residual norm provided by the method. Note that the denominator
represents the square root of the average of the squares of the singular values of Hm. In ARNLS
the same scaling is used except that for the projection step (Step 4 of Algorithm ARNLS), Hm
is replaced by the matrix Am. Recall [27] that it is not necessary to compute the eigenvectors
explicitly in Arnoldi in order to get the residual norms because these are equal to the products of
h,m+im by the last component of the corresponding normalized eigenvectors of the matrix Hm.

With this stopping criterion, and e = 10-7 the method stopped in the order indicated in
Figure 1, i.e. LSARN stopped first with a total of 480 matrix multiplications, then CHABRN
(total of 620 matrix vector multiplications) closely followed by ARNLS (total of 654 matrix vector
multiplications) and then ARNIT (no convergence). Thus, it is clear from this example that the
residual norms do not reflect the actual errors in the eigenvalues. The plot shows for exaftple
that the error estimate (5.6) is an overestimate of the actual error in all cases (since the method
continued to run well after this estimate went below the 10- 7 mark in the plot). The intriguing fact
is that it more pessimistic for the matrix Bk than it is for the matrix A. More precisely, at the end
of the run of ARNLS the estimate (5.6) was of the order of 1.91 x 10-8 while, as is indicated by the
plot, the error on the eigenvalue is 9.63 x 10-'5.As a comparison, CHBARN and LSARN showed
a smaller discrepancy: the estimate is 9.1710-8 versus the actual value 5.98 x 10-11 for CHBARN
and 9.29 x 10- 8 versus 5.13 x 10- 10 for LSARN. This phenomenon shows that the preconditioning
technique does actually improve the conditioning of the eigenpair: the actual error is almost of the
order of the square of the residual norm based error estimate, just like for symmetric matrices.

SonAs is shown in the next experiment the performances of the above methods depend critically
on the values of the parameters m (dimension of Krylov subspace in Arnoldi's method) and k the
degree of the accelerating polynomial. In the next plot we shows the same experiment as in the
previous one except that the Arnoldi dimension m, is set to 30, instead of 20.

5.3. Computing several eigenvalues
In this test we compute the 6 rightmost eigenvalues of the same 200 x 200 matrix A as in the

previous test. These 6 rightmost eigenvalues form three complex conjugate pairs. Using the same
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and

=D Tridiag{1,-2, 1} +
h2 L 2  ay

respectively, while the blocks (1,2) and (2, 1) are

aA_(X__ agh (X, Aafh(z,y) and
ay ax

respectively. Note that since the two functions f and g do not depend on the variable z, the
Jacobians of either fh or gh with respect to either x or y are scaled identity matrices. We denote
by A the resulting 2n x 2n Jacobian matrix. We point out that the exact eigenvalues of A are
readily computable, since there exists a quadratic relation between the eigenvalues of the matrix
A and those of the classical difference matrix Tridiag{1, -2, 1}.

For reference we name ARNIT the iterative Arnoldi method of section 3.1, CHBARN the
Arnoldi-Chebyshev method with deflation of Section 3.2, LSARN the least squares polynomial
method combined with Arnoldi of Section 3.3 and ARNLS the least squares preconditioned Arnoldi
method of section 4.

5.2. Computing one pair of eigenvalues
In this first test we compare the four methods described earlier to compute the pair of eigen-

values having largest real parts of the 2n x 2n matrix A. We used a discretization (_f n = 100
subintervals, i.e., the size the resulting matrix is 200. We then ran the four methods with a size m
of Arnoldi dimension equal to 20, in all cases, and in either CHBARN or LSARN the maximum
degree polynomial was 100. For ARNLS the degree of polynomials was chosen to be 20. However,
note that the program has the capability to lower the degree by as much as is required to ensure
a well conditioned Gram matrix in the least squares polynomial problem. This did not happen in
this run however, i.e. the degree was always 20. We have set the parameter indicating the number
of wanted eigenvalues to NEV = 1. Note that here the eigenvalue of largest real part is complex,
in fact almost exactly purely imaginary, so a reasonable code should deliver a pair of complex
conjugate eigenvalues in this situation.

