

•••	1.0	45 2.8 59 3.2 64 3.2	2.5	:
			2.0	
			1.8	
	1.25	1.4	1.6	,

٢

Sec.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

i i	
	I
ŀ	
	•
	-
	•
	Î.
	È
	T
	-
F	
F	
	-
Ľ	S at
	F
E .	L _
	,
F	
• •	

AD-A156 435

CONNECTICUT RIVER BASIN WINCHESTER, NEW HAMPSHIRE

KILBURN POND DAM

NH 00298

NHWRB NO. 255.09

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

2

DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION, CORPS OF ENGINEERS WALTHAM, MASS. 02154

JUNE 1980

Approved for public release; Distribution Unlimited

DTIC FILE COPY

85 0.4 19 011

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATIO	DN PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NH_00298		S. TYPE OF REPORT & PERIOD COVERED
Kilhurn Pond Dam	INSPECTION REPORT	
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL		5. PERFORMING ORG. REPORT NUMBER
AM5AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(+)
.S. ARMY CORPS OF ENGINEERS EW ENGLAND DIVISION		
PERFORMING ORGANIZATION NAME AND ADDR	E55	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CONTROLLING OFFICE NAME AND ADDRESS	·	12. REPORT DATE
EPT. OF THE ARMY, CORPS OF ENGIN	IEERS	June 1980
24 TRAPELO ROAD, WALTHAM, MA. 02	254	62
MONITORING AGENCY NAME & ADDRESSIE dit	erent trem Centrolling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
DISTRIBUTION STATEMENT (of this Report)		UNCLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of this Report) PPROVAL FOR PUBLIC RELEASE: DIST	RIBUTION UNLIMITED	UNCLASSIFIED
DISTRIBUTION STATEMENT (of this Report) PPROVAL FOR PUBLIC RELEASE: DIST DISTRIBUTION STATEMENT (of the observed only SUPPLEMENTARY NOTES OVER program reads: Phase I Insp owever, the official title of th	RIBUTION UNLIMITED	UNCLASSIFIED Isa. DECLASSIFICATION/DOWNGRADING SCHEDULE m Report) Onal Dam Inspection Program; onal Program for Inspection o
DISTRIBUTION STATEMENT (of this Report) PPROVAL FOR PUBLIC RELEASE: DIST DISTRIBUTION STATEMENT (of the observed only SUPPLEMENTARY NOTES OVER program reads: Phase I Insp iowever, the official title of th ion-Federal Dams; use cover date	RIBUTION UNLIMITED	UNCLASSIFIED Isa. DECLASSIFICATION/DOWNGRADING SCHEDULE Report) Ional Dam Inspection Program; onal Program for Inspection o
DISTRIBUTION STATEMENT (of this Report) PPROVAL FOR PUBLIC RELEASE: DIST DISTRIBUTION STATEMENT (of the observed onto SUPPLEMENTARY NOTES OVER program reads: Phase I Insp owever, the official title of th on-Federal Dams; use cover date KEY WORDS (Continue on reverse ofde if necessar DAMS, INSPECTION, DAM SAFETY,	FRIBUTION UNLIMITED Fred in Block 30, 11 different fre Dection Report, National for the program is: National for date of report	UNCLASSIFIED Isa. DECLASSIFICATION/DOWNGRADING SCHEDULE Report) Ional Dam Inspection Program; Ional Program for Inspection o
DISTRIBUTION STATEMENT (of this Report) PPROVAL FOR PUBLIC RELEASE: DIST DISTRIBUTION STATEMENT (of the observed entry SUPPLEMENTARY NOTES OVER program reads: Phase I Insp Owever, the official title of th Ion-Federal Dams; use cover date KEY WORDS (Continue on reverse olde if necessar DAMS, INSPECTION, DAM SAFETY, Connecticut River Basin Winchester, New Hampshire Villemen Procel	FRIBUTION UNLIMITED Fred in Block 30, 11 different fre Dection Report, National States of the program is: National States of the port of the program is the state of the port of the port of the states of the port of the states of the stat	UNCLASSIFIED Isa. DECLASSIFICATION/DOWNGRADING SCHEDULE m Report) Ional Dam Inspection Program; onal Program for Inspection o
DISTRIBUTION STATEMENT (of this Report) PPROVAL FOR PUBLIC RELEASE: DIST DISTRIBUTION STATEMENT (of the observed onto SUPPLEMENTARY NOTES OVER program reads: Phase I Insp OWEVER, the official title of the Inspection of the observed of the observed of the Inspection of the official title of the DAMS, INSPECTION, DAM SAFETY, Connecticut River Basin Winchester, New Hampshire Kilburn Brook	RIBUTION UNLIMITED aread in Block 20, 11 different fre Dection Report, National States of Program is: National States of Proposition (1999) (19999) (19999) (19999) (19999) (19999) (19990) (19999) (19999)	UNCLASSIFIED Isa. DECLASSIFICATION/DOWNGRADING SCHEDULE m Report) Ional Dam Inspection Program; onal Program for Inspection o

•••

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

 1

Ľ

į.

