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SUMMARY

A survey of existing garbage collection methods is presented.
These are considered as candidates for use in a system where the
memory address space is shared by all users of a computer. The
special problems that arise from this requirement are described

and it is shown that no one garbage collector solves all the
problems.
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UNLIMITED

- This paper surveys the various techniques that have
been proposed and used for garbage collection. The various
solutions are described and their suitability for use on a
system wide basis, in a computer with a block structured
memory, 1s discussed. Computers with capability based
addressing [Fabry74) are examples of such systems.

A comprehensive review of early garbage collection
techniques is given in [Knuth?73), while [Cohen81] provides a
more recent survey. This paper differs in that it considers
the usefulness of the algorithms when applied system wide to
a computer with a block structured memory.

Most garbage collectors have been designed for use
in applications running on time shared computers. Here the
various users of the system are quite independent, so the
garbage collection of one user does not affect the others.
Also the computer’s virtual memory system provides separate
memories for each user. Therefore if one user allocates all
the free memory available to him, this will not affect the
free storage of another user.

However, in a computer that uses a block structured
memory system wide, the circumstances are quite different. A
garbage collector that operates on the entire memory at once
will affect all users. So, for example, if one user’s
activities require his data to be garbage collected
frequently, the performance experienced by the other users
will be unfairly degraded. Also if one user allocates
excessive amounts of memory, then other users will unfairly
be denied more memory. However, some form of ratfoning or
quota svstem could be introduced to alleviate this problem. o

Also, the system as a whole has to remain responsive C
enough to service peripherals adegquately. A garbage o
collector that precludes normal operation for long periods
will 1imit the usefulness of the computer.

Another requirement fs that the garbage collector
handles large cyclic structures efficiently. Cyclic
structures are often assumed to occur infrequently and to be
quite small. This is not the case, however, when the
operating system kernel shares the memory with user
processes. For example, cyclic structures involving many
blocks arise if two processes deadlock. Each process is
suspended on a semaphore queue which is accessible only from
the other., This creates a cyclic structure, involving all
the blocks in each process, which is garbage because it is
inaccessible elsewhere.
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We are therefore lookiné\jor a garbage collector

) 1
ot that prevents users from denying ‘others access to memory and Wt
¢cpu resources, that can operate larxgely in parallel with %5;
normal processing and is otherwise guitable for managing a Y
system wide block structured memory. The purpose of this Nt
survey is to find suitable candidates or to identify e
techniques that could be used to construct a new garbage DO
collector which is suitable . _ o, [ i

2. Block Structured Memories

A block structured memory is one in which storage is ' &}‘
viewed as many individual blocks, rather than as one large A<
linear array. The blocks can contain a mixture of ordinary “1)

numeric data, such as integers and characters, and pointer
data. Pointers refer to blocks as a whole, not to some word

within a block, and are the sole means for addressing b
memory. To reference an individual word, a pointer to the 5%;
block containing the word and an offset within the block to L
the word must both be specified. %{l
el
A block structured memory is similar to a segmented :E
memory. The difference is that pointers, which are used to o)
reference blocks, can be identified by a general purpose pRel
garbage collector. Segments are referenced by numeric ﬁi‘
addresses which are indistinguishable from other numeric Lat
data. This means that a general purpose garbage collector is o

not possible, because it could not identify which segments -
are required. i3

It is necessary to distinguish between pointer and ig,
numeric data. This can be achieved by partitioning blocks i~
into those that can contain pointers only and those that can 2.7
never contain pointers. However, this presents difficulties -
when structuring data in high level languages. An -g
alternative is to allow pointer and numeric data to be S&:
freely mixed together in a block. Then the most effective et
way of distinguishing between them is by tagging each word oy
in memory with an extra bit. This ‘tag_bit’ 1is set if the e
word contains a pointer, otherwise it is clear. It is 3
necessary to constrain pointers to being stored on word e
boundaries and to ensure that the tag bit is cleared if part <Y
of a word is overwritten. The tag bits are used and ﬁg
maintained only by the machine and are not accessible by the i?Z
user. R

It {s also necessary to be able to determine the T
size of a block. This is required for storage management “¥L
functions and for protection checks during runtime. The R&f
block size could be stored with the block in, say, the first Sﬂ
word. This may be hidden from the users of the block or =t

simply just protected from alteration by them.




