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1. INTRODUCTION

Mesh moving is an adaptive technique that has been used

successfully to improve the accuracy of both finite element and finite

difference schemes for a variety of time dependent problems in one

space dimension (cf., e.g., [1,2,10,11,14,18,20,23]).' The essential

idea is to derive equations so that the mesh moves either to extremize

some quantity, e.g., to minimize the discretization error, or to follow

some local nonuniformity, e.g., a wave front. This generally reduces

dispersive errors and allows the use of larger time steps while

maintaining accuracy. For example, with a fixed mesh a wave front

may move through a cell in one time step causing significant dispersive

errors (cf. Figure la); whereas, a moving mesh with the same time

step can follow the wave front and keep it within the same cell (cf.

Figure Ib).

Mesh moving algorithms have often been related to the numerical

integration scheme and/or the problem being solved. In one dimension,

for example, Hyman [19] moves a mesh to minimize the time variation

of the solution at the nodes. This scheme uses finite difference

approximations for solving hyperbolic conservation laws. Davis and

Flaherty [9] develop a finite element code for parabolic systems that

moves the mesh so as to equidistribute the spatial component of the

discretization error. Miller et al. (15,20,21] couple the node position

equations into the finite element variational equations and minimize the

'references are listed at the end of the report
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Wave Front Trajectory

tn

W~ave Front Trajectory

tn-1

Figure 1. Wave Front Trajectory on a) Stationary Mesh (top) and b)

Moving Mesh (bottom).

residual in solving parabolic problems. Bell and Shubin [2] solve the

Euler-Lagrange equations of an extremizing functional and use a finite

difference scheme to solve hyperbolic conservation laws. All of these

schemes have successfully demonstrated that mesh moving can reduce

error and provide improvements in computational efficiency for

one-dimensional problems.

With some modification the Hyman and Miller algorithms can be

extended to higher dimensions; however, many other mesh moving

techniques are not directly applicable to two- and three-dimensional

problems. One difficulty is that equidistribution strategies fail to

produce unique solutions. Brackbill and Saltzman (7,26] have overcome

2
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this problem by adding the constraints of mesh smoothness and

orthogonality to a variational problem.

A sucessful mesh moving scheme for higher dimensional problems

that is somewhat similar to the method presented here is the algorithm

of Rai and Anderson [23,24,25]. Their algorithm is based on a

gravitional principle and calculates the velocity of a node based on the

difference between its error and the mean error. The displacement of

one node with respect to another is inversely proportional to the

distance between them. A summation over all nodes is necessary to

determine each node's speed in a computational grid.

A different adaptive technique is local mesh refinement which

consists of dividing or refining elements in regions where the solution

is not adequately resolved. The advantage of this technique relative to

mesh moving is that enough fine grids can be added to resolve the

small scale structures of the solution and provide solutions to within

user prescribed error tolerances. The local mesh refinement schemes of

Berger [3,4], Flaherty and Moore [13], Gannon [16] and Bieterman

and Babuska [5,6], have successfully satisfied user tolerances for

different problems using finite element or finite difference schemes in

either one or two dimensions.

The most promising algorithms appear to be those that combine

both mesh movement and local mesh refinement. While neither adaptive

technique or their combination is likely to be optimal for most

problems, a combination can accurately solve for the solution in regions

3

.4. -



where it varies rapidly and devote little effort in regions where it

varies slowly. It is our intention to consider such schemes; however,

the computational procedures discussed here do not as yet contain local

refinement.

The mesh moving scheme we have developed is simple, efficient,

and independent of the numerical method being employed to discretize

rthe partial differential equations. At each time step it uses the current

node locations and the nodal values of a mesh movement indicator. We

use local error estimates as mesh movement indicators, but other

computable values such as solution gradients or curvature could be

used. Nodes with "statistically significant error" (cf. Section 2) are

grouped into rectangular error clusters. This clustering separates

spatially distinct phenomena of the solution. As time evolves the

clusters can move, change size, change orientation, collide, separate,

reflect off boundaries, or pass through boundaries. At each time step

( new clusters can be created, and old ones can vanish. The clustering

algorithms we use are briefly described in Section 2 and were

developed by Berger [3,4] for a mesh refinement scheme for solving

hyperbolic problems.

Mesh movement is determined by the node's relationship to its

nearest error cluster. Movement is done in two steps, each in a

direction along a principal axis of a cluster rectangle. The amount of

movement in each direction is determined by a movement function which

insures that the center of error of the cluster moves according to a

4
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differential equation suggested by Coyle et al. [8]. Additionally, the

movement function smoothes mesh motion, reduces distortion, mesh

tangling, or overlapping, and prevents nodes from moving outside the

domain boundaries.

