	AD-A1	56 463	USE	e of ti R an ai	HE WAY		R TEC	HNIQUE	WITH L POST	THE LI GRADU	LOYDS Ate sci	HIRROR	1/	2	
"	UNCLAS	SSIFIE	D	TERET	UN F	DKIN		00			F/G :	17/1	NL		
					<u>—</u> —								L		
														Ī	i
									}		 				
															- 57
															·
													*		
												1			
												،			
											×				
-								_							

NATIONAL BUREAU OF STANDARDS

15. 15. k.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER	D. 3. RECIPIENT'S CATALOG NUMBER
(AD-A157-	163
TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
Use of the Wavenumber Technique With the	Master's Thesis
Lloyds Mirror For an Acoustic Doublet	March 1985
	6. PERFORMING ORG, REPORT NUMBER
AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(+)
Portia Baird King	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Naval Postgraduate School	AREA & WORK UNIT NUMBERS
Monterey, California 93943	
. CONTROLLING OFFICE NAME AND ADDRESS	March 1985
Naval Postgraduate School	13. NUMBER OF PAGES
Monterey, California 93943	112
4. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)
	154. DECLASSIFICATION DOWNGRADING
	JOHEDGEE
Approved for Public Release; Distribution . Distribution Statement (of the ebetract entered in Block 20, if different in	n is Unlimited.
8. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different i	n is Unlimited.
5. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different i 5. SUPPLEMENTARY NOTES	n is Unlimited.
8. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different i 8. SUPPLEMENTARY NOTES	n is Unlimited.
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release; Distribution DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different i SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number	n is Unlimited.
Approved for Public Release; Distribution Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different is 8. SUPPLEMENTARY NOTES 1. KEY WORDS (Continue on reverse eide if necessary and identify by block number 1. Loyds Mirror Hunderwater Acoustics 'East	n is Unlimited. rem Report) '') Fourier Transform '
Approved for Public Release; Distribution Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different is 8. SUPPLEMENTARY NOTES 1. KEY WORDS (Continue on reverse eide if necessary and identify by block number Lloyds Mirror; Underwater Acoustics; Fast Wayenumber Technique' Pressure Spectrum Science	n is Unlimited. rom Report) "" Fourier Transform; purce Depth Determination
Approved for Public Release; Distribution Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different i 8. SUPPLEMENTARY NOTES 1. KEY WORDS (Continue on reverse eide If necessary and identify by block number Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique; Pressure Spectrum; Sc Acoustic Propagation; ASW, Isospeed Environ	n is Unlimited. rom Report) ") Fourier Transform, ource Depth Determination
Approved for Public Release; Distribution Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in b. SUPPLEMENTARY NOTES Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique', Pressure Spectrum; Sc Acoustic Propagation; ASW, Isospeed Environ	n is Unlimited. rom Report) ") Fourier Transform; purce Depth Determinatio nment; Name
Approved for Public Release; Distribution Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different if 8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 1. SUPPLEMENTARY NOTES 1. ABSTRACT (Continue on reverse side if necessary and identify by block number Acoustic Propagation; ASW, Isospeed Environ	n is Unlimited. room Report) Fourier Transform; ource Depth Determinatio nment; Acada Science, K
Approved for Public Release; Distribution Approved for Public Release; Distribution Distribution Statement (of the obstract entered in Block 20, if different is Supplementary notes Key WORDS (Continue on reverse eide II necessary and identify by block number Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique', Pressure Spectrum; So Acoustic Propagation; ASW, Isospeed Environ This thesis examines a method to determine	n is Unlimited. rom Report) ") Fourier Transform, ource Depth Determination ment, Annual State ne the depth of a point
Approved for Public Release; Distribution Approved for Public Release; Distribution Distribution Statement (of the obstract entered in Block 20, 11 different i Supplementary notes Supplementary notes Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique, Pressure Spectrum; So Acoustic Propagation; ASW, Isospeed Environ This thesis examines a method to determines Source in an isospeed ocean environment.	n is Unlimited. rom Report) Fourier Transform, ource Depth Determination ment, Action Content Using the Fourier Trans
Approved for Public Release; Distribution Approved for Public Release; Distribution T. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different is Supplementary notes Supplementary notes Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique', Pressure Spectrum; Sc Acoustic Propagation; ASW, Isospeed Environ ABSTRACT (Continue on reverse elde If necessary and identify by block number This thesis examines a method to determine source in an isospeed ocean environment.	n is Unlimited. rem Report) Fourier Transform, burce Depth Determination ment, Annual Statement, Statement
Approved for Public Release; Distribution Approved for Public Release; Distribution 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different i 8. SUPPLEMENTARY NOTES 1. KEY WORDS (Continue on reverse olds II necessary and Identify by block number Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique', Pressure Spectrum, Sc Acoustic Propagation; ASW, Isospeed Environ 7. ABSTRACT (Continue on reverse olds II necessary and Identify by block number This thesis examines a method to determine source in an isospeed ocean environment. form on the acoustic pressure field in to in the attainment of the acoustic pressure foodal	n is Unlimited. The Report) Fourier Transform; burce Depth Determination ment; have a sport Using the Fourier Trans he range domain results re spectrum in the wave- spacing unique to the
Approved for Public Release; Distribution Approved for Public Release; Distribution DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different is Supplementary notes Supplementary notes Supplementary notes ABSTRACT (Continue on reverse elde If necessary and identify by block number Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique', Pressure Spectrum; So Acoustic Propagation; ASW, Isospeed Environ ABSTRACT (Continue on reverse elde If necessary and identify by block number This thesis examines a method to determine source in an isospeed ocean environment. form on the acoustic pressure field in to in the attainment of the acoustic pressure number domain and a characteristic nodal source-receiver depths. Ouantitative examines and the stain of the acoustic pressure	n is Unlimited.
Approved for Public Release; Distribution Approved for Public Release; Distribution DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different is Supplementary notes Supplementary notes Supplementary notes Assure the formation of reverse olde If necessary and identify by block number Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique', Pressure Spectrum; Sc Acoustic Propagation; ASW, Isospeed Environ This thesis examines a method to determine source in an isospeed ocean environment. form on the acoustic pressure field in to in the attainment of the acoustic pressure number domain and a characteristic nodal source-receiver depths. Quantitative examples of simple method to formation and the simple method to formation of the spectrum and use of simple method to formation of the simple method to formation formation of the spectrum and use of simple method to formation formation and a characteristic nodal	" Fourier Transform; ource Depth Determination ment; the depth of a point Using the Fourier Trans he range domain results re spectrum in the wave- spacing unique to the mination of a magnitude athematical formulae
Approved for Public Release; Distribution Approved for Public Release; Distribution DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different i B. SUPPLEMENTARY NOTES Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique', Pressure Spectrum; Sc Acoustic Propagation; ASW, Isospeed Environ This thesis examines a method to determin source in an isospeed ocean environment. form on the acoustic pressure field in t in the attainment of the acoustic pressu number domain and a characteristic nodal source-receiver depths. Quantitative exampled the source depth. The debilitative	n is Unlimited. The Report) Fourier Transform, burce Depth Determination ment, have a spectrum of a point Using the Fourier Trans the range domain results re spectrum in the wave- spacing unique to the mination of a magnitude athematical formulae effects of narrowband ,
Approved for Public Release; Distribution Approved for Public Release; Distribution Distribution Statement (of the obstract entered in Block 20, if different in B. SUPPLEMENTARY NOTES B. SUPPLEMENTARY NOTES Distribution on reverse side If necessary and identify by block number Lloyds Mirror; Underwater Acoustics; Fast Wavenumber Technique', Pressure Spectrum; Si Acoustic Propagation; ASW, Isospeed Environ This thesis examines a method to determine Source in an isospeed ocean environment. form on the acoustic pressure field in the in the attainment of the acoustic pressure number domain and a characteristic nodal source-receiver depths. Quantitative exampled the source depth. The debilitative D form 1473 1473 EDITION OF 1 NOV 65 IS OBSOLETE	n is Unlimited. The seport) Fourier Transform; ource Depth Determination ment; the the depth of a point Using the Fourier Trans he range domain results re spectrum in the wave- spacing unique to the mination of a magnitude athematical formulae effects of narrowband UNCLASSIFIED

-

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

noise and surface roughness on the pressure spectrum are also examined. The pressure spectrum is recognizable in noise after the pressure field in the range domain has been lost in the noise field. The effect of surface gravity waves on the pressure spectrum is similar to that on the pressure field in the range domain: the characteristic nodal spacing is suppressed as the height of the surface waves increases.

(-ficht)

٩

5 N 0102- LF- 014- 6601

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

Approved for public release; distribution is unlimited.

Use of the Wavenumber Technique With the Lloyds Mirror For an Acoustic Doublet

by

Portia B. King Lieutenant Commander, United States Navy B.S., Louisiana State University in New Orleans, 1971

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY (Antisubmarine Warfare)

from the

NAVAL POSTGRADUATE SCHOOL March 1985

Dist Author: Approved by: Β. Coppens, Thesis Advisor Dup esis Ad Yan R. N. Forrest, Chairman, Antisubmarine Warfare Academic Group David A. Schrady, Academic Dean 3

ABSTRACT

This thesis examines a method to determine the depth of a point source in an isospeed ocean environment. Using the Fourier Transform on the acoustic pressure field in the range domain results in the attainment of the acoustic pressure spectrum in the wavenumber domain and a characteristic nodal spacing unique to the source-receiver depths. Quantitative examination of a magnitude plot of the spectrum and use of simple mathematical formulae yield the scurce depth. The debilitative effects of narrowband noise and surface roughness on the pressure spectrum are also examined. The pressure spectrum is recognizable in noise after the pressure field in the range domain has been lost in the The effect of surface gravity waves on the noise field. pressure spectrum is similar to that on the pressure field in the range domain: the characteristic nodal spacing is suppressed as the height of the surface waves increases.

TABLE OF CONTENTS

I.	HISTORY AND INTRODUCTION	ŧ
II.	THEORY	3
	A. THE LLOYDS MIRROR PHENOMENON	3
	B. THE RELATIONSHIP BETWEEN K, γ , and eta 20)
	C. THE WAVENUMBER TECHNIQUE AND THE LLOYDS	
	MIRROR)
	D. THE EFFECTS OF SURFACE ROUGHNESS	7
	E. THE EFFECT OF ADDING NOISE	3
III.	RESULTS AND CONCLUSIONS	3
	A. THE FFT ALGORITHM	3
	B. SOURCE DEPTH DETERMINATION	3
	C. THE EFFECT OF SURFACE ROUGHNESS	2
	D. THE EFFECT OF NOISE	3
	E. SUMMATION	÷
APPENDI	X A: LLOYDS MIRROR PRESSURE FIELD SOURCE CODE 93	3
LIST OF	REFERENCES)
BIBLIOG	RAPHY)
INTTIAL.	DISTRIBUTION LIST 111	ı

LIST OF TABLES

I	Critical Values Used in the Research	•	•	•	•	34
II	Results of Source Depth Determination Runs	•	•	•	•	39

