	AD-A1	56 529	NAT BUT	IONAL TERFIE	PROGR	AM FOR ND DAM	INSPE C. CL	CTION	OF NO PS OF	N-FEDE Engine	RAL DA	ANS ALTHAM	1/	2
	UNCLAS	SSIFIE	D	NEW ER	GLAND	014	ЛЛК 0 1	,			F/G 1	3/13	NL	
			Lat. 3											
					Z A									
1			-											

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATIO	N PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NH 00233		
TITLE (and Sublille)		5. TYPE OF REPORT & PERIOD COVERED
Butterfield Pond Dam		INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION O	F NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION		5. CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAME AND ADDRE	\$\$	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGINE	EERS	March 1980
NEW ENGLAND DIVISION, NEDED		13. NUMBER OF PAGES
424 IRAPELU KUAU, WALIHAM, MA. 022	204	80
	Inter - deserving (fire)	
		UNCLASSIFIED
		ISA. DECLASSIFICATION/DOWNGRADING
DISTRIBUTION STATEMENT (of this Report) APPROVAL FOR PUBLIC RELEASE: DISTR	RIBUTION UNLIMITED	
6. DISTRIBUTION STATEMENT (of the Report) APPROVAL FOR PUBLIC RELEASE: DISTR 7. DISTRIBUTION STATEMENT (of the obsider entor	RIBUTION UNLIMITED	SCHEDULE
APPROVAL FOR PUBLIC RELEASE: DISTR APPROVAL FOR PUBLIC RELEASE: DISTR DISTRIBUTION STATEMENT (of the aberrant enter DISTRIBUTION STATEMENT (of the aberrant enter Cover program reads: Phase I Inspe however, the official title of the Non-Federal Dams; use cover date KEYWORDS (Continue on reverse side if necessary DAMS, INSPECTION, DAM SAFETY,	RIBUTION UNLIMITED and in Block 30, 11 different free ection Report, Natio program is: Natio for date of report and identify by block number)	onal Dam Inspection Program; nal Program for Inspection of
APPROVAL FOR PUBLIC RELEASE: DISTR APPROVAL FOR PUBLIC RELEASE: DISTR DISTRIBUTION STATEMENT (of the exercised enter Cover program reads: Phase I Inspe however, the official title of the Non-Federal Dams; use cover date KEY WORDS (Continue on reverse side if necessary DAMS, INSPECTION, DAM SAFETY, Connecticut River Basin Washington, New Hampshire, 2004 Ashuelot River, 4	RIBUTION UNLIMITED od in Block 20, 11 different free ection Report, Natio program is: Natio for date of report and identify by block number)	achecoule achecoule anal Dam Inspection Program; nal Program for Inspection of (Fr. J. J.)

DD 1 JAN 73 1473 EDITION OF 1 NOV SE IS OBSOLETE

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION. CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM. MASSACHUSETTS 02254

REPLY TO ATTENTION OF:

NEDED

7 DCT 1383

Honorable Hugh J. Gallen Governor of the State of New Hampshire State House Concord, New Hampshire 03301

Dear Governor Gallen:

Inclosed is a copy of the Butterfield Pond Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam.

Butterfield Pond Dam has been rated as being in very poor condition. The brief assessment and Section 3 of this report contain a discussion as to the condition of the dam. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Water Resources Board, the cooperating agency for the State of New Hampshire. In addition, a copy of the report has also been furnished the owner, The State of New Hampshire Resource and Economic Development Dept., Division of Parks and Recreation.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Water Resources Board for your cooperation in carrying out this program.

Sincerely,

MAX B. SCHEIDER

Incl As stated

MAX B. SCHEIDER > Colonel, Corps of Engineers Division Engineer

BUTTERFIELD POND DAM NH 00233 NHWRB 245.01

Ē

.

Ì

۲.,

.

r

Ļ

CONNECTICUT RIVER BASIN WASHINGTON, NEW HAMPSHIRE

Acce	Ssion For
NTIS DTIC Unan Just	GRAAI TAB Inounced I ification
By Dist: Ava:	ribution/
Dist A/	Avail and/or Special

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM PHASE I - INSPECTION REPORT BRIEF ASSESSMENT

Identification No: NH 00233

Name of Dam: Butterfield Pond Dam

Town: Washington

County and State: Sullivan, New Hampshire

Stream: Ashuelot River

Date of Inspection: December 6, 1979

Butterfield Pond Dam is a stone-filled gravity structure about 210 feet in overall length and 12.5 feet high from crest of dam to toe of slope. Located in the center of the dam is the principal overflow section which is 57 feet long and consists of a concrete capped, stone weir with concrete training walls. Near the middle of the overflow section is a 16.2 feet wide by 0.2 feet deep low flow spillway weir cast into the concrete cap. Located at the right training wall of the overflow section is the outlet structure which consists of a reinforced concrete sluice gate structure containing a wood plank sluice gate. Both the left and right embankments consist of unmortared stone. There is no emergency spillway.

The dam impounds Butterfield Pond and adjoining May Pond and the discharge flows through the Ashuelot River in a southwesterly direction approximately 6.0 miles to Ashuelot Pond. The original purpose of the dam is reported to have been to supply power to a mill, but its present use is recreational. The pond is 1.25 miles in length with a surface area of about 126 acres. The maximum storage capacity is about 590 acre feet.

As a result of the visual inspection of this facility, the dam is considered to be in **MERT FOOR** condition. Major concerns are: a sinkhole in the earthfill on the upstream side of the right stone embankment with pond water flowing into the sinkhole; subsidence of the crest and bulging of the downstream slope of the left stone embankment; severely broken and eroded condition of the concrete cap and the downstream concrete facing of the overflow section; and significant leakage and seepage at numerous locations along the downstream face of the dam.

This dam is classified as SMALL in size and a SIGNIFICANT hazard structure in accordance with the recommended guidelines established by the Corps of Engineers. The test flood for this dam therefore, ranges from a 100-year flood to one-half the Probable Maximum Flood (1/2 PMF). Due to the very poor condition of the dam, the 1/2 PMF was selected for this hydrologic analysis. The test flood inflow was estimated to be 7,500 cfs and resulted in a routed test flood outflow equal to 5,430 cfs which would overtop the dam crest by about 5.3 feet. The maximum

spillway discharge capacity with the water level at the dam crest was estimated to be 160 cfs or about 3 percent of the routed test flood outflow. A major breach with the reservoir surface at the dam crest would overtop New Hampshire Route 31, by 2 to 3 feet, where it crosses the channel 350 feet below the dam. This could result in significant damage to the bridge and roadway. Although the potential for loss of life exists if the bridge were to wash out, no loss of life is anticipated.

It is recommended that the owner engage a qualified engineer to: investigate the sinkhole, crest subsidence, erosion channel on the downstream slope, and seepage at the left end of the right stone embankment; investigate the subsidence of the crest, sinkhole in the upstream earthfill, bulging of the downstream slope and seepage at the downstream toe of the left stone embankment; investigate the structural condition of the overflow section and the sluice gate; and do a detailed hydrologic-hydraulic investigation to assess further the potential of overtopping the dam, the adequacy of the spillway to pass the test flood, and the need for and means to increase project discharge capacity. It is also recommended that the owner clear brush and trees from a zone 25 feet wide on each side of the discharge channel between the dam and the highway bridge downstream of the dam.

The recommendations and remedial measures are described in Section 7 and should be addressed by the owner within one year after receipt of this Phase I Inspection Report.

F

L

Ĺ

L

enneth M. stewart

Kenneth M. Stewart Project Manager N.H.P.E. 3531

S E A Consultants Inc. Rochester, New Hampshire This Phase I Inspection Report on Butterfield Pond Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the <u>Recommended Guidelines for Safety Inspection of</u> <u>Dams</u>, and with good engineering judgment and practice, and is hereby submitted for approval.

Homman Watter

ARAMAST MAHTESIAN, MEMBER Geotechnical Engineering Branch Engineering Division

Carney M. Tezian

CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division

umo.

RICHARD DIBUONO, CHAIRMAN Water Control Branch Engineering Division

APPROVAL RECOMMENDED:

OE B. FRYAR

Chief, Engineering Division

PREFACE

.

). (-

6

.

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and

v

rarity of such a storm event, finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

È

.

-

-

5

The Phase I investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespassing and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

<u>Secti</u>	on		Page
Lette	er of	Transmittal	i
Brief	Asse	ssment	ii
Revie	ew Bo	oard Page	iv
Prefa	ace		v
Table	e of (Contents	vii
Over	view	Photo	ix
Loca	tion N	Лар	x
1.	PRO	JECT INFORMATION	1-1
	1.1	General	1-1
	1.2	Description of Project	1-1
	1.3	Pertinent Data	1-3
2.	ENG	INEERING DATA	2-1
	2.1	Design	2-1
	2.2	Construction	2-1
	2.3	Operation	2-1
	2.4	Evaluation	2-1
3.	VISU	AL INSPECTION	3-1
	3.1	Findings	3-1
	3.2	Evaluation	3-3
4.	OPE	RATIONAL AND MAINTENANCE PROCEDURES	4-1
	4.1	Operational Procedures	4-1
	4.2	Maintenance Procedures	4-1
	4.3	Evaluation	4-1

Sec	tion		Page
5.	EVA	LUATION OF HYDROLOGIC/HYDRAULIC FEATURES	5-1
	5.1	General	5-1
	5.2	Design Data	5-1
	5.3	Experience Data	5-1
	5.4	Test Flood Analysis	5-1
	5.5	Dam Failure Analysis	5-1
6.	EVA	LUATION OF STRUCTURAL STABILITY	6-1
	6.1	Visual Observations	6-1
	6.2	Design and Construction Data	6-1
	6.3	Post-Construction Changes	6-2
	6.4	Seismic Stability	6-2
7.	ASS	ESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	7-1
	7.1	Dam Assessment	7-1
	7.2	Recommendations	7-2
	7.3	Remedial Measures	7-2
	7.4	Alternatives	7-3
		APPENDICES	
AP	PENDI	X A - INSPECTION CHECKLIST	A-1
AP	PENDI	X B - ENGINEERING DATA	B-1
AP	PENDI	X C - SELECTED PHOTOGRAPHS	C-1
AP	PENDI	X D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1

.

ŀ.

viii

OVERVIEW PHOTO - BUTTERFIELD POND DAM

) |

E 2

3

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT BUTTERFIELD POND DAM

SECTION 1 PROJECT INFORMATION

1.1 General

a. <u>Authority.</u> Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. S E A Consultants Inc. has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to S E A Consultants Inc. under a letter of November 5, 1979 from William Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0008 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) To perform technical inspection and evaluation of non-federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-federal interests.

(2) To encourage and prepare the states to initiate quickly effective dam safety programs for non-federal dams.

(3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location. The Butterfield Pond Dam is located in the town of Washington, New Hampshire, at the south end of Butterfield Pond, just east of New Hampshire Route 31. The dam impounds water from Butterfield Pond and adjoining May Pond which, after passing over the spillway, flows through the Ashuelot River in a southwesterly direction for approximately 6.0 miles where it discharges into Ashuelot Pond. The dam is shown on U.S.G.S. Quadrangle, Lovewell Mountain, New Hampshire, with coordinates approximately N43⁰13'33", W72⁰07'08", Sullivan County, New Hampshire. (See Location Plan)

b. <u>Description of Dam and Appurtenances</u>. Butterfield Pond Dam is a stone-filled gravity structure with a concrete capped overflow section and a reinforced concrete sluice gate structure. The dam is approximately 210 feet in overall length and 12.5 feet high from crest of dam to toe of slope. Both embankments consist of unmortared stone and have a crest width of approximately

6.0 feet. The left embankment has a downstream slope of unmortared stone which extends from crest of dam to toe of slope at approximately 1.5 feet vertical to 1.0 foot horizontal (1.5:1). The right embankment has a downstream slope of earthfill at approximately 1.0 foot vertical to 2.0 feet horizontal (1:2).

Located in the center of the dam is the principal overflow section which is 57 feet long and consists of a concrete capped, stone weir with concrete training walls. Near the middle of the overflow section is a 16.2 feet wide by 0.2 feet deep low flow spillway weir cast into the concrete cap.

Located at the right training wall of the overflow section is the outlet structure which consists of a reinforced concrete sluice gate structure containing a wood plank sluice gate. All mechanical equipment to operate the sluice gate has been removed and the sluice gate is split, leaking and inoperable. Flow passing through the sluice gate structure discharges into a 12 feet wide stone-lined sluiceway that extends approximately 56 feet to the main channel.

c. <u>Size Classification</u>. Small (height - 12.5 feet; storage - 590 acre-feet) based on storage (less than 1,000 acre-feet and greater than or equal to 50 acre-feet) as given in the Recommended Guidelines for Safety Inspection of Dams.

d. <u>Hazard Classification</u>. Significant Hazard. Failure of the dam could result in damage to a state bridge and highway (NH Route 31), since the capacity of the highway bridge is nearly 2,000 cfs less than the dam failure discharge and the roadway would be overtopped by 2 to 3 feet. There are no dwellings located near the downstream channel until the river discharges into Ashuelot Pond. However, at this point the stage would decrease rapidly to less than a foot and dwellings located on the pond would not be impacted. Although the potential for loss of life would exist if the bridge were to wash out, no loss of life is anticipated.

e. <u>Ownership</u>. No information regarding the original owner was found, but according to the files of the State of New Hampshire Water Resources Board, the original dam was built to create a pond and provide power for what was called Butterfield Mill. The dam was reconstructed in 1934 by the Civilian Conservation Corp., and at that time was owned by the State of New Hampshire Forestry Reservation. Since that time, the dam has always been owned by an agency of the State of New Hampshire, and is presently owned by Pillsbury State Park; more specifically, the State of New Hampshire Resources and Economic Development Department, Division of Parks and Recreation, Post Office Box 856, Concord, New Hampshire 03301. Telephone No. (603) 271-3254.

f. <u>Operator</u>. The dam is maintained and operated by Pillsbury State Park, under the State of New Hampshire Resources and Economic Development Department, Division of Parks and Recreation, Post Office Box 856, Concord, New Hampshire 03301. Telephone No. (603) 271-3254.

g. <u>Purpose of Dam</u>. The original purpose of the dam was to provide power to a mill. The present purpose of the dam is recreational.

h. <u>Design and Construction History</u>. No information regarding the original design or construction of the dam was found. Early records indicate that it was last rebuilt in 1934. A set of plans dated 1934, showing plan, elevation, and section of an existing structure and proposed reconstruction prepared by R. D. Chapin, Civil Engineer, Newport, New Hampshire, are on file at the State of New Hampshire Water Resources Board. None of the details shown on these plans are consistent with the configuration of the present structure. Photographs taken in 1937 that are on file substantially agree with the detail of the present structure.

i. <u>Normal Operating Procedures</u>. The Butterfield Pond Dam is used primarily to retain the waters of Butterfield Pond and adjoining May Pond for recreational use at Pillsbury State Park. There is no normal operating procedure for this dam.

1.3 Pertinent Data

a. <u>Drainage Area.</u> The drainage area above the Butterfield Pond Dam covers nearly 7.15 square miles (approximately 4576 acres), consisting of steeply sloped terrain surrounding Butterfield Pond and adjoining May Pond, and other smaller ponds located upstream from Butterfield Pond. The topography in the drainage basin ranges from 2332 feet (NGVD) on top of Bean Mountain to approximately 1592 feet (NGVD) at the base of the dam. The majority of the basin is heavily wooded and generally undeveloped. The development which does exist consists of structures associated with Pillsbury State Park.

b. <u>Discharge at Damsite</u>. Discharge at the damsite normally occurs over the overflow section located between the two concrete training walls. A 16.2 feet wide by 0.2 foot deep low flow spillway is located near the middle of the overflow section. The invert of the spillway weir is at elevation 1603.0 feet (NGVD) and has a capacity of nearly 4 cfs. A 6.1 foot wide by 6.05 foot high sluice gate is located adjacent to the right training wall. The sluice gate is normally closed, and presently is inoperable and leaking through a split in the gate. This gate, if operable, would allow the reservoir to be lowered to an elevation of 1595.2 feet.

(1) The capacity of the sluice gate was estimated to be 435 cfs with the water surface at the top of dam (elevation 1604.2 feet) and 595 cfs with the water surface at the test flood elevation (elevation 1609.5 feet).