In Section 2 we discuss error clustering, movement of the center

of mass of the error cluster, the node movement function, and the

initial mesh generator used in the computational examples. In Section 3

we discuss the MacCormack finite volume scheme for hyperbolic

equations and the error estimates used in the computational examples.

The results of the computational examples are given in Section 4, and

Section 5 contains a discussion of the results of the experiments and

the status of our algorithm.

2. MESH MOVING SCHEME AND INITIAL MESH GENERATION

We suppose that an approximate solution of the partial differential

equation and a pointwise error estimate have been calculated by some

numerical technique at the current time step. We then flag

'significantly high error nodes" as nodes with error greater than twice

the mean nodal error and also greater than a user-supplied error

tolerance. If there are no significant error nodes, computation is

performed on a stationary mesh. Next the nearest neighbor clustering

algorithm of Berger [3,4] is used to cluster flagged error nodes. The

nearest neighbor clusters have internodal distances in the cluster less

than intercluster distances, which are the minimum distances between

clusters. The formation of a cluster is done iteratively by starting

5



with a node and including nodes in a cluster if the distance from the

node to the cluster is less than a specified distance. When a node is

determined to belong to two or more clusters, those clusters are

merged.

Berger (3,4] shows that near minimum area rectangles that

contain all the nodes within the cluster can be easily generated. The

principal axes of such a rectangle are the major and minor axes of an

enclosed ellipse with the same first and second moments as the

clustered nodes. Thus, if xm and ym are the mean coordinates of the

clustered nodes, then the axes of the rectangle are the eigenvectors of

the symmetric (2x2) matrix

r

x2 - x2  zx. Yi -x Y M
i - m

(2.1)

x x2 2
. iYi Xm Ym Z Yi Ym

L

3J For problems with significant error nodes located on a long

curved line, the entire region will belong to one unacceptably large

cluster. In order to prevent this inefficiency and provide better

alignment with curved fronts, the rectangular clusters are checked for

-' efficiency by determining the percentage of flagged nodes in the
eq

cluster to the total nodes in the cluster. If a 50 percent efficiency is

not achieved, the rectangle is iteratively bisected in the direction of

the major axis. This is repeated until all clusters have a 50 percent

6
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efficiency or more. This nearest neighbor clustering separates spatially

distinct phenomena as shown by the dotted clusters on the two

dimensional mesh of Figure 2 and provides some linear alignment with

long curved gradient fronts as shown by the clusters in Figure 3.

Figure 2. Two spatially distinct Clusters.

In order to determine proper node movement, as shown for a one

dimensional problem in Figure lb, the speed of propagation of the

error clusters must be determined. Hyman [19] and Hyman and

Harten [18] move nodes based on minimizing the time variation of the

solution components. For hyperbolic systems this allows the mesh to

move at a weighted average of the characteristic speeds at the node.

Front tracking schemes also move the mesh so that isolated

7
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discontinuities are stationary in reference to the mesh. Since tracking

* error is possible for all time dependent problems, our approch is more

* general and is also an approximation to these schemes for hyperbolic

problems, where error propagates in a characteristic direction. We

assume that nodes in the same cluster have related solution

characteristics, so that we can determine individual node movement

from the propagation of the center of mass of the error cluster.

In the Hyman and Harten algorithm (18], when there is multiple

wave interaction in a vector system, the best that can be done is to

move the mesh with a weighted average of characteristic velocities. The

same principle applies to our algorithm when multiple error clusters

8
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have merged, the mesh is still able to move as their combined error

cluster moves, which is a form of weighted averaging. Comparison

between the center of mass propagation and the characteristic path is

shown in Example 4.1 of Section 4.

We attempted to move nodes by a procedure that was based on

extrapolating for the center of masses; however, this resulted in an

unstable oscillatory effect. Indeed, Coyle et al. [8] showed that node

movement based on extrapolation can be unstable. Using their

suggestion, we stablize the movement by solving the differential

equation

r * X r = 0, (2.2)

where r(t) is the position vector of the center of mass of an error

cluster and ( ) d( )/dt. Equation (2.2) is conditionally stable, and

when solved numerically with reasonable choices of X > 0 the

oscillations in the mesh movement were no longer present.

