

•

• .

۰.

;

A determinant segretari

Ŧ,

100

UNCLASSIFIED UNLIMITED DISTRIBUTION

CRDV RAPPORT 4371/85 DOSSIER: 3621J-005 MAI 1985

AD-A156 655

Défense

DREV REPORT 4371/85

FILE: 3621J-005

MAY 1985

nationale

ACCELERATION-INVARIANT APPROXIMATION METHOD FOR RECURSIVE DIGITAL FILTERS

A. Morin

P. Labbé

THE FILE COPP

Canadä

Centre de Recherches pour la Defense Defence Research Establishment

Valcartier Quebee

This document has been approved for public release and sale; in distribution is unlimited.

85

BUREAU - RECHERCHE ET DÉVELOPPEMENT MINISTÈRE DE LA DÉFENSE NATIONALE CANADA RESEARCH AND DEVELOPMENT BRANCH DEPARTMENT OF NATIONAL DEFENCE CANADA

SANS CLASSIFICATION DIFFUSION ILLIMITÉE

08 001

DREV R-4371/85 FILE: 3621J-005 UNCLASSIFIED

CRDV R-4371/85 DOSSIER: 3621J-005 1 1 1

ACCELERATION-INVARIANT APPROXIMATION METHOD

FOR RECURSIVE DIGITAL FILTERS

by

A. Morin and P. Labbé

CENTRE DE RECHERCHES POUR LA DÉFENSE

DEFENCE RESEARCH ESTABLISHMENT

VALCARTIER

Tel: (418) 844-4271

Québec, Canada

May/mai 1985

. .

SANS CLASSIFICATION

1

. . .

ABSTRACT

This document describes a procedure for designing recursive digital filters from continuous-time filters when the ratio of the sampling frequency to the pole frequency is small. The discrete-time transfer function of digital filters obtained by this method, called the acceleration-invariant transformation, has been derived from the partial fraction expansion of the continuous-time transfer function. An error function between the digital and analog transfer functions has also been deduced. Finally, the performance of the proposed method is demonstrated by plotting the frequency response of high-order Butterworth and elliptic filters.

résumé

Ce document décrit une méthode pour concevoir des filtres numériques récursifs à partir des filtres analogiques lorsque le rapport entre le taux d'échantillonnage et la fréquence du pôle est faible. La fonction de transfert en z des filtres numériques obtenus par cette méthode, appelée l'invariance à l'accélération, a été déduite de la décomposition en fraction partielle de la fonction de transfert des filtres analogiques. Une fonction qui permet de calculer l'erreur entre la fonction de transfert numérique et la fonction de transfert analogique a aussi été déduite. Finalement, la performance de cette méthode est démontrée en traçant la réponse en fréquence des filtres Butterworth et elliptiques à ordres élevés.

Acces	sion For	
NTIS	GRA&I	
DTIC	TAB	
Unann	ounced	
Justi	fication	
By Distr	ibution/	
Avai	lability	Codes
Dist	Avail a Speci	
A		

it

TABLE OF CONTENTS

	ABSTRACT/RÉSUMÉ
1.0	INTRODUCTION
2.0	DERIVATION OF THE ACCELERATION-INVARIANT METHOD 3
3.0	ERROR FUNCTION BETWEEN THE ANALOG AND THE ACCELERATION- INVARIANT DIGITAL FILTER
4.0	PERFORMANCE OF THE ACCELERATION-INVARIANT METHOD FOR HIGH- ORDER BUTTERWORTH AND ELLIPTIC FILTERS
5.0	CONCLUSION
6.0	REFERENCES
	FIGURES 1 to 5
	APPENDIX A - Continuous-Time Transfer Functions of the Butterworth and Elliptic Filters 15

im

٦

1.0 INTRODUCTION

This document describes an alternative approximation method for recursive digital filters when the ratio of the sampling frequency to the cutoff or center frequency (f_s/f_c) is small. Recursive digital filters are usually designed by using the impulse-invariant method and the bilinear transformation. These methods, which constitute textbook material (Refs. 1 to 5), permit the derivation of a digital filter from a suitable analog filter satisfying a set of prescribed specifications. They also provide valid matches with their corresponding analog filters when the ratio f_s/f_c is sufficiently high. At low f_s/f_c , these methods have serious drawbacks that lead to inappropriate approximations.

