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16. Abstract. THIS REPORT PROVIDES A FEASIBILITY ANALYSIS OF THE APPLICATION OF A
PHYSICALLY WELL-DEFINED BUOYANCY/FUEL TANK AND HYDROFOIL SYSTEM TO A SPECIFIC CRAFT,
AN EXISTING USCG 95-FO0OT WPB. THE PURPOSE OF THIS MODIFICATION IS TO ENHANCE THE
CRAFT'S MISSION CAPABILITIES IN TERMS OF SPEED, RANGE/ENDURANCE AND MOTIONS IN A
SEAWAY. IT IS CONCLUDED THAT THE CONCEPT (DESIGN M174) IS TECHNICALLY FEASIBLE, HAS
MERIT, AND PROVIDES CONSIDERABLE IMPROVEMENT OVER THAT OF THE WPB, PARTICULARLY IN
THE AREAS OF SPEED, RANGE, AND MOTIONS. THE 181.3 LONG TON DESIGN IS ALL STEEL, HAS
2 PIELSTICK DIESEL ENGINES AND CARRIES 38.1 TONS OF USABLE FUEL IN ADDITION TO A
MISSION LOAD OF 15 TONS. FULL LOAD MAXIMUM SPEED IS 34.0 KNOTS, MAXIMUM FOILBORNE
ENDURANCE IS 53 HOURS AT 22.5 KNOTS, AND MAXIMUM RANGE IS 1,314 NAUTICAL MILES AT

27.5 KNOTS. HULLBORNE RANGE AT 12.5 KNOTS IS 2,594 N. MILES. THERE IS ADEQUATE FUEL

(WITH A 10% RESERVE) TO CARRY QUT A 5-DAY MISSION OF 24 HOURS AT 30 KNOTS, PLUS 96
HOURS AT 13 KNOTS FOR A TOTAL RANGE OF 1,968 N. MILES.

ADDITIONAL STUDIES ARE REQUIRED IN CONJUNCTION WITH A DETAILED DESIGN OF SUCH A
DEMONSTRATOR. 1T IS RECOMMENDED THAT A NEW DESIGN (SIMILAR TO M174) BE INVESTIGATED
IN WHICH THE UPPER HULL WOULD BE MODIFIED TO IMPROVE INTACT STABILITY, OVERALL
STRUCTURAL EFFICIENCY, AND THE MACHINERY ROOM LAYOUT. ALSO, AN OPTIMUM PROPELLER
SHOULD BE DESIGNED TO ACCOMMODATE THE ENTIRE FOILBORNE SPEED REGIME.
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4.0 Performance Summary

POWER

CONTINUOUS
@
5920 SHP

INTERMITTENT .

@
6500 SHP

DISPLACEMENT
LONG TONS

181.33
159.30

DYNAMIC LIFT DISPLACEMENT MAX. SPEED

LONG TONS LONG TONS KNOTS
98.23 181.33 34.0
76.20 159.30 36.2
98.23 181.33 35.8
76.20 159.30 37.7

FOILBORNE RANGE AND ENDURANCE

MAX. SPECIFIC RANGE MAX. MAX. SPECIFIC ENDURANCE MAX.

Rg SPEED RANGE Eg SPEED END

NM/TON KNOTS (N.MI)  HRS/TON KNOTS (HRS )
38.3 27.5 1310 1.54 22.5 51.4
48.5 25.0 1660 2.20 20.0 75.5

Mission: 24 hours @ 30 kts. + 96 hours @ 12 kts. @ 164 tons

Range

1968 NM

Fuel Burned = 34.3 Tons

Fuel Available

Notes:

S O W
e s+ s s e

38.11 Tons useable less 3.81 Tons margin
34.3 Tons

159.30 Ton displacement 1is with 42% of mission fuel
remaining

Wake deduction, w = 5%

Thrust deduction, t = 5%

Drag margin = 11%

Gear efficiency = 95%

Takeoff thrust margin = 43% @ 22.5 kts. @ 181.33 Tons @
interm:ttent Power

Increasing propeller diameter from 53" to 58" should improve
22.5 knot range and endurance about 5%.

13
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Foil System Characteristics
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Power Required
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Mixed-Mode Performance
Maneuverability

Motions

USCG Hybrid Concept Comparison
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N

of the tank. They are not, however, considered significant enough to appre-
ciably alter the results. A table containing the input offsets is provided
in Appendix A. While it may appear from the isometric view that the strut
extends the full length of the tank, in reality the "y" coordinate of the
strut offsets equals zero in the forward and aft extremities.
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SECTION 3
CRAFT DESCRIPTION

3.0 The 95 ft WPB is a semi-planing displacement craft with the following
principal characteristics, exclusive of the buoyancy/fuel tank and strut and
foil system:

Length Between Perpendiculars 90'-0

Length Overall 95'-0
Beam (Max imum) 20'-1 172"
Beam (At 6'0' WL) 18'-5"
Draft at Full Load 6'-3 1/2"

85.98 L.tons
103.53 L.tons

Displacement - Light Ship
Displacement - Full Load

With the addition of the buoyancy/fuel tank and the foil system to the
craft the displacement and draft are altered to the following:

Draft - Maximum Hullborne 14'-1"

Beam Across Foils 30'-0"

Displacement - Light Ship 128.83 L.tons

Displacement - Full Load Ballast 181.33 L.tons

Figure 3-1 illustrates the feasibility configuration investigated.

3.1 For the purpose of investigating hydrodynamics and intact stability,
NAVSEA's Ship Hull Characteristics Program (SHCP) was utilized. Inasmuch as
the strut and tank become an integral part of the hull, they were treated as
such rather than as appendages, and the bottom of the tank became the refer-
ence baseline.

The foils were, however, included as appendages inasmuch as the pro-
gram could not directly handle the foil anhedral.

3.2 To verify the offset inputs graphic plots, Figures 3-2 and 3-3 were
generated. The slight irregularities visible are the result either of erro-
neous inputs or an insufficient number of points to define the curved portion

-



2.1.4 At a fixed displacement of 181.3 tons, the maximum foilborne endurance
is about 53 hours at 22.5 knots, whereas maximum range is 1314 n. miles at
27.5 knots in calm water, both with 10% reserve fuel. Hullborne range is
2600 n. miles at 12.5 knots (4180 n. miles at 10 knots) in calm water with
10% reserve fuel. These values compare with 460 n. miles at 21 knots and
3000 n, miles at 9 knots for the current WPB.

2.1.5 There 1is adequate fuel (with a 10% reserve) to carry out a 5-day
mission of 24 hours at 30 knots, plus 96 hours at 13 knots for a total range
of 1968 n. miles.

2.1.6 Intact stability analyses indicates that in the full load condition of
181.3 tons the craft would be stable up to and including 70 knots beam winds.
Ballast must replace fuel from the buoyancy/fuel tank periodically as it is
burned off under high beam wind conditions.

2.1.7 Motions in a seaway are projected to be greatly improved over that of
a planning hull of this size and should compare favorably with a hydrofoil
having a fully submerged foil system.




SECTION 2
CONCLUSIONS

2.0 The investigation of the factors involved in the creation of the U.S.
Coast Guard Hybrid Concept Design M-174 was resolved primarily into the areas
of performance and stability. While not totally complete in such areas as
relocation of equipments in the machinery room, the investigation also
assessed propulsion options, fuel/ballast management and hull modifications
which were to have the most influence on the acceptability of the concept.

Throughout all of the analysis, several ground rules were established
which had a direct bearing on the final results. One was the recommendation
of the Coast Guard that diesel engines be considered as the prime movers in
lieu of gas turbines. Secondly, the hullborne draft was to be a maximum of
14 feet. Thirdly, that payload development for a new WPB be considered in
the weight estimate and a specific five-day mission profile be examined.

2.1 Conclusions from the investigation of hybrid concept M174 design, de-
rived from an existing WPB, are as follows:

2.1.1 The hybrid concept is technically feasible, has merit, and provides
considerable improvement over that of the WPB particularly in the areas of
speed, range and motions. The boat is of all-steel construction and has a
full load displacement of 181.3 long tons. In the foilborne mode, dynamic
1ift is 98.3 tons and buoyant 1ift is 83 tons. Full load fuel is 38.1 tons
(useable) in addition to 15 tons of miscellaneous loads (command and surveil-
lance, crew and effects, stores, water, armament, and lube oil).

2.1.2 Two Pielstick 12PA4200-VGDS diesel engines with a maximum continuous
rating of 2960 hp each provide a full load maximum foilborne speed of 34.0
knots in calm water. This compares with 21 knots for the current WPB.

2.1.3 Takeoff thrust margin is about 40% at 20 to 22 knots in the full load
condition and therefore is more than adequate compared to most pure hydrofoil
designs.
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SECTION 1
INTRODUCTION

1.0 Grumman Aerospace Corporation, Naval Ship Systems Department has con-
ducted this investigation into the feasibility of generating a hybrid surface
ship by installing a buoyancy/fuel tank and submerged foil system on an ex-
isting USCG 95 ft WPB hull. This investigation is a continuation of the
general exploration into the feasibility of enhancing the performance of sur-
face craft by utilizing a combination of dynamic 1ift provided by a foil sys-
tem, and buoyant 1ift provided by a long, slender fully submerged hull and
strut. References 1 through 9 describe the previous work on various hybrid
ship designs.

1.1 The pUrpogé of the investigation was to determine the technical valid-
ity of using a buoyancy/fuel tank and associated foil system to improve per-
formance and enhance mission capabilities of an existing USCG 95 ft WPB.

An existing WPB with nominal 105 L.ton full load displacement was se-
lected by DTNSRDC and the United States Coast Guard as the platform on which
to conduct the feasibility investigation. The craft with a buoyancy/fuel
tank and foil system attached to the keel is referred to as USCG Hybrid Con-
cept, Grumman Design No. M174, in the sections following. A1l performance
and stability calculations were based upon the 85.98 long ton light ship dis-
placement as developed in the Stability Test Data for WPB 95303, “Cape
Upright,” dated 10 November 1977. Analyses of the concept are contained in
the following sections. A rendering of the concept is shown in Figure 1-1.
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ADMINISTRATIVE INFORMATION

The investigation described in this report was performed for the U.S.
Coast Guard (MIPR DTCG23-84-F-20024) by the Grumman Aerospace Corporation,
Naval Ship Systems Department under Contract N00600-81-D-0877 from the David
Taylor Naval Ship Research and Development Center. The Project Manager at
DTNSRDC was John R. Meyer, Code 1233, of the Hydrofoil Systems Office. The
U.S. Coast Guard project officer was LTJG Ian Grunther.

FOREWORD

Grumman Aerospace Corporation, Naval Ship Systems Department has
conducted this investigation into the feasibility of generating a hybrid
surface ship by installing a buoyancy/fuel tank and submerged foil system on
an existing USCG 95-ft WPB hull as Task 15 of Contract N00600-81-D-0877.

This investigation is a continuation of the general exploration into
the feasibility of enhancing the performance of surface craft by utilizing a
combination of dynamic 1ift provided by a foil system, and buoyant 1ift
provided by a long, slender fully submerged hull and strut. See references 1
through 9 for previous efforts.

This report provides a feasibility analysis of the application of a
physically well-defined buoyancy/fuel tank and hydrofoil system to a specific
craft, an existing USCG 95-ft WPB.
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ABSTRACT

This report provides a feasibility analysis of the application of a
physically well-defined buoyancy/fuel tank and hydrofoil system to a specific
craft, an existing USCG 95-foot WPB. The purpose of this modification is to
enhance the craft's mission capabilities in terms of speed, range/endurance
and motions in a seaway.