LIST OF FIGURES

7

â

1

2.1	The Geometry of the Lloyds Mirror Effect 30
2.2	A Classic P(R) vs. R Curve
2.3	The Relationship Between K, γ and eta
3.1	Pressure Spectrum Using FFT2C
3.2	Pressure Spectrum Using FFTCC
3.3	Pressure Spectrum Jsing Cooley-Tukey FTT 48
3.4	Non-smoothed Pressure Field
3.5	Pressure Spectrum Showing Gibbs Phenomenon 50
3.6	Pressure Field Combined With a Hanning Window 51
3.7	Pressure Spectrum Combined With a Hanning
	Window
3.8	Theoretical Source Depth Determination Curve 53
3.9	Graph of Pressure Spectrum, Source at 22.0
	Meters
3.10	Graph of Pressure Spectrum, Source at 31.4
	Meters
3.11	Graph of Pressure Spectrum, Source at 15.7
	Meters
3.12	Graph of Pressure Spectrum, Receiver at 22.0
	Meters
3.13	Graph of Pressure Spectrum, Receiver at 31.4
	Meters
3.14	Graph of Pressure Spectrum, Receiver at 15.7
	Meters
3.15	Pressure Spectrum, Range Window Set at 47.1
	Meters
3.16	Pressure Spectrum, Range Window Set at 50.3
	Meters

3.17	Pressure Spectrum, Range Findow Set at 62.8	
	Meters	2
3.18	Pressure Spectrum, Sea State 0	3
3.19	Pressure Spectrum, Sea State 2 64	ł
3.20	Pressure Spectrum, Sea State 3 65	5
3.21	Pressure Spectrum, Sea State 5	5
3.22	Pressure Spectrum, Sea State 0, K = 1.0 67	1
3.23	Pressure Spectrum, Sea State 3, K = 1.0 68	3
3.24	Pressure Spectrum, Sea State 0, K = 2.0 69	9
3.25	Pressure Spectrum, Sea State 3, K = 2.0)
3.26	Pressure Spectrum, SS 2, Range Window Set at 50	
	Meters	Į
3.27	Pressure Spectrum, SS 2, Ranje Window Set at	
	100 Meters)
3.28	Pressure Spectrum, SS 2, Range Window Set at	
	200 Meters	2
3.29	Pressure Spectrum, SS 2, Range Window Set at	
	300 Meters	ł
3.30	Pressure Field, K = 1.0, μ = 0.005	5
3.31	Pressure Spectrum vs. Gamma	j
3.32	Pressure Spectrum vs. Beta	1
3.33	Pressure Field, K = 1.0, μ = 0.01	3
3.34	Pressure Spectrum vs. Gamma)
3.35	Pressure Spectrum vs. Beta 80)
3.36	Pressure Field, K = 2.0, μ = 0.0001 81	J
3.37	Pressure Spectrum vs. Gamma 82)
3.38	Pressure Spectrum vs. Beta	}
3.39	Pressure Field, K = 2.0, μ = 0.001	ŀ
3.40	Pressure Spectrum vs. Gamma	;
3.41	Pressure Spectrum vs. Beta 86	5
3.42	Pressure Field, K = 2.0, μ = 0.005	,
3.43	Pressure Spectrum vs. Gamma	3
3.44	Pressure Spectrum vs. Beta)

•

3.45	Pressure	Field, K	= 2.	0, µ	=	0.	01	l	•	•	٠	•	•	•	•	٠	90
3.46	Pressure	Spectrum	vs.	Gamma	•	•	٠	•	•	•	•	•	•	•	•	•	91
3.47	Pressure	Spectrum	vs.	Beta	•	•	•	•	•	•	•	•	•	•	•	٠	92

LIST OF SYMBOLS

Ţ

A	Amplitude
с	Sound Speed
e	2.718281828
FFT	Fast Fourier Transform
FFT -/	Inverse Fast Fourier Transform
f	Frequency
ţ(r)	Generic Function of Range
$\mathfrak{L}(\gamma)$	Spectral Density of $f(r)$
Ho	Hankel Function
i	Square Root of -1
J.	Bessel Function of the First Kind
k	Wavenum ber
M	Surface Roughness Factor
m	Index of Calculations or Null Number in the Range Dcmain
N	Number of Points in the Wavenumber Spectrum

n	Index of Calculations or Null Number in the Wavenumber Spectrum
n ~	Complex Narrcwband Noise Field
₽~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Time Independent Factor of Complex Pressure
D.	Ccmplex Pressure of the Source
₽i	Complex Pressure of the Reflection
₽ _N	Complex Pressure in the Presence of Noise
P(k)	Pressure Field in the Wavenumber Spectrum
Ð	Time Dependent Factor of Complex Pressure
R	Distance of the Direct Wave Path
R ₂	Distance to the Image (Reflected Path)
RCVR	Receiver
r	Range Between Source and Receiver
SRC	Source
t	time factor
W	Hanning Window
Y.	Bessel Function of the Second Kind
Zs	Source Depth

Z _F	Receiver Depth
Δr	Range Increment
β	Vertical Component of the Wavenumber
Δeta	Vertical Wavenumber Increment
γ	Horizontal Component of the Wavenumber
$ riangle \gamma$	Horizontal Wavenumber Increment
θ	Angle of Grazing Incidence at the Surface
λ	Wavelen gth
π	3.14159265
arphi	Phase Angle
$\psi_{\!_{R}}$	Surface Reflection Coefficient
ω	Angular Frequency
	Square Root Operator
ſ	Integration Operator

ACKNOWLEDGEMENTS

Contrary to popular opinion, this part of the thesis was the hardest to write because, for several reasons, it is the most important part of this entire undertaking. I encountered many difficulties during the course of this research; solutions to all the myriad problems were found eventually. Let me express heartfelt gratitude for the help and guidance of three experts in the field of acoustics: Dr. Α. Ε. Coppens, Dr. T. Gabrielson, and Dr. Suk Wang Yoon, for the support of Professor C. R. Dunlap, for the help of Dr. DeWayne White of N.O.R.D.A in understanding the FFT, and the relatively minor but ever-so-important helpful hints and good wishes of my peers and fellow officers in the class of Most of the mathematics and much of the direction IX-33. for the research came from Professors Coppens and Gabrielson. Indeed, this thesis would not have been written without Professor Coppens' patience and leadership. Each person played a role, whether major or minor, in getting this thesis done. Without them, this paper would remain just another unfulfilled wish.

And, last but not least, I wish to thank a very special person for his support, cajolery, laughter, faith and other expressions of his love for me - my husband, Dr. David Benton King. Whenever I look back at what went intc the writing of this paper, I shall always remember that I met him for the first time at the start of all the research that I shall also remember that, if has gone into it. I had never come to the Naval Postgraduate School, I would never And for that, I shall always be grateful to have met him. the United States Navy.

I. HISTORY AND INTRODUCTION

This thesis is the third in a series of investigations into a proposal put forth by R. Lauer of Naval Underwater Systems Center, New London, CT, in 1979. In his memorandum [Ref. 1], Lauer describes a "new" way to analyze sound propagation in the ocean and two applications of the method, which he named the "Wavenumber Technique," or F.T. In his proposal, Lauer stated that a source of sound in the ocean could be pinpointed in both depth and range by a single omnidirectional hydrophone provided the source is generating a continuous wave tone.

The W.T. was initially described by F. DiNapoli [Ref. 2] as an intermediary step in his development of a speedier computer algorithm used in analyzing sound propagation as a function of range. EiNapoli and Lauer proposed converting the pressure as a function of range $\underline{P}(r)$ to the pressure spectrum as a function of the wavenumber $\underline{P}(k)$. The conversion is accomplished by taking a weighted Fourier transform of the pressure field $\underline{P}(r)$. Once the pressure spectrum is obtained, analysis of the pressure field can be accomplished in a manner analogous to that presently used in signal processing.

Lauer proposed two uses for his "Wavenumber Technique:"

- determination of the depth of the acoustic source, an ability which has obvious tactical applications;
- 2. use of the W.I. to evaluate the accuracy of existing, and future, acoustic models such as P.E. and F.A.C.T., by breaking the generated pressure field down into ray path "families," such as bottom-bounce, refracted-surface-reflected, and surface-ducted families, thus giving a quantitative read-out of what

proportion of the total accustic energy is being channelled through the various ray paths.

For both uses, a knowledge of the acoustic environment is necessary.

It is the intended purpose of this thesis to investigate the validity of the first application of Lauer's wavenumber technique by using it in conjunction with an acoustic phenomenon that is well-known and for which accurate results can be calculated with precision; this phenomenon is the LLoyds Mirror for an Acoustic Doublet. Using several source/receiver combinations, this investigator intends to compare actual source depth with that predicted by the W.T. If Lauer's technique is cogent, the source depths calculated via the two methods should be equal, or very close within a statistically acceptable degree.

As mentioned in the beginning of this thesis, two prior Stamey and J. Blanchard, looked into investigators, B. applying the W.T. to determining source depth. Starey's investigation [Ref. 3] utilized a parabolic equation computer model developed by H.K. Brock, the Split Step Fast Fourier Transform, or SSFFT, to generate the pressure He qualitatively compared the model to a Normal fields. Mode model and a P. E. Finite Difference model, both range dependent, and to DiNapoli's Fast Field Program model, a range independent model. Stamey concluded that the W.T. showed promise as an analysis tool and that further investigations were warranted.

J. Blanchard carried Stamey's researches one step further [Ref. 4]. Using two Parabolic Equation computer algorithms, Brock's Split Step Fast Fourier Transform and Jaeger's Implicit Finite Difference, as his pressure field generators, he examined the use of the spacing between nulls of the pressure spectrum to determine source depth. His results are interesting and support the need for further investigation.

The author was not satisfied with Stamey's and Blanchard's findings. Both individuals acknowledged shortcomings in their respective studies, especially with regard to the mutual presence of the "U-shaped phenomenon" encountered in the pressure spectrum. One should remember. however, that their theses were preliminary studies only and were produced within a highly restricted time frame. Also, they used existing computer algorithms specifically designed to approximate acoustic propagation in a velocity-variant medium. However, the environmental settings used by both gentlemen were that of the Lloyds Mirror for an Accustic Doublet which requires a constant sound speed throughout the water column: thus, the approximations, assumptions and "fudge factors" used by these models make their results for an isospeed medium highly artificial and somewhat suspect. Fortunately, however, there exists for the Lloyds Mirror a geometric solution specifically designed for an simple, isospeed environment [Ref. 5]. Since the pressure fields for varying source and receiver depths and, therefore, the corresponding pressure spectra, can be precisely calculated, it was thought this model would be a good check on the operational applicability of Lauer's proposed technique.

Secondary considerations of this study were to examine what effect, if any, the introductions of, firstly, surface waves and, secondly, noise would have on the pressure spec-The first objective was trum. simulated by use of mathematical formulae given in reference 5; for the second objective, it was thought that complex noise, random in both amplitude and phase and similar to a Rician distribution [Ref. 6: p. 189], would provide a simple but reasonable approximation of an ocean noise field. This investigator intends to gradually intensify the surface waves and the noise field, separately, until the original pressure spectrum is no longer recognizable. In this manner, it should

be possible to make a qualitative assessment of their respective debilitating effects under the carefully controlled conditions found in the Lloyds Mirror phenomenon.

Section II sets forth in more detail the theoretical development of each point described in this introduction. Section III summarizes the investigator's results and the conclusions drawn from those results. Section IV contains a listing of the computer algorithms utilized.

II. THEORY

This chapter presents the mathematical basis of the wavenumber technique.

