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Abstracts'-
- Consider a finite set E, a weight function w: E-41R, and two matroids

MI and M2 defined on E. The weighted matrold Intersection problem

, consists of finding a sett E, independent in both matroids, that maximizes
e) in I). W~present an algorithm of complexity O(nr(r + c + log n)) for

this problem, where,n --IEI, r - min(rank(M ! ), rank(M2 )), c = max(c I , c2 ) and,

for I - 1, 2, cI is the complexity of finding the circuit of I U (e) in Mi (or

show that none exists) where e is In E and I E Is independent in MI and M2.

'-. This improves the complexity of earlier algorithms by a factor r, when

c K O(n), and by a factor n when max(c, log n) t 0(r). A related problem is to

* "find a maximum weight set, independent in both matroids, and of given

cardinality k (if one exists). Our algorithm also solves this problem. In

addition, we present a second algorithm which, given a feasible solution of

cardinality k, finds an optimal one of the same cardinality. A sensitivity

analysis on the weights Is easy to perform using this approach.

1. 1Idlufllt.n

Let E be a finite set, M 1 and M2 two matroids defined on E and w E+R

a weight function. The weight of a subset F!_ E Is defined by

w(F) = Zw(e): e is in F). The weighted matrold Intersection problem

consists of finding a maximum weight set Is E which is Independent in both

matroids.

Let k be a positive Integer. Call Fs E a k-set If IFI = k. Define F to be

feasible If It Is Independent In both M1 and M2. We also consider the
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problem of finding a maximum weight feasible k-set IC E, if one exists.

This problem Is denoted by (P

Problem (Pk) and the weighted matrold Intersection problem have

been solved In polynomial time by Edmonds [1970, 1979], Lawler [1976], and

Frank [1981]. Their algorithms start with I = 0 and increase the cardinality

of I by one at each iteration until an optimum set is found.

We discuss a new algorithm for (Pk), one which operates in a

"horizontal" fashion. It starts with a feasible k-set I. The set I Is used to

construct a digraph related to Glover's state graphs [19851 and Lawler's

border graphs [ 19761. We then use negative length cycles in our digraph to

find an improved feasible k-set. (In this paper all cycles and paths In

digraphs are assumed to be directed) The procedure is repeated until an

optimum set is found. In constructing our digraph from I at each Iteration,

the following circuit recognition problem arises in matrolds M I and M2 .

Given a set IGE, independent in both matroids, and e in E - I, find the circuit

of I + e in M1 (or show that none exists) for 1 1, 2. We denote by c the

complexity of this circuit recognition problem. Note that we use summation

notation to represent set union. 0

This "horizontal' approach, In conjunction with the Introduction of

artificial elements, yields a second algorithm for problem O. It has

complexity O(nk(k + c + log n)), where n - IEI. Our second algorithm also

solves the weighted matrold Intersection problem. It is closely related to

Lawler's primal algorithm, the main difference being that, at each Iteration,

it only requires finding a shortest path between two prespecified nodes in a
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digraph with nonnegative arc weights and therefore does not need the more

complex labelling procedure used by Lawler. This accounts for the term

nk(k + log n) in our complexity bound instead of Lawler's n2k2.

Our development uses concepts and results from Glover's paper on the

Generalized Quasi-Greedy Algorithm [1985]. We include them here to make

this report self-contained.

2. PliminlaM ResU ts -

Let M1I and 12 be two matrolds defined on the same element set E.
Throughout this section we assume that I Is Independent in both matroids.

Let I be a subset of I and let I' be a subset of E - I such that III - I11. We

say that (1, ) Is an I swap if I - I + Y is independent in MI and an

I back-swap if I - I + F is independent in M2. Also, we call m(X, F) a

matching if it represents a one-one mapping of I onto 2'; m(I, Y) is called

an I matching if every (e, e') in m(I, Y) is an I swap, and an

I back-matching If every (e, e') In m(1, Y) is an I back-swap.

Lemma I: Let I and I' be Independent sets In a matrold M. Let

I = I - I' and I' - I' -I. Choose any e in I such that r + e is dependent. Then

there is an e' In I' such that both I' + e - e' and I + e' - e are Independent in M.