It is concluded that the hybrid concept (Design M174) is technically
feasible, has merit, and provides considerable improvement over that of the
WPB, particularly in the areas of speed, range and motions. The 181.3 long
ton design is all steel, has 2 Pielstick diesel engines and carries 38.1 tons
of usable fuel in addition to a mission load of 15 tons. Full load maximum
speed is 34;0 knots, maximum foilborne endurance is 53 hours at 22.5 knots,
and maximum range is 1314 n. miles at 27.5 knots. Hullborne range at 12.5
knots is 2594 n. miles. There is adequate fuel (with a 10% reserve) to carry
out a 5-day mission of 24 hours at 30 knots, plus 96 hours at 13 knots for a
total range of 1968 n. miles.

Additional studies are required in conjunction with a detailed design
of such a demonstrator. It is recommended that a new design (similar to
M174) be investigated in which the upper hull would be modified to improve
intact stability, overall structural efficiency, and the machinery room
layout. Also, an optimum propeller should be designed to accommodate the
entire foilborne speed regime.




4.1 Foil System Characteristics

4.1.1 Airplane Configuration Characteristics

The airplane configuration consists of a main foil (~75% of dynamic
1ift) located near midship and a tail foil (~25% of 1ift) located aft. Foil
planforms and geometric characteristics are shown on Figures 4.1.1-1 and -2.
The main foil aspect ratio and relatively large portion of foil enclosed by
the pod are both rather extreme for a hydrofoil and result from the large
tank width and constrained foil span. A1l of the 1lift and induced drag
characteristics of this report were derived by the methods of reference 10.
The 1ift characteristics are based upon potential flow theory. At this study
level it was not necessary to specify a foil section; and the viscous 1lift
effects are not considered to be consequential to feasibility conclusions.

The main foil spanwise circulation distribution is shown on Figure
4.1.1-3 where the pitch 1ift curve slope, CL, describes the 1ift obtained
when the craft is pitched while the incidéhce 1ift curve slope, CLi,
describes the 1ift obtained when the foil incidence changes relative to the
tank. The incidence and flap 1ift curve slopes differ only by the value of
the flap effectiveness da/ds. The main foil CLicha ratio, .7, is low for
hydrofoils because so much of the span is fixed but flap angle requirements
to 20 knots do not exceed 15 degrees for a 25% chord flap. The incidence 1ift
case is sometimes approximated by joining the exposed semi-spans to make a
new foil without a pod as shown on Figure 4.1.1-3 but that approximation is
poor for this case because of the large fixed span extent.

The main foil spanwise 1ift coefficient distribution is shown on
Figure 4.1.1-4 where the maximum incidence 1ift C,/C_, ratio of 1.34 compares
with a more typical value of 1.25, Foil cavitation is initiated at this
section of highest local 1ift coefficient.

14
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The performance characteristics for the main foil are summarized in
Table 4.1.1 where they are compared with the characteristics of two alternate
foil systems. The 20 knot speed was the lowest speed of immediate interest
but the drag curve indicates that the minimum flight speed might be as low as
15 knots and effective foil control throughout the flight speed envelope
would be desirable.

Time did not permit derivation of the asymmetric, aileron, circulation
distribution which is more unfavorable than that for symmetric flap
deflection. A detail design phase would have to consider the roll control and
orbital motion requirements along with the alleviating effect of craft pitch
at low speed and in turns,

The aft foil characteristics were assumed identical with those of the
forward foil to conserve time, although this assumption provides conservative

craft characteristics.

4.1.2 Tandem Configquration Characteristics

The disadvantages of the main foil can be alleviated to some extent by
increasing the foil area but to accomplish this with a reasonable aspect
ratic within a constrained span requires resort to a tandem configuration.

Figure 4.1.2-1 presents one possibility for a tandem foil system and
Figure 4.1.2-2 presents the corresponding circulation distribution. The 1ift
coefficient distribution for this more highly tapered foil, Figure 4.1.2-3,
is worse than that of Figure 4.1.1-4,

The characteristics for this foil and for a similar rectangular
version are compared with those for the main foil in Table 4.1.1. The foil of
Figure 4.1.2-1 adds about 1/2 knot to the top speed but the top speed
certainly presents a 1imit to the foil area which can be added. Obviously an
optimized tandem foil system would require area and taper consideration and
would still present the craft dynamics disadvantages which have been found
associated with the tandem system for this application in reference 2.
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Note that the tandem foil system does allow employment of the total
foil area in roll control.

4.2 Craft Drag Polar

4.2.1 Derivation of the Craft Drag Polar

The submerged parasite drags were estimated in the manner of reference
7 and 11 for comparison with the DTNSRDC supplied drag curve as shown on
Figure 4.2.1-1. The estimated spray and air drags were then added to the
DTNSRDC drag curve to obtain the total parasite drag curve.

The calculated parasite drag coefficients are fit to a quadratic in
1/q on Figure 4.2.1-2 and the result is compared with the drag calculations

on Figure 4.2.1-1. For a craft foil loading of:

L _ 2240 x 76.2

628.11 4.2.11
S 27,75
the resulting parasite drag polar is:
1 1,2
CD = ,02497 + 29.M14 - -10821 (=) 4.2.1-2
p q q
29.114 10821 2
= ,02497 + c, - c
628.11 L  (628.11)2 L
= .02497 + .046352 € - .027428 C]
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Figure 4.2.1-2. PARASITE DRAG CURVE FIT DRAFT = 10 FT.
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By the methods of reference 11 the induced and surface image drag
coefficients are:

~ 2 )
Cp, T 088647 4.2.1-3
¢ = .016624 cf 4.2.1-4
SURF

where a 7A CDi/Cfof 1.25 was arbitrarily employed for the aft foil in the
absence of a circulation distribution analysis.

For design 1ift coefficients set equal to the foil 1ift coefficient at
35 knots the wake drag coefficient becomes:

Cepr0)? (6700 )
CD = ,026091 + (CL - CL ) 4.2.1-5
WAKE S]/S 52/5 35
= .,026091 x 1.0003 (CL - .18062)2
= .026099 (CL - .18062)2

The coefficient should be .0035471 for speeds higher than 35 knots but
the difference is negligible for the speed range of interest here.

The wave drag coefficients calculated by the methods of reference 11
are fitted to a quadratic in craft 1ift coefficient on Figure 4.2.1-3 with
the result:

C fo. = .0013105 - .019255 CL + .086962 Cf 4.2.1-6

Owake ?
for L = 76.2 LT
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The propeller efficiency variation with speed is shown on Figure
4.3.2-2. It will be noted that the propeller design point lies outside the
speed range. Increasing the propeller diameter would therefore improve the
low speed range and endurance and the takeoff efficiency by some significant
amount,

The RPM variations with speed are shown on Figure 4.3.2-3.

4.3.3 Range and Endurance

The specific fuel consumption was taken from reference 14 and is shown
here on Figure 4.3.3-1. It should be noted, however, that in the flight
speed power range (50%-100% of rated power) the MTU SFC's are 4%-5% higher
than those of Figure 4.3.3-1.

The specific endurance is given by:

Eg = 2240/(SFC SHP + SSF) hrs/L. ton , 4.3.3-1
where: SFC = .39805 - .020344 35 + 0026505 (e )

2368 < SHP < 5922
SHP = Total SHP, 2 engines
SSF = ship's service fuel flow = 33 1bs/hr

The variation of specific endurance with speed is shown on Figure
4.3.3-2 which indicates maximum endurances of 1.54 hours/ton at 22.5 knots
for the 181.33 ton displacement and 2.196 hours/ton at 20 knots for the 159.3
ton displacement.

The specific range is given by:

4.3.3-2
The variation of specific range with speed is shown on Figure 4.3.3-3

which indicates maximums of 38.3 nautical miles/ton at 27.5 knots for the

181.33 ton displacement and 48.55 nautical miles/ton at 25 knots for the
159.3 ton displacement.
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Figure 4,3.2-1.

SHAFT HORSEPOWER REQUIRED
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4.3.2 Power Required

On the craft drag curve the propeller characteristics are given by the
following relationships:

- D 2
Cr = 26.818 y5om / Vy | 4.3.2-1
or S SIA
Cr = =3 o2 Cp = 20.688 C, 4.3.2-2

! 2
Cp [ Z(yT e - .18097] ¢d + .0932 4.3.2-3

The speed-power coefficient, CS, is the solution for:

T 3 2

T CpCs = (875 - 13088 c) 4.3.2-4
Thén:

J = .875C, - .13088 cg 4.3.2-5

The SHP required, efficiency, and RPM follow from the evaluations of
Table 4.3.1.

For the full throttle case:
- 3
Cp = 8.2967 SHP/VK 4.3.2-6
is the solution for Equation 4.3.2-3
is the solution for Equation 4.3.2-4
is given by Equation 4.3.2-5

The thrust, efficiency, and RPM follow from the evaluations of Table
4.3.1.

The drag and performance calculations were carried out for displace-
ments of 159.30 long tons, (approximate nalf-fuel weight case) and 181.33
long tons. The power required curves are shown on Figure 4.3.2-1 which pro-
vides the maximum speeds of Section 4.0. The minimum flight speed has been
increased 4-5 knots by the propeller efficiency curve.
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4.3 Craft Performance

4.3.1 Propeller Characteristics

The propeller characteristics employed were taken from Reference 13
and are presented on Figure 4.3.1-1 in a form suited to craft performance
analysis. It should be noted that throughout this report the symbol "V" is
reserved for craft speed and the propeller operating conditions are:

Prop. Velocity = (1-w) V = .95V
Net Prop. Thrust = (1-t) T = .95T 4.3.1-1
Prop. Horsepower, PHP = nGSHP = , 95SHP

For this preliminary view of the performance, the propeller diameter
was set at 53 inches. Increasing this diameter will improve the 20 knot
range and endurance to an extent subject to practical limitations. The
numerical evaluation for the propeller parameters for the 53 inch diameter
are given in Table 4.3.1.




Figure 4.2.3-1.

HULLBORNE DRAG
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4.2.2 Rough Water Drag

Because the drag curves of Figure 4.2.1-6 assume a fully wetted strut
they can be considered conservative in sea states of significant wave height
of one meter or less. Drag increments with increasing sea state are due to
intermittent hull spray and wave action on the tank, neither of which is
amenable to analysis. Time available to this study does not allow review of
experimental results on similar configurations for the estimation of these
effects.

4,2.3 Hullborne Drag

The hullborne drag curve of Figure 4.2.3-1 adds the parasite drags of
Section 4.2.1 to the hull model drag of reference 12. It should be noted that
the hull model drag has been extrapolated below 14.5 knots. Extension of the
model measurements to lower speeds would be desirable in a detail design
phase.