We solve Equation (2.2) from, say, t n to t n+1 and hence,

determine r(t n+ 1 ) and the vector r(t n+ 1 ) - r(t n ) which is projected in

the two axial directions of the rectangular cluster to determine the

maximum movement (MM) in each axial direction. Along the two axial

directions the movement function is one-dimensional. A profile of the

node movement function that we use is shown in Figure 4; however,

the algorithm is designed to be used with any general one-dimensional

movement function. Slopes a and b depend on the distance from the

9



cluster to the domain boundaries and other clusters.

movewt in

axal direction

slope b lp

\- distance from
lm Can leading COl

edge edg
--- CLUSTER---

Figure 4. Profile of the Node Movement Function.

As shown in Figure 4, we let

MM(-ax) if nodes are x distance ahead of leading edge

MA MM if nodes are inside the cluster projection (2.3)

t\MM(1-bx) if nodes are x distance behind trailing edge .

Equation (2.3) determines the movement distance for nodes inside the

projection of the cluster on the axis, i.e., the shaded region of

Figure 5. In order to provide smooth node movement throughout the

domain, nodes outside this region move in a reduced amount as

determined by

MAoutside t MAinside [ 1-(2z/DIAM), (2.4)

where z is the distance outside the cluster projection as shown in

10



Figure 5 and DIAM is the diameter of the domain.

node

movement,
direction

Cluster

Figure 5. Nodes outside the Projection of the Error Cluster.

The generation of a proper initial mesh is critical to the success

of the mesh moving scheme. Without refinement the mesh moving

algorithm can not provide suitable error control, unless the initial mesh

spacing properly resolves initial data. An initial error measure

appropriate for the finite volume scheme on quadrilateral cells of

Section 3 is the error in interpolating the prescribed initial condition

u0 (x,y) on each cell by a bilinear polynomial. The error on each cell

is determined as the difference between the value of the initial

function and its bilinear interpolant at the center of each cell.

Therefore, the initial mesh must be generated so that the condition

11



11/4{u0(xiYi)+uO(xjyj)+uo(xkYk)*Uo(xlIYI)}-uo(xy) < TOL (2.5)

holds on each cell when using the vertex and center point labelling as

shown for a general cell in Figure 6. TOL is a user supplied error

tolerance. We used the following iterative scheme to satisfy condition

(2.5) for the computational examples of Section 4:

1. Input domain boundaries and initial data function.

2. Generate a uniform mesh.

3. Compute cell error from the left hand side of (2.5).

4. Cluster high error nodes and move influenced nodes toward

center of clusters according to (2.3) and (2.4).

5. Smooth the mesh by solving the Euler-Lagrange equations of

Brackbill and Saltzman [7].

6. Recompute error on cells.

Repeat

7.1. Add a mesh row and column to divide cells with error

greater than TOL

7.2. Smooth the mesh by the algorithm of Brackbill and

*. Saltzman [7]

7.3. Recompute the error

Until the error tolerance condition (2.5) is satisfied.

12



Initial meshes generated with this algorithm are shown in Figures

2 and 8 for the initial condition functions (4.6) and (4.2) respectively.

(k .Yk)

m / IX.Y)
7U)

Figure 6. Cell Labelling for Equation (2.5).

3. MacCORMACK FINITE VOLUME SOLVER AND ERROR

ESTIMATION

In order to test our mesh moving scheme, we used the explicit

finite volume MacCormack scheme on nonuniform quadralateral grids for

hyperbolic vector systems of the form

U t + fx(xy#ut) + 9y (x,y,u,t) = O, (3.1)

u(x,y,O) = uo(X,y), (3.2)

with appropriate well posed boundary conditions.

We index the nodes in a logically rectangular fashion where the

time dependent node locations have cartesian coordinates

(xi j(t),yij(t)) and therefore, the time derivative of

u(xij (t),yi,j(t),t) is given by

13
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u = x xi j + Uy Yj Ut  (3.3)

At time step n, we approximate

x ij(tn) Axij (t n)/t = (xn, 1 
- i j)/atn  (3.4)

yijtn+1 -yn j)/atn (3.5)
Y n(t) AYi,j(tn)/Atn = (Yi " yi, n

where x1 ~ = x. j(t ), Yn.j = Y' j(tn), and Atn is the current time
j Ij nl I,J IJnn

step.

The finite volume scheme is obtained by integrating Equation

(3.1) over each cell, where the general cell(ij) with center (x i,j,Yi, j )

is shown in Figure 7. The area integrals involving the spatial

derivatives of f and g are converted to line integrals of f and g

around the cell boundaries using Green's Theorem. The integral of the

time derivative term over cell(ij) is approximated by

flu dxdy = An (3.6)t i~j

where A n . is the area of cell(ij) at timestep n. The line integrals arei,,

approximated by using values of the solution at nodes on appropriate

sides of the cell boundaries. The predictor step of the MacCormack

scheme uses node values to the left and below the boundaries, while

the corrector uses node values to the right and above the boundaries.