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM, MASSACHUSETTS 02254

REPLY TO ATTENTION OF: NEDED

OCT 21 1985

Honorable Hugh J. Gallen Governor of the State of New Hampshire State House Concord, New Hampshire 03301

Dear Governor Gallen:

Inclosed is a copy of the Kilburn Pond Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Water Resources Board, the cooperating agency for the State of New Hampshire. In addition, a copy of the report has also been furnished the owner, Town of Hinsdale, Bard of Water and Sewer Commissioners, Hinsdale, NH.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Water Resources Board for your cooperation in carrying out this program.

Sincerely,

Incl As stated

Colonel, Corps of Engineers Division Engineer

Accession For NTIS GRA&I DTIC TAB Unannounced Justification By. Distribution/ Availability Codes Avail and/or Special Dist

BTIC

CONNECTICUT RIVER BASIN WINCHESTER, NEW HAMPSHIRE

KILBURN POND DAM

NH 00298

NHWRB 255.09

i

r

.

L

•

.

-

1

والموجود والمرجوع وال

٠.

-

£

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM PHASE I - INSPECTION REPORT BRIEF ASSESSMENT

Identification No:	NH 00298
Name of Dam:	Kilburn Pond Dam
Town:	Winchester
County and State:	Cheshire, New Hampshire
Stream:	Kilburn Brook
Date of Inspection:	May 6, 1980

Ľ

Kilburn Pond Dam is a concrete gravity structure consisting of an overflow section and gate house structure and is approximately 35 feet long between the ledge abutments. The dam is approximately 15 feet high from the lowest point of the downstream toe to the top of the overflow section training walls. The overflow section consists of two 13 feet long sections located between concrete training walls. The overflow section is ogee-shaped and has a maximum height of approximately 11 feet from its crest to the bottom of the channel. Located between the left training wall and the left abutment is the gate house structure which encloses the control mechanisms for a 6-inch and an 18-inch diameter sluice gate. These gates open into a gate chamber that outlets through a 24-inch diameter conduit which discharges at the toe of the dam through a flap gate. A service bridge extends across the overflow section from the right abutment to the gate house doorway.

The dam impounds Kilburn Pond and the discharge flows through Kilburn Brook in a southerly direction approximately 3.4 miles to the Ashuelot River. The dam was originally constructed to provide a primary water supply for the town of Hinsdale, but has since been abandoned for that purpose and presently serves only conservational purposes. The pond is 0.68 miles in length with a surface area of about 37 acres. The maximum storage capacity at top of dam is about 461 acre-feet.

As a result of the visual inspection of this facility, the dam is generally considered to be in good condition. The only major concern is lack of a functioning low-level regulating outlet that would allow drawdown of the pond in an emergency. Because of this lack of a functioning low-level outlet, the dam is rated FAIR.

This dam is classified as SMALL in size and a SIGNIFICANT hazard structure in accordance with the recommended guidelines established by the Corps of Engineers. The test flood for this dam, therefore, ranges from the 100-year flood to one-half the Probable Maximum Flood (1/2 PMF). The 1/2 PMF was selected for this

hydrologic analysis. The test flood inflow was estimated to be 1,820 cfs and resulted in a routed test flood outflow equal to 1,320 cfs which would overtop the dam crest by about 0.5 feet. The maximum spillway capacity with the water level at the dam crest was estimated to be 1,020 cfs, which is about 77 percent of the routed test flood outflow. The spillway is capable of passing the routed test flood outflow from a 100-year storm event. An assumed breach with the pond surface at the dam crest would overtop Route 63 located about 1.8 miles downstream by about 2.5 feet and the water would rise to nearly 1 foot above the sill level of the house located near the Route 63 road culvert. The potential for loss of less than a few lives would exist, as well as economic loss.

It is recommended that the owner engage a qualified registered engineer to investigate the source of the debris blocking the low-level outlets and the inoperability of the gate lifting mechanism and design remedial measures to keep these outlets operable; and to inspect the downstream face of the dam and the flap gate once the debris has been removed from the discharge channel. It is also recommended that the owner repair all scaled concrete, repair or replace the gate house door, remove loose rust and repaint the service bridge and other rusted equipment and remove brush and debris from the discharge channel.

The recommendations and remedial measures are described in Section 7 and should be addressed by the owner within one year after receipt of this Phase I Inspection Report.

È

ľ

٢,

Kenneth M. Stewart

Kenneth M. Stewart Project Manager N.H.P.E. 3531

S E A Consultants Inc. Rochester, New Hampshire This Phase I Inspection Report on Kilburn Pond Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the <u>Recommended Guidelines for Safety Inspection of</u> <u>Dams</u>, and with good engineering judgment and practice, and is hereby submitted for approval.

armey M. Verge

CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division

RICHARD DIBUONO, MEMBER Water Control Branch Engineering Division

lim

ARAMAST MAHTESIAN, CHAIRMAN Geotechnical Engineering Branch Engineering Division

APPROVAL RECONDENDED:

B. FRYAR

Chief, Engineering Division

PREFACE

L

٤

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

t

.

f

ź

1

E

The Phase I investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespassing and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

