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ABSTRACT

An algorithm is presented for the active adaptive
control of periodic interference. This algorithm is
derived, its performance is theoretically analyzed, and
the algorithm and its performance are verified by
laboratory experiments. In these experiments, this
control method is shown to reduce the periodic components
by more than 40 dB.

ADMINISTRATIVE INFORMATION

This work was sponsored by the David Taylor Naval Ship Research and

Development Center's (DTNSRDC) Independent Research Program under Task

ZRO110801, Program Element 61152N, and Work Unit 1965-139.

INTRODUCTION

The objective of active adaptive control is the cancellation or

4 minimization of a physical quantity such as acoustic noise or mechanical

vibration by physically generating a controlled cancellation stimulus that will

destructively superimpose with the physical quantity produced by the

interfering source. Since many sources of noise or vibration are periodic in

nature (rotating machinery, for example), the control algorithm of only this

class of interfering sources is considered in this report. An excellent

overview article that describes the application and results of this type of

control is given by Chaplin. I* This article, as well as other papers in the

literature, such as Kosaka, et al.,2 and Smith and Chaplin,3 however, do not

reveal very many details of how their algorithms function.

Smith and Chaplin 3 describe three basic types of adaptation algorithms:

power sensing, waveform sensing, and transform method. In the power sensing

* method, the cycle is divided into N segments and the amplitude of each time

segment in the cancellation signal is adjusted until the error signal power

.. averaged over a complete cycle is minimized. The waveform sensing method uses

the error amplitude at its corresponding cancellation signal time segment

(compensation for time delay) to adjust the cancellation signal until the error

signal is minimized. The transform method operates in the frequency domain; the

* transfer function between the cancellation signal and the error signal is

A complete listing of references is given on page 27.

*:) : . .;.. .. . . .. .. ., . . . , ... . ..-

i, .. . . . . , ., . . . .. .. . . . . . . .. ., - . . . . . . :.. . -. ...- . -- . .. . • -
, .. . . , ... . . .. i i* " -,. .. . . .. -.- - . ---'"" "" " " " " " " " " " ,.



characterized and a cancellation signal is developed that minimizes the error

signal. With each of these methods, a synchronization signal (tachometer, for

example) is used to control timing in the algorithm. Noise immunity is enhanced

by applying signal averaging procedures (synchronous averaging over a number of

cycles).

The control algorithm presented in this report uses the transform method

combined with signal averaging procedures. This algorithm is derived for the

general case of multiple control loops such that cross-coupling between each

* actuator and sensor is included. It's performance is theoretically analyzed to

. determine the influence of algorithm parameters on the convergence rate and

.. loop misadjustment in the presence of noise. Also presented are the results of

applying this algorithm to a laboratory experiment involving vibration on a

beam that is supported and controlled at two points.

The application of this control method to different situations will

0 require a case-by-case analysis of the physical system. The interference levels

measured by the sensors (the measured error signals) are reduced using this

- method; however, at other locations, the interference levels could actually be

- increased (a nonrigid body, for example). The actuators and sensors must be

.- correctly located to achieve global reduction of these levels. Determining

these locations requires a careful study and understanding of the different

modes or degrees-of-freedom present in the actual structure or sound field.

THE CONTROL ALGORITHM

""-" DERIVATION OF THE ALGORITHM

The derivation of the active adaptive control algorithm for periodic

interference begins with a description and understanding of the constraints

imposed by the control problem. First, synchronization between the interfering

and cancellation signals is required. For rotating machinery, a tachometer or

shaft position encoder can provide this synchronization. Next are the factors

that distinguish this control problem from the normal realm of feedback and

control: Only the sum of the interfering and cancellation signals is

measurable -- the error signal of the feedback loop. The cancellation signal

propagates in the medium and will prevent the measurement of only the

interfering signal. Also, mechanical and electronic filters are present within

2



the feedback loop. Linear filters are assumed; however, antialiasing filters,

transducers, and signal propagation in the medium will produce the frequency

dependent gain and phase variations that define this filter within the control

loop.

