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Abstract

Advances in very large scale integration (VLSI) have led to a great deal of interest

in highly parallel cellular architectures as high-performance solutions to computa-

tional bottlenecks. These architectures pose a number of novel implementation

issues not encountered in traditional designs. This thesis investigates and resolves

some of the most important of these issues, taking both practical and theoretical

points of view.

Chapter 2 considers the subject of programmability for arrays of processors. It

describes some of the advantages and disadvantages of flexible implementations,

and discusses processor design issues in light of the requirements of the array en-

vironment. In particular, it describes the design of the PSC, a chip designed for

systolic array implementations, which has been realized in nMOS. It also discusses

alternative combinations of processors and memories for the implementation of

systolic algorithms. Chapter 3 examines the question of synchronization in large

arrays of processors. It gives asymptotic upper and lower bounds for the speed of

clocked arrays of differing topologies under differing models of clock skew, and also

makes some observations on practical issues of synchronization in large systems.

Chapter 4 concentrates on implementations in which arithmetic is broken up into

serial bit or subword steps: it shows how systolic serialized systems can be designed,

and discusses some practical issues of cost and performance. Finally, Chapter

5 presents a case study of architectures for a family of information retrieval tasksitin

addition to presenting a new, efficient architecture, it discusses many of the impor-

tant but usually unquandifled practical factors which impinge on system-building

decisions.
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1 Introduction

Since the late 1970's, dramatic increases in integrated circuit density have

reawakened interest in the construction of large cellular processor arrays. Such

arrays had received theoretical and practical attention much earlier [21, 39], but con-

temporary technology was incapable of producing truly powerful arrays at reason-

able cost. Another result of the high cost of hardware was that little practical

attention was paid to very special-purpose machines, although it is for just such

machines that it is easiest to make use of massive parallelism.

The apparent practicality of large array machines raises a number of implemen-

tation issues which vary in significant ways from their counterparts in traditional

architectures. Among these are programming, synchronization, bit-serial and other

"sliced" implementations and questions of modularity and processing/memory

tradeoffs. The four main chapters of this thesis explore and resolve some of these

issues from both practical and theoretical viewpoints. The poirt of departure for

much of this work is the study of systolic arrays, discussed below: however, many of

the results apply equally to any cellular VLSI architecture. The common thread

running through this work is the attempt to understand and solve implementation

problems, which are usually approached ad hoc, in a structured and general way.

This goal is more feasible for VLSI processor arrays than for computer architecture

in general because of the arrays' scalability and regularity.

Systolic arrays Beginning in 1978 [20. 291, systolic algorithms [261 have been

proposed as means of achieving high performance in the solution of a large family of

computation-intensive problems. As sketched in Figure 1-1, the idea behind systolic