Sect	ion		Page
Lett	er of	Transmittal	i
Brie	f Ass	essment	ii
Revi	ew B	oard Page	iv
Pref	ace		v
Tabl	e of	Contents	víi
Over	view	Photo	ix
Loca	ition	Мар	x
1.	PRC	JECT INFORMATION	1-1
	1.1	General	1-1
	1.2	Description of Project	1-1
	1.3	Pertinent Data	1-3
2.	ENG	INEERING DATA	2-1
	2.1	Design	2-1
	2.2	Construction	2-1
	2.3	Operation	2-1
	2.4	Evaluation	2-1
3.	VISU	IAL INSPECTION	3-1
	3.1	Findings	3-1
	3.2	Evaluation	3-3
4.	OPE	RATIONAL AND MAINTENANCE PROCEDURES	4-1
	4.1	Operational Procedures	4-1
	4.2	Maintenance Procedures	4-1
	4.3	Evaluation	4-1

C

İ

r

ī

4. -____ ١.

vii

•
•
!
•••
~
•
a
•
-
. •
-
~ ·

Sec	<u>tion</u>		Page
5.	EVA	LUATION OF HYDROLOGIC/HYDRAULIC FEATURES	5-1
	5.1	General	5-1
	5.2	Design Data	5-1
	5.3	Experience Data	5-1
	5.4	Test Flood Analysis	5-1
	5.5	Dam Failure Analysis	5-2
6.	EVA	LUATION OF STRUCTURAL STABILITY	6-1
	6.1	Visual Observation	6-1
	6.2	Design and Construction Data	6-1
	6.3	Post-Construction Changes	6-1
	6.4	Seismic Stability	6-2
7.	ASS	ESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	7-1
	7.1	Dam Assessment	7-1
	7.2	Recommendations	7-1
	7.3	Remedial Measures	7-1
	7.4	Alternatives	7-2
		APPENDICES	
AP	PENDI	X A - INSPECTION CHECKLIST	A-1
API	PENDI	X B - ENGINEERING DATA	B-1
AP	PENDI	X C ~ SELECTED PHOTOGRAPHS	C-1
AP	PENDI	X D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1
AP	PENDI	X E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	E-1

-

Ę

1

1

(

•

1

Sec. and the second

viii

į

.

E

E

.

8

OVERVIEW PHOTO - KILBURN POND DAM

X

· · · · · · · · ·

۰.

· · · ·

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT KILBURN POND DAM

SECTION 1 PROJECT INFORMATION

1.1 General

ť

Ľ

a. <u>Authority</u>. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. S E A Consultants Inc. has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to S E A Consultants Inc. under a letter of November 5, 1979 from William Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0008 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests

(2) To encourage and prepare the states to initiate quickly effective dam safety programs for non-Federal dams

(3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location. Kilburn Pond Dam is located in the Town of Winchester, New Hampshire, on the south end of Kilburn Pond. The dam impounds water creating Kilburn Pond and the spillway discharge enters Kilburn Brook and flows in a southerly direction approximately 3.4 miles until it converges with the Ashuelot river in the center of Hinsdale, New Hampshire. The dam is shown on U.S.G.S. Quadrangle, Keene, New Hampshire-Vermont, with coordinates approximately at N42^o49'50", W72^o28'15", Cheshire County, New Hampshire (See Location Plan).

b. <u>Description of Dam and Appurtenances</u>. Kilburn Pond Dam is a concrete gravity structure consisting of an overflow section and gate house structure and is approximately 35 feet long between the ledge abutments. The dam is approximately 15 feet high from the lowest point of the downstream toe to the top of the overflow section training walls. The overflow section consists of two 13 feet long sections located between 4 feet high concrete training walls and is approximately 11 feet high from its crest to channel bottom. The upstream face of the concrete overflow section is battered at 12 feet vertical to 1 foot horizontal (12V:1H). The downstream face is ogee-shaped and is inclined at one foot vertical to one foot horizontal (1V:1H). The gate house is located between the left training wall of the overflow section and the left abutment and encloses the control mechanisms for a 6 inch and an 18 inch diameter sluice gate. These gates open into a gate chamber that outlets through a 24 inch diameter conduit which discharges at the toe of the dam through a flap gate. A service bridge extends across the overflow section from the right abutment to the gate house doorway.

c. <u>Size Classification</u>. Small (height - 15 feet; storage - 461 acre-feet) based on storage (less than 1000 acre-feet and greater than or equal to 50 acre-feet) as given in the Recommended Guidelines for Safety Inspection of Dams.

d. <u>Hazard Classification</u>. Significant Hazard. An assumed breach in the Kilburn Pond Dam would overtop the dam associated with an abandoned filtration plant just upstream from NH Route 63 by about 1.7 feet. NH Route 63 would be overtopped by approximately 2.5 feet, and water would rise to nearly 1 foot above the sill level of the house located near the Route 63 culvert. The state highway could be damaged and the potential for loss of less than a few lives would exist, as well as economic loss.

e. <u>Ownership</u>. The dam was constructed in 1935, apparently to replace an earlier wooden structure at the same site and has been continually owned by the Town of Hinsdale, Board of Water and Sewer Commissioners, Town Hall, Main Street, Hinsdale, New Hampshire 03451, Telephone No. (603) 336-5621.

f. <u>Operator</u>. The dam is maintained and operated by the Town of Hinsdale, Board of Water and Sewer Commissioners, Town Hall, Main Street, Hinsdale, New Hampshire 03451, Telephone No. (603) 336-5621.

g. <u>Purpose of Dam.</u> The dam was originally constructed to provide a primary water supply for the Town of Hinsdale. In 1954, the town began pumping water from two wells, abandoning the Kilburn Pond water supply. At present, the dam serves only conservational purpose.