A. THE LLOYDS MIRROR PHENOMENON

A diverging mcnofrequency spherical pressure wave [Ref. 5: p.112] can be written in complex form as

$$p(R,t) = P(R)e^{-i\omega t} = \frac{A}{R}e^{i(kR-\omega t)} \qquad (\text{egn 2.1})$$

where $\underline{P}(R)$ is the spatial factor. Referring to Figure 2.1, R_i is the range from the source to the receiver and R_2 is the range from the image to the receiver. For convenience in all that follows, we shall set A to unit magnitude. The following equations apply to the acoustic waves propagating directly out from the source \underline{P}_s and from the apparent image \underline{P}_i (which is actually the wave reflected from the surface):

$$\mathcal{P}_{s}(R_{s}t) = \mathcal{P}_{s}(R)e^{-i\omega t} = \frac{1}{R_{l}}e^{i(kR_{l}-\omega t)}$$

$$\mathcal{P}_{i}(R_{s}t) = \mathcal{P}_{i}(R)e^{-i\omega t} = \frac{-1}{R_{2}}e^{i(kR_{2}-\omega t)} \qquad (\text{egn 2.2})$$

where \underline{P}_{s} , \underline{P}_{s} , and \underline{F}_{i} are complex functions of horizontal range r,vertical depth Z and time t; the minus sign in the equation for \underline{P}_{i} is derived from the surface reflection coefficient, $\psi_{R} = -1$, for a smooth surface. Inspection of Figure 2.1 reveals that

$$R_{I} = \sqrt{(Z_{r} - Z_{s})^{2} + r^{2}}, \quad R_{2} = \sqrt{(Z_{r} + Z_{s})^{2} + r^{2}},$$

REFRODUCED AT GOVERNMENT TYPENSE

and
$$\Delta r = \left| R - R_{l,2} \right|$$

And so the total field can be written as

$$P_{s} - P_{c} = \mathcal{P}(R)e^{-i\omega t} = \frac{e^{i(kR_{1} - \omega t)}}{R_{1}} - \frac{e^{i(kR_{2} - \omega t)}}{R_{2}}$$
 (eqn 2.3)

Since P_s and P_i both have the same time factor, exp(-iwt), we can retain just the spatial factors and equations 2.3 reduce to

$$P(R) = \left[\frac{e^{ikR_i}}{R_i} - \frac{e^{ikR_2}}{R_2}\right]$$
(eqn 2.4)

Equation 2.4 is a form of the complex pressure as a function of range used in the computer algorithm shown in Appendix I.

Inspection of Figure 2.1 reveals that, for $R >> Z_s$ and θ very small,

 $r \approx R$

or

$$\sin \theta \approx \frac{z_r}{R}$$

or

$$\Delta r \approx \frac{Z_r Z_s}{R}$$

(eqn 2.5)

and the pressure amplitude can be approximated by

$$P(R) \approx \frac{2}{R} \left| sin\left(\frac{kZ_r Z_s}{R}\right) \right| \qquad (eqn 2.6)$$

Looking at just the formula for the pressure amplitude, we can see that as

REPRODUCED AT GOVERNHENT ' YPENSE

$$\begin{pmatrix} k & Z_r Z_s \\ R \end{pmatrix} \longrightarrow n\pi , \quad n=0,1,2,3,\dots$$
 (eqn 2.7)

the pressure amplitude goes to zero, producing the classic |P(R)| vs R curve shown in Figure 2.2

B. THE RELATIONSHIP EETWEEN K, γ , and β

In his description of the Wavenumber Technique [Ref. 1: p. 5-6], Lauer utilizes the horizontal and vertical components of the wavenumber, k. The general relationship amoung these three terms is illustrated in Figure 2.3 and can be written mathematically as

k = the wavenumber = $2\pi f/c$ γ = the horizontal component of k = k cos φ β = the vertical component of k = k sin φ

 $k = \sqrt{\gamma^2 + \beta^2}$

or

(egn 2.8)

C. THE WAVENUMBER TECHNIQUE AND THE LLOYDS MIRROR

Given a point source in free space, the monofrequency pressure field at the receiver, P(R), can be expressed as a spherical wave (time factor suppressed),

REPRODUCED AT GOVERNMENT EXPENSE

(egn 2.9)

$$\mathcal{L}(R) = \frac{e^{ikR}}{R}$$

 $R^2 = r^2 + Z_r^2$, for $Z_r > Z_s$

where, from Figure 2.1,

οτ

 $R^2 = r^2 + Z_s^2$, for $Z_r < Z_s$ (eqn 2.10)

In integral form, P(R) can be written as [Ref. 7: p. 127]

$$\underline{P}(R) = \frac{e^{ikR}}{R} = \int_0^\infty \frac{J_{\bullet}(\gamma r) e^{\pm i\beta |z_r - z_s|}}{i\beta} \gamma d\gamma \quad (\text{eqn 2.11})$$

which is taken from the Fourier-Bessel Transform Pair [Ref. 7: p. 126],

$$f(r) = \int_0^\infty g(\gamma) J_0(\gamma r) \gamma d\gamma$$

$$g(\gamma) = \int_0^\infty f(r) J_{\bullet}(\gamma r) r \, dr \qquad (\text{eqn 2.12})$$

where f(r) represents the acoustic pressure function in the range domain, and $g(\gamma)$ is the acoustic pressure spectrum in the wavenumber domain. The sign of the exponential function in the integral is based on which of Z_s and Z_r is greater. For the case of receiver depth being greater than source depth so that waves from both image and source are travelling downward at the receiver depth, the total pressure at the receiver can be expressed as

$$\mathcal{P}(R) = \int_{0}^{\infty} \frac{e^{i\beta(z_r-z_s)} - e^{i\beta(z_r+z_s)}}{i\beta} J_{\bullet}(\gamma r)\gamma d\gamma \quad (\text{egn 2.13})$$

Use of Euler's Identity reduces Equation 2.13 to

$$\mathcal{L}(R) = -2 \int_{0}^{\infty} \frac{e^{i\beta z_{r}} \sin(\beta z_{s})}{\beta} J_{o}(\gamma r) \gamma d\gamma \qquad (\text{egn 2.14})$$

Using the relationship between the Hankel functions [Ref. 5: p. 449],

and

.

7

$$H_{o}^{(1)}(\gamma r) = J_{o}(\gamma r) + iY_{o}(\gamma r)$$

$$H_{o}^{(2)}(\gamma r) = J_{o}(\gamma r) - Y_{o}(\gamma r)$$
(eqn 2.15)

one can re-write the Eessel function in equation 2.14 as

$$J_{o}(\gamma r) = \frac{1}{2} \left[H_{o}^{(1)}(\gamma r) + H_{o}^{(2)}(\gamma r) \right] \qquad (eqn \ 2.16)$$

so that

$$2q(\gamma) = \int_{0}^{\infty} f(r) H_{0}^{(1)}(\gamma r) r dr + \int_{0}^{\infty} f(r) H_{0}^{(2)}(\gamma r) r dr \quad (\text{eqn } 2.17)$$

Letting $r^{*} = -r$ and looking at the second term on the right hand side of equation 2.17,

$$\int_{0}^{-\infty} f(-r') H_{0}^{(2)}(-\gamma r') r' dr' = \int_{-\infty}^{0} f(-r) H_{0}^{(1)}(\gamma r) r dr \qquad (\text{eqn } 2.18)$$

Now, assuming that $f(r) = \int_{N}^{r} (-r)$, then

$$2\underline{q}(\gamma) = \int_{-\infty}^{\infty} \underline{f}(r) H_{\bullet}^{(1)}(\gamma r) r dr \qquad (\text{egn } 2.19)$$

Therefore,

$$P(R) = -\int_{-\infty}^{\infty} \frac{\gamma H_{\bullet}^{(l)}(\gamma r)}{\beta} e^{i\beta z_{r}} \sin(\beta z_{s}) d\gamma \qquad (\text{egn } 2.20)$$

For $\gamma r > 2\pi$, the asymptotic approximation of the Hankel function for large argument can be used:

$$H_{\bullet}^{(\prime)}(\gamma r) \approx \sqrt{\frac{2}{\pi \gamma r}} e^{i(\gamma r - \frac{\pi}{4})}$$
 (eqn 2.21)

assuming |r f(r)| goes to zero faster than (ln r),

$$\mathcal{P}(R) \approx -\sqrt{\frac{2}{\pi r}} e^{-i\frac{\pi}{4}} \int_{-\infty}^{\infty} \left[\frac{\sqrt{\gamma}}{\beta} e^{i\beta z_r} \sin(\beta z_s) \right] e^{i\gamma r} d\gamma \ (\text{eqn 2.22})$$

Let the terms inside the brackets in equation 2.22 be defined as $g(\gamma)$, then

$$P(R) = -\sqrt{\frac{2}{\pi r}} e^{-i\frac{\pi}{4}} \int_{-\infty}^{\infty} g(\gamma) e^{i\gamma r} d\gamma$$

anđ

6

.

$$\int_{-\infty}^{\infty} g(\gamma) e^{i\gamma r} d\gamma = -\sqrt{\frac{\pi r}{2}} \sqrt{r} \mathcal{L}(R) \quad (\text{egn } 2.23)$$

or, using equation 2.12,

$$\mathcal{L}(\gamma) = -\left[e^{i\frac{\pi}{4}}\right]\sqrt{\frac{\pi}{2}}\frac{i}{2\pi}\int_{-\infty}^{\infty}\sqrt{r}\mathcal{L}(R)e^{-i\gamma r}dr \quad (\text{eqn } 2.24)$$

Note that equation 2.24 has the form of the Fourier transform of the pressure function if we define

$$f(r) \equiv \sqrt{r} P(R) \qquad (\text{eqn } 2.25)$$

so that $\sqrt{r} \mathcal{B}(R)$ and $\mathcal{G}(\gamma)$ are Fourier Transform pairs. This equation can be easily evaluated [Ref. 8],

$$g(\gamma) = -\left[e^{i\frac{\pi}{4}}\right] \frac{1}{\sqrt{2\pi}} \left[\frac{\sqrt{\gamma}}{\beta} e^{i\beta z_r} \sin(\beta z_s)\right]$$
(eqn 2.26)

for $z_{\gamma} > z_{S}$. And the magnitude of $g(\gamma)$ is

$$|g(\gamma)| = \frac{\sqrt{\gamma}}{\beta} \sin(\beta z_s)$$
 (eqn 2.27)

DULLED AT GOVERNMENT SYPENSE

For the case where $Z_S > Z_F$, it can be shown that

$$g(\gamma) = -\frac{e^{i\frac{\pi}{4}}}{\sqrt{2\pi}} \left[\frac{\sqrt{\gamma}}{\beta} e^{i\beta z_{s}} \sin(\beta z_{r}) \right]_{(eqn 2.23)}$$

and the magnitude of g(γ) is

{

5

$$\left|g(\gamma)\right| = \frac{\sqrt{\gamma}}{\beta} \sin(\beta z_r)$$
 (eqn 2.29)

A close look at the magnitude of the pressure spectrum function in equation 2.27 reveals that nodes occur for values of

 $\beta Z_{s} = n\pi$, n = 0, 1, 2, 3, ... (eqn 2.30)

If the magnitude of the pressure spectrum is plotted as a function of the vertical wavenumber then the spacing between nodes $\Delta \beta$ is uniform and the depth of the source can be derived from the relationship given by

$$Z_s = \frac{\pi}{\Delta\beta} \qquad (\text{egn } 2.31)$$

In the event the source is deeper than the receiver, looking at equation 2.29, we can see that nodes now occur for values of

$$BZ_{n} = n\pi$$
, $n = 0, 1, 2, 3, ...$ (eqn 2.32)

Flotting equation 2.29 as a function of the vertical wavenumber, the spacing between nodes will now reveal the receiver depth based on

 $Z_r = \frac{\pi}{\Delta\beta}$

(eqn 2.33)

Notice in equations 2.31 and 2.33 the exchange of source and receiver depths. By placing the receiver at a shallower depth than the source, no new information (namely the source depth) is to be found.