The standard-z transformation (also called the impulse-invariant transformation) is a method whereby the response of the derived digital filter to an impulse is identical to the sampled impulse response of the continuous-time filter. This method yields valid matches with the corresponding analog filter only at high sampling rates and it is satisfactory when the analog system is sufficiently band-limited prior to transformation. At low ratios of f_s/f_c , this method can be applied only to transfer functions in which the denominator degree exceeds that of the numerator by at least two. The aliasing effects obtained by this transformation render it entirely useless for digital high-pass and band-reject filters. In addition, for elliptic low-pass and band-pass filters, the equiripple character of the stop band is destroyed by the aliasing effect. The bilinearly transformed filters are essentially identical to the original analog filter when the ratio f_{c}/f_{c} is greater than 10. However, this transformation results in a nonlinear relationship between the analog and the digital frequencies. It implies that the frequency response of the continuous system being transformed will be a warped version of the analog frequency response. This effect, which is observed particularly when the ratio f_{a}/f_{c} is smaller than 10, renders the method quite complicated when designing adaptive filters. In addition, neither the impulse response nor the

•

phase response of the analog filter is preserved in a digital filter obtained by the bilinear transformation.

Other methods of deriving recursive forms of continuous-time transfer functions of analog filters are an extension of the concept of the impulse invariance. In the sinusoid invariance (Ref. 6), the step invariance (Refs. 7 and 8) and the ramp invariance (Ref. 8), the digital filter design is optimized for a sequence of sinusoids, steps or ramps joining the sampled values as an input signal. These methods attenuate the aliasing effect encountered in the impulse invariance. The sinusoid-invariant method preserves the phase characteristics of analog filters and it is suitable to the design of filters with a constant group delay. The step-invariant method can be applied to transfer functions in which the degree of the denominator can exceed that of the numerator by at least one. In the ramp-invariant method, the numerator degree can be as high as the denominator degree. In Ref. 8, it is shown that the step and ramp invariances of low-pass and band-pass filters, if they are realized in a parallel form, produce digital filters whose frequency response does not depend on the sampling frequency in the frequency band of 0 to $f_{c}/2$. The frequency response of the step-invariant high-pass and band-reject filters realized in a parallel or a cascade form is unacceptable for small ratios f /f because of the aliasing effects. The ramp invariance realized in a cascade form can be used to digitize high-pass and band-reject filters. The ratio f_{e}/f_{c} can be decreased below 10 for Butterworth filters but the equiripple character in the stop-band response of elliptic filters is preserved by a ratio of at least 10.

The approximation method described in this report is derived from analog filters such that an acceleration invariant response is maintained. The discrete-time transfer function of the digital filters is obtained from the partial fraction expansion of the continuous-time transfer function to lead directly to a realization in a parallel form. An error function between the transfer functions of the digital and

東方は日本町部にあ

ir.

analog filters has also been deduced. This method is shown to approximate correctly, on a wide bandwidth, the frequency responses of low-pass, band-pass, high-pass and band-reject analog filters for small ratios of f_e/f_c .

This work was performed at DREV between November 1982 and April 1983 under PCN 21J05, Guidance and Control Concepts.

2.0 DERIVATION OF THE ACCELERATION-INVARIANT METHOD

Assume that the coefficients of an analog filter with Laplace transformation (i.e. transfer function) given by

$$H_{A}(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{i=0}^{M'} b_{i}s^{i}}{\sum_{i=0}^{N'} a_{i}s^{i}}$$
[1]

are known. Y(s) and X(s) are respectively the Laplace transformation of the output y(t) and the input x(t). M' must be smaller or equal to N'. If we assume that all real and complex poles are simple, eq. 1 can be rewritten in its partial fraction expansion as

$$H(s) = A_0 + \sum_{i=1}^{N} \frac{A_i}{s + p_i}$$
 [2]

Equation 2 covers low-pass, high-pass, band-pass and band-reject filters among the well-known classes such as the Butterworth, Bessel, Chebyshev and elliptic filters.