algorithms is to use each input value many times, passing it through a simple and

~~~~~..............""--.-......-'. .- . .,...



2 Introducuion

regular nctwork of processing elements, or cells, each of which performs some rela-

tively simple computation for each value. Although the figure shows a one-

dimensional pipeline, two-dimensional grids and trees are also used. For applica-

dons which admit such structures, the systolic approach can yield spcedups relative

to I/O bandwidth which arc proportional to the number of processors used. In fact,

a great many algorithms based on such structures have been devised [141.

. = outside
m world

10 MHz

at most 10 MOPS

':.:'.-outside
J [world

1On MOPS possible

Figure 1-1: Principle of systolic algorithms.

The possibility of large speedups with relatively modest 1/0 bandwidth is just one

of a number of advantages of the systolic approach. Other advantages, such as

modular expansibility, simple and regular data and control flows, use of simple and

uniform cells, elimination of global fan-in and fan-out, and (possibly) fast response

time, are also characteristic 1261.
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Introduction 3

Progranirnability Since systolic algorithms generally consist of a few types of simple

processors, or systolic cells, connected in a regular pattern, they arc less expensive to

design and implement than more general machines. This advantage is offset by the

fact that a particular systolic system can generally be used only on a narrow set of

problems, and thus design cost cannot be amortized over a large number of units.

One way to approach this problem is to provide a programmable means of im-

plemcntation for many systolic algorithms.

The systolic environment, by virtue of its emphasis on continuous, regular flow of

data and fairly simple per-cell processing, imposes new design requirements for

programmable processors which are quite different from those found in a general-

purpose system. Chapter 2 considers these issues from two points of view. Section

2.1 presents the architecture of the programmable systolic chip (PSC), a single-chip

microprocessor suitable for use in groups of tens or hundreds for the efficient im-

plementation of a broad variety of systolic arrays. The processor has been fabricated

in nMOS, and has been integrated into a demonstration system. The PSC architec-

ture is inherently five to ten times more efficient for typical systolic implementations

than are standard microprocessors.

Section 2.2 describes and analyzes structures that differ from the PSC approach in

that processors and memory elements do not exhibit the same one-to-one correspon-

dence found in most discussions of systolic algorithms. One approach is the inclu-

sion of local memory in processing elements to save hardware or decrease I/O

bandwidth; Section 2.2.1 makes some practical observations on modularity issues

and discusses I/O-optimal multiplexing for hardware savings. The other approach is

the complete separation of data from computation, which yields some advantages in

modularity and flexibility; Section 2.2.2 discusses a hardware structure for the ef-

ficient implementation of data access and movement.

0 Synchronization In order for the elements of a VLSI processor array to communi-

cate among themselves, some provision must be made for synchronization of data

transfer. The simplest means of synchronization is the use of a global clock.

Unfortunately, large clocked systems can be difficult to implement because of the

inevitable problem of clock skews and delays, which can be especially acute in VLSI

systems as feature sizes shrink. For the near term, good engineering and technology

0 . . , ,+. . , , .-: ..,. . : .. . -. , . . - . ' .. ..
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4 Introduction

- improvements can be expected to maintain the feasibility of clocking in such sys-

tems; however, clock distribution problems crop up in any technology as systems

grow. An alternative means of enforcing necessary synchronization is the use of

self-timed, asynchronous schemes, at the cost of increased design complexity and

hardware COSL

Chapter 3 gives simple and natural mathematical models for the time required to

clock large arrays of communicating cells. Depending on physical circumstances,

appropriate variations of the models may be applied. For each variant model, we

derive upper and lower bounds for clock skew in arrays of different topologies. For

example, we show that if clock skew between two points is related to the difference

of their clock distribution delays, arrays may be clocked in constant time, inde-

pendent of their size. On the other hand, if clock skew is related to the sum of the
0 distribution delays, an nxn array will need a clock period which grows with n. We

also suggest some new clocking schemes, and make some observations on their

practicality and the applicability of the variant skew models.

Serialized implementations Serialized implementations of arithmetic operations of=

fer advantages of simple, repetitive designs and high clock speeds. Balancing these

advantages are questions of the time and space overhead of extra latches, the need
for applications to provide higher degrees of parallelism, and bounds on clock speed

other than combinational delay. Chapter 4 discusses two aspects of such designs.

First, Section 4.1 clarifies the issues of serialization and pipelining involved in the

design of such arrays, and shows how serialized systolic designs may be derived from

word-parallel designs. As an example, we give derivations of some previously

published bit-serial convolvers. Section 4.2 then discusses some of the

cost/performance/designability tradeofFs of serialized designs, and discusses their

implications in some specific cases.

Dictionary machines - a case study Very often, the choice of the best structure for

a special purpose system will depend on such non-analytical or "constant factor"

issues as modularity or technology properties. Chapter 5 illustrates some of these
issues in the context of dictionary machines. The chapter first considers a number of

tree-structured VLSI multiprocessor designs which have been proposed for perform-

ing a group of dictionary operations (INSERT. DELETE, EXTRACTMIN, NEAR, etc.) on

.-0 : : : :: : i . .. :i - : ...::-. : , :: , " -:_i ,. , .: .: :. : : i ; ;.i .,- : .: -'



Introduction 5

a set of keys. These designs typically use one processor for each key stored and

operate with constant throughput, assuming unit time to communicate and compare

keys. This assumption breaks down in applications with long keys. The chapter

presents a new trie-based design which uses a number of processors proportional to

the maximum length of a key to achieve constant throughput, regardless of key

length. The design has important practical advantages over the family of tree-

structured machines, and demonstrates that processor-intensive VLSI structures are

not always the best route to a high-performance system.

S
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Programmability

Because of their regularity of structure and simplicity of basic components, sys-

tolic arrays are inexpensive to design and implement, in comparison to other struc-

tures of equal performance. This advantage is offset, however, by the fact that a

given systolic algorithm is usually tailored to a particular application, and hence

development costs cannot be spread over the large number of units typical of a

general-purpose processor. It is therefore appropriate to consider a range of points

along a generality-performance tradeoff curve. Applications with stringent through-

put demands, such as many signal processing tasks, will often justify full custom

design, while other applications may be handled by an existing, more flexible

design. Existing systolic array implementations span this spectrum. Early test

implementations [18, 301 were full custom single-purpose devices, as is the GEC

correlator chip (12]. In an intermediate range of flexibility are the ESL systolic

processor [7, 50] and a forthcoming ESL systolic chipset for floating-point matrix

computations, both of which are programmable for a range of signal processing

tasks. At the very general end of the spectrum is the NOSC systolic array

testbed (9, 47, 481, which is assembled from general-purpose microprocessors and

provides both one- and two-dimensional array communication structures. Another

highly flexible approach, used in the PSC project f151, is the design of widely ap-

plicable building blocks.

In order not to incorporate the overhead of chip design. fabrication. testing, and

quality assurance into each construction of a systolic machine, and yet to achieve

reasonable performance and chip counts, it is useful to have some flexible means of

assembling many different types and sizes of systolic arrays from a small number of

PREVIOUS PAGE
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8 ProlrammabliLy

building-blocks. Such a tool, in order to support a wide variety of such algorithms,

must provide programmability both within individual cells and at the intercon-

ncction level. Note that this configurability need only represent "design-time" or

"compile-time" rather than "run-time" flexibility; once built and programmed, a

systolic array is typically expected to perform the same computation many times.

Section 2.1 of' this chapter describes the goals and architecture of the CMU

programmable systolic chip, a particular example of such an implementation. Some

* "good and bad features of the architecture are discussed, and some general obser-

vations on programmability are made. Section 2.2 then discusses two different

approaches to programmable implementations of systolic arrays. The first is the use

of sizable local memories to reduce I/O bandwidth requirements or to trade off

hardware cost and performance: we outline the design issues for such schemes and

provide new observations on modularity or lack thereof in these designs. The

second approach involves the decoup.ling of the flow of data from processing; we

provide a scheme that allows mostly serial access to data, making implementations

with serial technologies or with only local communication over large memories pos-

sible.

2.1. The Programmable Systolic Chip

The PSC project [15, 16] was stimulated by the need for a convenient means of

realizing systolic algorithms. The PSC design attempts to provide a basis for the

efficient implementation of such algorithms, and succeeds reasonably well. Its struc-

ture is intrinsically much more efficient for this task than a general-purpose

microprocessor. Despite very general functionality, the architecture imposes rela-

tively little performance overhead with respect to the arithmetic operations per-

formed. This section describes the PSC and evaluates its effectiveness.

0'i
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The Programmable Systolic Chip 9

in 2.1.1. Structure of the PSC

"ho primary goal of the PSC architecture was to support reasonably efficient

implementation of a very broad ariety of systolic algorithms. To this end, a set of

Iargei applicauions was chosen. An obvious candidate was the field of signal and

image processing; problems in this area often demand real-time solution and many

systolic algorithms for such problems have already been designed [24. 291. Another

choice was error dctection and correction coding, Reed-Solomon coding [36, 42] in

particular. In addition, sort/merge of large files was chosen as a representative of

data-processing applications.

Given these goals, the following design issues were considered:

Locality and flexibility of control: For some systolic arrays, including
0 many signal processing and matrix arithmetic algorithms, simple global

control would be sufficienL However, many other algoritnms require
different actions in different phases (e. g., loading of coefficients), as well
as data-dependent actions within each systolic cycle.

* Chip count: Keeping a systolic cell on a single chip has two advantages.
First, it allows the functional blocks of the processor to operate together
without paying the time and pinout penalty of off-chip communication.
Second, it allows systolic arrays to be constructed with small chip count.
The possibilities for putting more than one cell on a chip seem limited
for the near future, given fairly complex processors. advances in min-
iaturization will probably be more usefully spent on increased word size
and functional capability. This situation obviates the need for on-chip

... configurability-system configuration (or reconfiguration) is done at the
board level.

Primitive operations: The primitive arithmetic, logical and control

operations which a processor can perform are critical to its efficiency. In

particular, fast multiplication is needed for the effective implementation
of most signal and image processing algorithms. Provisions for multiple-
precision arithmetic can extend a processor's utility to problems requir-
ing larger word size, without heavy performance penalties.

S
e Intercell communication: A principal feature of systolic arrays is the

continuous flow of data between cells. Efficient implementation of such
arrays requires wide 1/O ports and data paths. Provision must also be
made for the transmission of pipelined systolic control signals.

9- e Internal parallelism: Partition of a processor's function into units which
can operate in parallel enhances performance.

".,.,'- ,,," .. / .,-.-. . S., -.. - ..-.-. ., . .- .- .-.-.. . .. .. . . ... . .. ?. '



10 Programmabilhty

Control structure: Horizontally microprogrammcd control structures
provide flexibility in programming new applications and promote paral-
lclism within a processor. Thc usual drawback of horizontally
microprogrammed architectures, the difficulty of exploiting that paral-
lelism. is eased by the fact that systolic algorithms usually have very
simple cclI computations and hence short microprograms.

Word size: Individually programmed processors arc subject to a tradeoff
in word sizc: small word sizes lead to an imbalance between the
hardware devoted to control and that devoted to data paths, and large
words Icad to large chips with large pinout and low yield.

Based on the considerations discussed above, the PSC, a single-chip programm-
able systolic processor, has been designed and fabricated in nMOS. Since this
processor is an experimental prototype, rather than a production version, the dcci-

sion was taken to keep the design simple and general, albeit at the cost of pincount
and ultimate performance. Nonetheless, as discussed below, the chip as designed
already represents a cost-effective means of implementing many systolic algorithms.

Processor structure The processor consists of a collection of communicating func-
tional units, all of which may operate in parallel. This collection is made up of a

microcode RAM and microsequencer, a register file, an ALU, a multiplier-

accumulator (MAC). and three input and three output ports. As schematized in
Figure 2-1, data communication among the units takes place on three independent

*buses: control and status lines are separate. Each bus can be written by one of eight

sources and be read by any of ten destinations. This organization supports a sig-
nificant amount of on-chip parallelism: a multiplication with accumulation, an ad-

dition, memory fetches, and interchip I/O can take place concurrently in one in-

struction cycle. The parallelism-limiting effect of having only three buses, as op-
.. posed to eight, is alleviated by the fact that a value on a bus is often used more than
-• once, and by the ability of each of the functional units to hold its inputs over more

than one cycle.

Word size In order to keep the chip small and hence keep pinout and yields

reasonable, a modest word size of eight bits for arithmetic was chosen. Most data

paths in the chip, however, are nine bits wide. The ninth bit can be used to tag dam

to store control information, or as the most significant bit of a number modulo 257

for coding applications. In order to support arithmetic on larger numbers, facilities

,~~~~~~~~~~~~~~.:.. .-.-.......... ..... . ........ ., . .......... -,.,, ..... .. ..-.. .. •.,"



The Progmmmable Systolic Chip 11

micro ALU MAC ports feiser
instr fl

-bus 1

bus 3

Figure 2-: Bus structure of the PSC.

are also provided for multiple-prccision computation: the multiplier and ALU have

provisions for setting a carry in to the low-order bit, and the ALU can cycle its carry

out into its carry in for the next operation.

I/O ports Each of three input and three output ports contains nine bits, eight of

which are data, with the ninth available for data or control. The ninth bit of each

input port is available as a condition code for microprogram branching. This is

often used as a tag bit for variable-length data or as a systolic control bit for loading

and unloading of stored values. The ninth bit of each output port may be set as a

literal, as the most significant bit of a nine-bit bus value, or as the most recent value

of an incoming ninth bit.

In order to keep the clock period short, interchip communication is overlapped

with instruction execution. Thus a value which is computed in a given cycle can be

used on the same chip in the next cycle, but not until the cycle after that on a

neighboring chip. The effect on system performance is to increase latency through

the array (in clock cycles, though not necessarily in real time), but to reduce the time

needed for each pipeline stage.

Control part The microprogram memory consists of 64 60-bit words of dynamic

(for circuit density) RAM. The 60 bits in a horizontal microinstruction are divided

as follows:

* 9 bits for bus source addresses.

* 20 bits for control of functional unit input registers.

e 9 bits for control of off-chip systolic control bits.

* 10 bits for control of ALU, multiplier, and register file.

K . . . -".,. . .•



12 Programmability

* 3 bits to control program branching.

. 9 bits to provide a literal branch address, literal data to the bus, or

condition code selection for branching.

The microsequenccr is able to fetch instructions in sequence, branch to a literal

address, branch to one of four locations depending on any two of twelve condition

code bits, and push and pop addresses to and from a subroutine stack.

Arithmetic The ALU performs "standard" arithmetic and logical operations: ad-

dition, subtraction, logical AND, etc.. It also allows its carry in bit to be set, either as

part of its opcode or as its previous carry out, as an aid to multiple-precision com-

putation. A typical complement of condition code outputs is supplied to the

microsequencer. Arithmetic is performed in twos complement notation, except that
an "unsigned subtraction" operation is available for eight-bit character comparisons
and normalization of numbers modulo 257.

The multiplier-accumulator multiplies two eight-bit numbers and adds them to a

16-bit accumulator, a third eight bit input, or zero to produce a sixteen bit output.
The numbers used may be signed (in twos complement) or unsigned. independently.

Register file The register file consists of 64 nine-bit words of dynamic RAM. One
word may be read or written in each cycle. In order to remove the RAM's delay

from the chip's critical path, the register file is pipelined one cycle behind the rest of

the chip; thus an address must be supplied one cycle before the addressed value is

- needed. This does not appear to pose a performance penalty, since register file

accesses seem in general to be uniform and predictable.

Microcode loading All microcode is loaded through a shift register, which can also

be used for functional testing of the chip.

In summary, then. the design of the PSC responds to the issues discussed in the

previous section as follows:

* Locality and flexibility of control: The microprogrammed control
described provides a very high degree of flexibility.

* Chip count: The processor is designed and implemented as a single chip.

o Primitive operations: The processor has features which enable it to per-

°i. ,., ?i,. , . . . .. . *.. . ? ? . . . .. -. ..... .. .. ... -'- "''., " .. ,



The Ptograminable Systolic Chip 13

form multiplication. other arithmctic operations (including multiple
precision), and branching and subroutinc control very efficiently.

Intcrccll communication: The three sets of 1/0 ports provide high-
bandwidth data flow between neighboring cclls. and efficiently support
the passing of systolic control bits.

Internal parallclism: The ports. ALU. multiplier, program memory and
data memory all function concurrently. The parallel bus structure allows
a number of separate computations to proceed simultaneously.

e Control structure: The horizontal organization of the microcode allows
all of the functional units to be utilized in a single cycle.

o Word size: The cight/nine bit format chosen represents a reasonable

compromise in terms of size, yield and utility. As indicated below, eight-
bit PSCs can already be very useful. Longer words will probably be
used for future PSCs. especially as silicon feature sizes shrink, in order to
make them useful to a broader class of applications.

A detailed description of the architecture of the PSC is given in Appendix A.

2.1.2. Applic2tions

The PSC can be used as the basic systolic cell for many systolic systems in many

application areas. This section gives a flavor of how it is applied in two target

applications, and discusses its cost-effectiveness. These and other applications have

been implemented in microcode, this code has been simulated by ISPS [4]

simulators and used to evaluate architectural specifications of the chip. We estimate

that a commercial nMOS implementation of the PSC could easily operate with a

cycle time of 200 ns: the timing estimates given below use this figure.

Digital filtering Many digital signal and image processing applications require

high-speed filtering capabilities. Mathematically. a filtering problem with h + k taps

is defined as follows:

given the weights { , w2. wj, {r,r ..... rj,
the initial values {YoY-i... . Y-k+il
and the input data {x .  xj.
compute the output sequence {Yy2 .y... +-h
defined by

0
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14 Progmmmability

N k

Yj= ixij-1+ E rj)'1-.
j=1 j=1

If the {ri are all zero, then the problem is callcd a finite impulse response (FIR)

filter: otherwise, it is an infinite impulse response (IIR) filtcr. Both types of filtering

can be performed by systolic arrays [24. 26]. Figure 2-2 shows a systolic FIR filter-

ing array for h=3.

07 Ai r i- - j r-

A L Y4 Y2

Figure 2-: (a) Systolic FIR filtering array and (b) its cell definfton.

Based on this scheme, digital filters (FIR or IIR) with eight-bit data and weights

and m taps can be computed with a linear systolic array composed of m PSCs, taking
"":' one sample each 200 ns, for a filtering rate of 5MHz. Thus with 40 PSCs, a 40 tap

.- JJfilter can be computed at a rate of 400 million operations per second (MOPS),

counting each inner product step (multiply, add) as two operations.

The PSC program implementing this systolic algorithm takes only one instruction

L~. to implement the operations depicted in Figure 2-2(b). After an initialization phase

iwhich the weights are loaded, the inner loop of the algorithm is performed by the

PSC microinstruction coded as follows:

Busl-Sda, Bus2-Sdb, us3-Lo,

* Sdaaut=Va13, Sdb~ut-VaI2,
MacX-Hold, MacY-Va1Z, PMacZuVall, Mac~p=AddZ,
Jump=OnCC0, CC0-Sca, Scaut=Pass.

The lines of this microinstruction have the following effects, all in a single cycle, as
sketched in Figure 2-3:

. . • . -~ ~ ~ . . - ...- . . - i - . . .. .-. -. . . . ..

' -VJ .!4 - -
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1. Bus 1 carries Yj,, read from systolic data port A, bus 2 carries Xj,, read
from port B. and bus 3 carries Y0,1 from the previous operation, avail-
able as the output of the MAC.

2. Output port A receives Your from the previous operation (the value on
bus 3), and port B receives X0, = Xj.

3. The MAC holds the cell's weight in its x register, sets its y register to Xj,
(the value on bus 2), and sets its z register to Yr, (the value on bus 1). It
then computes x.y+ z. or W.,, + Y,, This value will be sent to output
port A during the next cycle.

4. The instruction loops in place until systolic control signal A arrives.
meaning it is time to reinitialize. Control then passes to the next instruc-
tion, and the control bit is sent on to the neighboring cell.

Ain Yin Aout

Yout
•u 3

Bin MAC Bout

Figure 2-3: PSC implementation of FIR filter.

For applications requiring more accuracy, a filter with 16-bit data and eight-bit

coefficients and m taps can be computed with m PSCs, taking one sample.each 1.2

;Ls (six instructions). Thus with 40 PSCs. a 40 tap filter can be computed at a rate of

67 MOPS, counting each inner product step as two operations. This is equivalent to

200 MOPS for eight-bit arithmetic.

. - .•3

.'•- A
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- " Error-correcting codes Among various error-corrccting codes, Reed-Solomon

codes are most widely used for deep space communications, where burst errors

occur frequcntly [36, 42]. One popular Rced-Solomon code is a scheme in which a

codeword consists of 224 message symbols followed by 32 parity symbols. This code