In summary, there is a way to calculate the complex pressure amplitude as a function of range using the complex pressure spectrum. Conversely, if the complex pressure P(r)has been measured at the receiver, then the complex pressure spectrum P(k) can be derived by making use of the relationship between the Fourier-Bessel Transform Pairs (see equation 2.12), and the depth of the source can be found from the magnitude of that spectrum (see equation 2.31).

The foregoing is the mathematics involved in deriving the theoretical pressure spectrum. One purpose of this thesis was to compare the theoretical value of the pressure spectrum as derived with the Fourier-Bessel Transform with the pressure spectrum obtained by use of the computerized Discrete Fourier Transform (DFT), otherwise known as the Fast Fourier Transform, or FFT. At this point, it will be helpful to review what happens in the FFT.

Starting with the Fourier-Bessel transform pair shown in equation 2.12, f(r) and $g(\gamma)$ can be re-written in terms of a discrete sum as is done in the DFT:

$$F\overline{r}\overline{I}^{-\prime}\left\{\mathcal{Q}(\gamma)\right\} = \sum_{n=0}^{N-\prime} \mathcal{Q}(n\Delta\gamma) e^{i\frac{2\pi mn}{N}} = f(m\Delta r) \qquad (\text{eqn 2.34})$$

where N = 1, 2, 3, ..., up to some large positive integer, and represents the number of transform points, and

$$\gamma r = (n \Delta \gamma) (m \Delta r) = \frac{2\pi m n}{N}$$
 (eqn 2.35)

based on the relationship between Δr and $\Delta \gamma$ as described in sampling theory [Ref. 2: p. 2],

 $\Delta \gamma \Delta r = \frac{2\pi}{N}$

0**r**

 $\Delta r = \frac{2\pi}{N\Delta r} \qquad (eqn \ 2.36)$

By convention, the sign of the exponential function in equation 2.34 is taken as negative when performing the "forward" transform,

$$FFT\left\{f(m\Delta r)\right\} = g(n\Delta\gamma)$$
 (eqn 2.37)

REPRODUCED AT GOVERNMENT TYPENSE

and is taken as positive when performing the "inverse" transform,

$$FFT^{-1}\left\{g(n\Delta\gamma)\right\} = f(m\Delta r)$$
 (eqn 2.38)

Then,
$$\int_{-\infty}^{\infty} g(\gamma) e^{i\gamma r} d\gamma \approx \left[\sum_{n=1}^{N-1} g(n \Delta \gamma) e^{i\frac{2\pi m n}{N}}\right] \Delta \gamma$$

where

$$g(n\Delta\gamma) = \frac{\sqrt{\gamma}}{\beta} e^{i\beta z_r} \sin(\beta z_s)$$

Therefore

$$\mathcal{P}(m\Delta r) = -\sqrt{\frac{2}{\pi r}} e^{-i\frac{\pi}{4}} \left[\Delta \gamma FFT^{-1} \left\{ g(n\Delta \gamma) \right\} \right]$$

and

$$\left| \underline{g}(n \Delta \gamma) \right| = \frac{\sqrt{\gamma}}{\beta} \sin(\beta z_s)$$
 (egn 2.39)

D. THE EFFECTS OF SURPACE ROUGHNESS

Surface roughness [Ref. 5: p.409] reduces the Lloyds Mirror effect. The rougher the surface, the greater the effect for angles increasingly closer to grazing incidence. If M represents the surface roughness factor, then equation 2.3 can be re-written as

$$P(R) = \frac{e^{ikR}}{R} - e^{-M^2} \frac{e^{ikR}}{R}$$

where

$$M \equiv \frac{4H \sin \phi}{\lambda}$$

(egn 2.40)

REPRODUCED AT GOVERNMENT SYPENSE

 ϕ is the grazing angle of incidence. H is the average height of the surface gravity waves, and λ is the wavelength of the narrowband continuous wave acoustic signal. When M is less than 1, the surface is said to be smooth; when M is greater than 1, the surface is said to be rough.

Looking at Figure 2.1, we can see that the overall effect of increasing surface roughness is to reduce the contribution of the surface reflection or "image" to the interference pattern at the receiver. In other words, as H increases, the energy detected by the receiver is increasingly only the energy coming directly from the source. When the effect of surface roughness is a maximum such that the contribution to the pressure field of the "image" is completely suppressed, then

$$g_{s}(\gamma) = \int_{0}^{\infty} \frac{e^{ikR_{l}}}{R_{l}} J_{0}(\gamma r) r dr$$

 $=\frac{e^{i\beta|z_s-z_r|}}{i\beta} \qquad (egn 2.41)$

and the magnitude of the spectrum is

$$|g(\gamma)| = \frac{1}{B}$$
 (eqn 2.42)

E. THE EFFECT OF ADDING NOISE

In an effort to simulate a realistic ocean environment, a normally distributed narrowband noise field based on a Rician distribution [Ref. 6: p. 189] was adapted. The resulting acoustic pressure field can be expressed as

 $\mathcal{L}_{N}(R) = \mathcal{L}(R) + \underline{n}$

(egn 2.43)

where \underline{n} is a normally-distributed random function with a mean of zero, a standard deviation of one and possesses both amplitude and phase. The noise operates independently on both the amplitude and phase components of the pressure field. Since \underline{n} is independent of range and wavenumber, it is treated as a constant by the Fourier Transform.

A fourth intention of this thesis was to discover the degree to which noise degrades the wavenumber spectrum compared with the corresponding degradation of the range To produce the random noise fields used in this domain. research, the routine listed as "GGNML" in the IMSL library [Ref. 9] was called upon twice to generate independent, pseudo-random functions which interact separately and simultaneously with both the amplitude and phase components of P(R) While not an elaborate scheme, owing to time and it was felt that this modest simuresource constraints, lacrum of narrowband noise would give a fairly accurate, first cut "feel" for the effects of noise on the wavenumber The reader should be aware, however, that no spectrum. direct consideration cf coherency along the range path was taken into account by this method.

NUDULED AT GUVERNMENTERE LEPHINEL

•

Ľ

31

REPRODUCED AT GOVERNMENT CYPENSE

REPHODUCED AT GOVERNMENT EXPENSE

REPRODUCED AT COVERNMENT SPENSE

III. RESULTS AND CONCLUSIONS

A. THE FFT ALGORITHE

The research for this thesis was conducted entirely with computer algorithms to model the Lloyds Mirror, the Fast Fourier Transform, the range windows, waves, and the narrowband noise. This was necessary since the Lloyds Mirror is an idealized representation of a situation that occurs only rarely in nature, and at that is limited to isospeed surface ducts. Also, time and money constraints were such that the use of computer models was an absolute necessity. For these reasons and because the FFT is the heart of the Wavenumber Technique, finding a reliable, easy-to-use computer algorithm to perform the FFT on the complex pressure function was deemed very important.

Initially, the IMSL library routines, FFT2C and FFTCC [Ref. 9: p. 232], were used to generate the pressure spectra. Although the author was unable to ascertain just how Stamey performed the FFT on his data, it is highly probable that he used an IMSL library routine. While in his thesis, Blanchard stated that he used the FFTCC routine. The magnitude of a typical spectrum generated by the routine FFT2C is shown in Figure 3.1.

The same scenario used to generate Figure 3.1 was used to produce the spectrum shown in Figure 3.2, but the routine FFTCC was utilized. As can be seen, the resulting graphs of the pressure spectrum magnitude are practically identical. Indeed, the set-up of the pressure fields for insertion into each routine differ only in that FFT2C requires a data set consisting of an integral power of two number of points, whereas FFTCC will handle any number of points. And, when

the Cooley-Tukey FFT listed in Appendix I was used to transform the same pressure field as was utilized to produce Figures 3.1 and 3.2, Figure 3.3 was the result. This algorithm differs somewhat from the IMSL routines by the manner in which the pressure field data is treated. Both FFT2C and FFTCC are designed to handle a complex array. The Cooley-Tukey FFT, on the other hand, is designed to transform real data: but the pressure field is complex. To get around this apparent conundrum, the pressure data is defined as either real or imaginary by its placement in the array. As can be seen, the resultant graph of the spectrum magnitude is almost indistinguishable from that produced by either IMSL routine. In conclusion, it does not matter which FFT routine is used to generate the pressure spectrum, long as the pressure field in the range domain is as "fitted" into the array in a manner suitable to the particular algorithm used.

TABLE I

Critical Values Used in the Research

<u>K (m⁻¹)</u>	<u>N</u>	r (m)	(m ⁻¹)
3.0	1024	0.524	1.172×10^{-2}
2.0	1024	0.785	7.816×10^{-3}
1.0	1024	1.571	3.906×10^{-3}

It is important to note four things about the FFT at this point.

1. Since the FFT is given only a finite sample of a function while the theoretical Fourier Transform
looks at the complete function, the computer algorithm is designed to overcome this necessary shortcoming by assuming the submitted finite sample repeats its pattern an infinite number of times. This can present problems. If the right hand side of one pattern does not flow smoothly into the left hand side of the next repetition, as is shown in Figure 3.4, then high frequency oscillations known as the Gibbs Phenomenon can be introduced into the spectrum. (See Figure 3.5) This is a very real danger where accustic pressure fields are concerned. For example: if the sample size does not include the entire pattern (i.e., the pressure magnitude has not been completely attenuated prior to the endpoints of the sample), this unwanted "jitter" in the spectrum can To avoid this situation, not only was a result. pressure field symmetric about the origin (the source) used, but also a Hanning Window was constructed to reduce both the amplitude and the phase components of the pressure field to zero at the endpoints, thus avoiding the Gibbs Phenomenon. Figure 3.6 shows the same pressure field depicted in Figure 3.4 combined with a Hanning Window. Its spectrum is shown in Figure 3.7. The Gibbs Phenomenon is absent. The form of the window is given below. The reader's attention is directed to Appendix I for a view of the manner in which it is combined with the pressure field.

The Hanning Window:

$$W = 0.5 \left[l + \cos\left(\frac{(I-l)\pi}{NPTS}\right) \right] \qquad (eqn 3.1)$$

where "NPTS" is the number of data points, and I = 1,2,3,...,NPTS.

The Hanning Window does not affect the acoustic pressure field in any other way; the interference pattern in the range domain characteristic of the Lloyds Mirror for an Acoustic Doublet remains the same except for its amplitude near the end points. As shall be shown later in this chapter, it is the pattern of the entire pressure field, not simply the amplitude of the pattern, on which the W.T. performs its legerdemain.

- 2. Because the vertical wavenumber beta is real and has physical meaning for values of the horizontal wavenumber less than k, only those values of the magnitude of the acoustic pressure spectrum—corresponding to $\gamma < k$ were retained.
- 3. In the Wavenumber Technique, the relationship between the horizontal range step size Δr and the horizontal wavenumber step size $\Delta \gamma$ is extremely important. Recalling equation 2.36,

2

$$\Delta \gamma \Delta r = \frac{2\pi}{N} \qquad (eqn \ 3.2)$$

for a given "N," the term on the right hand side, $2\pi/N$, is a constant. Consequently,

$$\Delta r \propto (\Delta \gamma)^{-\prime}$$
 (eqn 3.3)

Simultaneously, in accordance with sampling theory, in order to prevent aliasing in the pressure spectrum, there is an upper limit on the size of Δr :

(eqn 3.4)

$$\Delta r \leq \frac{\lambda}{2}$$

Normally, Δr is chosen such that it is much less than half a wavelength; specifically, $\Delta r < \lambda/5$ or $\lambda/6$, thus a good sample of the range domain is ensured. However, from equation 2.36, the smaller Δr becomes, the larger $\Delta \gamma$ becomes and the coarser the sample sizes of the spectrum become. Also, to ensure adequate samples in the spectrum, examination of equations 2.25 and 2.36 and [Ref. 10] reveals that

$$\Delta \gamma = \frac{1}{2k} \left(\frac{\pi}{z}\right)^2 \qquad (\text{eqn 3.5})$$

where Z is the deeper of the two depths, whether source or receiver. So there is a delicate balance to maintain between the sizes of Δr and $\Delta \gamma$. In the spirit of compromise, the investigator chose to use a range step size equal to a quarter of a wavelength where

$$\lambda = \frac{2\pi}{k}$$

(eqn 3.5)

For most cases investigated, values for k , N , Δr and $\Delta \gamma$ are summarized in Table I. As can be seen, using these values and equation 3.5, for a "Z" value of 25 wavelengths, the maximum size $\Delta \gamma$ can assume and still ensure an adequate sample size is $\Delta \gamma = 0.0004$ /m. Clearly the sizes of $\Delta \gamma$ shown in Table I are too coarse by a factor of approximately 20. Only by increasing N , the number of sample points, can this discrepancy be corrected.