The residual norms provided by the first three methods which deal with A are not comparable
with those provided by the method ARNLS which deals with BA, a polynomial in A. We therefore

opted to compare the computed eigenvalues during the various'runs with the exact ones which
are known. The exact eigenvalues, determined with maximum accuracy (double precision), i.e.
approximately 16 digits are

A1.2 = 1.8199876787305946 x 10-s± 2.139497522076329

As is observed the real part is close to zero, which verifies the theory, within the discretization
errors. We have plotted the relative errors

(5.5)

for each of the 4 methods.
For ARNLS, the preconditioned Arnoldi method, the approximate eigenvalue A1,' was de-

termined as the Rayleigh quotient (AO, 0)/(0, 0) obtained from the approximate eigenvector 0 of
the matrix Bk, which is easily computed within the Arnoldi process which is applied to Bk. This
is done every five Arnoldi loops. For the other methods, the error is plotted after each adaptive
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two reacting and diffusing components, where 0 < z < 1 represents a coordinate along the tube,
and r is the time, are modeled by the system: [21]:

ax D, (92X
a-' = D .c9 2x + f(X, y), (5.1)

ay DV azy

= + g(X, Y), (5.2)a-r L2 z

with the initial condition

X(0,z) =Xo(z), y(0z) = yo(z), V z [0, 1],

and the Dirichlet boundary conditions:

x(0,r) X(1,r) =

y(Or) = y(1,r) = 9.

The linear stability of the above system is traditionally studied around the steady state solution
obtained by setting the partial derivatives of x and y with respect to time to be zero. More precisely,
the stability of the system is the same as that of the Jacobian of (5.1) - (5.2) evaluated at the
steady state solution. In many problems one is primiraly interested in the existence of limit cycles,
or equivalently the existence of periodic solutions to (5.1), (5.2). This translates into the problem
of determining whether the Jacobian of (5.1), (5.2) evaluated at the steady state solution admits a
pair of purely imaginary eigenvalues.

We consider in particular the so-called Brusselator wave model [21] in which

f(x, y) = A - (B+ 1). + x 2y (5.3)

g(, y) = Bx - x2y. (5.4)

Then, the above system admits the trivial stationary solution • = A, 9 = B/A. A stable periodic
solution to the system exists if the eigenvalues of largest real parts of the Jacobian of the right
hand side of (5.1), (5.2) is exactly zero. For the purpose of verifying this fact numerically, one first
needs to discretize the equations with respect to the variable z and compute the eigenvalues with
largest real parts of the resulting discrete Jacobian.

For this example, the exact eigenvalues are known and the problem is analytically solvable.
The article [211 considers the following set of parameters

D.==0.008, Dy= ==0.004,

A=2, B = 5.45

The bifurcation parameter is L. For small L the Jacobian has only eigenvalues with negative real
parts. At L - 0.51302 a complex eigenvalue appears. Our tests verify this fact.

[ Let us discretize the interval [0, 1] using n + I points, and define the mesh size h = 1/n. The

discrete vector is of the form () where x and y are n-dimensional vectors. Denoting by fh and

gh the corresponding discretized functions f and g, the Jacobian is a 2 x 2 block matrix in which
the diagonal blocks (1, 1) and (2,2) are the matrices

1 D a fh(x,y)
.W -Tridiag(.1, -2, 1} +
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eigenvalues of A are the eigenvalues of A, and the approximate eigenvectors are given by Vy

where y(- ) is an eigenvector of Am associated with the eigenvalue Ai. A sketch of the algorithm is
as follows.

The Preconditioned Arnoldi-Least Squares Eigenvalue Algorithm

(1) Start:

Choose the degree k of the polynomial Pk, the dimension m of the Arnoldi subspaces and
an initial vector v1 .

(2) Initial Arnoldi Step:

Using the initial vector vi, perform m steps of the Arnoldi method with the matrix A.

(3) Projection Step:

Obtain the matrix Am = VZTAVm and its m eigenvales (A1, ... m) and eigenvectors yi.