Proof: Since I' e Is dependent, it contains a unique circuit I'(e).

Clearly, every e' in I'(e) - e will satisfy the requirement that I' e - e' be

Independent. We need to show that at least one such e' yields I e' - e

Independent.

4
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Note that I(e) - e Is not contained In I and consider I + I(e) - e. But

r(I I (e) - e) 2 r(I) since e Is dependent on r(e) - e, where r denotes the rank

function of the matroid. Thus, we can find a subset I" of I + I(e) -e which is

Independent and has the same cardinality as I. Since I - e is independent, we

can take 10 - I -e + e' for some e' in I(e) -I. 0

Lemma 2 Let I and I' be two feasible k-sets, and let I - I - I' and

Y = I' -I. Then there is at least one I matching and one I back-matching of
*(,1Z).

UI

Proof First we show that at least one I matching exists. Choose an e

in I and select e' in I' such that both I + e' - e and I' + e - e' are independent

In M1. Note that such an e' exists by Lemma 1. We then have an I swap

(e, e'). We can repeat this arguement with (I - e, Y - e') in the role of (., )

to get the desired I matching recursively.

To show that an I back-matching exists, it suffices to interchange the

role of M and M12 in the definitions. The result follows from the existence

of an I matching for this transformed problem. 0

Lemma 3: Let I be an independent set in matroids I and M2 , and

consider Is I and IE E - I where III = I11.
(a) If m(l, ) is an I matching but not an I swap, then there also

exists an I matching m'(1, ) different from m(I, I').

(b) If m(I, ) is an I back-matching but not an I back-swap, then

there also exists an I back-matching m'(1, I') different from m(l, I').

5



Proof. Since (b) follows from (a) by Interchanging the role of M1 and

2 In the definitions, we only have to prove (a).

Let F and F' be contained in I and 1', respectively, such that

(1) the I matching m(1, ') induces an I matching of (F, F'),

() ' - I + F - F is independent inM 1, and

(iii) I' + f' - f is dependent in MI for every (f, f') in m(., ) - m(F, F).

Note that 10 - I + f' - f is independent in Mi . Thus we can apply Lemma I to

10 and 1'. Since I'+ f' is dependent in M1, there exists e' in F' - f' such that

1'+ f' - e'(= I F'+ f'- e' - F) and I e' -f'(= I e' - f) are independent in

MI . Thus, (F, F' + f' - e') is an I swap, as is (f, e'). Applying Lemma 2 to

(F, F' f' - e') and adding (f, e') yields an I matching of (F + f, F' + f'),

containing (f, e'). If we add the remainder of m(l, ') to this I matching, we

get an I matching different from m(l, '). 0

Lemma 4 Given a digraph, let C and C' be the arc sets of two

different cycles. Assume that the two cycles contain exactly the same

nodes and let C" - C + C', where an arc occurs twice in C" if it occurs in both

C and C'. Then C" may be written as C" = C1  ... +c, u 2 3, where each Ci

induces a cycle containing at least one fewer node than C and C'.

Proof: Assume the nodes contained in the two cycles have been

indexed v 1 , v2 , ... , vh so that the arcs of C are (v1, v 1, ) for 1 = 1,2, , h
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* (mod h). Since Ca C, there Is at least one arc (Vq, Vp) in C' such that q > p,

p i 1. Consider the paths connecting the nodes v1 , Vp, and Vq in each of the

two cycles, say

(P I p, Ppq, Pq I ) in the cycle Induced by C, and

(PlI , (vq, Vp), PpI') in the cycle induced by C'.

Recombine these paths as follows.

