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ABSTRACT

N

digital filters from continuous-time filters when the ratio of the

This document describes a procedure for designing recursive

sampling frequency to the pole frequency is small.
transfer function of digital filters obtained by this method, called
the acceleration-invariant transformation, has been derived from the
partial fraction expansion of the continuvus-time transfer function.

et

The discrete-time

An error function between the digital and analog transfer functions has

also been deduced.
demonstrated by plotting the frequency response of high-order
Butterworth and elliptic filters.§

RESUME

Finally, the performance of the proposed method is

Ce document décrit une méthode pour concevoir des filtres numé-

riques récursifs 3 partir des filtres analogiques lorsque le rapport
entre le taux d'échantillonnage et la fré&quence du p8le est faible.
fonction de transfert en z des filtres numériques obtenus par cette
méthode, appelée l'invariance & 1'accélération, a &té déduite de la
décomposition en fraction partielle de la fonction de transfert des
filtres analogiques. Une fonction qui permet de calculer l'erreur
entre la fonction de transfert numérique et la fonction de transfert
analogique a aussi Eté déduite. Finalement, la performance de cette
néthode est démontr&e en tragant la réponse en fréquence des filtres
Butterworth et elliptiques & ordres &levés.
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1.0 INTRODUCTION

This document describes an alternative approximation method for
recursive digital filters when the ratio of the sampling frequency to
the cutoff or center frequency (fs/fc) is small. Recursive digital
filters are usually designed by using the impulse~invariant method and
the bilinear transformation. These methods, which constitute textbook
material (Refs. 1 to 5), permit the derivation of a digital filter from
a suitable analog filter satisfying a set of prescribed specifications.
They also provide valid matches with their corresponding analog filters
when the ratio fs/fc is sufficiently high. At low fs/fc, these methods

have serious drawbacks that lead to inappropriate approximations.

The standard-z transformation (also called the impulse-invariant
transformation) is a method whereby the response of the derived digital
filter to an impulse is identical to the sampled impulse response of
the continuous-time filter. This method yields valid matches with the
corresponding analog filter only at high sampling rates and it is
satisfactory when the analog system is sufficiently band-limited prior
to transformation. At low ratios of fs/fc, this method can be applied
only to transfer functions in which the denominator degree exceeds that
of the numerator by at least two. The aliasing effects obtained by
this transformation render it entirely useless for digital high-pass
and band-reject filters. In addition, for elliptic low-pass and
band-pass filters, the equiripple character of the stop band is
destroyed by the aliasing effect. The bilinearly transformed filters
are essentially identical to the original analog filter when the ratio
fs/fc is greater than 10. However, this transformation results in a
nonlinear relationship between the analog and the digital frequencies.
It implies that the frequency response of the continuous system being
transformed will be a warped version of the analog frequency response.
This effect, which is observed particularly when the ratio fs/fc is
smaller than 10, renders the method quite complicated when designing

adaptive filters. 1In addition, neither the impulse response nor the
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phase response of the analog filter is preserved in a digital filter
obtained by the bilinear transformation.

Other methods of deriving recursive forms of continuous-time
transfer functions of analog filters are an extension of the concept of
the impulse invariance. In the sinusoid invariance (Ref. 6), the step
invariance (Refs. 7 and 8) and the ramp invariance (Ref. 8), the
digital filter design is optimized for a sequence of sinusoids, steps
or ramps joining the sampled values as an input signal. These methods
attenuate the aliasing effect encountered in the impulse invariance.
The sinusoid-invariant method preserves the phase characteristics of
analog filters and it 18 suitable to the design of filters with a
constant group delay. The step-invariant method can be applied to
transfer functions in which the degree of the denominator can exceed
that of the numerator by at least one. In the ramp-invariant method,
the numerator degree can be as high as the denominator degree. 1In
Ref. 8, it is shown that the step and ramp invariances of low-pass and
band-pass filters, if they are realized in a parallel form, produce
digital filters whose frequency response does not depend on the
sampling frequency in the frequency band of 0 to fs/2. The frequency
response of the step—invariant high-pass and band-reject filters
realized in a parallel or a cascade form is unacceptable for small
ratios fs/fc because of the aliasing effects. The ramp invariance
realized in a cascade form can be used to digitize high-pass and
band-reject filters. The ratio fs/fc can be decreased below 10 for
Butterworth filters but the equiripple character in the stop-band
response of elliptic filters is preserved by a ratio of at least 10.

The approximation method described in this report is derived
from analog filters such that an acceleration invariant response is
maintained. The discrete-~time transfer function of the digital filters
is obtained from the partial fraction expansion of the continuous—-time
transfer function to lead directly to a realization in a parallel form.