Compute the approximate eigenvectors iii V= i for i = 1, 2 ... r and their residual norms
pi, i = 1, r. If satisfied then Stop. Else

Adapt: From the previous convex hull and the set {At+i,. Am} construct a new convex
0. hull of the unwanted eigenvalues.

Obtain the new least squares polynomial Pk of degree k.

Compute a linear combination zo of the approximate eigenvectors ii = 1, r.

(4) Arnoldi iteration:

Perform m steps of Arnoldi's method with the matrix B. = pk(A) starting with v, =

- - zo/IzoIl. Goto 3.

When passing from step 2 to step 3, it is not necessary to actually compute the matrix A,
which is available in step 2 as the Arnoldi matrix Hm. The linear combination of the approximate
eigenvectors in step 3 is the same as that of the Hybrid Arnoldi/Least squares method of Section
3.3.

The difference between this method and that of section 3.3 is that here the polynomial iteration
is an inner iteration and Arnoldi is the outer loop, while in the hybrid method, the two processes
are serially following each other. Both methods can be viewed as means of accelerating the Arnoldi
method.

It is clear that the Schur-Wielandt deflation technique can also be applied to the polynomial
preconditioned Arnoldi method and this is recommended. However, in our numerical experiments,
we will only compare the approach of deflation in conjunction with polynomial acceleration in the

. sense of the previous sections, versus that of polynomial preconditioning without any deflation.

5. Numerical experiments
All numerical tests have been performed on a Vax-785 using double precision, i.e., the unit

roundoff is 2-5 6 1.3877 x 10-17.

5.1. The test example
Our test example, taken from [211, models concentration waves in reaction and transport

interaction of some chemical solutions in a tubular reactor. The concentrations x(r, z), y(r, z) of
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4. A Polynomial Preconditioned Arnoldl Method
There are various ways of preconditioning a linear linear system Az = b prior to solving it by a

Krylov subspace method. Preconditioning consists in transforming the original linear system into
one which requires fewer iterations with a given Krylov subspace method, without increasing the
cost of each iteration too much. For eigenvalue problems similar methods have not been given much
attention although the shift and invert technique can be viewed as a means of preconditioning. If
the shift a, is suitably chosen the shifted and inverted matrix B = (A - a) - ', has a spectrum
with much better separation properties than the original matrix A and therefore would require less
iterations to converge. Thus, the rationale behind shift and invert technique is that factoring the
matrix (A - aIl) once, or a few times during a whole run in which a is changed a few times, is
a price worth paying because the number of iterations required with B is so much less than that
required with A that the cost of factorization is payed off. Essentially the same argument is used
in the preconditioned conjugate gradient method when dealing with linear systems.

There are instances where shift and invert is essential and should not be avoided, as for example
for the generalized eigenvalue problems Ku = \Iu. The reasons are discussed at length in [18],
[17], [23] and [31] the most important one being that since we must factor one of the matrices
K or M in any case, there is little incentive in not factoring (K - aM) instead, to gain faster
convergence.

For a classical eigenvalue problem, one alternative is to use polynomial preconditioning as is
described next. The idea of polynomial preconditioning is to replace the operator B by a simpler
matrix provided by a polynomial in A. Specifically, we consider the polynomial in A

B= pk(A) (4.1)

where Pk is a degree k polynomial. Ruhe [22] considers a more general method in which ph is not
restricted to be a polynomial but can be a rational function. When an Arnoldi type method is
applied to Bk, we do not need to form Bk explicitly, since all we will ever need in order to multiply
a vector z by the matrix Bk is k matrix-vector products with the original matrix A and some linear
combinations.

For fast convergence, we would ideally like that the r wanted eigenvalues of largest real parts of
A be transformed by ph into r eigenvalues of Bk that are very large as compared with the remaining
eigenvalues. Thus, we can proceed as in section 3.3, by attempting to minimize some norm of ph
in some region subject to the constraint (3.6). Once again we have freedom in choosing the norm
of the polynomials, to be either the infinity norm or the L2-norm. Because it appears that the
L2-norm offers more flexibility and performs usually slightly better than the infinity norm, we will
only consider a technique based on the least squares approach. We should emphasize, however,
that a similar technique using Chebyshev polynomials can easily be developed. Therefore, we are
faced again with the function approximation problem described in Section 3.3.