TN Laddr oo " L B B dM e Sec g das kim Al dea aoo gy u

When a new block is created, storage for it is found
from a pool of free storage and the creator is returned a
pointer to the new block. The free pool may be one large
area of free storage or it may be a list of many smaller
free areas. When a block becomes inaccessidble, which is when
all pointers to it have been overwritten or are in
inaccessible blocks, the storage it occupies may be safely
returned to the free pool.

The free pool may become fragmented such that,
although it contains sufficient free storage in total to
satisfy an allocation request, no individual free area is
large enough to accomodate the new block. In this case it is
usually appropriate to compact the memory, moving allocated
blocks about to produce larger free areas.

3. Finding Inaccessible Blocks

Garbage collection involves detecting inaccessible
storage blocks and returning the storage occupied by the block
to the free pool. The first stage of garbage collection is,
then, to discover which blocks are inaccessible. This can he
done either by detecting when a block becomes inaccessibhle
or by following all accessible pointers to find all
accessible blocks.

3.1 Reference Counting

The reference count method, first introduced by
[Collins60], attempts to detect when a block becomes
inaccessible. For each block, a count is maintained of the
number of pointers to the block. If the count ever drops to
zero, then the block has become inaccessible and so its
storage can he freed. However, before the storage can be put
into the free pool, it must be scanned for pointers, so that
the reference counts of the blocks they refer to can be
decremented. This may recursively cause further blocks to be
freed.

The count must be maintained when pointers are
created and destroyed. When a block is created, a pointer to
it is returned to the creator, therefore the reference count
is initially set to one. Further pointers are created simply
by copying, so it is necessary to check all memory writes to
see if the data being written is a pointer. If so, it is
necessary to increment the reference count of the block
referred to by that pointer. A pointer is destroyed if it {is
overwritten, in which case the reference count of the block
that it refers to must be decremented. Since pointers can
generally be stored anywhere in memory, it i8 necessary to
check whether a word contains a pointer before writing to
that word.
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Reference counting does not detect all inaccessible ujﬁ‘

blocks. This is because a block can become inaccessible by s

the destruction of a pointer which is not the last pointer &Qﬁj
to the block. The simplest case is where a block contains a

pointer to itself and is referred to by one other pointer ';Q*

stored in an accessible block. If the latter pointer is ijf

destroyed, then the block’s reference count decreases from ?5h~

two to one. The block is therefore not freed even though it .jt&

has become inaccessible. This is in general true for an L

arbitrarily complex cyclic structure. i

- w W ]

3.1.1 Recovering Inaccessible Cyclic Structures &;5‘

Rhee.

The inability to handle circular structures ?ﬂ(’

correctly is the greatest disadvantage of reference ) v‘_;

counting. This is especially so since the use of a block
structured memory as the main memory of a computer, is
likely to cause large cyclic structures to be created. The
problem can be overcome either by detecting when a
circularity is produced and then not incrementing the
reference count, or by ignoring the problem and using
another technique to release inaccessible cyclic structures.

The first solution was proposed by [Weizenbaum62&63]
though, as pointed out by [McBeth63), detecting when a
circular structure is formed involves a search of
potentially the entire memory. There are special cases where
it is known when circularities are produced, such as the use
of the Y-combinator in combinator based systems. Systems —
which take advantage of this are described in B
[Friedman&Wise79] and [Brownbridge84]. However, these are v
not applicable to general purpose block structured memories. X

Another, scheme is proposed by [Bobrow80]. In this,
all the blocks of a2 circular structure are treated as a .y
single group for deallocation purposes. A reference count to ? i
]
r
.)

the group as a whole is maintained, but no counts within a
group are kept. This scheme 1s not particularly suitable for iy
a block structured memory system as memory usage is not v NRA
divided into convenient groups and cyclic structures can be . Ay
quite large. ST
Vg
The second solution, that of using another technique N
to find the inaccessible cyclic structures not detected by ﬁf?
reference counting, is proposed by [Deutsch&Bobrow?76] and 'ﬁfﬁ
[Christopher84]). In these hybrid schemes, reference counting 9

i8 used to recover storage, except for inaccessible cyclic
structures, until there is no free storage left. Then a
scanning technique, see section 3.2, is used to recover any
inaccessible cyclic structures.