h. <u>Design and Construction History</u>. The dam was designed by Metcalf and Eddy, Inc., Engineers, of Boston, Massachusetts in 1934. Construction began late in the same year by the O. W. Miller Company, Inc. of Springfield, Massachusetts, and work was completed in 1935. The design plans indicate the concrete dam is reinforced and built on ledge. Design plans and specifications are on file at the State of New Hampshire Water Resources Board. a copy of the record drawings was obtained from Metcalf and Eddy, Inc., Engineers. No in-depth design calculations were available.

i. <u>Normal Operating Procedures</u>. The dam was originally constructed to provide a primary water supply for the Town of Hinsdale, but has since been abandoned for that purpose. As a result of this fact, as well as the fact that the dam is remotely located and can only be reached after a half mile hike or with a four wheel drive vehicle (weather conditions permitting), the dam is rarely examined by the owner. There are no normal operating procedures.

1-2

1.3 Pertinent Data

a. <u>Drainage Area.</u> The drainage area above Kilburn Pond Dam covers approximately 1.65 square miles (nearly 1,060 acres), consisting of steeply sloping terrain surrounding Kilburn Pond, as well as Baker Pond and a relatively large swampy area which are located upstream from Kilburn Pond. The topography in the drainage basin ranges from 1,416 feet (NGVD) on top of Davis Hill to 1,029.5 feet (NGVD) at the base of the dam. The drainage basin is heavily wooded and almost completely undeveloped, since it is located almost entirely within Pisgah State Park.

b. <u>Discharge at Damsite</u>. Discharge at the damsite occurs over the two 13 feet long portions of the ogee-shaped overflow section. A 6 inch and an 18 inch diameter sluice gate are located in the gate house structure. The sluice gate openings were blocked at the time of inspection but, when operable, would allow the pond to be lowered to an elevation of 1,031.0 feet.

(1) The capacity of the sluice gates was estimated to be 34 cfs with the water surface at the top of dam (Elev. 1,044.75 feet) and 35 cfs with the water surface at the test flood elevation (Elev. 1,045.2 feet).

(2) Maximum known flood at damsite - unknown

(3) The ungated spillway capacity with the water surface at the top of the dam (Elev. 1,044.75 feet) was estimated to be 1,020 cfs.

(4) The ungated spillway capacity with the water surface at the test flood elevation (Elev. 1,045.2 feet) was estimated to be 1,190 cfs.

(5) Gated spillway capacity at normal pool elevation - N/A

(6) Gated spillway capacity at test flood elevation - N/A

(7) The total spillway capacity at the test flood elevation (Elev. 1,045.2 feet) was estimated to be 1,190 cfs.

(8) The total project discharge at the top of the dam (Elev. 1,044.75 feet) was estimated to be 1,075 cfs (with the sluice gates closed) and 1,110 cfs (with the sluice gates open).

(9) The total project discharge at the test flood elevation (Elev. 1,045.2 feet) was estimated to be 1,320 cfs.

c. <u>Elevation</u> (feet, NGVD). These elevations are based on datum information from design plans obtained from Metcalf and Eddy, Inc., Engineers, Boston, Massa-chusetts.

(1) Streambed at toe of dam -1,029.5

(2) Bottom of cutoff-varies - 1,025.0 (minimum)

(3) Maximum tailwater - unknown

(4) Norma	l pool	- 3	1,040
-----------	--------	-----	-------

- (5) Full flood control pool ~ N/A
- (6) Spillway crest 1,040.0

(7) Design surcharge (Original Design) - 1,043.0+ (referred to as maximum high water)

- (8) Top of dam 1,044.75
- (9) Test flood surcharge 1,045.2
- d. Reservoir (length in feet)
 - (1) Normal pool 3,600
 - (2) Flood control pool N/A
 - (3) Spillway crest pool 3,600
 - (4) Top of dam 4,100
 - (5) Test flood pool 4,120

e. Storage (acre-feet)

- (1) Normal pool 259
- (2) Flood control pool N/A
- (3) Spillway crest pool 259
- (4) Top of dam 461
- (5) Test flood pool 483
- f. Reservoir Surface (acres)
 - (1) Normal pool 37
 - (2) Flood control pool N/A
 - (3) Spillway crest 37
 - (4) Test flood pool 49
 - (5) Top of dam 48.5
- g. <u>Dam</u>
 - (1) Type concrete gravity structure with ogee-shaped overflow section

- (2) Length 35 feet (between abutments)
- (3) Height 15 feet (maximum)

(4) Top Width - varies (4'-6" at training walls and gate house, 3'-0" at overflow section)

(5) Side Slopes - upstream (12V to 1H), downstream (ogee shaped, 1V

to 1H)

ī

K

, ,

Ĩ

ļ

.

.

.

- (6) Zoning N/A
- (7) Impervious core concrete
- (8) Cutoff concrete curtain, variable width and thickness
- (9) Grout curtain unknown
- (10) Other none
- h. Diversion and Regulating Tunnel

Not applicable

i. Spillway

- (1) Type overflow section, ogee-shaped
- (2) Length of weir 26 feet (two 13 feet sections)
- (3) Crest elevation 1,040.0
- (4) Gates N/A

(5) U/S Channel - The banks of Kilburn Pond are tree lined and many bedrock outcroppings are evident. In general, the slopes appear to be stable. The approach channel to the overflow section is unobstructed, except that the sluice gate openings were blocked with sediment. A sample of the debris clogging the sluice gate openings indicated that the material was an unsorted mixture of silt, sand, and gravel.