The control algorithm operates in the frequency domain. The Fourier series

components of the error signal are obtained using the Fast Fourier Transform

(FFT); these components are processed to produce the next iteration of the

cancellation signal's Fourier series. Synchronization preserves the phase

relationships of the Fourier series components. The time domain samples for the

cancellation signal are produced using the inverse FFT. The algorithm is

adaptive in the sense that it will track time varying changes in the amplitude

and phase of the periodic interference. However, the filter in the feedback

loop is not "self-designing." Prior to the adaptation process, a model of the

control loop filter is estimated. If the control loop becomes unstable, then

the adaptation process would be halted, the control loop filter reestimated,

and the adaptation process begun again.

The block diagram of the control system in the frequency domain is given

in Figure 1. The description of each term is given as follows:

A(N.) Interference Signal Vector

N(Wj) Noise Signal Vector

B(w.) Cancellation Signal Vector

E(wj) Error Signal Vector

D(wj) Control Loop Filter Matrix

C(WJ) Measured Error Signal Vector

where wj (J-1)wf, wf - 21r/(JT) is the fundamental frequency, 1 S j S (J/2)-1,

T is the time between samples, and J is the number of samples in the period JT.
Except when necessary, the functional dependence on wj is not included in the

equations presented in the rest of this report; this dependence is assumed

unless otherwise stated. For Q control loops, each signal vector contains Q

elements and the control loop filter matrix is a Q by Q matrix that includes

the cross-coupling between each cancellation signal and each measured error

signal. In this model, only the error signal vector, C, is measurable. The

3
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control loop filter matrix, D, is the product of all filters between each

cancellation signal and each measured error signal (mechanical, antialiasing,

transducers, signal propagation, etc.). The noise signal vector, N, can consist

of random noise, as well as other unsynchronized periodic signals.

The matrix equation for the control loop is

C = D (A + N + B) (1)

where A and N are unknown, and B is the independent variable. Since D is

measured, the error signal vector, E, is given by the inverse matrix equation:

E -D 1 c (2)

where

E=A+N+B (3)

The inverse matrix of the control loop filter is assumed to exist; locr'ing the

actuators and sensors to achieve this condition is a major requirement in

applying this control method. The performance surface for the control algorithm

is given by the error signal power, P(B). For the nth control loop,

P n(Bn) = En En  (4)

The control algorithm uses gradient search techniques; see Widrow and Stearns.
4

The k+1 iteration of the cancellation signal, B(k+l), is based on the last

iteration and the negative gradient of the performance surface. The minimum of

this parabolic surface is being sought. So,

B(k+l) = B(k) + v E-V(k)] (5)

where 1 is the adaptation parameter that sets convergence speed and loop

5
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stability. For the nth control loop, the gradient is

n
(k) = 2 En (6)

Bn-Bn(k)

The adaptation equation becomes

B(k+l) = B(k) - n E(k) (7)

where the adaptation parameter is redefined as n = 21. Since independent

estimates of the gradient do not exist, the LMS (least mean squares) approach

is taken; see Widrow and Stearns. 4 The current error, E(k), (estimated by using

the measured error vector and the inverse of the measured control loop filter

matrix in Equation (2)) is used for the gradient. Note that all cross-coupling

is eliminated; the individual signals in each vector are now independent of one

another. In the following equations, the matrix notation is dropped unless

otherwise noted; relationships presented for a single control loop will apply

for all control loops.

THEORETICAL SOLUTION OF THE ALGORITHM

The adaptation equation, Equation (7), is a linear, first-order,

4constant-coefficient, ordinary difference equation (see Widrow and Stearns4).

This equation is solved by induction from the first several iterations.

Assuming that the control signal is initially zero, the control signal at the

kth iteration is

k-1

B(k) = -A (1.-n)k A - n Z N(j) (1-n) j  (8)

J=0

This equation is stable provided the geometric ratio, r, is

Irl I1 - n < 1 (9)

6



For 0 < n < 1 , the adaptation equation is overdamped; it is critically damped

for n = 1, and underdamped for 1 < n < 2.