[
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3.1.2 Recursively Releasing Storage

The procedure for freeing a block is recursive,
since a freed block may contain pointers to other blocks
which consequently become free. Therefore a stack of some
sort is required to control the recursion. Since the number
of blocks freed recursively is - potentially all the blocks in
the memory, the stack size must be the maximum number of
blocks in the memory. This is half the size of the memory,
assuming each block has one overhead word per block to hold
the block size.

The size of this stack is such that using a separate
memory for it is prohibitively expensive. The use of a
transaction file on disc, as in [Deutsch&Bobrow76], or a
virtual memory system would be possible, but would be slow.
The stack could be limited to some affordable size as long
as stack overflow can be handled and does not happen very
often. Finding blocks that require scanning, but are not on
the stack because of overflow, involves visiting all the
blocks in memory to find those with a reference count of
zero.

The use of a separate stack can be avoided
altogether by utilizing the storage of the blocks
themselves. If a block is no longer referenced it is scanned
for pointers. If one if found then the block it points to
has its reference count decremented. If the count of this
block falls to zero, then scanning of the first block is
suspended and the new block is scanned. The word occupied by
the pointer is used as the link word in the chain of blocks
that have not been completely scanned. When scanning of a
block is completed, a block is removed from this chain and
the scanning of it continues. The word forming the link is
of course the place that was scanned last. This scheme
requires that the end of the block can be identified, since
there is no room to store how much more scanning is
required. If the start of a block is distinguishable then
the scan can progress backwards instead.

3.1.3 Storing the Reference Count

13
.
L
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An obvious requirement for a reference counting
system 1s that a reference count for each block must bhe
stored somewhere, The maximum number of pointers to a block
at any one time is the size of the memory. Therefore the
reference count field must be large enough to hold this
number. This 1is potentially wasteful of memory, since most
blocks are referred to by very few pointers. Two schemes
have been proposed by [Deutsch&Bobrow76] to reduce this
overhead.
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Firstly the reference count field is made much
smaller than the maximum required. Whenever the count
reaches its maximum it is assumed to be ‘infinite’ and is
never subsequently incremented or decremented. The count can
therefore never reach zero so the block will never be freed.
The scanning garbage collector which is used to release
inaccessible cyclic structures also releases inaccessible
blocks which have an infinite reference count. It is hoped
that most blocks are referenced very few times, so that
reference counts becoming infinite is a rare event.

Secondly it is assumed that the vast majority of
reference counts are one. A hash table is used to record the
reference count of all blocks whose reference count is
greater than one. If a block is not in the hash table then a
count of one is implied. The problem of hash table space
overflow is not addressed, but it does make this approach
unattractive for a block structured main memory system.

[Wise&Friedman77]) propose the use of a single bit as
a reference count. This indicates whether the count is one
or greater than one. A simple cache memory is used to record
some of those blocks whose reference count is two. This is
on the assumption that most blocks have a count of one, but
that they often increase to two temporarily, during pointer
manipulation operations. Wise and Friedman suggest using the
mark bhit, required for the scanning garbage collector, as
the reference count field. It is necessary to clear all the
bits before scanning, but the reference count is easily
restored afterwards.

A method for recomputing infinite reference counts
during scanning garbage collection is proposed by [Wise79].
In this method the number of references is computed for each
block at a time, so only one access is made to the reference
count field. This contrasts with the more obvious technique
of incrementing the reference counts of blocks whenever a
pointer is found during scanning, which requires many
increments to be performed for each reference count.