(6) D/S Channel - The overflow section discharges into a natural stream channel which is approximately 10 feet wide. Below the dam, the channel is rocky and has steeply sloping, tree lined banks until it enters a swampy area approximately 2,300 feet below the dam. The channel becomes wider as it passes through the swampy area, but again narrows as it descends from the swampy area to Route 63.

- j. Regulating Outlets
 - (1) Invert 6 inch sluice gate 1,033.5 18 inch sluice gate - 1,031.0

(2) Size - one 6 inch sluice gate and one 18 inch sluice gate

(3) Description - The sluice gates open into a gate chamber that outlets through a 24 inch diameter conduit which discharges at the toe of the dam through a flap gate.

ĩ

Ę

r

K

.

Ś.

Ī

(4) Control Mechanism - Sluice gates are manually operated with hand wheels which are mounted on floor stands that are located in the gate house structure.

SECTION 2 ENGINEERING DATA

2.1 Design

F

A set of design plans dated 1934 showing plan, elevation and section for construction of the dam are available at the State of New Hampshire Water Resources Board. A set of specifications dated 1934 and a series of material test reports dating between 1934 and 1935 are also on file at the State of New Hampshire Water Resources Board. A set of record plans were obtained from Metcalf and Eddy, Inc., Engineers, Boston, Massachusetts.

2.2 Construction

Construction of the dam was begun in 1934 and completed in 1935 by the O. W. Miller Company, Inc., Springfield, Massachusetts.

2.3 Operation

No engineering operational data were found.

2.4 Evaluation

a. <u>Availability</u>. The Kilburn Pond Dam was designed by Metcalf and Eddy, Inc., Engineers, Boston, Massachusetts and built by O. W. Miller Company, Inc., Springfield, Massachusetts. Other than the design plans, specifications, material test reports and record drawings, no additional engineering data were found.

b. <u>Adequacy</u>. Available engineering data and drawings are considered adequate for a Phase I investigation.

c. <u>Validity</u>. The field investigation indicated that the external features of Kilburn Pond Dam substantially agree with those shown on the record drawings.

SECTION 3 VISUAL INSPECTION

3.1 Findings

a. <u>General</u>. Kilburn Pond Dam impounds a pond of small size (see Photo No. 1). The drainage area above the dam consists of steeply sloped terrain surrounding Kilburn Pond, as well as Baker Pond and a relatively large swampy area which are located upstream from Kilburn Pond. The majority of the basin is heavily wooded and almost completely undeveloped. The immediate downstream channel is undeveloped.

The field inspection of Kilburn Pond Dam was made on May 6, 1980. The inspection team consisted of personnel from S E A Consultants Inc. and Geotechnical Engineers, Inc. Inspection checklists, completed during the visual inspection, are included in Appendix A. At the time of inspection, water was passing approximately 1/4 inch deep over the 26 feet long overflow section. The pool elevation was at approximately 1040.0 feet (NGVD). The upstream face of the dam could only be inspected above this water level.

ь. Dam. Kilburn Pond Dam is a concrete gravity structure consisting of an overflow section and gate house structure and is approximately 35 feet long between the ledge abutments (see Plans and Details in Appendix B and Photo No. 2). The dam is approximately 15 feet high from the lowest point of the downstream toe to the top of the overflow section training walls. The overflow section consists of two 13 feet long sections located between 4 feet high concrete training walls. The upstream face of the concrete overflow section is battered at 12 feet vertical to 1 foot horizontal (12V:1H). The downstream face is ogee-shaped and is inclined at 1 foot vertical to 1 foot horizontal (1V:1H) (See Photo No. 7). The overflow section has a maximum height of approximately 11 feet from its crest to the bottom of the channel. The concrete on the downstream face of the overflow section weir exhibited medium scaling (see Photo No. 9). The upstream face of the overflow section was submerged and could not be inspected. The concrete training walls are in good condition except for scaling at the intersection with the overflow section.

The dam appears to be founded on bedrock (see Plans and Details in Appendix B). Both abutments are bedrock (see Photo Nos. 2, 3 and 4). No evidence of leakage through the abutments was observed. Water was flowing over the dam at the time of the inspection, so it was not possible to observe whether any leakage was occurring through the foundation of the dam.

c. <u>Appurtenant Structures</u>. The gate house is located between the left training wall of the overflow section and left abutment and encloses the control mechanisms for a 6 inch and an 18 inch diameter sluice gate (see Photo Nos. 2 and 5). These gates open into a gate chamber that outlets through a 24 inch diameter conduit which discharges at the toe of the dam through a flap gate. At the time of the inspection, the indicator on the floor stand operator for the 6

3-1

inch gate showed that the gate was completely open, while the indicator for the 18 inch gate showed that this gate was about half way open. Despite this, there was only a small amount of leakage through the 6 inch gate and no flow at all through the 18 inch gate. Further investigation revealed that there was a mixture of unsorted silt, sand and gravel against the upstream side of the gate structure up to about Elevation 1035.75, completely blocking the entrance to the two gated discharge pipes. The 18 inch gate was operable at the time of inspection, but the 6 inch gate was not. The floor stands were both rusted (see Photo No. 5).

