AD-8156	452 N	ATIONAL RYSTAL EN ENGL	PROGR	AM FOR Am (NH	INSPE	CTION Corps	OF NO OF EN	N-FEDE GINEER	RAL DA 5 Walt	ins Than na	1/	1
UNCLASS	IFIED	EM EAUL		• 404	10				F/G 1	3/13	NL	
<u>.</u>						i						
					1°0							*
** 23												
						Etal) 						

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

REPORT DOCUMENTAT	ION PAGE	READ INSTRUCTIONS
REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
NH 00269		
TITLE (and Subifile)		5. TYPE OF REPORT & PERIOD COVERED
Crystal Lake Dam		INSPECTION REPORT
ATIONAL PROGRAM FOR INSPECTION	OF NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(+)		S. CONTRACT OR GRANT NUMBER(+)
J.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION		
PERFORMING ORGANIZATION NAME AND ADI	DRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENG NEW ENGLAND DIVISION, NEDED	INEERS	November 1978
124 TRAPELO ROAD, WALTHAM, MA.	02254	52
MONITORING AGENCY NAME & ADDRESS(If d	litterent frem Centrolisng Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		184. DECLASSIFICATION DOWNGRADING
	STRIBUTION UNLIMITED	SCHEDULE
DISTRIBUTION STATEMENT (of the Report) APPROVAL FOR PUBLIC RELEASE: DI DISTRIBUTION STATEMENT (of the observace of		SCHEDULE
APPROVAL FOR PUBLIC RELEASE: DI DISTRIBUTION STATEMENT (of the observed) of SUPPLEMENTARY NOTES Cover program reads: Phase I In however, the official title of lon-Federal Dams; use cover da	spection Report, Nati the program is: Natic te for date of report	onal Dam Inspection Program; onal Program for Inspection o
DISTRIBUTION STATEMENT (of the observed) of SUPPLEMENTARY NOTES Cover program reads: Phase I In nowever, the official title of	spection Report, Nati the program is: Natic te for date of report	onal Dam Inspection Program; onal Program for Inspection c
APPROVAL FOR PUBLIC RELEASE: DI DISTRIBUTION STATEMENT (of the observer of SUPPLEMENTARY NOTES Cover program reads: Phase I In Nowever, the official title of Ion-Federal Dams; use cover da	spection Report, Nati the program is: Natic te for date of report	onal Dam Inspection Program; onal Program for Inspection c
APPROVAL FOR PUBLIC RELEASE: DI DISTRIBUTION STATEMENT (of the observer of cover program reads: Phase I In however, the official title of lon-Federal Dams; use cover da KEY WORDS (Continue on reverse alde 11 necession DAMS, INSPECTION, DAM SAFETY, Connecticut River Basin Enfield, New Hampshire	spection Report, Nati the program is: Natic te for date of report	(onal Dam Inspection Program) (onal Program for Inspection of

)

DD 1 JAN 73 1473 EDITION OF INCV BAIS OBSOLETE

1.1

ĩ

.

{

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

CONNECTICUT RIVER BASIN ENFIELD, NEW HAMPSHIRE

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

CRYSTAL LAKE DAM

NH 00269

NHWRB 77.01

LETTER OF TRANSMITTAL FROM THE CORPS OF ENGINEERS TO THE STATE TO BE SUPPLIED BY THE CORPS OF ENGINEERS

.

: . . .

<u>í</u>

D

•

•

NATIONAL DAM INSPECTION PROGRAM PHASE I - INSPECTION *REPORT BRIEF ASSESSMENT

Identification No.: 00269

Name of Dam: Crystal Lake Dam

Town: Enfield

(

County and State: Grafton, New Hampshire

Stream: Crystal Lake Brook

Date of Inspection: September 1, 1978

Crystal Lake Dam is a 170 foot long, 22 foot high dam consisting of stone, earth and concrete. Engineering data available consisted of two sets of plans dated 1918 and 1943 both showing plan and elevation of the dam and details of additions and improvements made at those times. No construction specifications or design calculations were available.

The visual inspection of Crystal Lake Dam did not disclose any findings that indicate an immediate unsafe condition. The genenal condition of the dam is good. The inspection revealed trees growing on the downstream face of the dam and two small cracks in the upper section of the dam's upstream reinforced concrete retaining wall. Also scoured concrete walls and an area of leakage at the outlet works discharge channel were observed. Many overhanging trees and two debris dams were noted in the downstream channel.

Crystal Lake Dam's spillway will not pass the required test flood. The dam's spillway capacity is approximately 36 percent of the test flood and consequently, the dam would be overtopped by approximately 2.7 feet under test flood conditions.

It is recommended that the owner engage a qualified engineer to evaluate further the potential for overtopping and the inadequacy of the spillway. Also, provisions should be made by the owner to repair the area of leakage at the interface of the spillway and the outlet works structure, to remove all trees growing on the downstream face of the dam and to remove all obstructions in the downstream channel. The recommendations and remedial measures are described in Section 7 and should be accomplihed by the owner within two years after receipt of this Phase I - Inspection Report.

5

k N

1-1-2-4

1

Gordon H. Slancy, J.

Gordon H. Slaney, Jr., P.E. Project Engineer

Howard, Needles, Tammen & Bergendoff Boston, Massachusetts

This Phase I Inspection Report on Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the <u>Recommended Guidelines for Safety Inspection</u> of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

CHARLES G. TIERSCH, Chairman Chief, Foundation and Materials Branch Engineering Division

FRED J. RAVENS, Jr., Member Chief, Design Branch Engineering Division

SAUL COOPER, Member Chief, Water Control Branch Engineering Division

APPROVAL RECOMMENDED:

(

JOE B. FRYAR Chief, Engineering Division

THIS SHEET TO BE FURNISHED BY THE CORPS OF ENGINEERS

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there by any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential. TABLE OF CONTENTS

í.

.

Ì

.

•

. 14

• .

•

۰**.**

.]●

Section	Page
Letter of Transmittal	
Brief Assessment	
Review Board Page	
Preface	i
Table of Contents	ii-iv
Overview Photo	v
Location Map	vi

REPORT

1.	PROJ	ECT INFORMATION	1-1
	1.1	General	1-1
		a. Authority b. Purpose of Inspection	1-1 1-)
	1.2	Description of Project	1-]
		 a. Location b. Description of Dam and Appurtenances c. Size Classification d. Hazard Classification e. Ownership f. Operator g. Purpose of Dam h. Design and Construction History i. Normal Operational Procedure 	1-1 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2
	1.3	Pertinent Data	1-2
2.	ENGI	NEERING DATA	2-1
	2.1	Design Data	2-1
	2.2	Construction Data	2-1
	2.3	Operation Data	2-1
	2.4	Evaluation of Data	2-1

Sec	tion	· .	Page
3.	VISU	AL INSPECTION	3-1
	3.1	Findings	3-1
		a. General b. Dam c. Appurtenant Structures d. Reservoir Area e. Downstream Channel	3-1 3-1 3-2 3-2 3-2
	3.2	Evaluation	3-3
4.	OPEF	RATIONAL PROCEDURES	4-1
	4.1	Procedures	4-1
	4.2	Maintenance of Dam	4-1
	4.3	Maintenance of Operating Facilities	4-1
	4.4	Description of any Warning System in Effect	4-1
	4.5	Evaluation	4-1
5.	HYDR	RAULIC/HYDROLOGY	5-1
	5.1	Evaluation of Features	5-1
		 a. General b. Design Data c. Experience Data d. Visual Observation e. Overtopping Potential f. Dam Failure Analysis 	5-1 5-1 5-1 5-1 5-1 5-2
6.	STRU	ICTURAL STABILITY	6-1
	6.1	Evaluation of Structural Stability	6-1
		 a. Visual Observation b. Design and Construction Data c. Operating Records d. Post-Construction Changes e. Seismic Stability 	6-1 6-1 6-1 6-1 6-1

1.1.1

È

L,

۳.