3.1.4 Accessing the Reference Count Field

During normal processing many pointers are created
and destroyed, which means there is a lot of incrementing
and decrementing of reference counts to be performed. The
use of a transaction file is proposed by [Deutsch&Bobrow76]
to save all increment and decrement actions. These are then
processed by the system some time later, during a slack
period. Techniques for reducing the number of increments and
decrements are given by [Barth77), but these are compile
time optimizations meant for language run-time systems.
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3.1.5 Reading Before All Writes itEQ

The requirement to read a location before writing to bfﬁ

it, in order that the overwriting of pointers can be
detected, 1s a serious handicap to performance. This read
could, of course, be avoided if it is known that no pointer
could possibly be stored in that location, though on the
whole this is not so.

This problem is much less serious if numeric and
pointer data cannot be freely mixed in the same block. In
this case the read check need only be performed when a
pointer is written to memory. Also, computers with this
partitioned type of block structured memory, tend to
manipulate pointers less often than those with the general

type.

The Plessey PP250 [England75)}, Cambridge CAP o
[Needham&Walker77] and Intel iAPX432 [Tyner81), are ROV
capability computers that have partitioned memory. Even seo, R
none of these computers actually use reference ccunting for L
garbage collection, presumably because it is thought to be ™
too inefficient.

e

PR

3.2 Scanning for Accessible Storage -i{‘

If each allocated block has a mark bit, and ﬁ#ﬁ
initially all these are clear, then by tracing all the =
accessible blocks and setting their mark bit, it is possible 0
to discover all inaccessible blocks. This method, first e
proposed by [McCarthy60}, is recursive. U

e

McCarthy’s algorithm uses a stack to control the o
recursion, but since this stack would need to be at least - @

half the size of the memory, this is impractical. A more DR

practical proposal is made by [Hanson77] which suggests the A

use of a spare pointer sized field per block. This is used hgﬁ

to link together the blocks which have yet to be scanned. *L:

Sl

A further variation of McCarthy’s garbage collector &

is given by [Baecker72]). This is intended for use in virtual e

memory systems and has one mark bit per page as well as one }ki

per block. A single recursive scan is made to determine B

which pages contain accessible blocks. Pages that only s
-

contain inaccessible blocks are then freed along with their o
page table entry. The advantage of this system is that

compaction is unnecessary, but the disadvantage is that O
pages are not freed until they are completely inaccessible. .
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3.2.1 Pointer Reversal

A method which does not require an auxiliary stack
is given by [Schorré&Waite67). The algorithm scans a block
looking for pointers to blocks which have not been marked.
When one is found the position of the pointer is remembered
on a list, using the location itself as the link word.
Scanning then continues in the new block. When scanning a
block is completed, the list is popped to find the location
of the pointer which led to the block. The pointer’s value
is restored and scanning then continues at the location
after the pointer. For a formal description of the
algorithm, see [Broy&Pepper82].

It is necessary to detect when scanning a block has
been completed. Since Schorr and Waite are dealing with LISP
structures they only require a single bit per node to
indicate which word has been scanned; trte reversed pointers
actually point to the start of the node. In a system with
varfiable size blocks this approach would require an extra
field the size of the block size field.

An alternative method is possible 1f the start of a
block can be distinguished from the rest of it. By scanning
the blocks from the end towards the start, the end of the
scan is given simply by detecting the start of the block.

The Schorr/Waite algorithm is given as a way to mark
accessible blocks. However, 1f the step which restores the
reversed pointers is omitted then the algorithm can
rearrange the memory so that the first word of each
accessible block contains the head of a 1ist of all the
pointers to the block. The list is contained in the
locations of the pointers themselves and ends with the
original contents of the first word of the block. This
structure can then be used to update the pointers ready for
compaction., This is discussed in section 4.1.2 of this
paper.