In general, the gate house building was in good condition, although the entrance door had been vandalized and could no longer be lock (see Photo No. 5). The exterior steel face of the door was rusted (see Photo No. 6) and the wooden structure of the door was extensively damaged. There was minor scaling of the concrete on the upstream face of the gate house at the water surface (see Photo No. 6). The interior of the gate house was cluttered with debris apparently left by intruders. The gratings leading to the gate chamber in the lower portion of the gate house structure were extensively rusted, as were the cast in place manhole steps. The flap gate which is located in the downstream face of the gate house structure could not be examined since it was submerged and blocked with debris (see Photo No. 8).

A service bridge extends across the overflow section from the right abutment to the gate house doorway (see Photo Nos. 3 and 4). Each span of the service bridge is constructed of two 7 inch by 2 inch steel channels, covered with a wood deck consisting of 2 inch thick by 6 inch wide by 44 inch long wood planks (see Photo Nos. 4 and 6). Steel pads have been welded to the steel channels and bolted to the overflow section training walls and the center supporting pier. The bolt through one of the eight steel pads is not seated. The head is up approximately 1 inch, but it appears to provide adequate lateral support. There are steel cross braces between the channels under the deck. These braces, as well as the steel channel and pads, are rusted, but it appears that there is no serious structural corrosion (see Photo No. 6). A 2 inch diameter tubular steel railing is attached to the upstream side of the bridge, and is badly rusted (see Photo Nos. 4, 5 and 6). The entire bridge is badly in need of paint (see Photo No. 4).

d. <u>Reservoir Area.</u> The slopes of the reservoir appear to be stable (see Photo No. 1). No evidence of significant sedimentation was observed. The material which blocks the entrance to the gated discharge pipes may be the result of sedimentation, but appears more likely to have been placed there. The approach channel to the dam is otherwise clear and unobstructed (see Photo No. 2).

e. <u>Downstream Channel</u>. The bottom of the channel downstream of the dam consists primarily of bedrock and boulders. Trees overhang both sides of the channel, and some trees are growing in the channel (see Photo No. 10). Cut brush and small logs, which have apparently been carried over the crest of the dam by water discharging from the reservoir, have accumulated in the channel close to the dam (see Photo Nos. 7 and 8).

3.2 Evaluation

E

On the basis of the results of the visual inspection, Kilburn Pond Dam is considered to be in generally good condition.

Brush and small logs partially block the channel immediately downstream of the dam. This debris also blocks the flap gate which outlets at the downstream face of the gate house structure and will not allow this gate to operate properly. Trees growing on both banks of the downstream channel could block the channel if they blow over or are undermined and fall over into the channel.

The scaling of the concrete on the upstream face of the gate house structure, on the downstream face of the overflow section, and at the intersection of the overflow section and the training walls, although not a major problem at present, could continue and lead to serious deterioration of these structures.

The debris clogging the sluice gates does not allow these gates to be used to discharge water from the pond. Consequently, under present conditions there is no means for low-level withdrawal of water from the pond. The 6-inch gate was in a full open position and was inoperable at the time of inspection. The 18-inch gate was half open and was operable. However, the rusting condition of the gate operators could, if left unattended, also make the 18-inch gate inoperable.

The condition of the gate house doorway does not allow it to be locked and, thereby, keep intruders out of the gate house.

The rusting condition of the steel portions of the service bridge, although not a major problem at present, could lead to serious deterioration of the bridge. The lack of a railing on the downstream side of the service bridge could be a safety hazard.

SECTION 4 OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

a. <u>General.</u> Kilburn Pond Dam is used primarily to create Kilburn Pond. There are no written or routine operational procedures.

b. <u>Description of any Warning Systems in Effect</u>. No written warning system exists for the dam.

4.2 Maintenance Procedures

a. <u>General.</u> The owner, the Town of Hinsdale, is responsible for the maintenance of the dam. No formal plan for maintenance exists, and no maintenance appears to have been performed recently.

b. <u>Operating Facilities</u>. No formal plan for maintenance of operating facilities exists.

4.3 Evaluation

.

ł

1

The current operation and maintenance procedures for Kilburn Pond Dam are inadequate to ensure that all problems encountered can be remedied within a reasonable period of time. The owners should establish a written operation and maintenance procedure, as well as establish a warning system to follow in event of flood flow conditions or imminent dam failure.

SECTION 5 EVALUATION OF HYDROLOGIC/HYDRAULIC FEATURES

5.1 <u>General.</u> Kilburn Pond Dam is a concrete gravity structure consisting of an overflow section and gate house structure and is approximately 35 feet long between the ledge abutments. The dam is approximately 15 feet high from the lowest point of the downstream toe to the top of the overflow section training walls. The overflow section consists of two 13 feet long sections located between concrete training walls. The entire overflow section consists of an ogee-shaped weir with crest elevation set at 1040.0 feet (NGVD). Located in the gate house structure are two sluice gates. The gates are 6 inches and 18 inches in diameter, with invert elevations of 1033.5 and 1031.0, respectively.