Sec	tion		Page
7.	ASSE	SSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	7-1
	7.1	Dam Assessment	7-1
		 a. Condition b. Adequacy of Information c. Urgency d. Need for Additional Investigation 	7-1 7-1 7-1 7-1
	7.2	Recommendations	7-1
	7.3	Remedial Measures	7-1
	7.4	Alternatives	7-2

10

Ń

1

i 6

i. C

APPENDIXES

APPENDIX A - INSPECTION CHECKLIST	A-1
APPENDIX B - ENGINEERING DATA	B-1
APPENDIX C - PHOTOGRAPHS	C].
APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1
APPENDIX E - INFORMATION AS CONTAINED IN THE NATION INVENTORY OF DAMS	NAL E-l

١

CPYSTAL LAKE DAM - Overview Looking Downstream

_

-

. .

in the second second

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT CRYSTAL LAKE DAM

SECTION 1 PROJECT INFORMATION

1.1 General

a. <u>Authority</u>. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Howard, Needles, Tammen & Bergendoff has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to Howard, Needles, Tammen & Bergendoff under a letter of July 12, 1978 from John P. Chandler, Colonel, Corps of Engineers. Contract No. DACW33-78-C-0356 has been assigned by the Corps of Engineers for this work.

b. Purpose

D

(1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) To encourage and prepare the states to initiate quickly effective dam safety program for non-Federal dams.

(3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location. Crystal Lake Dam is located in the Town of Enfield, New Hampshire, approximately 6 miles downstream from the headwaters of Bicknell Brook. Below Crystal Lake Dam, the brook known as Crystal Lake Brook, flows in a generally northerly direction for a distance of approximately 3 miles to its confluence with Mascoma River in Canaan, New Hampshire. The dam is shown on U.S.G.S. Quadrangle, Mascoma, New Hampshire-Vermont, with coordinates approximately

N 43⁰36'40", W 72⁰05'00", Grafton County, New Hampshire. Crystal Lake Dam's location is shown on the Location Map immediately preceding page 1-1.

b. Description of Dam and Appurtenant Structures. Crystal Lake Dam is a composite structure consisting of earth fill, stone and concrete. The structure is approximately 170 feet in length. The maximum structural height of the dam, according to existing plans, is about 22 feet from the base to the top of the concrete wall. The original dam consisted of an upstream and downstream rock wall, approximately 21 feet apart, with cobble and earth fill placed between the walls. In approximately 1919 the upstream rock wall was replaced with a reinforced concrete retaining wall which, in 1943, was increased in height to its present elevation.

The appurtenant structures consist of a stone masonry spillway section approximately 50 feet wide and 5.5 feet high, a spillway channel and outlet works consisting of a mechanically operated 4 foot by 4 foot wooden gate and an outlet channel made of large cut rock slabs.

Figure 1, located in Appendix B, shows the plan of the dam, spillway and outlet works. Photographs of each structure are shown in Appendix C.

c. <u>Size Classification</u>. Intermediate (hydraulic height -22 feet, storage - 4,840 acre-feet) based on storage (≥1,000 to 50,000 acre-feet) as given in Recommended Guidelines for Safety Inspection of Dams.

d. <u>Hazard Classification</u>. The dam's potential for damage rates if as a significant hazard classification. A major breach could result in damage to several homes in the West Canaan and Enfield areas and the loss of a few lives.

e. <u>Ownership</u>. This dam is owned by the State of New Hampshire Water Resources Board.

f. Operator. This dam is maintained and operated by the State of New Hampshire Water Resources Board, 37 Pleasant Street, Concord, New Hampshire 03301. Chairman of the Water Resources Board is Mr. George M. McGee, Sr.; Mr. Vernon Knowlton is Chief Engineer. Telephone No. (603)271-1110.

g. <u>Purpose of Dam</u>. The purpose of this dam is primarily to provide a recreational lake with some flood control benefits which are described in Section 4, Operational Procedures.

h. Design and Construction History. Little information is available regarding the original design and construction of Crystal Lake Dam. Two sets of drawings (2 sheets each) were prepared by the Mascoma River Improvement Co., one in 1918, the second in 1943. The 1918 plans were prepared for the replacement of the upstream rock wall with a reinforced concrete retaining wall. The 1943 drawings were prepared for raising the upstream retaining wall to its present elevation.

The drawings for this dam are available at the New Hampshire Water Resources Board. No in-depth design or construction data were disclosed for this dam.

i. Normal Operational Procedure. Crystal Lake Dam is used primarily for the retention of Crystal Lake which is used for recreational purposes. A secondary purpose of the dam and its resulting reservoir area is for control of winter and early spring runoff. The normal operational procedure for this dam is to lower the reservoir level in the month of October or November of each year. The resultant available storage is used to control snow melt and heavy runoff during the winter and spring months. In May of each year, the reservoir is returned to its summertime recreational level.

1.3 Pertinent Data

a. <u>Drainage Area</u>. The drainage area above the Crystal Lake Dam consists of approximately 13 square miles of rolling, heavily wooded hills. The periphery of Crystal Lake is comprised of wooded area with some residences located near the reservoir.

The reservoir area itself contains no islands and is devoid of dead trees protruding through the surface or other visible impediments to navigation. There were some private docks or piers noted along the area inspected.

The watershed supporting Crystal Lake is forested rolling terrain with few flat areas. All areas in the basin are well vegetated with manmade imperviousness being limited to a few paved roads and housing. Topographic elevation in the watershed ranges from about 2,020 to 890 feet MSL.

The major tributary draining into Crystal Lake is Bicknell Brook which is approximately 5 miles long with a vertical drop over its length of about 500 feet.

b. Discharge at Dam Site

(1) The outlet works for Crystal Lake consist of a spillway section and an outlet structure consisting of a mechanically operated, 4 foot by 4 foot wooden gate and an outlet channel constructed of large cut rock slabs. The reservoir behind the dam can be lowered approximately § feet from the spillway crest elevation (892.0) by opening the outlet gate. This lowers the reservoir to within approximately 3 feet of the original river bed elevation of 880.5.

(2) The maximum discharge at this dam site is unknown.

(3) The spillway capacity with a water surface at the top of the dam (elevation 897.5) is approximately 1,950 cfs.

(4) The spillway capacity with the water surface at the test flood elevation is approximately 3,500 cfs at an elevation of approximately 900.2.

(5) The total project discharge at the test flood elevation of 900.2 is estimated to be 5,400 cfs.

c. <u>Elevation</u> (feet above MSL) based on elevation of 892 for the spillway crest as obtained from existing data.