3.2.2 Non Recursive Scanning

The stack required to control the scanning operation
can be avoided altogether. This is achieved by making
repeated scans of the memory to find accessible pointers to
unmarked blocks. This is the method adopted by
[D1jkstra.et.al.78)]. Two bits per block are required, one
for marking whether a block is accessible, the other for
marking whether it has been scanned or not. Blocks that are
marked as accessible are scanned to completion and then
marked as scanned. Any blocks for which pointers are found
are marked as accessible. This method is less efficient than
pointer reversal, because repeated visits to each block in
memory are required to find accessible unscanned blocks. The
advantage, however is that the memory remains useable whilst
scanning is8 in progress. For this reason it is suitable for
the on the fly garbage collector described by Dijkstra.

9
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3.3 Memory Copying

Garbage collection of a memory can be achieved
easily if a spare memory is available. All accessible blocks
are copied from the memory into the spare, where they are
placed compactly. This leaves one area of free storage from
which blocks can easily be allocated. The roles of the two
memories are then reversed, the first becomes the spare
whilst the second becomes active.

3.3.1 Two Memory Copying

The copying process is recursive in nature and,
since the memory is also compacted, it is necessary to
update all pointers that are copied. The algorithm proposed
by [Hansen69] is explicitly recursive and hence will require
a stack to control the recursion.

Hansen’s algorithm makes two recursively intertwined
passes across the memory. First all the pointers in a block
are found and the algorithm is abp]ied recursively to the
blocks to which they refer. This gives the new location of
those blocks. The pointers are then updated and the updated
block is copied to its new location. Two bits are uvused to
mark the blocks. One indicates that the block has been found
and is being updated. When a block has been moved, its new
address is stored in the old copy and the second mark bit is
set. A fixup table is used to cope with circularities.

A similar algorithm for LISP is given by
(Fenichel&Yochelson]69]., Whilst their algorithm is
recursive, they suggest that the [Schorré&Waite67] pointer
reversal method could be applied. This is where the space
occupied by the pointers themselves is used to control the
recursion, thus eliminating the need for a separate stack.

Another scheme is given by [Cheney70]. The pointers
themselves are used to control the recursion, though in a
much simpler fashion than in Schorr/Waite pointer reversal.
A version that does use Schorr/Waite pointer reversal is
given by [Reingold73]. Some improvements to this are
suggested Iin [Clark76].

In Cheney’s algorithm, two index variables, 'next"
and "scan", which point into the spare memory, are used.
"next" indicates where the next block to be copied is to be
placed, "scan'" indicates the progress of a single scan of
the copied blocks. Initially both are set to zero, then any
blocks known to be accessible are copied, with "next" being
suitably incremented. The blocks are copied without
modification so any pointers point back into the active
memory.

10
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When a pointer is copied between blocks in the same
region, no extra overhead 1is imposed. If copies of an inter
region pointer are made, then they will use the same link
block. However if a pointer is copied from another region it
is not possible to tell, without searching the lists,
whether a link block already exists for that pointer. Either
time must be spent searching the lists or a link block is
allocated regardless of any duplication. The link blocks
could therefore become a large overhead if pointers are
often copied across region boundaries.
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To avoid the need for storing and maintaining link
blocks for pointers from rapidly changing regions, such as
the temporary store of a process, to relatively more stable
regions, such as the operating system, Bishop proposes
the Cable. If a region A is Cabled to region B, then
pointers in A can point directly to blocks in B. A
consequence of this is that when region B is garbage
collected, region A must be as well. However the garbage
collection of region A can still occur independently of
region B.

The problem with cables is that it is difficult to
decide when to use them and that if they are used
indiscriminately garbage collection can no longer be
performed independently on each region.

3.3.4 Infrequent Garbage Collection

An interesting variation on the copving method of
garbage collection is suggested by [Uhite80). This is to
perform garbage collection very infrequently, say once a
year, and in the meantime rely on a vast virtual memory
system to supply new space. When space really does get low a
large physical memory it¢ used as a spare memory, into which
the virtual memory is copied. White suggests this large
memory could be hired from a garbage collection contractor,
just for the duration of the garbage collection.