The s domain filter response of eq. 2 to an acceleration input is written as

ir-

$$Y_{A}(s) = H_{A}(s)X(s) = H_{A}(s)/s^{3}$$
 [3]

Substituting eq. 2 into eq. 3 and finding the inverse Laplace transformation of this relation yield the following time function:

$$Y_{A}(t) = \frac{A_{o}t^{2}}{2} + \sum_{i=1}^{N} \left\{ \frac{A_{i}t^{2}}{2p_{i}} - \frac{A_{i}t}{P_{i}^{2}} + \frac{A_{i}(1-e^{-P_{i}t})}{P_{i}^{3}} \right\}$$
 [4]

Hence, the sampled sequence of $Y_A(t)$ can be obtained by applying the z transformation to eq. 4. This gives:

$$X_{\rm D}(z) = \frac{A_{\rm o}T^2 z^{-1} (1 + z^{-1})}{2(1 - z^{-1})^3} + \sum_{i=1}^{\rm N} \frac{\{A_{\rm i}T^2 z^{-1} (1 + z^{-1})}{2p_{\rm i} (1 - z^{-1})^3} - \frac{A_{\rm i}T z^{-1}}{p_{\rm i}^2 (1 - z^{-1})^3} + \frac{A_{\rm i} z^{-1} (1 - e^{-p_{\rm i}T})}{p_{\rm i}^3 (1 - z^{-1}) (1 - z^{-1} e^{-p_{\rm i}T})} \}$$
[5]

where $z = e^{Ts}$ and is the sampling period. $Y_{D}(z)$ can also be expressed as

$$Y_{D}(z) = H_{D}(z) \cdot X(z) \qquad [6]$$

where $H_D(z)$ is the discrete-time transfer function of the digital filter. X(z), the sampled sequence of the acceleration input, is

$$X(z) = \frac{T^2 z^{-1} (1 + z^{-1})}{2(1 - z^{-1})^3}$$
 [7]

Hence, $H_D(z)$ is derived by combining eqs. 5, 6 and 7. This operation yields

in

$$H_{D}(z) = \frac{Y(z)}{X(z)} = A_{0} + \sum_{i=1}^{N} \frac{C_{i}z^{-2} + D_{i}z^{-1} + E_{i}}{(1 + z^{-1})(1 - e^{-P_{i}T}z^{-1})}$$
[8]

where
$$C_{i} = -\left(\frac{A_{i}}{P_{i}} + \frac{2A_{i}}{P_{i}^{2}T}\right) e^{-P_{i}T} + \frac{2A_{i}}{P_{i}^{3}T^{2}} \left(1 + e^{-P_{i}T}\right)$$

 $D_{i} = \left(\frac{A_{i}}{P_{i}} - \frac{4A_{i}}{P_{i}^{3}T^{2}}\right) \left(1 - e^{-P_{i}T}\right) + \frac{2A_{i}(1 + e^{-P_{i}T})}{P_{i}^{2}T}$
 $E_{i} = \frac{A_{i}}{P_{i}} - \frac{2A_{i}}{P_{i}^{2}T} + \frac{2A_{i}}{P_{i}^{3}T^{2}} \left(1 - e^{-P_{i}T}\right)$

A digital filter whose response to an acceleration excitation corresponds to that of the analog filter has then been obtained.