- (1) Streambed at centerline of dam 880.5.
- (2) Maximum tailwater unknown.
- (3) Upstream portal invert diversion tunnel none.
- (4) Recreation pool 892.0.
- (5) Full flood control pool 884 (see Section 1.2.i).
- (6) Spillway crest 892.0.
- (7) Design surcharge unknown.
- (8) Top dam 897.5.
- (9) Test flood surcharge 900.2.
- d. Reservoir (miles)
- (1) Length of maximum pool 1.50.
- (2) Length of recreational pool 1.50.
- (3) Length of flood control pool 1.45.
- e. Storage (Acre-Feet)
- (1) Recreation pool 2,720.
- (2) Flood control pool -1,300.

```
(3)
     Spillway crest pool - 2,720.
     Top of dam -4,840.
 (4)
f.
    Reservoir Surface (acres)
     Recreation pool - 378.
 (1)
 (2)
     Flood control pool - 340.
 (3)
     Spillway crest - 372.
 (4)
     Test flood pool - 388. Note:
                                     Vertical sides
                                      assumed.
 (5)
     Top dam - 388.
g.
     Dam
 (1)
     Type - stone, earth, concrete.
 (2) Length - 170 feet, overall.
     Height - 22 feet (maximum).
(3)
     Top width - 10" wall, 21 foot earth fill section.
 (4)
(5)
     Side slopes - US = vertical; DS = variable.
 (6)
     Zoning - unknown.
 (7)
     Impervious core - concrete retaining wall.
 (8)
     Cutoff - concrete wall.
     Grout curtain - none.
(9)
(10)
     Other - none.
    Diversion and Regulating Tunnel
h.
     See Section j below.
i.
    Spillway
     Type - broad crested - vertical drop spillway.
(1)
(2)
     Length of weir - 50 feet.
     Crest elevation - 892.0.
(3)
```

(4) Gates - none.

Ė

Ę

E

(5) Upstream channel - none.

(6) Downstream channel - the downstream channel is a boulder strewn stream bed with many small diameter trees on each bank. Approximately 300 feet downstream from the dam, the channel has a debris dam consisting of washed down trees and branches.

j. <u>Regulatory Outlets</u>. The regulating outlet consists of a wooden, mechanically operated, control gate having an effective opening of 4.0 feet by 4.0 feet. The invert of the gate opening (884.0) is such that the water level of Crystal Lake may be lowered 8 feet from its spillway crest elevation (892.0) which is about 3 feet above the original channel bed.

SECTION 2 ENGINEERING DATA

2.1 Design

E

Ę

No original design data were disclosed for Crystal Lake. Two sets of drawings (2 sheets each) dated 1919 and 1943 showing additions and improvements made to the existing dam were the only design information found. Both sets of plans were prepared by the Mascoma River Improvement Company.

2.2 Construction

No construction records were available for use in evaluating the dam.

2.3 Operation

No engineering operational data were disclosed.

2.4 Evaluation

a. <u>Availability</u>. Engineering data available for Crystal Lake Dam is limited to the two sets of plans mentioned above. These plans are on file at the New Hampshire Water Resources Board.

b. <u>Adequacy</u>. Available engineering data, which when combined with visual inspection are considered adequate for a Phase I investigation.

c. Validity. The field investigation indicated that the external features of Crystal Lake Dam substantially agree with those shown on the available plans.

SECTION 3 VISUAL INSPECTION

3.1 Findings

a. <u>General</u>. The field inspection of Crystal Lake Dam was made on September 1, 1978. The inspection team consisted of personnel from Howard, Needles, Tammen & Bergendoff and Geotechnical Engineers, Inc. Inspection checklists, completed during the visual inspection are included in Appendix A. At the time of the inspection, the water level was approximately 2 inches below the spillway crest elevation. The upstream face of the dam could only be inspected above this water level.

b. Dam. Visual inspection of the embankment revealed no signs of distress.

Upstream Slope

The upstream slope of the dam is formed by a reinforced concrete retaining wall which was constructed in 1919 to replace the original rock wall. This wall is in good condition and exhibits no signs of distress that would indicate there has been significant movement of the wall.

Crest

The crest has no pavement. No evidence of cracking or misalignment was observed.

Downstream Slope

The face of the downstream slope was traversed (1) along the crest, (2) along the downstream toe and (3) at approximately mid-height.

The original downstream rock wall is visible over portions of the dam length. Photo 10 shows remnants of the original downstream wall near the right abutment. The rock wall protrudes about 3 feet above the ground surface in the area of the photograph.

Photos 7 and 9 show the trees that have been allowed to grow on the slope of the dam.

No seepage or damp areas were observed along the toe of the dam.

Visual inspection of the concrete retaining wall indicated two surface cracks located in the center section of the wall length. The cracked wall section is through the top and sides of the wall and appear to be related to thermal forces. Overall, it appears that the wall is in good condition.

c. Appurtenant Structures. The spillway structure is constructed of selected and/or shaped stones with the top surface being reinforced with a 5-inch thick concrete slab. The upstream rock face of the spillway has been covered with a concrete wall. All portions of the spillway, Photos 8, 11 and 12, appeared to be in good condition.

The downstream face of the spillway, which is between the left abutment and the embankment, is constructed of rock masonry. This rock wall, shown in Photo 12, is in good condition.

The outlet works consists of a wooden, mechanically operated control gate and a stone and concrete sluiceway discharge channel. The gate has a maximum effective opening of 4.0 feet wide by 4.0 feet high. The wooden plank gate appears to be in good condition. As no representative from the New Hampshire Water Resources Board was present, the gate (Photo 14) was not operated but visual inspection indicated that it was in good condition, and it has been reported to be operational. Alignment of the sluiceway channel (Photo 13) was good and the channel was clean. Inspection of the concrete portion of the channel walls revealed a horizontal crack 18"+ above the invert along the left wall of the channel. The concrete on the right wall was eroded to a height of about 2 feet above the channel floor. All stone portions of the channel were in good condition. Visual inspection of the outlet works also showed a leak at the interface of the dam's spillway section and the left wall of the outlet works sluiceway discharge channel.

Visual inspection of the spillway/outlet works discharge channel showed it to be a boulder strewn stream bed with many small diameter trees on each bank.

b. <u>Reservoir Area</u>. The reservoir slopes are generally covered with trees and brush. A more detailed description of the drainage area is included in Section 1.3 of this report. Cottages are scattered along the shoreline several of which appear to be in a flood zone.

e. <u>Downstream Channel</u>. The downstream channel between the dam and the swampy area about 3,000 feet downstream is a boulder strewn stream bed with many trees overhanging from the banks (Photo 16). Approximately 300 feet downstream from the dam, the channel has a debris dam consisting of washed down trees and branches as shown in Photo 18. Approximately 500 feet downstream the channel is again covered with fallen trees. Except for the swampy area located about 3,000 feet downstream of the dam, the downstream channel is relatively narrow and steep, providing for little storage between the dam and the downstream Town of Enfield.

3.2 EVALUATION

1

ł

R

Visual examination indicates no immediate safety problems, The general condition of this dam is good. However, trees which have been permitted to grow on the embankment should be removed. The visual inspection revealed the following:

(a) Trees growing in the downstream face of the dam.

(b) Two small cracks in the upper section of the dam's upstream reinforced concrete retaining wall.

(c) Leakage at the interface of the dam's spillway section and outlet works sluiceway discharge channel.