.
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Figure 4.2.1-7,

EFFECTIVE HORSEPOWER REQUIRED USCG HYBRID
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Figure 4.2.1-4,

LIFT DRAG COMPONENTS USCG HYBRID

30

et




From Equations 4.2.1-3 through 4.2.1-7 the total 1ift drag coefficient

is:
c - .088647 C2 4.2.1-7
¢ 00085144 - .009428 C, + .026099 cf
WAKE =
¢ - .016624 cf
SURF
C, = .00024949 - .0036705 C + .016611 cf
WAKE
¢, = .001109 - .013098 C, + .14798 c?
. L
and with Equation 4.2.1-2 the total drag coefficient becomes:
Cp = .02497 + .046352 C, - .027428 cf 4.2.1-8
p
Cp, = 0011009 - .013098 ¢, + .14798 c?
. L
C, = .026071 + .033253 C_ + .14798 cf

The calculated 1ift drags are compared with the total lift drag polar
of Equation 4.2.1-7 on Figure 4.2.1-4. The total drag polar of Equation
4.2.1-8 is shown on Figure 4.2.1-5 and the corresponding drag curve for two
displacements is shown on Figure 4.2,1-6. The drag curves of Figure 4.2.1-6
are presented as effective power required curves on Figure 4.2.1-7.

It should be noted that the drag calculations throughout this report

were for a draft of 10 ft, i.e. for a fully wetted strut. Thus these
performance results are conservative for the flight waterline.
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Figure 4.3.2-2.

PROPELLER EFFICIENCY
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Figure 4.3.3-1,

SPECIFIC FUEL CONSUMPTION PIELSTICK PA4200 VGDS DIESEL

44

—




— e
—t.

pnptimadinib vy

R e

SPECIFIC ENDURANCE

2.

Figure 4.3.3-

e ,

Te O YL T

45




Y rex

ST N T e

|
S
{

T

Figure 4.3.3-3. SPECIFIC RANGE




The fixed displacement range and endurance are summarized on Figures
4.3.3-4 and -5 and in Table 4.3.3 for 34.3 tons of fuel.

The 159.3 ton displacement was the mid-fuel-weight at an early point
in this study but now represents the displacement with 64% of the fuel burned
off. The range and endurance for this case are retained here for reference.
The fuel/ballast management characteristics for this craft preclude adequate
accountability for Breguet effect in the time available for this study. The
ranges and endurances of Table 4.3.3 are for the most conservative fuel/
ballast management; Figure 4.3.3-2 and -3 indicate the benefits to be gained
by not ballasting for burned fuel.

4.3.4 Hullborne Performance

For the propeller characteristics of Section 4.3.1 the hullborne drag
curve of Figure 4.2.3-1 becomes the power required curve of Figure 4.3.4-1,
In this power range Equation 4.3.3-1 becomes:

Eg = 2240/(SFC SHP + SSF) hrs/L. ton ) 4.3.4-1
where: SFC = .44485 - .05318 %g—gﬁ + 0082673 (%ﬁ)

1480 < SHP < 3554
SHP = Total SHP, 2 engines
SSF = ship's service fuel flow = 33 1bs/hr

The variation of specific endurance and range with speed is shown on
Figure 4.3.4-2. In the hullborne mode for example, range is 2600 n. miles
and endurance is 208 hours at 12.5 knots using 34.3 L.tons of fuel.

4.3.5 Mixed Mode Performance

A mixed mode (hullborne and foilborne) 5-day operation was assumed
with 24 hours foilborne and 96 hours hullborne. Specific ranges were taken
at the half-fuel load condition and several examples computed to consume 34.3
L.tons of fuel available. This takes into account a 10X reserve from the

a7

.’"'; ’

b
-

[




38.1 L.tons of fuel useable. For example, the M174 design provides a total

mixed-mode range of 1968 n. miles operating at 30 knots for 24 hours and 13 1
knots for 96 hours.
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Speed

Knots

22.5 knots
Max imum
Endurance

27.5 Knots
Max imum
Range

34.1 Knots
Max imum
Speed

20 Knots
Max imum
Endurance

25 Knots
Max imum
Range

36.2 Knots
Maximum
Speed

Table 4.3.3

FIXED DISPLACEMENT RANGE AND ENDURANCE

Specific

Endurance

S

Hrs/L.ton

1.54

1.393

1.007

2.196

1.942

1.015

Endurance Specific
E Range
RS
Hrs NM/L.ton
A= 181.33 L.TONS
52.8 34,65
47.8 38.3
34.5 34.35
A= 159,30 L.TONS
75.3 43,92
66.6 48.55
34.8 36.74

NOTES: Range and endurance are for 34.3 tons fuel.
Fuel replaced with ballast as burned.

51

Range
R

NM

1188

1314

1178

1506

1665

1260




[ N i (€3 T

- e o e d —— e ——— i t———— e e e -+ o

4—*”" Hw.r.aonne powsn Rfawnfa,_,-_g;_ '

1 |

{

i

Re

: ' ! ‘ . H . } ' : :
) I T L R
. . : . ' i : .
. oo . . . : S TR !
. P KL Lol 0 R R R e N O
M i ! o . . H N . H
’ ) ! e ) Lo n ! B X R AN PR
R ! L A
e . R L i ' b .
t. Y , . . B e X . e
B ERESS 1040 Buas: = eanw poetes > re pranns EEES N T P Lt
o NI b h 4. [ B . ' A R N I i . h e .
B PP Y BT IR (AN B RN AETE TURNE TR STUS LA PO ONY i ) s 0 .
EEE P i H N Gt e ‘. ",
. H i) LTS S |k

1

sty

HULLBORNE POWER REQUIRED

Figure 4.3.4-1,

52




Figure 4.3.4-2.

HULLBORNE SPECIFIC RANGE AND ENDURANCE
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4.4 Maneuverability

4.4.1 Turning Performance

Foilborne turning performance has not been rigorously analyzed for the
particular hybrid configuration described in this report because it is beyond
the scope and funding of this study. However, there are certain observations
that can be made that relate to this characteristics. Hydrofoils are well
known for their high turn-rate capability, since they bank to turn and the
control system is usually designed to produce a coordinated turn. Rates of
60 to 80 per sec at 40 knots or more are normal for hydrofoils with fully
submerged foil systems. The addition of a large buoyancy/fuel tank to a
fully submerged foil system is predicted, from reference 8 computer simula-
tion of the Extended Performance Hydrofoil (EPH) PCH-1 Feasibility Demonstra-
tor, to be degraded by only about 25%. However, it should be noted that
during model tests of the EPH configuration (see reference 9) that full-scale
foilborne turn rates of up to 80 per second were accomplished. This implies
that no degradation in turn rate of EPH may be experienced. The use of a
long central strut in place of the four separate relatively short chord
struts of the EPH model introduces an element of the unknown into the
picture, and would be expected to add directional stability (reduce achiev-
able turn rates). The use of a large rudder in the current Hybrid design
tends to follow the lessons learned from the EPH model and provides a reason-
able assurance that turn-rates of 4 to 6 degrees per second at 35 knots may
be achieved.

4.4.2 Hullborne Maneuverability

The issue of foilborne maneuvering is centered on the capability of
the hybrid form discussed in this report to safely maneuver in a harbor in
the presence of other vessels or objects, and dock under reasonable condi-
tions of wind and currents. The combination of large rudder and fully rota-
table (3600) outdrive is expected to assure safe harbor operations, docking
and undocking without any particular problems particularly if a bow thruster
is installed. The latter may be necessary on the M174 design in view of the
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increased lateral plane area due to the strut and tank, and effects of cur-
rent on their additional area. At low hullborne speeds the M174 will not be
as maneuverable as the current WPB.

The main foil overhang of about 5 ft beyond the main hull can be
accommodated by the use of camels and/or a foil guard added to the hull over
the main foil location. A foil guard is currently used on HIGHPOINT (PCH-1)
R&D hydrofoil and has been satisfactory in over 20 years of operations. The
PHM hydrofoils utilize a floating platform between the ship and pier to ac-
commodate an aft foil overhang of about 9 ft.

4.5 Motions

As in the case of Maneuverability, funding for this feasibility study
did not permit a rigorous treatment of motions prediction of the Hybrid Con-
cept described in this report. An understanding of motions to be expected of
this hybrid design may be derived from a long history of hydrofoil experience
and model tests of EPH as documented in Reference 9. For example, Figure
4,5.1 shows a comparison of HIGHPOINT (PCH-1) trials and simulation data com-
pared with EPH model tests. The PCH-1 vertical acceleration data are for the
pilot house location, whereas model data is for bow and center of gravity
locations. One can see that EPH "pilot house" data would fall above, but
close to, PCH-1 data indicating only a small degradation in vertical motions
due to an addition of a buoyancy/fuel tank,

Additional relative vertical acceleration measures are shown in Figure
4.5.2. Here, data for the c.g. location are plotted for WPB, Bell-Halter
SES, RHS-160, JETFOIL, and EPH model testss. A band indicating anticipated
motions of the USCG Hybrid Concept described in this report is also shown as
a probable estimate.

Figure 4.5.3 depicts pictorially the relative position of an existing
WPB and the hybrid design in a 10-foot high wave system (comparable to signi-
ficant wave height of mid Sea State 5). It can readily be appreciated from
this representation that although the upper hull of the hybrid form will be
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Table §-2
STANDARD CELL CONSTRUCTION

Code No.: XUS-784 UNIROYAL
Type: Tear Resistant Non-Sealing Bladder
Use: Gasoline, Jet Fuel, Kerosene
Issued to: Mishawaka R&D
Date: August 10, 1979
Guage Weight
Material (from inside out) Inches Lbs/Sq Ft
*Liner (1 ply 5200) .009 .040
Nylon Barrier & Cement Coats .003 .030
**Quter Shell (1 ply D-763 or equivalent 7/2/79) .030 .151
.042 .221
l
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Table 5-1

USCG HYBRID CONCEPT - FOIL LOADINGS

Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS

DESIGN NO. SUBJECT wBS
M7y DICG HYBRIO CONMEEFT- FOIL LOAOINGS
ANALYST CHECKER ANALYSIS DATE PAGE NO.
LEA SSré /24 /
MAIY Fove Aven = 210 .00 fr* : 927222
BFT fore Piepm ¢ bt 25 = 22.77
ToTHe Fole JGren = 27). 725 f2+ < Joo 4
£eg Vs T
Fvet BRALLAST cono. /8 /.32 g6 8229.78
A TRun S 7007 Buoy — 79.59 vY9.92 - 352290
l0/7. 22 AL.24 47206.88
IS & 2
Fwo Jthor -32.05 3. 2f YA
Arr Sraer -0.5 19.7§ - 40.67
IEPRARAS
SYVAMIC L P 9¢.21 4¢.32 4549, 55
LoRe PIiTR, puw T
33.43 -
75.22)( '—4_':}';-_ - 79.'3'L70.Jf“0 Vi TR 3)7.
TAy Fuoie Foer DiiTr,evnod
FWvee Foed oiipe - 18l.06 %2. 67 flro.6”
LELD TAIKfiTowr Buvy - 7% 5y ¥v.%92 - 3572 %
—
/el.52 49.7% So47.17
Fwd SThur - 3,05 58 25 - /le. bl
AFr §TRUT - 0.5 2925 - %6.67
e
DyvAmic L pT 77.9¢6 q99.9% 489040
koan Didmisenad
2796 x -19.63 . 76,41 L7 o Fwo v 720
4 1-50
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conditions at the aforementioned distribution. A compromise location, as
shown on Figure 3-1, was calculated as shown on Table 5-1 which overloads the
forward foil by 3.2 tons in the full ballast condition and the aft foil by
5.3 tons in the full fuel condition. As an overloaded aft foil will degrade
performance, filling the aft tank to capacity should not be contemplated un-
less absolutely necessary for a prospective mission.