3.0 ERROR FUNCTION BETWEEN THE ANALOG AND THE ACCELERATION-INVARIANT DIGITAL FILTER

The purpose of this chapter is to establish an error function between the continuous-time and the discrete-time transfer functions. A relation can be found by regarding the response of the digital filter as the sampled response of the corresponding analog filter. The Fourier transform of y(t) is obtained from Ref. 1 as

$$Y_{D}(e^{j\omega T}) = \frac{1}{T} \sum_{m=-\infty}^{\infty} Y_{A}(j\omega + jm\omega_{S})$$
 [9]

where $\omega_{\rm S} = 2\pi/T$

in

The substitution of eq. 9 into eq. 3 gives

$$Y_{D}(e^{j\omega T}) = \frac{1}{T} \sum_{m=-\infty}^{\infty} \frac{H_{A}(j\omega + jm\omega_{S})}{-j(\omega + m\omega_{S})}$$
[10]

The response of the digital filter to an acceleration input excitation, which can be derived from the relation $(Y_D(z) = H_D(z) \cdot X(z))$, gives

$$Y_{D}(e^{j\omega T}) = \frac{H_{D}(e^{j\omega T})T^{2}e^{-j\omega T}(1+e^{-j\omega T})}{2(1-e^{-j\omega T})^{3}}$$
[11]

A relation between the analog and digital transfer functions is obtained by substituting eq. 11 into eq. 10. This yields

$$H_{D}(e^{j\omega T}) = -\frac{2(1 - e^{-j\omega T})^{3}}{jT^{3}e^{-j\omega T}(1 + e^{-j\omega T})} \sum_{m = -\infty}^{\infty} \frac{H_{A}(j\omega + jm\omega s)}{(\omega + m\omega s)^{3}}$$
[12]

For sufficiently large ω_S , the effect of frequency aliasing can be neglected. Under this condition, eq. 12 can be written as

$$H_{D}(e^{j\omega T}) = E(e^{j\omega T})H_{A}(j\omega) \qquad [13]$$

where $E(e^{j\omega T})$ is an error function given by

$$E(e^{j\omega T}) = -\frac{2(1 - e^{-j\omega T})^{3}}{j\omega^{3}T^{3}e^{-j\omega T}(1 + e^{-j\omega T})}$$
[14]

The magnitude and phase responses of the error function (eq. 14) have been plotted in Fig. 1 from $f_g/10^4$ to $f_g/2.5$. It is shown that the magnitude response of the digital filter is identical to that of its analog counterpart over the frequency band of $f_g/10^4$ to $f_g/10$. The error in magnitude increases gradually to attain 2.5 dB at $f_g/2.5$. No error in phase is observed from $f_g/10^4$ to $f_g/2.5$. From $f_g/2.5$, the error increases to attain ∞ at $f_g/2$. The acceleration-invariant filters are thus limited to the frequency range of 0 to $f_g/2.5$.

FIGURE 1 - Frequency response of the error function between the analog and digital transfer functions

4.0 <u>PERFORMANCE OF THE ACCELERATION-INVARIANT METHOD</u> FOR HIGH-ORDER BUTTERWORTH AND ELLIPTIC FILTERS

Figures 2 to 5 show the magnitude and phase-frequency responses of high-order Butterworth and elliptic digital filters obtained by the acceleration-invariant method. In all examples, the response of digital filters is presented for various sampling frequencies (100, 10 and 4 kHz) and it is accompanied by the response of the corresponding analog filters. Figures 2 and 3 illustrate fifth-order low-pass and highpass Butterworth and elliptic filters. The cutoff frequency (f_c) and the gain of these filters are maintained at 1 kHz and 1 respectively. In addition, for elliptic filters, the stop-band attenuation is at least 40 dB and the pass-band ripple is limited to 3 dB. The band-pass and the band-reject Butterworth and elliptic filters of Figs. 4 and 5

were derived from a transformation performed on the corresponding low-pass filters (Ref. 1). The lower and upper cutoff frequencies of these filters are located at 700 Hz and 1.0 kHz. Their center frequency is noted by f_c . The poles and zeros of analog filters are given in Appendix A.