(2) Maximum known flood at damsite - unknown

(3) The ungated spillway capacity with the water surface elevation at the top of the dam (elevation 1604.2 feet) was estimated to be 160 cfs

(4) The ungated spillway capacity with the water surface elevation at the test flood elevation (elevation 1609.5 feet) was estimated to be 2,375 cfs

- (5) N/A
- (6) N/A

ŀ

(7) The total spillway capacity at the test flood elevation was estimated to be 2,375 cfs at 1609.5 elevation

(8) The total project discharge at the top of the dam was estimated to be 210 cfs at 1604.2 elevation (with the sluice gate closed) and 630 cfs at 1604.2 elevation (with the sluice gate open)

(9) The total project discharge at the test flood elevation was estimated to be 5,430 cfs at 1609.5 elevation

c. <u>Elevation</u> (feet, NGVD) based on elevation 1603.0 shown on U.S.G.S. quad sheet assumed to be pool elevation at top of permanent spillway crest

- (1) Streambed at toe of dam 1591.9
- (2) Bottom of cutoff unknown
- (3) Maximum tailwater unknown
- (4) Recreation pool 1603.2
- (5) Full flood control pool N/A
- (6) Spillway crest 1603.0
- (7) Design surcharge (Original Design) unknown
- (8) Top of dam 1604.2
- (9) Test flood design surcharge 1609.5

d. Reservoir (length in feet) (Butterfield Pond and adjoining May Pond)

- (1) Normal pool 6,565
- (2) Flood control pool N/A
- (3) Spillway crest pool 6,550
- (4) Top of dam 6,630
- (5) Test flood pool 6,990

e. <u>Storage</u> (acre-feet) (Butterfield Pond and adjoining May Pond)

- (1) Normal pool 465
- (2) Flood control pool N/A
- (3) Spillway crest pool 440
- (4) Top of dam 590
- (5) Test flood pool 1,415
- f. Reservoir Surface (acres) (Butterfield Pond and adjoining May Pond)
 - (1) Normal pool 126
 - (2) Flood control pool N/A
 - (3) Spillway crest 125
 - (4) Test flood pool 175
 - (5) Top of dam 134

g. <u>Dam</u>

ŀ

- (1) Type stone-filled gravity structure with concrete capped overflow section
- (2) Length 210 feet overall
- (3) Height 12.5 feet maximum
- (4) Top Width 6.0 feet (at stone embankments) 8.0 feet (at overflow section)
- (5) Side Slopes 1.5 V to 1.0 H downstream slope (left embankment) 1.0 V to 2.0 H downstream slope (right embankment)
- (6) Zoning unknown
- (7) Impervious core unknown
- (8) Cutoff unknown
- (9) Grout curtain none
- (10) Other none

h. Diversion and Regulating Tunnel

Not applicable (see Section j below)

i. <u>Spillway</u>

(1) Type - stone fill, concrete capped overflow section with concrete training walls

(2) Length of weir - 57 feet (entire overflow section) 16.2 feet (low flow spillway section)

(3) Crest elevation - 1603.0 (invert low flow spillway) 1603.2 (invert main overflow section)

(4) Gates - N/A

(5) U/S Channel - The banks of Butterfield Pond and May Pond are tree lined. For the most part the slopes appear to be stable, although some debris has blocked the sluice gate. Other than the debris blocking the sluice gate, no evidence of significant sedimentation was observed.

(6) D/S Channel. The dam's overflow section discharges into a natural river channel (Ashuelot River) which is about 20 feet wide and 3.5 feet deep. Approximately 350 feet downstream from the dam, the river passes beneath a state highway (NH Route 31). The bridge opening (perpendicular to the centerline of the channel) measures 24.3 feet wide by 10.4 feet high. After passing through the bridge, the river travels in a southerly direction until it discharges into Ashuelot Pond, approximately 6 miles downstream from the dam.

- j. <u>Regulating Outlets</u>
 - (1) Invert Sluice gate 1595.2 (bottom of gate opening)
 - (2) Size Sluice gate 6.1 feet wide x 6.05 feet high opening
 - (3) Description Sluice gate 5 inch thick wooden planks, 7.1 feet wide, bolted together to form gate in 6.1 feet wide opening
 - (4) Control Mechanism Sluice gate Manual crank lift by cables. Lifting mechanism removed. Gate planks split and leaking.

SECTION 2 ENGINEERING DATA

2.1 Design

No design data were disclosed for Butterfield Pond Dam. A set of plans dated 1934 showing plan, elevation, and section of an existing structure and proposed reconstruction of the dam by R.D. Chaplin, Civil Engineer, Newport, New Hampshire are on file at the State of New Hampshire Water Resources Board. None of the details shown on those plans were consistent with the configuration of the present structure.

2.2 Construction

No construction records were disclosed.

2.3 Operation

No engineering operational data were found.

2.4 Evaluation

a. <u>Availability</u>. No engineering data were available for Butterfield Pond Dam. A search of the files of the State of New Hampshire Water Resources Board revealed a limited amount of recorded information.

b. <u>Adequacy</u>. The final assessments and recommendations of this investigation are based on the visual inspection and the hydrologic and hydraulic calculations.

c. <u>Validity</u>. The field investigation indicated that the external features of the Butterfield Pond Dam almost completely disagree with the detail shown on the plans on file at the State of New Hampshire Water Resources Board.

SECTION 3 VISUAL INSPECTION

3.1 Findings

a. <u>General.</u> Butterfield Dam impounds a pond of small size. The drainage area above the dam consists of steeply sloped terrain surrounding Butterfield Pond and adjoining May Pond, and other smaller ponds located upstream from Butterfield Pond. The majority of the basin is heavily wooded and generally undeveloped. The development which does exist consists of structures associated with Pillsbury State Park. The downstream area is undeveloped except for the bridge crossing of NH State Route 31.

The field inspection of Butterfield Pond Dam was made on December 6, 1979. The inspection team consisted of personnel from S E A Consultants Inc. and Geotechnical Engineers, Inc. Inspection checklists, completed during the visual inspection, are included in Appendix A. At the time of inspection, water was passing approximately 2-1/2 inches deep over the 16.2 feet wide low flow spillway. The pool elevation was at approximately 1603.2 feet (NGVD). The upstream face of the dam could only be inspected above this water level.

b. <u>Dam.</u> Butterfield Pond Dam is a stone-filled gravity structure about 210 feet in overall length and 12.5 feet high from crest of dam to toe of slope. (See Plans and Detailing in Appendix B.)

The central portion of the dam consists of a stone-masonry overflow section about 57 feet long with concrete training walls and a stone weir, concrete capped on the crest and downstream side. (See Photo Nos. 2 and 7.) The crest of the overflow section is about 8 feet wide and the downstream face is vertical. (See Photo Nos. 3 and 7.) The upstream side of the overflow section is not completely visible beneath the water surface, but does indicate the existence of an unmortared stone apron. Located near the middle of the overflow section cast into the concrete cap is the low flow spillway which is 16.2 feet wide and 0.2 feet deep. (See Photo Nos. 7 and 8.) The concrete cap on the crest of the overflow section is broken and severely eroded at numerous locations. (See Photo Nos. 8 and 10.) At one location there is a small eddy where water is flowing down into a hole on the crest. Water is leaking from the downstream face at the contact between the overflow section and the foundation bedrock. (See Photo No. 9.) Major leakage is discharging from loose rocks at the toe of the right end of the overflow section.

Between the sluice gate at the right training wall of the overflow section and the right abutment, there is a stone embankment which appears to consist of a vertical dry-stone-masonry wall with earthfill against the upstream and downstream sides. In the fill immediately adjacent to the upstream side of the wall, there is a ditch in which water is flowing from the pond toward a sinkhole which is about 15 to 20 feet to the right of the concrete sluice gate structure. (See Plans and Details in Appendix B.) It appears that the water which flows into this sinkhole is discharging at the base of the downstream end of the right training wall of the sluice gate structure. (See Photo No. 13.) About 5 feet to the right of the concrete sluice gate structure, the crest of the stone embankment has subsided about 2 feet. Directly in line with this subsidence, there is an apparent erosion channel that

extends from the crest to the toe of the downstream slope of the embankment. This channel is filled with weeds and brush, and there are stumps of some small trees in the channel. Some brush and one small tree are growing on the earthfill on the upstream side of the stone embankment. Brush and weeds are growing on the earthfill on the downstream side of the stone embankment. (See Photo No. 4.)

Between the left training wall of the overflow section and the left abutment there is a stone embankment which has a downstream slope inclined at about 1.5V:1Hand which has an earthfill against its upstream side. There appears to be a major bulge in the downstream slope of this stone embankment close to the overflow section of the dam. (See Photo No. 5.) Major seepage is discharging at the toe of the stone embankment next to the overflow section. The crest of the stone embankment has settled about 1 to 1 1/2 feet within about 10 feet of the overflow section and the crest of the earthfill on the upstream side of the embankment has a sinkhole about 3 to 4 feet deep above pond level at a location about 25 feet to the left of the overflow section. (See Photo No. 6.) Brush and small trees are growing on the earthfill on the upstream side of the embankment. Brush and trees are growing at the downstream toe of the embankment. (See Photo No. 4.)

c. <u>Appurtenant Structures.</u> Located at the right training wall of the overflow section is the dam's outlet structure which consists of a reinforced concrete sluice gate structure that discharges into a 12 foot wide stone-lined sluiceway that extends approximately 56 feet to the main channel. (See Photo Nos. 10 and 11.) The sluice gate itself consists of 5-inch thick wood planks that are secured together by two long vertical bolts. The gate is approximately 6.1 feet wide and 6.05 feet high and is raised and lowered through steel slots embedded in the sides of the concrete sluice gate structure. Near the top of the gate, a severe crack has developed between the wood planks and water is pouring through and discharging into the sluiceway. (See Photo No. 12.)

A 6-inch thick concrete slab cast on top of the sluice gate structure acts as a control tower for the gate. The lifting mechanism has been removed, and the gate is jammed in the closed position. The upstream face of the left wall of the concrete sluice gate structure is being undermined and is deteriorated, exposing reinforcing steel.

d. <u>Reservoir Area.</u> The slopes of the ponds appear to be stable. No evidence of significant sedimentation was observed. The approach channel to the spillway is wide and unobstructed.

e. <u>Downstream Channel</u>. The dry-stone-masonry wall on the right side of the sluiceway downstream of the sluice gate structure is in poor condition. Some brush is growing in the channel downstream of the sluiceway. Some trees overhang the channel downstream of the overflow section of the dam, and one tree has blown over across the channel. (See Photo Nos. 14, 15 and 16.)

3-2

3.2 Evaluation

On the basis of the results of the visual inspection, Butterfield Pond Dam is considered to be in very poor condition.

A major sinkhole into which water from the pond is flowing on the upstream side of the stone embankment at the right end of the dam, subsidence of the crest of the right stone embankment, an apparent erosion channel on the downstream slope of the right embankment, and a major discharge of water from the base of the right training wall of the sluice gate structure are all signs of serious stability problems of the right embankment. It is possible that this embankment could fail at any time.

A major subsidence of the crest of the stone embankment at the left end of the dam, a major sinkhole in the earthfill on the upstream side of the left stone embankment, apparent bulging of the downstream slope of the left embankment, and a major discharge of water from the downstream toe of the left embankment are all signs of serious stability problems of the left embankment. It is possible that this embankment could fail at any time.

The broken and eroded condition of the concrete cap and downstream facing of the overflow section of the dam, leakage from cracks in the downstream facing, leakage at the contact between the overflow section of the dam and the bedrock foundation, and the flow of pond water into a hole on the crest of the overflow section are all signs of serious stability problems in the overflow section of the dam.

A large crack between the wood planks of the sluice gate and the water pouring through and discharging into the sluiceway, and the absence of any lifting mechanism are signs of considerable deterioration of the gate. It is possible that the gate could fail at any time.

Trees growing at the downstream too of the dam, and brush which will eventually attain tree-size on the earthfills on the upstream side of the left stone embankment and on the upstream and downstream sides of the right stone embankment may lead to erosion and seepage problems if a tree blows over and pulls out its roots, or if a tree dies or is cut and its roots rot.

SECTION 4 OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

L

, .

L

a. <u>General.</u> The Butterfield Pond Dam is used primarily to retain the waters of Butterfield Pond and adjoining May Pond. There are no written or routine operational procedures.

b. <u>Description of Any Warning System in Effect.</u> No written warning system exists for the dam.

4.2 Maintenance Procedures

a. <u>General.</u> The owner, the New Hampshire Resources and Economic Development Department, Division of Parks and Recreation, is responsible for the maintenance of the dam. No formal plan for maintenance was discussed.

b. <u>Operating Facilities</u>. No formal plan for maintenance of operating facilities was disclosed.

4.3 Evaluation

The current operation and maintenance procedures for the Butterfield Pond Dam are inadequate to insure that all problems encountered can be remedied within a reasonable period of time. The owner should establish a written operation and maintenance procedure, as well as establish a warning system to follow in event of flood flow conditions or imminent dam failure.

SECTION 5 EVALUATION OF HYDROLOGIC/HYDRAULIC FEATURES

5.1 <u>General.</u> Butterfield Pond Dam is a stone-filled gravity structure approximately 210 feet in overall length and 12.5 feet high from crest of dam to toe of slope. Located near the center of the dam is the principal overflow section which is 57 feet long and consists of a concrete capped, stone weir with concrete training walls. Near the middle of the overflow section is a 16.2 feet wide by 0.2 foot deep low flow spillway weir. Adjacent to the right training wall of the overflow section is a 6.1 feet wide by 6.05 feet high sluice gate housed in a reinforced concrete structure. The sluice gate discharges into a 12 feet wide stone-lined sluiceway which extends approximately 56 feet to the main channel. At this time, the wooden plank sluice gate is inoperable and is severely leaking through a gap between two of the planks.

In addition to Butterfield Pond, five other ponds are located in the drainage area upstream from Butterfield Pond. Consequently, nearly two-thirds of the runoff from the watershed is intercepted by these ponds before flowing into Butterfield Pond.

5.2 <u>Design Data</u>. No hydrological or hydraulic design data were disclosed.

5.3 <u>Experience Data.</u> No experience data were disclosed. Maximum flood flows or elevations are unknown.

5.4 <u>Test Flood Analysis</u>. Due to the absence of detailed design and operational information, the hydrologic evaluation was performed utilizing data gathered during field inspection, watershed size and an estimated test flood determined from the Corps of Engineers guide curves. For this dam (small size and significant hazard) the test flood ranges from a 100-Year Flood to one-half the Probable Maximum Flood (1/2 PMF). Due to the very poor condition of the dam the 1/2 PMF was selected for this analysis. Since the drainage area consists of steeply sloping terrain, the "mountainous" curve, from the Corps of Engineers set of guide curves, was used to estimate the maximum probable peak flow rate.

Based on an estimated maximum probable flood peak flow rate of 2,100 cfs per square mile and a drainage area of 7.15 square miles, the test flood inflow was estimated to be 7,500 cfs. The test flood was routed through the reservoir in accordance with the Corps of Engineers procedure for Estimating Effect of Surcharge Storage on Maximum Probable Discharge. The routed test flood outflow was estimated to be 5,430 cfs. This analysis indicated that the dam crest would be overtopped by approximately 5.3 feet. The maximum spillway capacity (assuming that the sluice gate is closed) with the water level at the dam crest was estimated to be 160 cfs, which is only about 3 percent of the routed test flood outflow.

5.5 <u>Dam Failure Analysis</u>. The impact of dam failure with the reservoir surface at the dam crest was assessed utilizing the "Rule of Thumb" Guidance for Estimating Downstream Dam Failure Hydrographs published by the Corps of Engineers. The analysis covered a reach extending approximately 6 miles downstream to Ashuelot Pond. Based on this analysis, the Butterfield Pond Dam has been classified as a significant hazard. Failure of the Butterfield Pond Dam would increase the stage along the immediate downstream channel by 7.5 feet, with an associated discharge of 5,950 cfs. Since this discharge exceeds the capacity of the highway bridge by nearly 2,000 cfs, it is probable that the pool formed by the flow restriction of the bridge would overtop the roadway by 2 to 3 feet and could cause significant damage to the bridge and roadway. The stage of the river would be reduced to about 4.5 feet by the time it discharges into Ashuelot Pond. The stage, however, would decrease rapidly, to less than a foot, as the flow passes through the wider portions of the pond. Although the potential for loss of life would exist if the bridge were to wash out, no loss of life is anticipated.

Ľ

•

<u>,</u>.

SECTION 6 EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations

The visual inspection indicates the following potential structural problems:

- (1) A major sinkhole into which water from the pond is flowing on the upstream side of the stone embankment at the right end of the dam, subsidence of the crest of the right stone embankment, an apparent erosion channel on the downstream slope of the right embankment, and a major discharge of water from the base of the right training wall of the sluice gate structure are all signs of serious stability problems in the right embankment. It is possible that this embankment could fail at any time.
- (2) A major subsidence of the crest of the stone embankment at the left end of the dam, a major sinkhole in the earthfill on the upstream side of the left stone embankment, apparent bulging of the downstream slope of the left embankment, and a major discharge of water from the downstream toe of the left embankment are all signs of serious stability problems in the left embankment. It is possible that this embankment could fail at any time.
- (3) The broken and eroded condition of the concrete cap and downstream facing of the overflow section of the dam, leakage from cracks in the downstream facing, leakage at the contact between the overflow section of the dam and the bedrock foundation, and the flow of pond water into a hole on the crest of the overflow section are all signs of serious stability problems in the overflow section of the dam.
- (4) The large crack between the wood planks of the sluice gate and the water pouring through and discharging into the sluiceway, and the absence of any lifting mechanism are signs of considerable deterioration of the gate. It is possible that the gate could fail at any time.
- (5) Trees growing at the downstream toe of the dam, and brush which will eventually attain tree-size on the earthfills on the upstream side of the left stone embankment and on the upstream and downstream sides of the right stone embankment, may lead to erosion and seepage problems if a tree blows over and pulls out its roots, or if a tree dies or is cut and its roots rot.

6.2 Design and Construction Data

No information regarding the original design or construction of the dam was found.