An error function between the transfer functions of the digital and
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analog filters has also been deduced. This method 1s shown to
approximate correctly, on a wide bandwidth, the frequency responses of

low-pass, band-pass, high-pass and band-reject analog filters for small

ratios of fs/fc .

This work was performed at DREV between November 1982 and April
1983 under PCN 21J05, Guidance and Control Concepts.

2.0 DERIVATION OF THE ACCELERATION-INVARIANT METHOD

Assume that the coefficients of an analog filter with Laplace
transformation (i.e. transfer function) given by
gl
i
b,s
H (8) = Y(Bl - i=0 i
A X(8) g' i
a.s
i
1=0

[1]

are known. Y(s) and X(s) are respectively the Laplace transformation
of the output y(t) and the input x(t). M' must be smaller or equal to
N'. If we assume that all real and complex poles are simple, eq. 1 can

be rewritten in its partial fraction expansion as

N A
1 [2]
H(s) = AO + 121 ?—_’T

Equation 2 covers low-pass, high-pass, band-pass and band-reject
filters among the well-known classes such as the Butterworth, Bessel,

Chebyshev and elliptic filters.

The s domain filter response of eq. 2 to an acceleration input

is written as

Y, () = H (s)X(s) = HA(s)/sa [3]

|
!
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Substituting eq. 2 into eq. 3 and finding the iaverse Laplace
transformation of this relation yield the following time function:
-P.t
N i
A t2 AtZ At A (l-e )
Y, (e) = 2—+ IR i At S St [4]
2 i=1 2p; P} P}
Hence, the sampled sequence of YA(t) can be obtained by applying
the z transformation to eq. 4. This gives:
2,~1 -1 N 2,~1 -1
AOT 271l + z7%) + {A1T z7M 1 +27%)
Y. (z) = 3 p
D 2(1 - z7 i=1 Zpi(l -z~h3
. -PiT
-1 -l¢1 -
AiTz Aiz (1-e ) }
- + -.T [5]
Pi(l - z71H3 pi(l -z ~ z7le 1%
where z= eTs and is the sampling period. YD(z) can also be expressed
as
f

. Y (2) = H(2).X(2) [6]

where HD(z) is the discrete-time transfer function of the digital

filter. X(z), the sampled sequence of the acceleration input, is

X(z) =

T2z-1(1 + z=1)
2(1 - z"l)3 [7]

Hence, Hb(z) is derived by combining eqs. 5, 6 and 7. This
operation yields
N Cz‘2-0-|)z'1+1?.1

H o (2z) = Y(2) = A i i
D X(z) o + 2 —yr [8]

f=1 (1 + 271)(1 - e 127D

t
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2A P,.T 2A -P,T
i i i i i
B - (e P e ——————
where c1 (P PZT) e P (lL+e )
i i i
-PiT
Ai &Ai -PiT ZAi(l + e )
D, =(—-—)( - e ) +
i P p3t2 P2T
i
Ai 2Ai 2A1 -PiT
BTy Twr e T )
i i i

A digital filter whose response to an acceleration excitation

corresponds to that of the analog filter has then been obtained.

3.0 ERROR FUNCTION BETWEEN THE ANALOG AND THE ACCELERATION-
INVARIANT DIGITAL FILTER

The purpogse of this chapter is to establish an error function
between the continuous-time and the discrete-time transfer functions.
A relation can be found by regarding the response of the digital filter
as the sampled response of the corresponding analog filter. The

Fourier transform of y(t) is obtained from Ref. 1 as

T3 Y+ ) (9]
r—.

oT)
YD(e

where we = 2n/7T
The substitution of eq. 9 into eq. 3 gives

* H, (ju+ jmg)
odoTy 1 j A s

Y -
pe—w —Jj(w + IWS)

2 - 4 (10]

R
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The response of the digital filter to an acceleration input
excitation, which can be derived from the relation
(YD(z) = BD(z).X(z)), gives

i (e Tyr2e ¥ T 14e™HT)

- 3
2(1l-e jnT)

[11]

JoT
(e )
A relation between the analog and digital trancfer functions is

obtained by substituting eq. 11 into eq. 10. This yields

P _ 20 - BT T Ha (0 jueg)
513 FT( 4 0Ty piee  (u + ws)3

[x2]