Foil construction was not analyzed except as necessary for the weight
estimation of Section 8. It is assumed that the forward foil would, for
economical reasons, be constructed in the conventional beam and rib method of
streamlined rudders. While, for a normal hydrofoil, weight would be of the
utmost importance, the configuration of the Design M174 requires that weight
be concentrated in the tank area and that therefore light weight composite
material would be of little overall value.

There are, however, a number of viable alternatives to conventional
construction which could be considered. Chief among these would be a steel
box structure embedded in a molded urethane-based material shell.

The aft foil size appears to be within the limit for forged aluminum,
similar to the construction methods used on previous Grumman hydrofoils and
would lend itself to full incidence control as previously noted in Section 4.

5.4 Fuel Cells

The tank fuel cell bladder construction has been discussed in general
with the Uniroyal Corporation, a principal fabricator of fuel cells for air-
craft and missiles.

Basically, the cells would be constructed of material as noted on
Table 5-2 and molded around a perforated fill/suction tube on the vertical
axis. A flange, top and bottom, would attach the assembly to the tank struc-
ture. The lower flange would be secured to the access manhole cover to per-
mit easy installation, and the upper flange would provide the watertight seal
to the strut interior. The fabric cell would include, an as yet
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In the fuel cells, the manhole covers would also serve as the lower
support for the bladder fill and suction tube as shown on Figure 5-1.

5.2 Strut

The strut is a welded steel assembly with parabolic leading and trail-
ing edges and a parallel middle body. Stiffening and support is provided by
six vertical diaphragms and intermediate angle stiffeners,

While no personnel access is provided into the strut, hand holes must
be installed in way of each fuel cell in order to connect the watertight seal
at the top of the bladder fill/suction tube to the strut piping.

To provide a structural attachment for the strut to the hull, the
strut is carried up as a trunk into the hull between the engine room bulk-
heads. The top of the trunk forms a watertight closure and also the founda-
tion for the ships service generators.

The derivation of the strut scantlings is also given in Appendix B.

The trailing edge of the strut provides support for a single stream-
lined unbalanced rudder which serves for both hullborne and foilborne opera-
tion,

5.3 Foils

The hydrodynamic characteristics of the foil system have been ade-
quately discussed in Section 4., Based upon the pre-selected foil areas and
uniform loading, the foil load distribution is divided between 77.3% on the
forward foil and 22.7% on the aft foil.

Due to the large fuel tank surrounding the shaft tube aft, which is
not adaptable to a bladder installation, there is an excursion of approxi-
mately two feet in the LCG between the full fuel and full ballast condition.
It 1s therefore not possible to locate the foils to satisfy both loading
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SECTION 5
BUOYANCY/FUEL TANK, STRUT AND FOILS

5.0 General

The buoyancy/fuel tank is basically a flat circular section with 30"
radii separated by a 24" flat top and bottom. The nose is an ellipsoid and
the tail section a paraboloid in elevation. It is supported by a single
strut of constant cross-section. The hydrofoils are of the airplane config-
uration as discussed in Section 4, and are attached to the tank at the loca-
tions shown on Figure 3-1.

5.1 Buoyancy/Fuel Tank

The buoyancy/fuel tank is a welded steel assembly with a glass-rein-
forced plastic nose cone. The scantlings were calculated by classic methods
with no recourse to more rigorous analysis methods due to program con-
straints. To maintain a smooth interior, both shell and bulkheads are con-
sidered as unsupported structure with no internal stiffening. Seven water-
tight bulkheads are positioned to subdivide the tank into cells twelve feet
long for the fuel bladders and also to isolate the strut mounting section.
The twelve foot long cells are then divided in two in order to maintain a
maximum bladder length of six feet. The general arrangement of the tank con-
struction and bladder is shown on Figure 5-1. The derivation of the scant-
lings is presented in Appendix B. Unfortunately in order to provide a rea-
sonable margin of intact stability it became necessary to add ballast
structure to the tank. Although it is realized that construction will be
more difficult because of it, the addition of an extra heavy keel plate is
the most advantageous method for lowering the center of gravity and therefore
is shown on Figure 5-1.

It is proposed that access to the various cells within the tank will
be through 30" x 24" manholes in the flat bottom keel plate. As previously
noted, fabrication will be more involved due to the heavy keel strake, but it
is felt that it 1is preferable to installing the manholes in the curved
surfaces.
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4.6 USCG Hybrid Concept Comparison

For the purposes of comparison, Table 4.6 shows several of the major
physical and performance characteristics of the USCG Hybrid Concept (M174 de-
sign), the current WPB class patrol boats and the recently acquired South
East US (SEUS) WPB patrol boats. The improvements in range, speed and mo-
tions predicted for the hybrid concept compared to the planing craft is

readily apparent.
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impacted by wave tops, the motions there from are likely to be similar to the
WPB in a much smaller wave system. Further evidence of this trend can be
derived from the fact that during certain EPH test model runs, the upper hull
ran closer to the water surface than programmed. These were first considered
“bad" runs, but subsequent review of video tapes and movies indicated that
the motions did not appear visually to be any greater than on “good" runs
when the keel rode higher above the mean water surface. This visual observa-
tion is further verified by the data in Table 4.5 and augmented by a video
tape of EPH model test runs 248, 249, 250, and others.

It is therefore projected that motions, both hullborne and foilborne,
of the hybrid design will be greatly improved over the WPB and allow high-
speed operations between 30 and 35 knots in rough water up thru mid Sea State
5. Ride quality and associated crew performance will likewise be signifi-
cantly enhanced.
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undetermined, elastic material or spring wire to assist in collapsing the
bladder during the discharge procedure.

No bladder is provided in tank No. 8 because of the shaft tube instal-
lation.

The capacity of the buoyancy/fuel tank was derived as shown on
Table 5-3. As noted therein, the total tank/strut/foil buoyancy is 89.38
long tons and the buoyancy to the foilborne waterline is 83.10 tons, of which
23.72 tons is contributed by void spaces,

An arbitrary figure of 10% of volume has heen used for both the amount
of ballast trapped hetween the tank structure and the bladder and also the
amount of fuel remaining in the folds of the bladder after discharge.

As no bladder is installed ir. tank No. 8, the unusable fuel deduction
has been reduced to 2% of total volume for this compartment only.

The net result is that in the fully loaded fuel condition 2 total of
30.75 tons is contained in the B/F tank of which 28.34 tons is considered
usable.

In a fully ballas:ed condition, assuming all useable fuel has been
transferred to the hull tanks (9.77 tons of fuel) the weight of ballast would
be 28.65 tons and there would be 2.37 tons of trapped fuel remaining in the
cells.
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Table 5-3
USCG HYBRID CONCEPT - CAPACITIES
i

Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS
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Table 5-3
USCG HYBRID CONCEPT - CAPABILITIES (Continued)

Grumman Aercspace Corporation
MARINE DESIGN ANALYSIS

DESIGN NO. SUBJECT I‘"’S
M174 Vit HYBRID COCEPT - CAPACITIES !
ANALYST CHECKER ANALYSIS DATE 'PAG! NO.
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Table 5-3
USCG HYBRID CONCEPT - CAPABILITIES (Continued)

Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS

[DESIGN NO. SUBJECT wBs
MI174 DG UHYBRID COWLCEPT- CAPACITIES
ANALYST CHECKER ANALYSIS DATE PAGE NO.
e 5/8/) 84 3
TANK CAPACITY DERIVATION - FUOLL BALLAST couD.
© ot & @ 3] ® ©
Gross , TRAPPED | BALLAST [T 0F FUEL [T oF BAL- | ToTAL wTof
TAME Vorume & | o £+° Vol .- |brrere)Dhs hosr O/35 |1 avi0@+®
| o. 8 145 14L.% .34 4.8 4.52
7 175.7 (5.8 159.9 .37 4.57 4,94
3 177 e 1.0 AA .37 4.6 “4.98
4 177, & l 6.0 l6t. 6 .37 4, 61 4.98
5 5.1 - 5.1 - |. 40 l.4¢
b 177. b le.o lbl 6 .37 A (! 4.93
7 179.6 ) Lo bl 6 .37 4.6 1 4.93
8 3790 [ e —_ .18 — P13
1471,2) 1019 | Tooz.8| 2.37 28..5 | 31,02
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SECTION 6
PROPULSION OPTIONS

6.0 Existing Power Plant

The existing diesel propulsion plant for the WPB consists of two
Detroit Diesel 16V149TI diesel engines rated at 1200 SHP each at 1800 RPM.
As the initial DTNSRDC drag analysis indicated a horsepower requirement in
the neighborhood of 6000 hp at 35 knots, it was obvious that the existing
power plant would not suffice.

6.1 Propulsion Options

Initially, several options presented themselves:

(a) Diesel prime mover, normal conducting electric propulsion (1liquid
cooled)

(b) Gas turbine prime mover, normal conducting electric propulsion
(1iguid cooled)

{c) Gas turbine prime mover, mechanical transmission
Diesel prime mover, mechanical transmission

(e} Gas turbine prime mover foilborne, diesel prime mover hullborne,
mechanical transmission

(f) Gas turbine prime mover foilborne, diesel prime mover hullborne,
electric propulsion

After a preliminary overview of the various options, the decision was
made at the initial design review to restrict further investigation to full
diesel prime movers and mechanical transmission.

Electric drive was initially eliminated from consideration due to the
general unavailability of components and the excessive weight and bulk of
those available from Alsthom Atlantique, the only apparent source. While
Westinghouse, General Electric and AiResearch were all contacted, only
AiResearch was able to supply specific information for the horsepower range
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required. The letter and proposal forwarded by them is included as Attach-
ment 1 to this section. A cursory perusal of the information would tend to
indicate that, while perhaps not for the M174, there is considerable poten-
tial for this type of propulsion in the future. While the unit weights may
still pose a problem, the fact that the ships service generators would be
eliminated partially compensates for it. The U.S. Navy electric propulsion
R&D program should be monitored as to progress and possible applicability to
this Hybrid Concept.

6.2 Power Plant Comparisons

Due to space and weight limitations on board the WPB the selection of
candidate engines was constrained. After a review of all major manufac-
turers, both in the USA and abroad, there appeared to be only two diesel
engines having the required qualifications. They were the SEMT Pielstick
12PA4200-VGDS and the MTU 16V538TB92, Two other Pielstick engines (of a dif-
ferent series) the 16 and 18 cylinder PA4200-VG (with a reduced height) in-
curred too great a weight penalty to be considered (see Table 6-1).

Initially the Pielstick engine was favored over the MIU for two
reasons - the height was less and the exhaust manifold connections were on
the aft end instead of the top as shown on the MTU thumbnail layouts. This,
coupled with the fact that MTU detail information was not received for some
time after receipt of the Pielstick, led all calculations and drawings to be
prepared for a Pielstick installation.