After substitution of (3.4), (3.5), (3.6), and the appropriate

line integral approximations into Equation (3.1) and using

14



F(u". f(u". I (Ax. (t~ )Vat )U n (3.7)

Gij. = guj) -(Ay. *(tn)/Atn)~ (3.8

where u n is the calculated approximation to u, (t ) to simplify the

function evaluations, the predictor and corrector Equations (3.9) and

(3.10) for the MacCormack finite volume scheme on a moving mesh are

obtained.

The predictor step is

= n - t n n
u11  u1  n/Ai,j ( , j~,) (y+/,+/ - i12j12

F( un + y.- y . F (u. )(

i-' (i1/,e12 y-1/2,j-1/2) i/,j- (y-/Gu+1 )

nn

(x+G(u. . (x

The corrector step is

n+1 n 1/ -n1 n n+1
u. (j1/ u. +j u. - At /A. [j F(u i+') (y1/,12

yi1/2,j-1/2 - j (vi-1 /2,j 1 / 2  - i-1/2,j-1/2) i F(nl
y..) - F(uni' (

n+1 I +n G1-~

-xG u1 ) (x + G(u. . )
i-1/2j-1/2i~j~i i-1/2,j-1/2 - i 1/2,jl1/2 i

( -/, -1/ xi, 1/2,j11 2)]) (3.10)

15
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(i+1/2.J+1/2)

-1/2.J-l/ 2 ) (j+12.J1/2)

Figure 7. Labelling for general cell(ij) for finite volume Equations

(3.9) and (3.10).

On a stationary rectangular mesh, this scheme reduces to the

standard MacCormack finite difference scheme, which when the

predictor and corrector are combined for a linear partial differential

equation is the same as the Lax-Wendroff finite difference scheme.

Accurate error estimation is important to insure that user

tolerances are achieved and to refine proper regions when doing local

mesh refinement. However, mesh moving is not as sensitive to error

estimation. As long as the error estimator shows the error propagation,
proper error magnitudes are not necessary. Therefore, in the

computational examples of Section 4, we were able to use the difference

between the predicted solution of Equation (3.9) and the corrected

solution of Equation (3.10), as the error estimation or movement

indicator. This error estimation is actually an estimation for the first

order predicted solution, not the second order corrected solution, but

does have the proper propagation characteristic.

A more accurate error estimation will be needed when local mesh

refinement is implemented. Accurate error estimators that could be used

16
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are Richardson extrapolation for finite difference schemes [3] and

hierarchical methods for finite element schemes [28].

4. COMPUTATIONAL EXAMPLES

The following linear hyperbolic equations were solved as tests of

our mesh moving technique. We used the initial mesh generator of

Section 2 and the MacCormack solver described in Section 3. For each

problem the two-dimensional domain was a square with sides of length

2 centered at the origin.

Lit IT

. Figure 8. Initial Mesh for Example 4.1.

Example 4.1 Consider the initial-boundary value problem

17



ut  yu XUy = 0, t > 0 (4.1)

u(x,y,0) = (4.2)

1-16((x-1/2)2*1.5y2), otherwise

u(1,y,t) = u(-1,y,t) = u(x,-1,t) = u(x,l,t) = 0 (4.3)

The exact solution of this problem is

u(x,y,t) = 0, if C < 0 (4.4)

1C, if C 0,

C = 1-16((xcost~ysint-1/2)2  1.5(ycost-xsint) 2  (4.5)

Equations (4.4) and (4.5) represent a moving elliptical cone rotating

counterclockwise around the origin with period 2r. It was proposed as

a test problem by Gottlieb and Orszag [17] and we selected it because

the rotational quality of the the error region is a good test of a mesh

moving scheme.

The initial mesh generated for this problem is shown in Figure

8. This mesh has an initial interpolation error less than 0.08. Figure 9

shows the mesh at t = 1.6, and Figure 10 shows the mesh at t = 3.2.

The nodes follow the moving cone to keep it within the refined region.