From Equations (3) and (8), the error signal solution is

k-1

* E(k) (I-n)k A + N(k) - N(j) (1-n)J (10)

j=0

S-- The mean and variance of the error signal are derived under the assumptions

that the noise signal is a complex random variable with zero mean and

stationary parameters. Its variance is 2 N' Since overlapped estimates of the

coefficients are not made (see the Appendix), the covariance is zero

(E[N*(j)N(k)] = 0, for j * k, where EL.] is the expected value operator.) For

zero mean noise, the mean value of the error signal is

E[E(k)] = (l-n)k A (11)

The variance of the error signal is

VAR[E()] = N + (N n/(2-n) - G2N n(1-n)2k/(2-n) (12)

The average learning curve for the algorithm is given by the expected

value of the error signal power. From Equations (4), (11) and (12), the average

error signal power for the kth iteration is

E[P(k)] = (fl) 2k A* A - N  '01-) 2k/( 2-n) + N  G N n/(2-n) (13)

The first two terms of Equation (13) are functions of the kth iteration; for a

geometric ratio chosen within the limits of stability, these terms will

converge to zero as k increases; this is the transient response of the loop.

Once the loop converges, the last two terms limit the depth of the convergence.

The aN term is due to the noise present from the kth iteration, and the last

term is defined as the misadjustment, M, that is due to the influence of noise

7



present during the last k-1 iterations:

M = 02N nl(2-n) (14)

MISADJUSTMENT IN NOISE

Once the algorithm has converged, an important measure of the algorithms

performance is its misadjustment in noise. As shown in Equation (13), the depth

of convergence is limited by the noise. When the autospectrum of the measured

error signal is viewed on a spectrum analyzer, the individual components

generally stand out above the noise autospectrum. In the following derivation,

this misadjustment is expressed as a signal plus noise to noise ratio that can

be easily measured using a spectrum analyzer with appropriate spectral

resolution.

This derivation follows the steps performed by the algorithm. First,

40 signal averaging is used to reduce the influence of the noise in the measured

error signal, then the complex Fourier series coefficients are calculated using

the Discrete Fourier Transform (DFT) (The computer algorithm for this procedure

is the Fast Fourier Transform (FFT).) The noise variance vector transformed to

the measured error signal, DW2N, is the variance of these Fourier coefficients;

this variance, as derived in the Appendix, is:

D C2N S n(wj) wf/(2M) (15)

where S (wj) is the autospectrum of the noise in the measured error signal

vector, wf is the fundamental frequency in radians/second, and M is the number

of cycles averaged. The variance is the autospectrum of the noise at each

harmonic multiplied by the bandwidth between each harmonic and divided by two

times the number of cycles averaged. From Equation (14), the misadjustment

transformed to the measured error signal for each control loop becomes

S

M(Wj) -[n/(2-n)] Snn(wj) [wf/(2M)] (16)

Once an iteration of the algorithm has been performed, the coefficients

are transformed back into the time domain and this misadjustment is held



constant (sinusoidal signals) until the results from the next iteration are

transfered to the output. This time delay is necessary to allow the transient

response to the last iteration to settle to a steady-state value. Also, time is

required to perform the M signal averages and to process these averages for the

next iteration. This time delay is expressed as the number of cycles, M + F,

that the periodic signal undergoes between iterations. During an iteration, M

is the number of cycles averaged and F is the fixed number of cycles required

to await steady-state and to do the necessary processing. Since the noise is

assumed to be statistically uncorrelated from one iteration to the next, the

misadjustment signal looks like a series of sinusoids with amplitudes and

phases that randomly change every M + F cycles. Hence, the misadjustment signal

is a sum of narrow-band random processes where the autospectrum at each w is a

sine wave convolved with a rectangular window that is J(M+F) samples long. The

expected value of this misadjustment spectrum, S MM(wj) , is

SMM(wj) = M(wj) (M+F)JT/w (17)

So,

SMM(Wj) = [n/(2-1)] [(M+F)/M] Snn(wj) (18)