However, upon receipt of the MTU information, it was apparent that the
exhaust manifolds were considerably below the highest point of the engine and
that by shifting the engines aft about 30 inches the exhaust would align with
the uptakes, thereby eliminating the reverse bends required for the Pielstick
exhausts. The dinstallation of the MTU's would also result in a weight
savings of only 0.6 tons, and their additional width would make for a more
cramped engine room. The outline of the MTU is shown superimposed over the
Pielstick on Figure 3-1.
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16V538TB92

HP Cont 3410 @ 1710 RPM

Table 6-1

CANDIDATE ENGINE COMPARISONS

PIELSTICK
PA 4200-VG

18 Cylinders

HP Max 4080 € 1790 3600
L, inches 124.4 134, 9
W, inches 64.6 66.9
H, inches 90.75 73.4
WT, Dry 6.6 LT 8.5 LT
Presently Installed - DDA16V149TI

16 Cylinders

3200
123.1
66. 9
73.4
7.6 LT

3295 € 1475 RPM 2930 @ 1475 RPM

PIELSTICK
12PA 4200VGDS

3000 @ 1500 RPM
3300 & 1550
117.1

57.1

84.8

6.9 LT

DDAS70KA Gas Turbine

b

1120 SHP €. 1800 RM H Cont 6ulysH
L = 98 inches H Max T170%
W = 63 inches L 70.2 inches
H = 65 inches W 31.6 inches
WT = 7.3 LT H 36. 1 inches
WT 1350 1bs.
SFC . 460
RPM 6000 = 12000
*Mfg. rating at 59° F.
75
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If the gas turbine was to be considered it would necessitate relocat-
ing one diesel engine to the centerline with the existing generators moved to
one side and the turbine located on the other side to maintain transverse
center of gravity at the centerline.

A comparison of all engines considered is given in Table 6-1. The
engine performance has previously been covered in Section 4.3. Dimensional
sketches of the two leading candidates are shown in Figures 6-1 and 6-2.

6.3 Transmission

The transmission proposed for the M174 is an adaptation of the proven
Grumman design developed for the "Flagstaff" and refined for use on the De-
sign M161 as described in reference 15. As the overall shaft speed reduction
is only 1.5:1, it is recommended that the total reduction be taken in the
lower bevel gear box in order to keep the three upper hull boxes and the
associated shafting as small and light as possihle.

The arrangement of the major components is shown on Figure 6-3. The
lower bevel gear box and the foil mount are contained in dedicated dry com-
partments. The propeller shaft is enclosed in a shaft tube fitted with |
sleeve bearings and a shaft seal at the forward end. As the propeller is of
fixed pitch, it is attached to the shaft in a conventional manner.

6.4 Auxiliary Propulsion

Propulsive redundancy will require an auxiliary propulsion unit.
Inasmuch as each generator is rated at only 30kw, available power is minimal
and therefore it appears that a 40 HP outdrive powered by either an electric
or hydraulic motor would be the maximum accommodated. Based upon hullborne
drag calculations a speed of approximately 5 knots might be obtained.

As an alternate, a dedicated 4 cylinder engine of about 150 HP with ;
outdrive may be installed in the lazarette since the weight penalty can prob-
ably be accepted. This would increase the hullborne speed to about 8 knots. i
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General Specifications

T 12vs3e 16V 538 20v 538
i ™" T8 82/02 T8 91 T8 82/92 T8 91 T8 82/92

No. of cylinders — T 12 ‘1= I G

Vee arrangement e __f_ o - T T

Bore and stroke T T mm . 185/200 T )

Swepl volume, cylinder iters — | 53% -

Swept volume, fotal T TTTTTTnters | T el - 860 s T

Compression rafio - 150 |_ 140 L 150 | 140 T "0 | 140

Direction of rotation _ C.Cw. - T

Cooling method” two-circuit system, closed engine water circuit "

Inj thod precombustion chamb -

Modeof supercharging 1 exhaust turbocherger I 2 exhaust turbochargers o

Intercooling 7 intercooler j | 2 intercoolers B

Starting method air-in-cylinder (1 cylinder bank) - -

Cylinder heads individual heads _ T )
~No_of vaives per cylinder Jinlel, Jexhaust_ -

Pistons composite pistons (steel crown, hight alioy skirt) —

[ Piston cooling method ol cooling through telescoping tubes T
Crankshaft disc-webbed crankshafi, roller bearings 0
No. of main bearings 7 ] R | 2

._Camshafts overhead —_—

- Injection pump unit injectors - =
Engine oW capacity —(approx.) liters 270 T 305 3|80
Cooling water capacily —(approx) liters 210 B | 450 T T
Dimensions and Weights Dimensions in mm

{ ) 12V 838 18V 538 20V 538 !

T8 99 TB B2/92 TB O T8 82/92 T8 91 T8 82/92_4
A 2545 3220 3160 3800 3800 !
B 1640 1640 1640 1640 1640
C 2230 2305 2305 2320 2320
D 220 450 450 410 340
E 1820 2265 2265 3190 3230
F 820. 820 820 820 820
G 760 585 595 665 665
Weight :
kg") §200 5150 6750 6700 9080 9000 f
') basic engine, dry weight
Ratings
Application Appli- | Speed Ratings (kW, HP) -
cation | RPM
Group
12V 538 7B 82 16V 538 T8 82 20V 538 TB 82
Marine sp | 170 |1 1830 2215 2185 2070 2730 3715
propU|Si0n 1760 1 2) 1780 2420 2080 4050
12VE38TB 91|12V EIBTB G2/ 16VE38 TB 91/16 V538 TB 02| 20V 538 TB 91| 20V 538 TB 62
1780 [1)| 1680 2300] 1880 2555| 2260 3060 | 2510 3410 | 2815 3840 3135 4265
1DS | 1850 |2)| 1860 2530 2060 2830 | 2400 3380| 2770 3770| 3110 4230 | 3480 4705
1800 {3)} 2020 2750] 2250 3080 ! 2800 3680 3000 4080 ! 3370 4580 3750 5100
Explanations
Retings 1) Continuous power ISO 3046/1 B
2) Overioad power ISO 3046/1 (2 hours within 12 operating hours)
3) Maximum power (¥ hour within 6 operating hours)
Application Groupe 1D: Passenger vessels in seasonal service, cruising yachts, pstrol boats, cruising engines of
combined propuision piants, high-pertormance operation vessels (S.AR.), hydrofoils"
10§: High-speed yachts, FPBs. and special-purpose craft
Reference Conditions 1DNDS: Intake air temperature 27° C, charge air coolant temperature 27°C,
: barometric pressure 1000 mbar
) exact power rating dependent on project.
MTU OF NORTH AMERICA, INC.
1 East Putnam Ave.
GREENWICH, CONNECTICUT 06830
(203) 629-4300 Telex 64-3412
Subject to modifications in the interest of technical progress.
Figure 6-2. MTU 16V538 TB92 DIESEL ENGINE
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ATTACHMENT 1

AiResearch Manufacturing Company
A Dwision of The Garrett Corporation

2525 W 190th ST

TORRANCE

CALIFORNIA 90509

Tet (213) 323-9500/321-5000

Twx 910-346-6729 Telex. 67-4490

In reply refer to:
49307-49400-006

April 10, 1984

Mr. Edward Hermanns

Grumman Aerospace Corporation
Marine Department

MS ALL-04

Bethpage, New York 11714

Via: John Gentilella

The Garrett Corporation
1 Huntington Quadrangle
Suite 4S04

Melville, New York 11747

Dear Mr. Hermanns:

Subject: 5000 Shp Marine Propulsion System for
Hydrofoil Cutter

Er losure (1) provides preliminary data for an electric propulsion system
cap?' .e¢ of meeting your requirements for a single-screw propulsion system using
two 1500 rpm diesel engines to provide 5000 shp input to the propeller at 900 rpm
propeller speed.

The enclosures show that the weight of the propulsion system is estimated
to be 56,850 1bs and that the propulsion system has an overall efficiency of
89 percent when developing 5000 shp propulsion output and delivering 100 kW of
power to the ship service system.

We hope that the preliminary information provided in this letter will
permit you to further evaluate the application of electric propulsion to the
hydrofoil cutter.

Please contact us if you require any additional assistance.
Sincerely,

Q K A

A. K. Smith

Marine Systems Engineering
Rapid Transit & Electrical
Power Systems

AKS/dp

Enclosure
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Enclosure (1)
5000 SHP MARINE PROPULSION SYSTEM
FOR HYDROFOIL CUTTER
Figure 1 shows a single line diagram of proposed single screw propulsion
system. The system is comprised of the components as defined in Table 1.
The total system weight is estimated to be 56,850 1bs. This Tow system weight
results from the selection of a high-speed liquid-cooled propulsion motor with
an epicyclic reduction gear output to the propeller.
Generators are direct-driven by the 1500 rpm diesel engines and are
identical to the motor except for series connected windings in the generator
and paralle) connected windings in the motor. The generators are excited
from brushless rotating rectifier exciters integrated with the generators, and
the motor is excited from a static exciter via slip rings on the motor shaft.
ATl machines are oil cooled to minimize size and weight and to provide isolation
of the windings from the marine environment.
Switching is provided by compact 1light-weight vacuum contactor modules
distributed throughout the system.
The motor is driven by a dc link power converter which provides adjustable
motor speed control from zero to full ahead or reverse from a constant voltage
and constant frequency propulsion bus. This bus provides S0 Hz 375 volt,
3-phase power to the ship service system via a transformer. A solid-state
converter can be provided to supply 60 cycle loads where the loads must operate
at 60 Hz. The bus also provides power to the motor static exciter.
Bypass contactors are provided around the converter to permit operation
of the ship at propeller speeds up to 50 percent of rated directly from the
output of either generator. In this mode of operation, the generator supplying
the motor directly must provide output voltage proportional to motor speed.
The capability of the system to provide propulsion derived ship service
power permits efficient supply of energy to the ship service load with a
minimum of equipment. \
The performance of the system at 5000 shp butput plus 00 kW delivered
to the ship service electric system is estimated as follows:
. Propulision Power Qutput 3730 kW
. Reduction Generator Efficiency .985
. Motor Output 3786 kW
. Motor Efficiency .975
. Motor Input 3884 kW
. Converter Efficiency .985
Total Propulsion Load 3940 kW
. Motor Excitation 75 kW
. Static Exciter and Transformer Efficiency .96
Excitation Load 78 kW
. Ship Service Qutput 100 kW i
. Transformer Efficiency .97
81
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Enclosure (Cont)

Ship Service Load
Total Generator Qutput

. Generator Efficiency
. Total Generator Input
. Total Generator Excitation

Total Diesel Load

System Efficiency 5000 x45886 + 100

Diesel Output per Diesel

103 kW
4121 kW

.975
4226 kW
74 kW
4300 kW

0.8913

2880 hp

These preliminary estimates of the weight, size, and performance of an
electric propulsion system with propulsion derived ship service power are

based on our studies of performance that can be expected from near-term advanced

electric machinery, switchgear, power converter, and reduction gear designs.
It is estimated that such equipment can be designed, fabricated, and delivered

in approximately 36 months after start of detail system design.

A direct-drive motor operating at 900 rpm is estimated to weight 32,500

pounds, be 115 inches long, and have a diameter of 66 inches.

This is 20,500

pounds greater than that of the high speed motor and 19,750 pounds greater

than that of the high speed motor and gearbox.
to accept the reduction gear losses to realize this weight savings.

Air-cooled machinery would be larger in diameter and length and is estimated

It, therefore, appears desirable

to be 50 to 100 percent greater in weight than the liquid-cooled machines

described herein.

o —————— .
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SECI'ION 7
SYSTEMS

7.0 General

While the basic fuel and sea water systems are contained within the
B/F tank and strut, they must of necessity be integrated with the existing
craft systems to provide the fuel and ballast management required for both
hullborne and foilborne operation. An elementary schematic of the new ele-
ments of the fuel and sea water systems is shown on Figure 7-1. Other sys-
tems requiring modification to varying degrees would be the lube o0il, elec-
trical, compressed air, tank vent, fresh water, steering, and hydraulic sys-

tems.