The dashed lines on Figures 8, 9, and 10 are the error cluster

rectangles at the appropriate time steps. Figures 11 and 12 show the

18
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Figure 9. Mesh for Example 4.1 at t =1.6

Figure 10. Mesh for Example 4.1 at t =3.2

19



.44 1.00

-0.00

1M00.10 1 .00

Figure 11. Contour Plot of Solution of Example 4.1 by MacCormack
finite volume method on a moving mesh at t =3.2

4.

f.4

Figure 12. Surface Plot of Solution of Example 4.1 by MacCormack
finite volume method on a moving mesh at t 3.2
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contour and surface plot of the solution at t - 3.2. The dispersion

error in the form of a wake behind the cone for the moving mesh

solution is reduced significantly from the wake in the solution using

the Lax-Wendroff finite difference scheme on a 20x20 uniform stationary

mesh. For comparison the contour plot and surface plot of the

Lax-Wendroff solution at the same total time t = 3.2 and same number

of time steps are shown in Figures 13 and 14. Figure 15 compares the

path of the center of mass propagation using Equation (2.2) and the

real characteristic path of the peak of the cone. As expected for this

scalar hyperbolic problem, the vectors for the movement of the center

of error mass determined by Equation (2.2) closely approximate the

characteristic vectors of the center of the cone with a maximum

difference of 15 percent in length and direction.

Example 4.2 This problem is a scalar double rotating cone

problem with two symmetric cones rotating counterclockwise around the

origin. The problem is given by Equations (4.1), (4.3), and new

initial conditions provided by

1-16((x-1/2) 2 1.5y 2 ), if (x-1/2)2 1.5y 2 < 1/16

u(x,y,O) = 1-16((x*1/2)2 1.5y 2), if (x*i/2)2 1.5y2 S 1/16 (4.6)

0, otherwise

Figure 16 shows the mesh at t = 1.15. Figure 16 shows the poor

aspect ratio and mesh distortion caused by the rotation. The mesh
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Figure 13. Contour Plot of Solution by the Lax-Wendroff scheme on a
fixed 20x20 Mesh at t =3.2.
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Figure 15. Comparison of characteristic path of center of cone and
path of center of error mass as determined by Equation (2.2) for

Example 4.1.

tangles as the cones rotate further. When mesh tangling occurs a

static rezone that creates a new mesh using an algorithm similar to the

one that generated the initial mesh must be employed. The data for

the mesh can to be obtained by interpolation from the calculated

solution at the nodes.

Example 4.3 This problem is an uncoupled system of moving

cones that pass through one another. This causes the error clusters to

collide and merge, and then later separate. The problem is given in

Equations (4.7), (4.8) and (4.9).
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Figure 16. Distorted Mesh of Example 4.2 at t =1.15.

u, t = 0 (4.7a)

.v t-Vx=(. fb2

V(X,y,O) =(4.8a)

01 otherwise

1-16((x-1/2) 2 1.y2 ),i (x-1/2) 2 +.y2:11

f24
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Figure 17. Mesh of Example 4.3 at t =0.35, Clusters have merged into
single cluster centered at the Origin.

Figure 3 showed the initial mesh for this problem, and Figure 17

shows the mesh at t = 0.35, just as the clusters have collided and

merged. From t = 0.35 to t = 0.9, the single cluster stays centered at

the origin so the mesh does not move during this time. At t = 0.9 the

* cones have passed completely through one another, and Figure 18

shows the separation of the error clusters and the movement of the

mesh toward the boundaries. Figure 19 shows the mesh at t = 1.3.

The cones and error clusters have reached the domain boundary and

no further movement of the mesh will take place as the cones exit the

domain.
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Figure 18. Mesh of Example 4.3 at t = 0.9, Clusters are separating
and moving toward the Domain Boundaries.

Figure 19. Mesh of Example 4.3 when Clusters reach the Domain
Boundaries.
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5. DISCUSSION AND CONCLUSIONS

We have described a general two-dimensional mesh moving

technique based on the nodes following error propagation that is

determined from the movement of clusters nodes with significantly high

error. This mesh moving was tested on linear hyperbolic problems

having solutions with large gradients. Even though mesh moving in two

dimensions is difficult, we are encouraged by these initial results. The

mesh moving algorithm was able to control the error rotation of the

rotating cone in Example 4.1 and the merging and separating of error

regions in Example 4.3. The distortion of the mesh in Example 4.2

showed the need for static rezoning when such distortions occur.

We are investigating ways to improve the efficiency, reliability,

and robustness of the algorithm. Possible improvements include: not

clustering at every time step and letting the mesh move at a constant

velocity for several time steps, efficiently testing for mesh tangling or

distortion, using a better solver for hyperbolic equations such as the

monotonic schemes of Osher [22], vanLeer [27], or Engquist [12], and

using better error estimates. We intend to show the flexibility of the

mesh mover by implementing it with a finite element solver for

parabolic problems.

Finally, we intend to implement local mesh refinement in the

algorithm. We believe that with such a combination algorithm efficiency,

accuracy, and robustness can be increased.
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