However, as mentioned earlier, computer resources were limited. The effect on the research results is not significant; nevertheless, it is recommended the reader bear this limitation in mind during the succeeding pages.

Looking again at Figures 3.1 through 3.3, the FFT is 4. the curve marked by the solid line, while the theoretical Fourier Transform is the curve marked by the dotted line. Notice the large discrepancy between the theoretical values and the actual values in the region corresponding to small vertical wavenumbers. This happens to correspond to a region of the spectrum characterized by more rapid fluctuations in the spectrum. However, the size of beta is constant. Consequently, fewer samples of this region of the spectrum are available as compared with that region corresponding to high beta values. Since the plotting routine utilized is interpolating between sampled points of the spectrum, the graph at this end is less smooth and results in a marked difference between the curves. Where the curves are determined by more points and are smoother, the discrepancy between theory and computerized reality is much less noticeable.

B. SCURCE DEPTH DETERMINATION

17

İ0

Theory predicts that, for a source shallower than the receiver, when the magnitude of the pressure spectrum is plotted as a function of the vertical wavenumber, the resultant nodal spacing can be used to determine source depth by either consulting a chart (see Figure 3.8) or by performing a simple calculation (see equation 2.31). To test this prediction, several scenarios were designed. Figures 3.9

through 3.11 are typical of the many cases run. In each, source depth is less than receiver depth. For each case, careful measurement of the $\Delta\beta$ spacing coupled with use of equation 2.31 yielded the (already known) source depth with less than a two per cent error, which can be attributed to human error in the measurement of $\Delta\beta$.

TABLE II

Results of Source Depth Determination Runs

Figure Nr.	<u>ZS (m)</u>	<u>ZR (M)</u>	(Meas'd)	<u>Z(Calc'd)</u>
3.9	21.998	47.124	$0.14 m^{-1}$	22.4 m
3.10	31.416	47.124	0.10 "	31.4 "
3.11	15.708	47.124	0.20 "	15.7 "
3.12	47.124	21.998	0.14 "	22.4 "
3.13	47.124	31.416	0.10 "	31.4 "
3.14	47.124	15.708	0.20 "	15.7 "

To test what happens when the receiver depth is shallower than the source depth, the cases depicted in Figures 3.12 through 3.14 were run. The scenario is the same as for Figures 3.9 through 3.11; only the source and receiver depths have been exchanged. As can be seen, the $\Delta \beta$ spacing corresponds with the receiver depth. This is again as predicted by theory. Table II summarizes the findings of Figures 3.9 through 3.14.

The scenarios shown in Figures 3.9 through 3.14 all start with a pressure field measured horizontally from the source; i.e., the exact range to the source is known. What if the range to the source is not known, or only minimal information concerning the range is known? In this case, only a portion of the pressure field starting at some initial range P_0 can be sampled. What is the effect on the spectrum?

To answer these questions, a range window was constructed and placed at varying initial ranges from the source. As Figure 2.2 illustrates, as range from the source increases, the nodes of the Lloyds Mirror interference pattern in the range domain become more widely spaced. Given fewer nodes to sample, will the spectrum be the same? In accordance with theory, the spectrum is independent of range (see equation 2.39) and so should be the same wherever the window is placed.

Figures 3.15 through 3.17 illustrate that the spectrum is not entirely independent of range. The figures utilize the same scenario as was used above, differing only in the range from the source at which the sampling of the pressure field begins. As can be seen, beginning at the right hand side which corresponds to high vertical wavenumber values, or the low horizontal wavenumber values (see equation 2.8), a "washing out" of the spectrum occurs, increasing as the range window is moved further from the source. Again, the theoretical curve is marked by the dotted line.

When the magnitude of the pressure spectrum is plotted as a function of the vertical wavenumber, the useful portion of the resulting graph is the last two-thirds of the beta K = range. For 2.0/m, this is the range $0.67/m < \int < 2.0/m.$ This phenomenon is explained more fully in Section III A 4. With this caveat in wind and based upon multiple source, receiver, range window

combinations run through the model, the following criterion was established: the nodal spacing of the spectral plots was no longer determinable once the initial range R_0 was increased to approximately three times the source depth. In other words, minimum knowledge of the range from receiver to source must be available to ensure adequate sampling of the acoustic pressure field in the range domain. This, in turn, will produce a pressure spectrum of such a quality that source depth determination can be made.

What causes this not entirely unexpected result? As the range window is moved further from the source, for $Z_s \neq Z_r$, those samples of the pressure field corresponding to low gamma values are lost to the spectrum first. Low gamma values correspond to waves arriving at high angles with respect to the horizontal. At greater receiver ranges, F more closely approximates r and the arrival angles become closer to the horizontal (see Figure 2.1).

As the window is moved further from the source and fewer nodes of the interference pattern are encountered, if a wider window were used, could this "washing out" effect in the spectrum be minimized or even eliminated? In the author's opinion, it would be minimized; because of the reasoning in the preceding paragraph, it probably would not However, a wider window would require more be eliminated. sample points; because of equation 2.36, one cannot merely make Δ r larger. Time and the computer resources available to this investigator were limited, and the test cases run were already using the maximum available array sizes, thus precluding a quantitative illustration of this hypothesis. Succeeding research into the W.T. might include ways to test this point.

In conclusion, the Wavenumber Technique has the potential for being a valuable operational tool in determining the depth of an acoustic source provided the receiver is at

a greater depth than the source. It is strongly recommended that further research into use of the W.T. in a realistic ocean environment be done.

C. THE EFFECT OF SURFACE ROUGHNESS

This and the succeeding section were purely gualitative portions of the research. Therefore, in the figures the spectra were plotted as functions of the horizontal wavenumber for ease of discussion except where a particular point about the vertical wavenumber was being illustrated, and the theoretical curve was omitted.

As described in Chapter II, the effect of surface roughness is to suppress the contribution of the image to the dipole interference pattern. Moreover, by increasing M, the effect is to suppress the image's contribution to the pressure field in the range domain and reduce the pressure spectrum to the contribution of the direct path wave only (see equation 2.41); the resultant magnitude of the spectrum is inversely proportional to the vertical wavenumber (see equation 2.42). As Figures 3.18 through 3.21 illustrate, this is exactly what happens in the FFT. In Figure 3.21, an inverse beta curve has been manually superimposed onto the actual curve to reflect this point.

Looking at the pressure field in the range domain $\underline{P}(E)$ the effect of surface roughness is inversely proportional to the wavelength of the signal. For longer wavelengths, the Lloyds Mirror effect is more tolerant of surface roughness than it is for shorter wavelengths. Does the same relationship hold for the pressure spectrum? Comparison of the respective sea states in Figures 3.22 and 3.23 with Figures 3.24 and 3.25 illustrate that it does.

This investigator also looked at the effect of varying the range window in the presence of waves. This is similar

to what was looked at in Section B of this chapter. Results should be similar and for the same reasons. For a given sea state, source and receiver geometry and wavelength, the range window was moved successively further from the source (see Figures 3.26 through 3.29). As can be seen, the "washing out" effect of the spectral nodes begins to effect the lower horizontal wavenumber values first.

D. THE EFFECT OF HOISE

Random noise was simulated in this research. Being independent of range and frequency, it was treated as a constant by both the Fourier Transform and the FFT. The investigator wished to compare qualitatively the effects of equal amounts of noise on the pressure field in the range domain and in the wavenumber domain. To do this, successively larger values of the "noise factor" were used in n (see equation 2.43). Values of the noise computing factor used in the research were limited to the maximum amplitude of the pressure field P(R). Since dipole radiation is predicated, as range from the source increases, the maxima of the interference pattern decrease as the inverse square of the range (i.e., R^{-2}). Hence, even small noise factors can have a devastating effect on the pressure field as the receiver is stepped out in range. The destructive effect on the spectrum of successively more intense amounts of noise at varying wavelengths is illustrated in Figures 3.30 through 3.47

Several conclusions concerning the pressure spectra can be drawn from these results:

 For equal amounts of noise, longer wavelengths are affected less than shorter wavelengths. Compare Figures 3.31 and 3.32 with Figures 3.43 and 3.44, and Figures 3.34 and 3.35 with Figures 3.46 and 3.47.

This was not a surprising result since the same principle holds for the range domain.

- 2. The spectrum is affected less by noise than is the range domain. Compare Figures 3.30 through 3.35 and Figures 3.36 through 3.47 for an illustration of this point at two different wavelengths and various noise levels. This was a rather welcome surprise.
- 3. If the magnitude of the pressure spectrum is plotted as a function of beta, the $\Delta \beta$ spacing can still be detected even after the pressure function in the range domain has been "swallowed up" by the noise field. Compare Figures 3.33 through 3.35 and Figures 3.42 through 3.44. This was not surprising in view of 2. above.

E. SUMMATION

All of the foregoing results are based specifically on the Lloyds Mirror for an Acoustic Doublet. This is a highly idealized and artificial environment. Any thought of immediately applying conclusions reached in this paper to a real world situation is premature. However, the results are still significant if only for supporting the statement made by each preceding investigator that the Wavenumber Technique should be examined very closely for a future operational role, especially in view of the current trends in source levels and ambient noise levels.

Certain fundamental conclusions regarding the author's research into the Wavenumber Technique can now be made within the confines of the above restriction:

- Source depth can be determined guickly and easily from the acoustic pressure spectrum provided
 - a) the receiver is deeper than the source,

- b) some knowledge of the range from receiver to source is available, and
- c) the magnitude of the pressure spectrum is plotted as a function of the vertical wavenumber.
- 2. Source depth determination in even a noisy environment is possible. While the introduction of increasing amounts of narrow band noise adversely affects both the range domain and the wavenumber domain, the pressure spectrum seems able to withstand the chaotic destruction longer than does the pressure field in the range domain.
- 3. The ability to determine source depth is adversely affected by the height of surface gravity waves since surface roughness reduces the Lloyds Mirror as the sea state increases.

REPRODUCED AT GOVERNMENT CYPENSE

r Ja

7

49

REPRODUCED AT GOVERNMENT EXPENSE

1

Í

÷

-

REPRODUCED AT GOVERNMENT LYPENSE

REPRODUCED AT GOVERNMENT SYPENIS

ľ

1

REPRODUCED AT GOVERNMENT EXPENSE

REPRODUCED AT GOVERNMMINT SYPENSE

1

ī

.

REPRODUCED AT GOVERNMENT SYPENSE

.

)

REPRODUCED AT GOVERNMENT EXPENSE

REPRODUCED AT GOVERNMENT SYPENSE

r.