Once the polynomial ph is calculated the preconditioned Arnoldi process consists in using
Arnoldi's method with the matrix A replaced by Bk = pk(A). This will provide us with approxi-
mations to the eigenvalues of Bk which are related to those of A by A,(Bh) = ph(Ai(A)) It is clear
that the approximate eigenvalues of A can be obtained from the computed eigenvalues of BL by
solving a polynomial equation. However, the process is complicated by the fact that there are k
roots of that equation for each value Ai(Bk) that are candidates for representing one eigenvalue
\i(A). The difficulty is by no means unsurmontable but we have preferred a more expensive but
simpler alternative based on the fact that the eigenvectors of A and Bk are identical. At the end of
the Arnoldi process we obtain an orthonormal basis Vm which contains all the approximations to
these eigenvectors. A simple idea is to perform a Galerkin process for A onto Span[Vm] by explicitly
computing the matrix Am -VgAV,. and its eigenvalues and eigenvectors. Then the approximate
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The Hybrid Least-Squares Arnoldi Algorithm

(1) Start:

Choose the degree k of the polynomial pk, the dimension m of the Arnoldi subspaces and
an initial vector v1 .

(2) Projection step:

Using the initial vector v1, perform m steps of the Arnoldi method and get the m approx-
imate eigenvalues {.,.... A)m} of the matrix Hm.

Estimate the residual norms pi, i = 1, r, associated with the r eigenvalues of largest real
parts { ,... } If satisfied then Stop. Else

Adapt: From the previous convex hull and the set {, 7+,..A} construct a new convex
hull of the unwanted eigenvalues.

Obtain the new least squares polynomial of degree k.

Compute a linear combination zo of the approximate eigenvectors iii, i - 1, r.

(3) Polynomial iteration:

Compute z, = pV(A)zo. Compute vi - z /llzIll and goto 2.

Many practical details are omitted and are discussed at length in [25]. We only mention that
the linear combination at the end of step 3, is usually taken as follows:

ZO = Epiiii
i=-1

in which the vectors iii are the normalized approximate eigenvectors and pi are their residual norms.
The effect of this heuristic choice is twofold. First it avoids complex arithmetic when the matrix A is
real, because then the vector zo is always real. Second, it avoids the damaging effects of unbalanced
convergence by putting more emphasis on the eigenvectors that are slower to converge. In fact here
lies a weaknesses similar to that of the restarted Arnoldi method mentioned in section 3.1. It is
difficult to choose a linear combination that leads to balanced convergence because it is difficult
to represent a whole subspace by a single vector. This translates into divergence in many cases
especially when the number of wanted eigenvalues r is not small. There is always the possibility
of increasing the space dimension m, at a high cost, to ensure convergence but this solution is not
always satisfactory from the practical point of view.

Use of deflation constitutes a good remedy against this difficulty because it allows us to compute
one eigenvalue at a time which is much easier than computing a few of them at once. Another
solution is to improve the separation of the desired eigenvalues by replacing A by a polynomial in
A. This approach, referred to as polynomial preconditining will be presented in the next section.

One attractive feature of the deflation techniques is that the information gathered from the
determination of the eigenvalue Ai can be used to help iterate when computing the eigenvalue \i+,.
The simplest way in which this is achieved is by using at least part of the convex hull determined
during the computation of Ai. Moreover, a rough approximate eigenvector associated with Ai+I can
be inexpensively determined during the computation of the eigenvalue Ai and then used as initial
vector in the next step for computing A+,.
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in which the j..'s,j = I,... r constitute r different weights. Since it is known that the maximum
modulus of an analytic function over a region of the complex plane is reached on the boundary
of the region, one solution to the above problem is to minimize an L2-norm associated with some
weight function w, over all polynomials of degree k satisfying the constraint (3.6). We need to
choose a weight function w that leads to easy computations in practice.