Whilst this approach seems attractive, especially
with the advent of large density write-once laser discs, it
has two drawbacks. Firstly a virtual memory may be
undesirable for the application, for example where real-time
response is required. Secondly a computer that needs a large
virtual memory to operate, will always cost more than one
that does not.

3.4 Explicit Deallocation

Although the idea of automatic garbage collection is
to relieve the user of the responsibility for deallocating
unwanted blocks, there are circumstances where explicit
deallocation could be useful. For example, on return from a
procedure call the activation record could be discarded.
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The problem with this, however, is that "dangling
references'" may be left. This is where a pointer to a hlock
remains after the block has been deallocated. If that
pointer is subsequently used then the result will be
unpredictable.

[Lomet75] describes a scheme for invalidating all
the pointers to a block which is explicitly deallocated.
This prevents any dangling reference problems. Lomet’s
solution is to place a "tombstone" at the site of the
deallocated block. Whenever a pointer is used to access a
block a8 check is made to see if the block has been replaced
by a tombstone. If so the pointer is set to nil and the
access fails.

The tombstone may occupy the first word of the
block, in which case the rest of its storage can be returned
to the free pool. This however will cause the memory to be
heavily fragmented and so may be ineffective at reusing
storage. If an indirection table 1is used to implement
pointers, then the tombstone may be placed in the
indirection entry. This would allow the entire block to be
deallocated, reducing fragmentation.

4., Reallocation of Storage

Once the inaccessible blocks have been found, the
storage they occupy can be returned to the free pool where
it can be used to allocate new blocks. There are two types
of free pool, those where there is only one area of free
store and tnose where there is more than one.

Storage allocation from a free pool which consists
of just one free area is easy. The block 1is allocated fronm
the start of the area and the area is made smaller. Garbage
collection is required when the size of the free area is
less than that of the block requested. Returning
inaccessible blocks to such a free pool is more difficult,
since they a.e dispersed between the accessible blocks. It
is necessary to compact the accessible storage to one end of
store, leaving one free area at the other end.

A free pool which consists of many areas of free
store can be constructed in gseveral ways, the simplest being
8 linked 1ist. Inaccessible blocks are returned to the pool
by adding them to the list. To allocate a new block, the
list is searched for a free area which can accomodate it. It
is then allocated from this area with any remaining free
space staying on the free list. If no free area is large
enough then garbage collection is8 necessary. However this
may not result in an area large enough being found. The free
pool may actually contain enough store, but be fragmented
into many smaller pieces. In this case it will probably be
worth compacting the memory to produce larger free arecas so
that the allocation request can succeed,
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Compaction is not required for systems which have a
fixed block size, such as LISP. However, it is sometimes
used to reduce fragmentation in virtual memory systems.

4.1 Compaction

Storage compaction involves moving some blocks and
updating all the pointers to those blocks to reflect their
new location. This may be done as a final pass of compacting
garbage collection or may be a separate affair. Compaction
is inherent in the copying style garbage collectors
described in 3.3.

4,1.1 Indirection Tables

The use of an indirection table to implement
pointers greatly eases the problems of compaction. The table
contains the addresses of all the blocks in memory, whilst
each pointer contains the index, within the table, of the
entry for the block it points to. Whenever the block
referred to by a pointer is to be accessed, the entry for
that block must be read from the indirection table to
discover the block’s address.

If a block is moved as the result of compaction then
by altering the address in the indirection table, all
pointers to the block are simultaneously updated. It is not
necessary to find all the pointers to the block and update
them individually. The disadvantages of the indirection
table approach are that space must be found for the table
and that going through the indirection table to reach a
block takes time. The latter problem, however, is greatly
reduced by using a simple cache memory or other special
mapping hardware.

If the maximum number of blocks are allocated then
the ind.rection table would be one third the size of memory.
This is assuming a one word size field, one word indirection
table entries and one data word per block. Preallocating a
table of this size is too wasteful of memory to be
considered viable. Choosing a smaller size is a compromise
between wasting memory and having enough entries availabhle
for peak demands.

Dynamically altering the space occupied by the table
is possible, though it hecomes necessary to be able to
compact the table space as well as the memory space.
However, this is much simpler since the entries are all the
same size.