(d) Scoured concrete walls at the outlet works sluiceway discharge channel.

(e) Many overhanging trees and two debris dams in the downstream channel.

SECTION 4 OPERATIONAL PROCEDURES

4.1 Procedure

The Crystal Lake Dam is used primarily for the retention of Crystal Lake which is used for recreational purposes. A secondard purpose of the dam and its resulting reservoir area is for control of winter and early spring runoff. The normal operational procedure for this dam is to lower the reservoir level sometime in the month of October or November of each year. The resultant available storage is used to control snow melt and heavy runoff during the winter and spring months. In May of each year, the reservoir is returned to its summertime recreational level.

4.2 Maintenance of Dam

This dam is visited by one of the State of New Hampshire Water Resources Board's dam operators approximately once per week. During these visits water levels are recorded, grass is cut as necessary, painting is done as necessary and any major deficiencies that may be noted are reported to the Water Resources Board. Occasional clearing of the brush on the embankment is also scheduled on a need basis.

In 1919, a new reinforced concrete retaining wall was constructed to replace the original rock wall which formed the original upstream face of the dam. In 1944, this retaining wall was increased in height to its present elevation.

4.3 Maintenance of Operating Facilities

Maintenance on the outlet works facilities is done on an as needed basis.

4.4 Description of Warning Systems

There are no warning systems in effect at this facility.

4.5 Evaluation

The current operation and maintenance procedures for Crystal Lake Dam are inadequate to insure that all problems encountered can be remedied within a reasonable period of time. The owner should establish a written operation and maintenance procedure as well as establishing a warning system to follow in event of flood flow conditions or imminent dam failure.

SECTION 5 HYDROLOGY AND HYDRAULIC ANALYSIS

5.1 Evaluation of Features

E

a. <u>General</u>. Crystal Lake Dam is a composite structure consisting of stone, earth and concrete with a total length of approximately 170 feet and a maximum structural height of 22 feet. The appurtenant works consist of a spillway section and an outlet works structure. The spillway has a maximum opening of 50 feet wide by 5.5 feet high. The outlet works structure consists of a mechanically operated 4 foot by 4 foot wooden gate and an outlet channel made of large cut rock slabs.

The dam is located on Crystal Lake Brook and creates an impoundment of water primarily used for recreational purposes. By lowering the reservoir level during the winter, the storage created behind the dam is also used to provide some control over snow melt and stormwater runoff during the winter months. Crystal Lake Dam is classified as being intermediate in size having a maximum storage of 4,840 acre-feet.

b. <u>Design Data</u>. No hydrologic or hydraulic design data were disclosed for Crystal Lake.

c. Experience Data. Maximum discharge at this dam site is unknown.

d. <u>Visual Observations</u>. No evidence of damage to any portion of the project from overtopping was visible at the time of the inspection.

e. Overtopping Potential. As no detailed design and operational information are available, hydrologic evaluation was performed using dam information gathered by field inspection, watershed size and an estimated test flood equal to one-half the Probable Maximum Flood (PMF) as determined by guide curves issued by the Corps of Engineers. Based on a drainage area of 13 square miles, it was estimated that the test flood inflow at Crystal Lake Dam would be 10,300 cfs. Following the guidance for Estimating Effect of Surcharge Storage on Maximum Probable Discharge results in a test flood discharge of 5,400 cfs. As the maximum spillway capacity at the top of the dam is only 1,970 cfs (approximately 36 percent of the

test flood discharge flow), the test flood will result in the dam being overtopped by approximately 2.7 feet.

f. Dam Failure Analysis. The impact of tailure of the dam at maximum pool (top of dam) was assessed to far the "Bule of Thumb" Guidance for Estimating Downstream Dam starture Hydrographs issued by the Corps of Engineeral. The analysis covered the reach extending from the dam to a the astrofailure of Crystal Lake Dam at maximum polls. The analysis result in a downstream channel depth of a transmission of feet for a reach extending about 3,000 freetones to a start dam. At this point, the channel depth would a construct the section available through this reach. Beyond the wall of the start up to and including the reach passing through the start free from 9 feet to 12 feet. An increase in water fight et thus magnitude would probably result in the los of a text invest, damage several downstream roadways and could passibly destroy several homes.

- 2

D

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

-

E

a. Visual Observations. The visual observation did not disclose any immediate stability problems. Portions or the original downstream rock wall have deteriorated, but the downstream slope formed by natural erosion appears stable.

b. Design and Construction Data. Existing drawings, dated 1918 and 1919, indicate that the original dam consisted of an upstream and downstream rock wall with "cobbles and earth fill" between the walls which were about 21 feet apart.

c. Operating Records. No operating records were made available.

d. <u>Post-Construction Changes</u>. Since the original construction, a reinforced concrete retaining wall was constructed in about 1919 to replace the upstream rock wall. According to existing drawings, the wall was constructed after removing the upstream rock wall except in the spillway area where a concrete facing was placed on the existing rock wall. In 1944, the reinforced concrete retaining wall constructed in 1919, was increased in height by about three feet to its present elevation.

Seismic Stability

The dam is located in Seismic Zone 2, and in accordance with recommended Phase I guidelines does not warrant seismic analysis.

SECTION 7

ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. <u>Condition</u>. The visual inspection of Crystal Lake Dam did not disclose any findings that indicate an immediate unsafe condition. The observed condition of the dam is generally yood. The inspection revealed the following:

(1) Trees growing on the downstream face of the dam.

(2) Two small cracks in the upper section of the dam's upstream reinforced concrete retaining wall.

(3) Leakage at the interface of the dam's spillway section and outlet works sluiceway discharge channel.

(4) Scoured concrete walls at the outlet works sluiceway discharge channel.

(5) Many overhanging trees and two debris dams in the downstream channel.

The hydraulic analysis reveals the inadequacy of the spillway to pass the test flood without overtopping the dam.

b. Adequacy of Information. Existing drawings provide information which when combined with the visual inspection permit an adequate Phase I level evaluation.

c. <u>Urgency</u>. This dam is in generally good condition. The recommendations and remedial measures presented in Sections 7.2 and 7.3 should be implemented by the owner within two years of this Phase I Inspection Report.

d. Need of Additional Investigation. The findings of the visual inspection do not warrant additional investigation.

7.2 Recommendations

It is recommended that the owner engage a gualified engineer to evaluate further the potential for overtopping and the inadequacy of the spillway.

7.3 Remedial Measures

(a) All trees growing on the downstream face of the dam must be removed.

(b) The joint between the spillway and the sluiceway channel wall should be repaired.

(c) The scoured concrete walls of the sluiceway discharge channel should be repaired.

(d) The debris dams and the tree and brush growth in the downstream channel should be removed and kept clean in the future.

(e) A written operational procedure to follow in the event of flood flow conditions or imminent dam failure should be developed.

(f) The technical inspection program should be continued on an annual basis.

7.4 Alternatives

2

There are no practical alternatives to the recommendations of Section 7.2 and 7.3 except that on an interim basis the owner may consider operating the reservoir at a lower level throughout the year so as to provide more storage for extreme flood events.

APPENDIX A

1

E

•

•

1....

2

•.