Located upstream from Kilburn Pond are Baker Pond and a relatively large swampy area. Consequently, a large portion of the runoff from the watershed is intercepted by Baker Pond and the swampy area before flowing into Kilburn Pond. The dam is classified as small in size, having a maximum storage of about 461 acre-feet.

5.2 <u>Design Data</u>. Drainage area, pond surface area, and spillway capacity calculations which appear to be design calculations were found attached to a report in the State of New Hampshire Water Resources Board files (see Appendix B).

l

•

5.3 Experience Data. No experience data were disclosed. Maximum flood flows or elevations are unknown.

5.4 <u>Test Flood Analysis</u>. Due to the absence of detailed design and operational information, this hydrologic evaluation was performed utilizing data gathered during field inspection, watershed size and an estimated test flood determined from the Corps of Engineers guide curves. For this dam (small size and significant hazard), the test flood ranges from the 100-year flood to one-half the Probable Maximum Flood (1/2 PMF). The 1/2 PMF was selected for this hydrologic analysis. The drainage area consists of steeply sloping terrain. However, the "rolling" curve, from the Corps of Engineers set of guide curves, was used to estimate the maximum probable flood peak flow rate, in order to account for the presence of Baker Pond and the large swampy area which are located upstream from Kilburn Pond.

Based on an estimated maximum probable flood peak flow rate of 2,200 cfs per square mile and a drainage area of 1.65 square miles, the test flood inflow was estimated to be 1,820 cfs. The test flood was routed through the pond in accordance with the Corps of Engineers procedure for Estimating Effect of Surcharge Storage on Maximum Probable Discharge. The reservoir water surface was assumed to be at elevation 1040.0 prior to the flood routing. The routed test flood outflow was estimated to be 1,320 cfs. This analysis indicated that the dam crest would be overtopped by approximately 0.5 feet. The maximum spillway capacity with the water level at the dam crest was estimated to be 1,020 cfs, which is about 77 percent of the routed test flood outflow. The spillway is capable of passing the routed test flood outflow from a 100-year storm event. The test flood inflow for the 100-year storm event was estimated to be 910 cfs, with a routed test flood outflow of 595 cfs.

5-1

5.5 <u>Dam Failure Analysis</u>. The impact of dam failure was assessed utilizing the "Rule of Thumb" Guidance for Estimating Downstream Dam Failure Hydrographs published by the Corps of Engineers. The analysis covered a reach extending approximately 1.8 miles downstream to NH Route 63. The prefailure discharge with the water surface at the dam crest is significant, so prefailure tailwater conditions were included in the calculations and the dam failure analysis was conducted with the water surface at the dam crest. Under these conditions, it was determined that the routed dam failure discharge would significantly increase the hazard over the prefailure discharge tailwater. Based on this analysis, the dam has been classified as a significant hazard structure.

A breach width of 13.2 feet, which is 40 percent of the total length of the dam, and an average failure height of about 14 feet were used to determine the failure discharge. This discharge, combined with flow over the unfailed portion of the spillway, yielded a total failure discharge of 1,940 cfs. Discharge just prior to an assumed breach was estimated to be about 1,020 cfs. The failure discharge would have little impact along the first three stream reaches (first 1.78 miles below the dam) since this portion of the channel is completely undeveloped. The major point of impact of an assumed breach would occur near NH Route 63.

In stream reach 4, the routed failure discharge of 1,720 cfs would result in a stage of about 5.7 feet, which is 2.2 feet more than the stage associated with the prefailure discharge. This increase in stage would cause the dam located approximately 300 feet upstream from New Hampshire Route 63 at an abandoned filtration plant to be overtopped by approximately 1.7 feet. This could compromise the structural integrity of this earthen embankment structure. In stream reach 5, the routed failure discharge of 1,710 cfs would result in a stage of about 11.0 feet, which is 2.6 feet more than the stage associated with the prefailure discharge. The capacity of the culvert beneath NH Route 63 would not be adequate for the failure discharge. Consequently, Route 63 would be overtopped by about 2.5 feet, and the road culvert could be washed out. Water would also rise to nearly 1 foot above the sill level of the house located near the Route 63 road culvert. The potential for loss of less than a few lives would exist, as well as economic loss.

SECTION 6 EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations

D

I

The visual inspection indicates the following potential structural problems:

- (1) The scaling of concrete on the upstream face of the gate house structure, on the downstream face of the overflow section and at the intersection of the overflow section and the training walls, although not a major problem at present, could continue and lead to serious deterioration of these structures
- (2) The rusting condition of the steel work associated with the service bridge, if left unattended, could lead to the failure of this structure

Because the pond was filled at the time of inspection, it was not possible to examine the upstream face of the dam or gate house below the surface of the water.

Because water was flowing over the dam and because there was considerable debris at the downstream toe of the dam, it was not possible to examine the downstream face of the dam at close-hand.

Because tailwater was standing at the downstream toe of the dam and because of the debris at the toe of the dam, it was not possible to examine the flap gate at close hand.

6.2 Design and Construction Data

The dam was designed by Metcalf and Eddy, Inc., Engineers, of Boston, Massachusetts in 1934. Construction began late in the same year by the O. W. Miller Company, Inc., of Springfield, Massachusetts, and work was completed in 1935. The design plans indicate the concrete dam is reinforced and built on ledge.