The use of indirection tables has not been given
very much consideration is past literature. This is because
previous work has centred on LISP systems, in which the block
size is always two. The use of an indirection table would
therefore impose a2 serfous overhead in time and space.
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Indirection has been used in some capability
computers, such as the Cambridge CAP computer and the
Plessey PP250, Notably the Intel iAPX432 uses a two level
indirection table to avoid the problem of preallocating
enough table space.

4.1.2 Pointer Updating

If pointers contain the address of the block they
point to, then when a block is moved all the pointers to it
must be found and updated.

An algorithm for compacting store in this way was
first given by [Haddon&Waite67). While the accessible blocks
are moved, a table is constructed which gives the new
location of each set of consecutive accessible blocks. When
all the blocks have been moved a linear scan is made of the
accessible storage. Any pointers are found and updated using
the table.

Haddon and Waite show that no extra storage is
required for the table, because it can always fit in the
available free space. However, as compaction proceeds it
becomes necessary to relocate the table. Improvements to
this algorithm are proposed by [Fitch&Norman78)] which speed
up the accesses to the relocation table. [Berry&Sorkin78]
show how the algorithm can be modified to give improved
performance when the blocks are allocated and discarded in a
stack like fashion, as is usual for procedure activation
records.

[Wegbreit72] gives an algorithm which updates all
the pointers before moving any blocks. The free block
located before a consecutive set of accessible blocks is
used to hold their new address. To update a pointer it is
necessary to find the first free block preceeding the hlock
referred to, since this gives the new address. This is
accomplished by searching from the start of store until the
free block is found, though this search can be speeded up by
constructing a directory.

The use of an extra address field in each pointer {is
suggested by [Zave7?5]. This field is used to link together
all pointers, sorted in order of the address of the block
they point to. The pointers are then updated in one pass by
following this list. The store is then compacted.

The method of using reversed pointer chains, which
link all pointers to a2 block together, to facilitate
compaction was first suggested by [Fisher74]. Fisher’'s
algorithm however, only works for systems in which the
pointers all run in the same direction. [Morris?8) gives a
more general scheme., This uses two separate passes, one
forwards and one backwards, in order to process both forward
and backward pointers. A similar algorithm, which makes two
forward passes, is given by [Jonkers?79]. [Martin82] gives a
faster version of Fisher’s algorithm.
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The algorithms of Haddon and Waite, Morris and
Jonkers are compared in [Cohen&Nicolau83] using results
obtained from a PDP1O,

The compacting garbage collector proposed by
{Thorelli76) also uses reversed pointers. However an extra
word per block is used to control the recursive scanning.
The algorithm used in the Flex computer, [Foster et.al.79],
avoids the use of this extra word. This is done by adding
all pointers, except the first, to the reversed list after
the first pointer. By ensuring that the first pointer on the
reversed list is the first that was found, it can be used to
control the recursive scan, as originally proposed by Schorr
and Waite. The pointers are updated in a separate pass,
before a final pass compacts the blocks. This makes the
restrictions imposed by Fisher unnecessary.

4.2 Storage Allocation

The allocation of new blocks from a free pool
consisting of one free area is straightforward. However with
multiple free areas there are several possible allocation
strategies. The free areas are chained together on a2 linked
list or in a tree structure so that they can bhe searched.

In the first fit strategy, the 1list is searched and
the block is placed in the first area found which is large
enough to contain it. For the best fit strategy, the hlock
is placed in the smallest area which is large enough to
contain the block.

The cyclic placement strategy is similar to first
fit, except that the search continues in a round robin
fashion, rather than starting at the beginning each time a
block is allocated.

The different schemes are a compromise between the
time taken to place an inaccessible block in the free pool,
the time taken to allocate a new block and the storage
utilisation gained. Which scheme is best will depend on the
pattern of storage usage in the computer.

It may be possible to tailor the placement strategy
dynamically by using special hardware. A cache technique
could be used to give the best free area for the most
recently used block sizes. This would obviate the need for
searching the free area list except on a cache miss.

