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ABSTRACT

This document describes a procedure for designing recursive
digital filters from continuous-time filters when the ratio of the

sampling frequency to the pole frequency is small. The discrete-time

transfer function of digital filters obtained by this method, called
the acceleration-invariant transformation, has been derived from the

partial fraction expansion of the continuuus-time transfer function.

An error function between the digital and analog transfer functions has

also been deduced. Finally, the performance of the proposed method is
demonstrated by plotting the frequency response of high-order
Butterworth and elliptic filters.

RSUMi

Ce document d~crit une mithode pour concevoir des filtres nuui-
riques r6cursifs A partir des filtres analogiques lorsque le rapport

entre le taux dlfchantillonnage et Ia fr6quence du p6le est faible. La

fonction de transfert en z des filtres nunriques obtenus par cette

m6thode, appelfe l'invariance a l'acc~lfration, a ftf dfduite de la
dicomposition en fraction partielle de la fonction de transfert des

filtres analogiques. Une fonction qui permet de calculer l'erreur
entre la fonction de transfert numarique et l fonction de transfert

analogique a aussi t dfduite. Finalement, l performance de cette

mithode est d6montrie en tracant U rponse en frfquence des filtres
Butterworth et elliptiques A ordres 6levis.
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1.0 INTRODUCTION.

This document describes an alternative approximation method for

recursive digital filters when the ratio of the sampling frequency to

the cutoff or center frequency (f I f c) is small. Recursive digital

filters are usually designed by using the impulse-invariant method and

the bilinear transformation. These methods, which constitute textbook

material (Refsa. I to 5), permit the derivation of a digital filter from

a suitable analog filter satisfying a set of prescribed specifications.

They also provide valid matches with their corresponding analog filters

when the ratio f a/f Cis sufficiently high. At low f.If * these methods

have serious drawbacks that lead to inappropriate approximations.

The standard-z transformation (also called the impulse-invariant

transformation) is a method whereby the response of the derived digital

filter to an impulse is identical to the sampled impulse response of

the continuous-time filter. This method yields valid matches with the

corresponding analog filter only at high sampling rates and it is

satisfactory when the analog system is sufficiently band-limited prior

to transformation. At low ratios of f I fct this method can be applied

only to transfer functions in which the denominator degree exceeds that

of the numerator by at least two. The aliasing effects obtained by

this transformation render it entirely useless for digital high-pass

and band-reject filters. In addition, for elliptic low-pass and

band-pass filters, the equiripple character of the stop band is

destroyed by the aliasing effect. The bilinearly transformed filters

are essentially identical to the original analog filter when the ratio

f 8 f cIs greater than 10. However, this transformation results in a

nonlinear relationship between the analog and the digital frequencies.

It implies that the frequency response of the continuous system being

transformed will be a warped version of the analog frequency response.

This effect, which is observed particularly when the ratio f aIf cIs

smaller than 10, renders the method quite complicated when designing

adaptive filters. In addition, neither the impulse response nor the
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phase response of the analog filter is preserved in a digital filter

obtained by the bilinear transformation.

Other methods of deriving recursive forms of continuous-time

transfer functions of analog filters are an extension of the concept of

the impulse invariance. In the sinusoid invariance (Ref. 6), the step

invariance (Refsa. 7 and 8) and the rasp invariance (Ref. 8), the

digital filter design is optimized for a sequence of sinusoids, steps

or ramps joining the sampled values as an input signal. These methods

attenuate the aliasing effect encountered in the impulse invariance.