can correct up to 16 symbol errors per codeword through a decoding process.

.- Each symbol is defined over a finite field of 257 elements, denoted by GF(257),

and thus is encoded with 9 bits. Any number less than 256 is represented as usual by

8 bits, and the number 256 ( - 1) by 9 bits as 1000000002. We call this represen-

tation "normalized form". Arithmetic is performed on numbers in normalized

form, and gives a result in normalized form. The basic pattern is to test if one of the

operands is equal to 256-in which case a special treatment is applied-then operate

on 8 bits and normalize the result.

Encoding a message, i.e., obtaining parity symbols from the given message sym-

bols, is equivalent to a polynomial division. It can therefore be carried out with a

systolic division array described by Kung [251. Since in this case the divisor-the

generatorpolynomial in the terminology of error-correcting codes-is monic, no cell

in the systolic array needs "o perform a numerical division. Each cell is basically the

same as used in the systolic filtering array discussed above, except that integer arith-

metic modulo 257 is used.

Decoding, which is much more complex than encoding, is usually done in four

steps. We will not describe the steps in detail here; the reader is referred to the texts

on error-correcting codes cited earlier. In the following we simply point out that

9-. each step corresponds to some polynomial computation over the finite field GF(257)

that can be effectively carried out by systolic arrays.

. Syndrome computation is to compute the syndrome polynomial S(x) of
degree 31. The problem is equivalent to that of evaluating a polynomial
of degree 255 at 32 points. Using Honer's rule, this can be done by a
systolic array where each cell holds one of the 32 points and accumulates
results as the coefficients of the polynomial flow through the array [24].

. o Solution of the key equation is to find two polynomials, the error locator
polynomial w(x) and error evaluator polynomial a(x), with deg w < 16
and deg a s 16, such that the key equation,

0
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,,~(x)-- a(x )S (x )[ mod xJ21,

is satisfied. This problem can be solved by a systolic array for computing
extended greatest common divisors [8].

* Error location is to find the roots of a(x)=0, which will identify the
locations of errors in the received message. Finding the roots is most

%, efficiently done by simply evaluating a(x) at every point in GF(257),
since the size of the field is small. Again as in the syndrome computa-
tion, based on Horncr's rule we can use a systolic array for carrying out
the polynomial evaluation. Now since the degree of the polynomial is
small and the number of the points where the polynomial is to be
evaluated is large, we use a "dual" systolic design where each cell holds
one coefficient of the polynomial and the points flow along the array.

* Error evaluation is to evaluate the amplitude of each error found in the
previous step, by evaluating w(x)/o'(x) at the roots of a (x)= 0. This

0 again calls for polynomial evaluation.

Figure 2-4 illustrates that all the steps mentioned above can be implemented with

appropriate systolic arrays made up of the same PSCs, with different microcode for

eacharray. We estimate that by using a linear array of 112 PSCs, Reed-Solomon

decoding can be performed with a throughput of 8 million bits per second.

Encoding is much easier; it requires only about 16 PSCs to achieve the same

throughput. At the time the PSC was designed, the fastest existing Reed-Solomon

decoder with similar mathematical characteristics used about 500 chips but achieved

a throughput of no more than 1 million bits per second.

2.1.3. Implementation

The PSC architecture was implemented in 41L nMOS [111 by a team of chip

designers [161, some part-time and some full-time. It was estimated that a commer-

cial nMOS implementation could run with a 200 ns cycle time, and that the initial

implementation would have a cycle time of about 350 ns. Working chips were

obtained on the second fabrication run. Due to shifts in the parameters of available

fabrication and noise sensitivity in some parts of the circuit design, along with

limited timing precision of the testing equipment used, actual cycle times averaged

about 1.5 js. with the fastest observed cycle time being about 700 ns. These cycle

times are consistent with earlier estimates, taking into account the parameter shifts,

0 .
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polynomial
msg evaluation

systolic array

Slx)

x32 polynomial

r 2 systolic array

polynomial polynomial polynomial

evaluation evaluation evaluation
systolic array systolic array systolic array

W (x) ar'lx) a(x)

i divide (x) by oa(x) i p f(x) r0

irr oerror vector
Figure 2-4: Systolic decoder for Reed-Solomon code.

accommodations to noise sensitivity, and tester speed. Using these chips, a system

which performs filtering of video images has been constructed [171.

2.1.4. Implementation alternatives

The PSC represents only one possible means of implementation of systolic al-

gorithms. Alternatives include board-level implementation from existing parts, full

custom single-purpose LSI implementation, and implementation using existing

microprocessors.

Board-level and full custom LSI implementations may be preferable to the PSC

approach where performance requirements are very stringent. The disadvantages of

these approaches are mainly in design cost (especially for single-purpose custom

LSI) and,. for board-level implementations. costs of packaging, power dissipation,

and physical size.

_.0 ° , . / _ . ' . ? . ... . .. .. . . .
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The alternative approach closest in spirit to the use of PSCs is the use of existing

microprocessors. Most microprocessors would perform very poorly in this

context-in many cases, the PSC works an order of magnitude faster. The reasons

for this failure reside in the differences between the PSC and conventional JLPs: I/O

facilities, on-chip program memory, internal parallelism, parallel multiplier and sys-

tolic control bits. No commercially available p]P that we are aware of combines all

of the above properties. Instead, many microprocessors have only one or two of

those features.

Commercially available microprocessors can be divided into four groups:

"Standard" microprocessors with word sizes of eight bits (ZS0. 6800, 8080
families) or larger (68000, 16000 families), have no internal program or
scratch pad RAM (usually a few registers), no hardware multiplier, and
at most two ports: an address port and a data port. In order to be used in
systolic arrays, each processor would need external memory chips, I/O
devices and a few components for inter-chip communication. Such
devices could be built, but at high cost in chip count, power dissipation,
and space. Also, conventional microprocessors provide large instruction
sets and complex addressing schemes, but cannot be programmed at the
microcode level: as a result, even simple operations take several cycles.
Finally, I/O is a serious bottleneck since the same ports are used for
fetching operands and instructions and for inter-chip communication.

e Signal processing microprocessors (NEC 7720. TI TMS320, Hitachi HSP)
usually have an on-chip program memory in ROM, a small data
memory, and (for the most recent ones) a parallel multiplier. They also
show some amount of internal parallelism since they can perform a
multiplication-accumulation and increment an address register at the
same time. However, their structure is-often too specialized to use them
in applications other than signal processing, and the 1/O problem is also
present; none have the off-chip bandwidth necessary for systolic array
communication.

Single-chip micro-computers (8020, 8749) are, in some respects, super-
ficially similar to the PSC. They have on-chip ROM program memory, a
small RAM for data, and up to three bidirectional ports (used serially,
however, not simultaneously). They can be used with few external com-
ponents, as opposed to microprocessors that need an external memory
and I/O devices in order to function. However. they are serial machines
with simple instruction sets and without multipliers, and suffer from the
same 1/O bottleneck as traditional microprocessors.

* Bit-slice microprocessors form a last family. A PSC equivalent could be
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designed with bit-slice processors and many external parts. and this
could have bccn an alternativc to the implcmcncation of a chip.
However, the result would be uneconomical in most applications be-
cause of the large chip count and accompanying size, fabrication, and
power costs.

As an example of the effects of serial execution and data access, consider the

filtering example of Figure 2-2. A microprocessor equipped with a multiplier and

the ability to perform an 1/0 operation to either of its neighbors in a single cycle

would need at least 10 instruction cycles to perform this inner loop (4 for [/0 and 6

for branching, arithmetic, and data movement). Counting the overhead of instruc-

tion fetching and decoding, it is extremely unlikely that such a processor, imple-

mented in similar technology, would have a smaller instruction cycle time than the

PSC; hence the PSC's organization allows it to operate at least ten times faster in this

case. For Reed-Solomon encoding, a standard AP with a multiplier added would

execute at least four times as many instructions as the PSC. Most systolic algorithms

.. seem to produce instruction ratios in the range between 4:1 and 10:1.

It is evident from these considerations chat current microprocessor architectures

are not well-suited to the construction of systolic arrays. The key points, again, that

favor the PSC structure are:

- The large number of ports (including systolic control) used in parallel.
Note that each one of these ports offers more data bandwidth than the
usual microprocessor port, which for each data transfer will usually
transfer an instruction address, an instruction, and a data address.

* Internal program and data memory: I/O bandwidth is fully available for
* _transfer of data between chips. In our examples, the ratio (number of

input+ output)/(number of instructions) is high, often larger than 1.
Also, typical programs are short and can fit into a small control memory.

- Horizontal microprogramming: large microinstructions provide effective
internal parallelism. This is possible only because of the rich intercon-

0 nection pattern (3 internal global buses).

e Systolic control: this is indispensable for systolic algorithms, and is costly
in instruction cycles and 1/0 bandwidth for conventional APs.

0'* Multiplier: this is critical for high performance in numerical applica-
tions.

0 i-.-: : : : . _. . _ . _: _: , . _ _ . _ . , . , . . . .. ,
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2.1.5. Limitations and improvements

For simple computations the PSC's arithmetic, internal communication and ex-

tcrnal communication capacities'arc fairly well balanced. For more complex al-

gorithms. the most common limiting factor in program performance is the number

of buses. Adding more buses would be quite expensive in area needed for routing

and for code storage and distribution; for a general-purpose part, this expense would

probably not be justified. Other possibilities would be to use some specialized

buses, to allow a single bus to be broken into independent parts, or to multiplex the

use of the buses within a machine cycle. One other option, which would be useful in

the frequent case where a value needs to be delayed as it enters or leaves a cell,

would be to put small FIFOs on the chip's I/O ports.

Another limitation is in the size and bandwidth of the register file. Only one word

can be read or written in a cycle, making the storage and retrieval of intermediate

results time-consuming compared to computation. Furthermore, the small size of

the file (64 words for the current implementation) limits the ability of the PSC to

take advantage of memory space to cut down on f/O traffic (e. g., by storing an

entire column of a matrix in a cell). Possible improvements include the use of

multiported registers or off-chip memory.

One way to reduce the cost of a PSC-based system would be to reduce the chip's

complement of I/O pins. 54 of which are dedicated to the data ports. The PSC's use

of three input and three output ports is due mainly to simplicity considerations:

almost all systolic algorithms' data flows can be implemented in a straightforward

way with a minimum of control. Since all six ports are needed simultaneously only

for rather simple algorithms where communication dominates computation by a

large factor, it may be possible to reduce the pincount of the chip without greatly

reducing its overall performance. This could be achieved by using bidirectional

ports (perhaps four), at a modest cost in control complexity. This would reduce the

total I/O bandwidth of the chip by 33%, but increase its interconnection flexibility.

Another area where the cost of the PSC might be reduced is in microcode space.

Again for reasons of simplicity and flexibility, no attempt was made to squeeze the

microinstruction si7e by limiting the number and kind of operations the PSC's paral-
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" • lel functional units could perform. While this is a useful property for an expcrimen-

tal system, it would be advantageous for production chips to sacrifice some

flexibility for higher yield (due to smaller size) or more words of data or instruction

memory.

2.2. Alternative memory structures

This section deals with two different approaches to the structuring of memory and

processing in systolic implcmentations. Section 2.2.1 describes the known technique

of using local memory within cells, and clarifies its application. It then considers

questions of modularity and processor/mcmory tradeoffs, improving on some pre-

vious designs and developing criteria for deciding how to design chips for a given set

of applications.

Section 2.2.2 describes a structure which can be used to implement systolic al-

gorithms with data flow separated from computation. This separation allows the

creation of modular, general-purpose systolic hardware; new processing units can be

created using off-the-shelf parts. The memory structure can be built with local

communication only or using technologies which are inherently serial, making it

usable for very large sets of data.

.2.1. Local memories and modularity

Local memories may be used within systolic processors for two purposes: reduc-

tion of I/O bandwidth and multiplexing of processing units to solve large problems

on smaller hardware. I/O bandwidth can usually be reduced without reducing

performance when data are used repeatedly in a regular fashion. Multiplexing can

* "be applied to any systolic algorithm, and results in a performance, processor count,

' "and I/O bandwidth decrease which is proportional to the degree of multiplexing.

i Processor multiplexing Throughput and hardware may be linearly traded off in a

systolic array design by "compressing" the array along one or more dimensions. For

example, a linear array can use half as many cells, each with enough storage to

0simulate two of the original cells using twice as much time. Given that c original

cells are replaced by one. in cffect slowing each original ccll by a factor of c. the new

""

rK & - * :' , f -**- .. K. -.K "
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* .design has its throughput and I/O bandwidth also reduced by a factor of c. An

example of a programmable machinc using this well-known scheme is the CMU

Warp processor [27].

Onc interesting effect arises when compressions of two-dimensional (or higher)

arrays are considered. We will consider only rectilinear arrays: note that hexagonal

arrays arc rectilinear arrays with diagonal connections. The array can be compressed

uniformly in each of its dimensions: total I/O bandwidth scales with processor

count, but the I/O bandwidth of each cell depends on the direction of compression.

As sketched in Figure 2-5, data flowing in the direction of compression are slowed

by a factor of c. Data flowing across the direction of compression are slowed by the

same factor, but each cell now supports c data streams, so the cell's bandwidth with

respect to that set of data remains the same.

(b) c transfers
in c cycles

I I I I I(a) 1 transfer
in c cycles I I I I

I I I I I

Figure 2-5: (a) Data in direction of compression and
(b) data across compression.

One result of this effect is that rectangular arrays are best compressed to smaller

arrays of the same aspect ratio, rather than to linear arrays. Consider the compres-

sion of an nXn array, each cell having unit bandwidth in each dimension, by a factor

of n. If the array is compacted by VW in each dimension, each cell has I/O

bandwidth 1/V"'= in each dimension. If the array is compacted to a linear array,

* each cell has unit bandwidth along the length of the array, and bandwidth 1/n

transversely. In the square case, cells can time-multiplex their inputs to allow

cheaper implementations; in the linear case, this is not possible.

When the problem at hand is the decomposition of a large array onto chips. the

"square" approach is still preferable. Figure 2-6 shows two such decompositions
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with k processors per chip. one where compression is performed in two dimensions
and one where it is performed in one dimension. A square chip has bandwidth

proportional to V-'/V"T while the linear chip has bandwidth proportional to
I + k/c. Assuming a fixed value for c, the square chip is increasingly preferable

with increasing circuit density (hence increasing k): it also requires only local com-

munication on-chip. while the linear array will need long on-chip wires for its trans-

verse data transfers.

5DDD
(a) DDF FD n-Vk

n/k

(b) In/c

Figure 2-6: (a) Square decomposition and (b) linear decomposition.
S

Bandwidth reduction Local memory may also be applied in systolic arrays to reduce

I/O bandwidth without any reduction in throughput. This is possible where a

particular cell uses the same data repeatedly, as when a variant of the matrix-vector

multiplication algorithm of Kung and Leiserson [29] is used to apply the same trans-

formation to a number of vectors. In this case, the original algorithm consists of a

linear array with one matrix column entering each cell from the broad side of the

array, skewed so that each element meets the appropriate element of the vector as it

is sequenced through the length of the array. The modification is simply to store

each column of the matrix in the corresponding cell, so that only unit 1/O

bandwidth at the ends of the array is required.

One criticism that can be leveled at this approach is that any straightforward

4'' - .-" , . .. . Z ' - . . .P . " " ... -- , -. . - . . -. • . " '
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implementation is not modular: that is, a matrix with more rows than a cell has

words of memory cannot be handled in a simple way. Ramakrishnan and

Varman [43J point out that this problem can be solved by using a linear array of
0 (,2) (actually 3/2n2 + O(n )) cells, with no additional memory. The exact

problem that they address is matrix multiplication, which can be thought of as

multiplication of n vectors by a single matrix. While this approach is asymptotically

hardware-optimal in the sense that an array must be capable of storing n- values, it is

impractical in that the arithmetic unit of each inner-product cell sits idle for ap-

proximately n - I out of n cycles.

As a practical matter, we should note that the modular scheme just mentioned is

unlikely, at least when applied in a straightforward way, to be preferable to an

internal-memory implementation. If we note that a combinational multiplier takes

up circuit area greater than that needed to store 100 words of memory (and perhaps

even 1000), we see that a 100x 100 memory-based multiplication array will take no

more than 200 multiplier-equivalents, while a "modular" array with the same per-

formance will take about 15000 - 75 times as much. Nonetheless, two methods

may be used to improve upon the modular scheme. One is based on considering the

bit complexity of the arithmetic operations used, and the other is based on

reintroducing memory.

For the first method, suppose that the algorithm operates on b-bit integers. If

parallel multipliers are used, the algorithm actually uses O(nWb) hardware: if serial-

parallel multipliers are used, the algorithm takes O(rb) steps. In either case, the

optimality result based on fixed word length no longer holds. In addition, when any

fixed-precision number representation is used, no bounded-I/O scheme can have

constant throughput. as the magnitudes of the results grow as O( log n).

Henceforth, we will assume that b= 2(log n) is large enough to accommodate any

number that can result in the matrix multiplication.

The algorithm can be restored to optimality. in the case where n > b, by using b-bit

adders instead of parallel multipliers. Ramakrishnan and Varman's algorithm can

be adapted directly by distributing the accumulation of a product over b cells, but it

is easiest to consider a variation where one matrix sits motionless in the array and the
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other passes by. (This is not detrimental even for the case where a diffcrcnt pair of

arrays is used each time. since a new array can be insertcd in doublc-buffered

fashion during the previous computation.) To compute AxB, the multiplier matrix

A is stored in row-major order in the array, and the multiplicand matrix B passes

through in column-major order (see Figure 2-7). Each cell, upon receiving an

element of the multiplicand which necds to be multiplied by its stored value, spends

b cycles multiplying while irrclcvant multiplicand clcmcnts pass by. ,Vcycles after it

received its first multiplicand value, it receives another and begins again to multiply.

Result values are accumulated as they pass through the cells holding elements of one

row of A. This method uses O(n2b) hardware and O(n2) steps, which are optimal

for an array of I/O bandwidth b. It has the additional benefit of reducing cycle time

from that required for a parallel multiplication to that required for an addition. This

approach can also be applied to other number formats (e. g. floating point), by

similarly breaking the inner product operation into smaller steps.

Figure 2-7: Matrix multiplication algorithm.

The second method for improving on the modular algorithm is to use memory. In

the first method, we increased processor utilization by a factor of b by making each

processor less powerful (and less expensive). Using memory, we can perform the

compression trick of the previous section, but instead of reducing throughput we

reduce idle cycles. Given that available parts have m words of memory per proces-

sor, nxn matrix multiplications where n a m will require [p.lm 1 processors, where P,

is the number of processors used in the original algorithm. The result is a large

constant factor decrease in hardware over the original algorithm, with the same

performance.

..0
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I2.2.2. Decoupled data flow

The usual view of systolic arrays is modular in the sense that an array can be

enlarged by adding more identicil cells. On the other hand. such arrays are not

modular in the sense that computing power and data storage are inseparable, unlike

processor and memory boards in a conventional system. What this means is that the

effort put into designing a system cannot ordinarily be partially or fully recouped by

reusing either its computational part or its data flow part for another purpose.

One way to achieve modularity in the second sense would be to isolate cell

processing in a separate processing unit, and to arrange for it to sequence through a

set of cell states. The mode of operation of such a system would be to compute new

values for each cell, and then to perform data movements corresponding to those in

the abstract array being modeled. Assuming for the moment that data access and

movement is easy, this organization has several attractive features. First, it allows

changes in the type of processing performed in a cell without reimplementing the

data access portion of the machine. Second, since there are no dependencies be-

tween the individual cell computations in a given systolic step, the processing unit,

may be highly parallel and pipelined. Third, it makes it easy to use different im-

plementation technologies for processing and for memory, allowing for fast process-

ing and small storage size.

A systolic data unit Missing from the description above is a mechanism for data

access and movement. For linear arrays, this is straightforward; one shift register
(perhaps bidirectional), easily implemented with RAM, can be used for each data

stream. Implementation with a global RAM becomes more difficult for two-

dimensional arrays. In this case, data access requires potentially complex address

calculations, and data movement requires large memory updates or clever pointer

schemes, especially in the case of"diagonal" flow.