6.3 Post-Construction Changes

Early records indicate that the dam was rebuilt in 1934. A set of plans dated 1934, showing plan, elevation, and section of an existing structure and proposed reconstruction prepared by R.D. Chapin, Civil Engineer, Newport, New Hampshire, are on file at the New Hampshire Water Resources Board. None of the detail shown on these plans are consistent with the configuration of the present structure. Photographs taken in 1937 that are on file substantially agree with the detail of the present structure.

6.4 Seismic Stability

This dam is located in Seismic Zone 2 and, in accordance with the Phase I guidelines, does not warrant seismic analysis.

SECTION 7 ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES

7.1 Dam Assessment

Ľ

.

٤.

.

ť

Ļ

a. <u>Condition</u>. The visual examination indicates that Butterfield Pond Dam is in very poor condition. The major concerns with respect to the integrity of the dam are:

- (1) Sinkhole in the earthfill on the upstream side of the right stone embankment, with pond water flowing into the sinkhole.
- (2) Major subsidence of the crest of the left stone embankment.
- (3) Bulging of the downstream slope of the left stone embankment.
- (4) Severely broken and eroded condition of the concrete cap and the downstream concrete facing of the overflow section.
- (5) Leakage from cracks in the downstream facing of the overflow section and at the contact between the overflow section and the foundation bedrock.
- (6) Subsidence of the crest of the right stone embankment.
- (7) Erosion channel from the crest to downstream toe of the right embankment.
- (8) Major seepage at the base of the right training wall of the sluice gate structure.
- (9) Sinkhole above pond level in the earthfill on the upstream side of the left stone embankment.
- (10) Major seepage at the downstream toe of the left embankment.
- (11) Leakage through a large crack between the wood planks of the sluice gate.
- (12) Trees overhanging the discharge channel downstream of the overflow section of the dam and one tree which has blown over across the channel.
- (13) Inadequacy of the spillway to pass the test flood.

b. <u>Adequacy of Information</u>. The information available from the visual inspection is adequate to identify the problems that are listed in 7.2. These problems will require the attention of a qualified registered professional engineer who will have to make additional engineering studies to design or specify remedial measures. No additional information is needed for the purpose of this Phase I investigation.

c. <u>Urgency</u>. The owner should implement the recommendations in 7.2 and 7.3 immediately upon receipt of this Phase I report.

7.2 Recommendations

The owner should retain a registered professional engineer qualified in the design and construction of dams to:

- (1) Investigate the sinkhole, crest subsidence, erosion channel on the downstream slope, and seepage at the left end of the right stone embankment, and design remedial measures as needed.
- (2) Investigate the subsidence of the crest, sinkhole in the upstream earthfill, bulging of the downstream slope, and seepage at the downstream toe of the left stone embankment, and design remedial measures as need
- (3) Investigate the structural condition of the overflow section and design remedial measures as needed.
- (4) Investigate the structural condition of the sluice gate and design remedial measures as needed.
- (5) Do a detailed hydrologic-hydraulic investigation to assess further the potential of overtopping the dam, the adequacy of the spillway to pass the test flood, and the need for and means to increase project discharge capacity.

The owner should carry out the recommendations made by the engineer.

- 7.3 <u>Remedial Measures</u>
 - a. Operating and Maintenance Procedures. The owner should:
 - (1) Clear brush and trees from a zone 25 feet wide on each side of the discharge channel between the dam and the highway bridge downstream of the dam.
 - (2) Visually inspect the dam and appurtenant structures once a month.
 - (3) Engage a registered professional engineer qualified in the design and construction of dams to make a comprehensive technical inspection of the dam once every year.

(4) Establish a surveillance program for use during and immediately after heavy rainfall, and also a warning program to follow in case of emergency conditions.

7.4 Alternatives

١

ľ

<u>.</u>

÷

-

Ī

1

There are no practical alternatives to the recommendations of Section 7.2 and 7.3 except removal of the dam.

APPENDIX A

i

Ż

•

ľ

-

-

•

ľ

1

INSPECTION CHECKLIST

.

INSPECTI PARTY	ON CHEC	K LIST ATION
		DAGE December 6 1979
T: Butterfield Pond Dam, NH		TIME: 9:00 a.m.
		WEATHER: Cool, partly cloudy
		W.S. ELEV. <u>1603.2</u> U.S. <u>1591.9</u> DN.S. (NGVD)
enneth Stewart, S E A	c	Kenneth Stern, NHWRB
obert Durfee C F A	0.	Richard DeBood, NHWRB
popert Durlee, S E A	7.	
hilis Disculi C.E.B.	8.	·
hillp Kicardi, S E A	9.	<u> </u>
onald Hirschfeld, GE1	10.	
PROJECT FEATURE		INSPECTED BY REMARKS
tructural Stability		K. Stewart/R. Durfee
ydrology/Hydraulics		B., Pierstorff/P. Ricardi
oils and Geology		R. Hirschfeld
<u></u>		
		······································
······		
		······································
	<u> </u>	······································

÷

) |

•••

.

ŕ

.

•

ļ

•

ľ
INSPECTION	CHECK LIST
PROJECT:Butterfield Pond Dam, NH	DATE: December 6, 1979
PROJECT FEATURE: Dam Embankment	NAME:
DISCIPLINE:	NAME:
AREA EVALUATED	CONDITIONS
DAM EMBANKMENT	
Crest Elevation	1603.0
Current Pool Elevation	1603.2
Maximum Impoundment to Date	Unknown
Surface Cracks	None observed
Pavement Condition	Not paved
Movement or Settlement of Crest	One sinkhole in crest to right of sluice gate structure, one sinkhole in crest near left end of overflow section
Lateral Movement	Bulging of downstream dry stone masonry wall between left end of overflow section and left abutment in vicinity of sinkhole on crest
Vertical Alignment	Sinkholes, as noted above
Horizontal Alignment	See "Lateral Movement" above
Condition at Abutment and at Concrete Structures	Fair
Indications of Movement of Structural Items on Slopes	None observed
Trespassing on Slopes	No evidence observed
Vegetation on Slopes	Brush and some small trees on upstream side of embankment, on abutments, and down- stream of toe of dam
Sloughing or Erosion of Slopes or Abutments	Major erosion channel on downstream slope next to training wall on right side of sluice- way
Rock Slope Protection - Riprap Failures	No riprap
Unusual Movement or Cracking at or near Toe	None observed
Unusual Embankment or Downstream Seepage	Major seepages at several locations
Piping or Boils	None observed
Foundation Drainage Features	None observed
Toe Drains	None observed
Instrumentation System	None observed

i

E

_

.

i...

INSPECTION	CHECK LIST		
PROJECT: <u>Butterfield Pond Dam, NH</u>	DATE:	December 6, 1979	
PROJECT FEATURE: <u>Dike Embankment</u>	NAME:		
DISCIPLINE:	NAME:		
AREA EVALUATED		CONDITIONS	
DIKE EMBANKMENT	No dike	<u> </u>	
Crest Elevation			
Current Pool Elevation			
Maximum Impoundment to Date			
Surface Cracks			
Pavement Condition			
Movement or Settlement of Crest			
Lateral Movement			
Vertical Alignment			
Horizontal Alignment			
Condition at Abutment and at Concrete Structures			
Indications of Movement of Structural Items on Slopes			
Trespassing on Slopes			
Vegetation on Slopes			
Sloughing or Erosion of Slopes or Abutments			
Rock Slope Protection - Riprap Failures			1
Unusual Movement or Cracking at or near Toe			
Unusual Embankment or Downstream Seepage			
Piping or Boils			
Foundation Drainage Features			
Toe Drains			
Instrumentation System			
	1	•	

i

.

ř

.

s

.

-

İ

INSPECTION	CHECK LIST
ROJECT: Butterfield Pond Dam, NH	DATE: December 6, 1979
ROJECT FEATURE: Intake Channel	NAME:
ISCIPLINE:	NAME:
AREA EVALUATED	CONDITIONS
UTLET WORKS - INTAKE CHANNEL AND NTAKE STRUCTURE	
. Approach Channel	
Slope Conditions	Good
Bottom Conditions	Not visible beneath pond surface
Rock Slides or Falls	None
Log Boom	None
Debris	Debris built up against sluice gate
Condition of Concrete Lining	Loose stone lining
Drains or Weep Holes	None
. Intake Structure	
Condition of Concrete	Fair to poor. Exposed reinforcing steel and numerous cracks.
Stop Logs and Slots	Wooden gate (not operable) split and leaking

.

.

•

INSPECTIO	N CHECK LIST
PROJECT: Butterfield Pond Dam, NH	DATE: December 6, 1979
PROJECT FEATURE: Control Tower	NAME:
DISCIPLINE:	NAME:
ARFA EVALUATED	CONDITIONS
OUTLET WORKS - CONTROL TOWER	
a Congrete and Structurel	
General Condition	Foir
Condition of Joints	Fair
Shalling	Minon
Visible Reinforcing	Visible reinforcement on leading edge of both sides of intake channel
Rusting or Staining of Concrete	Minor
Any Seepage or Efflorescence	Minor
Joint Alignment	Good
Unusual Seepage or Leaks in Gate Chamber	None observed
Cracks	Numerous
Rusting or Corrosion of Steel	Rusting of visible reinforcing steel
b. Mechanical and Electrical	
Air Vents	Not applicable
Float Wells	Not applicable
Crane Hoist	None
Elevator	Not applicable
Hydraulic System	Not applicable
Service Gates	Not accessible - water pouring through apparent split in wooden gate
Emergency Gates	Same as service gates
Lightning Protection System	Not applicable
Emergency Power System	Not applicable
Wiring and Lighting System	Not applicable

4

5

-

.

. سیاری

. .

INSPECTIC	ON CHECK LIST	
PROJECT: _Butterfield Pond Dam, NH	DATE: December 6, 1979	-
PROJECT FEATURE:	uit NAME:	_ :
DISCIPLINE:	NAME:	- :
AREA EVALUATED	CONDITIONS	
OUTLET WORKS - TRANSITION AND CONDUIT	Not applicable	
General Condition of Concrete		
Rust or Staining on Concrete		
Spalling		
Erosion or Cavitation		
Cracking		
Alignment of Monoliths		
Alignment of Joints		
Numbering of Monoliths		
		-
		· ·

.

INSPECTION	I CHECK LIST
PROJECT: Butterfield Pond Dam, NH	DATE: December 6, 1979
PROJECT FEATURE: Outlet Structure	NAME:
DISCIPLINE:	NAME:
AREA EVALUATED	CONDITIONS
OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL	
General Condition of Concrete	Fair
Rust or Staining	Minor
Spalling	Minor
Erosion or Cavitation	Both wing walls undermined and eroded. (Left side more serious.)
Visible Reinforcing	None observed
Any Seepage or Efflorescence	Some efflorescence
Condition at Joints	Cracking at lift boundaries
Drain holes	None
Channel	
Loose Rock or Trees Overhanging Channel	Trees overhanging channel. Dry stone masonry wall on the right side of the sluiceway channel is in poor condition.
Condition of Discharge Channel	Fair
	-

F

-

•

 •

- 11

•

.

INSPECTION	CHECK LIST
PROJECT: Butterfield Pond_Dam, NH	DATE: December 6, 1979
PROJECT FEATURE: <u>spillway Weir</u>	NAME:
DISCIPLINE:	NAME:
ARFA EVALUATED	CONDITIONS
OUTLET WORKS - SPILLWAY WEIR,	
Approach Channel	
General Condition	Good
Loose Rock Overhanging Channel	None observed
Trees Overhanging Channel	None observed
Floor of Approach Channel	Not visible beneath pond surface
b Weir and Training Walls	not visiore beneath pond surface
General Condition of Congrete	Fytensively deteriorated
Bust or Staining	None observed
Rust or Stalling	Large sections of congrete get broken sway
Any Visible Reinforcing	None
Any Seepage or Efflorescence	Extensive seepere
Any Seepage of Errorescence	Extensive seepage
Drain Holes	none
c. Discharge Channel	Po in
General Condition	
Loose Rock Overnanging Channel	None observed
Trees Overnanging Channel	Trees in channel and overhanging channel
Floor of Channel	Boulder-covered
Other Obstructions	One tree has fallen across channel
	~

· . . .

. . .

. . . .

.

والمترجع بالمعالم والمراد المتراجل

.

.

.

INSPECTIO	ON CHECK LIST	
PROJECT: Butterfield Pond Dam, NH	DATE: December 6, 1979	-
PROJECT FEATURE: Bridge	NAME:	_
DISCIPLINE:	NAME:	-
		<u>.</u>
AREA EVALUATED	CONDITIONS	
OUTLET WORKS - SERVICE BRIDGE	No service bridge	
a. Super Structure		
Bearings		
Anchor Bolts		
Bridge Seat		
Longitudinal Members		
Under Side of Deck		
Secondary Bracing		
Deck		
Drainage System		
Railings		
Expansion Joints		
Paint		
b. Abutment & Piers		
General Condition of Concrete		
Alignment of Abutment		
Approach to Bridge		
Condition of Seat & Backwall		

.

APPENDIX B

ENGINEERING DATA

AVAILABLE ENGINEERING DATA

No Engineering Data other than past inspection reports from the State of New Hampshire Water Resource Board were available.

PAST INSPECTION REPORTS

· ,

December 7, 1979

To: Vern Knowlton

From: Ken Stern K

Re: Corps Inspection of May Pond Dam

(Butterfield Dam) 245.01, Washington

On December 6, 1979 I accompanied the inspection team from SEA Consultants. This dam is in poor condition. The concrete is extremely deteriorated, the • rock abutments have settled, there is major leakage at several locations.

MEMO

The only structure threatened should the dam fail is a highway bridge on state route 31. This bridge has a large clear opening. If the dam were to fail gradually there may be no damage to the bridge.

I discussed the dam with Gary, who has been there, and we agree that major reconstruction is needed. Once work is considered, total reconstruction may be inevitable.

I recommend that the stoplogs be removed and the pond lowered until remedial action is taken. This would reduce the hydraulic pressure on the dam and reduce the amount of water discharged should the dam fail. The lowered water level would redistribute the location and magnitude of the ice pressures on the structure.

I recommend lowering the pond. A decision should be made and action taken now.

KS/1n

May Pond, Dam No. 245.01, Washington, New Hampshire

This is a stone-fill, gravity with concrete abutments and spillway cap dam type structure. It is approximately 225' long and with a maximum height of 18'. The present structure has several serious leaks through the stonework, and cracks and holes in the concrete. It also contains a pond drain gate near the base of the dam which also leaks. The present configuration of the dam and spillway does not permit the passage of the estimated 100 year flood flow (1,450cfs) without the dam being overtopped. The Board's proposal includes work to stop the leakage and increase the discharge capacity to equal the 100 year flood flows.

The proposal incorporates constructing an access road, removing the leaking spillway stones and concrete cap, the leaking gate section abutments, constructing steel reinforced concrete face walls and abutments, and a new concrete spillway with flashboards. This will require the removal of accumulated silt and debris from the upstream side of the dam. The project also includes constructing a stoplog section to act as a pond drain which may require some channel excavation to improve the hydraulics of the downstream channel.

The attached cost estimate reflects the materials of construction and labor costs of this proposal to be constructed not later than the end of 1980.

B-4

MAY POND DAM (#245.01)

WASHINGTON, NEW HAMPSHIRE

- 1. Dam originally constructed to create a mill pond, but now used to maintain a recreation pond for users of Pillsbury State Park
- 2. Pond area 103 Acres
- 3. Ratio of net drainage to pond area 37:1
- 4. 100 year flood flows 1450 cfs
- 5. Shoreline $3\pm$ Miles
- 6. -Altitude 1632 feet
- 7. Watershed Connecticut
- 8. River system Ashuelot River
- 9. Inlets Ashuelot River
- 10. Color of water colorless
- 11. Ownership- State, Division of Parks

MAY POND DAM (#245.01) PILLSBURY STATE PARK WASHINGTON, N. H.

At the present time, the dam on May Pond does not have capacity to flow the 100 year storm frequency flow without overtopping the dam. The present design standard requires dams to pass storms equal to 100 year frequency flood flows. The dam also has several serious leaks through the stonework.

The design for this project includes:

- 1. Removing existing spillway and construction a permanent concrete crest with automatic flashboards.
- 2. Stoplog section construction.
- 3. New concrete abutments and cut-off and upstream face walls to prevent the leak which is now occurring.

The follwing is a cost estimate:

1.	Access Road		\$ 8,000.00
2.	Remove cut brush and grass		2,000.00
3.	Remove existing stone spillway, deby and silt	res	10,000.00
4.	Concrete, reinforcements, etc. (20	0 су)	70,000.00
5.	Stoplog construction		8,000.00
6.	Backfill & clean-up	۰.	6,000.00
		SUB-TOTAL	\$104,000.00
	20% Engineering & Contingencies		20,800.00
		TOTAL	\$124,800.00
		ROUNDED TOTAL	\$125,000.00

2/7/79

MEMO

TO: Vernon A. Knowlton Chief Engineer

DATE: August 16, 1978

. .

. .

.