The sinusoid-invariant method preserves the phase characteristics of

analog filters and it is suitable to the design of filters vith a

constant group delay. The step-invariant method can be applied to

transfer functions in which the degree of the denominator can exceed

that of the numerator by at least one. In the ramp-invariant method,

the numerator degree can be as high as the denominator degree. In

Ref. 8, it is shown that the step and ramp invariances of low-pass and

band-pass filters, if they are realized in a parallel form, produce

* digital filters whose frequency response does not depend on the

sampling frequency in the frequency band of 0 to f a/2. The frequency

response of the step-invariant high-pass and band-reject filters

realized in a parallel or a cascade form is unacceptable for small

ratios f s f cbecause of the aliasing effects. The ramp invariance

realized in a cascade form can be used to digitize high-pass and

band-reject filters. The ratio f I f ccan be decreased below 10 for
Butterworth filters but the equiripple character in the stop-band

response of elliptic filters is preserved by a ratio of at least 10.

The approximation method described in this report is derived

from analog filters such that an acceleration invariant response is

maintained. The discrete-time transfer function of the digital filters

is obtained from the partial fraction expansion of the continuous-time

transfer function to lead directly to a realization in a parallel form.

An error function between the transfer functions of the digital and
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analog filters has also been deduced. This method is shown to

approximate correctly, on a wide bandwidth, the frequency responses of

low-pass, band-pass, high-pass and band-reject analog filters for small

ratios of f /fe

This work was performed at DREV between November 1982 and April

1983 under PCN 21J05, Guidance and Control Concepts.

2.0 DERIVATION OF THE ACCELERATION-INVARIANT METHOD

Assume that the coefficients of an analog filter with Laplace

transformation (i.e. transfer function) given by

b
HA(S) Y(s) - 1 i0

) x(s) I I [1]

are known. Y(s) and X(s) are respectively the Laplace transformation

of the output y(t) and the input x(t). M' must be smaller or equal to

N'. If we assume that all real and complex poles are simple, eq. 1 can

be rewritten in its partial fraction expansion as

N A [2]
H(s) A I +

i-i 5+Pi

Equation 2 covers low-pass, high-pass, band-pass and band-reject

filters among the well-known classes such as the Butterworth, Bessel,

Chebyshev and elliptic filters.

The s domain filter response of eq. 2 to an acceleration input

is written as

Y (a) -H A(s)X(s) HA ()/83 [3]

..- ,
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Substituting eq. 2 into eq. 3 and finding the inverse Laplace

transformation of this relation yield the following time function:

_-Pit

A t2  N At 2  At A(l-e

A (t) - +--p-- +- + [4]
2 i-l 2pi P1

Hence, the sampled sequence of YA(t) can be obtained by applying

the z transformation to eq. 4. This gives:

AoT 2z-l( + z-1 )+ N AT 2 z-(l + z-1)
YD(Z) 21 z-)( z-1)3

2(1 - z 17 - i-1 2p (1 -

-PiT

ATz-1  + Aiz-1(l- e ) } [51

P2 (l - z-1 )3  p3 (l - z-1 )(l - z-e - piT)
i i

where z= e and is the sampling period. YD(z) can also be expressed

as

YD(z) - HD(z).X(z) [6]

where HD(z) is the discrete-time transfer function of the digital

filter. X(z), the sampled sequence of the acceleration input, is

X(z) - T2z-l(l + z-) [7]
2(1 - z-1)

3

Hence, HD(z) is derived by combining eqs. 5, 6 and 7. This

operation yields

H(z )  Y(z) A°  N Ciz-2 + Diz- 1 + Ei

x(Z) o+ A0  T [a]
i-i (1 + z-1 )(l - e- 1z- )

I.
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A 2A -P T 2A -P T
- ( + -- ) e +- (1+e )

wher Cp 2T p3T2

t i i

-P T

A 4A - 2A (l + e )

Di (-- ) (Cl- e ) p2 T

i i i

A 2A 2A PT

E"i p2T p (I -e )

A digital filter whose response to an acceleration excitation

corresponds to that of the analog filter has then been obtained.

3.0 ERROR FUNCTION BETWEEN THE ANALOG AND THE ACCELERATION-

INVARIANT DIGITAL FILTER

The purpose of this chapter is to establish an error function

between the continuous-time and the discrete-time transfer functions.