An alternative to a global RAM implementation is the use of a shift register with a

major loop/minor loop structure, as found in magnetic bubble memories. For an

nxn array, the structure consists of n loops of n cells, all connected by a major loop

of n cells. One such structure is used for each data stream in the algorithm.

Depending on the direction of data flow (vertical. horizontal, or diagonal), data are
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arranged in such a way that shifting along minor loops (with appropriate

inscruons/dcletions for input and output) models data movemcnL Data access is

achieved by loading data from minor loops to the major loop at appropriate times.

These operations can be supervised by a programmed controller at each minor loop.

or they can be signalled by control tokens that travel with the data. Figure

2-8 illustrates horizontal, vertical, and diagonal data flows for the 4x4 case.

(a) 11 1 2. 31

(b) 13

°°-"

(C) 1 44 1 41 13 4 4 4

Figure 2-8: (a) Horizontal. (b) vertical and (c) diagonal data flows.

Horizontal data streams are stored with one row in each minor loop. To access the
L data during computation, the minor loops are threaded together so that access is

performed in row-major order. Vertical data streams are stored with one column in[ 'each minor loop, and row-major access is performed by loading data from the minor

loops to the major loop and shifting them out. Diagonal data streams are stored in a

similar fashion: diagonals other than the main diagonal share minor loops in such a

• . " ° " ." .o -. - . "o . • . - . . - . . . . -.
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way that each minor loop has one clement from cach row and each column, ordered

in such a way that they can bc fcd out to the major loop in row-major order.

Output from the emulated systolic array is done by taking the appropriate values

as they go by, and advancing their successors in the shift sequence to the leading

edge position: input is done by inserting new values at the trailing edge position as

the shift register is reloaded. The exact way in which reloading happens depends on

the latency of cell processing. If this latency matches the cycle time of the data unit

(which is unlikely), reloading matches unloading in a straightforward way. If the

latency is longer than the data unit cycle time, slack can be provided by allowing the

minor loops to "shrink", rather than loading a new value every time an old value is

shifted out. This feature is likely to exist in any reasonable implementation, since it

is needed to provide for arrays of varying size.

The most straightforward implementation of this structure, using shift register

circuitry, is probably not the most economical. A less expensive but somewhat

slower approach would be to use a linear array of n memory processors, each with

storage for n values. Address generation for each processor is reduced to the one-

dimensional case, and adaptation to smaller arrays is easy. Furthermore. each

memory is quite a bit smaller than in the monolithic case, so access may be faster.

Note that all communication among the memory processors is local.

In summary, this structure provides an efficient and general mechanism for the

maintenance and access of systolic data streams. This allows the construction of

systolic machines whose computational mechanism is separate from data access.

This in turn allows separate optimizations: the throughput of a system may be

increased by adding more processing power (assuming available data unit

bandwidth), or a system may be enabled to handle larger problems by adding more

memory, without changing throughput or I/O bandwidth. The shift register struc-
ture may be implemented in a number of ways, either by actual shift registers (for

ultimate performance) or by RAM implementations of shift registers.
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2.3. Conclusions

The PSC The architecture of the PSC is very well-suitcd to the implementation of a

wide variety of systolic algorithms with simple inner loops. The 64 instruction words

available accommodate most straightforward computations, and suffice even for

such complex cell computations as those found in the systolic Reed-Solomon

decoder. Thc proccssor's control structure imposes very little overhead relative to

the arithmetic heart of the computation: instruction fetch occurs in parallel with

execution. For algorithms with complex cell calculations, greater speed can be

gained by using multiple PSCs for each cell. Concurrency and parallel I/O result in

much smaller instruction counts than for conventional microprocessors. Finally, the

incorporation of control and communication circuitry onto the same chip as the

arithmetic units achieves a large savings in chip count over systems built with stan-

dard parts. A PSC equivalent built with LSI arithmetic, memory and control and

with TTL latches and multiplexers would require on the order of one hundred chips,

and a similarly constructed single-purpose cell for even a slightly complicated algo-

rithm would require a dozen chips.

In a broader context, a PSC-like architecture may be viewed as the logical next

step in the evolution of arithmetic components. When construed as an intelligent

multiplier (that is, a multiplier with ancillary arithmetic, buffering and intercon-

nection, and powerful control facilities) rather than as a simple-minded processor, it

fits well into many types of systems as a computational building-block. Just as the

introduction of the multiplier accumulator [461 made it possible to implement many

circuits with fewer parts than previously, so a PSC-like component could reduce

chip counts and add flexibility to many types of machines.

Memory issues The one-to-one binding of processors and memory generally used

by the PSC (with the exception of some uses of its register file) is only one way of

- organizing systolic computations. As Section 2.2 shows, structures in which many
" data are associated with a processor or in which processing and storage are com-

pletely separated may prove advantageous given certain application properties.
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3Synchronization
In order for the elements of a processor array to communicate among themselves,

some provision must be made for synchronization of data transfer. The concep-

tually simplest means of synchronization is he use of a global clock. Unfortunately.

large clocked systems can be difficult to implement because of clock skews and

delays, which can be especially acute in VLSI systems as feature sizes shrink. For

the near term, good engineering and technology improvements can be expected to

maintain the feasibility of clocking in such systems; however, clock distribution

problems crop up in any technology as systems grow. An alternative means of

enforcing synchronization is the use of self-timed, asynchronous schemes, at the cost

of increased design complexity and hardware cost. On the premise that different

circumstances call for different synchronization methods, this chapter provides a

spectrum of synchronization models; based on the assumptions made for each

model, theoretical lower bounds on clock skew are derived, and appropriate or

best-possible synchronization schemes for large processor arrays are proposed.

One set of models is based on assumptions that allow the use of a pipelined

clocking scheme, where more than one clock event is propagated at a time. In this

case, it is shown that even assuming that physical variations along clock lines can

produce skews between wires proportional to their lengths, any one-dimensional

processor array can be correctly synchronized by a global pipelined clock while

enjoying desirable properties such as modularity, expandability and robustness.

This result cannot be extended to two-dimensional arrays, however-we will see that

under this assumption, it is impossible to run a clock such that the maximum clock

skew between two communicating cells will be bounded by a constant as the system
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grows. For such cases or where pipclined clocking is unworkable, a synchronization

scheme incorporating both clocked and -asynchronous" elements is proposed.

Finally, the practical implications of these results are discussed.

3.1. Introduction

In describing a processor array algorithm, it is often convenient to picture the

*. processors as running in lock step. This synchronized view, for example, often

makes the definition of the structure and its correctness relatively easy to follow:

computations proceed in discrete steps which may be cleanly characterized. Perhaps

the simplest means of synchronizing an ensemble of cells is the use of broadcast

clocks. A clocked system in general consists of a collection of functional units whose

communication is synchronized by external clock signals. A variety of clocking

implementations are possible, the essential point is that by referring to the global

time standard represented by the clock, communicating cells can agree on when a

cell's outputs should be held constant and when a cell should be sensitive to its input

wires. When different cells receive clock signals by different paths, they may not

receive clocking events at the same time, potentially causing synchronization failure.

These synchronization errors due to clock skews can be avoided by lowering clock

rates and/or adding delay to circuits, thereby slowing the computation. The usual

clocking schemes are also limited in performance by the time needed to drive clock

lines, which will grow as circuit feature size shrinks relative to total circuit size.

Therefore, unless operating at possibly unacceptable speeds, very large systems con-

trolled by global clocks can be difficult to implement because of the inevitable

problem of clock skews and delays.

As a practical aside, we should note that at current LSI circuit densities, clock

distribution is still a solvable problem. Two somewhat pessimistic studies of which

we are aware [19, 311 do not take into account either the tricks that a circuit designer

can use to reduce the RC constant of his clock tree, or the promise of multiple-layer

metallization and low-resistance silicides. Given these factors, it seems that the

usual clocking schemes should remain feasible for on-chip synchronization in the

near term. Moreover, for some specific structures, such as one-dimensional arrays,U
clocking can be effectively used even in the presence of large signal propagation

delays (see Section 3.5.1).
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An alternative approach to clocking is sclf-timing [44], in which cells synchronize

their communication locally with some variety of "handshaking'" protocols. It is

easy to convince oneself that any. synchronized parallel system where cells operate in

lock step can be converted into a corresponding asynchronous system of this type

that computes the same output- the asynchronous system is obtained by simply

letting each cell start computing as soon as its inputs become available from other

cells. The self-timed, asynchronous scheme can be costly in terms of extra hardware

and delay in each cell, but it has the advantage that the time required for a com-

munication event between two cells is independent of the size of the entire processor

array. A serious disadvantage of fully self-timed systems is that, given current digital

design methodology, they can be difficult and expensive to design ai,,l validate.

An advantage that self-timed systems often enjoy, in addition to the absence of

clock skew problems, is a performance advantage that results from each cell being

able to start computing as soon as its inputs are ready and to make its outputs

available as soon as it is finished computing. This allows a machine to take advan-

tage of variations in component speed or data-dependent conditions allowing faster

computation. This advantage will seldom exist in regular arrays such as systolic

systems, however, for two reasons:

* Usually, each cell in a regular array performs the same kind of computa-
tion as every other cell; thus there is little opportunity for speed varia-
tion.

* In cases where variations do exist, the throughput of computation along
a path in an array is limited by the slowest computation on that path.
The probability that a worst-case computation will appear on a path with
k cells is 1- pk, where p is the probability that any given cell will not be
performing a worst-case computation. This quantity approaches unity as
k grows, so large arrays will usually be forced to operate at worst-case
speeds.

* The result of these considerations is that clocking is generally preferable to self-

timing in the synchronization of highly regular arrays. This chapter derives tech-

niques for synchronizing large arrays, using clocking where possible and preserving

some of the advantages of clocked schemes where clocking breaks down.
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3.2. Basic assumptions

The basic model that we will use for considering synchronization of VLSI proces-

sor arrays is as follows:

(Al) Inter-ccll data communications in an ideally synchronized processor ar-
ray, in which all processors operate in lock step, are defined by a
directed graph COMM, which is laid out in the plane. Each node of
COMM, also called a cell, represents a cell of the array, and each
directed edge of COMM. called a communication edge. represents a wire
capable of sending a data item from the source cell to the target cell in
every cycle of the system. Any two cells connecting by a communication
edge are called communicating cells.

(A2) A cell occupies unit area.

(A3) A communication edge has unit width.

We now add assumptions which provide the basis for clocked implementations of

ideally synchronized arrays.
(A4) A clock for a clocked processor array is distributed by a rooted binary

tree CLK, which is also laid out in the plane. A cell of COMM can be
clocked if the cell is also a node of CLK.

(A5) A clocked system may be driven with clock period a + 8 + r, where a is
the maximum clock skew between any two communicating cells, 8 is the
maximum time for a cell's outputs to be computed and propagated to a
communicating cell. and r is the time to distribute a clocking event on
CLK.

This assumption is an' abstraction of properties common to all clocking schemes.

The detailed relabonships between these parameters and other more specific

parameters such as flip-flop setup and hold times depend on the exact clocking

method used. An exact representation of minimum clock period might be some-

thing like max('r,2a + 8) in a particular case, but such formulae will exhibit the

same type of growth with respect to system size as the simple sum used here.

Note that if we adopt the usual convention that the clock tree is brought to an

equipotential state before a new clock event is transmitted, eliminating clock skew

can lead only to a constant factor increase in performance, since it must always be

true that a :5 r. In particular, speed of light considerations impose the following

condition:
(A6) The time 'r required to distribute a clocking event on a clock tree CLK

in a particular layout is bounded below by a. P. where a > 0 is a constant
and P is the (physical) length of a longest root-to-leaf path in CLK.
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Thus, since the clock tree must reach each cell in the array, large arrays which are

synchronized by equipotential clocking must have clock periods at least proportional

to their layouts' diameters. Note that in the remainder of this chapter, we will relate

transmission delays to wire length; delays arc caused by other factors, of course, but

we choose to treat them together as a "distance" metric.

In the case where an array grows too big for its clock tree to be driven at the

desired speeds due to the time needed to bring long wires to an equipotential state, it

is possible to take advantage of the propagation delay down a long wire by having

several clock cycles in progress along its length. This mode of clocking is often used

in large mainframe computers, but not, to our knowledge, on chips. The electrical

problems of passing a clean signal on a chip in this fashion are severe, due to analog

phenomena such as damping and reflections. We can instead simulate this behavior

by replacing long wires with strings of buffers, which will restore signal levels and

prevent backward noise propagation. These buffers are spaced a constant distance

apart; a good candidate is that distance which will cause wire delays between buffers

to be of the same size as a buffer's propagation delay. This allows us to replace

assumption (A6) with the following:
(A7) If CLK is a buffered clock tree, the time r- required to distribute a

clocking event on a particular unbuffered segment of CLK is the max-
imum delay through a buffer and its output wire. Thus, r is a constant
independent of the size of the array.

To ensure that successive clock events remain correctly spaced along the clock

path, we make the following assumption:

(A8) The time for a signal to travel on a particular path through a buffered
clock tree is invariant over time.

The following section describes two clock skew models based on the above as-

sumptions, and Sections 3.4 and 3.5 explore the problem of clocking uinder these

models. Section 3.6 considers the case where assumption (A8) does not hold, and

hence condition (A6) holds rather than condition (A7). Section 3.7 briefly discusses

the practicality of the models and the results obtained.
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3.3. Two models of clock skew

Given a basic model consisting of conditions (A) through (AS). plus (A7) and

(AS), the following sections consider the implications of two models of clock skew.

First, in Section 3.4 we consider the case where clock skew between two cells

depends on the difference in their physical distances from the root of the clock tree.

This difference model corresponds reasonably well with the practical situation in high

speed systems made of discrete components, where clock trees are often wired so

* that delay from the root is the same for all cells. Formally, we assume the following:

(A9) 'he clock skew between two nodes of CLK, with respect to a given
layout, is bounded above by f(d), where f is some monotonically in-
creasing function and d is the positive difference between the (physical)
lengths of the paths on CLK that connect the two nodes to the root.

This assumption is illustrated in Figure 3-1. The two circles connected by the

dashed line have clock skew between them which is no more than f(d), where d is

the length of the crosshatched segment. This segment represents the difference

between the cells' distances to their nearest common ancestor in the clock tree.

Figure 3-: Skew in the difference model.

As systems grow, small variations in electrical characteristics along clock lines can

build up unpredictably to produce skews even between wires of the same length. In

the worst case, two wires can have propagation delays which differ in proportion to

the sum of their lengths. Especially since it is not possible to tune the clock network

of a system on a single chip. Section 3.5 considers a model in which the skew

between two nodes depends on the distance between them along the clock tree.

Formally, the sunmafion model (so called because the distance between two nodes is

the sum of their distances from their nearest common ancestor, while the difference

measure used above is the difference between those distances) uses the following

upper and lower bound assumptions:

¢ . . . -. .A% . . . . -. . , ,
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(AIO) The clock skew between two nodes of CLK, with respect to a
given layout, is bounded above by g(s) where g is some monotonically
increasing function and s is the (physical) length of the pah on CLK
that connects the two nodes.

(All) The clock skew between two nodes of CLK, with respect to a given
layout, is bounded below by /3s where P3 > 0 is some constant and s is
the (physical) length of the path on CLK that connects the two nodes.

Figure 3-2 illustrates these assumptions: here both the upper and lower bounds on

the skew between the two communicating cells depend on the entire length of the

path between them, which is the sum of their distances to their nearest common

ancestor in the tree.

Figure 3-2: Skew in the summation model.

The two models of clock skew introduced above can be formally derived as fol-

lows, for the case when both functionsfand g are linear. Let h, and h,, with hI a h,

be the distances of any two cells to their nearest common ancestor in the clock tree.

Let m+ e and m-e be the maximum and minimum time, respectively, to transmit a

clock signal across a wire of unit length, where e corresponds to the variations in

electrical characteristics along clock lines. Then the clock skew a between the two

cells can be as large as

= h,(m + e) - h(m - e) = (h, - h2)m + (h1 + h2)e.

Noticing that d= h, - h2, s= h, + h,. and s_> d2: 0, we have

(m+ e).s a = nd+ e-s a e.s.

We see that the upper and lower bounds correspond directly to assumptions

(AO) and (All) used in the summation model, while the difference model covers

the case when terms involving e can be ignored.

-. --
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3.4. Clocking under the difference model

Assuming the basic model defined in Section 3.2, along with condition (A9),

which states that the skew between two cells is bounded above by a function of the

difference between their distances from the root. we note that only a bounded

amount of clock skew will occur if we ensure that all nodes in COMM are equidis-

tant (with respect to the clock layout) from the root of CLK. This can be achieved

for any layout for COMM of bounded aspect ratio, without increasing the area of

the layout by more than a small constant factor, by distributing the clock through an

H-tree [381. This scheme is illustrated for linear, square, and hexagonal arrays in

Figure 3-3, in which heavy lines represent clock edges and thin lines represent

communication edges..

(a) (b) (C)

Figure 3-3: H-tree layouts for clocking (a) linear arrays,
(b) square arrays, and (c) hexagonal arrays.

More precisely, we have the following result:

Lemma I: For any given layout of bounded aspect ratio, it is possible
to run a clock tree such that all nodes in the original layout are equidis-
tant (with respect to the clock tree) from the root of the tree, and the
clock tree takes an area no more than a constant times the area of the
original layout.

By a theoretical result [1] that any rectangular grid (for example, an n3xn"/ grid)

can be embedded in a square grid by stretching the edges and the area of the source

grid by at most a constant factor, we have the following theorem:
Theorem 2: Under the difference model of clock skew, any ideally

synchronized processor array with computation and communication
delay 8 bounded by a constant can be simulated by a corresponding
clocked system operating with a clock period independent of the size of
the array, with no more than a constant factor increase in layout area.
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3.5. Clocking under the summation model

This section relaxes the assumption of the previous section by using the sum-

madon model rather than the difference model for clock skews. The clock skew

between two nodes of CLK. with respect to a given layout, is related to the

(physical) length of the path on CLK that connects the two nodes. Note that

because the summation model is weaker than the difference model, any clocking

scheme working under the summation model must also work under the difference

model. The reverse of the statement is not true, however. For example, the clocking

scheme illustrated in Figure 3-3(a) for linear arrays may not work under the sum-

mation model, since two communicating cells (such as the two middle cells on the

left side of the layout) could be connected by a path on CLK whose length can be

arbitrarily large as the size of the array grows. In the following we give another

clocking scheme for linear arrays that works even under the summation model for

clock skew; in addition, we show that it is impossible, under this model, to clock a

two-dimensional array in time independent of its size. In this sense, linear arrays are

especially suitable for clocked implementation.

3.5.1. Clocking one-dimensional processor arrays

Given any ideally synchronized one-dimensional array (Figure 3-4 (a)), we

propose a corresponding clocked array (Figure 3-4 (b)) obtained by running a clock

wire along the length of the one-dimensional array.

0 (a) data

clock(b)

data

* Figure 3-4: (a) Ideally synchronized one-dimensional array

and (b) corresponding clocked array.

By (A 10) the maximum clock skew between any two neighbors is bounded above by

a constant g(s), where s is the center-to-center distance between neighboring cells.

* Thus we have the following result:

Theorem 3: Under the summation model of clock skew, any ideally

.0 . . ' . -i . '
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synchronized onc-dimcnsional processor array with computation and
communication delay 8 bounded by a constant can be simulated by a