For sufficiently large us, the effect of frequency aliasing can
be neglected. Under this condition, eq. 12 can be written as

i (e3T) = Be®Tyn, (s0) (13]
where E(eynT) is an error function given by
T 21 - T
E(e - - ij [la]

jdt3e PT( 4 T,

The magnitude and phase responses of the error function (eq. 14)
have been plotted in Fig. 1 from f8/1o“ to £ /2.5. It is shown that
the magnitude response of the digital filter is identical to that of
its analog counterpart over the frequency band of fs/IO“ to fs/10. The
error in magnitude increases gradually to attain 2.5 dB at f8/2.5. No
error in phase is observed from fs/IO“ to f_/2.5. From £ /2.5, the
error increases to attain ® at fs/Z. The acceleration-invariant

filters are thus limited to the frequency range of 0 to fs/2.5.
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FIGURE 1 - Frequency response of the error function between the analog
and digital transfer functions ]

4.0 PERFORMANCE OF THE ACCELERATION-INVARIANT METHOD
FOR HIGH-ORDER BUTTERWORTH AND ELLIPTIC FILTERS

Figures 2 to 5 show the magnitude and phase-frequency responses
of high-order Butterworth and elliptic digital filters obtained by the
acceleration-invariant method. In all examples, the response of digit-
al filters is presented for various sampling frequencies (100, 10 and
4 kHz) and it 1s accompanied by the response of the corresponding ana-
log filters. Figures 2 and 3 illustrate fifth-order low-pass and high-
pass Butterworth and elliptic filters. The cutoff frequency (fc) and
the gain of these filters are maintained at 1 kHz and 1 respectively.
In addition, for elliptic filters, the stop-band attenuation is at
least 40 dB and the pass—-band ripple is limited to 3 dB. The band-pass
and the band-reject Butterworth and elliptic filters of Figs. 4 and 5
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were derived from a transformation performed on the corresponding
low-pass filters (Ref. 1). The lower and upper cutoff frequencies of
these filters are located at 700 Hz and 1.0 kHz. Their center frequen-
cy is noted by fc. The poles and zeros of analog filters are given in

Appendix A.

The acceleration invariance of the low-pass and band-pass
filters produces digital filters whose frequency response matches very
closely that of their analog counterpart in the frequency band of O to
fs/2.5. In this region, the frequency response does not depend on the
sampling frequency. For elliptic filters, the equiripple character of
the stop-band response is correctly preserved. The high-pass digital
filters are essentially identical to the original analog filter when
the ratio fs/fc is greater than or equal to 10. When it decreases
below 10, the aliasing effect can be observed in the magnitude response
of the digital high-pass filters. The Butterworth filter exhibits an
error in magnitude and in phase in the low-frequency band. However,
when fs is set to éfc, this error does not exceed 10 dB in magnitude
and 20° in phase at fc/10. The high-pass elliptic filter does not
perfectly preserve the equiripple character of the stop-band response
when fs/fc is smaller than 10. The phase response is also slightly
disturbed around the resonant frequency. The band-reject digital
filters react in the same manner as the high-pass filters. Their
frequency responses coincide with those of the corresponding analog
filters when the ratio fs/fc is greater than or equal to 10. When it
becomes smaller than 10, the attenuation of the Butterworth filter,
the phase response and the equiripple character of the elliptic filter
in the stop-band are not correctly reproduced. Although all the
characteristics of the digital high-pass and band-reject filters are
not preserved when the ratio fs/fc is set to a value smaller than 10,
no gain is introduced by the acceleration-invariant transformation.
Furthermore, this method does not move the poles of the digital filters
as a function of the sampling frequency and it can be applied to a wide
frequency band.
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Legend for Figures 2 through 5

Continuous-time filter
Digital filter when fs = 100 kHz
ererscservvescecene Digital filter when fs = 10 kHz

—r—t—s—e—t—s—sce=c—¢ Digital filter when fs = 4 kHz
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FIGURE 2 - Frequency responses of Butterworth and elliptic low-pass
digital filters obtained by the acceleration-invariant
method for various ratios f /f. (4, 10, 100)
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FIGURE 3 - Frequency responses of Butterworth and elliptic band-pass
digital filters obtained by the acceleration~invariant
method for various ratios fs/fc (4, 10, 100)
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method for various ratios f‘/fc (4, 10, 100)
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5.0 CONCLUSION

An approximation method has been described whereby a digital
filter can be derived from an analog filter while maintaining an
acceleration-invariant response. The discrete-time transfer function
of digital filters obtained by this method has been deduced from the
partial fraction expansion of the continuous-time filter yielding a

parallel realization.