FROM: Gary Kerr Water Resources Engineer

SUBJECT: Dam Inspection #245.01 - Report of Leakage DATE OF INSPECTION: August 14, 1978

- Via a letter from the S.C.S. office in Claremont I was instructed to reinspect the subject dam for a serious leak. Below are listed my observations and please refer to the accompaning photos and file for clarity.
 - 1. Dam is founded on ledge and consists of piled stones embankment and spillway with a concrete cap.
 - 2. A stoplog section with concrete abutments.
 - 3. Serious leakage occuring them the structure at several places:
 - a. Right embankment
 - ".....b. Left side pier of the stoplog section
 - c. Thru the hole in the spillway cap

This structure is listed as a menace dam because of the pondage (approx. 103 acres) DA of 7.3 $m_{1,2}^2$ and downstream development.

The Ashuelot River flows thru May Pond, under Route 31 and into Ashuelot Pond, Washington. There is considerable domestic development around Ashuelot Pond and points South.

In F.C.M.'s inspection report of 1971, he states that the dam's flood capacity is sufficient to pass the estimated 100 flood with 1/2 of freeboard and no gate (now stoplogs) operation. He also indicated "it appeared (through openings in the snow) to be well built, substanial, and water tight." Unfortunately now, these assumptions are not entirely true. The dam has deteriorated, rocks have moved, the spillway cap is broken and the structure does leak seriously.

I strongly suggest that the pond be lowered or the dam sealed, sufficiently enough to stop the leakage thru the embankment and spillway cap. This may require a drawdown of 2-3', and since we are approching the hurricane season, the drawdown would redue the protential flooding of a full pond plus runoff from the stoom should the dam fail.

CLK/kn

STATE OF NEW HAMPSHIRE

INTER-DEPARTMENT COMMUNICATION

DATE August 16, 1978

FROM George M. McGee, Sr. Chairman AT (OFFICE) Water Resources Board

SUBJECT

Leakage through dam #245.01 at May Pond

TO Theodore Natti, Director Division of Resources Development

This office has been alerted to the fact that your"Butterfield Dam" (245.01), at May Pond, Pillsbury State Park is leaking quite badly. An engineer re-inspected this dam and filed his report. Please be aware that this dam was inspected, per your request, in September, 1975 and a copy of the suggested repairs was sent to you. The inspector noted that none of the suggested repairs, short term or otherwise, were implamented and now the dam condition has deteriorated seriously.

As a result of this inspection the following items require your immediate attention:

- 1. The right hand piled stone embankment (looking downstream) no longer acts as a pond retaining structure as water freely flows through it.
- 2. This same embankment appears to have sloughed, to the extent that it no longer retains the shape of a stone wall with vertical sides.
- 3. Because of the present pond elevation and erosion on the upstream side of this embankment, leakage is occuring through the right hand embankment (please see photos).
- 4. Leakage is also freely flowing through the enlarged hole in the concrete spillway cap (please see photo).
- 5. Leakage is also evident adjacent to the left hand pier for the stoplog section on the downstream side of the spillway.

All of the above constitute a hazardous condition and threatens the `stability of the dam and as such require corrective action.

Because this dam is a menace structure, we require that you send us a schedule of your proposed repairs within 30 days. We do suggest that you reduce the pond level 2-3 feet, or more, effectively immediately and remain lowered until your repairs are completed, or the causes of the leakage eliminated.

If you have any questions, please contact us.

Sincerely yours,

GNMG/GK/kn Freloeure B-10

George M. McGee, Sr.

N. H. WATER RESOURCES BOARD Concord, N. H. 03301

DAM SAFETY INSPECTION REPORT FORM

Town: WASHINGTON Dem Number: 245.01
Inspected by: <u>GARY L. KEER</u> Date: <u>30 Sop</u> 1975
Local name of dam or water body: May Pown
Owner: PILLSBURY STATE PARK Address:
Cwner was not interviewed during inspection.
Drainage Area: 601 sq. mi. Stream: ASHOBIOT RIVER
Fond Area: 103 (F4G Borg) Cre, Storage Ac-Ft. Max. Head Ft.
Foundation: Type LEDGR_ Boics, Seepage present at toe - Yes/No, No.
Spillway: Type <u>CONCRETA CAP</u> , Freeboard over perm. crest: <u>Zt</u> ,
Width 40't, Flashboard height 3't MAx,
Max. Capacityc.f.s.
Embankment: Type Rock, Cover Roccs Width 516,
Upstream slope VERT to 1; Downstream slope VERT to 1
Abutments: Type CONCRETE, Condition: Fair Fair
Gates or Pond Drain: Size <u>5'LONG</u> Capacity Type STOP LOSS
Lifting apparatus <u>New Operational condition</u> YES WEW MAR
Changes since construction or last inspection:
Downstream development:
This dam would would not be a menace if it failed. Wood out Ro
Suggested reinspection date:
Remarks: HOLE IN CONCRETE CAP OF SPILLWAY
MINOR FEDWAN OF ABUTMENT
APPRO 2" FLOW OVER SPILLWAY
、 B-11

. . .

0/LVALC.

DATE:	February	8,	1971	
-------	----------	----	------	--

FRO M: Francis C. Moore, P.E. Water Resources Engineer

SUBJECT: May Pond at Pillsbury State Park, Washington - #254.01

TO: Vernon A. Knowlton Chief Water Resources Engineer

On January 25, 1971, I inspected the dam called Butterfield dam that flows back into May Pond in Washington at the head-waters of Ashuelot River. This dam was well rebuilt by C.C.C. forces in 1934, consisting of rock fill dam with concrete capped spillway.

The capacity of the spillway with 1/2 foot freeboard and no overflow through a 6' x 6' gate is once in 100 years. The dam appears, through openings in the snow, to be well built, substantial and vater tight. However, there may be some trees to be removed from dam (\$500.), some concrete patching (\$3,500.) and miscellaneous work (\$1,000.) totaling about \$5,000. upon inspection at a later time.

Two views are shown in photos taken at this dam. The gate section could be opened to lower the pond if necessary. This dam is near N. H. H. W. Route #31 midway between Washington and Goshen on the northeast side of the high ay.

As seen in the photos, water was going an estimated 4" over the spillway.

FCM/jb

NEW HAMPSHIRE WATER CONTROL COMMISSION DATA ON DAMS IN NEW HAMPSHIRE

STATE NO. 245.01	
LOCATION STATE NO	······ }
Town <u>Mashington</u> Y County <u>Mashington</u>	· · · · · · · · · · · · · · · · · · ·
Stream	
Basin-Primary Conn. R. Secondary Ashuerot R.	
Local NameOld Butterfield Mill /	
Coordinates—Lat	,
GENERAL DATA	•
Drainage area: Controlled	q. Mi.
Height Stroom had to highest alow 18 / ft . Mar Structure 15.5. 15.25 /	£+
Cost-Dam	*****
DESCRIPTION Rockfill-Concrete cap spillway, stone&timber /	
Waste Gates	
Type	
Number1 Size6 \checkmark ft. high x6 \checkmark	. wide
Elevation Invert	.sq. ft.
Hoist	-
Waste Gates Conduit	
Number	
Size	sa. ft.
Embankment	
Туре	
Height—Max	ft.
Top-Width	ft.
Slopes—Upstream on	
Length-Right of Spillway: Left of Spillway	
Spillway	•.
Materials of Construction concrete Cap	
Length-Total 47.5 ⁱ high 17.5 ⁱ loft: Net	ft.
Height of permanent section-Max. 15.5 ft.: Min. 15.25	ft.
Flashboards-Type	ft.
Elevation-Permanent Crest	
Flood Capacity cfs.:	
Abutments	
Materials:	
Freeboard : Max	ft.
Headworks to Power Devel.—(See "Data on Power Development")	
OWNER N.H.Forestry Reservation /	
REMARKS Additional spillway over gate 6'wide, same elevation. /	
Use-Recreation.Good Condition	
Chabulation By RLT B-13 Date 9/22/39	
2 45 4	

NEW HAMPSHIRE WATER RESOURCES BOARD INVENTORY OF DAMS AND WATER POWER DEVELOPMENTS DAM 245.01 Connecticut . BASIN N7. MILES FROM MOUTH D.A.SO.MI RIVER MRY Prud 6.01 OWNER N.H.F. restry Reservation TCWN WAShinaton OF DAM LOCAL NAME BUILT Butterfield Mill 012 1434 DESCRIPTION -Stone olankel upstream Unar Lodge Lands Rock fill- concrete cap spilling POND CAPACITY-ACRE FT. POND AREA-ACRES 102.65 PA DRAWDOWN FT. HEIGHT-TOP TO BED OF STREAM-FT. 18 MAX. MIN. OVERALL LENGTH OF DAM-FT. 2251 MAX.FLOOD HEIGHT ABOVE CREST-FT, PERMANENT CREST ELEV.U.S.G.S. LOCAL GAGE ELEV.U.S.G.S. LOCAL GAGE TAILWATER SPILLWAY LENGTHS-FT. 47.54.47.5 100 FREEBOARD-FT. 2.5 2nd 2.75 FLASHBOARDS-TYPE, HEIGHT ABOVE CREST WASTE GATES-NO. WIDTH MAX. OPENING DEPTH SILL BELOW CREST 8.5 REMARKS has hoom robaily Condition porns annd : Dau probably WPA project 3 Into Ashvelot River Coordinates Lot. 43º 13.5351 Loug 720 7.2131 POWER DEVELOPMENT RATED HEAD C.F.S. UNITS NO. KW MAKE -HP FEET FULL GATE USE Once power for mill now recreation REMARKS Additional spillway over aste bruide, same elevation PS.C. SAVE NUM'S 1972 9/28/37 1/7 + J.H.S B-14

PLANS AND DETAILS

i. i

•

P

.

r-

-

*****~

.

Ĩ

APPENDIX C

ľ

•

•

. .

ľ

.

•

Ľ

1

SELECTED PHOTOGRAPHS

. . . .

.

Photo No. 1 - General view of reservoir from dam.

Ł

1

1.

<u>:</u>.:

Í

Photo No. 2 - View of crest of dam from left abutment looking toward right abutment

.

L

۰.

,

7

L

I,

Photo No. 5 - View of downstream face of left stone embankment (Note depression in crest of embankment)

Photo No. 6 - Closeup view of 4 feet deep sink hole located to left of overflow section

İ

T

•

K

.....

•

ł

.

Photo No. 9 - Closeup of seepage and cracks on downstream face of overflow section.

Photo No. 10 - View of upstream face of sluice gate structure and erosion of concrete cap of overflow section.

Photo No. 13 - Closeup view of seepage at the downstream end of the right training wall of the sluice gate structure.

٢

Photo No. 14 - General view of downstream channel immediately below dam.

APPENDIX D

ĥ

ŧ

.

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

 \mathfrak{O}^{-1}

.

SIEIA CONSULTANTS INC. Engineers / planners	BOSTON , MASS. Rochester, N.H.	• • •
CLIENT Army Corps PROJECT Patterned - J DETAIL Hybrologic Calcs I. Basic Data	Job No. <u>274-7901</u> Сомрто. By <u>Bwp</u> Ск'd. By <u>KMS</u>	PAGE 1 of -7 DATE 2/4/80 DATE <u>2/3/30</u>
A. Drainage Area		
1. 7.15 square mile sheets and C	e - as defined	en U.S.G.S.
2. drainage area wa estimating MPF	F Peak Flow Rates	nourt amous for
B. Dan and Storage	Internation	
1. Size Classings on Storage	tion: SMGLL ($\times 1000$ accreft and \ge	50 ave- (+)
as indicated estimated	to be 530 ac	creat of Lan t
2 Hazard Potentia	I: CIGNUFICA	
Failure could. Eridge and	result in timage - highway (N.H.R.	to tate ?
3. Storage Infor	mation	

Ĺ

.

t

•

•

ł

Descriptive	Elevation*	Tur-cea *	5 21 242
Information	(feet)	Area aires	
1620' contour	1620	255	
Test Flood	.:09.5	175	. 445
Top of left empansment	606.6	152	935
Top of cham (how point a wett stone important)	1604.2	134	530
Norman Frol	1603.2	126	465
Spilling wer crest	1603.0	125	440
BOSTON , MASS. SEA CONSULTANTS INC. ROCHESTER, N.H. ENGINEERS / PLANNERS CLIENT ARMY CORDS PROJECT Butthe field Pond COMPTO. BY PUP DATE -14190 ___ CK'D. BY ______ KM5____ DATE _____ CK'D. DETAIL Hudrologic G2cs. Notes: (1) elevations: NGVD (2) normal pool taken to correspond with sol show on U.Sos suet, elevation of overflow spillway war crest equal to 1603.0 feet (NGVD) (3.) surface area at crest of lam determined by interpolating cellucen the surface areas detred by my post simm on the U.SGS smit and the 1620 feat continin (4) Storage at chilling weir crest i.r.miled by dividing reservoir in Duramilia frustrum sections and determining - me volume of each section with the equation for its roturne of ... pyramilal frustrum. C. Spillway Information 1. Overflow section located near the center of Time dum was a concrete cap. Adjacent to the right training Wall is a successte. The fate 15 instructed of wooden plantes included in a poured concrete struture. The gate is presently in operable, and leaks continuerable. a for the subsequent calculations of Epicieus capacity it was assumed that the since te was Elocat and not Ceating. 2 Discharge over the Spelituray given by croad-crested weir formula Q = CLH^{3/2} (tran Land Handwork in CE: Mart) Q = discharge, cits C = discharge, coeffi, in 2.6 wrine :

SIEIA CONSULTANTS INC. BOSTON , MASS. ENGINEERS / PLANNERS ROCHESTER, N.H. JOB NO. 374-790 PAGE 30+47 CLIENT HEM CORPS PROJECT P. Hor + ald Fort COMPTO. BY _____ _DATE _______ DETAIL Hydrologic Calcs CK'D. BY ______ MS____ DATE ___ 2/3/32 L = weer length, feet H = head over weir, feet I Estimate Effect of Surcharge Storage on Maximum Probable Discharge. A. Develop stage-discharge curve for outflow from damcomplex 1. define sources of outflour a. discharge over spilling + overflow structure - above elevation 1603.0- as defined above b. discharge through opening above shucegete - above elevation 1603.3 (1) use broad-crested weir equation non exerction 1603.3 to elevetion 1607.3. with C=2.6 (2) above elevation 1607.3 flow setuel by discharge through an or fice Q = Carlind Fundion - CE's Men where Q = discharge, cts C = coeff of discharge use 0.6 a = mea of orifice, si, fi g = acceleration lue to gravity 37.2 ft/sec2 h = head on hor zontal center line it is nee, feet C. discharge over stone embontement adjunt to left abutment above elevation 1604.2 is use groot-created view squation and is much above with C = 3.6

SIEIA CONSULTANTS INC. BOSTON , MASS. INEERS / PLANNERS ROCHESTER, N.H. _ JOB No. 274-7901 CLIENT Armer Gros 4 of -7 PAGE_ PROJECT Bitterfield Pond _ COMPTO. BY BWP 214/30 DATE 2 - 197 DETAIL Hu trologic Calcs. CK'D. BY ______ d. discharge over right stone embankment above elevation 1606.5 (1) use broad-crested wer equation as in-incl above with C= 2.6 e. disclarge over abutments and concrete shuceway Structure - above elevation 1606. 6-" (1) use broad-crested weir equation as defined above with C=2.6 f. discharge over gravel road - above elevation 1607.9 (1) use broad-crested weir equation - with C=2.6 2. Discharge over spillway + overflow structure C Elevation (د+2) Н (feet) (feet) (feet NGUD) 0 \mathcal{O} 1603.0 2.6 ang ≈ 0.95 137 1604.0 57 404 1.95 1605.0 751 2.95 1606.0 3.95 160 1607.0 630 4.95 1609.0 2150 5.95 1609.0 6.95 2720 1610.0 7.95 3320 1611.0 ETFO 8.95 1612.0 9.95 4650 1613.0 = Discharge through opening above slucegate a between elevations 1603.27' and 1607.27' 1 \mathcal{C} \supset Elevation H (Lee+) ÷s) (feet NGVD) (test) 0

i

^{1603.27} 0 10 1604.0 2.6 6.1 0.73 35 605.0 1.73 72 2.731636.0 1 14 3.73 1607.0

 γ

L

.....

1

BOSTON , MASS. ROCHESTER, N.H.

CLIENT_	Hrim	rps	
PROJEC	- Bitter	field Pond	_
DETAIL_	Hy troio	ic Calcs.	
DETAIL_	Hy troio	ic Calcs.	

my Grps	JOB NO. 274-7901	5 of -7
ItEs field Pond	COMPTO. BY BUP	 2/4/30
trologic Calcs.	CK'D. BY KMS	コヨッチノ
b. above elevation	1607.27'	

- φ Elevation a h С (4z) (fez+) (=+s)(feet NGVD) 1608.0 24.4 2.73 194 0.6 227 1609.0 3.73 4.73 256 1610.0 1611.0 5.73 231 305 1612.0 6.73 327 7.73 1613.0
- 4. discharge over left stone embankment a. triangular x-section

Elevation (feet NGVD)	C	L (feet)	H, are (Seet)	
1604.17			0	0
1605.0	2.6	9	0°42	6
606.0	1	13	0.42	-+ i
1607.0			1.92	125
1609.0			2.92	234
609.0			3.92	363
1610.0			4.92	511
1611.0			5.92	ି 14
1612.0			6.9Z	352
16 13.0		₩	7.92	1040

b. remainder of left stone embandement

Elevation (feet NGVD)	С	L (Leat)	H, sur, (teet)	ن ا
1606.08			0	0
16070	2.6	63	3.75	5
1608.0	Í	74	1.75	
1609.0		76	2,55	401
1610.0	4	76	3.75	470

· · · · ·

SIEIA CONSULTANTS INC. Engineers / planners

Ľ

r

1

•

•

BOSTON , MASS. Rochester, N.H.