The acceleration invariance of the low-pass and band-pass filters produces digital filters whose frequency response matches very closely that of their analog counterpart in the frequency band of 0 to f /2.5. In this region, the frequency response does not depend on the sampling frequency. For elliptic filters, the equiripple character of the stop-band response is correctly preserved. The high-pass digital filters are essentially identical to the original analog filter when the ratio f_{g}/f_{c} is greater than or equal to 10. When it decreases below 10, the aliasing effect can be observed in the magnitude response of the digital high-pass filters. The Butterworth filter exhibits an error in magnitude and in phase in the low-frequency band. However, when f is set to 4f, this error does not exceed 10 dB in magnitude and 20° in phase at f_{10} . The high-pass elliptic filter does not perfectly preserve the equiripple character of the stop-band response when f_{e}/f_{c} is smaller than 10. The phase response is also slightly disturbed around the resonant frequency. The band-reject digital filters react in the same manner as the high-pass filters. Their frequency responses coincide with those of the corresponding analog filters when the ratio f_{s}/f_{c} is greater than or equal to 10. When it becomes smaller than 10, the attenuation of the Butterworth filter, the phase response and the equiripple character of the elliptic filter in the stop-band are not correctly reproduced. Although all the characteristics of the digital high-pass and band-reject filters are not preserved when the ratio f_{g}/f_{c} is set to a value smaller than 10, no gain is introduced by the acceleration-invariant transformation. Furthermore, this method does not move the poles of the digital filters as a function of the sampling frequency and it can be applied to a wide frequency band.

it

٦

1 1 1

and a matrice of the second second

in-

FIGURE 3 - Frequency responses of Butterworth and elliptic band-pass digital filters obtained by the acceleration-invariant method for various ratios f_8/f_c (4, 10, 100)

,

11

•

1.1.1

٦

ł

104

ana ing ta

FIGURE 4 - Frequency responses of Butterworth and elliptic high-pass digital filters obtained by the acceleration-invariant method for various ratios f_g/f_c (4, 10, 100)

10

٦

1.1.1

I

FIGURE 5 - Frequency responses of Butterworth and elliptic band-reject digital filters obtained by the acceleration-invariant method for various ratios f_g/f_c (4, 10, 100)

T

1.1.1

1

*

5.0 CONCLUSION

1. 1. 1

An approximation method has been described whereby a digital filter can be derived from an analog filter while maintaining an acceleration-invariant response. The discrete-time transfer function of digital filters obtained by this method has been deduced from the partial fraction expansion of the continuous-time filter yielding a parallel realization.

The performance of the proposed method has been determined by giving the frequency response of high-order Butterworth and elliptic filters. The acceleration invariance of low-pass and band-pass filters produces digital filters whose frequency responses match perfectly those of their analog counterparts. Also, these responses do not depend on the ratio f_s/f_c in the frequency band of 0 to $f_s/2.5$. An accurate frequency response of high-pass and band-reject filters can be obtained when the ratio f_s/f_c is maintained equal to or greater than 10. When it decreases below 10, the frequency response of the digital filters remains acceptable but the equiripple character of the elliptic filter in the stop-band, the magnitude response of the Butterworth high-pass filter in the low-frequency band and the peak stop-band attenuation of the Butterworth band-reject filter are not perfectly reproduced by the transformation.

The acceleration-invariant method is then less sensitive to the frequency aliasing in comparison with the impulse-invariant, the stepinvariant and the ramp-invariant methods. In addition, this method exhibits no frequency warping, a drawback met in the bilinear transformation. However, this improvement produces an increase in the order of the acceleration-invariant filter. The numerator and denominator degrees of the acceleration-invariant filter exceed by one those of the ramp-invariant or the bilinearly transformed filter.