A relation can be found by regarding the response of the digital filter

as the sampled response of the corresponding analog filter. The

Fourier transform of y(t) is obtained from Ref. 1 as

YD(e = T ) yA(j. 1 JuaiS) (9]

where toS - 2%/T

The substitution of eq. 9 into eq. 3 gives

YD(e JwT) L H A Ow + JmWS) [10]D T i [o
T _ -j(w + m s )'3--..

_ _ _ _ _ ,

__ --"
L
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The response of the digital filter to an acceleration input

excitation, which can be derived from the relation

(YD(Z) - HD(z).X(z)), gives

jwT - HD(e JwT)T2e-JwT(l+e-JT)YD(e ) -j= 3[11]

2(1e-JwT )3

A relation between the analog and digital tranefer functions is

obtained by substituting eq. 11 into eq. 10. This yields

juT -ju I (W + P [121

jT3e-JT(l + e-JIT) . (m S)3

For sufficiently large w., the effect of frequency aliasing can

be neglected. Under this condition, eq. 12 can be written as

HD(ejT) - E(eJwT)HA(jw) [13]

where E(eJ  ) is an error function given by

E(e JwT) 2(l - e - j wT ) 3[14)

j.3T3e-JT(1 + e J T)

The magnitude and phase responses of the error function (eq. 14)

have been plotted in Fig. 1 from f8 /104 to f /2.5. It is shown that

the magnitude response of the digital filter is identical to that of
its analog counterpart over the frequency band of f8 /104 to f /10. The

error in magnitude increases gradually to attain 2.5 dB at f /2.5. No

error in phase is observed from f 8/lO to fr/2.5. From f/2.5, the

error increases to attain - at f /2. The acceleration-invariant

filters are thus limited to the frequency range of 0 to f /2.5.

5r

V a

I it- , -
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Magnitude(dB) Phase(deg)

Magnitude response

..... - Phase response

fS/10
4  

fs/10
3  

fs/10
2  

fs/10 fs

FIGURE 1 - Frequency response of the error function between the analog
and digital transfer functions

4.0 PERFORMANCE OF THE ACCELERATION-INVARIANT METHOD

FOR HIGH-ORDER BUTTERWORTH AND ELLIPTIC FILTERS

Figures 2 to 5 show the magnitude and phase-frequency responses

of high-order Butterworth and elliptic digital filters obtained by the

acceleration-invariant method. In all examples, the response of digit-

al filters is presented for various sampling frequencies (100, 10 and

4 kHz) and it is accompanied by the response of the corresponding ana-

log filters. Figures 2 and 3 illustrate fifth-order low-pass and high-

pass Butterworth and elliptic filters. The cutoff frequency (f c) and

the gain of these filters are maintained at 1 kHz and 1 respectively.

In addition, for elliptic filters, the stop-band attenuation is at

least 40 dB and the pass-band ripple is limited to 3 dB. The band-pass

and the band-reject Butterworth and elliptic filters of Figs. 4 and 5

V 1

++ ""...
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were derived from a transformation performed on the corresponding

low-pass filters (Ref. 1). The lower and upper cutoff frequencies of

these filters are located at 700 Hz and 1.0 kHz. Their center frequen-

cy is noted by f . The poles and zeros of analog filters are given in

Appendix A.