GLIENT Army Comes	JOB No. 274-7901	PAGE.	6 3 - 77
PROJECT Buttar fild Ford	COMPTO. BY		2/4:90
DETAIL Hydrologic Calcs	CK'D. BY KMS		213/31
	^		. ,

biremainder of left stone embandement

Election (feet NGVD)	С	L (izet)	H (ieet)	
1611.0	2.6	80	4.75	Z150
1612.0	}	9z	5.75	2940
1613.0	4	84	6.75	3330
			1	1

5. discharge over right stone embandement

		·····	· · · · · · · · · · · · · · · · · · ·	
Elevation	C	L	H , m	Q
(feet NGUD),		(feet)	(feet)	(cfs)
1606.43			<i>ن</i>	3
1607.0	2.6	46	0.47	ટ૧
1609.0	ł	51	1.47	236
1609.0			2.47	515
1610.0			3.47	357
1611.0			4.47	1250
1612.0			5.47	0071
1613.0	v	▼	6.47	2190
		1		

6. discharge over left training wall & shuce gate structure

۵.	<u>lest train</u>	ning Wall		·	
	Elevation	C C		H	Q
	(feet NGUD)		(ieet)	(reet)	((-3)
	1606.5.8			0)
	1607.0	2.6	4	J.4Z	3
	1608.0			1.42	13
	1609.0			2,42	34
	1610.0			3.42	ر , د د
	1611.0			-112	47
	1612.0			5.42	131
	613.0	•	4	6.42	, je 1
			1	1	

L

۰

Ĺ

.

5

þ

BOSTON , MASS. ROCHESTER, N.H.

GLIENT Gray Corps	JOB No. 274-7901	PAGE_	7 . 4
PROJECT <u>Butterfield</u> Prod	COMPTO. BY BUC	DATE .	214193
DETAIL Hytroider Cales	Ск'р. Ву		<u></u>

Eleration (feet, NGUD)	C	(teat)	(+ (-eet)	0 (1-1-1)
1607.77			-	0
1608.0	2.6	17.6	0.23	5
1609.0			1.23	ú2
1610.0			2.23	:52
1611.0			3.23	266
1612.0			4.23	396
1613.0	¥	4	5.23	547
		1		

b. shuegate structure

I. discharge over growel road to west of right store empanziment

Elevation (feat NGVD),	C	(feet)	H sur (fect)	(T)
1607.33			0	0
1609.0	2.6	32	7487	19
1609.0		35	[.37	146
1610.0		39	2.37	न्यू ट
1611.0		42	2,34	576
1612.0		45	4.37	1070
1613.0	1	- 1	C.87	1590

•

Ĺ

٢

BOSTON , MASS. AOCHESTER, N.H.

CLIENT	Itime pro	<u> </u>	
PROJECT	Terizet 5	d Pond	
DETAIL	Hydrologic	Calca.	

___ JOB NO. 274-7901 __ PAGE ___ 3 -- ---____ COMPTO. BY _____ BUP ____ DATE _____ 215190 ____ CK'O. BY _____ 1000 ____ DATE _____ 215190

3. Total discharge from project site

2	•		r	•	لمحمد	
		- 1		-		

Eleve tim (feet NGVD	Contra line sec iterau	A Leaning Lister Succeste	tatas left embountement	Pright Emeriment	Contractor Lout mare	C. Have road	0 Total
1603.0	0	0	0	0	0	ت	0
1604.0	137	10	0	0	0	0	; 4 7
1605.0	40 4	36	6	υ	0	ا ن	4+6
1606.0	751	72	41	0	0	C	S 64
1607.0	1160	114	290	39	З	0	* 1560
608.0	1630	194	679	236	- 2	19	2790
1609.0	2150	227	1264	5:5	101	146	4 400
610.0	2720	256	1981	957	2:9	370	6400
1611.0	3320	231	Z3Z4	1250	363	576	9710
1612.0	3970	305	3792	1700	5.7	1070	11,400
613.0	4650	327	4370	Z180	716	1570	14,300

Discharge Vs Elevention shown graphicating in Fyuri

. · · ·

. _ ^ ^

ENGINEERS / PLANNERS			BOSTON, MASS. Rochester, N.H.				
CLIENT_	Army	v Corps	JOB No. 27	4→7 <u>90</u> 1	PAGE_	10 04 77	
PROJECT	But	Herfield Fond Dam	COMPTO. B		DATE	-15,90	
	Hydro	ologic Calcs	- _ Ck'o. By	K11.5		522)	
В.	Eff€	ect of surcharge stor	age on max.	prob. dis	charge		
	1.	Pertinent Data					
		a. Drainage area =	7.15 5922	re miles			
		b. Characteristics	of basin - 🕻	nountain	c/LS		
		c. Test flood = 1/	z PMF (SMALL ST	2E and SIG	NIFICANT	
		d. Follow Army Corp	s' procedure			-4243C	
	2.	<u>STEP 1</u> : Determine P	eak Inflow	Q _{P1} from	Guide Curv	e	
		a. the maximum prob be 2100 cfs	able dischar / sg.m :	ge was es	timated to		
- ·		., PMF = (2	100 cfs/sg.r	ni) (7.15	5 - 3- 3. M ()		
		æ 15	,000 cts				
		1/2	PMF = 7	,500 c	fs		
	3.	<u>STEP 2:</u> Determine s and Q _{P2}	urcharge hei	ght to pa	ss Q _{P1,} ST	OR ₁ ,	
		a. from Figure 1 de $Q_{p1} = 7,500$	termine surg	harge hei	ght to pas	S	
			surcharge e	levation	= 1610.	5'	
		zlev. of.	overflow spull	lunay weir	= 1603	. · · ′	
			Surdiane	height	= 7.3	5 feet	
		b. determine volume runoff	of surcharg	e Stub	in inches	, ` .	
		first determin	e volume := e suriara a	sturage r real of t	water in	a mun na sa a a mun na mu	
		and the second second	ma <u>n</u> sinsti	n -rom 1	F. ure 2 -	= 127	
		(2) Jueraque (2) Jueraque	urface a	rea for	tur charge	(2.0 ⁴ .)	

.

CORPORATION

ID DIETZGEN GRAPH PAPER

341 ı z

BOSTON , MASS. Rochester, N.H.

CLIENT Army Corps	Јов No. <u>_274-7901</u>	PAGE 2 DI HT
PROJECT Etterneld Pond	Сомрто, Ву <u></u>	DATE _112120
DETAILHydrologic Calcs	Ck'd. By5	_ DATE
(3.)	multiply surcharge (dipth times surface area of storage in acre-tr following equation	nome livetim 1603.5 To determine volume

$$STOR_{1} = \frac{Volume of storage (as acro-inches)}{drainage area}$$

$$STOR_{1} = \frac{(192acres + 125acres)(7.5 - e^{\frac{1}{2}})(12''/f_{+})}{2}$$

$$4576 acres$$

STOR: = 3.02 inches

c. determine Q_{P2}

$$Q_{P2} = Q_{P1} \left(1 - \frac{STOP_1}{9.5''} \right)$$

 $Q_{P2} = (7,500 \text{ cfs}) \left(1 - \frac{3.02''}{9.5''} \right)$
 $Q_{P2} = 5,120 \text{ cfs}$

- 4. <u>STEP 3</u>: Determine surcharge belief the state of the $Q_{\rm P2}$ and then $Q_{\rm P3}$
 - a. From Figure 1 determine surcharge height to pass $Q_{P2} = 5,120$ CHs

Surface area at 1609.4' = 174 acres

BOSTON , MASS. Rochester, N.H.

CLIENT Army Cords	JOB No. 274-7901	PAGE 13 5+ 7-
PROJECT Butter field Pond	COMPTO. BYBWP	DATE
DETAIL Hydrologic Calcs.	CK'D. BY	DATE

b. determine STOR₂

$$STOR_{2} = \frac{\left(\frac{174ac}{2} + \frac{124ac}{2}\right)(6.4f)(.2)}{4576 acres}$$

= 2.51 inches

c. Average STOR_1 and STOR_2

STORAVG	Ξ	$\frac{\text{STOR}_1 + \text{STOR}_2}{2}$
STORANE	=	$\frac{3.02'' + 2.51''}{2}$
STOR ANG	=	2.77 inches

d. determine Q_{P3}

$$Q_{P3} = (7,500 \text{ cfs})(1 - \frac{2.77"}{9.5"})$$

 $Q_{P3} = 5,320 \text{ cfs}$

5. STEP 4: Determine surcharge height for Q_{P3} and STOR₃

a. from Figure 1 surcharge height for $Q_{P3} = 5,320$ cm

surcharge elevation	=	1609.5'
eleu spillway weir crest	=	1603.0'
surcharge height	=	6.5 met
Surface area at 1609 .:	5' =	175 aires

b. determine STOR₃
STOR₃ =
$$\frac{(175ac + 125ac)}{2} (6.5f+)(12''/1+)$$

 4576 acres

SIEIA CONSULTANTS INC. Engineers / planners	BOSTON , MASS. Rochester , N.H.		
CLIENT Army Corps	. Јов No. <u>200-7301</u>	PAGE4	_
PROJECT Batterfield Fond	COMPTO BY BWE	DATE	2
DETAIL Hydrologic Calcs	Ск'о. Ву	DATE	

STOR3 = 2.56 inches

c. determine STOR_{AVG}

$$STOR_{AVG} = \frac{2.77'' + 2.56''}{2}$$

d. determine Q_{P4}

 $Q_{P4} = (7,500 \text{ cts}) \left(1 - \frac{2.67'}{9.5''}\right)$ $Q_{P4} = 5,390 \text{ cts}$

6. <u>STEP 5</u>: Determine surcharge height for Q_{P4} and $STOR_4$, and Q_{P5}

a. From Figure 1 surcharge height for $Q_{P4} = 5,390$ =

b. determine STOR₄ STOR₄ = $\frac{(175ac + 125ac)(6.5ft)(12'', 14)}{1576 acres}$

STOR4 = 2.56 inches

c. determine STOR_{AVG} STOR_{AVG} = $\frac{2.67'' + 2.56''}{2}$

.

BIELA CONSULTANTS INC.
ENGINEERS / PLANNERS
ENGINEERS / PLANNERS
CLIENT introd (apps
Detail introd (apps
Detail introd (apps
b. orefline = jaillung Capaaty
(1) water surface at law point a left star aniountant - .6074. 2'

$$Q = (2.6)(16.2')(1604.2 - 1603.5)^{3/2} = (60.66)$$

(2) water surface at top of left simtmant - 1606.6'
 $Q = (2.6)(16.2')(1604.6' - 1603.5)^{3/2} = (50.66)$
(3) water surface at top of left simtmant - 1609.5'
 $Q = (2.6)(16.2')(1604.5' - 1603.5)^{3/2} = (50.66)$
(3) water surface at test front situration = 1609.5'
 $Q = (2.6)(16.2')(1604.5' - 1603.5)^{3/2} = (237566)$
(4) water surface at test front situration = 1609.5'
 $Q = (2.6)(16.2')(1604.5' - 1603.5)^{3/2}$
 $+ (2.6)(40.5')(1604.5 - 1603.5)^{3/2}$
 $Q = (2.6)(16.5')(1604.5 - 1605.5)^{3/2}$
 $Q =$

(2) water surface at top or left had went - 1600.6 '
(4)
$$G_{\text{surget}} = (0.6)(6.1')(6.05') [(2)(30.2), 1606.6 '- 113.25']^{1/2}$$

 $G_{\text{surget}} = 5.15 \text{ cts}$

- d capacity of low flow spilling
 - $Q = (2.6)(16.2)(0.2)^{3/2} = 3.3cts$

BOSTON , MASS. Rochester, N.H.

CLIENT Army Corps	JOB NO274-7901	PAGE_	18 of 47
PROJECT Buttartield Pond Dam	COMPTO. BY BWP	DATE _	215/80
DETAIL Hydrologic Calcs	CK'D. BY		2/2/20

III. Using "Rule of Thumb" Guidance for Estimating Downstream Dam Failure Hydrographs examine impact of dam failure

1. Pertinent Data

a. Failure occurs when reservoir level at crest of dam - elevation = 1604.2 feet

b. Storage at crest elevation estimated to be approximately 590 acre-feet

A. Reach 1

1. STEP 1: Determine reservoir storage at time of failure

from previous calcs. storage = 590 ane-f+

2. <u>STEP 2</u>: Determine Peak Failure Outflow Q_{P1}

 $Q_{P1} = (8/27) W_{b} \sqrt{g} Y_{o}^{3/2}$

where: W_b = Breach width (use 40% of total length) = (210 feet) (0.40) = 84 feet

> Y_o = Total height from channel bed to pool level at failure 1604.2 '

= 12.2 feet $\approx 1592.0'$ $Q_{P1} = (9/27)(94 \text{ feet})(32.2)^{1/2}(12.2 \text{ f})^{3/2}$ $Q_{P1} \approx 6,000 \text{ cfs}$

retaine 1 lour 12 regulte compared to the dam Schune the charge , and there are a protocom included as part of these calculations

CLIENT_Arm		y Coros		_ Job No. <u>244-790</u>	PAGE 19	5+ 47
PROJECT	R	utternel	d Find Dam	COMPTO. BY BWP	DATE	30
DETAIL _	Hyd	rologic	Calcs.	_ CK'D. BY	DATE	<u></u>
	3.	STEP 3 :	Prepare sta	age-discharge curve	for Reach /	
		<u> </u>				
		a. Per	rtinent Data			
		(1)	Reach leng	th = 350 feet		
		(2)	Channel slo	ope = 0.0155		
		(.3)	Manning n	= 0.05		
		(4)	Channel sha	ape - trapezoulail		
		(5)	Base width	≈ 20 feat		
		1 0	T : 2 C			
		b. See	e Figure 3 fo:	r stage-discharge c	urve	
	ц.	STEP 4	: Estimate R	each Outflow		
	· ·	<u>0111</u>				
		a. De	termine stage	for $Q_{\rm p}$ = 6000 c	from Figure 3	
		aı	nd find volum	e in reach		
					、	
		(.1)) Stage (dep	th of flow) = 7.64	eet	
						1)
		(2) Volume in	<pre>reach = (reach leng</pre>	(th) (cross-section) area of chan	nai)
				(0.5)(7.64+)(2041 + 1334,	-
			X-area	= 581 ++2		
				(581 4+2) (350		
			Volume = V	1 43,560 f	2/2014	
				- 47 aure - f	4	
				V, < S	longth OK	
				1 2reach	Length OK	
		b. De	termine Q _{P (T}	(זאדקי		
			r (1	,		
			QP2(TRT	$A_{T} = Q_{P1} \left(1 - \frac{V_1}{2} \right)$		
					4 ac	
			Qp2(TRI	AL) = (6000 c+s)(1 27020)	
			Qpz ur.	= 5950 Cm	5	

..

SIEIA CONSULTANTS INC. Engineers / planners

BOSTON , MASS. Rochester, N.H.