6.0 REFERENCES

- Rabiner, L.R. and Gold, B., "Theory and Application of Digital Signal Processing", Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.
- Oppenheim, A.V. and Schafer, R.W., "Digital Signal Processing", Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.
- 3. Golden, R.M., "Digital Filter Synthesis by Sampled-Data Transformation", IEEE Transactions on Audio and Electroacoustics, Vol. AU-16, No. 3, September 1968.
- 4. Antoniou, A., "Digital Filters: Analysis and Design", McGraw-Hill Book Company, New York, 1979.
- 5. Jong, H.T., "Methods of Discrete Signal and System Analysis", McGraw-Hill Book Company, New York, 1982.
- Antoniou, A., "Invariant-Sinusoid Approximation Method for Recursive Digital Filters", Electronics Letters, Vol. 9, No. 21, October 1973.
- Haykin, S. and Carnegie, R., "New Method of Synthesizing Linear Digital Filters Based on Convolution Integral", Proc. IEEE, Vol. 117, No. 6, June 1970.
- 8. Morin, A. and Labbé, P., "Derivation of Recursive Digital Filters by the Step-Invariant and the Ramp-Invariant Transformations", DREV R-4325/84, May 1984, UNCLASSIFIED

APPENDIX A

Continuous-Time Transfer Functions of the Butterworth and Elliptic Filters

This appendix gives the continuous-time transfer functions of the Butterworth and elliptic filters used in Chapter 4.

The transfer functions of these filters are written as

$$H(s) = K_{s} \frac{\prod_{i=1}^{M^{*}} (s + m_{i})}{N^{*}}$$

$$\prod_{i=1}^{M^{*}} (s + p_{i})$$
[A.1]

1) Fifth-order Butterworth low-pass filter:

- Cutoff frequency = 1000 Hz - M' = number of zeros = 0 - N' = number of poles = 5 - K_g = 9.79×10^{18} - p₁₊₂ = 1941 ± j 5975 - p₃₊₄ = 5083 ± j 3693 - p₅ = 6283

- 2) Butterworth high-pass filter derived from the low-pass filter:
 - Cutoff frequency = 1000 Hz
 - $-M^{*} = 5, N^{*} = 5, K_{g} = 1$
 - poles are identical to those of the low-pass filter

.

- zeros are all located at 0

```
3) Butterworth band-pass filter derived from the low-pass
    filter:
    - lower cutoff frequency = 700 Hz
    - upper cutoff frequency = 1000 Hz
    - M' = 5, N' = 10, K = 2.37 x 10<sup>16</sup>
    - zeros are all located at 0
    -p_{1+2} = 340 \pm 6221
      P_{3+4} = 242 \pm 4428
      P5+6 = 843 ± 5785
      P_{7+8} = 682 \pm 4677
      P_{9+10} = 942 \pm 5172
4) Butterworth band-reject filter derived from the low-pass
    filter:
    - lower cutoff frequency = 700 \text{ Hz}
    - upper cutoff frequency = 1000 Hz
    -M^{*} = 10, N^{*} = 10, K_{g} = 1
    - poles are identical to those of the band-pass filter
    - zeros are located at 0 \pm j 5257
5) Fifth-order elliptic low-pass filter:
    - cutoff frequency = 1000 Hz
    -M^{*} = 4, N^{*} = 5, k_{g} = 240
    -m_{1,2} = 0 \pm 9309, m_{3,4} = 0 \pm j 6865
    -p_{1,2} = 775.2 \pm j 4367.4, p_{3,4} = 155.5 \pm j 5802
      p_5 = 1479.1
```

it n

6) Elliptic high-pass filter derived from the low-pass filter: - cutoff frequency = 1 kHz $-M^{*} = 65, N^{*} = 5, K_{a} = 1$ $-m_{1,2} = 0 \pm j$ 4240, $m_{3,4} = 0 \pm j$ 5750 $m_5 = 0$, $-p_{1,2} = 182.3 \pm j 6799, p_{3,4} = 1555 \pm j 8763$ $p_5 = 26689$ 7) Elliptic band-pass filter derived from the low-pass filter: - lower cutoff frequency = 700 Hz - upper cutoff frequency = 1000 Hz $-M^* = 9, N^* = 10, K_a = 1195.2$ $-m_{1,2} = 0 \pm j 6836, m_{3,4} = 0 \pm j 4043$ $m_{5,6} = 0 \pm j 6386, m_{7,8} = 0 \pm j 4327$ $\mathbf{m}_{q} = 0$, $p_{1,2} = 27,2 \pm j$ 6199, $p_{3,14} = 222 \pm j$ 5252 $P_{5*6} = 130 \pm j 5951, P_{7*8} = 102 \pm j 4641$ $P_{9,10} = 10.2 \pm j 4458$ 8) Elliptic band-reject filter derived from the low-pass filter: - lower cutoff frequency = 700 Hz - upper cutoff frequency = 1000 Hz $-M^{*} = 10, N^{*} = 10, K_{a} = 1$ $-m_{1,2} = 0 \pm j 5257, m_{3,4} = 0 \pm j 5931$ $m_{5,6} = 0 \pm j 4659, m_{7,8} = 0 \pm j 6190$ $m_{9},10 = 0 \pm j 4464$