corresponding clocked system, as illustrated in Figure 3-4. operating at a
clock period independent of the size of the array.

Skew between the host and the ends of the array can be handled similarly by

folding the array in the middle (Figure 3-5), and the array can be laid out with any

desired aspect ratio by using a comb-shaped layout (Figure 3-6).

With the clocking schemes illustrated, we see that the clock period for any one-

dimensional processor array can be made independent of the size of the array. As a

result, the clocked array may be extended to contain any number of cells using the

same clocked cell design. These clocked schemes are probably .he most suitable for

synchronizing one-dimensional arrays due to their simplicity, modularity and expan-

dability. Note that one-dimensional arrays are especially important in practice be-

cause of their wide applicabilities and their bounded I/O requirements [26].

Figure 3-5: Array folded to bound skew with host.

3.5.2. A lower bound result on clock skew

We show here that the result of Theorem 3 for the one-dimensional array cannot

be extended to two-dimensional structures. Consider any layout of an nxn array

clocked by a global clock tree CLK: the nodes of CLK include all cells of the array.

Let a be the maximum clock skew between two communicating cells of the array.

We want to prove that a can not be bounded above by any constant independent of

0 n. We use the following well known result (341:

Lemma 4: To bisect an nxn mesh-connected graph at least c.n edges
have to be removed, where c > 0 is a constant independent of n.

Bisecting a graph means partitioning the graph into two subgraphs. each containing

about half of the nodes of the original graph. Here for the nxn mesh-connected

graph we assume that none of the subgraphs contain more than (23/30). in nodes.

0.:
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host

Figure 3-6: Comb layout of a one-dimensional array.

(The choice of 23/30 simplifies the proof.) We also use the following simple lemma

without giving a proof.

Lemma 5: For any subset .11 ofac least two nodes of a binary tree.

there exists an edge of the tree such that its removal from the tree will

result in two disjoint subtrees, each having no more than two-thirds of

the nodes in M.

The n cells of the nxn array form a subset of nodes of CLK. By Lemma 5 we know

that by removing a single edge. CLK can be partitioned into two disjoint subtrees

such that each subtree has no more than (2/3).n2 cells. Denote by A and B the sets

of cells in the two subtrees. Let u be the root of the subtree that contains cells in A.

* Consider the circle centered at u and with radius a/l, where P is defined in

(All) (Figure 3-7(a)). If there are > (l/0)-n2 cells inside the circle, then by (A2)

w~a fl)'- iF10,or ar U= )

,-- and thus a cannot be bounded above by any constant independent of n. Suppose

now that there are fewer than (1/10).n2 cells inside the circle. Note that any of those

..0. _ . - , , . . . : ." ) - - .. . , . . . . .' . . •
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cells in A which are outside the circle cannot reach any cell in B by a path on CLK

with (physical) length < a/,. Thus these cells cannot have any communicating cells

in B (with respect to the nxn array), since by (All) the clock skew between these

cells and any cell in B would be greater than P. al = a, and the clock skew be-

tween any two neighboring cells is assumed to be no more than a. Now let A be the

union of .-I and the set of cells in the circle, and B be B minus the set of cells in the

circle, as in Figure 3-7(b). Then A and B form a partition of the nxn array, and each

of them has no more than (1110). nt + (213)-n: = (23/30). -n cells. From Figure

3-7(b), we see that any edge in the nx n array connecting a cell in A and a cell in

must cross the boundary of the circle. Since the length of the boundary is 21ra'/,

by (A3) A and BRare connected by no more than 21rTa/O edges. By Lemma 4 we

have 2 alp a c-n, or

a = W

Therefore as n increases, a grows at least at the rate of n: we see that it is impossible

to run a global clock for the nxn array such that the maximum clock skew a

between communicating cells will be bounded above by a constant, independent of

A B AB

ci U ci

,._
(a) (b)

Figure 3-7: (a) original partition and
(b) new partition of the communication graph.

The above proof for two-dimensional mesh graphs can be generalized to deal with

other classes of graphs. For the generalization, we need to define the minimum

bisection width of a graph [491, which is the number of edge cuts needed to bisect the

graph. For example. by Lemma 4 the minimum bisection width of an nxn mesh-

connected graph is O(n). We have the following general result:

0
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Theorem 6: Suppose that the minimum bisection width of an N-node
graph is P(W(,V)) and W(,N) = O(VrN-). Then

= f2(W(N)).

Since under the summation model of clock skew two-dimensional nxn processor

arrays cannot be efficiently implemented by clocked controls, their implementation

should be assisted by some self-timed scheme as discussed in the next section.

3.6. Hybrid synchronization

In the absence of the invariance condition (A), in which case pipelined clocking

fails, or for communication graphs with asymptotically growing clock skews under

the summation model, global clocking is unable to provide constant clock rates as a

system grows. In this case, an scheme similar to one described by Seitz [44], where

local clocks are controlled by a self-timed handshaking synchronization network, can

be used.

In this approach, we break up the layout into bounded-size segments called

elements, and provide each element with a local clock distribution node. The clock

distribution nodes employ a handshaking protocol to synchronize among them-

selves, and then distribute clock signals to the cells in their elements. Given assump-

tions about the maximum delay of a computation node and its communication

wires, we can clock the cells in each element in constant time. This structure is

illustrated in Figure 3-8, in which the heavy lines and black boxes represent the

self-timed synchronization network, and the narrow lines represent local clock dis-
.S. tribution to the cells in each element. Note that the subordination of the local clocks

to the self-timed network avoids the possibility of synchronization failure due to a

flip-flop entering a metastable state, since an element stops its clock synchronously

and has its clock started asynchronously.

This provides the asymptotic performance of a self-timed system by making all

synchronization paths local, while isolating the self-timed logic to a small subsystem

and allowing the cells to be designed as if the entire system were globally clocked.
The hybrid approach has the additional advantage that a single synchronization

• L ' - "
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Figure 3-8: Hybrid synchronization scheme.

design can be used for many different structures. This simplification of the usual

fully self-timed scheme is made possible by the fact that we are willing to assume a

maximum delay for the cells; this is the same assumption made in ordinary clocked

0 schemes. Note that we are willing to let the entire array operate at worst-case cell

speed, since even a fully self-timed array would usually wind up operating at that

speed regardless.

3.7. Practical implications

This section addresses some practical aspects of the material of this chapter.

Perhaps the most important practical issue raised in this study is the question of the

use of pipelined clocking on chips: this section discusses some of the potential limits

to this technique, and presents some simple experimental evidence suggesting its

practicability. It also discusses the practical relevance of the difference and sum-

mation models of clock skew.

The practicality of pipelined clocking hinges on two issues: the limitations of the

uniformity assumption (A), and the delay associated with distributing clocks in a

conventional fashion. Pipelined clocking only makes sense if clock event trans-

* mission is uniform enough to gain an advantage over equipotential clocking.

This relationship, in ru. depends on the relative speeds of logic and intercon-

nect. Pipelined clock trees, with short interconnection paths, will run at logic switch-
ing speeds (to the extent that uniformity obtains.) The speed at which equipotential

clock trees can run is determined by the impedance of the interconnect and by its

0o.
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physical dimensions. We would thus expect pipclincd clocking to be most ap-

plicable where switching speeds arc high and interconnect is long and has high

impedance; for example, wafer-scale gallium arsenide may be a likely candidate.

The uniformity of transmission of clock events is subject to a number of factors.

One obvious limitation is the uniformity of a buffer in passing rising and falling

edges. For an nMOS supcrbuffcr, for example, making transit times for rising and

falling edges the same requires careful circuit tuning, and the resulting circuit will be

very sensitive to manufacturing process parameters. One solution to this problem is

to make each buffer respond only to rising edges on its input, and generate its own

falling edges with a one-shot pulse generator. This solution has the disadvantage

that the pulse width must be either wired into the circuit or programmable by some

means. This may actually be convenient in some cases, if the pulse generating

circuitry can be designed to model the delay of the logic circuitry. Beyond static

considerations, however, the transmission of clock events can also be affected by

noise, for example internet capacitive coupling in MOS circuits. This problem can

only be avoided by careful design, and further research is needed in estimating its

magnitude.

Another, simpler approach to the rising/falling edge problem is to build a dis-

tributiori line as a string of inverters. If the impedance of the outputs of the odd

inverters is the same as that of the even inverters, rising and falling edges should

traverse the string at essentially the same speed. Although this approach eliminates

any inherent bias in favor of one type of edge, it does not result in speed inde-

pendent of the length of the inverter string. Assume that the discrepancy between

r.sing and falling transit times for a pair of inverters is normally distributed with a

mean of zero and variance V. The sum of the discrepancies of n inverter pairs will

be similarly distributed, with variance nV. If a fixed yield, independent of n is

desired, chips with a discrepancy sum proportional to the standard deviation, hence

proportional to Vn", must be accepted. Since a minimum condition for a given

chip to run with cycle time Tis that the sum of discrepancies be no greater than T,

some chips will run with cycle times at least proportional to vT. The constant

factors involved may still be small enough, however, to make this scheme feasible in

practice.
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As a simple trial of practical issues, an nMOS chip consisting of a string of 2048

minimum inverters was designcd, without any special attention paid to making in-

terconnect impedance uniform. An equipotential single phase clock signal could be

run through the entire string with a cycle time of approximately 34 I.s: even with the

disadvantage of a slight bias in the circuit design toward falling edges, a pipelined

clock could be run with a cycle time of 500 ns. 68 times faster. The same speedup

was observed on five separate chips. indicating that the effect of the bias in the

circuit design dominated the type of probabilistic effects described above.

Assuming that transit times and any discrepancy between rising and falling edges

scale linearly, a similar inverter string of any length could be clocked 68 times faster

in pipeline mode than in equipotential mode. This figure does not indicate that

pipelined clocking is actually applicable in this case; a chip of this size in this

technology could easily be clocked with a 50 ns cycle time with a well-designed.

low-resistance equipotential clock. However, it does suggest that pipelined clocking

may well be feasible where switches are fast and wires are slow.

The second practical issue related to this work is the question of the applicability

of the difference and summation models of clock skew. First, both models apply

only where pipelined clock distribution is possible; otherwise, clock period in-

evitably grows with the system and the only means of improving performance are

technology improvement, clever design. and self-timing. For the difference model

to apply and for H-tree or other equidistant clocking schemes to be useful, it must

be possible to closely control the "'length" (that is. the delay characteristics) of the

clock tree. This is possible in systems where wires are discrete entities that can be

Stuned, and indeed this is common practice in such systems. Whether this is true for

integrated circuits is another question, hinging on the variability of the fabrication

process and on noise characteristics.

The summation model is much more robust. Given the possibility of pipelined

clocking, almost any imaginable means of transmitting clock events will have the

property that cells close together on the clock tree will have bounded skew between

them. We can thus be confident that linear arrays and similar structures will work as

well as pipelined clocking can work.

..0
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3.8. Concluding remarks

In this chapter, we have analyzed the effect of clocked synchronization on the

performance of large processor arrays. We have identified the key issues on which

this depends (clock delay and clock skew), and proposed means of implementing

pipelined clocking for integrated circuits. We have considered two models of the

dependency of clock skew on layout properties, and derived upper and lower

bounds for the performance of processor arrays of varying topologies. The key

results here are that one-dimensional arrays can be clocked at a rate independent of

their size under fairly robust assumptions, while two-dimensional arrays and other

graphs with similar properties cannot. We have also discussed some of de practical

implications of these theoretical results.

This study has concentrated on the interaction of clock skew models with the

communication structure of arrays with bounded communication delay; future work

should also examine cases where asymptotically growing delays occur. One inter-

esting such case is that where the communication graph COMM, neglecting edge

directions, is a binary tree. It has been shown that a planar layout of a tree with N

nodes of unit area must have an edge of length Q(V-N /logN) [41]. Under the

summation model of Section 3.5, then, if we make the additional assumption that

communication delays grow with path length in the same way as clocking delays, a

tree may be clocked at no loss in asymptotic performance simply by distributing

clock events along the data paths.

Furthermore, if COMM is acyclic, as in the tree machine algorithms described in a

paper by Bentley and Kung [6], and the ratio between lengths (in the layout) of any

two edges at the same level in the graph is bounded, pipeline registers can be added

on the long edges, with the same number of registers on all of the edges in a given

level. This makes all wires have bounded length. thus causing the time needed for a

cell to operate and pass on its results to be independent of the size of the tree.

Adding the registers increases the layout area by at most a constant factor, since they

in effect just make wires thicker. For example, an H-tree layout has this property,

and allows a tree machine ofV nodes to be laid out in area O(N) with delay

through the tree of O(V"-Y') and constant pipeline interval.

0
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-. 4Serialized Implementations

Bit-serial implementations of systolic algorithms are attractive for reasons of ease

of design, high clock rates and flexible word length. Their ease of design arises from

their construction from many bit-serial arithmetic parts, which are small and are

replicated many times, giving the design a high regularity factor. Clock rates are

potentially higher than in systems using parallel arithmetic, as no provision need be

made for carry propagation or broadcast of operands (as, for example, in a parallel

multiplier). The systems of interest in this chapter are not those which use serial

arithmetic and I/O to reduce hardware and pincount at the expense of throughput,

but rather those which aim to increase throughput by using many serial cells in

parallel at high clock rates.

This chapter deals with two aspects of serial implementations: their design and

their cost and performance. In the first section, we show how serial arrays can be

derived, in two steps, from word-parallel arrays of inner product cells. We also

explain the derivation of two previously described bit-serial convolution

arrays [12, 131 in these terms. In the second section, we consider the costs and

benefits of serial arrays, and list some factors which determine the optimal degree of

serialization.

0? . ..
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4.1. Serializing word-parallel arrays

Two transformations on combinational logic blocks are fundamental in deriving

-bit-serial arrays from word-parallel arrays. The first involves serializing computa-

tions in order to reduce the amount of combinational logic used. The second uses

.. -pipelining to reduce the cycle time of a machine while retaining the original per-

cycle throughput.

- .In the context of this chapter, serialization means breaking up a computation

which is performed combinationally into identical steps, which are then scheduled

serially on a single, smaller piece of logic. Thus serialization is essentially a

hardware-saving operation. A computation will take more steps than the original

parallel implementation, but the time to compute a step is typically smaller. An

example is the case of integer addition, where the avoidance of carry propagation

allows a serial implementation to have a shorter cycle time than a parallel one. Note

that parallel words can be serialized into chunks of any length, not just single bits.

For our purposes, pipelining refers to breaking up a computation into stages

which need not be identical, but for greatest efficiency have identical delays. All of

the original logic is used, but delay registers (latches) are introduced between the

stages so that a new problem can enter each stage as soon as the previous problem

,:03 has completed that stage. Here the throughput in terms of results per cycle remains

the same, but the amount of time needed to perform each cycle is decreased. In

order for simple pipelining to work, individual problem instances cannot depend on

the results of closely preceding instances, since those results will not be ready until

the entire pipeline has been traversed. For example, pipelining of cell computations

in systolic arrays can cause scheduling difficulties in algorithms with feedback [281.

L

4.1.1. An example

We can take an array of inner-product cells, described in terms of parallel mul-

tiplications, and turn it into a serial array in two steps. First, we replace each

multiplier with a parallel adder which is used repeatedly to perform the multiplica-

V tion. This is a serialization transformation. This array has the same timing as before,

in the sense that if we view each adder and its associated registers as an inner-

I'. . .- . : - ..,i:.: -.. . ;.. ,,:- .-. . . .. . . ... ... . . . ... .



Scnaluing word-parallel arrays Si

product cell, the only difference is that multiplication is slower by a factor of the

length of a word. Note also that we can take advantage of the slowdown by serializ-

ing intercell communication without changing any timing relationships.

Next, we pipeline the parallel adders, in effect turning them into serial multipliers.

The result is a serial array. An optimal choice of how the multiplication is serialized

and how the addition is pipelined will depend on the word-level data flow, but will

have only small constant-factor effects. This pipelining step is not affected by the

usual restriction on pipelining mentioned above, since we have serialized the

original system by the same degree, we are now assured of a sufficient supply of

problems to keep the pipeline full, regardless of feedback in the original array.

As an example, consider a standard convolution array [261 where weights are
stored in the cells and the input and result streams flow in opposite directions at

equal speed, as shown in Figure 4-1(a).

Serializing the inner product logic turns the multiplier into a shifting accumulator

built around a parallel adder, and the adder into a serial adder. In each cycle, the

stored weight is conditionally added to the shifted accumulator.

As noted above, slowing down the multiplication also allows data transfer to be

serialized; hence a shift register is supplied for the input stream. The result stream is

generated online with only unit delay at each cell: in each cell, the incoming result

bit is added to the least significant bit of the accumulator. The low-order sum bit is

sent out as the outgoing result, and the carry is retained in the serial adder for the

UJ next cycle.

This serial cell is shown in Figure 4-1(b). For b-bit data and weights, the x bit

sequences are separated by b- 1 + k zeroes. k > r log n1, to allow for the accumula-

tion of n terms of up to 2b- 1 bits. (Alternatively, a major/minor clocking scheme

could be used, where the x's would not move for b- I + k cycles. This would save

register cells, but complicate timing and control.) Each of the x shift registers has

2b- 2 + k cells, so that the least significant bit of x, is used one cycle before the

l corresponding bit of xi,, is used in the cell to the left. This assures that the y

sequence meets bits of the appropriate significance.
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Figure 4-1: (a) Parallel convolver cell, (b) serialized version and
(c) pipelined serial version.

In the pipclining stage, the parallel adder can be pipelined and incorporated with

shifting logic to formn a serial multiplier [31, as in Figure 4-1(c). This scheme results

in the same logical I/0 schedule. but with a smaller cycle time.

4.1.2. Analysis of existing designs

* Evans et at. havc reported a bit-serial systolic convolver [13]. designed without

reference to a bit-parallel algorithm. The convolver, as shown in Figure 4-2. consists

of a stack of serial multipliers, wherc partial products are accumulated by being scnt

downward through the array. Input data pass serially left to right and upwards in

the array, with the rightmost cell in each row passing its input bit to the leftmost cell

of the next higher row. Coefficients circulate serially in each row, one coefficient

per row.

S-.
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Region 3 Region 1
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Figure 4-2: Convolver of Evans, et aL [131.

From the transformational point of view, this algorithm can be seen as a trans-

formed instance of the familiar convolution array of Figure 4-1(a). First. the array is

serialized in a fashion dual to that shown in Figure 4-1(b): instead of keeping the x's

in shift registers and processing the Y's online, we keep the / s in shifting ac-

cumulators and delay each x bit by only one clock cycle in each cell. In pipelining

the conditional adder, we then use the serial multiplier shown in Figure 4-3. Here

the weight bits are shifted left to right. least significant bit first, and the x bits are

shifted right to left, most significant bit first. Each cell of the multiplier has a fixed

significance, so all partial product bits of a particular significance are generated in

the same cell.

The remaining operation needed is the accumulation of the results. One way to

handle this is to keep the result in the multiplier cells. accumulating partial product

bits, and then to add it into the multiplier of the next cel as an external set of partial

0 -
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Figure 4-3: Serial multiplier.

products when all terms are collccted. The alternative adopted by Evans et al..

which has the virtue of avoiding major/minor clock cycles, is to pass each set of

partial products to the multiplier below as it is computed. Final accumulation of all

partial products and propagation of carries takes place at the bottom of the array.

The only remaining feature of the array to be derived is that Evans et aL delete the

least significant bit of each multiplier to save hardware: the bit multipliers are ab-

sent, but the corresponding delay registers remain.

Cony and Patel have reported a different bit-serial convolver [121 in which each

array handles only one-bit weights, and several chips are stacked to use larger

weights. The structure of the convolver with one-bit weights is shown in Figure 4-4.

The input data enters the array from the left, with the least significant bit at the top,