When' a spectrum analyzer is connected to the measured error signal, this

estimated spectrum will contain the misadjustment spectrum plus the noise

spectrum. The misadjustment expressed as the signal plus noise to noise ratio,

SNNRM, in dB is defined as

SNNRM = 10 log{[SMM(w j)+Snn(wj)]/Snn(wj)l (19)

for each measured error signal at eachw j, So,

SNNRM 10 log{1+[n/(2-n)](M+F)/M} (20)

Since (M+F)/M is always greater than one, signal averaging helps to reduce the

"cost" of requiring a fixed time to await steady-state and to do the signal

processing. For example: if F - 8 and M - 1 (no averaging), then (M+F)/M is 9;



and if M - 10, then (M+F)/M is 1.8. Averaging 10 cycles compared to no

averaging yields a 7 dB improvement in misadjustment; averaging 100 cycles,

however, produces only an additional 2.2 dB improvement. Reducing the value of

the adaptation parameter, n, will also reduce misadjustment. The cost of

reduced misadjustment is time; signal averaging takes time, and small values

for the adaptation parameter, n, will increase the time required to reduce the

interference to a particular level.

To avoid bias error when viewing the misadjustment on a spectrum analyzer,

the spectral resolution of the analyzer should be narrower than the bandwidth

of the misadjustment spectrum. As M + F increases, this spectrum becomes

narrower and narrower. The half-power bandwidth of this spectrum is

approximately 1/((M+F)JT) hertz.

CONVERGENCE RATE

The convergence rate is another important measure of the algorithms'

performance. When the interference signal power, A*A, is much larger than the

noise variance, a2N, the convergence rate is controlled by the first term in
Equation (13). Using this term, the average number of iterations, k2 ,, required

to reduce the magnitude of the error signal by 20 dB is

k2 0 = -1/10g 1 0 (1-n) (21)

For n = 0.9, a reduction of 20 dB is reached in one iteration; for n = 0.1, 22

iterations are required. Note that all harmonics will converge at the same

rate. The average time required (in seconds) to reach this level of

convergence, To, is

T (M+F)k (22)

c (+F~ 2 1/f p

where fp is the fundamental frequency in hertz.

10
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ESTIMATION OF THE CONTROL LOOP FILTER MATRIX

The control loop filter matrix, D, is estimated prior to adaptation by

changing one control signal at a time and storing the change in the measured

error signal vector. Assuming that the interference signal vector is constant

during this calibration sequence, the change in the measured error signal

vector is given by:

C(k) - C(k-1) = D[A+N(k)+B(k)] - D[A+N(k-l)+B(k-1)] (23)

The interference signal vector is eliminated, so

AC = D (AN+AB) (24)

The influence of the noise is already reduced by using signal averaging on the

measured error time history prior to transformation to the frequency domain.

Additional reduction in the influence of the noise is possible by repeating the

calibration process and averaging the results in the frequency domain. Since

only one control signal is varied at a time, the column elements of the control

loop filter matrix are then estimated by the ratio of the two frequency domain

averages:

< AC AB >p q
D = (25)
Pq*D pq < AB AB >

q q

LABORATORY EXPERIMENT

CONFIGURATION

As shown in Figure 2, the active adaptive control experiment was conducted

using a beam supported at both ends with rubber mounts. An interference source

was simulated by a shaker that was offset from the center of the beam. Two

rubber mounts coupled the vibration from the shaker to the base. The base was

suspended from a wooden frame with rubber shock cords. Since this shaker was

offset from center, vertical and rotational vibration was induced into the

base; the solid base was a rigid body at the excitation frequencies. Control

3i
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CANCELLATION SHAKER TO SIMULATE CANCELLATION

SHAKER 2 ROTATING MACHINERY SHAKER 1

- 66"

BEAM

RUBB3ER r
PAD71

(EACH SIDE) ERROR ERROR

ACCELEROMETER 2 RESIDUAL ACCELEROMETER 1
ACCELEROMETER

BASE

J218.."
NOTES: BASE AND BEAM ARE 2 INCHES DEEP.

BEAM IS 1/4 INCH THICK.