!0

VISUAL CHECK LIST WITH COMMENTS

VISUAL INSPEC Party Orc	CTION CHECK GANIZATION	LIST		
DJECT Crystal Lake		DATE <u>September 1</u>	1978	
Enfield, New Hampshire		TIME <u>9 a.m.</u>		
•		WEATHER 65° Cloud	<u>ly</u>	
		W.S. ELEV. <u>891.83</u> U	.S. <u>881.0⁺</u> DN.S	· · · · · · · · · · · · · · · · · · ·
RTY:				
Gordon Slaney, HNTB	6.			
Stan Masur, HNTB				•
D. P. LaGatta, GEI				
PROJECT FEATURE		INSPECTED BY	REMARKS	
Dam		Dan LaGatta		
Spillway, Sluiceway		Stan Mazur		
Outlet Works/Downstream Channel		Gordon Slaney		
	<u></u>			
				•
		۱۹۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰		

PERIODIC INSPECTIO	N CHECK LIST	•
PROJECT Crystal Lake - Enfield, New Hampsh	ire DATE September 1, 1978	
PROJECT FEATURE Dam	NAME	
DISCIPLINE Geotechnical Engineer	NAME D. P. LaGatta	
AREA EVALUATED	CONDITION	
DAM EMBANKMENT		
Crest Elevation	897.5	• • • • • • • • • • • • • • • • • • •
Current Pool Elevation	891.83	
Maximum Impoundment to Date	Unknown	
Surface Cracks	None observed.	•
Pavement Condition	No pavement	
Movement or Settlement of Crest	None observed.	
Lateral Movement	None observed on U.S. face.	
Vertical Alignment	No misalignment observed.	
Horizontal Alignment	No misalignment observed.	
Condition at Abutment and at Concrete Structures	Concrete walls have been added to raise dam, and walls extend into abut- ments. Both walls in good condition.	
Indications of Movement of Structural Items on Slopes	Minor cracking of U.S. wall above earth section.	
Trespassing on Slopes	No trespassing on slopes, but crest	
Sloughing or Erosion of Slopes or Abutments	has a path and dam is used for fishing.	
Rock Slope Protection - Riprap Failures	No rock slope protection.	
Unusual Movement or Cracking at or near Toes	None.	
Unusual Embankment or Downstream Seepage	None observed.	•
Piping or Boils	None observed.	
Foundation Drainage Features	None.	
Toe Drains	None.	•
Instrumentation System	None.	
Vegetation	Trees growing on d.s. slope	

ROJECT Crystal Lake - Enfield, N.H.	DATE September 1, 1978	
ROJECT FEATURE Intake Channel/Structure	NAME D.P. LaGatta	_
ISCIPLINE Structural Hydraulic/Geotechnic Engineer	cal NAME S. Mazur, G. Slaney	•
AREA EVALUATED	CONDITION	
UTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE		
. Approach Channel	None.	
Slope Conditions		
Bottom Conditions		
Rock Slides or Falls		•
Log Boom		
Debris		
Condition of Concrete Lining		
Drains or Weep Eoles		
. Intake Structure		-
Condition of Concrete	Good.	
Stop Logs and Slots	See Gate.	
· · · · · · · · · · · · · · · · · · ·		
OJECT Crystal Lake - Enfield, N.H.	DATE <u>September 1, 1978</u>	
---	---	
OJECT FEATURE Control Tower	NAME <u>S. Mazur</u>	
SCIPLINE Structural/Hydraulics Engine	ers NAME G. Slaney	
AREA EVALUATED	CONDITION	
TLET WORKS - CONTROL TOWER		
Concrete and Structural	Control tower and intake structure are	
General Condition	one and the same. The inlet structure gate is not housed.	
Condition of Joints		
Spalling		
Visible Reinforcing		
Rusting or Staining of Concrete		
Any Seepage or Efflorescence		
Joint Alignment	a	
Unusual Seepage or Leaks in Gate Chamber		
Cracks		
Rusting or Corrosion of Steel		
Mechanical and Electrical	Outlet works gate is hand operated. Re-	
Air Vents	ported to be operational although not opened as no owner's representative was	
Float Wells	present. All portions of the gate structure appeared to be in good	
Crane Hoist	condition.	
Elevator		
Hydraulic System		
Service Gates		
Emergency Gates		
Lightning Protection System		
Emergency Power System		
Wiring and Lighting System		

PERIODIC INSPECT	ION CHECK	LIST	•
ROJECT Crystal Lake, Enfield, N.H.	DATE <u>September 1, 1978</u>		
ROJECT FEATURE Transition Conduit	•	NAME S. Mazur	
DISCIPLINE Structural/Hydraulic Engineers	5	NAME G. Slancy	
AREA EVALUATED		CONDITION	· ·
DUTLET WORKS - TRANSITION AND CONDUIT			
General Condition of Concrete	None.		•
Rust or Staining on Concrete			
Spalling .			
Erosion or Cavitation			•
Cracking			
Alignment of Monoliths		•	• • •
Alignment of Joints			
Numbering of Monoliths			
	ſ		

ROJECT Crystal Lake, Enfield, New Hampsh	ire DATE September 1, 1978	
ROJECT FEATURE Spillway and Channels	NAME S. Mazur, G. Slaney	
ISCIPLINE Structural/Hydraulic/Geotechnica Engineers	al NAME D.P. LaGatta	
AREA EVALUATED	CONDITION	
TLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS		
Approach Channel	None.	
General Condition		
Loose Rock Overhanding Channel		-
Trees Overhanging Channel		
Floor of Approach Channel		
Weir and Training Walls		
General Condition of Concrete	Good.	
Rust or Staining	None observed.	
Spalling	None observed.	
Any Visible Reinforcing	None.	
Any Seepage or Efflorescence	None.	
Drain Holes		
Discharge Channel	Boulder strewn stream bed with many	
General Channel	small diameter trees on bank. The channel has a debris dam consisting of washed down trees and branches.	<u>=</u>
Loose Rock Overhanging Channel	or washed down crees and branches.	
Irees Overhanging Channel		
Floor of Channel		
Other Obstructions		

· •

ROJECT	DATE_		
PROJECT FEATURE			
ISCIPLINE	NAME		
AREA EVALUATED		CONDITION	
UTLET WORKS - SERVICE BRIDGE	None.		
. Super Structure			
Bearings			
Anchor Bolts			
Bridge Seat			•
Longitudinal Members			
Under Side of Deck			· · · · · · · · · · · · · · · · · · ·
Secondary Bracing			•
Deck	÷		
Drainage System			
Railings			
Expansion Joints			
Paint			
. Abutment & Piers			
General Condition of Concrete			
Alignment of Abltment			
Approach to Bridge			
Condition of Seat & Backwall			
			•

APPENDIX B

1. LIST OF DESIGN, CONSTRUCTION AND MAINTENANCE RECORDS

2. PLANS AND DETAILS

1.

K

Ķ

3. PAST INSPECTION REPORTS

AVAILABLE ENGINEERING DATA

ī

K

A set of plans dated 1918 and 1919 (two sheets) showing plan, elevation, typical sections and details are available at the New Hampshire Water Resources Board, 37 Pleasant Street, Concord, New Hampshire 03301. A second set of plans dated 1943 and 1944 (two sheets) showing details for raising the upstream reinforced concrete retaining wall are also available at the Water Resources Board.

PAST INSPECTION REPORTS

ia

Ż

•

•

.

i.

ς.

R

P

•

.