and skewed so that the bits of one input word enter in successive cycles, least

significant bit first. The results travel in a similar pattern, headed to the left. Carries

are passed downward in the array. Weights ("reference" values in the figure) move

downward, so that they can be changed for adaptive filtering.

This design too can be derived by transformation from a word-level design. The

preliminary decomposition of the convolution weights eliminates the serialization

step, as multiplication is reduced to conditional addition. The design of Figure

4-1(a) can also be used here (assuming constant weights: adaptive weights are easily

added) - the only change is that the multiplication becomes a conditional addition

to y. The adders are pipelined in the same fashion as the comparators in Foster and

Kung's pattern matching algorithm [181: each result is computed least significant bit

first, and carries are sent to the next more significant position for the next cycle.

This imposes the time skew seen in Figure 4-4.

The two-step procedure of serializing and then pipelining can be applied to any

data-independent systolic algorithm using parallel multipliers. Data-independent
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Figure 4-4: Convolver of Corry and Patel [121.

algorithms using parallel adders or comparators can be pipelined without first un-

dergoing the serialization step. It is worth noting that there is little hardware savings

to be had by serializing a parallel adder or comparator, as storage for an entire word

of data is required by most algorithms in any case.

4.2. Cost and performance

Bit-serial implementations have two major attractions: simplicity of design and

small cycle time. Design is simplified because there is no need for carry trees (as in

parallel adders) or for global buses (as in parallel multipliers). Cycle time is smaller

because the critical path of the computation is essentially just a single bit operation.

These advantages are countered by additional area required for latches and larger

4 clock drivers (for higher speed and more clock capacitance). Also to be taken into

account are the area and delays of other components of the system. This section

discusses some. of these issues, and points out that in many cases, multiple-bit opera-

tions may be competitive or better. Note that our attention here is directed not to

systems where serialization is adopted for small area, but rather where it is paired

with pipelining or parallelism for increased throughput.
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4.2.1. Area considerations

Bit-serial implementations incur a larger proportional amount of overhead for

non-computational circuitry than do parallel implementations. This overhead may

have several different sources. depending on the structure of the array.

The largest and most tcchnology-independcnt effect is the area devoted to latches.

A bit multiplier in a fully serialized system will normally have four associated latches

(two operand bits, a carry bit and a partial product bit). Since an adder itself does

not require a great deal of circuitry, the latches may double or triple the area of the

cell, depending on technology and the type of latches used.

Another consideration, not found in all systems, is the balance of control circuitry

with data-handling circuitry. Control circuitry may range from none, to one bit per

cell (as in Evans, et a.'s convolver [13]), to the execution logic of a SIMD processor,

to the extreme found in MIMD bit-serial processors. As the non-numeric logic in a

cell expands, it becomes increasingly germane to ask by what proportion the cell

would grow if, for example, two-bit arithmetic were used rather than one-bit. If. for

example, a cell's area would increase by 20% and its cycle time by a factor of 2, the

fourfold improvement in the number of cycles needed to perform a large multiplica-

tion might make the substitution worthwhile. A related question is the intercon-

nection topology of the cells. If connections are nearest-neighbor, the area overhead

of interconnection is small; if a topology with a nonlinear area growth rate is used,

the large number of cells in a bit-serial system may make it uneconomical.

* Yet another factor is the area and complexity cost of rapidly clocking many

latches. For MOS implementation, clock drivers may need to be quite large: for

example. the HP-9000 microprocessor chipset devotes most of one chip to clock

drivers whose output transistors are 55.000 microns wide by 2.1 microns long and

produce peak currents of two to three amperes [351. In general, the ratio between

the area needed to drive the clocks of a serialized array and that needed to drive the

clocks of a parallel array will be similar to the product of the ratio of the number of

latches (greater capacitance requires larger drivers, and gate capacitance dominates

interconnect) and the ratio of clock frequencies (a smaller rise time requires larger

drivers). Since the main advantage of pipelined systems is that clock frequencies can
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increase proportionally with the number of pipeline stages, the area cost of clocking

a sCrialiLed array can be quadratic in the number of pipeline stages.

4.2.2. Speed considerations

The speed at which a chip operates in a system is dependent not only on the

critical path of gate delays in its major computational circuitry, but also on con-

straints imposed by other circuits on the chip, synchronization requirements and the

outside world.

The delay of circuits other than those performing bit arithmetic becomes more

significant as a system grows more complex. A system incorporating, for example, a

barrel shifter or conditional control elements will not be able to run as fast as the

bare bit-serial array.

Internal clock skew and rise and fall times always present a lower bound for chip

clock periods. When the combinational delay of each stage is very small, these times

may represent a significant overhead. The clocking problem can become even more

serious in systems using a one-phase clock, where combinational delay is expected to

prevent flip-flop hold time violations: if the logic is too fast, synchronization errors

may occur. The overhead argument also applies to self-timed systems the time

needed to perform a handshaking transaction will often dominate the time taken by

a bit operation.

The ability of a chip to transmit its results to the outside world also becomes an

issue at very high clock rates. For MOS circuits, a fairly large number of gate delays

is needed to drive package and circuit board leads, which are far more capacitive

than on-chip conductors. Also, the high-speed switching of multiple pins can cause

serious noise problems due to the inductance of the chip's power supply wiring.

The other side of interfacing with the outside world is the speed at which the

outside world runs. System clock rates and I/O bandwidths are often bounded by

technological and engineering considerations that have little to do with on-chip

circuit speeds. Even when these factors are not the limit to system speed. matching a

bit-serial part with a critical path of three or four gate delays to system components
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with a critical path perhaps four times as long requires careful attention to timing

schemes and overall 1/0 bandwidth.

4.2.3. Other considerations

Two other issues can, in some cases, make bit-serial arrays less attractive. These

issues have to do with logic optimization and with inherent parallelism and predic-

tability in applications.

A potential disadvantage of the bit-serial approach is that opportunities for op-

timization and implementation tradeoffs at the cell level are quite limited, due to the

simplicity of each cell and the rather small number of possibilities for its implemen-

tation. When larger combinational units are considered, the possibility of using a

faster and/or smaller algorithm (such as a carry-lookahead adder or a Booth's algo-

rithm multiplier) arises. These approaches reduce the appeal of serial over parallel

implementations. Another possibility for more parallel implementations is a

tradeoff between logic depth and breadth: for example, it may be advantageous to

devote extra gates to implementing a 2-bit multiplication, thereby reducing its criti-

cal path length.

The second point depends on properties of the application being served. To

achieve high throughput, bit-serial systems will be either highly pipelined or highly

parallel. For pipelined systems, the latency in cycles from input to output of a given

bit will be long. For parallel systems. control of the operations being performed will

likely be either global or predetermined, for reasons of control circuitry overhead.

In either case, the predictability or inherent parallelism of the algorithm being per-

formed must be high enough to keep the pipeline full or the processors busy. Thus,

in order to realize in practice the potential throughput advantages of serial arrays,

algorithms must exhibit high regularity. This may pose serious difficulties for

general-purpose machines.

UP
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4.2.4. Examples

This section briefly discusses two existing bit-scrial systems where area and time

numbers are available. Taking some of the above considerations into account, we

suggest possible improvements in area/time performance.

The systolic convolver of Evans. et aL [13, described earlier, is implemented as a

CMOS chip with a minimum clock cycle time of 50 ns. The combinational delay of

a one-bit multiplier cell, however, is given as 15 ns (presumably including latch

setup and hold times). Approximately 2/3 of the area of each cell is apparently

devoted to latches, which are described as relatively small.

Now consider a similar chip in which the combinational building block is a 2x2

parallel multiplier-accumulator, but the same total number of full adders is used.

An upper bound on the area devoted to four full adders in the new design is the

corresponding area used in the old design. less half of that portion devoted to

latches. Thus the total chip area devoted to the multiplier array would shrink by

about 33%, and smaller clock drivers could be used. Offsetting this area advantage

would be an increase in the combinational delay of each cell (throughput per clock

cycle remains the same, and latency decreases). Since the new cells should presum-

ably have a delay of no more than 30 ns and since pipelining allows them not to

reside in the chip's critical timing path, this area savings can be achieved at no cost
in performance. There is, however, a price to be paid in design complexity.

A case with significantly higher overhead is MPP [51, the Massively Parallel

Processor. MPP is a bit-serial SIMD multiprocessor structured as a 128x128 grid.

The machine is built of high-speed CMOS chips, each of which holds eight bit-serial

processing elements and runs with a cycle time of 100 ns. In this case. making each

PE capable of handling two bits at a time would have little effect on total area or on

cycle time, but could double (or quadruple, in the case of integer multiplication)

throughput. This might not be feasible for reasons of I/O bandwidth to PE

memory. Even if the number of PEs on a chip were reduced in order to make

two-bit computation feasible, however, there would sull be some improvement in

throughput for a given hardware investment. Simplicity of programming will favor

the single-bit structure in many applications, howe~er.
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Dictionary Machines-
A Case Study

This chapter contains a case study in the design of parallel algorithms and ar-

chitecture, incorporating many of the criteria needed in making implementation

decisions for special-purpose systems. The application addressed is the dictionary

problem: performing a group of dictionary operations (INSERT, DELETE,

EXTRACTMIN, NEAR, etc.) on a set of keys. A number of tree-structured mul-

tiprocessor designs have been proposed for this problem. These designs typically

use one processor for each key stored and operate with constant throughput, assum-

ing unit time to communicate and compare keys. This assumption breaks down in

applications with long keys. This chapter describes a machine which uses a number

of processors proportional to the maximum length of a key to achieve constant

throughput, regardless of key length. This design has important practical advantages

over the family of tree-structured machines, and demonstrates that processor-

intensive VLSI structures are not always the best route to a high-performance sys-

tem.

5.1. Introduction

The dictionary task can be loosely defined as the problem of maintaining a set of

keys drawn from some ordered domain: often some indivisible piece of information,

a record or pointer to a record, is associated with each key. Maintaining the key

database consists of performing a series of update and query operations on its con-

tents. A typical set of operations includes some subset of the following:

INSERT add a key to the database.
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DELETE remove a key.

FIND determine whether a key belongs to the database (and return its
associated information).

IXTRACTMIN remove and report the lowest key in the database.

" EXTRACTMAX remove and report the highest key in the database. (Some data

structures can support EXTRACTMIN or EXTRACTMAX, but not
both simultaneously.)

NE,\R report the stored key closest in the domain ordering to a
specified query key.

The INSERT and DELETE operations come in two flavors: redundant and non-

redundant. An insertion is redundant when the key being inserted already exists in

the database: a deletion is reduncant when the key being deleted does not exist.

Allowing redundant operations is more natural in some applications than forbidding

them (for example, a user might wish to insert a key without knowing or checking

whether it already exists), but can cause difficulty in pipelined implementations.

A great number of useful computations can be cast in terms of the dictionary task.

The simplest example is a symbol table (or dictionary), where only the INSERT,
DELETE, and FIND operations are used. Another example is priority queues, which

use INSERT and -TR.ACTMIN (and EXTRACTMAX, if the queue is actually a deque).

A median filtering algorithm could use INSERT, DELETE, and -ETRACTMIDDLE",

0i which can be implemented by using the other EXTRACT operations on a bisected

database. Pattern matching systems might use INSERT. DELETE, and NEAR.

In general. the best implementation of the dictionary operations for a particular

application will depend on the number and size of the keys to be stored, on the

particular set of operations to be performed, and on the cost/performance goals of

the system. This study first reviews a few serial algorithms for some versions of the

dictionary problem. It then surveys a family of tree-structured algorithmic

machines [2. 32, 40, 45] which have been proposed as high-performance solutions.

along with a tree algorithm which runs on a linear array of processors [10). Finally,

it proposes a new parallel algorithm, based on a linear array of a small number of

processors with large memories, which has important advantages over the tree ar-

chitectures and is preferable to the previous linear array architecture in many cases.
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Details of the tree machines, a cost estimate for the new algorithm, and an

asymptotic analysis of the various algorithms are described in Appendiccs 5.A,

5.B and 5.C.

A note on notation: Following Ottmann ei aL [40], the variable n is used to denote

the number of keys stored in the database at a particular time, and N to dcnote the

maximum number of keys that may be stored. Two types of time complexity are

considered: latency, the rime elapsed between the initiation and completion of a

query, and pipeline period, the minimum time between the initiation of two separate

operations. The pipeline period of an algorithm is inversely proportional to its

throughput. We will also distinguish, in complexity expressions, between key com-

plexity (storing or operating on entire keys) and symbol complexity (dealing with

* symbols drawn from a finite alphabet). This distinction is needed to compare al-

gorithms which treat keys as unit objects with those that treat keys as strings of

symbols. Complexity functions in each case are written Ok(f) and O(/), respec-

tively. The function "log" represents the base 2 logarithm.

5.2. Previous solutions

This section briefly reviews two types of realizations of the dictionary task: serial

algorithms and parallel algorithmic architectures. Four serial algorithms are illustra-

tive in this context. Each is informally summarized here: details can be found in

Knuth [23]. Also briefly surveyed are a family of tree-structured parallel architec-

tures and a linearly structured architecture: more details on the tree machines are

given in Appendix 5.A.

Hashing Hashing algorithms store Keys in a table, with indices derived from the

keys by a random or pseudorandom hash function. Collisions are resolved by one of

a number of methods. Assuming a uniform distribution of hash values and a table

* that is not too full. the expected time to perform INSERT, DELETE, or FIND is Ok( 1),

though this grows in the worst case to Ok(n). The algorithm uses Ok(N) space.

though this can be reduced to Ok(n) at the cost of occasional reorganization and

Ok(n) worst-case insertion time by doubling the size of the table and rehashing each

* key when the table grows too full.

0
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Heaps A heap is a binary tree of keys organized so that all of a key's descendants

have higher values. lhe worst casc time to exCcute INSERT or EXTRACTMIN is

Ok( log nt). and the algorithm uses OA( n) space. Because of the weak ordering

conditions, the tree is always balanced and can be implemented without pointers.

Balanced trees In this scheme, a binary tree of keys is maintained so that all of a

key's left-hand descendants have smaller values while all of its right-hand dcsccn-

dants have larger values. The tree is kept balanced by rotation operations. All of the

dictionary operations can be performed in Ok( log n) time. Two auxiliary pointers

Uare associated with each key.

Tries [radix trees The name "trie" is derived from "information retrieval": be-

cause its pronunciation either sounds like "tree" or is nonintuitive, the term "radix

tree" is used here instead. Nodes in a radix tree represent prefixes of keys in the

database, represented as strings over some alphabet 7. The root of the tree is the

null string, and a node representing substring a has a descendant corresponding to s

E , if as is also a substring of a key in the database. Figure 5-1 shows a small radix

tree storing six words. All of the dictionary operations can be performed in O(I)
time, where I is the length of the key specified or retrieved.

Figure 5-1: Radix tree.

Since its speed is independent of the size of the database, this method is faster

than balanced trees for large collections of keys. On the other hand. radix trees

require much more space for pointers: one pointer is needed for each prefix. and a

factor of I XI may be wasted in the worst case if nodes are represented as tables.
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This space penalty is ameliorated by prefix sharing, since each prefix in the database

occurs just once. Nodes in the tree where there is no branching offer additional

opportunities for compression. Knuth mentions a few transformations that can be

applied to reduce memory requirements, and many more can be imagined.

Tree architectures At least four differcnt papers in the literature [2, 32, 40. 451

propose tree-structured architectures for the implementation of dictionary opera-

tons. While they differ in detail, they all share some basic principles. A machine is a

rooted, balanced binary tree of processors, each processor holding one or a few keys.

Dictionary operations are broadcast from the root, and arc pipelined along the depth

of the tree. Because of this pipelining, the tree structures have pipeline period

Ok( I), independent of n.

All of these architectures are processor-profligate in the sense that they use 0(N)

processors to achieve only an O( log n) throughput improvement over the serial

balanced tree algorithm. Asymptotically, this is an improvement, at least where n is

not too much smaller than . The algorithm runs faster, and the asymptotic

hardware cost is the same. In the real world, though, if n keys fit in primary storage,

log n is not likely to be much larger than 25 or 30, and a processor takes many more

transistors to build than a few bits of memory. Another issue is that for applications

where duplicate keys are not allowed or are stored as one key with a count the

length of a key in bits is at least log n, and in most cases is several times larger. Thus

it may be possible to break up the processing of a key over several processors, and

achieve a factor of at least log n in parallelism along the length of a key.

In defense of the tree architectures, it should be noted that they offer capabilities

which go beyond dictionary operations, and which require Ok(n) time on a

uniprocessor. These capabilities include parallel modifications of stored keys and

NEAR-style searches where the distance measure is not constrained by the key order-

* ing. Although most of the papers cited do not mention the possibility of using their

designs for anything other than dictionary tasks, they are more likely to be usefil in

solving more difficult problems.

An O(log.V)-processor architecture The many processor-small speedup problem

of the tree architectures has been previously addressed by Carey and

0
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Thompson (101. [hey propose a linear array of O( log N) processors, each of which

stores one level of a special type of Bl-tree. Keys are stored at the leaves of the tree,

and interior nodes hold keys which direct a search to one of two, three, or four

descendants. The tree is balanced by splitting full nodes and merging nearly empty

nodes. The algorithms for all of the dictionary operations can be pipelincd with

pcrod Ok I).

5.3. A level-parallel radix tree algorithm

We have noted two undesirable features of the tree machine designs. The first is

that they use O(V) processors to achieve an O(log n) speedup over uniprocessors.

The second is that, by treating keys as indivisible units, they do not do as good a job

as possible on long keys. Carey and Thompson's design is also subject to the second

cricism. This section proposes a parallel implementation of radix trees that ad-

dresses these problems. It first describes a basic version of the algorithm, along with

a "radix machine" on which it runs, and then indicates some cost-performance

tradeoffs and efficiency tunings. This is followed by a comparison with previous

designs.

5.3.1. The algorithm and the radix machine

The central idea of the parallel radix tree algorithm is to attach a processor to each

level of the tree. starting with the children of the root (. e., the first symbols of the

keys). A machine to execute the algorithm has L processors. where L is the length of

the longest key. Radix tree nodes representing prefixes of length k are stored in a

local memory attached to processor k. The processors are connected in a linear

array in consecutive order. The symbols of each input key arrive at the appropriate

processors from the side of the array, skewed one cycle apart so that the processing

of a key is pipelined along the array. Output keys are produced in a similar fashion.

This organization is sketched in Figure 5-2, which shows several input keys (read

diagonally) approaching from the right. Input symbols which are vertically aligned

will enter their respective processors aL the same time.

The data structure is just as specified above for the serial algorithm, except that a

K. '" ' ta ,t,,mr ,o ,;h ' ....." _
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-a instruction

M1 P1 a b p

. M2 P2 r p a 0

M3 P3 r a P n m

M4 P4 a i n I a e

M5 P5 b a g e n I

M6 P6 a n e L-~J a 0

Figure 5-2: Structure of a radix machine.

descendant count, the number of keys beginning with a partcular prefix, is added to

each node. This count is updated along the length , each stnng that is inserted,

deleted, or extracted. The count is used to allow pipelining of operations that

remove keys from the database.

The procedures for carrying out each of the opcrauons are similar to the serial

case, except for some changes that must be made to accommodate pipelining. If

redundant INSERTS or DELETEs are not allowed. then eer, operation proceeds from

root to leaf. DELETEs and P-XTR\.CTs return nodes to a free list in each memory as

their descendant counts become zero. and INSERTS allocate new nodes as necessary.

If redundant operations are allowed a scheme similar to that used by .\tallah and

Kosaraju (21 is employed. In this approach, insertions are performed as if nonredun-

dant, and if necessary i correction pass is performed from the bottom to the top of