C I = (PIp Ppl ), C2 
= (Ppq, (Vq, Vp)), and C3 = (P q', Pql)-

Note that CI does not contain vq, C2 does not contain v i, and C3 does not

contain vp. In addition C2 and C3 are cycles since their nodes are indexed in

ascending order and, therefore, are not repeated. To decompose C1 Into

cycles It suffices to trace It, starting from v!. Whenever a node Is visited

for the second time in this process, a cycle of the decomposition is

identified. 0

Lemm a: Let s and d be two nodes of a digraph, and let P and P' be

the arc sets of two different paths joining the source s to the destination d

and containing the same Intermediate nodes, but in a different order. Let

P" - P + P' where an arc occurs twice in P" if it occurs in both P and P'. Then

P" may be written as P" =P + P2 
+ C3 

+  + Cu, u 2 3, where P I and P2 are

paths joining the source s to the destination d, but containing fewer

intermediate nodes than P and P', and each Ci is a cycle.
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Proo" Identify the nodes s and d of the digraph into a single node x.

Then P and P' become cycles, and we can apply Lemma 4. Exactly two of the

cycles In the decomposition C1 + ... + Cu, u 2 3, must contain x since there

are two arcs of P + P' out of x and two into x. Assume these two cycles are

C I and C2. Going back to the original digraph, C 1 and C2 yield the required

paths P 1 and P2  1

8
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3. •irst Algoitm

In this section, we show how to solve problem (PO, given a feasible

k-set I. (Finding the initial set I Is not considered in this section; see the

beginning of Section 4.)

We construct a bipartite digraph B(I) (V, V, A) from I as follows.

We get a node for each e in E, namely a node in V for each e in I and one in V'

for each e' in E - I. For each ei in I, we construct an arc (ei, ej') with weight

w(e1, e) = w(ei) - w(ej') provided I - ei + ej' is independent in Mi1.

Similarly, for each ej' in E - I, we construct an arc (ej', el) with weight

w(ej', el) = 0 provided I - e1 + ej' Is Independent in M2. Note that our digraph

B(I) Is closely related to Lawler's border graph. The difference Is that, if

I + ej' is independent in tl, then, in B(I), an edge (ei, ej') exists for all el in

I and, if I + ej' is independent in M2, then (ej', ei ) exists for all et in i. (In

Lawler's border graph, none of these edges exist.)

Theorem 1; Let I and I' be two feasible k-sets and let I = I - I' and

S= I' - I. Then the nodes of B(I) associated with I Y ' induce a set of

disjoint cycles in B(I).

Proof: By Lemma 2, there exists at least one I matching and one

I back-matching of (1, V'. For every I swap (e1, e' In the I matching,

I - ei + ej' Is Independent In M1 , and, therefore, by construction there is an

arc (el, ej) in B(I). Similarly, for every I back-swap (el, ej') in the I back-

9



matching, I - ei ej' is Independent In M2, and, therefore, by construction

there is an arc (ej', el) in B(I). Clearly, when we consider the arcs that arise

from the above I matching and I back-matching, we get a union of disjoint

cycles of B(I). 0

Let C be a cycle of B(I). We define the weight of this cycle, w(C), to

be the sum of the weights of the arcs In the cycle. Note that

w(C) = w(l) - w(Y), where X and X' represent the nodes of C in V and V',

respectively.

Theorema2 Let I be a feasible k-set, and let C be a cycle of B(I). Let

the I matching m(.1, Y) represent the arcs of C directed from V to V., and let

mb(-, ') be the I back-matching representing those directed from V' to V.

If I - I. + is not feasible, then there is a cycle Co in B(I) such that

(I) the nodes of CO constitute a proper subset of the nodes of C, and

(ii) w(C) < 0 implies w(C O) < O.

Proo=: Since I - I + ' Is not feasible, either (1, Z) is not an I swap,

or it is not an I back-swap, or both.

Suppose (1, Y) Is not an I swap. Then, by Lemma 3, there Is another

I matching m'(2, Y). If we replace the arcs of m(, ') In C by the arcs of

m'(1, '), we get a new set C' with w(C') = w(C). But C' will be either a set -

or disjoint cycles or a single cycle. In the first case, each of the disjoint

cycles satisfies (I), and (It) must hold for at least one of these cycles. In

10
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the second case we apply Lemma 4 with cycles C and C'. Then C" - C + C' can

be written as C1 + ... + Cu, where each Ci satisfies (1). Again, (it) must hold

for at least one of the cycles Ci since w(C") < 0 implies w(CI) < 0 for at

least one i = 1,..., u.