Figure 2 - Experimental Configuration
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* shakers were located on each end of the beam just above each mount. The

* resultant or error vibration was measured using accelerometers on the base and

located next to each mount. A third accelerometer was located on the base to

measure any residual vibration in the base; this accelerometer was not used

with the adaptive control algorithm.

The drive signal for the shaker that simulated the rotating machinery

(interference source) was generated by a Digital Equipment Corporation (DEC)

PDP 11/73 microcomputer to produce five components of a periodic signal with a

fundamental frequency of 86.806 hertz. This microcomputer also provided the

signals (a digital word that varied from 0 to 31) to simulate a shaft position

encoder. Each cycle was divided into 32 positions. To simulate background

noise, bandlimited white noise from an HP3722A noise generator was added to the

drive signal from the microcomputer.

The three Wilcoxon F3 electromechanical shakers were driven with Wilcoxon

PA7C power amplifiers; the shaker drive signals were filtered by 500 Hz low

pass filters. The acceleration on the base was measured using Columbia 302-7A

piezoelectric accelerometers that were conditioned by Wilcoxon AM 5 amplifiers.

* The error signal was also filtered with 500 Hz low pass filters prior to

digitization by the analog to digital converter. A Data Translation Model

DT2781 analog interface module contained the digital to analog converters used

to produce the drive signals, and the analog to digital converters used to

sample the error signals; both types of converters have 12 bit resolution.

IMPLEMENTATION OF THE ALGORITHM

The control algorithm was implemented on a second DEC PDP 11/73

*microcomputer using a Sky array processor and a mix of assembly language and

FORTRAN programming. Under interrupt control, an assembly language program

handled the analog input and output, as well as the digital input from the

simulated shaft position encoder. An interrupt occurred whenever the shaft

postion encoder indicated th~e next shaft position. When each interrupt

occurred, the next error signal sample was collected and the next cancellation

signal sample was produced by the digital to analog converter. The data samples
received from and sent to this assembly program were linked to the FORTRAN

program by a common memory block. While these interrupts occurred, this FORTRAN

13



program worked at its own speed to produce the cancellation signal samples.

Once the FORTRAN program produced a new iteration, it would wait a fixed number

_* of cycles until the error signal reached a steady-state condition before

sampling the results of this past iteration. When the next complete cycle was

sampled, the signal averaging would begin for M cycles. The Fast Fourier

Transforms (FFT) and the inverse FFT's were processed by the Sky array

processor. The adaptation using the Fourier coefficients was performed with the

FORTRAN program steps. Approximately eight cycles of the process occurred while

* a new iteration was being prepared; the last cancellation signal cycle was

repeated during these computations.

RESULTS

The algorithm performed as expected. As shown in Figures 3 and 4, the

periodic interference coupled to either end of the base was reduced for almost

* all harmonics by more than 40 dB. The levels of reduction given in Figure 5 for

the off-center or residual accelerometer are slightly less than the levels at

the ends of the base. The levels after convergence are just above the imposed

background level.

The misadjustment was measured in detail for the 86.8 Hz component. Figure

6 gives an example of large misadjustment when n - 1 and M - 5. The

autospectrum of the background noise was estimated at this frequency. The

signal plus noise to noise ratio from Equation (20) was evaluated using F 8

cycles to predict the measured level of misadjustment. The results of this

* comparison are given in Figure 7. For a range of algorithm parameters, the

-i measured misadjustment agrees closely to the level predicted from the

* *. measurements of the background noise. For different algorithm parameters, the

misadjustment is adequately predicted by Equation (20).

The number of iterations required to achieve a reduction of 20 dB in the

. interference was measured by averaging this value for each of the five

components. As shown in Figure 8, these results are compared to the predicted

values from Equation (21) for a range of algorithm parameters. Except for when

the adaptation parameter is greater than 0.7, the measured and predicted

results agree closely.