The performance of the proposed method has been determined by
giving the frequency response of high-order Butterworth and elliptic
filters. The acceleration invariance of low-pass and band-pass filters
produces digital filters whose frequency responses match perfectly
those of their analog counterparts. Also, these responses do not
depend on the ratio fs/fc in the frequency band of 0 to fs/2.5. An
accurate frequency response of high-pass and band-reject filters can be
obtained when the ratio fs/fc is maintained equal to or greater than
10. When it decreases below 10, the frequency response of the digital |
filters remains acceptable but the equiripple character of the elliptic

filter in the stop-band, the magnitude response of the Butterworth
high-pass filter in the low-frequency band and the peak stop-band
attenuation of the Butterworth band-reject filter are not perfectly

reproduced by the transformation.

The acceleration—-invariant method is then less sensitive to the
frequency aliasing in comparison with the impulse-invariant, the step-
invariant and the ramp-invariant methods. In addition, this method
exhibits no frequency warping, a drawback met in the bilinear transfor-
mation. However, this improvement produces an increase in the order of
the acceleration-invariant filter. The numerator and denominator
degrees of the acceleration-invariant filter exceed by one those of the

ramp-invariant or the bilinearly transformed filter.
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APPENDIX A

Continuous-Time Transfer Functions of

the Butterworth and Elliptic Filters

This appendix gives the continuous~time transfer functions of
the Butterworth and elliptic filters used in Chapter 4.

The transfer functions of these filters are written as

M'

n +
0y (8 +m)
N'

n +
I, (s +p)

|
H(s) = K (a.1] ‘

i

1) Fifth-order Butterworth low-pass filter:

= Cutoff frequency = 1000 Hz
= M' = number of zeros = 0
~ N' = number of poles = 5 i
- K, = 9.79 x 10'®
= Pysgy = 1941 t j 5975
= Pgsy = 5083 t j 3693
Pg = 6283

2) Butterworth high-pass filter derived from the low-pass
filter:

Cutoff frequency = 1000 Hz
- M =5, N' =5, K, =1
= poles are identical to those of the low-pass filter

~ zeros are all located at O

- . - - ——— - R
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3) Butterworth band-pass filter derived from the low~pass
filter:
~ lower cutoff frequency = 700 Hz
~ upper cutoff frequency = 1000 Hz
~M =5 N =10, K =2.37 x 1016
~ zeros are all located at O
~ Pys2 ™ 340 £ 6221
P3sy ™ 262 t 4428
Psig = 843 t 5785
Pysg = 682 t 4677
Pgsyg = 942 t 5172
4) Butterworth band-reject filter derived from the low-pass
filter:
- lower cutoff frequency = 700 Hz
- upper cutoff frequency = 1000 Hz {
- M' = 10, N' = 10, l. =1
- poles are identical to those of the band-pass filter
- zeros are located at 0 t j 5257
5) Fifth-order elliptic low—-pass filter:
- cutoff frequency = 1000 Hz
- M =4, N' =5, k, = 240
~ By, = 02 9309, my,, = 02t J 6865
= Pyog = 775.2 £ J 4367.4, p,,, = 155.5 t j 5802
ps = 1479.1
.
: |
| -
: ; {
) ) ;|
\ X
] L—‘] S
T R —— ~ R S
[ IR L emTa L . ; I
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Elliptic high-pass filter derived from the low-pass filter:

cutoff frequency = 1 kHz

M' = 65, N' = 5, K, = 1

m,, = 0% j 4240, my,, = 0% j 5750

mg = 0,

Py»y = 182.3  j 6799, py,, = 1555 * § 8763
Ps = 26689

Elliptic band-pass filter derived from the low-pass filter:

lower cutoff frequency = 700 Hz

upper cutoff frequency = 1000 Hz

M' =9, N' = 10, K, = 1195.2

m,, = 0% j 683, my,, = 0t j 4043

ms,e = 0 £ j 6386, myp,g = 0 £ j 4327

gy = 0,

Pisp = 27,2 * j 6199, py,, = 222 £ j 5252
Pgsg = 130 & § 5951, p,,q = 102 t § 4641
P9s1p = 10.2 £ j§ 4458

Elliptic band-reject filter derived from the low-pass
filter:

lower cutoff frequency = 700 Hz

upper cutoff frequency = 1000 Hz

M' = 10, N' = 10, K, = 1

m,2=012% j 5257, m3,, = 0 £ j 5931

mg, = 02 j 4659, my,g = 0 2 J 6190

mg,10 = 0 * j 4464

P1sg = 4003 2 } 3407

P3sy = 22 £ J 4335, pg,g = 32.6 t j 6375
P7sg = 176.6 * j 4100, pg,;o = 290 ¢ j 6729

- e o oaee

-

\
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