the tree to decrement spuriously incrcmented counters. Deletions arc assumed to be

redundant. and no action is taken on the trip dow n the tree. If the deletion turns out

"LI- - . i . . . . ." -. . --, . . ." .-. .. .
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to be valid, an upward pass is taken which performs the appropriate dccremcnting

of counts and freeing of nodes. Upward passes which bcgin in processors other han

the last arc delayed so that a "round trip" always takes 2L cycles, thus at most one

upward pass is active in a single processor at any timc, and it is always possible to tell

whether a dclction or insertion is valid when the end of a suffix is reached. Note

that this scheme prevents erroneous deletions: the descendant count stored at a node

is always greater than or equal to the eventual "correct" value. Note also that the

information necessary for upward trips, except for a single bit traveling upward

indicating redundancy or nonredundancy, can be stored in a small ring buffer at

each processor.

This scheme limits the pipelining of operations in the following way. An EXTRACT

or a NEAR following within 2L cycles of a redundant INSERT or nonredundant

DELETE can be "fooled" down the wrong path by counts which are erroneously high.

An EXTRACT or NEAR is on the wrong path if it is at a node with only one possible

suffix, and that suffix is about to be deleted by a correction pass which is delayed or

moving upward. If that is the case, the EXTRACT operation will delete nodes as it

moves downward, and the correction pass will delete nodes as it moves upward.

When they meet, the correction pass will stop, since the EXTRACT has already done

its work higher up in the tree, and the EXTRACT will report an error. In the case of a

NEAR operation, the correction phase will proceed undisturbed, and the NEAR will

report failure. Thus the use of redundant operations, while restricting pipelining in

this sense, will not destroy any information in the database. It should also be noted

that, especially in large databases, the probability of a failed EXTRACT or NEAR will

usually be very low.

The correctness of the algorithm can be demonstrated in two steps, which we

outline here. First. note that a serial execution of the algorithm, where all of the

steps corresponding to each operation are completed before the next operation is

begun, has the usual radix tree semantics. Next, we observe that that pipelining

preserves those semantics (except for the possibility of a failed operation. as above).

In particular, the pipelined execution of a series of operations yields the same results

as the serial execution of the same operations with the failed EXTRACTs and NFARS

removed.
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To see that pipelining works, note first that only operations which induce correc-

don passes can cause a change in behavior. since every other operation proceeds in a

strictly top-down fashion. Now we assert that all operations (except failed

operations) have the same effect on the data structurc and return the same results in

the presence of correction passes as in the case where corrections are allowed to

complete before other operations are begun. Failed operations have no effect at all.

Before examining each case, we note that the pipelined algorithm ensures that

each node's count at any given time is at least as large as its "true" value, i e. the

value it would have if all operations in progress below it in the tree were completed

(that is. all downward passes and correction passes finished). This is true because

the completion of operations lower in the tree can only cause a count to be decre-

mented, never incremented.

Now we examine the effect of correction passes on each operation type.

* FIND traces the tree based on the search key supplied as input. If the key
has not been inserted or has been deleted, either part of that path in the
tree will be missing or at least one correction pass will be waiting at the
processor storing the leaf. When processing of the FIND reaches the leaf,
exact information on the status of the string is available because all
related previous operations have arrived already, and the appropriate
answer is reported.

e A N,,R operation fails if and only if it enters upon a single-successor
path containing a correction pass. Otherwise. it always returns the key
nearest to the search key.

An EXTRACT operation appropriately decrements counts, and fails in the
same case as a NE\R operation. In this case it has no net effect on the
data structure. since the decrementation it has performed has merely
accelerated the effects of the correction pass causing it to fail.

If an INSERT operation is redundant, it will always find counts of at least
one on the path leading to the appropriate leaf, where complete infor-
mation on the string's status is available. Thus the redundancy will be
detected and a correction phase begun, as in the serial case. If an INSERT
is not redundant, it will eventually either reach a juncture where part of
the tree structure for the string is missing or reach a leaf representing the
string where correction passes are waiting. In the first case nonredun-
dancy is clear, and in the second case all of the information needed to
make the decision is available at the leaf. In both cases, the appropriate
modifications to insert the string in the tree are made.

0
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SIf a DIiETE is redundant, it will reach either a missing part of tree
structure or a leaf holding correction passes which will eliminate the
string. In either case, the operation will have no effect. If a delete is
nonredundant, it will eventually reach the lcafcorresponding to the
string to be deleted, where full information is available. In this case, a
correction pass will start just as in the serial case.

In summary: a radix machine uses L processors, each with memory capacity for at

most N radix tree nodes. It accepts one operation per cycle, and has a latency of L

cycles for all operations returning an answer. This constitutes linear speedup over

the serial algorithm, and is as fast as possible given unit key bandwidth. Redundant

operations can be performed, with the restriction mentioned above.

5.3.2. Tradeoffs and tuning

This basic algorithm admits a large number of modifications in the interest of

memory savings or speed enhancements. Some of the variations on the serial algo-

rithm can be used, such as the choice between implementing nodes as tables or

linked lists, or the possibility of storing keys with their component symbols reversed.

This section mentions a few other possibilities, many more are possible, especially

given some knowledge of the statistics of the keys to be used.

A fundamental tradeoffis based on the size of the alphabet. If the keys are

expressed in binary, more processors will be used than if the alphabet is larger, and

more pointers will be used per key. On the other hand, this approach speeds the

EXTRACT and NEAR operations. and will cut down on the average number of empty

pointers in a node. possibly resulting in a net savings in hardware. In general, the

radix can be tuned according to key statistics and implementation technology.

More tuning can be done by small specializations of the data structure. For

example. special types of nodes can be used where there is only one descendant.

saving on unused pointer space while keeping an efficient table structure for nodes

with multiple descendants. In addition, only the first single-descendant node in a

chain needs to keep a count, if interprocessor bandwidth is sufficient to carry a

count downwards. An example of the power of the first techniquc is its application

to large databases of English words, where it typically achieves a factor of four to

fhe in memory compression (see Appendix 5.B).

20
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Another opportunity for speed improvement is related to bandwidth between

processors and their local memories, which will probably bc the speed bottleneck for

large databases. Memory transfers to and from the processor can be avoided by

on-memory-board intelligence. In the case where nodes are implemented as linked

lists, a list-scarching unit might be added. Where nodes arc implemented as tables, a

-find first one-bit" device similar to a priority encoder could be used along with a

small, specialized occupancy memory to quickly find the appropriate child in

ER ACT or NEAR searches.

5.4. Comparison of the different architectures

This section argues that, for most dictionary tasks of practical interest, the radix

machines described above are more appropriate than tree machines. In many cases,

they are also superior to the design of Carey and Thompson. The first part of this

argument is given in terms of trends and rough comparisons of cost and perfor-

mance. The second part consists of a description of hypothetical implementations of

the radix machine and a tree machine. Carey and Thompson's scheme is omitted

from the second comparison, as its difference in cost and performance from the

radix machine is very sensitive to the assumptions made, and a specific comparison

made at this level of detail cannot be very informative. An asymptotic counterpart

of this comparison is given in Appendix 5.C.

5.4.1. Comparisons

The different possibilities for the implementation of dictionary operations can be

compared in terms of hardware cost and execution speed. The radix machine and

the Carey-Thompson machine have roughly similar hardware costs: they use a small

number of processors and a large amount of memory. The radix machine may tend

to use more memory, depending on node packing density, alphabet size, and key

length: on the other hand, prefix sharing will tend to reduce memory requirements.

Which system uses less hardware will depend on the characteristics of the keys to be

stored.

On the other hand. the hardware cost comparison with tree achines boils down

,0
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to one between a 1) single processor and O(N) nodes in memory, each holding

some number of pointers, and 2) O(N) small processors. each holding a few keys.

Assuming a reasonable degree of complexity in a processor, and given current rela-

tive densities for memory and processing in, for example, MOS technology, there

are very few cases where a radix machine is not significantly cheaper to build than a

tree machine. The discussion below describes a pair of hypothetical implemen-

tations which support this point.

A comparison of the speeds of the different approaches hinges on the length of a

key. If keys are small enough to be handled in a primitive operation of the machine

in question, radix machines and Carey-Thompson machines should have roughly

comparable performance. Tree machines may have a performance edge, since they

will not need to access large memories and they have slightly simpler data structures.
They will also have long wires, though (see Appendix 5.C), so interprocessor com-

munication delays may dull that edge in large machines.

The picture changes, however, when keys are significantly longer than the native

word size of the machine. While a radix machine approach can maintain constant

throughput by using more processors for longer keys, the other types of machines

* •must either widen their datapaths accordingly or simply serialize the communication

" and handling of keys.

The use of wide datapaths imposes penalties in both hardware complexity and

cycle time. A key in a natural language database, for example, may have more than

100 bits, requiring expensive interprocessor connections and memory buses. Also.

long keys must be compared in a single clock cycle: this comparison requires time at

least proportional to the logarithm of the key length. This approach also has a

negative impact on modularity and flexibility: tree machine chips must be designed

to handle the largest key that can ever be handled, and components for a Carey-

Thompson machine must either be maximum-sized or divide memory access and

comparison arithmetic into slices, making it less convenient to do arithmetic in

logarithmic rather than linear time.

The adoption of the serial approach, on the other hand. causes performance to

. - . . . ,
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degradc in proportion to the length of the keys stored. This effect may, in fact.

reduce the speedup that these approachcs gain over a uniprocessor balanced tree

algorithm. If the number of keys is small compared to the number of possible keys,

a search will usually examine only a few symbols at each node until it reaches the

bottom of the tree, since it will usually find a mismatch very quickly. Thus the Ume

for a serial implementation to perform an operation may not increase in strict

proportion to L. 'he tree machines and the Carey-Thompson machine, on the other

hand, are limited by the need to transfer enure kcys bet%een processors and by the

need to perform a full-length comparison in at least one node in the tree for each

search. Because of this effect, it is even possible that a sparse set of keys could cause

the Carey-Thompson and tree machines to run slower than a serial algorithm with a

simpler inner loop.

Beyond the sheer cost of hardware and the long-key issue, the radix machine has

several other advantages, which are shared by the Carey-Thompson machine. First

off-the-shelf memory chips and bit-slice processor components can be used instead

of custom chips. Besides avoiding the cost of custom LSI design, this allows the use

of technologies which have been highly optimized for different goals: the memory

technology for density, and the processor technology for speed. Custom tree proces-

sors are unlikely to be simultaneously dense and fast.

Second, because each processor can be more expensive than when a million of

them are used, processors can be much more flexible and powerful. Most of the

tradeoffs and performance tunings mentioned in the previous section can be made

without hardware modification. The dictionary operations can be modified and

subtle variations introduced. None of this is feasible with a tree processor whose

control circuitry needs to be as simple as possible.

Finally, a radix machine is not as "singlc-purpose" as a binary tree dictionary

machine. In particular, the parallel radix tree algorithm fits well or' a general-

purpose linearly connected multiprocessor. Such a machine could be extremely

useful in the performance of many regular-structured computations, especially sys-

tolic algorithms. Conversely, given any general-purpose. tightly coupled mul-

uprocessor architecture, it would be fairly inexpensive to add the linear connections

r .,I
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needed to allow the efficient implcmentauon of the radix machine algorithm. Since

a number of memory accesses must be made for each logical cycle, these links would

only need to run at some fraction of local memory speed.

One problem to which the radix machine and, to a lesser extent, Carey and

Thompson's machine are subject is memory allocation between processors. Since

the number of keys stored does not uniquely determine how much memory is

needed at which level of the tree, extra space will usually need to be allocated. This

will often not present a problem in practice, as the statstics of large databases will

usually tend to vary slowly, and memory allocation can be done infrequently at the

board level.

5.4.2. Hypothetical implementations

This section compares radix and tree machines for dictionary operations on

databases of about one million English words. It is reasonable to suppose that

databases much larger or much smaller than this (L e, by a factor of 100 or more) are

not likely to be well suited to these approaches: collections of a few thousand keys

can be quickly accessed by a uniprocessor, and collections of many millions of keys

are likely to be kept in secondary storage.

The comparison uses the following assumptions, which are somewhat biased in

favor of binary tree machines:

* Keys are represented as strings of six-bit bytes. This is well-suited to
alphabetic data. and will help the tree machine to be decomposed onto
low-pinout chips. The maximum key length allowed is 16 bytes.

The tree machine considered is Somani and Agarwal's. which requires

the smallest amount of internode 1/0 among the pure binary tree
machines and wastes the fewest processors among the machines per- "1
forming redundant operations. Since COMPRESS operations need not, in
fact, be done in every cycle, they are not counted here. If Somani and
Agarwal's scheme were followed exactly, the implementation described
here would run twice as slow.

A tree processor (containing key registers, three bidirectional ports, an
ALU, and a relatively complex controller) occupies one mm" of chip
area. A single chip. organized according to a tree decomposition scheme II
proposed by I .iserson 1331, holds 32 processors and four off-chip ports

iiI
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and fits in a 28-pin DIP. (This density is several years from feasibility,
and it is questionable whether the four pins left will suffice for power,
synchronization, and control.)

" Circuit boards for both machines hold 100 28-pin DIPS.

* The radix machine is built using 256K-bit memory chips. Memory
boards use 25 chips for peripheral circuitry. A memory board thus holds
75 x 256K - 6 bytes, more than 3 MB. For simplicity, 3 MB is as-
sumed.

. A processor board holds a processor and .5 M B of memory.

" The memory cycle time for the radix machine is 500 ns.

* Cycle time for the tree machine, dominated by the time to drive signals
between boards, is 250ns.

Given these assumptions, the binary tree machine needs about 30,000 chips and

hence 300 boards. Since each key step potentially requires transmitting a key to and

from the parent node, at least 32 machine cycles, or 8 A.s, are needed per operation.

Based on statistics gathered from several large dictionaries of English words (see

Appendix 5.13), the radix machine (using a special representation for nodes with only

one successor) would need 16 processor boards and 26 extra memory boards, for a

total of 42. Especially since 25 chips on the memory boards is enough to build in

some intelligence, it is reasonable to assume that one logical cycle can be carried out

within 16 memory cycles, or 8 us. thus achieving the same performance as the tree

machine with about 14% of the hardware cost. Appendix 5.B further indicates that a

tree macLne with any set of one million 16-byte keys will require less than 40% as

much hardware as a million-node tree machine.

5.5. Conclusions

The discussions above show thaL in most practical cases. a radix machine with a

small number of processors is preferable to a tree machine for rapid execution of

dictionary tasks. In addition to lower hardware cost and higher speed for longer

keys, the radix machine has practical advantages of implementability, flexibility, and

generality. Where keys are relatively short and their statIstics causc poor utilization

of a radix machine's memory. Carey and Thompson's design ma. be preferable.
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yTree machines can b expectecd to be of more value in applications where a query or

update requires Ok(n) time on a uniprocessor.

More generally, this example serves to show that VLSI architectures with large

numbers of processors are not always the best approach to constructing high-

performance systems. Especially where asymptotic performance gains are small and

the asymptotic growth in processor count is large. architectures with fewer proces-

sors and more memory may be preferable.

U
5.A. Tree machines

This appendix describes the tree machines discussed briefly in Section 5.2. It

begins by describing a very simple linear pipeline architecture that can perform the

dictionary operations, and then treats each of the tree architectures in turn.

A very straightforward architecture implementing some of the dictionary opera-

tions is Kung and Leiserson's systolic priority queue [321, which uses a linear array

of N processors, each storing one key, to perform INSERT and

EX'TRACTM IN operations. Each of these operations is performed with Ok( 1 ) period

and latency. Leiserson notes that this scheme can be extended (by folding the array

in half) to include the E<ACTMAX operation. maintaining the same performance.

In fact, the DELErE. FIND, and NE.AR operations can also be added, although the

latter two have Ok(n) response time. Insertions and deletions may be redundant-

In the same paper, Leiserson also gives a binary tree architecture (again, designed
.0 only as a priority queue) that can support all of the dictionary operations, barring

redundancy, with Ok 1) pipeline period. The EXTRACTMIN operation has latency

Ok 1 ). and the other value-returning operations have latency Ok( log ,V). If a

DELETE is redundant, a valid key can be destroyed: if an INSERT is redundant, a hole
0

in the data structure is created which wastes a processor. It might be noted that the

folding trick mentioned above can bring the latency for L-X'RACTMAX down to

O( 1).

Ottman ci al. [40] give a tree machine design whose topology is actually an X-tree.

where all of the nodes on one level of the trce are strung together in a row. This

,Sm m m k '.h-.. -- '--- a "" "" " ',
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feature makes implementation less convenient. Their design cuts Leiscrson's log.V

latencies down to log n. This design also supports redundant insertions and dele-

dons with the use of COMPRESS operations which eliminate holes in the data struc-

ture. The cost of this flexibility is that 0(n) holes may exist at any time, wasting

that many processors.

Atallah and Kosaraju [2] describe an improved design that has all of the properties

of the previous one except that it supports EXTR.\CTMIN with Ok( I ) latency and has

a pure binary tree structure. This design still suffers from the wasted processor

problem.

Most recently, Somani and Agarwal [451 have proposed a tree-structured machine

in which the keys are unordered, which simplifies the algorithm in some respects. It

also allows a scheme for handling redundant operations in which only log n proces-

sors can be wasted. Their method of keeping the tree balanced. however, does not

lend itself to modular implementation. Inserted keys are added at the bottom of the

tree across its breadth, rather than on one side, as in some of the other machines. As

a result, the machine can be conveniently enlarged only by factors of two. The other

machines, if decomposed onto chips according to Leiserson's scheme [33], may have

any number of processors in the bottom level of the tree which is a multiple of the

number of leaf cells on a chip.

Table 5-1 summarizes the latencies and some other properties of these machines.

XMIN and XMAX abbreviate EXTRAcTM[N and EX\TRACTMAX. and the machines are

listed by first author.

5.B. A radix machine size estimate

This appendix estimates the memory requirements for a radix machine, as

U described in Section 5.4, containing one million keys of up to sixteen six-bit bytes.

An estimate is made based on a large colIecuon of English words, and a crude worst

case giving an absolute upper bound is also given.

The English language statistics used here are drawn from an online copy of

-4
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Table 5-1: Tree machine latencies.

machine FIND XMIN XMAX comments

redundant INSERT/DELETE
Leiserson IogV I ogN corrupts database.

redundant operations OK.
Ottmann log i I log 1 up to n wasted processors.

X-tree topology.

Atallah log n I 1 redundant operations OK.

up to n wasted processors.

redundant operations OK.
Somani log n log n log n up to log n wasted processors.

1 1not modular.

Webster's Second International dictionary, containing 235,405 words. Several

smaller wordlists were also consulted, with similar results. Memory requirements

for one million words were extrapolated from dictionary measurements by scaling

by a factor of 4.5, thereby adding a 5% margin of extra capacity.

Radix tree nodes are represented as tables with twenty-six entries, with one

specialization. Nodes with fewer than two children are coded in nine bytes: one for

a character, four for an address, and four for a count. The space required for these

nodes could be reduced further by eliminating all but the first count in a string of

such nodes (most nodes would then require just four bytes), but that option is not

taken here to avoid the proliferation of node types. Nodes with more than one child

are allocated 108 bytes, four for each descendant address and four for a count.

Of about 3.4 million nodes required. about 87% have no more than one child.

This allows a reduction in node space by a factor of slightly less than five. The

number of boards required per processor is as follows, for a total oC42:

P: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#:1 1 2 3 4 5 5 4 4 3 2 2 2 2 1 1

It is also interesting to consider the worst-casc memory requirements, where every

word is sixteen characters long and nodes are used as ineficlcently as possible. An
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u exact calculation of the worst case is difficult, since the tradcoff between sharing and