Let the region H of the complex plane, containing the unwanted eigenvalues A,+i,... AN, be a
polygon consisting of u edges El, E2.... E1, each edge Ei linking two successive vertices h-I. and
hi of H. Denoting by c = 1(hj + hj-) the center of the edge Ej and by d i (h, - hi-1 ) its
half-width, we define the following Chebyshev weight function on each edge:

=(A) 2 ld - (A Cj)21- 1 2  (3.7).

The weight w on the boundary aH of the polygonal region is defined as the function whose restric-
tion to each edge Ei is wj. Finally, the L2-inner-product over aH is defined by

< Pq >W= p()q()w( = f p(A)w(A)dAI (3.8),
j=

and the corresponding L2-norm is denoted by 11.11,. Then we have the following result [25].

Theorem 3.1. Let {Tri}i=O,k be the first k + 1 orthonormal polynomials with respect to the L2-inner-

product (3.8). Then among all polynomials p of degree k satisfying the constraint (3.6), the one
with smallest w-norm is given by

Pk(A) = 1 i (3.9)

where 'Z = = pjirj(Aj).

On the practical side the process of constructing the orthogonal polynomials can be difficult
and unstable if not enough care is exerted in the computation. In [25] and [24], the orthogonal
polynomials as well as their linear combination (3.9) are all expressed in terms of a Chebyshev basis
associated with the ellipse of smallest area containing H. Then, the moment matrix MA associated
with this basis is constructed without any numerical integration. The solution (3.9) is then obtained
by solving a linear system with this Gram matrix. The tedious details on the practical computation
may be found in [25].

The resulting hybrid method for computing the r eigenvalues with largest real parts is outlined
next.
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Arnoldi's method. We can then reproduce the previous steps with this vector as vI. This process
is repeated until the whole set of desired eigenvalues has converged.

This combination constitutes an extremely -nwerful technique if only the eigenvalue of largest
real part is to be computed. When several of them must be computed then the restarting procedure
may lead to some difficulties. See [26] for details on this process and numerical experiments. Again

" reliability will be improved by simply computing one eigenpair at a time and using the Schur-
Wielandt deflation.

3.3. The Least Squares - Arnoldi method with Deflation
The choice of ellipses as enclosing regions in Chebyshev acceleration may be overly restrictive

and ineffective if the shape of the convex hull of the unwanted eigenvalues bears little resemblance
with an ellipse. This was the motivation of the work [25] in which the acceleration polynomial is
chosen so as to minimize an L2-norm of the polynomial p on the boundary of the convex hull of
the unwanted eigenvalues with respect to some suitable weight function w. The only restriction
with this technique is that the degree of the polynomial is limited because of cost and storage
requirement. This, however, is overcome by compounding low degree polynomials. The stability of
the computation is enhanced by employing a Chebyshev basis and by a careful implementation in
which the degree of the polynomial is taken to be the largest one for which the Gram matrix has a
tolerable conditioning. The method for computing the least squares polynomial is fully described

I"O in [25] but we present a summary of its main features below.
Suppose that we are interested in computing the r eigenvalues of largest real parts A1,,A2 ,... A.

and consider the vector
zk = pk(A)zo (3.4)

S- where Pk is a degree k polynomial. If A is diagonalizable, then by writing the expansion of zo in
the basis of eigenvectors ui of A as

N

ZO = jujiu
i=1

we get Zk = 'N pk(Aj)ui which we separate in two parts

rN•t = p A)u + &p(\~j(3.5)
i=1 i=r+l

The principle of the hybrid least squares-Arnoldi method is to use the vector z& as an initial
vector. From the analysis of the Arnoldi process, it is clear that we want the second part of the
above expansion to be small compared with the first part. In fact it can be proved [26] that

- if the second part is zero then the Arnoldi process will stop at the rh step with Kr becoming
the invariant subspace associated with the eigenvalues At, A\2 ,... Ar. Therefore, we wish to choose
among all polynomials p of degree k one for which p(A),i>r are small relative to p(A,.), i < r.