CLIENT Army Cords	JOB NO. 274-7901	PAGE	20 of 47
PROJECT Butterfield Port Dam	COMPTO. BY BWP		2/5/90
DETAIL	CK'D. BY		2/3/8.2

c. Compute V₂ using Q_{P2(TRIAL)}

From Figure 3 determine stage for Q_{P2(TRIAL)}

Stage = 7.5 feet X-area = (0.5) (7.5 ft) (20 ft + 132 ft) = 570 ft² V₂ = $\frac{(570 ft^2)(350 ft)}{43.560 ft^2/kme}$ V₂ = 4.6 ame-ft

d. Average V_1 and V_2 and compute Q_{P2}

(1)
$$Vavg = \frac{V_1 + V_2}{2}$$

 $Vavg = \frac{4.7ac_{-}f_{+} + 4.6ac_{-}f_{+}}{Z}$

Vavg = 4.7 acre-ft

(2)
$$Q_{PZ} = Q_{P1} \left(1 - \frac{Vavg}{S}\right)$$

 $Q_{PZ} = (6000cts) \left(1 - \frac{4.7}{590}\right)$

$$\varphi_{pz} = 5950 cts$$

ENGINEERS /	PLANNER	S	ROCHESTER, N.H.	
CLIENT Arm	y Corps		JOB NO. 244-7901	PAGE 37 47
PROJECT	<u>Merneial</u>	Find Dam	COMPTO BY BWF	DATE
		Laics	CK'D. BY	UATE
J. Kea	ch G			
З.	STEP 3:	Prepare stag	e-discharge curve for	r Reach 2
	a. Per	tinent Data		
	(1)	Reach length	= 175 feet	
	(2)	Channel slop	h = 0.0375	
	(3)	Manning n =	0.05	
	(4)	Channel shap	e - trapezoital	
	(5)	Base width :	= 20 feet	
	b. See	Figure 3 for	stage-discharge curve	a
				-
- ¥.	STEP :	Estimate Rea	ich Outflow	
	a Det	ermine stage f	$= 5950 e^{1}e^{1}$	from Figure 3
	an	d find volume	in reach	from fighte 5
	(1)	Stage (depth	1 of flow) = 6.3 feet	¥
	(2)	Volume in re	each = (reach length)	(cross-sectional)
		X-area =	(0.5) (6.3f.) (23:	(15 ++)
		*	425 ft ²	
		Volume = V _l	= (425 f+2)(175 -	<u>+ , </u>
			43,560 ++2/2	î cre
			= 1.7 ac- $1+$	
			$v_1 < \frac{S}{2}$. reach let	ngth OK
	b Dot	ermine 0		
	D. Det	PE(TRI	IAL)	
		QDSCODIAL	$y = g_{p,p} \left(1 - \frac{v_1}{2} \right)$	
		TTURIAL		
		^		(.7)
		QPS(TPIAL	$b = (5950 c^{+}s)($	- 590)
		Qap (ST. M	= 5930 +	
		-1-2		

SIEIA CONSULTANTS INC. Engineers / planners	BOSTON , MASS. Rochester, N.H.	
CLIENT Army Corps PROJECT Butter field Pond Dam DETAIL Hydrologic Calcs	JOB NO. 274-7901 Compto. By Ck'd. By	PAGE 22 54 47 DATE 2/5/30 DATE
c. Compute V ₂ using	Q _P ≓(TRIAL)	
From Figure 3	determine stage for $Q_{\rm P}$	(TRIAL)
Stage = 6	.3 feat	
X-area = (0.5 ($0.3 + $)($20 + +$	145 ++)
$V_2 = \frac{(425)}{43}$	ft^{2} (175 f+) 560 $ft^{2}/acre$	
$v_2 = 1.7$ c	icre-ft	

d. Average V_1 and V_2 and compute 23

(1)
$$Vavg = \frac{V_1 + V_2}{2}$$

 $Vavg = \frac{1.7 \text{ ac-f+} + 1.7 \text{ ac-f+}}{2}$

Vavg = 1.7 aue - ft

(2)
$$Q_{P3} = Q_{P2} \left(1 - \frac{Vavg}{5}\right)$$

 $Q_{P3} = (5,950cfs) \left(1 - \frac{1.7}{590}\right)$
 $Q_{P3} = 5,930 cfs$

. .

SIEIA CONSULTANTS INC. BOSTON , MASS. ENGINEERS / PLANNERS ROCHESTER, N.H. ___ JOB NO. __244-7901 CLIENT Army Corps PAGE_ PROJECT Butterheld Prod Dam COMPTO. By BWP 215. DATE DETAIL Hydrologic Calcs. CK'D. By _ 3M5 DATE C. Reach 3 З. STEP 3: Prepare stage-discharge curve for Reach 3 a. Pertinent Data (1) Reach length = 725 feet (2) Channel slope = O.027G(.3) Manning n = 0.05(4) Channel shape - trape zoudal (5) Base width \approx 20 feet b. See Figure 3 for stage-discharge curve STEP4 : Estimate Reach Outflow a. Determine stage for $Q_{p3} = 5,930$ cts from Figure 3 and find volume in reach Stage (depth of flow) = 6.8 feet (1) (2) Volume in reach = (reach length) (cross-sectional) area of channel)

X-area = (0.5)(6.8.-)(20.- + 122ft) $\approx 483 ft^2$ $Volume = V_1 = (483 ft^2, 725 ft)$ $43.560 ft^2/acre$ = 8.0 acre-ft

 $v_1 < \frac{S}{2}$... reach length OK

b. Determine Q_{P4(TRIAL)}

$$Q_{P4(TRIAL)} = Q_{P3} \left(1 - \frac{V_1}{S} \right)$$

 $Q_{P4(TRIAL)} = \left(5,930 \text{ cm} \right) \left(1 - \frac{9.0}{590} \right)$
 $Q_{P4(TRIAL)} = 5,950 \text{ cm}$

SIEIA CONSULTANTS INC. ENGINEERS / PLANNERS CLIENT_Army Corps PROJECT Provided Dand Dan Compto. By BWP Date 215190 Detail Hydrologic Calcs. c. Compute V₂ using Q_{P4}(TRIAL) From Figure 3 determine stage for Q_{P4}(TRIAL) Stage = 6.8 feat X-area = (0.5)(6.8f+)(20f+ + 122f+) $\approx 4.83 f+^2$ $V_2 = \frac{(483f+^2)(725f+)}{43,560f+^2/acre}$ $V_2 = 8.0$ zore -ft

d. Average V1 and V2 and compared

(1)
$$Vavg = \frac{V_1 + V_2}{2}$$

 $V_{3vg} = \frac{8.0 \text{ scre-f+}}{2}$

Vavg = 8.0 acre. ft

(2)
$$Q_{P4} = Q_{P3} \left(1 - \frac{Vavg}{5} \right)$$

 $Q_{Pq} = \left(5,930c F_{2} \right) \left(1 - \frac{8.0}{590} \right)$
 $Q_{Pq} = 5,850 c f_{3}$

BOSTON , MASS. ROCHESTER. N.H.

1

_	A						2 . _	7001	D	······································
GLIENT_		<u>y Co</u>	rbs 1			JOB NO.	<u></u>	- <u>7901</u> BWP	- PAGE -	215/20
PROJECT Demon	<u></u>	<u>v. e</u>	aio C		<u> </u>		BY	VM 5		
	$\overline{\mathbb{Z}}$	<u>1.010</u>		<u>arcs.</u>		G K'D. BY	·		UATE _	
و نسدً	Re	ach	-							
	3.	STE	р З :	Prepare	e stage	e-dischar	rge cu	irve for	Reach 4	
									ı	
		a.	Pert	inent Da	ata					
			(1)	Reach	length	= 1650	o fea	t		
			(2)	Channe	l slop	e = 0.0	077			
			(3)	Mannin	z n =	0.05				
			(4)	Channe	l shap	e - trap	ezoi	Sal		
			(5)	Base w	idth 🕿	= 700	ant-			
								· ·		
		ь.	See	Figure	3 for	stage-dis	scharg	ge curve		
				-		0		-		
- ·	4.	STE	P 4 :	Estima	te Rea	ch Outflo	W			
		a.	Dete	rmine s	tage f	or $Q_{DA} =$	5 85	octs	from Fig	ure 3
			and	find vo	olume	in reach	, -	-	-	
			(1)	Stage	(depth	of flow)) = 4	4 fee	t	
				-	-		•		-	
			(2)	Volume	in re	ach = (re	each 1	length)	(cross-se	ectional)
									L area of	in inne 17
				X-a:	rea =	(0.5)(4.4 4	·+)(zo	i+ + =	130 + × -)
					=	1320 ft	2	/ . .	•	
				Volume	= V ₁	= (1320	+2)	(1633)	++)	
					1	•	~13,5	60 4+*/	aure	
						= 50.0	air	e-ft		
						$v_1 < \frac{S}{2}$	i. re	ach len	σተከ ብK	
						÷ 2			5	
		ь.	Dete	rmine Q		ΔT.)				
					,) (1 1	лы) 		`		
				QDF	זאדקייי	, = 2m (1 -	<u>7</u>])		
				.531	(IRIAL		`	<u>3</u> 7/		
									-	
				QDR	(Τ. Δ.)) - (= ;	850	/	1 5	<u> </u>
					cri run			/ (1 5	, OF

Qps (... = 5,350 cts

BOSTON , MASS. ROCHESTER, N.H.

CLIENT Army Corps	JOB No. 274-7901	PAGE_	<u></u>
PROJECT Jullion - 1 Pril Dam	COMPTO BY	DATE .	215,30
DETAIL Hydrologic Cales	Ск'о. Ву	DATE_	

c. Compute V₂ using Q_{P5(TRIAL)}

From Figure 3 determine stage for RES(TRIAL)

Stage = 4.2 + eetX-area = (0.5)(4.2 f+)(20 f+ + 554 i+) $\approx |205 f+^2$ $V_2 = \frac{(1205 f+^2)(1650 feet)}{43,560 f+^2/are}$ $V_2 = 45.7 acce - ft$

d. Average V_1 and V_2 and compare 75

(1) $Vavg = \frac{V_1 + V_2}{2}$ $V_{avg} = \frac{50.0ac-f++ 45.7ac-it}{2}$

Vavg = 47,9 acre-ft

(2)
$$Q_{P5} = Q_{P4} \left(1 - \frac{Vavg}{S} \right)$$

 $Q_{P5} = \left(5,950 \text{ cts} \right) \left(1 - \frac{47.9}{590} \right)$

Qp5 = 5,390 cts

LIENT_	Arm	y Co	rps		JOB No. 24	+-7901	PAGE_	27
PROJECT Esterials Pond Dam				nd Dam	COMPTO. BY	BWP	DATE _	2/2/20
ETAIL _	Hyd	<u>rolo</u>	<u>gic C</u>	alcs.	Ск'р. Ву	-11.5	DATE	
E,	R	eau	λ Ξ					
	3.	STE	P <u>3</u> :	Prepare stage	e-discharge	curve for	Reach 5	
		a.	Pert	inent Data				
			(1)	Reach length	= 950 feet	-		
			(2)	Channel slop	e = 0.0077	-		
			(3)	Manning n =	0.05			
			(4)	Channel shap	e - trapezoi.	lal		
			(5)	Base width =	= 20 feet			
		b.	See	Figure 3 for :	stage-discha	rge curve	2	
	4.	STE	P 4 :	Estimate Rea	ch Outflow			
		a.	Dete	rmine stage f	or 3- - - 5 3	30 cts	from Figu	ire ?
			and	find volume	in reach	-	-	
			(1)	Stage (le;th	of flow) = (é.8 feet	r	
			(2)	Volume in re	ach = (reach	length)	(area of	ectional) channel)
				X-area = a	(0.5)(6.8 364	Let)(25	-wt + 23	(4 rest)
				Volume = V_1	<u>(864 ++=)</u> 43 5) (955 . « 60 ² /a		
					= 18,8 au	e - + ·-		
					$v_1 < \frac{S}{2}$.	reach ler	gth ik	
		þ.	Dete	rmine ?P6(TRL	AL)			
				OP/ (TRIAL	$p = Q_{P5} \left(1 - \right)$	$\left(\frac{7}{2}\right)$		

 $Q_{PG} = 5,210$ cts

المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجو المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع المرجوع

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

$$Q_{PG} = (5,380 \text{ cfs}) (1 - \frac{18.3}{590})$$

BIEIA CONSULTANTS INC. OSTON , MASS. ENGINEERS / PLANNERS ROCHESTER, N.H. PAGE 29 04 47 JOB NO. 244-7901 CLIENT Army Corps PROJECT Bitter faid Fond Dam COMPTO. BY BWP DETAIL Hydrologic Calcs. CK'D. By KMS F. Reach 6 STEP 3: Prepare stage-discharge curve for Reach 6 3. a. Pertinent Data (1) Reach length = 1550 feet (2) Channel slope = 0.00457 (3) Manning n = 0.05(4) Channel shape - trope zoidal (5) Base width \approx 20 feet b. See Figure 3 for stage-discharge curve STEP4: Estimate Reach Outflow a. Determine stage for $Q_{PG} = 5, 210$ Cfs from Figure 3 and find volume in reach Stage (depth of flow) = 7.5 Feet (1) Volume in reach = (reach length) (cross-sectional) area of thinnel) (2) X-area = (0.5)(7.5 Leat)(20 Leat + 255 Leat)= 1031 ft² Volume = $V_1 = \frac{(1031 ft^2) (1550-1)}{43,560 ft^2/acre}$ = 36.7 acre-ft $v_1 < \frac{S}{2}$... reach length OK Determine QP7(TRIAL) ь. $Q_{P7(TRIAL)} = Q_{P6} \left(1 - \frac{V_1}{S}\right)$ $Q_{P7(TRIAL)} = (5,210 \text{ cfs}) (1 - \frac{36.7}{590})$ 0,7 (5.11) = 4,890 cts

	NGINE	IRS /	PLA	NNER	19 ING. 8		ROCHE	N , M. Step	A55. , N.H.		
CLIENT Army Corps PROJECT Butter field Frend Dam				JOB NO. 244-7901 PAGE 31 0							
				COMPTO.	By_	BWP		216190			
	ETAIL,	Hyd	irolo	<u>gic (</u>	lalcs.		CK'D. B1	·	KMS	DATE_	3/5.22
	G	Re	ach '	7							
		3.	STE	<u>P3</u> :	Prepare	stage	-dischar	rge c	urve for	r Reach 7	
			a.	Pert	inent Dat	a					
				(1)	Reach le	ngth	= Z8Z	:= t	eet		
				(.2.)	Channel	slope	= 0.0	00-	157		
				(.3)	Manning	n = 1	0.05				
				(4)	Channel	shape	: - trap	ezoi	tal		
				(5)	Base wid	th ≈	= 20 f	eet			
			Ъ.	See	Figure 3	for s	tage-dis	schar	ge curve	2	
									0 · · · · ·	-	
		4.	STE	<u>P </u> 4:	Estimate	Reac	h Outflo	w			
•				_							
			a.	Dete	ermine sta	.ge fo	$Pr Q_{P7} =$	4	,890cts	from Fig	ure 3
				and	i find vol	ume i	n reach				
				(.1)	Stage (d	epth	of flow)) = `	7.4 fe	et	
				(2)	Volume i	n rea	ich = (re	each	length)	(cross-se area of	ectional) channel)
					X-are	a = (0.5)(1.4	feet) (z	0++2	45 4 +)
						=	981 ++	2		- 1.	
					Volume ≈	v, =	(981	$\frac{44^2}{42}$	(292	5 + 4]	
						Ŧ		-15,	360417	il	
						=	63.	6 0	icre-ft		
					T		v ₁ ~ 2	r	each ler	ngth OK	
			ь.	Dete	ermine Qpc	ג ידסיד א					
					I e		ر تا <i>د</i>				
					Q _{P8(T}	RIAL)	$= Q_{P7}$	1 -	$\frac{v_1}{2}$		
							- ' \		2 /		
					•		1	• -		63.6	.)
					7)89 ⁹	RIAL)	= (4,8	90 C	.+5)(1	590)
					~	_			_ /		

SIEIA CONSULTANTS INC. Engineers / planners	BOSTON , MASS. Rochester, N.H.		•
CLIENT Army Corps PROJECT Butterfield Fond Dom DETAIL Hydrologic Calcs	_ JOB NO. <u>274-7901</u> _ Сомрто. Ву <u></u> _ Ск'о. Ву <u>//</u> 5	PAGE 32 of 47 DATE 2/6/90 DATE 5/5 3)	
c. Compute V ₂ using	Q _{P8(TRIAL)}		
From Figure 3	determine stage for (P G(TRIAL)	
Stage =	7.0 feet		
X-area = (=	0.5)(7.0 -eet)(20 882 ft ²	(+ + 232 + +)	
$v_2 = (BE)$	$32f+^{2})(ZBZ5f+)$ $43,560f+^{2}/acre$		
v ₂ = 57.2	acre-ft		
d. Average V ₁ and V.	2 and compute O		.e

(1) $Vavg = \frac{V_1 + V_2}{2}$ $Vavg = \frac{63.6 \text{ ac-} + + 57.2 \text{ ac-} + +$

vavg = 60.4 acre-ft

(2)
$$Q_{P8} = Q_{P7} \left(1 - \frac{Vavg}{S}\right)$$

 $Q_{P9} = \left(4,890 \text{ c}^{+s}\right) \left(1 - \frac{60.4}{590}\right)$

$$Q_{P3} = 4,390 cts$$

JOB NO. 244-7901 PAGE 33 5+ Dam COMPTO. By BWP DATE 2/6/90 CK'D. By KM5 DATE 335 Date 355 Data	
Dam COMPTO BY BWP DATE 2/6/90 CK'D. BY KM5 DATE 2/6/90 are stage-discharge curve for Reach 3 Data	
are stage-discharge curve for Reach B	
are stage-discharge curve for Reach ゔ Data	
are stage-discharge curve for Reach 3 Data	
Data	
Data	
h length = 5625 feet	
nel slope = 0.00356	
ing n = 0.05	
nel shape - trapezoidal	
width ≈ 20 feat	
e 3 for stage-discharge curve	
	.
mate Reach Outflow	
stage for Qpg = 4,390 cts from Figure 3	
volume in reach	
e (depth of flow) = 6.1 test	
me in reach = (reach length) (cross-sectional)	
(0 5) (1 feet) (20 feet + 355 feet	
-area = (0.3)(0.1 + 2)(20 + 2)(20 + 2)	
$(1 44 f^2)(5625f^+)$	
$me = V_1 = \frac{43.560 f + \frac{2}{are}}{43.560 f + \frac{2}{are}}$	
= q p a cre - + t	
v S	
1 7 : reach length OK	-
YP9(TRIAL)	
$- \circ \left(\cdot v_{1} \right)$	
$PP(TRIAL) = PPS \left(1 - \frac{1}{3} \right)$	
·	-
$(136) + (1-\frac{143}{1})$	
P9(TRIAL) = (4,370 CTS) (1- 595)	
	Data h length = 5625 feet nel slope = 0.00356 ing n = 0.05 nel shape - traperoidal width \approx 20 feet e 3 for stage-discharge curve mate Reach Outflow stage for $Q_{PB} = 4,390$ cfs from Figure 3 volume in reach e (depth of flow) = 6.1 feet me in reach = (reach length) (cross-sectional) (area of channel) (-area = (0.5)(6.1 feet) (20 feet + 355 feet) = 1(44 ft ²) me = $V_1 = \frac{(1144 ft2)(5625 ft)}{43,560 ft2/are}$ = 1/48 acc ft $V_1 \leq \frac{S}{2}$: reach length 0K $Q_{P4}(TRIAL)$ P4(TRIAL) = $Q_{PS} \left(1 - \frac{V_1}{5}\right)$ P4(TRIAL) = $(4,390 cft) \left(1 - \frac{149}{595}\right)$

<u>م</u>

j,

.