node cfficiency is complex. As a crude upper bound, however, note that at most one

million large nodes can be used to produce one million leaves. Furthermore, at

most 16 million small nodes can be used, one per key per processor. The small

nodes account for 3 memory boards per processor. The large nodes require 108

Mbytes, or 36 boards' worth: disregarding memory on processor boards and assum-

ing the worst possible distribution of nodes over processors, at most 16 extra boards

are needed, for a total of 52. Faking this figure, adding both (incompatible) worst

cases together, and including processor boards yields a total board count of 116, still

significantly fewer than needed for a tree machine.

5.C. A theoretical comparison of dictionary machines

This section compares the asymptotic time and hardware complexities of the two

types of schemes, and gives some observations on how these results should be inter-

preted. The main difficulty with asymptotic measures in this case is that many of the

interesting comparisons to be made hinge on factors of log .V, which cannot in

practice be very large; in fact, the "constant factors" which are disregarded in such

analyses are often of equal importance. Nonetheless, an asymptotic point of view

provides a framework within which very different structures can be compared.

IIn assessing time and hardware requirements, we will in fact discuss three quan-

tities: hardware area, pipeline period in basic machine cycles, and the amount of

time needed to perform a machine cycle. The product of the latter two quantities

gives the actual period. Machine cycle time will depend on maximum wire lengths

in the machine, which are in tun derived from the hardware area.

One extra complication arises in comparing quantities of O ) and 0 s(). In what

follows. L, the bit length of the longest possible key, is taken to be 0( log.V).

Hardware area A binary tree machine has V processors, each of which stores

L = 8( log .V) bits of data. Hence its total area is i( Vlog ). A radix machine has

L = 8( log N) processors, each with a memory holding, in the worst case, N nodes

containing log N-bit pointers. The total hardware complexit. of this machine, then,

is O(NV log.V). In practice. the factors of log N are of questionable import. since

......A. --- ------ - - ...
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the major comparison to make is betwccn one processor per word and some small

multiple of logN bits of memory per word.

Machine cycles A pipeline period for the radix machine takes 0( 1 ) cycles, inde-

pendent o' the size of the kes or of the size of the database. The pipeline period for

a tree machine depends on whether keys are handled serially or in parallel. If they

are handled serially, L = 0( log .V) cycles are needed. If they are handled in parallel

only 0( 1 ) cycles arc necessary, but this will t pically be a very costly option.

Cycle time Following the method of Paterson, et al. [41], it is easy to show that the

smallest possible maximum wire length for a binary tree machine is

2(V N log N / log N). or Q(V7,V /ogV). The longest wire in a radix machine

processor memory will be on the order of the diameter of a single memory array, or

SO(v logN).

The question of how to derive delays from wire lengths is complex. A simple

asymptotic lower bound, delay = £(wirelength). is given by the speed of light.

* Depending on conditions, models ranging from 8( 1) to O(wirelength:) may be

appropriate [37]. In practical cases, where most of the wire length is off-chip and

systems are physically small enough that other effects dominate the speed of light,

delays are less than linear in wire length. Thus the log.V difference in longest wire

length in this case is probably insignificant.

Results The two schemes are roughly comparable in asymptotic complexity, with

the tree machines having a log ,V advantage in area and wire length, and the radix
machine having a log .V advantage in cycles needed for a pipeline stage over a

serialized tree machine. As the example in Section 5.4.2 shows, the two complexity

factors that are most telling in practice are the (constant) difference in cost between

a processor and a small amount of memory, and the time cost of having a byte-senal

machine.

0 - . . .- -, -... . .. ..... .. .. : . .i " . , -- : . ..- .. ' ._ • " - " ' _
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Conclusions

Advances in electronics fabrication technology have made possible the design and

construction of architectures that were previously unthinkable. This dramatic ex-

pansion of the computer design space calls for new designs and new methods of

design and analysis. The prospect of machines with more than a "small constant

number" of elements opens the door to measures of cost and performance at a

higher level of abstraction than chip counts and clock rates. Ibis thesis makes a

number of contributions in this context.

Programmability Chapter 2 outlines the case for programmable architectures for

systolic algorithms. It then describes the PSC, a concrete example of an architecture

that is useful for a broad class of systolic algorithms. The PSC is architecturally far

more efficient for the implementation of systolic algorithms than are ordinary

microprocessors, and has been successfully fabricated, tested. and demonstrated.

Section 2.2 then discusses alternative organizations for programmable implemen-

tations, which are suitable under different circumstances. This section clarifies

issues in the use of local memory involving cost, performance. and modularity: it

also presents a no,,el means of separating computation from data flow which allows

modular systolic implementauons using non-VLSI parts.

* The notion of a general-purpose part intended for use in special-purpose architec-

tures is a powerful one. First. it relieves the special-purpose system implementor of

the burden of designing hardware from scratch. Second. it frees the individual

processors from the necessity of efficiently supporting the full range of operations

required by general-purpose computing, allowing more resources to he deoted to

communication and functional parallelism. l'he on-chip horizontl microcode of
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the PSC is a good ,.xample of this tradcoff-: a fully general processor would need to

be able to run large programs, neccssitating an off-chip, hence narrower, path to

code memory.

As noted in Chapter 2. a PSC-like architecture can be viewed as a smart arithmetic

unit. rather than as a simple processor. Given some careful interface engineering,

lacking in the PSC design. such a component could be extremely useful for the

implementation of a large class of systems. A related approach is taken by the

INMOS "transputer" [22], a microprocessor designed especially to be used in paral-

lel architectures. The difference is that the transputer is intended for use in general-

purpose multiprocessors, as well as in special-purpose systems: thus it cannot take

advantage of the tradeoff mentioned above to provide highly cost-effective small-

grain parallelism.

Synchronization Chapter 3 begins by establishing, apparently for the first time, a
simple and intuitive mathematical model of clock speed and its limiting factors. It

improves on some earlier work by clarifying the distinction between clock skew and

clock delay. It suggests, also apparently for the first time, the use of on-chip

pipelined clocking to avoid the problem of clock delay, and suggests conditions

where this technique may be applicable. It proposes two variant models of clock

skew, corresponding to differing conditions which may arise in practice. In view of

these models, it then provides upper and lower bounds of clock skew on arrays of

varying topologies.

The question of whether pipelined clocking on chips or wafers is a practical solu-

tion to clock distrbution problems awaits experimental studies for resolution. In

any case, the results of Sections 3.4 and 3.5 apply to any pipelined clocking scheme.

on or off chips.

Self-timing has the attractive feature for local communication architectures that

synchronization, too, is localized. The hybrid scheme discussed in Section 3.6, by
encapsulating the self-timed elements of the design into a synchronization subsys-

tem, otters a promising means of taming the complexity of implementing such sys-

tems.
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Serialized implementations Chapter 4 discusses two aspects of the use of bit-scrial

and other serial approaches to systolic design. First, it shows how serial designs may

be derived from parallel designs. It then examines some of the practical

cosr/pcrformance issues that arise in such designs, and presents a list of factors

which limit the effective use of highly serialized schemes.

Dictionary machines and practical issues Chapter 5 ca.:mines, as a case study, the

subject of machines for dictionary operatons. It points out a number of ways in

which several previous efforts have been unrealistic in their modeling of the

problem, most notably in the implicit assumption that keys in the dictionary have

constant length, independent of the number of entries. It describes a new architec-

ture and algorithm that take this into account, and have a number of other practical

advantages over earlier proposals. Finally, it considers a set of practical issues that

are usually ignored in paper architectural studies, but can have a pivotal effect on

the choice of one architecture over another.

In addition to the dictionary problem itself, this study also touches on two issues

of wider import. One is the tradeoff found between processors and memory

capacity, which is a twist on the standard tradeoff between time and space. The

second is the question of appropriate measures of cost and performance for special-

purpose architectures.

The processor-memory tradeoff is one that arises in several cases where a systolic

array with O(N)processors takes 0(,V) tme. for a total operation count of 0(.V:).

and a O(,V log N) serial algorithm exists. Related to the dictionary problem are

such cases as priority queues and sorting, where 0 ( log .) processors can do the job

in ume O(N). Another case is digital filtering, which can be done serially with fast

Fourier transforms in time 0(N log.V). Here too, 0( log,\) processors with O(.V)

memory apiece can achieve the same asymptotic performance as the straightforward

algorithm on 0(,V) processors. It would be interesting to find examples of this

phenomenon for problems of higher complexity. It should be noted that memory-

intensive architectures are not always preferable to processor-intensive stnictures.

The practical evaluation of which approach is better will depend on constant factors

and on the size of the real-world data encountered.

* .. . .
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Constant factors also impinge heavily on the second issue mentioncd above, that

1of complexity measures for special-purpose architectures. It is tempting to think of

such architectures as a particular kind of algorithm, and to apply the usual tech-

niques of analysis. This approach falls short in two ways. First. asymptotic analysis

is often of little practical value for analyzing architectures, simply because physical

machines tend to be small. Files with hundreds of thousands of records are com-

mon, machines with hundreds of thousands of processors are not. Second. al-

gorithms are usually described with reference to a standard RAM model of con-

putation: counting operations or program statements will usually lead to a realistic

estimate of runtime, and space estimates are equally available. This is not true of

special-purpose architectures, where differences in suitable technologies or the

potential for inexpensive dedicated hardware can play a critical role. It is an impor-

tant open question whether such factors can be captured in an abstraction which is

at once both general and useful.

0
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Appendix A
PSC reference manual

his manual is intended as a reference for the microcoding of the PSC, and does

not deal with its silicon tmplcmentaton or with details of interfacing. The overall

structure is described, and the details of the operation of each unit in the processor

are described individually. Microcode mnemonics are displayed in a typewr i ter

font. Bits in all fields are numbered from the right, beginning with zero.

A.1. Overall structure

The PSC is designed as a connection of function blocks. These blocks are divided

into a data part and a control part. This section briefly describes their function

during normal operation (that is. exclusive of microcode loading and refreshing.)

The function blocks in the data part operate in a two-phase regime: during phase

1 (q(p) each block computes new values for its output registers and internal state

from its internal state and the contents of its input registers, and during phase 2 (T2)

information is passed from output registers to input registers, and internal state is

updated. Input registers are transparent dunng q. and output registers are trans-

parent during 'pl.

The control part operates so that a particular microinstruction persists from a

phase 2 through the following phase 1: thus an instruction determines the inputs of

each block and the operations to be performed on those inputs. This is done by

reading out a new instruction just before p, begins. During q),. the sequencer uses

instruction bits and condition bits computeu during the preceding T , to compute a

new address: thus branching is immediate, but depends on the condition bits of the

preceding instruction.
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Figure A-I: PSC blocks.

The main tiuncuon blocks, as shown in Figure .-\- 1. are:

* A 64 word x 60 bit control store and its addressing logic. Inputs are
condition codes from the rest of the chip. as well as branch control and
condition code select Fields from the most recent microinstruction. The
sole output is the microinstruction register. Internal state and logic in-

clude a program counter, subroutine return address stack, and the con-
trol store itself.

o An eight ( -- a little) bit -N I.U. The operation to be performed is deter-
mined bv a four bit opcode. Input registers hold two nine hit operands,
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along with the carry out from the previous ALU operation. Output
registers hold a nine bit rcsult and fie condition code bits (negative,
Lero, positive, carry, and overflow).

9 An eight bit multiplier-accumulator (MAC). The mac is controlled by
five instruction bits. Input registers hold three eight bit operands, along
with the 16 bit result from the previous cycle and a single carry/overtlow
bit. Output registers hold the high and low eight bits of the result, along
with two condition codes bits (overflow and leftmost bit).

* A 64 x nine register file. The register file is controlled by a
microinstruction read/write bit. Input registers hold a six bit address
and a nine bit data input. The single output register is a nine bit data
output. Internal state consists simply of the contents of the registers.
Although the timing of the register file is actually the same as that of the
microcode store, it behaves in accordance with the simple two-phase
scheme.

* Three eight bit systolic data and three one bit systolic control inputs.
These inputs to the chip contain only output registers. whose contents
come from off-chip. Note that inter-cell communication thus takes place
during phase 1. the computation phase.

U .Three eight bit systolic data and three one bit systolic control outputs.
The data outputs contain only input registers, whose contents are
delivered off-chip. The control outputs contain some selection logic as
well as input registers.

*1 In each cycle, the exact connectivity of input registers to output registers. as well as

the decision of input registers between accepting new values and holding 2heir pre-

vious values, is controlled by the current microinstruction. In particular. the ALU

operands, the three eight bit MAC operands, the register files address and data

inputs, and the systolic outputs can either hold their preious \alues or obtain new

values from one of three buses. The buses. in turn, obtain their %alues from among

the ALU output, the MAC high and low outputs, the register file output, a nine bit

literal field in the microinstruction, and the systolic inputs.

Z0



88 PSC rcference manual

CA.2. Microinstruction format

The microinstruction contains the following fields:

* Bus source addresses - 9 bits (3 buses x 3 bits for 3 output registers)

e Input register control - 20 bits ( 10 registers x 2 bits for 3 buses plus hold)

* Systolic control output- 9 bits (3 bits of control per systolic control
output)

* ALU operation - 4 bits

* MAC operation - 5 bits

* Register file control - 1 bit

* * Program branching control - 3 bits

* Literal or condition code specifier - 9 bits

Thus, a microinstruction requires a total of 60 bits.

A.3 Bus connectivity

Each of three system-wide buses carries a nine bit value, and may be read by any

of the ten input registers which read the buses. The output registers read by the

buses (Bus 1, Bus2, Bus3) are selected by the bus source addresses as follows:

0. ALU result (ALU)

1. MAC high-order eight bits (right adjusted with zero fill) (H i)

2. MAC low-order eight bits (right adjusted with zero fill) (Lo)

3. register file output (MOO)

4. systolic data A extended on the left by systolic control A (SDA)

5. systolic data B extended on the left by systolic control B (SOB)

6. systolic data C extended on the left by systolic control C (SDC)

7. microinstruction literal field (L i tVa I). caveat programmitor:
L i tVa 1 occupies the same bits as the condition code spec:f ers

(CC I and CCG): it shouid not appear i the same intcrocode source

instruction with them.

Each of the input registers which can rea ,he buses holds its current 'alue if its
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El control bits are zero (Ho I d), or selects bus 1, 2. or 3 (Va il, Va 12. Va 13) according

to the numeric value of the control bits.

A.4. Control logic

The control logic function block consists of a current address register. next address

logic, the control store, and a four x six bit pushdown stack for return addresses.

During phase 2. the logic in the block computes a new instruction address from the

current address register, condition code bits, and ficlds from the current

microinstruction, and also computes new stack contents. During phase 1, the new

current address is used to update the current address register, and the stack storage is

likewise updated. The next instruction to be executed is selected from the the

40 control store array at this time. This structure is sketched in Figure A-2, in which

the phases during which each register is updated are indicated.

l t toral/CCmux adess
branch control 6. °_ i

Figurec-o: Control logic.06

The next address logic contains two condition code multplexers, each of which

chooses one of the chip's condition bits. The two bits are concatenated to form a

two bit number which may be used in the computation of the next instruction

address. The multiplexers are controlled by two four bit fields, CC 1 and CCO0, which

A
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c. occupy the low-order eight bits of the microinstruction literal field. The condition

code bits are selected as follows:

0. constant zero (Ze ro)

1. constant one (One)

2. systolic control A (SCA)

3. ALU negative (Al uN)

4. ALU positive (A1 uP)

5. ALU zero (A1 uZ)

6. ALU overflow (Al uV)

7. ALU carry out (A1 uC)

8. systolic control B (SCB)

9. MAC leftmost bit (MacL)
I

10. MAC overflow (MacV)

11. systolic control C.(SCC)

12. leftmost bit of register file output (RegB i t8)

The next address and new stack contents are computed. depending on the three

bit program branch control field Jump, as follows (where all arthmeuc is mcdulo

64):

0. (Seq) next address = current address - 1.

1. 1Ca I ) next address = contents of literal nield. p,sh current ad-
dress -I 1 onto stack.

2. (Return) next address = contents of top ofstack - two CC
mux bits, pop stack (the obvious bounded stack considerations
apply).

3. (ToL i t) next address = contents of literal field.

4. (OnCC1) next address = current address - 1 - two CC mux
bits. This allows branching to one of four different addresses.
depending on two bits.

5. (OnCCO) next address = current address - two CC mux bits.
This allows single-instrucuon "wait" loops.

Vote that the condition code specifiers share their space ,n the microinstncton with

the literalfielk
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A.5. ALU operation

The ALU, with one exception, generally uses the eight low-order bits of its inputs

a and b to compute a nine bit result consisting of an eight bit logical or arithmetic

result extended on the left with a carry out. The exception is the pass instruction,

which simply sets the nine bit output to the nine bit input a. Condition code bits are

defined as follows:

e negative - left bit of eight bit result

* zero- one iff all eight bits of the result are zero

o positive - one iff neither negative nor zero are true

o carry - carry out of the left end of an eight bit operation

o overflow - the exclusive or of the carries into and out of the left end of
an eight bit operation.

The ALU operations (Al uOp) are as follows. Note that operations 0 through 3

always generate carries of zero. and that arithmetic operations are in twos comple-

ment unless otherwise noted.

0. (And) a AND b.

1. (Xor) aXOR b.

2. (Or) a OR b.

3. (Not) NOT a.

4. (PassA) a as a nine bit value.

S. (Add) a+b.

6. (CAdd) a+ b+ previous carry out. Used in multiple precision
addition.

7. (Inc) a+ 1.

8. (CI nc) a+ previous carry out.@
9. (Sub) a-b.

10. (CSub) a- b+ previous carry out-1. Used in multiple precision
subtraction.

11. (Doc)a-1.

12. (COoc) a- previous carry out.

0o
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13. (Neg) 0-a.

14. (Cmp) a- b unsigned. Used to compare characters and in finite
field operations - carry out indicates a(b. zero CC indicates a= b.

15. (Sh 1) a shifted left one position (rightmost bit = 0. leftmost bit
shifted into carry.)

A.6. MAC operation

The multiplier has the capability of multiplying two eight bit numbers, x and y,

each of which may be independently signed or unsigned, and adding in an eight bit

number z or the contents of a sixteen bit accumulator. The multiplier's output is

signed if either x or y is signed. The MAC has five control bits, which operate as

follows:

* X signed - if 0 (MacXu), treat x input (MacX) as an unsigned number; if
1 (MacXs), treat x as a twos complement number.

* Y signed - similarly for the y input.

@ Carry in (MacC i n) - a- J as described below, for multiple precision
arithmetic.

# Op code (MacOp) - two bits:

0. (AddZu) Multiply x and yand add eight bit z(MacZ)
input as an unsigned number. Add Carry in x 2'.

1. (AddZ s) Multiply and add z as a signed number. If
the previous result was negative, add -28. This is used
for multiple precision operations.

2. (NoAcc) Multiply x and y. Add Carry in x 23.

3. (Ac c) Multiply and add accumulator (last result)
value. Add Carry in x 2'.

The multiplier also produces two condition codes: overflow (Ma cV), signifying

that the result exceeds sixteen bits, and leftbit (MacL), which represents the leftmost

bit of a seventeen bit result. Note that these can differ only in the signed case.

-I. 
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A.7. Register file

If its read/write control bit is zero (Read), the register file sets its output register

to the value addressed by its address input register. Ifthe bit is one (Write), it

writes the value in its data input register into the location addressed by its address

input register. Note that this implies that for a read operation, an address must be

supplied in the cycle before the data is used.

A.8. Systolic outputs and inputs

The systolic data outputs (SDAout, SDBout and SDCout) are viewed as input

registers in the abstract function block scheme, and operate in the same way as other

input registers that read the buses. The systolic control outputs (SCAout, SCBout

and SCCout) are controlled by three bit control fields as follows:

0. (Ho I d) hold.

1. (Bus) leftmost bit of the bus read by the corresponding systolic
data output (held if the data output is holding).

2. (Ze ro) constant zero.

3. (One) constant one.

4. (Pass) current value of the corresponding systolic control input
(e. & SCA.Out = SCA.In).

The chip's systolic inputs, which are viewed as output registers in the abstract

scheme described above, get their values from neighboring chips or a host during

the computation phase (phase 1). Thus a result which is computed in a given chip

can be computed on by a neighboring chip not in the next computation phase, but

in the one after that. The sequence is as follows:

4p,: compute on.chip 1.

T2: send results over buses to output port on chip 1.

91: send values from output port of chip I to input port of chip 2.

send values from input port of chip 2 to functional unit.

.9: compute on chip 2.

. .
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