.
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CONCLUSIONS

A general method for actively controlling periodic interference is

presented. The algorithm works and the major parameters that affect its

performance are understood. The method does require prior estimation of the

- control loop transfer function matrix, and this transfer function is assumed to

-be constant with little variation with time. Also, the inverse transfer

function matrix is assumed to exist; proper location of the actuators and

sensors is required to insure existance of this inverse matrix.
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APPENDIX

COVARIANCE OF FOURIER SERIES COEFFICIENTS WHEN APPLYING SIGNAL AVERAGING

Given a periodic signal added to random noise, signal averaging is a

standard technique for recovering this periodic signal from the noise. This

recovery is not perfect and the affects of the noise are seen when repeated

averages of the signal are taken. This lack of repeatability is also present in

the Fourier series coefficients for each averaged signal. The variance of these

* coefficients expresses their statistical variability, and the covariance

expresses their joint statistical characteristics. When these coefficients are

used as part of a signal processing algorithm, for example, the covariance is

useful in defining the performance of this algorithm. This variance and

covariance are now derived; the background noise from the active adaptive

control experiment is used as an example.

For a sampled time history, Xq, that contains a periodic signal plus

random noise, the 
qth sample is

x q pq + nq (A.1)
qfq

where pq is the periodic signal and nq is the noise. The period is N samples

and the time between each sample is T. The noise is assumed to be a zero mean,

stationary random process with an autospectrum of Snn(w). After averaging M

cycles of the periodic signal, the average signal is

M

ck(r) - Pk(r) + (1/M) n(m_1)N+k+r (A.2)

m-1

where 1 : k S N and r is the index of the initial sample. The Fourier series
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coefficients are estimated using the Discrete Fourier Transform (DFT)

N
C.(r) = (1/N) ck(r) ei(27/N)(k- 1)(j - 1) (A.3)

k-1

The coefficients for the averaged signal are

M N

Cj(r) = P.(r) + (1/NM) n(m.1)N+k+r ei(2 /N)(k-)(J-1) (A.4)

m=1 k=1

The coefficient estimate is a complex random variable. Except for the

assumption that the noise is a zero mean, stationary random process, no other

assumptions about the noise process are required to derive the mean and

covariance of these coefficients. (For M large, however, the probability

density function of these coefficients will, from the central limit theorem,

approach a Gaussian distribution regardless of the distribution of the noise

samples.) Since the noise is zero mean, the mean value of C.(r) is

E[C (r)] - P (r) (A.5)

where E[-] is the expected value operator. The covariance of two coefficient

estimates from two data sequences shifted by NM% samples is then

COVAR[Cj (NM) ] = E[[Cj (r)-Pj (r)]*[Cj (r-NM)-Pj (r-NMi)] (A.6)

The data samples overlap when I Z < 1. Using the relationship between the

autocorrelation, R (kT), and the autospectrum, S (w), of the noise
nn nn

Wo

E[nq nq.k] - Rnn(kT) - 1/2 J Snn(w) e iwkT dw (A.7)

-W 0
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where wo ir/T is the Nyquist frequency, the covariance becomes

WO ~ M2

COVAR[C.(NM9)] = 1/[2(NM)2 ] f Snn(w) e iwNMZT Z eiNT(m-1)

-O rn-I

N2
Sei[wr-(27/N)(J- 1 )](k- 1)  dw (A.8) .-

k=

Using the geometric progression,

WO

COVAR[Cj(NMZ)] = 1/[2(NM) 2] f Snn (w) eiwNMZT [sin(wNTM/2)/sin(wNT/2)]2

• sin[(w-w )NT/2]/sin[(w-wj)T/2]}' dw (A.9)

where the frequency of the jth harmonic is wj = (2ir/NT)(j-1). The term

{sin[(W-W )NT/2]12/[sin(wNT/2)] = 1 (A.1O)

since the two sine functions are offset by multiples of v. The covariance is 0

now

COVAR[C.(NM)] 1 I/[2(NM)2]f Snn(w) eiwNMZT

-Wa

f sin(wNTM/2)/sin[(w-wj)T/2]}12 dw (A.11) ..