The acceleration invariance of the low-pass and band-pass

filters produces digital filters whose frequency response matches very

closely that of their analog counterpart in the frequency band of 0 to

f 8/2.5. In this region, the frequency response does not depend on the

sampling frequency. For elliptic filters, the equiripple character of

the stop-band response is correctly preserved. The high-pass digital

filters are essentially identical to the original analog filter when

the ratio f S f cis greater than or equal to 10. When it decreases

below 10, the aliasing effect can be observed in the magnitude response

of the digital high-pass filters. The Butterworth filter exhibits an

error in magnitude and in phase in the low-frequency band. However,

when f sis set to 4f c, this error does not exceed 10 dB in magnitude

and 200 in phase at f c/10. The high-pass elliptic filter does not

perfectly preserve the equiripple character of the stop-band response

when f s f cis smaller tham 10. The phase response is also slightly

disturbed around the resonant frequency. The band-reject digital

filters react in the same manner as the high-pass filters. Their

frequency responses coincide with those of the corresponding analog

filters when the ratio f 8If cis greater than or equal to 10. When it

becomes smaller than 10, the attenuation of the Butterworth filter,

the phase response and the equiripple character of the elliptic filter

in the stop-band are not correctly reproduced. Although all the

characteristics of the digital high-pass and band-reject filters are

not preserved when the ratio f 8If cis set to a value smaller than 10,

no gain is introduced by the acceleration-invariant transformation.

Furthermore, this method does not move the poles of the digital filters

as a function of the sampling frequency and it can be applied to a wide

frequency band.
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Legend for Figures 2 through 5

Continuous-time filter

Digital filter when f = 100 kHz

.................... Digital filter when fs . 10 kHzS

*........... Digital filter when f = 4 kHz

S

2 . 35 ....

2700

-20.0

220

0'

-69.0

A,,

* Se.C ...... I I30 t

-6.00 .

40.1.

-.0.1 4 L1 00 2 1031 0 0 0

-10.1 270'

-70.0 S
0  

.

270. 4 2 4 a
10 0 0 O 03 104

FIGURE 2 - Frequency responses of Butterworth and elliptic low-pass

digital filters obtained by the acceleration-invariant

method for various ratios fs/fc (4, 10, 100)

I! e.
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20.e _______

.027M0

227.0

22e0

IgO

2 3 2 3 10
F.0q to 10o to 10to

27e0

-40. lieo

a0

10 10O 10 4 o! to 3 10

FIGURE 3 - Frequency responses of Butterworth and elliptic band-pass
digital filters obtained by the acceleration-invariant
method for various ratios f f (4, 10, 100)
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A-l

-20.6 2250

-40.5 Ioi .

g.

I0 1 4 0 IO
,  

10'

4e4

. 3,a53 104

-tO.0

10 10 too 1

N.- . .m° 14

FIGURE 4 - Frequency responses of Butterworth and elliptic high-pasa
digital filters obtained by the acceleration-invariant
method for various ratios f./fc (4, 10, 100)
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.1 3150

-10.2 a0

S -30.6 t 1.

0

-40.8 le.
°

...

.4a 3 4 e.a 3 .4L.-
1030t to300

10. 10

31e.

.20.8 22e

3 10

a0 0 10 10 10

Irele~ aH. F..q....q ,n H.

FIGURE 5 -Frequency responses of Butterworth and elliptic band-reject
digital filters obtained by the acceleration-invariant
method for various ratios fS'fC (4, 10, 100)

m "30.0 *-

.13.m ,2

-,~ ,---- -.- -.° -



UNCLASSIFIED
13

5.0 CONCLUSION

An approximation method has been described whereby a digital

filter can be derived from an analog filter while maintaining an

acceleration-invariant response. The discrete-time transfer function

of digital filters obtained by this method has been deduced fron the

partial fraction expansion of the continuous-time filter yielding a

parallel realization.

The performance of the proposed method has been determined by

giving the frequency response of high-order Butterworth and elliptic

filters. The acceleration invariance of low-pass and band-pass filters

produces digital filters whose frequency responses match perfectly

those of their analog counterparts. Also, these responses do not

depend on the ratio f 8If cin the frequency band of 0 to f 8/2.5. An

accurate frequency response of high-pass and band-reject filters can be

obtained when the ratio f I f Cis maintained equal to or greater than

10. When it decreases below 10, the frequency response of the digital

filters remains acceptable but the equiripple character of the elliptic

filter in the stop-band, the magnitude response of the Butterworth

high-pass filter in the low-frequency band and the peak stop-band

attenuation of the Butterworth band-reject filter are not perfectly

reproduced by the transformation.