. • .

S E A CONSULTANTS INC. Engineers / planners	BOSTON , MASS. Pochester , N.H.	
CLIENT Army Corps	JOB NO. 274-7901	PAGE 34 of 47
PROJECT Bullerfield Pond Dam	COMPTO. BY	DATE 2/6/80
DETAILHydrologic Cales	_ CK'D. BY	DATE THE

c. Compute V₂ using Q_{P9(TRIAL)}

From Figure 3 determine stage for QP9(TRIAL)

Stage = 5.4 feet X-area = (0.5) (5.4 feet) (20 feet + 318 i+) = 913 ft² $V_2 = \frac{(913 + 2)(5625 ft)}{93,560 ft^2/acre}$ $V_2 = 118 are-ft$

d. Average V_1 and V_2 and compute $Q_{p,q}$

(1) $Vavg = \frac{V_1 + V_2}{2}$ $V_{avg} = \frac{149ae-f+ + 119 ac-f+}{Z}$

Vavg = 133 sere-feet

(2)
$$Q_{pq} = Q_{pB} \left(1 - \frac{V_{avg}}{5} \right)$$

 $Q_{pq} = \left(4,390 \text{ cfs} \right) \left(1 - \frac{133}{590} \right)$

$$\varphi_{Pq} = 3,400 cts$$
The induced sector is the sec	LIENT_	Arm	y Cor	rps 	Ford Dam	_ JOB NO244	-7901 BWP	_ PAGE_	350 + -7	
I Read 9 3. <u>STEP 3</u> : Prepare stage-discharge curve for Reach 3 a. Pertinent Data (1) Reach length = 2.875 feat (2) Channel slope = 0.0139 (3) Manning n = 0.09 (4) Channel shape - trapezoidal (5) Base width \approx 40 feat b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ cfs from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) x-area = (0.5)(5.5 feat)(404 + 7204 +) = 2090 ft ² Volume = $V_1 = \frac{(2090 \text{ ft}^2)(23354)}{42,560 \text{ ft}^4\text{stree}}$ = 138 acce - ft $V_1 \leq \frac{5}{7}$:, reach length 0X b. Determine $Q_{P(X,TRIAL)}$ $Q_{P(0,TRIAL)} = Q_{P(Q} (1 - \frac{V_1}{5}))$ $Q_{P(0,(TRIAL)} = (3,400 \text{ cfs}) (1 - \frac{138}{590})$ $Q_{P(0,(TRIAL)} = Z610 \text{ cfs}$	ETAIL_	Hvd	rolo	zic C	alcs.	_ CK'D. BY	-115	DATE _		•
3. <u>STEP 3</u> : Prepare stage-discharge curve for Reach 3 a. Pertinent Data (1) Reach length = 2875 feat (2) Channel slope = 0.0139 (3) Manning n = 0.09 (4) Channel shape - trapazoidal (5) Base width ≈ 40 feat b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ cfs from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) $\therefore X$ -area = (0.5)(S.5 feat)($4.04t + 7204t$) = 2090 ft ² Volume = $V_1 = \frac{(2090 \text{ ft}^2)(23354t)}{42,560 + 192act}$ = 138 acce-ft $V_1 \leq \frac{5}{2}$: reach length OK b. Determine $Q_{Pid(TRIAL)}$ $Q_{Pid(TRIAL)} = Q_{pq} \left(1 - \frac{V_1}{5}\right)$ $Q_{Pid(TRIAL)} = (3,400 \text{ cfs}) (1 - \frac{139}{590})$ $Q_{Pid(TRIAL)} = Z610 \text{ cfs}$	I	R	2a.A	9						1
a. Pertinent Data (1) Reach length = 2.875 feat (2) Channel slope = 0.0139 (3) Manning n = 0.00 (4) Channel shape - tropazoidal (5) Base width ≈ 40 feat b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ c/s from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) x-area = (0.5)(5.5 feat) ($4.54t + 7204t$) $= 2090 ft^2$ Volume = $V_1 = \frac{(2090 ft^2)(2335 ft)}{42,560 ft^{4/4}are}$ = 138 are - ft $V_1 \leq \frac{5}{2}$: reach length OK b. Determine $Q_{Pid(TRIAL)}$ $Q_{Pid(TRIAL)} = Q_{Piq} \left(1 - \frac{V_1}{5}\right)$ $Q_{Pid(TRIAL)} = (3,400 cfs) \left(1 - \frac{139}{5^20}\right)$ $Q_{Pid(TRIAL)} = 2610 cfs$		з.	STE	P3:	Prepare sta	ge-discharge o	urve for	Reach >		
a. Pertinent Data (1) Reach length = 2875 feat (2) Channel slope = 0.0139 (3) Manning n = 0.08 (4) Channel shape - trapezoidal (5) Base width ≈ 40 feat b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ c/s from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) x -area = (0.5)(5.5 feat)($a \oplus t + 72 \oplus t + 1$) $= 2090 \text{ ft}^2$ Volume = $v_1 = \frac{(2090 \text{ ft}^2)(2935 \text{ ft})}{42,560 + 14/4 \text{ stat}}$ = 138 acc - ft $v_1 < \frac{5}{2}$: reach length OK b. Determine $Q_{p(q(TRIAL)}$ $Q_{p(q(TRIAL)} = Q_{pq} \left(1 - \frac{v_1}{5}\right)$ $Q_{p(q(TRIAL)} = (3,400 \text{ cfs}) \left(1 - \frac{139}{590}\right)$		- •	<u></u>	· · ·	rioparo dec			Reach		
(1) Reach length = 2875 feat (2) Channel slope = 0.0139 (3) Manning n = 0.08 (4) Channel shape - trapezoidal (5) Base width \approx 40 feat b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400 \text{ c/s}$ from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) x-area = (0.5)(5.5 feat)(404+7204+) $= 2090 \text{ fr}^2$ Volume = $V_1 = \frac{(2090 \text{ fr}^2)(2935 \text{ fr})}{42,560 \text{ fr}/4244}$ = 138 acce-ft $V_1 < \frac{5}{2}$: reach length 0K b. Determine $Q_{P(d,TRIAL)}$ $Q_{P(0(TRIAL)} = Q_{PQ} \left(1 - \frac{V_1}{5}\right)$ $Q_{P(0(TRIAL)} = (3,400 \text{ c/s}) \left(1 - \frac{139}{590}\right)$ $Q_{P(0(TRIAL)} = 2640 \text{ c/s}$			a.	Pert	inent Data					
(2) Channel slope = 0.0139 (3) Manning n = 0.09 (4) Channel shape - trapezoided (5) Base width ≈ 40 feat b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ cfs from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) $\begin{pmatrix} cross-sectional \\ area of channel \end{pmatrix}$ $\cdot X$ -area = $(0.5)(5.5 \text{ feat})(4.044 + 72044)$ $= 2090 \text{ fr}^2$ Volume = $V_1 = \frac{(2090 \text{ fr}^2)(293544)}{42,540 \text{ fr}^4/are4}$ = 138 acce-ft $V_1 \leq \frac{5}{2}$: reach length 0K b. Determine $Q_{Pl0}(TRIAL)$ $Q_{Pl0}(TRIAL) = Q_{PQ} \left(1 - \frac{V_1}{5}\right)$ $Q_{Pl0}(TRIAL) = (3,400 \text{ cfs}) \left(1 - \frac{139}{590}\right)$ $Q_{Pl0}(TRIAL) = 2610 \text{ cfs}$				(1)	Reach lengt	h = 2875 f	eet			
(3) Manning n = 0.09 (4) Channel shape - trapezoidel (5) Base width ≈ 40 (set b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ c/s from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) \therefore varea = (0.5) (5.5 feat) ($40.44 + 720.44$) $= 2090 64^{2}$ Volume = $v_1 = \frac{(2090 (4^{2}) (23354)}{42,540 (4)22354}$ = 138 acre - 64 $v_1 < \frac{5}{7}$ \therefore reach length 0K b. Determine $Q_{p_1q}(TRIAL)$ $Q_{p_1q}(TRIAL) = Q_{pq} \left(1 - \frac{v_1}{5}\right)$ $Q_{p_1q}(TRIAL) = (3,400 \text{ cfs}) \left(1 - \frac{139}{590}\right)$ $Q_{p_1q}(TRIAL) = Z610 \text{ cfs}$				(.2.)	Channel slo	ope = 0.0139				
(4) Channel shape - trapezoidel (5) Base width ≈ 40 (ext b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ c/s from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) \therefore -area = (0.5)(5.5 feat)($4:0:4+7:2:0:4+$) $= ZO90 + f^2$ Volume = $v_1 = \frac{(2090 + f^2)(2:33:5!4)}{42:560 + 1:42:are}$ = 138 acre-ft $v_1 < \frac{5}{2}$ \therefore reach length 0K b. Determine $Q_{Pi0(TRIAL)}$ $Q_{Pi0(TRIAL)} = Q_{PQ} \left(1 - \frac{v_1}{5}\right)$ $Q_{Pi0(TRIAL)} = (3,400 cfs) \left(1 - \frac{139}{5:9:0}\right)$ $Q_{Pi0(TRIAL)} = Z610 cfs$				(.3)	Manning n =	0.03	_			
(5) Base width ≈ 40 feat b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ cfs from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) $\therefore x$ -area = (0.5)(5.5 feat)(4.5(4 + 7204)) = 2090 ft ² Volume = $V_1 = \frac{(2090 \text{ ft}^2)(23354)}{42,560 \text{ ft}/422}$ = 138 ace - ft $V_1 < \frac{S}{2}$ \therefore reach length OK b. Determine $Q_{pid}(\text{TRIAL})$ $Q_{pid}(\text{TRIAL}) = (3,400 \text{ cfs})(1 - \frac{129}{590})$ $Q_{pid}(\text{TRIAL}) = (3,400 \text{ cfs})$				(4)	Channel sha	ape - trapezoi	dal			
b. See Figure 3 for stage-discharge curve 4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400$ c/s from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) $\therefore x$ -area = (0.5)(5.5 feat)(404+7204+) $= 2090 \text{ ft}^2$ Volume = $V_1 = \frac{(2090 \text{ ft}^2)(2335 \text{ ft})}{42,560 \text{ ft}^2 \text{ ft}}$ = 138 acce - ft $V_1 < \frac{5}{2}$ \therefore reach length OK b. Determine $Q_{pid}(\text{TRIAL})$ $Q_{pid}(\text{TRIAL}) = Q_{pq} \left(1 - \frac{V_1}{5}\right)$ $Q_{pid}(\text{TRIAL}) = (3,400 \text{ cfs}) \left(1 - \frac{123}{590}\right)$ $Q_{pid}(\text{TRIAL}) = 2640 \text{ cfs}$				(5)	Base width	≈ 40 feat				
4. <u>STEP 4</u> : Estimate Reach Outflow a. Determine stage for $Q_{pq} = 3,400 \text{ c/s}$ from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) (cross-sectional) $\therefore X$ -area = (0.5)(5.5 feat)(404+7204+) $= 2090 \text{ ft}^2$ Volume = $V_1 = \frac{(2090 \text{ ft}^2)(2935 \text{ ft})}{42,560 \text{ ft}^2/are}$ = 138 acce-ft $V_1 < \frac{S}{2}$ \therefore reach length 0K b. Determine $Q_{pid}(\text{TRIAL})$ $Q_{pid}(\text{TRIAL}) = Q_{pq} \left(1 - \frac{V_1}{5}\right)$ $Q_{pid}(\text{TRIAL}) = (3,400 \text{ c/s}) \left(1 - \frac{139}{590}\right)$ $Q_{pid}(\text{TRIAL}) = 2610 \text{ c/s}$			ь.	See	Figure 3 for	stage-dischar	ge curve			
a. Determine stage for $Q_{pq} = 3,400$ c/s from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feet (2) Volume in reach = (reach length) $\binom{\text{cross-sectional}}{\text{area of channel}}$ $\cdot X$ -area = (0.5)(5.5 feet)(404+7204+) = 2090 ft ² Volume = $V_1 = \frac{(2090 \text{ ft})(2335 \text{ ft})}{42,560 \text{ ft}/4\text{cre}}$ = 138 area-ft $V_1 < \frac{S}{2}$: reach length 0K b. Determine $Q_{Pl0}(\text{TRIAL})$ $Q_{Pl0}(\text{TRIAL}) = Q_{pq} \left(1 - \frac{V_1}{5}\right)$ $Q_{Pl0}(\text{TRIAL}) = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)$ $Q_{Pl0}(\text{TRIAL}) = 2610 \text{ cts}$		4.	STE	<u>P </u> 4:	Estimate Re	ach Outflow				
a. Determine stage for $(p_q = 3, 400 \text{ 2.4})$ from Figure 3 and find volume in reach (1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) $\begin{pmatrix} \text{cross-sectional} \\ \text{area of channel} \end{pmatrix}$ X-area = $(0.5)(5.5 feat)(4044 + 72044)= 2090 \text{ ft}^2Volume = V_1 = \frac{(2090 \text{ ft}^2)(237544)}{42,560 \text{ ft}^4/2004}= 138 acce-ftV_1 < \frac{5}{2} : reach length 0Kb. Determine Q_{Pi0}(\text{TRIAL})Q_{Pi0}(\text{TRIAL}) = Q_{P9} \left(1 - \frac{V_1}{5}\right)Q_{Pi0}(\text{TRIAL}) = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)Q_{Pi0}(\text{TRIAL}) = 2610 \text{ cts}$			-	Data	uning stars	for 0 = 7 1	oo (5		
(1) Stage (depth of flow) = 5.5 feet (2) Volume in reach = (reach length) $\binom{\text{cross-sectional}}{\text{area of channel}}$ $\cdot x$ -area = (0.5)(5.5 feet)(404+7204+) $= 2090 \text{ ft}^2$ Volume = $V_1 = \frac{(2090 \text{ ft}^2)(2335 \text{ ft})}{43,560 \text{ ft}^2/\text{area}}$ = 138 acce-ft $V_1 < \frac{S}{2}$: reach length 0K b. Determine $Q_{\text{Pid}(\text{TRIAL})}$ $Q_{\text{Pid}(\text{TRIAL})} = Q_{\text{Pid}} \left(1 - \frac{V_1}{S}\right)$ $Q_{\text{Pid}(\text{TRIAL})} = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)$ $Q_{\text{Pid}(\text{TRIAL})} = 2610 \text{ cts}$			a.	Jete	find volume	$ror Q_{pq} = 3,4$	00 cts	from Figu	ire 3	
(1) Stage (depth of flow) = 5.5 feat (2) Volume in reach = (reach length) $\binom{\text{cross-sectional}}{\text{area of channel}}$ $\cdot X$ -area = (0.5)(5.5 feat)(404+ 7204+) = 2090 ft ² Volume = $V_1 = \frac{(2090 \text{ ft}^2)(2335 \text{ ft})}{43,560 \text{ ft}/4 \text{ are}}$ = 138 acre-ft $V_1 < \frac{S}{2}$: reach length OK b. Determine $Q_{\text{Pid}(\text{TRIAL})}$ $Q_{\text{Pid}(\text{TRIAL})} = Q_{\text{P}9} \left(1 - \frac{V_1}{S}\right)$ $Q_{\text{Pid}(\text{TRIAL})} = (3,400 \text{ cfs}) \left(1 - \frac{139}{590}\right)$ $Q_{\text{Pid}(\text{TRIAL})} = 2610 \text{ cfs}$				and	iind voidme	in reach				1
(2) Volume in reach = (reach length) $\binom{\text{cross-sectional}}{\text{area of channel}}$ $\cdot X$ -area = (0.5)(5.5 feat)(404+7204+) = 2090 ft ² Volume = $V_1 = \frac{(2090 \text{ ft}^2)(2935 \text{ ft})}{43,560 \text{ ft}^2/ase}$ = 138 acce-ft $V_1 < \frac{S}{2}$: reach length 0K b. Determine $Q_{\text{Plo}(\text{TRIAL})}$ $Q_{\text{Plo}(\text{TRIAL})} = Q_{\text{P}9} \left(1 - \frac{V_1}{S}\right)$ $Q_{\text{Plo}(\text{TRIAL})} = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)$ $Q_{\text{Plo}(\text{TRIAL})} = 2610 \text{ cts}$				(1)	Stage (dept	th of flow) = ;	5.5 feet	ł		
(2) Volume in reach = (reach length) $\binom{\text{cross-sectional}}{\text{area of channel}}$ X-area = $(0.5)(5.5 \text{ fart})(4044 + 72044)$ = 2090 ft^2 Volume = $V_1 = \frac{(2090 \text{ ft}^2)(2335 \text{ ft})}{43,560 \text{ ft}^2/\text{area}}$ = 138 acre-ft $V_1 < \frac{S}{2}$: reach length OK b. Determine $Q_{\text{Pid}(\text{TRIAL})}$ $Q_{\text{Pid}(\text{TRIAL})} = Q_{\text{P}9} \left(1 - \frac{V_1}{S}\right)$ $Q_{\text{Pid}(\text{TRIAL})} = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)$ $Q_{\text{Pid}(\text{TRIAL})} = 2610 \text{ cts}$									ς.	
X-area = (0.5)(5.5 feet)(4.044 + 72044) = 2090 ft ² Volume = $V_1 = \frac{(2090 \text{ ft}^2)(2935 \text{ ft})}{43,560 \text{ ft}^2 \text{ are}}$ = 138 are-ft $V_1 < \frac{5}{2}$: reach length 0K b. Determine $Q_{Pi0}(TRIAL)$ $Q_{Pi0}(TRIAL) = Q_{P9}(1 - \frac{V_1}{5})$ $Q_{Pi0}(TRIAL) = (3,400 \text{ cts})(1 - \frac{139}{590})$ $Q_{Pi0}(TRIAL) = (3,400 \text{ cts})(1 - \frac{139}{590})$				(2)	Volume in r	reach = (reach	length)	cross-se area of	ctional)	
$V_{-area} = (0.3)(2.3)(2.4)(-10000)$ $= 2090 \text{ ft}^{2}$ $Volume = V_{1} = \frac{(2090 \text{ ft}^{2})(2935 \text{ ft})}{42,560 \text{ ft}^{2} \text{ ft}^{2} \text{ ft}^{2}}$ $= 138 \text{ acce-ft}$ $V_{1} < \frac{S}{2} \therefore \text{ reach length } 0K$ b. Determine $Q_{P10}(TRIAL)$ $Q_{P10}(TRIAL) = Q_{P9} \left(1 - \frac{V_{1}}{S}\right)$ $Q_{P10}(TRIAL) = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)$ $Q_{P10}(TRIAL) = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)$						$(n \in \mathbb{N} \in S)$		(1 ± 7)	20(4)	
Volume = $V_1 = \frac{(2090 \text{ ft}^2)(2875 \text{ ft})}{42,560 \text{ ft}^2/424}$ = 138 acce-ft $V_1 < \frac{S}{2}$: reach length OK b. Determine $Q_{\text{Plo}(\text{TRIAL})$ $Q_{\text{Plo}(\text{TRIAL})} = Q_{\text{P}9}\left(1 - \frac{V_1}{S}\right)$ $Q_{\text{Plo}(\text{TRIAL})} = (3,400 \text{ cts})\left(1 - \frac{139}{590}\right)$ $Q_{\text{Plo}(\text{TRIAL})} = 2610 \text{ cts}$					· X-area =	$z = 2090 \text{ ft}^2$	reat) (-		20 + +)	
Volume = $V_1 = \frac{43,560 + 4/4}{43,560 + 4/4}$ = $ 38 \text{ acre-ft} $ $V_1 < \frac{S}{2}$: reach length 0K b. Determine $Q_{Pi0(TRIAL)}$ $Q_{Pi0(TRIAL)} = Q_{P9} \left(1 - \frac{V_1}{S}\right)$ $Q_{Pi0(TRIAL)} = (3,400 \text{ cts}) \left(1 - \frac{(39)}{590}\right)$ $Q_{Pi0(TRIAL)} = (3,400 \text{ cts}) \left(1 - \frac{(39)}{590}\right)$						(2090 ft2) (297:	5 ft)		•
$= 38 \text{ are -ft}$ $V_{1} < \frac{S}{2} :: \text{reach length OK}$ b. Determine $Q_{\text{PiO}(\text{TRIAL})$ $Q_{\text{PiO}(\text{TRIAL})} = Q_{\text{P}9} \left(1 - \frac{V_{1}}{S}\right)$ $Q_{\text{PiO}(\text{TRIAL})} = \left(3,400 \text{ cts}\right) \left(1 - \frac{139}{590}\right)$ $Q_{\text{PiO}(\text{TRIAL})} = \left(3,400 \text{ cts}\right) \left(1 - \frac{139}{590}\right)$					volume = V	43,56	0 ft2/ac	-e		•
$V_{1} < \frac{S}{2} :: reach length OK$ b. Determine $Q_{Pid(TRIAL)}$ $Q_{Pid(TRIAL)} = Q_{PQ} \left(1 - \frac{V_{1}}{S}\right)$ $Q_{Pid(TRIAL)} = \left(3,400 \text{ cts}\right) \left(1 - \frac{139}{590}\right)$ $Q_{Pid(TRIAL)} = \left(3,400 \text{ cts}\right) \left(1 - \frac{139}{590}\right)$						- 138 00	e-ft			•
$V_{1} < \frac{S}{2} :: reach length OK$ b. Determine $Q_{PiO(TRIAL)}$ $Q_{PiO(TRIAL)} = Q_{PQ} \left(1 - \frac{V_{1}}{S}\right)$ $Q_{PiO(TRIAL)} = \left(3,400 \text{ cfs}\right) \left(1 - \frac{139}{590}\right)$ $Q_{PiO(TRIAL)} = \left(3,400 \text{ cfs}\right)$						- 100	-			•
b. Determine $Q_{PiO(TRIAL)}$ $Q_{PiO(TRIAL)} = Q_{PQ} \left(1 - \frac{V_1}{S}\right)$ $Q_{PiO(TRIAL)} = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)$ $Q_{PiO(TRIAL)} = 2610 \text{ cts}$						V, < S	anah lan	-+1 01		
b. Determine $Q_{PiO(TRIAL)}$ $Q_{PiO(TRIAL)} = Q_{PQ} \left(1 - \frac{V_1}{S}\right)$ $Q_{PiO(TRIAL)} = (3,400 \text{ cts}) \left(1 - \frac{139}{590}\right)$ $Q_{PiO(TRIAL)} = 2610 \text{ cts}$						1 2 ., r	each leng	gτη ΟΚ		
$Q_{PiO(TRIAL)} = Q_{PQ} \left(1 - \frac{V_1}{S}\right)$ $Q_{PiO(TRIAL)} = \left(3,400 \text{ cts}\right) \left(1 - \frac{139}{590}\right)$ $Q_{PiO(TRIAL)} = 2610 \text{ cts}$			ъ.	Dete	rmine Q _{Put TE}	RTAL)				-
$Q_{PiO(TRIAL)} = Q_{PQ} \left(1 - \frac{V_1}{S} \right)$ $Q_{PiO(TRIAL)} = \left(3,400 \text{ cts} \right) \left(1 - \frac{139}{590} \right)$ $Q_{PiO(TRIAL)} = 2610 \text{ cts}$										
$Q_{P/O(TRIAL)} = (3,400 \text{ cts})(1-\frac{139}{590})$ $Q_{P/O(TRIAL)} = 2610 \text{ cts}$					Q PIO(TRIA	$L_{L} = Q_{Pq} \left(1 - \frac{1}{2} \right)$	$\frac{v_1}{2}$			
$Q_{P/O(TRIAL)} = (3,400 \text{ cts})(1-\frac{139}{590})$ $Q_{P/O(TRIAL)} = 2610 \text{ cts}$						- ' \	5 /			
$P_{p(TRIAL)} = (3,400 \text{ cts})(1-590)$ $Q_{p(TRIAL)} = 2610 \text{ cts}$					0	1	\sim /	139		
QPOLITION = 2610 cts					QP10(TRIA	(3,400)	octs)(1 - 590	5)	•
$Q_{p/2}(171)$ = 26100					6		4			
					Up ia Contin	= 26100	-' -			