Ę,

5

REPRODUCED AT GOVERNMENT

E Y DE NOT

65

REPRODUCED AT GOVERNMENT CAPPAGE

-1

1.

51

0

NERRODUCED AN SULVERMENTER COMPANY

REPRODUCED AT GOVERNMENT SYPENSE

REFRODUCED AT GOVERNMENT EXPENSE

C

Figure 3.29 Pressure Spectrum, SS 2, Range Window Set at 300 Meters

REPRODUCED AT GOVERNMENT CAPPINSE

REFRODUCED AT COVERNMENT

~ pr NST

5

le

C

REPRODUCED AT GOVERNMENT CARTINE

79

. .

REFRODUCED AT SCAFFINN IN CANING

. . . .

14

-

.

.

REPRODUCED AT GOVERNMENT THEF NEE

I +(

NELADDOLL AN GUVERNESS AND THE ME

REPRODUCED AT GOVERNMENT EXPENSE

Figure 3.43 Pressure Spectrum vs. Gamma

REPRODUCED AT GOVEPHINEHT " PPENSE

1

.

REPRODUCED AT GOVERNMENT STRENSE

REPRODUCED AT GOVEPNMENT SAPENSE

APPENDIX A: LLOYDS MIRROR PRESSURE FIELD SOURCE CODE

10	2000 1-71-74		000	20000	5000C		00000 1011	50000	0000	5000	100000 00000	00000 00000	30
$\frac{1}{2}$	2000	200	0010	00000	5666	200	10000	10000C	ວວວບເ	2000		*****	
õç	0000	0000	5000	00000	50500	500	50000	00030	00000	0000	00000	00000	ιŪ
្រាម	າທາງ	າທາງທ	າທາກທ	າເງທາທາງ	ຠຠຎຠ	200	ាលលេច	ມອງເກຍແນ ທີ່ເງິນໃນເປັນ	າດທາງທາງ	າດເດເດ		ເມີດໃຫ້ເປັນ	ល
													4 1
	2			• • • • •						•			
*	H	-		* •						S			
*	5	ш. ш.		*						61 61			
÷	~	n a		÷ of						-			
*	0	Я		*0						63			
*	(z .)			* 3						ε			
*	=	ЧD											
*	}4	> Z		* •						A			
*	L4	A E		*						<u>ਬ</u>			
÷	~	Ā		* 5						~			
*		کار است		* 0						7			
*	3	A		* =								•	
¥	Ĥ	zz		ж́ы.					~			:0	
*	+ 4	\mathcal{O}		* `1					-			- 4	
*		~1						2			<u> </u>	- ব	
×				* 9			~) [5	
**	52	0.4		* 0			-	12	(m)		2	<i>.</i>	
*	(2.)			*				.ಬ ಟ	5			x 1	
÷.	>	ः । म्य		* -7			34	-	-		•	-	
*	<u>.</u>	==		* 20			(11) (11)	<u>ਬ</u>	-	~	<u> </u>	0	
*	อ	يستر يعتاد		* •			52				-		
*	•	∞		* ~		يت.		72	÷	Ge 1		2	
ж. У	- T	>>		* 0 Y		12	-	b -4		ر:	5	<.	
÷	10	25		*0-		4	يت اسم	.=					
¥	>	20		* : 1 🗅		\mathbf{z}			-	~	-		
*		یکسریΩ		*		. r.]		C-		5		4	
÷.	~	55		¥x.0		7-1	្រុ	10	.z.	- •	·	•	
5	-	211		*こうろ		<u> </u>	1 0			-1	2	-	
1 4	~	C4 C4		* •		-2	0	254 (* 1	64 25			~	
÷÷		1.4.	<u>_</u>			52	60	>	\sim	2	5		
÷	. .	<u>1</u>]	Бъ.	キリショ		23	ပ္		:=]	-		-	
بر بر		2.4	- 14	*		31	~	يت را	Ξ	>	~	~	
×.	6	Ę.	7			Å.	Ċ.	ਜ		- L.			
¥-		•-	4	* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			17.	Ľ	>	9-1 	÷	:::	
۰. م	5	1.1	<u>×</u>	*	2	مند، موس	<u>ن</u> ـــ	ъ	t:	ند. با		• •	
77	F . 4	السوال	4	* ~ ! _ ()	$\mathbf{\mathbf{\nabla}}$	2	H	11				•	
÷	मेच 🔹	्री स्ट	÷.	* <u>5 6</u>	15		Ч	<i>⊢-</i> 4		~5		.*	
**	- <u>.</u> .	С	<u>ш</u>	* 207 4	- z			. z	2		-	2	
خه		?	•	*	7-4		141	¥-	• 2	~	~	1+ 1	
			-	* 4 - 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		F	-					
41	1	•	5	St at being	• 1	ϵ_{j}	i	.•;	52	•	<u> </u>		
-4	<u> </u>	-		8000	× ∕ * ⊥	ب ن.	- 9	• 4	• X.	. <	- 문화 - 몸이	• 17~	:
¥	2.1	4	<u> </u>		12-0-0-	1		- -		Ξ,			
-2-	19.7U	· -		* () •Qi		~	*		1	• >	* ~ * *	~ *	
÷-	्रन	0		*			1					<u> </u>	
ž	<u> </u>	2	بشا			5			<u> </u>				
*	•		5	* 400	4-10	10		1 7 - 0 1	1-1-5-12-11		ಂಡಚಿತ್ರಗ		:
*						-	H~~~	1901. 4	10.1	1	بین میں میں ا د د د د د	سو مسريع ۽ ان ا انوان ان ت اب ان	
÷		:0	F 4	* ೧೯೧	alacie	S.2	22.0.1	432 E. K. 5	a e su is e	: - <u>-</u>	Netter N	1	
÷	·	214		¥ -						·	•		
				к Ж									
at.				*									
· , ·	د و ر	∙ر ر∙ر	، مربو	<i>)</i> ')		ر در) - 1	+	<u>_</u>	~	-	~	
				-		~ *	•		-		-		

RANGE SING. E C C H <u>ີ</u> . **z**ພົ FIO. 2.7. 10X BANG 2.4,7,5X, THE C PREVENT ALIA MMAX, NMAX HELTE(0,C) FITMAX FJMAA, FMAA, IMAX6, JMAX, FMAA, IMAX, FULTA(0,0) ZSZEGTED PAFATETERS ARE: 2, 10X, FROV, DEPTH IN WETERS ARE: 2, 10X, FROV, DEPTH IN WETERS ARE: 2, 10X, FROV, DEPTH IN WETERS ARE: 2, 10X, FROV, DEPTH IN WETERS, 10X, FROV, DEPTH IN W × 7 Ed. --+ /ALUGID (2.9) 11 0 E E I 1 $\begin{array}{l} \textbf{FEALW} = \textbf{FLUAT}(\textbf{IMAX})\\ \textbf{FEALM} = \textbf{ALUAT}(\textbf{IMAX})\\ \textbf{TORX} = \textbf{IMAX}/2\\ \textbf{TORX} = \textbf{IMAX}/2 \textbf{TORX} = \textbf{IMX}/2 \textbf{TORX} = \textbf{IMX}/2 \textbf{TORX} = \textbf{IMX}/2$ ROTIVES 36.0 2 2X • THF н (сс. ан. пр) (с. ан. пр) (с. ан. пр) (с. пр) 0 M 1 M 1 M ≤€. 200 172 200 122 [] ţ

÷.,

- .

1

94

ر

10000000000000000000000000000000000000	860F203	10000000 10000000			້າກາ	5-200
000000000000000000000000000000000000000	00000000	000000			500	20220
	ມທູດທູດທູລູບ			າທິດດີດດີດດີດ	ກິດເ	ກ່າວພາວທ
E	* *					
EN	* *				*	$\sum_{i=1}^{\infty} n \mathbf{z}_i$
AIAI	<u> </u>				÷	- <u>6</u> - <u>8</u> 5
3	* *				*	A N L
D	* *				*	- 2
X C	* *				*	
0	* *	-		.) ()	*	- 1415 - Li - 1016 - Li
00	7 7 7 7	2		ACA	¥	7000
•	* *	_`		Er Er	11. 12	
74	* *	ĩ		* *	÷	که سرید
	* *	01		60	*	
a b	~ ~ ~ ~	LC		.3.3	- /-	
z z	* *	ц.		prod mini		- 1 - 1 - 1
2 3	* *	~		** **	35. Re	
ы с	* *	Ö		\sim	*	
S S	* *				يد جد	
5-1 5-1	÷ ⊐*	×	ية. جع	\sim	1 2	2 <u>24</u> - 2
·7 E	* 24	• 5	A N		¥.	~ _
	よ じ よ	×		17 II M 2	45 -1.	بسویہ کرانہ سویہ کرانہ
<u>ع</u> س	К ²	2 N		14 L	×	
ii a á C	水 (1)字 本 (1)字	, <u>,</u>		(C) (C)		
بند ر	* 2 *	•		11 Z	-1-	
<u>э</u>	* 57 *	· *	(20	÷.	
20 IC	* 57.*	2 0		X X		· · · ·
2 2	* 0.*		C 55		2	Fer.
	10 T 14		* *		⇒€ 	
	* 12 ¥	-	·	××** * * * * *	2	
- <u>-</u>			101	1 ಕಷ್ಟೇಶಸ್ವರ್ಷ		
<u> </u>	11 本 21本		1 + • • •	manakaran (b. 2) Laran (b. 1010) (b. 11)	.M.	- 1974 - 1
<u>с</u> н (ວຼ ະບົະ	<u>्</u> र				
	·····································	•	· · · · ·			
	し ¥日か	>× >< + ⊡ x⊄	八字1577年十一 CU		in e	
	*	· · · · · · · · · · · · · · · · · · ·	* <u>111</u>	******	-7	
rower Came	げ) ホーボ ()】 ホーボ		しょう マード・ション			
	•••	+	- <u> </u>		~	
LINE IN T	राज के 200 प्रसल्म के 2008	n-11-12-4	0.4• PHPP	2014 4 23 42 - 52	÷.	يەت. سىرى مىتىك
	●●□ ● 大き のつけ ● ようろ		د از مصلحات بر ایک میک دان از مصلحات می	، باغن بر چو موجود چون ن م ایک چک چو بچا چو پ	-	1. <u>-</u> 1.
dan di servera					-	
	見合し キード・コンド・タンド		は こう アイ テレント あい	States and the states of the s	* +	
	***			ار تروی این میلود و در باسان میلود. از از اس میر میرموم رو با از تا	0	
Second State	1	าะก่อ ะ โ	1.7.0.7.200	entration /	×.	
** • • ••	4 m H # 15 #				्य *	- : : :
* 1	≠ 11 26 v	~ +		-	2	
	H 3	1_				
1.1.1.1	ن الريزيز	~~)		•	31.5	

* 11 *** ÷ V ******** ÷ ED. NUABER ', 2 (2X, F10.8)) 3 K J XEAL . = • -• **PUSLIIVE** ************* (YES/NO) **UPSINCIPLES** ስ ዙ Ε 9 4)) NOISE? :4 AN FACTOR? НГЗ % 111E(6,1112) % 311 (2,22, 1112) % 11 (2,22, 1112) % 11 (2,22, 1113) % 11 (2,22, 1113) % 11 (2,22, 1113) % 11 (2,22, 11 ب ALD ы С 16.0 い 151 54 Ca PAGF ----ARTE (* 1113) ECAMAF (* 23. 90 YOU BESI ERAD(5, 121) PANE FF (PANE - 25. 64) 60 TO 27 LF (EANE - NE - Y) 60 TO 1139 JO TO 1120 LESI $= \frac{1}{2} \left(\frac{1}{1} \right) \frac{1}{2} \left(\frac{1}{1} \right) \frac{1}{2} \frac{1}{2$ **UNIT** AL u U 1 JU 26 1 = FNUT2 (1) = ATACIA() <u>ب</u> 4 21 ¥ []]]. []]]. 111 > 1114 1111 × ų r V ~ ...) 1.5.5.