5., Multi-Processor Garbage Collection
The use of two processors, one for list processing
the other for garbage collection, was first suggested by

[Steele75] as a way of avoiding the pause in list processing
experienced when using most garbage collectors.
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In Steele’s system, the garbage collection processor
operates continually. It scans the memory marking accessidle
blocks, using a stack to control recursion, and then returns
any newly freed blocks to a free list. The system is
intended to run LISP in a virtual memory environment and so
compaction is also performed, to reduce the size of the
working set.

An analysis of a two processor system is provided by
[Wadler76). Conditions are given which ensure that the free
list is never exhausted. This allows the list processor to
run uninterrupted. Wadler concludes that this type of
garbage collection requires twice as much processing power
as the regular type.

A two processor garbage collector was taken by
[Dijkstra.et.el.78] as an example in proving the correctness
of a multiprocess program. Steele’s original proposal used
many semaphores to synchronize the two processors. Dijkstra
attempts to limit the amount of synchronization required,
thus keeping the list processor’s overhead to a minimum. The
flags used to control the marking of nodes is described in
terms of colours. This has become "standard" notation for
parallel garbage collectors.

The algorithm is extended by [Lamport76) to allow
more than one list processor and more than one garbage
collector processor. A correctness proof for this is given.

Another two processor garbage collector is described
by [Kung&Song77]. This avoids the use of critical sections
by relying on the mutual exclusion inherent in accessing the
memory. A special queue is also used to hold pointers to all
the nodes that have yet to be scanned.

The results of a study of Wadler’s and Lamport’s
algorithms are presented in [Newman.et.al.83]. Some
improvements to both are suggested which give significant
speed increases.

All the multi-processor garbage collectors that have
been presented are basically the same and they all suffer
from the same serious fault. This is due to the fact that
list processing systems use memory intensively. This is also
true of high level language oriented computers such as Flex.
The use of multiple processors connected to a single shared
memory in these circumstances is more likely to produce a
drop in performance than any gain. This {is due to the extra
time required for memory contention.
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6. Conclusions

There are three main classes of garbage collector;
scanning, copying and reference counting. They differ in
the number of memory accesses required to perform garbage
collection, in the utilization of the memory and in whether
they require normal 1list processing to be suspended while
they operate.

The scanning class consists of the serial type,
perfected in the Flex computer, and the parallel type, first
introduced by Steele. Whilst the serial version is much
faster, it does require the suspension of normal operation
while it operates. Therefore, a parallel system may be
preferred, despite its inefficiency, because list processing
can normally continue uninterrupted.

Cheney’s algorithm for a copying type garbage
collector is fast, but because a spare memory is required,
its utilization is poor. However, as shown by Baker, it is
possible to adapt the algorithm for real time use.

The reference counting schemes do not recover
inaccessible cyclic structures, which makes them useless for
general purpose systems. Several authors propose using a
hybrid scheme in which reference counting is used to recover
as much storage as possibhle. When necessary, a scanning
garbage collector is used to recover cyclic structures.
Reference counting is, however, very expensive in its usage
of memory and also requires extra space for the reference
counts. It is therefore impractical as a system for the
garbage collection of main memory.

It seems that none of the garbage collectors
surveyed are entirely suitable for use on a system wide
basis. Although solutions to each of the specific problems
are to be found, no one system is entirely satisfactory.
However, the proposal of Bishop is perhaps the closest. This
system solves the major problems but ig¢ likely to be
inefficient, both in terms of processing overhead and memory
utilization, and does not cope well with large cyclic
structures.

All the garbage collectors examined are concerned
with single linear memories. However, large system wide
memories, especially in a distributed computing environment,
are likely to be hierachical in nature. A suitahle garbage
collector may well be able to exploit this structure.

The aim of further research must be to produce a
garbage collector which ig suitable for use on a system wide
basis. Bishop’s algorithm seems an appropriate starting
point. This could be developed in a hierachical fashion to
give a garbage collector suitable for use in distributed
systems.
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