 $-p_{1+2} = 4003 \pm j 3407$

 $P_{3+4} = 22 \pm j 4335, P_{5+6} = 32.6 \pm j 6375$ $P_{7+8} = 176.6 \pm j 4100, P_{9+10} = 290 \pm j 6729$

(NETITONIA) CONTACT AND	Canada. Canada. GDA 1RO DREV, F.O. Box 8800, Courcelette, Que. GOA 1RO	Method for Recursive Digital "Acceleration-Invariant Approximation Method for Recursive Digital Filters" by A. Morin and P. Labbé	<pre>Mure for designing recursive Mure for designing recursive filters when the ratio of the exp is small. The discrete-time filters when the ratio of the exp is small. The discrete-time filters obtained by this method, called tion, has been derived from the tinouv-time transfer function. An error function between the digital and analog transfer functions has also ben deduced. Finally, the performance of the proposed method is discrete by plotting the frequency response of high-order Butterworth and elliptic filters.</pre>	DREV R-4371/85 (UNCLASSIFIED)	Canada. Canada. OOA IRO DAEY, P.O. Box 8800, Courcelette, Que. COA IRO	Mathod for Recursive Digital "Acceleration-Invariant Approximation Method for Recursive Digital Filters" by A. Morin and P. Labbé	dure for designing recursive ilters when the ratio of the cy is amail. The discrete-time ty is amail. The discrete-time ty is amail. The discrete-time inters when the ratio of the amailing frequency to the pole frequency is amail. The discrete-time transfer function of digital filters obtained by this method, called the acceleration-time transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function between the digital and analog transfer function. An error function the performance of high-order between the digital and analog transfer function.
DEEA E-43/1/83 (NUCLASSIFIED)	heese rch and Development Branch, DHD, Car DHLV, P.O. Box 5000, Courcelette, Que. C	"Acceleration-Inveriant Approximation Net Filters" by A. Notin and P. Labbé	This document describes a procedure for designing recursive digital filters from continuent-time filters when the ratio of the empping frequency to the pola frequency is mail. The discretar-time tremefer function of digital filters obtained by this method, called the acceleration-invariant transformation, has been derived from the pertial fraction separation of the continuue-time transfer functions has arree function betwant the digital and analog transfer functions has also been debeded. Thally, the performance of the proposed method is demenstrated by plotting the frequency response of high-order butterworth and elliptic filters.	DADY A-4371/05 (UNCLASSIFIED)	Messarch and Development Branch, DND, Can DMEV, P.O. Box 8800, Courcelette, Que. 20	"Acceleration-Inveriant Approximation Met Filters" by A. Morin and P. Labé	This document describes a procedure for designing recursive digital filters from continuous-time filters when the ratio of the sampling frequency to the pole frequency is small. The discrete-time transfer function of digital filters obtained by this method, called partial fraction instruction transformation, has been derived from the partial fraction expansion of the continuous-time transfer function. An error function between the digital and analog transfer functions has also been deduced. Finally, the performance of the proposed method is dustarrouth and sliptic filters.