On the other hand, if (1, F) is not an I back-swap, the theorem

follows by a similar proof, using the I back-matching mb(, 2') and another

I back-matching mb'(., ), which we know exists by Lemma 3. 0

Combining Theorems 1 and 2, we get the following theorem. It

consolidates our previous results and shows the equivalence of solving

problem (Pk) and finding negative weight cycles in B(I).

Theorem 3 Assume I is a feasible k-set.

(I) I is optimal for (Pk) if and only if there are no negative cycles in

B().

(iI) Let C be a negative cycle in B(I) with no negative cycle on a

subset of Its nodes, and let I and Z' be the nodes of C In V and V',

respectively. Then I' = I - I + Y Is a feasible k-set such that

W(i') > w().

Proof: Statement (11) follows directly from Theorem 2 and from the

fact that the weight of the new solution is w0') = w() - w(C), which is

greater than w(1).

Now we prove (i). Assume there Is a negative cycle in B(I). If

i II



I' = I - Y is not feasible, where I and Y are the nodes of C in V and V',

respectively, then, by Theorem 2, there Is another cycle C0 on a subset of

the nodes of C such that w(Co) < 0. Repeating this arguement with C. in

place of C, we must eventually be able to find a negative cycle such that

I' = I - I. + Is feasible. But then w(') = w(I) - w(C) ) w(I).

Now assume that I Is not optimal. Consider r such that w0r) > w(I).

From Theorem I we get a set of disjoint cycles In B(I), the sum of whose

weights must be negative. Thus at least one of these cycles, say C, must be

a negative cycle in B(I). 0

Theorem 3 yields an obvious primal algorithm. We start with a

feasible k-set I and use B(I) to find an improved solution. We continue until

we find a B(I) with no negative cycles.

The algorithmic issues are (I) the construction of B(l), (1i) when a

negative cycle exists, how to find one such that there is no other negative

cycle on a subset of its nodes, and (iII) the number of iterations needed to

reach optimality. We treat these questions briefly now.

To construct B(), we must solve the following circuit recognition

problem for each ef in E - I and for both of the matroids Mi, i - 1, 2: Check

whether I + ej' is dependent in Mi, and, if it is, find the unique cycle of

I + ei'. This task requires time c for each ej' in E - I. So the complexity of

constructing B(I) is O(nc).

To fInd a negative cycle with the required property, one possibility Is

to use the so-called "matrix multiplication" algorithm for finding shortest

paths between all pairs of nodes of a digraph. Define the nxn matrix A so

12
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that ail - 0 and, for I J, aij Is the weight of arc (e1 , ej) If It exists In B(I),

otherwise. It Is well-known that, If the usual addition and multiplication

are replaced by the operations min and +, then the tth power of A has the

following interpretation. Let aij(t) be an element of At. Then aij(t) is the

smallest weight of a path from i to j that contains at most t arcs; see

Lawler [1976]. In particular, if a1l(t) < 0, then a negative cycle with at most

t arcs can be identified in B(I). Also, the smallest value of t such that At

has a negative diagonal element provides a negative cycle such that no

negative cycle exists on a subset of its nodes. Note that, since III = k and

B(I) is bipartite, at most 2k matrix multiplications are needed. So the

complexity of finding a negative cycle with the required property is 0(n3k).

Actually, the factor n3 can be decreased by using fast matrix multiplication

algorithms.

Finally, we consider the number of iterations needed to reach

optimality. We assume that w(e) is integer for all e In E. Let

W = max(w(e): e in El - min(w(e): e In El,

and assume W> 0 (otherwise the problem Is trivial). At first it appears

that the number of iterations could be as large as kW; however, by using a

classical scaling technique on the weights we need at most k( 1 + flog Wi)

iterations. This is achieved as follows. Add min(w(e): e in El to all the

weights. The new weights w'(e) are nonnegative. Let

w'(e) - ap(e)2P ...+ ao(e),

where p =fog W1 and ai(.e) = 0 or 1 for i = 0, 1, ... , p. Instead of solving the

problem (Pk) with the weights w'(e), we first solve it with the weights

13
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Sap(e)2P. With these weights at most k Iterations are needed to reach an

optimum solution, since an Improvement of at least 2P is achieved each

Iteration and the optimum value is at most k2p. Then we solve the problem

(PO with the weights ap(e)2P + ap. i (e)2P- 1 , starting from the optimum

solution found for the previous weights. Again, at most k iterations are

needed. We continue this process, including one more digit in the binary

expansion of w(e) each time, until the problem (Pk) is solved for the actual

weights w'(e).