REPORT ON CRYSTAL LAKE DAM

1

ENFIELD, NEW HAMPSHIRE

On April 5, 1944 I visited and inspected the dam at the outlet of Crystal Lake in the Town of Enfield, New Hampshire. Although the gate was closed the pond level was some two or three feet below the crest of the spillway. This permitted the examination of a considerable portion of the upstream face of the concrete. One inch flash boards about eight to ten ' inches in height and supported by hollow pins, were in place along the crest of the spillway. No leakage was noted through any portion of the dam.

In my opinion this dam is in very good condition. It was evident that it had been maintained in a very satisfactory manner.

Submitted by_ Bridge Logineer

New Hampshire State Highway Department,

MEMORANDUM

DATE: March 26, 1973

FROM: Vernon A. Knowlton, Chiaf Engineer, Water Resources Board

SUBJECT: Inspection of Mascoma Dams

TO: Peter J. Merkes, Water Resources Engineer

On Friday, March 23, I inspected three of the dams at Mascoma and found the following:

<u>Mascoma</u>: Exceptional amount of trash over the area which will probably be picked up by Pickard. We should be raising the water level to keep sone water on the planking.

<u>Crystal</u>: Concrete on spillway has excited showing steel in one area, and the joint between the spillway and the crest should be sealed. Noted signs posted on our (?) property regarding "no parking within 300 feet of bridge."

<u>Goose:</u> Concrete at outlet of discharge facility show signs of eroding - has sheel showing. Should be corrected as need arises.

VAK: js

APPENDIX C

•

L

D

PHOTOGRAPHS

FOR LOCATION OF PHOTOS, SEE FIGURE 1 LOCATED IN APPENDIX B

PHOTO NO. 1 - General view of reservoir from roadway bridge.

1.

C

PHOTO NO. 2 - General view of reservoir from left side of reservoir area.

-1-

ζĢ

PHOTO NO. 3 - Reservoir, view from roadway along left bank.

PHOTO NO. 4 - General view of dam from roadway, upstream of dam.

PHOTO NO. 5 - View of dam from roadway.

Ē

C

I

K

PHOTO NO. 6 - Close-up view of dam from right abutment.

C

PHOTO NO. 7 - Dam crest and downstream slope from right abutment.

PHOTO NO. 8 - Spillway crest and spillway slab from embankment.

Q

1

K

HNTB

PHOTO NO. 9 - Trees growing on embankment.

Pht 10 NO. 10 - Recommends of original downstream rock dam.

BERGENDOFF

C

PHOTO NO. 11 - Outlet works and spillway structure from below dam.

PHOTO NO. 12 - Spillway structure from outlet channel.

-6-

PHOTO NO. 13 - Close-up view of outlet works structure, from below dam.

Ī

10

1

R

PHOTO NO. 14 - Control mechanism of outlet works structure.

-7-

E

1

PHOTO NO. 15 - Retaining wall separating embankment and outlet works structure.

PHOTO NO. 16 - Spillway and outlet channel from dam crest.

ľ

PHOTC NO. 17 - Dam and river channel from downstream river.

PHOTO NO. 18 - Debris dam in stream below dam.

APPENDIX D

(;

s.

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

HNTS		Made by HM	Date 3/3/18	JODNO. 5627 - 11 - 01		
HOWAR		& BERGENDOFF	Checked by	Date 222175	Sheet No	1
For	CRYGTAL	LLYED	AM - ENFIELT	>		Ţ

BAGIC DETA

D.A. = 13.2 Square Miles (NH WATER RES. BOARD)

TAM CLASSIF. CLATION: (BOSED ON COrps of Engineers Guideling)

1 SIZE · Intermediate (Storage > 1000 AF)

2 HAZARD BOTENTIAL CLASSIFICATION : SIGNIFICANT

Note For downs with an "Intermediatz Size Classification" our Significant Hazard Potential" a Test Flood equal to %PMF is indicated in the Corps' Guidelives, Use %PMF.

		· · · · · · · · · · · · · · · · · · ·				·
WATER ELEV. (46L)	LOCAL GAGE ELEV.	SURFACE LREA (AC)	Volushe (4 - F)	FLOW D NEC SPILLIOAU (CFS)	FLOW® OVER CREST (CES)	
854 865 865 865 865 867 867 867 867 867 867 867 867 867 867	0127456780012	3054 3154 3333 34564 705 333 354 364 205 35 35 35 35 35 35 35 35 35 35 35 35 35	0 312 632 960 1296 1640 1,992 2,720 3,096 3,568 4,568 4,568	Ho FLOW II II II II II II II II II II II II II	to Flow " " " " " " " " " " " " " " " " " " "	40 FLOW " " " " " " " " " " " " " " " " " " "
897.5 898 200	12.5	1988 1988 1989 1989	4,836 5,032 5,308	1949 ⁷ 3270 3495	0 139 1604	1,949 2,409 5,100

TABLE 1

HOWARD NEEDLES	TAMMEN & BEF	THAL - FR	Ked by VIIV) Date	10/16/78 Jobn 0/20/78 Shee	95628-11-01 11No. R	
WATER ELEV. ETMOLT	LOCAL. GAGE EJEV.	GURFACE AZEA [Ac]	Jэгоне (A =)	FLOW Duer Goway C=S	FLOW UJERCREST CFS	Total FLOW CFS	
902 904 904 908 910 910 910 914 916 916 915 920	18 20 27 24 26 25 30 - 32 34 32	883 383 383 383 383 383 383 388 388 388	6584 7360 8136 8912 9688 10,464 11,240 12,016 12,792 13,568	4,885 6422 8,093 9,888 11,799 13,819 15,942 18,165 20,482 22,891	3,986 7,119 10,942 15,430 20,570 26,359 32,798 39,889 47,639 56,053	58,054	

Volume of Surcharge = Vi - Volume at elev. 892'* = Vi - 2720 AF * Jormal pool elevation

HNTB		ΗŊ	Date 13/13/12	JOD NO. 5623-11-71	
HOWARD NEEDLES TAMMEN & BERGENDOFF		TW12	Date 017: 17	Sheet No. 3.	
For CRUSTAL LAKE	LAM-	EUFIE	LD		_
1) For flow over the Broad-crested		- 1	formula	o 1	•
$Q_{5} = 3.09$	x L x	$H_{5}^{-/2}$			
Where: $H_3 = Water \leq L = Leugth$ $L = (L' - 0, 1 \times 1)$	of weir of weir	2V 5 (Adjuste (N= ± 0	pillway cr dup to c f contract	7857 EIRV.(892 =rest elev. onli iox5)(L' = 50	
 For the over - of Sharp - Crest 	the crest ed Weir	(tetaini	ng wall)	vie formula	
$Q_c = (3.27)$	+ 0.4 H P	=) x L x	H _c ^{3/2} .	For 05 < H/p<	•
Where: Hc = Water & P = Height L = Length	Elev (of weir of Crest	Crest Ele - (Pavo - (L= 119	= 8 Fe .5')	o') [Itead] et)	
SPILLWAY DA-A.					
TYPE: Broad-Cre Leusth = 50'	sted wein	- (12' u	lide)		•
TOP ELEV. = 8 Flash Boards = k			analysis.		•••
CREST DATA					
Type 1 Colored Lelet = 110.5 = Carect Elev. = 1 Alectage Height	eet. 397.5 N	51			¢ •

(

Date 9/6/18 Made by JODNO 5-28-11-01 411 Date 10/20 792 Checked by MAR Sheet No. Y REPREND(ENFIELD LAKE 92.5 27 EL #897.5 MSL 6 SPILLWAU E1.892.07 Butters / חבוובווב SLUKEWAU/ 4'XA' Gate. PROFILE (NO SCRIE El. 897.5 · (WSU. WATER RL 872.0 # Elev, shown are Mean Sea Level GECTION A-D' (THEOUG SPILLWAY) ESTIMATING EFFECT OF SURCHARGE STORAGE MAXIMUM PROBABLE DISCHARGE ai Drairage Area = 13.2 G. M. (NHWEB chucks OK.) Poisivo, Characteristics : Rolling Zone (Werg. Slope: 4%)-Test Flood: 1/2 PEOBABLE MAXIMUM FLOOD Step 1. Determine peak inflow (ap) from quide CUTUES. Select Polling Ton, wroe. For da. of 132511 and Rolling curve the rate is : 1565 CFS K.M.