7.1 Fuel System

For piping simplification the fuel system within the B/F tank has been
arranged in three groups of two cells and one dedicated fuel tank aft. The
six cells have perforated fill/suction pipes integral with the bladders and
are connected to headers within the strut which terminate at the management
manifold in the engine room. The aft tank has a single full/suction line
which leads directly to the manifold.

Additionally, a pump with associated valving, filters, and totalizing
flow meters is to be installed for filling, discharging and transferring fuel
between the B/F tank and the hull., This system would be interconnected at
some convenient location to the existing fuel system.

A11 monitoring and control equipment should be grouped together, prob-
ably in the area formerly occupied by one of the main gear boxes.

It must be appreciated, however, that the existing fuel oil service
system for the propulsion diesel appears undersized for the new engines as
the available information indicates a fuel flow difference of two gpm. De-
pending upon a flow analysis, components of the existing system may require
replacement.
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For fuel flow monitoring and recording it is recommended that the NAP
Commercial system as marketed by Electronic Marketing Systems of San Diego,
California, Appendix D, be investigated. This system incorporates a tank
level memory as well as programmable delivery quantities. '

7.2 Sea Water System

In a similar manner, the six cells (outside of the bladders) are con-
nected through headers to a manifold probably located in a similar location
to the fuel manifold but on the opposite side of the craft.

To perform the function of the existing sea chests while foilborne, an
intake pipe runs from the nose of the tank to a connection to the existing
sea water system and also to the new ballast manifold. It is presumed that
ram pressure will service the system while foilborne, but a pump must be in-
cluded to assist in evacuating the cell areas as well as the dedicated bal-
last compartment below the forward foil mount.

As with the existing fuel system, the sea water service to the exist-
ing diesels is inadequate and replacements will probably be required for the

components between the sea chests and the engine connections.

7.3 Fuel and Ballast Management

The contemplated interaction of these two systems would occur either
foilborne or hullborne. The initial fuel fill of the tanks and cells would
occur with air surrounding the bladders, and under the pressure fill, the air
would be evacuated through the pressure regulator vents.

Subsequent fuel transfer would be accomplished through introducing
ballast water into the ballast compartment of the cells, either by ram
pressure or pump assisted, which would tend to force the fuel from the bladder
into the hull tanks. To prevent the sea water from discharging through the
vent pipes rather than squeezing the bladders, each vent is fitted with a
pressure regulator set at a predetermined level.
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Refueling would be similarly accomplished, the fuel pressure would
force the ballast water out through the manifold to the overboard discharge.

7.4 Lube 0il System

The 1lube o0il system for the new diesel engines would be self-con-
tained, but an additional system must be provided to provide forced lubrica-
tion to the new gear boxes, both in the hull and in the B/F tank. The reser-
voir for this system could conceivably be located within the strut, thereby
not affecting the center of gravity adversely.

7.5 Compressed Air System

The compressed air system would require modifications as required for
starting the proposed diesel engines, although it is believed that the exist-
ing compressors are satisfactory.

7.6 Fresh Water System

The only fresh water system changes which could be contemplated are
those for replenishing the fresh water engine cooling system.

7.7 Tank Vent System

New Tank vents would be required for all B/F tanks and cells as shown
on Figure 7-1. The function of the pressure regulator valves has been dis-
cussed previously.

Check valves are located on the top of each cell to permit air to

enter the ballast cavity in the event the craft is being defueled in dry
dock.
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7.8 Electrical System

The steering system must be modified to permit operation both hull-
borne and foilborne. Whereas hullborne, approximately 1800 or more on the
wheel should give 359 rudder, only about 100 ruydder may be reguired foil-
borne. It is possible that the existing gear in the lazarette can be relo-
cated to accommodate this function.

7.9 Hydraulic System

Although it was not reviewed, it is certain that the existing hydrau-
Tic system is inadequate to support the new foil incidence ard flap
actuators. Adequate pump capacity must be obtained through main engine power
take-offs and associated reservoirs, filters, etc. located as low in the
craft as possible.

The foil and/or flap hydraulic actuator components should be located
within the hull to permit servicing as necessary without resorting to dry-

docking and access holes in the strut.

7.10 Electrical System

The basic electrical system should require no modification. However,
digital autopilot system for control of the foil system must be provided and
this may require the inclusion of a dedicated 400 Hz generator.
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SECTION 9
HULL MODIFICATIONS

9.0 In order to obtain a better understanding of the physical problems to
be encountered in a conversion of the 95 ft. WPB to a Design M174, a ship-
check was made on board the WPB “Cape Horn" in drydock at Muller's Boat Yard,
Mi11 Basin, Brooklyn, NY on 1 May 1984,

The major modification to the hull structure would be the removal of
the skeg and keel in way of the new strut, and the installation of heavier
garboard strakes and an engine room trunk as shown in Figure 9-1.

In order to accommodate the conversion gear boxes against the bulkhead
at station 60, it would be necessary to make several major relocations, the
exact positions of which could not be determined without a more rigorous
evaluation. On the portside, the lube oil separator presents a problem as
does the transformer bank on the starboard side. On the centerline, there
would be an apparent interference with the aft crew quarter ladder which
would require a modification to the main deck hatch.

9.1 In addition, the ship service generators would have to be removed and
reinstalled on top of the new strut trunk.

Until a detailed arrangement is made of the engine room it is not pos-
sible to determine the exact extent of the relocations reguired of the equip-
ment on the shell outhoard of the diesel engines, but they could be exten-
sive.

Removal of the existing diesel engines and the installation of the new
higher horsepower units would require the fabrication of the new engine foun-
dations. To provide additional rigidity to the hull and a decreased beam
span for the web frames, these foundations would extend to the shell plating.
Figure 9-1, the WPB Midship Section, is included to emphasize the minimal
scantlings existing on the craft to which the new structure must be attached.
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Table 8-9
USCG HYBRID CONCEPT - CAPACITIES

Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS

DESIGN NO. SUBJECT wes

M7 4 DSC6 HYBRID CovcepT - CAPACITIES

ANALYST CHECKER ANALYSIS DATE PAGE NO.
(32] ) Shol34 2

TABLE -4
DYULAHIC LIFT Foe VARIDDS @oDiTion

COLOITIOL K& DiseL BuovAuwey DYLAHIC LIFT
A-HYRBCIO Li6uT s [2.LL |28.823 8310 45.73
B- FOLL LoAD 1a HULL 11,78 \(s50-3! &1 1
C-FULL LOoAD-FUEL J1.od )Btl.o6 27.96
D-Ffuw Loao- Bawasr /loo 181133 98.1213
E-mivoree 10 Hoe 12,75 140.73 ‘ 57 63

!
|
F- M0 oPER - FueL w344 [2.29 1477.4) ' e 4 3)
G i 0Pew-Fugl 1034y 1L O4 |6 B.47 ‘ 85.27
t FuoelL BAcLas e
VET TAVK BUOYALCY
FUE L BacLAsST
GKOSS BuovAN Cy ) 23.10 LT 83lo LT
u)EtcHT(EELOLJ Fe. w.L) -38.62 -38. 62
PosiTive Bu oy Avcy + 44. 48 LT T A4 43 \T
FLiLe m®UID - 15.2\ - 3l ow
D E——
VET buoyAucy - 9.17 LT + 13,44 T
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Grumman Aerospace Corporation

Table 8-8
USCG HYBRID CONCEPT - CAPACITIES

MARINE DESIGN ANALYSIS

DESIGN NO.

SUBJECT

wBS
M |74 VSCG HYBRID COVCEPT - CAPACITIES
ANALYST CHECKER ANALYSIS DATE PAGE NO.
EEM 5/9/84 2
TABLE -8
MiDI140M DPERATING COLDITION DEV ELOP MEDT
WeisHr kg Morg LE4 Hom
HNBRID LYGHT SHIP 128.82 1.4 163116 48.6.% 6l CS5.53
Hin, oPee compLoAp S
Crew % EFFecTs oo I.co Si.oo 43 oo | 4. 00
PRovisSiomw s i |4.09 H.éz &4.po HY4.82
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Aol T 0 .37 5.6 4.985 oo 1.LS
DIBJEL O 1D e TASK 6,00 12.50 75.00 44,57 279.42
Lvee oI 0.17 2L45 3.8 4Hioss .23
SeE a4 e ThALes 0.07 1,10 0.1 2S5 o0 2.45
Min OPER LDADI 1o HULL 11.90 13.71. 1L3.20 “8.29 S574%.67
LoADS 1
o M oree (LESS BfF Taok) 140,73 12.75  |194.36 48.6! (8 40.29
Couvo E‘)
APp Rescevs Fuoer ™ B/F Tk (.08 250 le.706 16.00 17%C g
¢ i~ OPGR WiTi BfF Fuee [|H4T41 2,29 \Bli,ob 47.58 7013.88
Tavksr 3 #9((ovo F)
ADD BAccayT TE) 1,153,687 2).06 2.36 “9.67 33138 Jol 1>
¢ Fuiir #Miau OFPEL cowt | 08,47 |/ 04 18¢0.73 45.80 772/L.31
CCv-O ﬁ)
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Table 8-7

USCG HYBRID ANALYSIS - CAPACITIES

Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS

[DESIGN NO. SUBJECT WBS
M4 DSCG HYBRID ANALYSIS - CAPACITIE S,

ANALYST CHECKER ]ANALVS!S DATE PAGE NO.
EcH I 5/9/s4

TABLE Q-1
DEW LIGHT SHIP DEVELOPHMELT

FRom cArE UPRIGHT 10cLiing 11f10]77

WEIGHT K& MO a4 WA Mo
NOCLIMBED LIGHT SHip B5.98 16.9C (458,11 49.0L <4214.94
CooV. WEISHTS TV SueTeacT —27.14 1%.50 — 298.85  5p.1S —lj1o.32
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ArFm o0 ITioD ? l.o=”  [L.5P 16,5D S.ov 5 .o
Do 1O SHies TRLED 917 (L.r0 12243 4.57  45v.99
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Table 8-6
USCG HYBRID CONCEPT - TRIM AT FULL LOAD

Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS

[DESIGN NO. SUBJECT wes
M4 DSCQ HYBRID CowcEeT-TRIM AT PuLL Loap

ANALYST CHECKER ] ANALYSIS DATE PAGE NO.
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As a 14'-0" draft was specified as the 1limit for certain ports,
several iterations were required to obtain the maximum stru: length permis-

sable.

Verification was made thru the final run of the SHCP program which
indicated a draft of 14'0" at a displacement of 177.9 tons. As the addition
of the ballast raised the full load displacement to 181.33 tons the the tons
per inch immersion of 3.02 results is a final even heel draft of about 14'1",

A trim check was made to ascertain the actual maximum draft under various

loading conditions and is presented on Table 8-6.

Although in the fully ballased condition the bow draft is about 15'-0"
with a trim by the bow of 17.58", it would not be necessary to assume this
condition except in extreme wind conditions, and then probably only in the

open sea. So for docking where the 14'-0" draft is critical the forward

ballast tanks would be emptied.

The conversion light ship and full load displacement KG's and LCG's
were determined as shown on Table 8-7, and those for a minimum operating con-

dition on Table 8-8.

For the full load development, the loads were those furnished by
DTNSRDC for a new craft rather than those for the "Cape Upright". The arma-
ment/ammunition weight is, however, arbitrary.