Therefore, the overall complexity of the algorithm is

O((n 3 k2 + nkc)(I + log W)). Although this complexity is high, the approach

may have merits in the context of sensitivity analysis. Given an optimum

solution for some set of weights, Theorem 3 provides an optimality

condition that can be tested for a perturbed set of weights. If the

optimality condition is violated, reoptimizing using the above algorithm

may be more efficient In practice than starting from scratch, as the other

algorithms for matrold Intersection require.

This algorithm may also be useful when an optimization problem, such

as the traveling salesman problem, is solved using a Lagrangian relaxation

that happens to be the problem (PO for some matroids M I and M2 (the

weights being a function of the Lagrange multipliers). To get a tight

relaxation one often optimizes the Lagrange multipliers by an iterative

method, such as subgradlent optimization. Thus, at each Iteration the

weights are modified. We plan to try this approach for the traveling

salesman problem in a forthcoming paper.
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4 "ML~endL ALlarithm:

In this section we show how the ideas developed In the previous

algorithm can be modified to (i) avoid assuming that we are given an initial

set to start the algorithm, (ii) reduce the complexity, and (lO solve the

weighted matrold Intersection problem as well as problem Wk).

First, consider the question of getting an initial set for problem (Pk)-

We can start by applying the greedy algorithm. Initially 10 a 0, and, at each

iteration, an element e in E - 10 is added to Io if 10 + e is independent In both

matroids and e has maximum weight over all elements f in E - 10 such that

0I + f is independent In at least one of the two matroids. The greedy

algorithm Is stopped when such an element e cannot be found. Note that, at

termination, 11011 1. If I1011 k, we are done. Otherwise, consider a set A of

k - 1101 artificial elements, where E/ A - 0. Let F - E + A We define two

matrolds MI(F) and M2 (F) on the element set F as follows. For I = 1, 2, I E

and Js A, the set I + J is independent in Mi(F) If and only If I Is Independent

In M1. The problem (PO relative to these new matroids will be denoted by

(Pkt F).

Note that to define (PkI F) completely we need to give weights to the

artificial elements. By giving them large negative weights we can

guarantee that, if (Pk) is feasible, then an optimum solution to (Pk F) does . -

not contain any artificial elements and therefore is also optimum for (Pk).

Thus, the question of finding an initial solution for the algorithm of Section

15
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3 is resolved: it suffices to solve (PkI F) starting from 1o + A as defined

above.

However, In this section we have a different algorithm in mind. We

will give large posiv weights to all the artificial elements. Then,

obviously, the Initial solution I - Io  A Is optimal for (Pkj F). So, by

Theorem 3, the digraph B(O) relative to problem (Pk1 F) contains no negative

cycles.

Define the digraph S(I) from B(I) by splitting one of the. nodes that

arose from an artificial element, say a In A, into a source node s and a

destination node d, where the arcs out of s in S(l) are those that were out of

a in B(I) and the arcs Into d in S(I) are those into a in B(I).

Therem4 Let I be an optimal k-set of (PkI H), where E H;. F. Let P

be an s-d path in S(I), and let the I matching m(l, I') represent the arcs of P

directed from V to V' and the I back-matching m0b(, ) represent those

directed from V to V (recall that s and d are both associated with element

a). If I - I + E is not feasible, then there Is an s-d path Po in S(I) such that

(I) the intermediate nodes of Po constitute a proper subset of those

of P, and

* (i1) wlP0 ) I w(P).