Data 0/16/73 100 NO 17-25-11-01 Made by HNTS ΗM Date 10/20 Sheet No. Checked by 1111 HOWARD NEEDLES TAMMEN & BERGENDOFF CRYGIAL LAKE TAM- ENFLELD EFFECT OF SURCHARGE STURAGE (CONT.) Qp=1x[1,560 CF5/SA - 13.2 5/1]= 10,296 CFS then For Test Flood, say: Qp = 10,300 CFS <u>STEP 2</u>. From fig to 1 determine the surcharge Elevation to pass ap. a For Qp = 10,300 CFS → Elev. = 902.75' b. Volume of surcharge storage (STOR,) in inclus of runoff STOR1 = Volume of surcharge Storage X12"/FR Draiwage Area STOR, = (902.75-892)388A × 12"/Ft = 5.92"-13.25% 640A/SA STOP, = 5.92" of runoff. C. Compote Op = Opx(1-STOR) = D $= 10,300^{\text{CFS}} \left[1 - \frac{5.92^{11}}{95^{11}} \right] = 3,831 \text{ (FS)}$ Qp_ = 3,880 CFS Step 3 a. Determine surcharge Height and STOR2 to pass From Fig. 1 The Surcharge Elev. 899.20'MGL

Date 10/31/78 5623-11-01 Date Sheet No. Made by Hh Checked by LAKE DAM - ENFIELD CRYSTAL EFFECT OF SURCHARGE STORAGE (CONT.) B. STOP 2 = $\frac{388 \text{ Ac}}{13.2} \left(\frac{899.20' - 892.0'}{412'} + 12'' \right) = 3.97''$ 6. Compute Average Storage $5702_{A09} = 5.92 + 3.97'' = 494''$ $p \cdot Q_{p_3} = 10,300 \text{ CFS } \times \left[1 - \frac{4.94"}{9.5"}\right] = 4,940 \text{ CFS}$ STEP 4-4. Determine Surcharge Storage for OP3 = 4,940 -> El. = 899.9' Compute STOR 3 日. $\frac{5023}{13.2} = \frac{388 \, \text{Ac} \times (899.9 - 892.0') \, \text{x} 12'' / \text{Fr}}{13.2} = 4.35''$ STOR AUG = 4.94"+ 4.35" = 4.64" $Q_{P_4} = 10,300 \text{ LFS } \left[1 - \frac{4.64"}{4 \text{ E}"} \right] = 5,270 \text{ CFS}$ D A. Determine Surcharge Height to pass Qp. = 5,270 CFS -> EL. 900.10 STEP 5 STORE = 332 Acx (900.10- 392.0) X12"/FT = 4.46" 132 SM × 640 A/SM P. GTORATA = 4.64" + 4.46" = 4.55"

lade by 00/0623-11-01 Date 10 31 79 Checked by 64 TAMMEN & BERGENDOFF DAM - ENFIELD. PUSTEL LDKE EFFECT OF GURCHARGE GTORAGE (CONT.) D. $QP_5 = 10,300$ CFS $\times \left[1 - 4.55'' \right] = 5,370$ CFS EL 900.2' $5TOP = 338 \text{ Ac} \times (903.2' - 892.0') \times 12'/FF = 4.52''$ $13.25M \times 640 \text{ Ac}/SM$ STOR = 4.52" OK. COHCLUSIONS : 1. The test flood discharge Op = 5,400 CFS will Overtop the day by Sapprox. 2.7 Feet. 2. The spillway (50-FT Long) with crest elev. B92 MSC and with water Surface B975 has a capacity of 1950 CFS which is the 36.1% of the test flood discharge.

Made DV -FI Date 10/11/13 JUD NO 5/053-11-01 HOWARD NEEDLES TAMMEN & BERGENDOFF (11/1) Date 10/10/10 Sheet No 7	•
100 0.727-1-1 LAVE - ELFIELD	
ELTITATING DUALSTEEDAM DAY FAILURE HUDRUGEAPHS	
The metrical could The Rule of Thumb" is used to estimate The effects of the failure hydrographs. The analysis is done anoustream to the town of Enjield. The stream length is divided in four reaches:	
Beach 1	
REACH DATE CHAUNEL DATA. Sta lotoo	•
LEUGTH = 3,000' Shape: Trapezoidal SLOPE = aoz' , Manuings" n" = 0.08 EiGHT: 2.5:1 Pare width: 40'	•
 TEP 1. Determine the Reservoir Storage (5) in A.F at time of failure. From table 1 the volume is 4,838 ÅF @ B97.5'Msl (Water up to the top of dam). S = 4,933 Acre-Feet. 	
STEP 2. Calculate the peak failure outflow (OP,)	
$Q_{p} = \frac{B}{27} \times W_{b} \sqrt{g} \times \sqrt{\frac{2}{2}}$ Where	
UDe = Brach valetty - (25% of stal Laugth) = 04×169.5' = 67.8' of stal Laugth) Ye = Total horait from streembed to top of dam (17.5')	•
Then Q = 1691×673×175 = 9,245 CF5'	
	•

	Made by H11 Date 0 17/62. Job No 6672-11-01]
Ia	HOWARD NEEDLES TAMMEN & BERGENDOFF Checked by 1110 Date 0 20 10 Sheet No 3	• •
	STER 2. Proven Gland Disabase a la la tri	
	STÉP 3: Prepare Stage-Discharge curve for this section.	•
i.		
	5-EF 4: DIFFOR F.G. #2 the stage is 12.12' and the area: 772" - E'	
	0.rea: 772 ·	
	Using $V_1 = \frac{L \times A}{43565} = \frac{3000 \times 713^{5}}{43565} = 53.62 \text{ AF}$ $V_1 = 53.62 \text{ AF} \qquad \leq \frac{5}{2} \text{ ok}!$	
	$V_{1} = 53.62AF < 5/2 $ ok!	
		•
	b) Determine Opz (Trial) = Op × (1 - V.)	
•	(That) - ODUSCOS - FRIDAN	
	$= 8345 CFS \times [-53.62 \Delta F] 4938 \Delta F]$	
Ì.	P2(Trial)= 8,252 CFS 4558 MP.	•
•	2(1 - 1)	
	C) Compute V2 using the stage produced by Op2	
R	Stage = 12.05' - Area = 772#'	
 *.	•	
	$V_2 = \frac{3600' \times 772''}{42560CF/AF} = 53.20 \text{ AF}.$	
		• •
ľ	d) Average U, og V2 and compute op2	
ŀ		
-	$V_{A07} = 53.62 \pm 53.20^{4F} = 53.41^{AF}$	
i. L	$Q_{P_2} = Q_{P_1} \times \left[1 - \frac{V_{AVB}}{5} \right] = 8,253 \text{ CFS}.$	
	12 Ti 5	
ŀ	GEN RE- GEBOLESV	
•	644 Qp = 9:50 CFS /	
		; • •
301		