NATIONAL BUREAU OF STANDARDS

· · .

<pre>3 DADATATE = DATA(IAAX + [2*T]) CALL FUEL2(DATA, UAX,-1,1) CALL FUEL2(DATA, UAX,-1,1) CALL FUEL2(DATA, UAX,-1,1) CALL FUEL2(DATA, UAX,-1,1) DE BETE6(5,35) DE BAT(2,14,2(4X,F13.7)) DE BAT(2,14,2(4X,F13.7)) DE BAT(2,2),10,5,10,200 DE FUEL14X * Db) FUEL2(3,300) DE FUEL2(3,300) DE FUEL2(3,10,200) DE FUEL2(2,201) DE /pre>		- HE HE		HHHH	666			888888 * •*	HHFF		유민민민
	37 DADA(2*I) = DATA(IAX + (2*I)) 239 CALL PRPLOT(DADA,DR,IMAX,JMAX,RO) 239 CALL PRPLOT(DADA,DR,IMAX,JMAX,RO)	C CALL FOURS (DALA, LTAX, T, 1) C JATTE (6, 352) C352 FOLMAI (7,5%, 1, ,4%, SPEC DATA REAL', 3%, SPEC DATA IMAG', /)	C		ζοι Rorman (/,5%,'Ι',6%,'СКМ',10%,'2',10%,'KZ',/)	7 20 50 I=1 IMAX4 FLY = FLUAI(I) GA(I) = FLY * DG GA(I) - GE.AK) GO TC 400 GO TU 420	LLU CONTINUE	○ ★1.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	34(I) = SORT(AK**2 - GA(I)**2) + EPS (1) = AB3(SIN(BE(I)*2X)*SORT(GA(I))/AB(I)) GCTC + 50	IN CONTAUL	> 米米市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市

۶

• •

> . ÷

÷

Ĩ

٠. ۰.

.....

EL ALEAR

1

23) + (ZR ¥ (-E2H -AK**2) 25)) - RXP(1)}/(2.0 * W [HPLT (IMAX5, JM, CKM, Q, AK, BE) CKIM**2) AT VPLT (IMAX5, CKM, Q, AK, BE) DGNEPL ([]) **2 - AK ** * (ZP - Z5)) S2RT (G3 (L))/ + CATA (2*1 - 1) DATA (2*1) = S2RT (CKRE**2 ŧ a = 5041 GM (= EXP (- BER = ABS (CC * = INAX4 CKIR = DA CKIR = DA CKAII = DA CCNIINUE CONTINUE 1A X 5 ALL. CALL CALL STOP END

.....

NAL PROPERTY INCOME.

đ

2

, m t

ဂီဂ

ر.

98

*ეთევნელიეველისისისიებიევი*ე

5 9 9 1								
94 M 2023	FRC:							
22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24								
	ALL OFF							
	- CFC SSE SALL							
400 282 293	1947 (2 4 4 7 (2 4 4 4 7 (2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							
51GN) 51GN) 51GN) 51GN								
	TCAL TCAL							
	「 (1)2月 (1)2月 (1)2日 (1)2 (1)2日 (1)2日 (1)2 (1)2 (1)2							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	20144710 20144710 20144710 20144710							
$\begin{array}{c} + + 2 \\ + + 2 \\ + + 2 \\ + + 2 \\ + + 2 \\ - + 2 \\$								
	NUCCELLS							
100 100 100 100 100 100 100 100								

აი

99

200200000

;

SUBROUTINE COOL2 (DATA NEREV NAREM ISIGN) DISCRETE FOURIER TEANSFORM OF LENGTH N. IN-PLACE COOLEY-TUKEY ALGOFLIAM. DIT-HEVERSED TC NORMAL CRDEF, SANEE-TUKEY PHASE SHIFTS. DINENSICN FATA (NEREV, N. NREM) COAFLEX DATA COAFLEX DATA DATA (J1, K4, J5) = SJM (DATA (J1, J4, J5) *EXP (ISIGN*2*PI*I* (J4-1) * (K4-1)/N), SHMAED OVER J4 = 1 J0 N FOR ALL J1 FROM 1 TO NPREV K4 -1)/N), SHMAED OVER J4 = 1 J0 N FOR ALL J1 FROM 1 TO NPREV K4 -1)/N), SHMAED OVER J4 = 1 J0 N FOR ALL J1 FROM 1 TO NPREV K4 -1)/N), SHMAED OVER J4 = 1 J0 N FOR ALL J1 FROM 1 TO NPREV K4 -1)/N), SHMAED OVER J4 = 1 J0 N FOR ALL J1 FROM 1 TO NPREV K4 -1)/N), SHMAED OVER J4 = 1 J0 N FOR ALL J1 FROM 1 TO NPREV K4 -1)/N), SHMAED OVER J4 = 1 J0 N FOR ALL J1 FROM 1 TO NPREV COMPLEX OF FOR DATA (NFEV LACT 1 TO NFEM, NFEM). DATA (J1, J2, K3, J4, J5) = SUM (DATA (J1, J2, J3, J4, J5) * EXP (ISIGN*2*PI*I* DATA (J1, J2, K3, J4, J5) = SUM (DATA (J1, J2, J3, J4, J5) * EXP (ISIGN*2*PI*I* DATA (J1, J2, K3, J4, J5) = SUM (DATA (J1, J2, J3, J4, J5) * EXP (ISIGN*2*PI*I* DATA (J1, J2, K3, J4, J5) = SUM (DATA (J1, J2, J3, J4, J5) * SUMMED (VER 2) = 1 (K1 + (J2 + 1)/(LEACF*IPERV). J4REV-1. 50 ELT LdI+ (L-A 2 4 1=100*NFESV 1=101*N 1=101*N 1=101*N REV=1 1=1001 1=1001 1=1001 1=1001 1=1001 1=1001 1=1001 1=1001 1=1

ໍ່

(ISIGN*2*PI*I) D OVER J3 = 1 PREV, K3 FROM

, J5) *EXP (SUMMED) , SUMMED

= 534 (DATA (J1, J2, J3, J4, (J2-1)/(LFACT*IPLEV))

= (CL = 1.7.7 = 1.4.1 = (CL = 1.4.1

12 K3, 14

2 1 10 0.000 0.600 C. 70 00 50 ر. ر ر.

1 TO IFACT J4 FPOM 1 TO ABRA: 1HIS IS A PHASE-SHIFTED FISCELEE FOURIEF TRANSFC3H CF LENGTH IFACT. FACTOSING N EY FOURS SAVES BEOUT THEN IY FIVE PEFFENT UVER FACTOR-ING BT TWCS. DATA MUST HE BIT-REVERSED INITIALLY. INTELEFFEN COMPLEX UVER FACTOR-INT IS NOT NECESSARY THE FULS SUBROUTINE INTO COMPLEX NUTATIONS NOT NECESSARY THE FULS SUBROUTINE INTO COMPLEX NUTATIONS NOT NECESSARY THE FULS SUBROUTINE INTO COMPLEX NUTATIONS HIT FULS STORAGE LUCATIONS. IT MUST ALSO SLOWE AFRAYS WITH THE FIRST SUBSCHIPT INCREASING FASTEST. DATA DATA 1) THORESICN DATA 1) THORE AFRAYS TO 100 IHIS IS IFACT. UVER FACTOR-C LDER) AVAILABLE 0.)+ (J2-1) *I21+ (J3-1) *I22+ (J4-1) *I23+ (J5-1) *IP4 REVERSED بنا 1 PRECISION, EII (FROM 25123 *I60+(J4-1) *IP3+(J5-1) *IP4 DUUBLE FOJR 0 H L TRANSFORM OF LENGTH 70,160,160 LENGIH I N A (13A) - TEMPA A TA (13A+1) - FEMPI A (13A) + TEMPA A IA (13A+1) + TEMPI 1 3 (LES/IP1) TRANSFORM OF 40,160,160 .1; ц И TIFU 14518 0.

207 10 .د. آد 5.5 000000000 c_{1}

00 1.0.153771)*FF97*F14-71)*FP 155 = 1; (JJ-1)*FF97*F14-71)*FP 156 = 136+FP2 156 = 130+FP2 156 = 130+FP2 156 = 156+FP2 156 = 156 156 = 166+FP2 tg1* 2-1) 11

المتعادي والمتعادية والمتعاد
		C C	0	000
0	0	C >	~	+ ~ ~
~>	5		~	
5	00	ບບ		

RRAY. AL <u>ت</u> MPR-HSTPI#WI+TEMP +4STPI#TEMPR+4I ((,)) C c T 1 C1 C1 **ゴキァ**ェ=X 41 ? ---11 ۱ -<u>___</u> ٤: HERHORN 150 160 0 10 02 30

۲

2

R

.

103

18205290 00052290 182053230 182053333 182053333 182053333 182053333 182053333 182053333 182053333 18205333 18205333 182053 182053 1820533 182055 182055 182055 182055 1820555 1820555 1820555 1820555 182055 180055 1800555 18005555 18005	128500000 12850000050 128500503060 128500503060 128500503060 128500503060 12850050 1285000 1285005000000000000000000000000000000000	00000000000000000000000000000000000000	00000000 200000000 200000000000 20000000	0000000 000000000000000000000000000000	00000000000000000000000000000000000000	1ESU5720 1ES05730 1ES05740 1ES05740 1ES05760
DC 40 I1=11AEN I1MAK,I20 DATA (11)=DATA (51) DATA (11+1)=DATA (51) J1=31+120 DATA (12+1)=DATA (51) DATA (12+1)=DATA (51)	$\begin{array}{c} J = J + I F 0 \\ D 0 & 3 & E 2 = 1, E 2, E 1 \\ T E M P E = DA T A (12) \\ D A T A (12) = DA T A (12) + D A T A (12+1) \\ D A T A (12+1) = T E A P E - D A T A (12+1) \\ D A T A (12+1) = T E A P E - D A T A (12+1) \\ T F (1-2) & 200 & 200 & 90 \\ T H F (A = T 0 P T / F L 0 A T (N) \\ \end{array}$	SINTH=SIN(THETA/2) SSTPR=-2.#SINTH#SINTH ZSTPL=SIN(THETA/2) ZR=[1-2STFI]/2 ZI=[1-2STFR]/2 ZR=[-26] 100,110,110 ZR=[-26] 100,110,110	TANNEIP0+1 T1MAX=1F0* DC DC DO 10 12 12 12 12 12 12 12 12 12 12 13 140 140	TF (FGRM) 770,146,180 DIFR=DAIA(I2)-DATA(I2CNJ) DIFI=DAIA(I2)-DATA(I2CNJ+1) TEMPR=DIFF*ZR-DIFI*ZI TEMPI=DIFF*ZI+DIFI*ZR DATA(I2)=CATA(I2)-TEMPE	DATA {I2+1) = DATA (I2+1) - TEMPI DATA {I2CNJ = DATA (I2CNJ) + TEMPI DATA {I2CNJ + 1) = DATA (12CNJ + 1) - TEMPI IF (IFGEM) 163 180 180 DATA (I2CNJ + 1) = DATA (12CNJ + 1) + DATA (12CNJ + 1) DATA (I2CNJ + 1) = DATA (12CNJ + 1) + DATA (I2CNJ + 1) DATA (I2) = DATA (I2) + DATA (12) DATA (I2) = DATA (I2) + DATA (12+1)	TEMPREZEL.5 ZREZTPANTENPR-ZSTPINZIAZA ZREZSTPANTENPRAZIAZA ZIEZSTPRNLAZIAZSTPINTENZIAZA RECJESICN SAVES IJAE, AT A SLIGHT LOSS IN ACCURACY. USE DOULLE PRECISICA LO COMPUET ZM AND ZI.