From the foregoing weight determination for the various loading condi-

~ tions the corresponding dynamic 1ifts were tabulated on Table 8-9.
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Table 8-5
U.S. COAST GUARD WPB HYBRID WEIGHT BREAKDOWN

WPB Weight Weight Total
Cape Upright Removed Added Weight
Ltons Ltons Ltons Ltons
Group 100 - Hull 36.00 1.25 30.09 64.84
Group 200 - Propulsion 21.00 20.73 20.00 20.27
Group 300 - Electric 5.50 - .14 5.64
Group 400 - C&S 2.00 - - 2.00
Group 500 - Auxiliary 8.00 - .80 8.80
Group 567 - Foils & Controls - - 7.40 7.40
Group 600 - Outfit & Furn. 10.78 .16 .66 11.28
Group 700 - Armament 2.50 - - 2.50
Margin .20 - 5.90 6.10
. ight Ship 85.98 22.14 64.99 128.83

Full Loads
Crew & Effects 3.00 - - 3.00
Provisions 1.50 - 1.00 2.50
Fuel 9.77 - 28.34 38.11
Lube 011 .50 - - .50
Fresh Water 2.78 - 1.72 4.50
Misc. - - 3.89 3.89
TOTALS 103.53 22.14 99.94 181.33
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Table 8-3
LIQUID IN B/F TANK-FULL FUEL CONDITION
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Table 8-1
WEIGHTS ADDED (Continued)
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SECTION 8
WEIGHT SUMMARY

8.0 The basis for the M174 weights and balance determination was the sta-
bility test data derived from the inclining test conducted on WPB95303, the
"Cape Upright," on 10 Nov. 1977. This appeared to be the most accurate in-
formation available and was well documented.

The conversion weights to be added are tabulated on Table 8-1. Where
possible these weights were derived from manufacturers literature and docu-
mented weights for such items as gear boxes on the Grumman Israeli hydrofoil
(M161). Other weights were based upon scantling calculations and the re-
mainder on estimations.

As over 50% of the weights to be added have a fairly reliable basis, a
margin of only 10% has been added to the total conversion weights in lieu of
a more conservative 15%. It is to be noted that to insure marginal stability
in most high wind conditions the five tons added to the bottom of the B/F
tank is carried as ballast rather than including it in the tank weight.

Where possible, weights to be removed, Table 8-2, were derived from
excerpts from the Ships Information Book furnished by the USCG. The re-
mainder of the weights were calculated from available information.

Tables 8-3 and 8-4 tabulate the weights and centers for the liquids in
the buoyancy/fuel tank in the full fuel and full ballast conditions respec-
tively.

Table 8-5 is a weight breakdown for the WPB hybrid by the standard
Ship Work Breakdown Structure (SWBS). Shown are the "Cape Upright" weight,
the weights removed, weights added and total weight for the M174 design.

8.1 From the foregoing tables and data the M174 conversion 1light ship was
determined to be 128.83 tons with a corresponding KG of 12.66 ft. A1l KG's
have been referenced to the bottom of the B/F tank and derived for the "as
inclined" light ship as shown in Figure 8-1.
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The existing bolted plates in the main deck would also require review and
possible modification to permit servicing the diesels.

System modification have not heen detailed except as previously noted
in Section 7.
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SECTION 10
INTACT STABILITY

10.0 General

A check of the intact stability of the hybrid craft was required due
to the positive buoyancy of the tank and its effect on the location of the
center of gravity when installed. Before discussing the procedure used to
determine the stability of the hybrid craft, it is prudent to report here
that calculations indicate that the 180-ton hybrid design M174 (including
buoyancy/fuel tank as depicted herein) can become neutrally stable in high
beam winds if the craft is allowed to operate at relatively low displace-
ments. This stability characteristic is unlike that of a conventional mono-
hull which tends to capsize after reaching a certain heel angle. The M174
design will seek a specific heel angle, when below a certain displacement,
and neither return to zero heel nor capsize as long as intact conditions are
maintained. The approach used to resolve this problem is discussed in the
paragraphs following.

The addition of the fuel tank to a 103.5-ton displacement craft pro-
duces two effects which relate to the safety of the ship under high beam wind
loadings. The first is independent of the net weight or buoyancy of the
tank, and is an increase in heeling moment due to a given wind as a result of
lowering the center of lateral resistance of the underwater appendages. The
second effect is related to the tank's net weight, with positive buoyancy
detracting from the ship's righting moment at any heel angle and negative
buoyancy providing an improvement. From the standpoint of reducing the load-
ing on the foil system, and therefore the induced drag, it is desirable to
have a positively buoyant B/F tank. However, this is counter to the desire
to carry maximum liquid in the tank and to provide adequate resistance to
wind heel. This dilemma is partially resolved by determining the limits on
tank positive buoyancy for adequate intact stability in a beam wind using the
criteria of Sarchin and Goldberg, as outlined in Navy Design Data Sheet
079-1, “Stability and Buoyancy of U.S. Naval Surface Ships." The criterion
applied to this design is the "six-tenths" righting arm rule exclusively, and
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does not include the area criterion used for conventional ships to account
for roll energy. The reason is that the ship with the B/F tank in place will
have roll characteristics which do not relate to a conventional hull; i.e.,
the amount of roll resistance would be relatively high, and the dynamics
would have very little relation to a conventional ship. Therefore, the con-
ventional roll energy approach does not appear to be valid. Stability judg-
ments based on righting arms alone should be adequate for the feasibility
configuration with the B/F tank.

10.1 M174 Design

The intact stability calculations were conducted in the classic naval
architectural manner, with the tank considered integral to the ship and its
displacement and center of buoyancy independent of its contents. The tank
and strut configuration is shown on Figure 3-1 and 5-1 and has a displacement
of 89.38 L.T. Standard righting arm curves were generated with the NAVSEA
Ship Hull Characteristics Program (SHCP) computer program for a range of dis-
placements and vertical centers of gravity as determined on Tables 8-6 and
8-7. This, in effect, provided a "map" of stability for conceivable loading
conditions. To provide a basis for comparison, the hydrostatic characteris-
tics were computed by the SHCP program, Table 10-1, and a Curves of Form
chart plotted, Figure 10-1. The next step was to determine the wind heeling
arms for the 40- through 80-knot gradient beam winds. The underwater center
of lateral area was determined and thence the heeling moments and heeling
arms per DDS 079-1 and as tabulated in Tables 10-2 thr-ugh 10-4. Wind Heel-
ing Arm Curves for 40 through 80 knots were plotted and are shown on Figures
10-2 through 10-6.

The SHCP program was utilized to generate Intact Cross Curve Values at
0 ft. KG, Table 10-5, and plotted on Figure 10-7. From these curves and
those of Figures 10-2 through 10-6, the heeling and righting arms for any
combination of displacement and KG may be determined.
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HYDROSTATICS
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Table 10-2
HEELING MOMENTS - 100-KT WIND/SAIL AREAS

Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS
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Table 10-3

HEELING MOMENTS - ALTERNATE WIND VELOCITIES

Grumman Aerospace Corporation

MARINE DESIGN ANALYSIS

[GESIGN NO. SUBJECT wes
M174 VSCG HYBRID CoocEPT- |0TACT STAGILITY
ANALYST CHECKER ANALYSIS DATE

PAGE NO.

MOHELTS For ALTERLATE WIND VELOCITIES

40 (40 foe)* x 158.94 : 25.40 Ly tovs
so K (5o/e0)* x I158.94 * 39.6%
o K (“®floa) x I58.74 - &7.15
"% v (12/109)" x \s8.74 nn."8
B K (80/100)'x \58.74 ¢ 1. 59
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Table 10-4

HEELING ARMS

Grumman Aerospacs Corporation
MARINE DESIGN ANALYSIS

[GESIGN WO, SUBJECT wes
b et covceer. lomirmniant
HEELIVG ARMS HA: P\ws‘&/A
HERL AmgLE Wivp veocitY
10 5o K _{f—?n 29& _?_‘_’t
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o 124%/a 35.05/n  Go-4bfa L8.68/a 89.70/a
o 19.05/a 2977/a  418efa 5834/ 6.49/a
40 14.90/a 23996 31.54/)a AS.44)n 59.01 /o
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10.2 Vvariant with Strut Having Reduced Height (Short Strut)

Since the full load intact stability curve of Figure 10-9 only margin-
ally satisfies the six-tenths rule, it was decided to investigate a design
with its strut having a reduced height of .5 feet. The offsets were appro-
priately altered and run on a modified version of the Advanced Surface Ship
Evaluation Tool (ASSET). The program was first checked to verify that ASSET
gave essentially the same intact stability results as SHCP with the original
strut height. Calculated points (o) are shown on Figures 10-8 and 10-9.

The full load KG was re-estimated to be 10.7 ft. (instead of 11.0 ft.)
and only a minor change to 180 L. tons was reflected in full load weight due
to the shorter strut. The calculated points (x) for the short strut are also
shown plotted in Figures 10-8 and 10-9. It can be seen that the righting arm
is only somewhat improved in the 200 to 500 heel angle region in Figure 10-9
(Full Load Condition), whereas there is appreciable improvement in righting
arm curve, with the shorter strut, for the Minimum Operating Condition in
Figure 10-8.
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Table 10-7 1
KG REQUIRED FOR VARIOUS WIND VELOCITIES (Continued)
Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS
| [CESIGN NO. SUBJECT wes
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ANALYST CHECKER ANALYSIS DATE PAGE NO.
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Table 10-7

KG REQUIRED FOR VARIOUS WIND VELOCITIES

Grumman Aesrospace Corporation

MARINE DESIGN ANALYSIS
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Table 10-6

INTACT CURVES OF STATICAL STABILITY (Continued)

sSHIP USCG HYBRID CONCEPT

S AL NUMBER-

INTACT CURVES OF STATICAL STABILITY

) DATE~ 473784

DISPAL LCG POLE MY HEEL RA Tca vea DRAFY MIN
178,650 -2.188 11«18 10,000 0229 Q. 783 84031 13973 0,031
200000 O0e318 1409 84197 13748 -0+ 382
30.000 0207 1886 8418 13269 -1.,012
.90.000 Oe<188 2297 8706 12 0457 -1 826
%0.000 0259 2756 9,375 11320 2733
60.000 0233 3079 PebA2 Qeb74 30363
70,000 1082 3676 10,964 8009 Do 756
80,000 2387 44178 12,8637 4933 60373
89,000 Jet4a1 Qe381 14,516 ~50 «259 ~ii8.818
183330 ~2.276 1100 10.000 0270 VeT82 80122 14,049 -0+ 020
. 20,000 0400 o837 8.289 13832 Vo303
30.000 00046 1902 B8e510 133063 0943
40,000 0364 2347 8+805 12 562 -l o728
$0.000 Geda9 2767 9.265 11 <448 R+.613
60,000 0018 34073 9.709 9.826 ~Je2600
70.000 l1e232 36639 10,968 8175 -3¢ 569
80.000 2496 4132 12.,806 5 263 5894
89.000 35603 Be294 14,469 ~46 402 ~52¢ 369
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Table 10-6