Ŕ5

٦

1.1.3

CEDY R-4371/85 (SANS CLASSIFICATION)	CRDV R-4371/85 (SANS CLASSIFICATION)
Bureau - Macharche et Développement, MDN, Canada. CADV, C.P. 8800, Courcelette, Qué. GOA IRO	Bureau - Racharche et Développement, MDN, Canada. CRDV, C.P. 8800, Courcelette, Qué. GOA IRO
"Méthode d'invariance à l'accélération pour dériver des filtres numéri- ques récutsifs" par A. Morin et P. Labbé	"Méthode d'invariance à l'accélération pour dériver des filtres numéri- ques récursifs" par A. Worin et P. Labbé
Ca document décrit une méthode pour concevoir des filtres numé- riques récursifs à partir des filtres snalogiques loraque la rapport eatre le taux d'échantillonnage et la fréquence du pôle est faible. La fonction de transfert en s des filtres numériques obtenus par cette effonde, appalés l'invariance à l'accélération, a fié déduite de la décomposition en fransfert mumérique et la fonction de transfert des filtres analogiques. Une fonction qui permet de calculer l'erreur entre la fonction de transfert mumérique et la fonction de transfert entre la fonction de transfert mumérique et la fonction de transfert entre la fonction de transfert mumérique et la fonction de transfert entre la fonction de transfert la fonction de transfert entre la fonction de transfert la fonction de transfert méthode est démontes en tregent la réponse en fréquence des filtres mitterworth et alliptiques à ordres flavés.	Ce document décrit une méthode pour concevoir des filtres numé- riques récursifs à partir des filtres analogiques loreque le raport entre le taux d'échantillonnage et la fréquence du pôls est fable. La fonction de transfert en z des filtres numériques obtenus par cette méthode, appeise l'invariance à l'acceléterion, a été déduite de la décomposition en fraction partielle de la fonction de transfert des filtres analogiques. Une fonction qui permet de calculer l'erreur analogiques aussi fét édéduite. Finalement, la performance de cette séthode est démontrée en traçant la réponse en fréquence des filtres butterworth et elliptiques à ordres élevés.
CADY R-4371/85 (SANS CLASSIFICATION)	CRDV R-4371/85 (SANS CLASSIFICATION)
Bursau - Macherche et Développement, MDN, Canada. CEDF, C.P. 8800, Courcelette, Qué. COA INO	Bureau - Recherche et Développement, MDN, Canada. CRDV, C.P. 8800, Courcelette, Qué. GOA INO
"Méthode d'invariance à l'accélération pour dériver des filtres numéri- ques récursifs" par A. Morin et P. Labbé	"Méthode d'invariance à l'accélération pour dériver des filtres numéri- ques récursifs" par A. Worin et P. Labbé
Ca document décrit une méthode pour concavoir das filtres numé- riques récursifs à partir des filtres analogiques loraque le rapport entre la taux d'échantillounage et la trapérques du pôle ent faible. La fonction de transfert en t das filtres numériques obtenus par cette effendes, speide l'ivaviance à l'accélértion, a fét déduite de la décomposition en fraction partielle de la fonction de transfert des filtres analogiques. Une fonction qui parte de calculer l'erreur entre la suest été déduite. Finalement, la performance de cette méthode set démontrée en traçant la tépone en fréquence des filtres malogique a suest été déduite. Finalement, la performance de cette méthode set démontrée en traçant la tépone en fréquence des filtres mutterworth et alliptiques à ordres flevés.	Ce document décrit une méthode pour concevoir des filtres numé- riques récursifs à partir des filtres analogiques loraque le raport entre le taux d'échantillonnage et la fréquence du pôle sent fable. La fonction de transfert en z des filtres numériques obtenus par cette méthode, appeise l'invariance à l'acceléfacion, a été déduite de la décomposition en fraction partielle de la fonction de transfert des filtres analogiques. Une fonction qui permet de calcular l'erreur entre la fonction de transfert numérique et la fonction de transfert analogique a aussi été déduite. Finalement, la performance de cette méthode est démontrée en traçant la réponse en fréquence des filtres butterworth et elliptiques à ordres élevés.

t

1

H)