	Made by HM Date 10/17/73 Jub No 5628 - 11 - 01 Checked by Date Sheet No 9	•
14.	HOWARD NEEDLES TAMMEN & BERGENDUFF	
	ESTIMATING D.S. DLM FAILURE. (CONT.)	
	2EACH 2 (Qp = 8,250 CFS)	
	REACH DATA STA STA STA STA STA STA STA STA STA	
2	Length = 9,000' $\exists b t b u S b p e = 0.00173''$ $\exists b u S b u S b p e = 0.00173''$ $\exists b u S b$	•
•	STEP 3: Using USGS Topo, a Stage - Discharge relationship curve is developed as shown on figure to b	•
	Ster C: Estimate reach outflow (OP2) using the following iteration:	
	A. Applying Qp = 8250 CFS to stage trating, determine Stage and accompanying volume (VI) in reach in Acre-Feet. (Note: If Viewceeds 1/2 of S a Shorter reach will be selected).	•
	Stage = 3.24 Feet : Area = 2918 Volume (U,) = $\frac{9000 \times 4918}{43560 \text{ CF/4F}} = 1016 \text{ AF} < 5/2$	
	43560CF/AF Where S= 4838AF	•
-	Where $S = 4838$ AF B: Compute $Q_{P_2}(Trial) = Q_{P_1} \times \left[1 - \frac{V}{5}\right]$ $= 8_1 2 \text{ SD CFS} \times \left[1 - \frac{1016}{4328} \text{ AF}\right]$ $Q_{P_2} = 6_5 17 \text{ CFS}$	
-	= 8,250 CFS . 1-1016 AF] - 4338 AF]	
	$G_{P_2} = 6517CFS - 4338 AFJ$	
	C. From figure 2 determine Stage?	•
	$\begin{aligned} & QP_2 = 6517 CFS & \longrightarrow Single = 2.31 Fect = \\ & A = 4,2586.F. \\ & V_2 = \frac{9000' \times 4,2595}{23560 C.F./4.5} = 860 A-F_1 / \end{aligned}$	•
		•

Га Га			Made by		Johno -	
	HNTB		Made by H.M.	<u> </u>	JOB NO 5622-11	
		EN & BERGENDOFF	=	L'and		
Ľ			- EVEIELD	Care - C		
· -	ESTIMATIN	<u>G D.S. L</u>	PAN FAILURS	EFFECTS ($(2 \leftarrow 7)$	•
	9. AVU	age VI CI	Vz and com	pute sp		
		$Q_p = Q_p$	* [1 - Vaug			
-		· 2 · 1,	5			
	\bigvee	$a_{17} = 1015$	AF + 880 AF	= 948AF		
		0 27	2 948	AF7 GIZ	2(45/	
		$p_{\tilde{l}} = 0_{l}^{2}$	250 7 1-948	BAFJ 0,65		• •
		Say On	= 6,630 CF	5.		
I	······	1 12				
	D 2					• •
	REACH 3					
	Bothow SI	A + A = $17,000'$ 000! = 000! 5(n) = 0.08	13 ¹ Bauks	AUU = 1 DAT, = Trapezoic bpe = 20:1 hath = 60'		
			e-discharge c			• •
•	STEP 4:	Estimate iteration.	reach autflow	(upz) using	following	
F ,	Ą.	Apply Op Stare, H and the	to stage ration $T: Q_0 = 663:$ $Grea = R_16$	of the corr of CFS. is of 33 [#] aud	Kepponding 10.18 '- Compute V	
		$V_1 = 17$	1,000 × 2,683 43340 CF/4:	= 1,047 A	F < S/2	Ok • •
ð P		Determine	$Q_{p_2} = Q_{p_1} \times Q_{p_2} \times Q_{p_3} \times Q_{p$		17457 -12	• •
•			$Q_{FZ} = 6630$		$\frac{4}{33} \frac{16}{24} = \frac{519}{2}$	40
•			• • •	• • •	• • •	• •
· .						

DWARD NEEDLES TAMMEN & BERGEN	NOOFF Checked by	TOETS	Date	Sheet No 11	
CRUSTAL LAI	CE - FI	STICLD			ا .
ESTIMATING DS	DAM FAILU	Re effec	ts (con	t))
c. Compute V	,			,	
QP2(Tria	(1) = 5,194	∕ → S·	tage = c rreq = z	7.17	•
$V_{2} = \frac{17}{17}$	1000 × 2,239 43560 CF/A	= 871AF			.:
D. Average U	121 Uz a	nd comp	ite QP2	••••••••	•
1	= 1047 AF				
$Q_{P_2} =$	6630 ×	I - <u>959 AF</u> 4838 AF	=] = 5,3	16 CFS 1	•
Gry. ($2p_2 = 5,32$	20 CFS.			•
REACH 4		 			•
REACH DATA			ANHEL : A 1910+00	DATL	1
LENGTH = 6 Bottom SLOPE = 0. MANNING': $(n) = ($.0042	SH4PE	= Tra = : LT=	Pezoidal 717	•
STEP 3: For sin	19-e - discharg	e curve e	ser fiq.	2	•
STEP 4 ? Estimation iteration A. Using					Ĩ
a:d 7	478 × 6600	= 148 A	o CFS is ompote F	orresponder; 11.83'- Volonz J.	₽
	U3560(F		• •		

ł

1

(

Ø

ia	Made by HA Date 10 (17/18 Job No 56.2.2 - 11-0) Checked by Date Sheet No 12	
	ESTIMATING D.S. DAM FAILURE EFFECTS (CONT.)	
	3. Determine trial Qp	••••••••••••••••••••••••••••••••••••••
-	$GP_2 = GP_1 \times \left[1 - \frac{1}{5}\right] = 5320 C= S_1 \left[1 - \frac{1+8}{4333}\right]$ = 5,157 CFS	• •
	C. Compute U_2 using $Q_{P_2}(Trial)$ The stace by $Q_{P_2}(Trial)$ in 1172 Fact	•
-	The stage for $Q_{P_2} = 5,157 (FS) \rightarrow is 11.73 Feet A = 954 = 1000 \times 954^{\ddagger} = 144.6 AF'\frac{13560 CF/AF}{43560 CF/AF}$	• •
	23560 CF/AF D. Aseracie U, and U2 and compute QPL	
	VAUZ = 148 +144.6 = 146.3 AF	
2	betwee $OP_2 = 5,370 \times [1 - \frac{1463}{48384F}] = 5159 GFS$	
	Say $Q_{p_2} = 5160 \text{ CFS} \cdot 6k^2$	•
÷.,		

-

CRYSTAL LAHE PROOF - ENFIELD

APPENDIX E

Ę

•

•

· .

•

.

2

.

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

END

FILMED

8-85

DTIC