The ratio of the two sine functions is the magnitude squared of a filter, H(w),

that is placed about each w

JH( 1/(NM)2 {sin(wNTM/2)/sin[(w-wj)T/2]1 2  (A.12)
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Without loss of generality, this filter is evaluated at w. 0. First, let

w [21r/(NMT)]u (A.13)

then

IH(u) 12 = 1/(NM) 2 [sin(nu)/sin(u/NM)] 2  (A.14)

- The magnitude squared of this filter is zero at Jul - 1, 2, 3, ... , and it is a

maximum at lul = 0, 1.5, 2.5, 3.5, Since yu/NM is small, the

approximation is made that sin(iu/NM) - nu/NM. This approximation gives a

sin(x)/x filter:

IH(u)1 2 = [sin(7u)/nu]2  (A.15)

*For Jul > 9.5, the magnitude of the filter squared is greater than -30 dB. This

* filter has M - 1 maxima between each w., where M is the number of cycles

- averaged. As M is increased, this filter is more and more concentrated Fbou.

each w.. The envelope of this filter asymptotically decays as 1/(ru)2 . Figure
3

A.1 shows this filter for M = 4 superimposed on a noise autospectrum.

Assuming that S nn() is constant across each of these filters centered at

cj, then

NM/2

COVAR[Cj (NMI)] = Snn(w ) [2/(7NMT)] f [sin(ru)/u] 2 cos(27tu) du (A.16)

0

As discussed above, this filter rapidly decays to zero, so for NM large, the

'- .upper limit of integration is taken as infinity. With this assumption, the

integral is (1-9)1r 2 /2 for ILI < 1 and zero for III a 1. Unless overlapped

coefficient estimates are made, the covariance is zero.

The variance of the Fourier series coefficients is the covariance

evaluated at 9 - 0, so

VAR[CjJ Snn(wj) w0 /(NM) - Snn(wj) Cf/(2M) (A.17)
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Figure A.1 Sin(x)/x Filter for M = 4 Superimposed an
Noise Autospectrum
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where w 2ir/NT is the fundamental frequency in radians per second. The

- variance of jis the autospectrum of the noise at the harmonic frequency

multiplied by the bandwidth between each harmonic. This is then divided by two

times the number of cycles averaged. Signal averaging reduces the influence of

the noise power by an amount that is inversely proportional to the number of

*cycles averaged.

When using the result given by Equation (A.17), measured spectral values

- are used in place of Snn(w); therefore estimates of the variance are obtained.

Bias can exist in these variance estimates when the noise autospectrum varies

- over a wide amplitude range with frequency, and the variance is then estimated

in a region where the noise spectrum is small. An example of this situation is

shown in Figure A.1. The variance estimated using Equation (A.17) in this case

will be smaller than the actual variance. The large, low frequency spectral

levels of the noise are passed by the low frequency sidelobes of the filter.

*The coefficient variance given by Equation (A.17) was compared to actual

test data. This relationship is shown to be useful in estimating the variance;

however, judgement is required when applying it to actual data. The results

from this comparision are given in the remainder of this appendix.

The noise time history that produced the autospectrum given in Figure A.1

was sampled, signal averaged, and converted into Fourier series coefficient

estimates. For each selected number of signal averages, M, this process was

repeated 200 times and the variance was estimated from these 200 coefficients.

Then, the autospectrum estimates from Figure A.1 were obtained for each

harmonic and used with Equation (A.17).

For the first two harmonics, the results of this comparision are given in

Figures A.2 and A.3; the other harmonics follow similar trends. The solid line

in these figures is the predicted relationship from Equation (A.7). The

results from the first harmonic compare very closely over most of the range of

M. As seen in Figure A.1, most of the noise is concentrated about the first

harmonic, and the spectrum is a maximum at this frequency. For M < 6, the

measured vari'ance falls further below the predicted line; using the spectral

peak in Equation (A.1) overpredicts the variance in this region. As discussed

earlier, the second harmonic is near a minimum in the noise spectrum, so the

variance is underprediced by Equation (A.1). For M > 10, the filter becomes

"sharper" and the variance estimates more closely approach the predicted line.
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