Assume that by some adaptive process, a polygonal region H which encloses the remaining
eigenvalues becomes available to us. We then arrive at a function approximation problem, which
roughly formulated consists of finding a polynomial of degree k whose value inside some region is

small while its values at r particular points (possibily complex) are large. For a more precise formu-
lation we begin by normalizing the polynomial at the points A1, A12.... Ar. One such normalization
is

r

E P p~() =(3.6)

j=1
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A major limitation of Arnoldi's method is that its cost and storage requirements increases
drastically as the number of steps m required for convergence increases. An immediate remedy for
this is to use restarting: after the m steps are performed one restarts with an initial vector formed
from a linear combination of the eigenvectors (3.3) associated with the desired eigenvalues. This
was proposed as a simple alternative to the classical method in [27] and was further improved by
the incorporation of polynomial-based acceleration techniques in [26] and [25].

However, the restarting method may encounter some difficulties especially in cases when the
number of wanted eigenvalues is not small. One way in which this inefficiency manifests itself is
that when restarting, the process is often unable to keep the accuracy gained in the previous steps
for all eigenvalues, i.e., the accuracy may improve in some eigenvalues but deteriorates in some
others. It is difficult when the number of eigenvalues is not small to make the method produce a
similar accuracy for all the wanted eigenvalues. This is why deflation is so important. Very often it
is possible to recover convergence by using a larger number of steps in the iterative Arnoldi method,
but this is not always desirable as the storage requirement increases drastically.

Since Arnoldi's method is relatively successful in computing the eigenvalue of largest real part
of a large nonsymmetric matrix, we can improve the reliability of the method by always computing
one eigenvalue and its eigenvector at a time, i.e. by never attempting to extract more than one
eigenpair at a time. This can be achieved by using the deflation algorithm PSWD, in which
algorithm A is simply replaced by the restarted Arnoldi.

3.2. The Chebyshev - Arnoldi method with deflation
One way of avoiding the weaknesses of Arnoldi's method is to use a good initial vector, i.e.

an initial vector for the total number of Arnoldi iteration is small. This can be achieved by
preprocessing the initial vector by a polynomial type iteration before feeding it into the Arnoldi
algorithm. The question of course, is how to select a good polynomial. The basic principle of
polynomial acceleration techniques is to start by enclosing the set of unwanted eigenvalues in some
domain and then find a polynomial which has a small modulus in that domain comparatively to its
modulus on the wanted eigenvalues. In Chebyshev acceleration the enclosing domain is an ellipse
and the basic idea is to minimize the maximum modulus of a polynomial p over that ellipse subjset
to the constraint that p(AI) = 1, where A1 is the eigenvalue of largest real part, assumed to be real
here for simplicity. This approach which leads naturally to Chebyshev polynomials, was considered

. by Manteuffel who uses it as the basis for an iterative method for solving nonsymmetric linear
systems [15, 16].

In [26] we have described a hybrid method based on a combination of Chebyshev iteration
and Arnoldi's method for computing eigenvalues and eigenvectors of nonsymmetric matrices. The
algorithm described in [26] attempts to compute simultaneously the set of p eigenvalues of largest
(or smallest) real parts. Schematically, the algorithm runs as follows. Initially, we perform r steps.
of Arnoldi's method where m>p is fixed, starting with a random initial vector. This computes a set
of m approximate eigenvalues which are split in two parts: the set of wanted eigenvalues (i.e. the
p approximate eigenvalues with largest real parts) and that of the unwanted ones (the remaining
approximate eigenvalues). From the set of unwanted eigenvalues, one builds a polygonal convex
hull that contains all the unwanted eigenvalues. Then the parameters of an ellipse containing
that convex hull are computed. The parameters of the computed ellipse are optimal in a certain
sense. Using these parameters, a certain number of steps of Chebyshev iteration are performed
starting with a certain linear combination of the approximate Arnoldi eigenvectors associated with
the wanted eigenvalues, as an initial vector. The effect of the Chebyshev iteration, is to damp
the eigencomponents associated with the eigenvalues inside the ellipse contaning the convex hull
of unwanted eigenvalues while highly amplifying those components associated with the wanted
eigenvalues. As a result the final vector of this Chebyshev iteration is a perfect candidate for

11
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