The acceleration-invariant method is then less sensitive to the

frequency aliasing in comparison with the impulse-invariant, the step-

invariant and the ramp-invariant methods. In addition, this method

exhibits no frequency warping, a drawback met in the bilinear transfor-

mation. However, this improvement produces an increase in the order of

the acceleration-invariant filter. The numerator and denominator

degrees of the acceleration-invariant filter exceed by one those of the

ramp-invariant or the bilinearly transformed filter.
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APPENDIX A

Continuous-Time Transfer Functions of

the Buttervorth and Elliptic Filters

This appendix gives the continuous-time transfer functions of

the Butterworth and elliptic filters used in Chapter 4.

The transfer functions of these filters are written as

N'

I! (a + p[)

i-i1

1) Fifth-order Buttervorth low-pass filter:

- Cutoff frequency - 1000 Hz

- M' - number of zeros - 0

- N' - number of poles - 5

- K - 9.79 x 1018
5

- Pl,2 " 1941 ± j 5975

- P3,4 5083 ± j 3693

- P5 - 6283

2) Butterworth high-pass filter derived from the low-pass

filter:

- Cutoff frequency - 1000 Hz

- M' - 5, N' - 5, K - 1

- poles are identical to those of the low-pass filter

- zeros are all located at 0

_ ________ 4
4[~

it4- V
IL
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3) Butterworth band-pass filter derived from the low-pass

filter:

- lower cutoff frequency - 700 Hz

- upper cutoff frequency - 1000 Hz

- M' - 5, N' - 10, Ke - 2.37 x 1016a

- zeros are all located at 0

- P1,2 - 340 ± 6221

P304- 242 ± 4428

P5,6 - 843 ± 5785

P7 98 ' 682 ± 4677

P, 10  942 ± 5172

4) Butterworth band-reject filter derived from the low-pass

filter:

- lower cutoff frequency - 700 Hz

- upper cutoff frequency - 1000 Hz

- 1' - 10, N' - 10, K - 13

- poles are identical to those of the band-pass filter

- zeros are located at 0 ± j 5257

5) Fifth-order elliptic low-pass filter:

- cutoff frequency - 1000 Hz

- M' - 4, N' - 5, ks " 240

- al,2 ' 0 ± 9309, a3 ,4 - 0 ± j 6865

- P192 ' 775.2 ± J 4367.4, P3 14 - 155.5 ± j 5802

P5 - 1479.1

. . ... . . ----. t -p

.. .f. . . . . . .. ..-
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6) Elliptic high-pass filter derived from the low-pass filter:

- cutoff frequency - 1 kHz

- M' = 65, N' - 5, % = 1

- m192 = 0 ± j 4240, m3,4 - 0 i J 5750

M5- 0,

- P1,2 , 182.3 ± j 6799, P3 14 - 1555 ± j 8763

P5 - 26689

7) Elliptic band-pass filter derived from the low-pass filter:

- lower cutoff frequency - 700 Hz

- upper cutoff frequency - 1000 Hz

- M' - 9, N' - 10, Ke a 1195.2

- '1,2 " 0 1 j 6836, m3,4 ' 0 ± j 4043

M5, 6 - 0 ± j 6386, m7e, - 0 1 J 4327

13 - 0,

P1,2 - 27,2 ± j 6199, P3,1 - 222 ± j 5252

P5 66 , 130 1 j 5951, P7,8 - 102 1 j 4641

pg,10 - 10.2 ± J 4458

8) Elliptic band-reject filter derived from the low-pass

filter:

- lover cutoff frequency - 700 Hz

- upper cutoff frequency - 1000 Hz

- M' - 10, N' - 10, Ke a 1

- 01,2 - 0 t j 5257, 23,4 - 0 J 5931

5, 6 = 0 1 j 4659, m7, 9 0 1 j 6190

m9,10 - 0 ± J 4464

- P1 02 " 4003 1 J 3407

P3 04 - 22 t J 4335, P5,6 " 32.6 t j 6375

P7,e " 176.6 ± J 4100. p9 ,1o - 290 ± J 6729

, --i - - K
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