Proof Since I - I + I' is not feasible, either (1, ) is not an I swap or

it is not an I back-swap, or both. Assume It is not an I swap. Then, by

Lemma 3, there Is another I matching m'(1, I'). If we replace the arcs of

16
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m(l, T) in P by those of m'(1, V), we get a new set P' with w(P') - w(P), and

P' will be either the union of cycles and one s-d path which are all node

-: disjoint, or a single s-d path. In the first case, the s-d path satisfies (I)

and (11), where (11) follows from the fact that S(I) does not contain negative

cycles. In the second case we apply Lemma 5 with paths P and P'. Then the

path PI defined In the statement of Lemma 5 satisfies conditions (1) and

(ii), again using the fact that S(t) does not contain negative cycles.

* When (, 1') is not an I back-swap the result is proved in a similar

fashion. r3

Observe that the fact that P joins s to d is unimportant in the proof.

Thus, the statement of the above theorem holds for any path P that contains

the same number of elements from V and V.

Th uL5 Let I be an optimal k-set for problem (Pk1 H), where

SECH. F, and let S() be obtained from B(I) by splitting an artificial element

a into s and d.

•- (I) Problem (Pk' H - a) has no solution if and only if there is no s-d

path in 5(I).

(if) Let P be a shortest s-d path such that every s-d path defined on a

proper subset of its nodes has a strictly larger weight, and let I

S.and I' be the nodes of P in V and V', respectively. (s and d both

give rise to a in 1.) Then I' I - I ' Is an optimal k-set for

problem (PkI H - a).

17

bo. ' -



Proof We first prove (i). If there is an s-d path P such that the set

*I - I I' defined in Theorem 4 Is not feasible, then there exists another s-d

* path going through a proper subset of the nodes of P. Repeating Theorem 4

with this new path, we must eventually find a set I' - I - I + Z which is

feasible for (PkJ H). Since a Is In 1, I'c H - a and, therefore, I' Is also

feasible for (P1H - a). Conversely, assume that (Pk' H - a) has a solution,

say 1', and let I - I - I' and 1I' - 1. Then the I swap (1, Y) induces an s-d

path and possibly a set of disjoint cycles in SOl), as a consequence of
Theorem 1.

Now we prove 0'I). Consider an optimal set 1* for (Pk1 H - a). Define

S - I - I* and S* - 1* - 1. The I swap (S, S*) induces an s-d path, say P*, and

* possibly a set of disjoint cycles In S(O). Since there are no negative cycles

* in SOI), it follows that w(S) - w(S*) w(P*). In addition, w(P*) w(P)=
row( - w( since P is a minimum length s-d path in Suc. So w(t*) K w(F)

since 1* - + S*and Iin I -T1e1e. Also note that I' is feasible In-(PkH)

aby Theorem 4, and, since a is in ., it follows that I is f easible in hoe H - a).

So I is optimal in ueku H -na). 0

Theorem 5 provides the basis for an algorithm. Start with the set
1 10 + A This set is optimal for problem tak1 F) if we assign a large

positive weight to all the artificial elements. Construct 5(I), and then 5()

by splitting some artificial element a of B(I). Find a shortest path P from

the resulting source s to destination d, with the added condition that every

s-d path defined on a proper subset of the nodes of P has a strictly larger
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weight. Then the set I' defined in Theorem 5(01) is an optimal k-set for
I

problem (Pk1 F - a). Repeat this process with I' in place of I, until all the

artificial elements have been split. When this occurs, the resulting k-set is

optimal in (Pk).

Note that this algorithm requires at most k iterations. In fact the

number of iterations is k - 1101 since exactly one artificial element is

removed at each iteration. (if at some iteration I- = I - I' contained at least

one other artificial element b in addition to a, then I" = I + b - e would be a

feasible k-set with larger weight than I' for some element e of I' - A, a

contradiction.)

We now consider the complexity of finding a shortest s-d path with

the required property.

In the first iteration the arc weights in B(Io + A) are all nonnegative.

To see this, consider first an arc (a, f), where a is artificial. Then

w(a, f) w(a) - w(f) > 0 since w(a) has been chosen large enough. Now

consider an arc (e, f), where e is in I0. Since the arc (e, f) occurs in

B(Io + A), the set I + f - e is independent in M1. But then w(e) w(f) since e

has been chosen by the greedy algorithm in the construction of 10. So, again,

w(e, f) 2 0. Finally, when e is not in 10 + A, w(e, f) = 0.