Vavg = 121 aure-ft

(2)
$$Q_{P10} = Q_{Pq} \left(1 - \frac{Vavg}{S}\right)$$

 $Q_{P10} = \left(3,400 \text{ cts}\right) \left(1 - \frac{121}{590}\right)$

BIEIA C	CON	SULTA PLANN	NTS INC. Ers	BOSTON , M Rochestei	MASS. R, N.H.		
CLIENT_	Arn	v Corp	5	JOB NO24	4-7901	PAGE 37 34 47	
PROJECT	<u>ئ</u> ر ۲	Iller In	eld Pond Dam	COMPTO. BY	BWP	DATE7/9)	
DETAIL		irologi	c Calcs.	_ Ск'о. Вү	A M D	DATE	
J.	Ite	lach	10				
	3.	STEP 3	: Prepare sta	ge-discharge	curve for	Reach / 2	
		a. Pe	ertinent Data		_		
		C	1) Reach lengt	h = 5,300	feet		
		C	2) Channel slo	pe = 0.001	l		
		(.	3) Manning n =	0.08			
		C	4) Channel sha	pe - tropezo	idal		
		C	5) Base wîdth	= 40 Leet			
		b. S	ee Figure 3 for	stage-discha	nge cunue		
		2. 0		Stage-uischa	inge curve		
	4.	STEP 4	: Estimate Re	ach Outflow			
		a. D	etermine stage	for $Q_{\rm Pin} = 2$,710 cfs	from Figure 3	
		i	and find volume	in reach		-	
		(.	l) Stage (dept	h of flow) =	6.7 feet		
					-		
		C	2) Volume in r	each = (reach	length)	(crcss-sectional) area of channel)	
			X-area =	(0.5)(6)	.7 (eet) (404+ + 525ft)	
					2)/	- (1)	
			Volume = V _l	= (1875 + 7)	$\frac{2}{3}$ $\frac{3}{5}$ $\frac{3}{2}$ $\frac{1}{2}$	$\frac{10}{3}$	
				T 2	5, 5 6 0 - (1	/2-~	2
				= 630 a	ere - 4T		
				v, < <u>\$</u> ,	neach lo-	ath OK	
				1 2	reach len	RIII OK	ŀ
		b. D	etermine Q _{P#(TR}	IAL)			
			0-	. = 0_ (.	v,)		
			PN(TRIA)	J) 1910/1 -	<u>s</u> -)		
			2	10710		$-\frac{230}{660}$	
			VP#(TRIA)	$L_{1} = (Z_{1} + 10)$			

Qp (19771) = 1,650 cts

والمسترجع والمتعاد والمتعاد والمتعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد و

S E A CONSULTANTS INC. Engineers / planners			BOSTON , MASS. Rochester, N.H.				-	
CLIENT	Army Cor	DS		JOB NO	244-7901	PAGE_	39 0+47	•
PROJECT	Buttertre	ld Par	d Dam	COMPTO. E	BY BWP	DATE .	2/7/20	•
DETAIL	Hydrolog	<u>gic Cal</u>	<u>cs.</u>	CK'D. BY		DATE _		
K.	Reac	h 11						
	3. STEF	3 : P	repare stag	e-discharg	e curve for	r Reach II		•
				,		11		
	a.	Pertin	ent Data					
		(1) R	each length	n = 5,000	feet			
		(.2) C	hannel slop	oe = 0,00	t 1			•
		(.3) M	anning n =	0.09				•
		(4) C	hannel shap	pe - trape	zordal			
		(5) B	ase wîdth :	≈ 40fe	et.			
	Ъ.	See Fi	gure 3 for	stage-disc	harge curve	e		
								•
	+. <u>51E</u>		stimate Kea	ich UUTIIOW				
	e	Determ	ine stare 4	fon 0 -	1920-1-	from Fig	3	
	a.	and f	ind volume	in reach	1,000 015	TLOW LTB		
			THE ADIANG	In reach				
		(1) S	tage (dep+)	l of flow)	= 57 Lon	ŧ		
			J		VOT THE			
		(2) V	olume in re	each = (rea	.ch length)	(cross-se	channel)	•
						(Lin L)	(455 2+)	
			X-area = -	(0.5)(3)	D.1 + eet)			
			=		12) (5000	o 41)		•
		v	olume = V _l	= (14117	3 560 42	Tacre		
				- 11-7 -		•		-
				= 1020				•
				v. < <u>s</u>				
				1 7 2	. reach le	ngth OK		
	ь.	Determ	ine Quint	r A T \				-
			PIZTR	LALJ				
			Q DIZ TOTAT	$y = Q_{p(1)}$	$- \frac{v_1}{2}$			
			I TUTUL		5-1			•
				1 . ~		$(1 - \frac{1}{2})$	$\frac{52}{5}$	
			Q _{PIZ} (TRIAL	.) = (1,9	30 cts) (~o /	ی د
								• •
			QPIZCERTAL)	= 1,33	30 245			•
								•.

والمتحد والمعاد والمتحد والمتحد والمتحد والمحاص والمحاص والمحاص والمحاص والمحاص والمحاص والمحاص والمحاص والمحاص

•

•

.

	CORDS	HOCHESTER, N.H.	-
PROJECT	Herfuld Dend Dam	COMPTO. BY DATE 7/90	
DETAIL _Hydro	logic Calcs.	CK'D. BY DATE	
L. Rec	wh 12		عب بر در
3. 5	TEP 3: Prepare st	age-discharge curve for Reach 12	
_			
ā	. Pertinent Data		
	(1) Reach leng	sth = 5,000 + eex	
	(2) Channel slo	ope = () OO()	
	(.3) Manning n	= 0.08	
	(5) Base width	ape - Trape Zolder	
ł	. See Figure 3 for	or stage-discharge curve	
4. 5	TEP 4: Estimate R	Reach Outflow	هد الع الم الم الم الم الم
	-		
ē	. Determine stage	e for $Q_{p_1 z} = 1,380c^4$ from Figure 3	
	and find volum	ne in reach	provine
	(1) Stage (dep	oth of flow) = 5.0 feet	
	(2) Volume in	reach = (reach length) (cross-sectional)	
		$(0.5)(5.0f+)(40f+ + 40sf_{1})$	-
	X-area	= 113 f + 2	
	· ··.	(1113 f+z) (5000 f+)	
	volume = v	$1 = \frac{43,560}{43,560} + \frac{1}{600}$	
		= 128 aure - ft	.
		$v_1 < \frac{S}{2}$; reach length OK	
		-	
1	Determine QP(AT	TRIAL)	
	-		
	Q _{PIX.TRL}	$AL) = Q_{P/2} \left(1 - \frac{1}{S} \right)$	
			2
	QDGCCTT	$(1,380cfs)(1-\frac{123}{cga})$	
	PISCERE		
	Qap (Cap)	$a_{11} = 1,090cts$	
		• • • • •	

SIEIA CONSULTANTS INC. Engineers / planners

5

K.

BOSTON , MASS. Rochester, N.H.

CLIENT Army Cords	JOB No. 274-7901	PAGE.	420441
PROJECT Butterfield Pind Den	COMPTO. BY BWP	DATE .	217/90
DETAIL Hydrologic Cales	CK'D. BY	DATE .	=12

c. Compute V₂ using Q_{PIXTRIAL})

From Figure 3 determine stage for QPIXTRIAL)

stage = 4.6 feet $x_{-area} = (0.5) (4.6 \text{ feet}) (40 \text{ feet} + 375ft)$ $= 955 \text{ f}t^2$ $v_2 = \frac{(955 \text{ f}t^2) (5000 \text{ f}t)}{-13.560 \text{ f}t^2/acce}$ $v_2 = 110 \text{ acce} - \text{f}t$

d. Average V_1 and V_2 and compute Q_{P13}

(1)
$$Vavg = \frac{V_1 + V_2}{2}$$

 $Vavg = \frac{129acre-ft}{2}$

Vavg = 119 acre - ft

(2)
$$Q_{P_{13}} = Q_{P_{12}} \left(1 - \frac{Vavg}{S} \right)$$

 $Q_{P_{13}} = \left(1,380 \text{ cts} \right) \left(1 - \frac{119}{590} \right)$
 $Q_{P_{13}} = 1,100 \text{ cts}$

SIEIA CONSULTANTS INC. Ī BOSTON . MASS ROCHESTER, N.H. ENGINEERS / PLANNERS JOB NO. 244-7901 IENT Army Corps ADJECT Butter field Pond Dam BWP COMPTO. BY_ 1115 DETAIL Hydrologic Cales. ____ CK'O. BY M Reach 13 STEP 3: Prepare stage-discharge curve for Reach 15 (3. a. Pertinent Data (1) Reach length = 3,050 feet (2) Channel slope = 0.0011(3) Manning n = 0.09(4) Channel shape - trape zordal (5) Base width = 2,080 Lest See Figure 3 for stage-discharge curve b. r STEP 4: Estimate Reach Outflow Determine stage for Qp13 = 1,100cts from Figure 3 a. and find volume in reach Stage (depth of flow) = 0.7 feet (1) Volume in reach = (reach length) (cross-sectional) area of channel) (2) X-area = (0.5)(0.7 fest)(2.330 fr + 2110 fr)= 1467 ft² Volume = $V_1 = \frac{(1467ft^2)(3050^{-1})}{43,560+1^2/acc}$ = 103 acre-ft $v_1 < \frac{S}{2}$: reach length OK Determine QPE(TRIAL) ь. $Q_{P/4(TRIAL)} = Q_{P/3} \left(1 - \frac{V_1}{S} \right)$ Q_{p} (TRIAL) = (1,100 Cts) (1- $\frac{103}{550}$) . Q. LIREAL = 910cts

.

END

FILMED

8-85

DTIC

NAL IN