INTACT CURVES OF STATICAL STABILITY

SMHIP USCG HYBRID CONCEPT SI AL NUMBER-  § DATE— 4 /73784
INTACT CURVES OF STATICAL STABILITY
OISA. LCG POLE HY HEEL RA TCB vCeB DRAFT MNiM
128.830 0038 1266 10,000 =-0.604 0eS572 54942 12391 0506
20000 ~—1,370 0951 6.042 11.962 -1 <470
30,000 -—2.120 1e270 6194 112910 20566
40,000 2,551 1774 6.577 10397 3931
50000 =2.801 2277 74093 84956 S5e313
60,000 1965 36248 BeS5306 7331} ~BeddS
70,000 =—0,094 0385 10,904 Qe732 8159
80,000 1680 50062 13,473 -2 0239 -317.6048
89,000 2.8680 50255 15 .448 ~332.023 -1 88.78)
140,730 -0.523 1275 10,000 —-0.411 0679 6530 128109 -0.403
20,000 —1.029 fe126 6648 12 084S ~1e222
30000 —1,682 1484 64815 11807 “Re245
40,000 -—2.054 1978 Te198 10952 3516
50,000 ~-2.303 2453 T«08S 9538 A, 583
60,000 ~—).834, 3e.201 B8.7865 1 £3414 51313
70000 =~-0.,229 80213 10,973 S5 +504 ~Tel 32
80,000 1397 QeB44 13,314 -0 369 -15.018
89.000 2554 5028 15.216 ~111s421 -156.901
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504000 ~1.06% 20536 T «969 P 857 -As213
60000 —10324 34175 8929 8046 XY LX)
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150,310 -1.017 1278 10,000 -0.287 0.73S 6957 13.131 -0+270
20,000 —0.787 1238 T.088 12 +800 Do 960
30,000 -1.352 1021 Te268 12 208 -1+902
40000 =—1.847 1993 T 530 13297 “Re947
50000 -)2.923 2568 801185 9.994 -4 o 050
650,000 -1.700 30163 8.991 8189 2717
70000 =—0.304 4,077 10.972 60209 60187
80.000 1215 Q.674 13190 1075 - 12669
89.000 24309 4.854 15,0148 -5 517 -1 R +ATT
168.470 -1.823 11006 10,000 0380 0a78) T o673 13.6812 .
. 20000 0e180 1368 T«827 13422 “0e550
30,000 0.067 1813 8,034 12,902 -le
40,000 -0.064 20207 863121 124052 R+2008
50.000 0034 2704 8.815 10,839 -3.20%
60.000 0130 30104 9.398 9.120 -3.89)
70.000 1234 36818 10,964 TeI37S -_ o547
80.000 20009 0354 12,962 3630 -8+380
89,000 30733 Vo524 14,090 650670 8330059
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The heeling arms determined by the above procedure were then plotted
against the righting arms, Table 10-6, for the corresponding displacements
producing Figures 10-8 and 10-9 (the classic curves of DDS 079-1) for two
extreme loading conditions.

The extreme loading conditions for the ship, including the tank, were
assumed to be the Full Load Condition and the Minimum Operating Condition,
representing realistic departure and arrival conditions of the ship. The
weights and centers for the conditions were taken from Tables 8-6 and 8-7.
At displacements of 153 tons and 140 tons, respectively, (see Figure 10-10)
the buoyancy/fuel tank is empty and liquid is considered added to the buoy-
ancy/fuel tank until the ship's KG is lowered to its minimum value to deter-
mine its relationship to the wind criteria curves (40 through 80 knots) for
the corresponding displacement. This is illustrated by superimposing the re-
quirements curves, developed as shown in Table 10-7, on the load conditions
at various tank weights, Figure 10-10. The results indicated that inadequate
volume exists in the tank as defined to contain sufficient liquid to lower
the center of gravity (KG) for the required stability in an 80-knot beam wind
without the addition of about 4 tons of fixed ballast. However, from this
figure it is seen that intact stability criteria is satisfied for the full
load and minimum operating conditions (fully ballasted) at 70- and 50-knot
beam winds, respectively. These wind conditions may be acceptable for a
demonstrator vehicle.

Obviously there are two basic approaches to alleviating this condition
and increasing the allowable beam wind condition: either lower the center of
gravity or raise the center of buoyancy. Inasmuch as the net change must be
accomplished within the tank, the two become interrelated as any attempt to
modify one condition has an effect of some magnitude on the other. For ex-
ample, to reduce the buoyancy of the tank requires a reduction in tank volume
which would therefore reduce the amount of structural material required, con-
sequently raising the center of gravity.
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SECTION 11
RECOMMENDATIONS

11.0 General

Careful consideration of all factors connected with the feasibility of
converting a WPB into a hydrofoil with a submerged fuel tank would indicate
that, while the concept appears feasible, there are several aspects of the
conversion which must be addressed before proceeding with a detail design.

11.1 Stability

As previously mentioned, intact stability was of considerable concern.
While wind heel stability can be obtained by the addition of the tank ballast
material, it is not normally in the best interest of an efficient design to
add weight to provide seaworthiness. (Although, for a demonstrator, the ad-
dition of 5 tons out of 181 tons may be considered acceptable.) Certainly,
in a new design, consideration should * given to ways to lower the vertical
center of gravity of the upper hull or, conversely, raising the hybrid's cen-
ter to buoyancy.

The first could possibly be accomplished by relocating items such as
the air tanks to a lower location and replacing the hoist and boom with a
lightweight davit. Consideration should also be given to the removal of any
extraneous or redundant components topside. Replacing one diesel with a gas
turbine is not the panaceas it might at first appear. Although the turbine
is much lighter the associated intake and exhaust installation results in a
net decrease of the VCG of only about 0.15 ft.

Raising the center of buoyancy could only be accomplished by reducing
the si.e of the B/F tank, changing its shape, or reducing strut height.
While these approaches may be, in effect, counterproductive they should
nevertheless be investigated further and in greater detail.




e e,

11.2  Structure

An in-depth analysis of the structural connection of the tank to the
hull is a definite prerequisite of any follow-on program, particularly in
light of the minimal scantlings of the existing hull.

11.3  Engine Room

The complexity of the existing engine room received only a cursory
review due to the limited scope of the contract. It is obvious that besides
the major relocations noted in Section 9, a number of machinery and piping
alterations will be required and must be investigated.

11.4 Access Ladders

Access ladders to both the aft crew quarters and the engine room
appear to interfere with conversion installations and must be carefully re-
viewed, particularly as relocation may entail cutting main deck beams.

11.5 New Design

It is recommended that although the WPB conversion to a hybrid form as
described in this report is feasible, a new design similar to M174 design be
pursued. ‘Such a design could alleviate the intact stability issue and tight-
ness of the diesel engine installation by a relatively small increase in
upper hull beam and incorporation of light topside equipment.

11.6 Hydrodynamics

This configuration presents two peculiarities for which modest analy-
tical effort would have substantial significance to any follow-up effort:

° Formulate the characteristics of the strut in turns as a yawed,

cambered strut. Formulate the craft partially coordinated turn
characteristics and establish the degree of coordination for
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which no foil rolling moment is required and the corresponding
turn rate and radius. Evaluate the advisability of model test
confirmation of the analytical strut characteristics.

[ Perform a take-off drag analysis using a characteristic unloaded
hull drag curve to find out if this configuration is in that
class of large/slow hydrofoil craft for which the hump take-off
drag is the minimum flight speed drag. Evaluate the advisability
of model measurement of the unloaded hull drag. Note that
measurement of the low speed model WPB hull drag is already ad-
vised to confirm the extrapolation of Figure 4.2.3-1.

The propeller selection and diameter should be reviewed with par-
ticular regard to' the low speed performance at an early stage in any follow-
up effort in order to insure that follow-on design proceeds with an advan-
tageous transmission gear ratio.
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Appendix A
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LOAD
100%
90%
75%
608
50%
40%
25%

Once again,

Diesel Engin
be of further ass
to contact us.

KY)bs

1500
1450
1360
1265
1190
1107

945

Page 2

12 PA 4 VG-DS
166 gr/HP-h
162.5 gr/HP-h
161 gr/Hp-h
161 gr/HP-h
161.5 gr/HP-h
163 gr/uHpP-h
172 gr/Hp-h

thank you for your interest in the PIELSTICK

If you have any questions, or if we may

istance to you, please do not hesitate

Sincerely yours,

ALSTHOM ATLANTIC, Inc.

A\ ]

YWds Kirchhoff
Manager
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16 PA 4 VG
164 gr/HP-h
162 gr/HP-h
161.5 gr/HP-h
161 gr/HP-h
161.5 gr/HP-h
162.5 gr/HP-h
170.0 gr/HP-h




ALSTHOM
TLANTIC, INC. S—
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GRUMANN AEROSPACE CORPORATION
Marine Department

MS All C4

Bethpage, NY 11714

ATTENTION: Mr. Raymond Wright

SUBJECT: Fuel Consumption on "PA 4"
PIELSTICK Diesel Engines

Ref: 84/06/569 June 21, 1984

Dear Sir:

Following our telephone conversation of Wednesday, June 20,
1984, we are pleased to confirm the following:

For 3000 HP at the flywheel, two (2) possibilities are ‘
given: ’
a) 12 PA 4 VG-DS i
Rated MCR 3000 HP at 1500 RPM
b) 16 PA 4 VG
Rated MCR 3200 HP at 1500 RPM

The specific fuel consumption, according to the propeller
law, with following references will be:

Air temperature 27° ¢

Water at the aftcooler inlet 27° C

Barometric pressure 750 m/m Hg.
LHV of the fuel 10100 k cal/ky
Tolerance + 3%

618 MOWWAD AVE. © SUITE 306 © NEWORLEANS, LA. 701131108 USA o TEL (3504) 6233208 e TELEX: 208073

-
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APPENDIX C
PIELSTICK DIESEL ENGINE FUEL CONSUMPTION
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Grumman Aerospace Corporation
MARINE DESIGN ANALYSIS
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MARINE DESIGN ANALYSIS
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MARINE DESIGN ANALYSIS
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Grumman Aerospace Corporation

MARINE DESIGN ANALYSIS
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MARINE DESIGN ANALYSIS
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APPENDIX B
USCG HYBRID CONCEPT
STRUCTURAL ANALYSIS
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APPENDIX D
ELECTRONIC MARKETING SYSTEMS, INC.
RESPONSE TO INQUIRY
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| May 30, 1984

Mr. Ed Hermanns

Grumman Aerospace Corporation
Marine Department

MS All1-04

Bethpage, NY 11714

Dear Ed:

Thank you for the inquiry concerning our products last week. Your
shipboard fuel tank monitoring application sounds very interesting. As
we discussed, Electronic Marketing Systems has no off-the-shelf product
that meets your requirements. However, we have provided many custom
turnkey computer systems to the petroleum industry.

The best approach to this application would be to use our new 16 bit
industrial computer, known internally at EMS as the NAP, as the central
controller of the system. Attached are two snapshots of a prototype
NAP. This product is going into field test this summer and offers much
flexibility and capability.

The operator interface for the system would be provided by the
HARDiTerminal, This is a rugged alphanumeric display, keypad and card
reader. The function keys are easily relabeled, allowing it to be used
in a variety of applicationms.

» The HARDiTerminal and NAP were designed for industrial applications and
would require extensive redesign to meet military specifications.
However, as you can see from the photographs, the equipment is packaged
in enclosures that would require only minor modification to be suitable
for shipboard use.

When you are ready to proceed with this project, we would be pleased to
review your requirements further.

Regards,

MSJ:sld Vice President, Engineering

Enclosures

11085 SORRENTO VALLEY COURT, SAN DIEGO, CALIFORNIA 92121 TELEPHONE (619) 457-1182/8700
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