Since all the arc weights are nonnegative In B(Io + A), and thus also in

S(O + A), a shortest s-d path P can be round by Dijkstra's algorithm. Using

the fast implementation of Fredman and Tarjan [19841, the complexity of

this step is at most O(kn + n log n). Furthermore, the restriction that every

19

a_.7 %



path on a subset of the nodelhas a strictly larger weight can be obtained by

adding a very small positive E to all the arc weights of 5 1o + A).

Now we show that nonnegative arc weights in 1(I) can be preserved

throughout the algorithm.

Define a variable D(e) associated with each node of the digraph B(I)

and a reduced weight w'(e, f) - w(e, f) + D(e) - D(f) associated with each arc

of 1(0). In terms of the reduced weights, the length of an s-d path P is

w'(P) = w(P) * D(s) - D(d) since, for any intermediate node e of P, the

variable D(e) cancels out on the two arcs of P that contain e. But D(s) - D(d)

Is a constant that does not depend on P. This means that it is equivalent to

solve the shortest path problem in B(I) with the reduced weights w' instead

of the origina! weights w. The next theorem provides a choice for the

variables D(e) that guarantees nonnegative reduced weights from one

iteration to the next. This result is closely related to Theorem 4 in Glover

[1985].

Theorem 6: Let I be an optimal k-set for problem (Pk1 H) where

EcHs F, and assume that an s-d path exists in 5(I). Set D(e) to be the length

of a shortest s-e path in S(I), for every e in H. Let I' be defined as in

Theorem 5(). Then the reduced weights w(e, f) = w(e, f). D(e) - D(f) are

nonnegative for every arc of the digraph S(').

Proof First we show that the choice of D(e) gives nonnegative

reduced weights on the arcs of S(I). Consider f in H. Since D(f) is the length

of a shortest s-f path, we must have D(f) i D(e) w(e, f) for every e in H

such that (e, f) is an arc of S(). This proves the result for S(I).

20
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Let P be the shortest s-d path that gives rise to r in Theorem 5(),

and let Pi be a subpath of P from s to some node ei. Consider the I matching

m(XiIM, II'(i)) induced by the arcs of Pi going from V to V and the I back-

matching mb(2(), 12'(1)) induced by the arcs of Pi going from V to V. The

elements of these two matchings induce subpaths of P. By Theorem 4,

I i(i) - I - II(i) + II'(i) and 12 (i) - I - 12 (i) + 2'(i) are feasible. (The

statement of Theorem 4 holds for any path P that contains the same number

of elements from V and V', as was already observed.)

We construct a digraph Ni as follows. The nodes of Ni are the same as

those of S(I). If (e, e') is an I I(i) swap, then (e, e') is an arc of Ni; and if

(e, e') is an 12(i) back-swap, then (e, e) is an arc of N1. Note that Ni is not

bipartite in general.

We will show that the choice of D(e) gives nonnegative reduced

weights on the arcs of N1. This Is done by Induction on the nodes of P,

starting from el = s. Note that when we reach e1 = d, we will have Ni = S'),

and the theorem will be proved.

When e1 = s, we have N, = S(I), and the result has been proved above.

Now let e1 be a node of P for which the result holds, and let ej be the node

following e1 on the path P. There are two possibilities: eiE V and ejc V, or

ej' V and eje. V.

First suppose that el is in V and ej is in V'. Then 12 (j) = 12(i) and,

therefore, the arcs that arise from 120) back-swaps in Nj are the same as
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those in N1. Thus, they have nonnegative reduced weights by the induction

hypothesis. On the other hand, II(j) = I I(i) - el + ej. Since the arc (ei, ej) is

on the shortest s-d path P, we have the following equation:

D(ej) - D(e1) + w(e1) - w(ej). (*)

Consider any arc (ep, eq) that is an I 1(j) swap, but not an I I(1) swap. So

SI*= I1(j)-ep +eq= i)- ep + eq - e+ej is independent in the first

matroid.