.

3 000	~	~	00	10	2000	C o	20	5 0	06	
10.00	3	ι. Έ	÷.	-		-	-	÷.	÷.	
									<u>.</u>	ر
0 IF (LFGRM) 270 210 210 10 T2=1P2+1 11=1P2+1 FEAT FFANSFCRM VALUES (140 PEP COLUMN) 0 T1=1P2 0 T1=1P2 0 T1=1P2+1 11=1P2 MrA(1) 0 MrA(1) <td>0 DATA(2)=0. 200,200,200 RETURN END SUBROUTINE PRPLUT (DATA,DR,IMAX,RO)</td> <td>F#####################################</td> <td>LAARK = INF(IMAK/5.) + 1 KAAK = JMAK - 1 JAAK2 = JMAK - 2</td> <td>PUC 3J I = 1,JMAX FIY = FLOAT (I) K (JJA = T) = - F (XAX+I) C ONTRNF = - F (XAX+I)</td> <td>PMIN = FJ PMAX = G(JMAX) Walle(6,100)</td>	0 DATA(2)=0. 200,200,200 RETURN END SUBROUTINE PRPLUT (DATA,DR,IMAX,RO)	F#####################################	LAARK = INF(IMAK/5.) + 1 KAAK = JMAK - 1 JAAK2 = JMAK - 2	PUC 3J I = 1,JMAX FIY = FLOAT (I) K (JJA = T) = - F (XAX+I) C ONTRNF = - F (XAX+I)	PMIN = FJ PMAX = G(JMAX) Walle(6,100)					
---	--	--	---	---	---					
55 22 22	20 27	-##-)tststs(s);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			• •					

a a construction and a second construction and a second construction and a second construction and a second con

 SUDKUTIAL WINFLE (LAAX, GM, CKM, Q, AK, BE)

 SUDKUTAL WINFLE (LAAX, GM, Q, AK, BE)

 C
 FILS SUBFRUTIAE STORE

 C
 FILE SUBFRUTIAE STORE

 C
 FILS SUBFRUTIAE STORE

 C
 FILS SUBFRUTIAE STORE

 C
 FILE SUBFRUTIAE STORE

 C
 FILE SUBFRUTIAE STORE

 C
 FILS SUBFRUTIAE STORE

 C
 FILS SUBFRUTIAE STORE</ \$',100,1.0,1) 90 FORMAF (/, 3X, 'I', 6X, 'RANGE', 7X, 'REALP', 7X, 'IAAGP', 5X, 'MUDULUS 1, /) RANGE DC 10 I = 1,JMAX PAUD(I) = SOFT((DATA(2*I-1))**2 + (DATA(2*I))**2) WRITE(6,200)I,F(I),CATA(2*I-1),CATA(2*I),PMCD(I) CCNTINUE FORMAT(2X,I4,2X,F10.2,3(2X,F10.7)) P(R) \$. , 100) 40 (XAES, l: N 4 MIN, SCALE, KNAX, 0.0, SCALE. (F, PHCD, JMAX, IMARK) (1) AS KTHELI (IMAX, GY, CKM, Q, AK, BE) L CCMPES L AFLAZD (4.0,6.0) L XHAME ('HANGE (A) \$',100) L XHAME ('HANGE (A) \$',100) L LINESP (3.5) L LINESP (3.5) L HEADIN ('MAGNITUDE OF PRESSUKE A L NCCHEK (MAIN, 'SCALE', KMAX,0.0,'SCA L GUAF (RMIN, 'SCALE', KMAX,0.0,'SCA L GUAF (RMIN, 'SCALE', KMAX,0.0,'SCA L ENCPL (1) (I) DOWA 11 DG 20 1 = 1 JAAX IF (PROD(I) - GZ - PNAX) PAAX CCNTINUE 5 ٠ SUBROATIAE Ì Ħ SHOULD COCCCC PAAX 10 C200 *** 100 ຈິວ \mathbf{O} رىن 00 $v_{i} v_{i}$ <u>ີ</u> \mathbf{O}

106

Ĩ

00000 mon "REAL" > Q REAL. GMAX IS THE PAXIMUM VALUE KH CAN TAKE ON AND STILL PHODUCE ' Theoeftical 2 and leta values. K2 < sort (ak**2 + KH**2) => LI NERZE (4.0,6.0) LL XNAME (10.120MTAL WAVENUMBEF, 1/M\$, 100) LL XNAME (10.120MTAL WAVENUMBEF, 1/M\$, 100) LL NERSP (3.5) LL HEADIN (?PKESSULE SPECTRUM VS KH\$, 100,1.0,1) LL HEADIN (?PKESSULE SPECTRUM VS KH\$, 100,1.0,1) LL GRAF (GMIN, 'SCALE', GMAX, 0.0, 'SCALE', SMAX) LL CURVE (GM, CKE, IMAX, IMARK) ALL EVEVE (GM, CKE, IMAX, IMARK) ALL EVEVE (GM, CKE, IMAX, IMARK) ALL EVEVE (GM, CKE, IMAX, IMARK) LL UNDPL(2) LL UNDPL(2) LL UNDPL(2) 0IMENSILN LKa(4096), Ç(4096), RF(4096) WIVPLI (IAAX, CXA, Q, AK, BE) THE PRESSURE Prax 0(1) 11 R INT (IMAX/5.) (E (1) (1 Max/5.) (1 Max) (1 Max) IF (C (I) . G1 . Q3AX) 2%AX CONTINUE LF (PEAX.GF. CHAX) SHAX SMAX = CHAX -00 SUBRUNTINE <u>o.</u>, A A N ر (<u>دە</u>ند 4E 1E U. 11 HUJAC Manan ¥ *** # # ÷ ς Π 2 0000000000000 ມບບ c c6108 Black

REPRODUCED AT GOVERNMENT EXPENSE

107

LIST OF REFERENCES

1.	Lauer, R. B., <u>Signal Transmission in the Wavenumber</u> <u>Domain</u> , Technical Memorandum, Naval Underwater Systems Center, New London Laboratory, New London, CT, 5 June 1979.
2.	Naval Underwater Systems Center Report 4103, <u>Fast</u> <u>Field Program for Multilayered Media</u> , by F. R. DINAPOLI, 26 August 1971.
3.	Stamey, B. B., <u>Preliminary Investigation of the</u> <u>Environmental</u> Sensitivity <u>of Acoustic</u> Signal <u>Transmission in the Navenumber</u> <u>Domain with Respect to</u> <u>Source Depth Determination</u> , <u>Masters Thesis</u> , <u>Naval</u> Postgraduate School, Monterey, CA, 1982.
4.	Blanchard, J., <u>A Comparison of Two Accustic Parabolic</u> Equation Transmission Loss Models for Compatibility with the Mavenumber Technique in the Determination of Source Depth, Masters Thesis, Naval Postgraduate School, Monterey, CA, 1984.
5.	Kinsler, L., and others, <u>Fundamentals of Acoustics</u> , 3rd ed., John Wiley and Sons, 1982.
6.	Urick, R. J., <u>Principles of Underwater Sound</u> , 3rd ed., Mcgraw-Hill, 1983.
7.	Officer, C. B., <u>Introduction to the Theory of Sound</u> <u>Transmission</u> , McGraw-Hill, 1958.
8.	Corpens, A. B., <u>Mathematical Derivation of the Acoustic</u> <u>Pressure Spectrum of the Lloyds</u> Mirror, Naval Postgraduate School, Monterey, CA, January 1985.
9.	IMSL Library Reference Manual, 9th ed., v. 2, IMSL, 1982
10.	Gabrielson, T., <u>Mathematical</u> <u>Derivation</u> of the <u>Acoustic Pressure Spectrum</u> for the Lloyds' <u>Mirror</u> ,

10. Gabrielson, I., <u>Mathematical</u> <u>Derivation of the</u> <u>Acoustic Pressure Spectrum for the Lloyds' Mirror,</u> Naval Postgraduate School, Monterey, CA, February 1985.

PREVIOUS PAGE

, ,

٠.

BIBLIOGRAPHY

Bergland, G. D., "A Guided Tour of the Fast Fourier Transform," <u>IEEE Spectrum</u>, v.6, July 1969.
Blackman, R. B. and Tukey, J. W., <u>The Measurement of Fower Spectra</u>, Dover Publications, Inc., 1958.
Brigham, E. O., <u>The Fast Fourier Transform</u>, Prentice-Hall, Inc., 1974.
EiNapoli, F. R. and Deavenport, R. L., "Numerical Models for Underwater Acoustic Propagation," <u>Ocean Acoustics</u>, v. 1, Springer-Verlag, New York, NY, 1979.
DiNapoli, F. R. and Deavenport, R. L., "Theoretical and Numerical Green's Function Field Solution in a Plane Multilayered Media, "Journal of the Acoustic Society of America, v. 67 (1), January 1980.
International Series of Monographs on Flectronics and Instrumentation, v.9, Pergamon Press, Inc., 1960.
Naval Surface Weapons Center Report 75-18, A Statistical Models for Unick, F. J., VI February 1975.
Naval Underwater Systems Center Technical Memorandum 781054, A Simplified Derivation of a Quadrature Subsampling Technifed, Jeriwation of a Quadrature Subsampling Technifed, v.64(6), December 1978.
Thomas, G. B. and Finney, R. L., Calculus and Analytic Geometry, 5th ed., Addison-Wesley Publishing Company, 1979.

INITIAL DISTRIBUTION LIST

Ĵ

Z

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexander, VA 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93943		2
3.	Chairman (Code 55Fo) ASW Academic Group Naval Postgraduate School Monterey, CA 93943		1
4_	Prof. A. B. Coppens (Code 61Cz) Department of Physics Naval Postgraduate School Monterey, CA 93943		4
5.	Prof. C. R. Dunlap (Code 68Du) Department of Oceanography Naval Postgraduate School Monterey, CA 93943		3
6.	Prof. Suk Wang Yoon (Code 61Yo) Department of Physics Naval Postgraduate School Monterey, CA 93943		3
7.	Frof. T. Gabrielson (Code 61Gt) Department of Physics Naval Postgraduate School Monterey, CA 93943		1
8.	LCDR P. B. King 425 Pine Shadows Drive Slidell, LA 70458		3
9.	Commanding Officer Naval Coean Research and Development Activi NSTL, MS 39522	ty	1
10.	Commanding Officer Naval Ocean Research and Development Activi (ATTN: Code 223) NSTL, MS 39522	ty	1
11.	Office of Naval Research ATIN: Mr. R. B. Lauer Naval Ocean Research and Development Activi 800 N. Quincy Street Arlington, VA 22217	ty	1
12.	Commanding Officer Naval Eastern Oceanography Center ATTN: LCDR J. Elanchard McAdie Bldg. (U-117) Naval Air Station Norfolk, VA 23511		1

ĩ

13.	ICDR B. Stamey 5508 Buskirk Street North Charleston, SC 29406
14.	Ms Catherine Smith P. O. Box 58 Carmel Valley, CA 93924

1

2

ī

,

FILMED

8-85

DTIC

Realized and the second and the seco