If (ep, eq) = (ej, ed), then w(ep) - w(eq) + D(ep) - D(eq) =O, as a

consequence or equation (*).

If ep = ej and eq = ei , then (ei, eq) is an I 1(i) swap. Therefore,

w(e i) - w(eq) + D(e) - D(eq) 10 by Induction. Combining this Inequality

with (M) we get W(ep) - W(eq) + D(ep) - D(eq) 2 0.

A similar arguement applies when ep = ej and eq = ei .

Finally, suppose e p ej and eq el. Since (ep, eq) is not an If(i)

swap, yet I* is Independent In the first matroid, It follows from Lemmas 2

and 3 that both (ep,ej) and (el, eq) are I I(i) swaps. This gives the two

inequalities
w(ep) - w(ej)+ D(ep) - D(ej) .O and w(e !) - w(eq). D(e1) - D(eq) 0.

Summing and using (*) we get W(ep) - W(eq) D(ep) - D(eq) 0. This

completes the proof when e1 Is in V and ej is in V.

Now suppose that e 1 is In V, and ej Is In V. Then I i(J) =1 (1), and,
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therefore, the arcs of Nj that arise from I (J) swaps have nonnegative

reduced weights. On the other hand, 12(j) = 12(1) - ej + et. Since (et , ej) is

on the shortest s-d path P, we have the equation

D(e1) - D(ej). (**)

Consider any arc (ep, eq) that is an 12 (j) back-swap but not an 12(i)

back-swap.

If (ep, eq) = (ej, el), then the reduced weight of arc (ep, eq) is

D(e (eq) = 0 as a consequence of (*).

If e = ej and eq e i , then (ei , eq) is an 12() back-swap. Therefore,

its reduced weight satisfies (e i) - D(eq) 2 0 by Induction. This and

equation (**) show that D(e) - D(eq) 2 0. The proof is similar when ep = ej

and eq = el.

Finally, if ep ej and e, - e i , it follows from Lemmas 2 and 3 that

(ep. ej) and (e1, eq) are 12(i) back-swaps. Thus, D(ep) - D(ej) 1 0 and

D(e) - D(eq) 0 by induction. Using (*) once more, we get D(ep) - D(eq) 0.

Thus, the reduced weights of all the arcs of Nj are nonnegative. 0

The variables D(e) needed in Theorem 6 to guarantee nonnegative

reduced arc weights are actually computed in the course of finding a

shortest s-d path in 5(I). Thus no extra computations are needed. We

summarize the complexity of the algorithm: O(k) iterations and, In each

iteration, time O(nc) for constructing S(1) and time O(nk n log n) for
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finding a shortest s-d path and updating the variables D(e). Therefore, the

overall complexity of the algorithm is O(nk(k + c + log n)).

The algorithm provides an optimum solution to (Pk1 H) for every

E-s H- cF. In terms of the initial set E, this means that we have an optimum

solution of (Ph) for every h k. Therefore, by putting k = r, the algorithm

can be used to solve the weighted matroid intersection problem. It suffices

to keep the best solution generated in the course of the algorithm.

In this section our motivation for introducing k - Io0 artificial

elements with large positive weights was to capitalize on the results of

Section 3. However, in practice, the construction of S(l) can be simplified

by adding only one artificial source node s and one artificial sink node d to

B(I) at each iteration. The arcs (ei , ej') can be removed from S(I) if I + ej' is

independent in M1 for any el in I. The reason for this is that a shortest s-d

path would go directly from s to ef as a consequence of the existence of

nonnegative reduced weights. Similarly, the arcs (ej', e) can be removed if

I + e is independent In M2 , for any ei in I, as a shortest s-d path would go3
* directly from ej' to d. To sum up, our algorithm can be applied to Lawler's

border graph with an added source node s joined to every node ej in E - I

such that I + ej' is independent in MI, and a destination node d joined to. 3

every node ej' such that I + ej' is independent in M2 . The goal is the same at

each Iteration as in Lawler's primal algorithm. The increased efficiency of

our algorithm can be attributed to the use of nonnegative reduced weights in

the search for shortest paths.
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