The plans show two features which are important but could not be examined:

- (1) Keyways at bottom of dam and gate house structure and at the intersection of ledge abutments with the overflow section and the gate house structure
- (2) Conduit extending from gate chamber to the downstream toe of dam

6.3 Post-Constiluction Changes

There is no record of changes since the construction of the dam.

6.4 Seismic Stability

This dam is located in Seismic Zone 2 and, in accordance with the Phase I guidelines, does not warrant seismic analysis.

SECTION 7 ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

r

t

E

a. <u>Condition</u>. The visual examination indicates that Kilburn Pond Dam is in generally good condition. The main concern with respect to the integrity of the dam is:

(1) Lack of a functioning low level regulating outlet that would allow drawdown of the pond in an emergency

Because of this lack of a functioning low-level regulating outlet, the dam has been rated FAIR.

b. <u>Adequacy of Information</u>. Because water was flowing over the concrete section of the dam at the time of the inspection and because of the debris at the downstream toe of the dam, it was not possible to inspect at close hand the downstream face of the dam or the flap gate located on the downstream face of the gate house structure. These features should be inspected at a time when no water is flowing over the dam.

The information available from the visual inspection and hydrologic and hydraulic analyses is adequate to identify the problems listed in 7.2. These problems will require the attention of a qualified registered professional engineer who will have to make additional engineering studies to design or specify remedial measures. No additional information is needed for the purpose of this Phase I inspection.

c. <u>Urgency</u>. The owner should implement the recommendations in 7.2 and 7.3 within one year after receipt of this Phase I report.

7.2 Recommendations

The owner should retain a registered professional engineer qualified in the design and construction of dams to:

- (1) Investigate the source of the debris blocking the low level outlets and the inoperability of the gate lifting mechanism and design remedial measures to keep these outlets operable.
- (2) Inspect the downstream face of the dam and the flap gate once the debris has been removed from the discharge channel.

The owner should carry out the recommendations made by the engineer.

- 7.3 Remedial Measures
 - a. Operating and Maintenance Procedures. The owner should:
 - (1) Repair all scaled concrete on the upstream face of the gate house structure, the downstream face of the overflow section and the training walls
 - (2) Repair or replace the gate house door in order to keep intruders out

7-1

- (3) Remove loose rust and repaint the service bridge and other rusted equipment
- (4) Remove brush and debris from the discharge channel
- (5) Establish a regular operation and maintenance program
- (6) Visually inspect the dam and appurtenant structures once a month
- (7) Engage a registered professional engineer qualified in the design and construction of dams to make a comprehensive technical inspection of the dam once every one year.
- (8) Establish a surveillance program for use during and immediately after periods of heavy rainfall, establish written procedures to be followed during flooding periods, and also establish a formal downstream warning program to follow in case of emergency.

7.4 Alternatives

ī

r

K

There are no practical alternatives to the recommendations of Section 7.2 and 7.3.

••••

APPENDIX A INSPECTION CHECKLIST

Ī

t

.

K

4

1

. .

INSPECTION CHECK LIST PARTY ORGANIZATION

-

Ż

į

·. •

1

PRO	JECT: Kilburn Pond Dam	DATE: May 6, 1980	
		TIME: 12:10 p.m.	
		WEATHER: Clear, warm	
		W.S. ELEV. 1040.0 U.S. 1032.	5 DN.S
		(NGVD)	
PAR	TY:		
1.	Kenneth Stewart, S E A	6	
2.	Bruce Pierstorff, S E A	7	
3.	Ronald Hirschfeld, GEI	8	
4.	·	9	
5.		10	

PRO	ECT FEATURE			INSPE	CTED	BY	REMA	RKS
	tability		·····	Kennet	h Stewa	art		
<u>Hydrology/Hy</u>	draulics			Bruce	Piersto	orff		
Soils and Ge	ology			Ronald	Hirsch	nfeld		
- <u></u>								
·····					· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·							
			<u></u>				•	•
•						· · · ·		
. <u></u>		:		<u></u>		<u></u> .	•	
<u></u>						``		
						•		
			7-1					
			•• •					

DATE: May 6, 1980 NAME:
NAME: NAME: CONDITIONS 1040.0 1040.0 Unknown
NAME: CONDITIONS 1040.0 1040.0 Unknown
CONDITIONS 1040.0 1040.0 Unknown
1040.0 1040.0 Unknown
1040.0 1040.0 Unknown
1040.0 Unknown
Unknown
None observed
Not paved
None observed
None observed
Good
Good
Good - Concrete structure keyed to ledge
None observed
N/A
N/A
N/A
N/A
None observed
None observed
N/A
N/A
N/A
None

174

•

S

•

•••

Ż

٠.

••••

. . . .

۰.

. . . .

.

INSPECTION	CHECK LIST
PROJECT: Pond_Dam	DATE:May 6, 1980
PROJECT FEATURE: Dike Embankment	NAME:
DISCIPLINE:	NAME:
AREA EVALUATED	CONDITIONS
DIKE EMBANKMENT	No dike
Crest Elevation	
Current Pool Elevation	
Maximum Impoundment to Date	
Surface Cracks	
Pavement Condition	
Movement or Settlement of Crest	
Lateral Movement	
Vertical Alignment	
Horizontal Alignment	
Condition at Abutment and at Concrete Structures	
Indications of Movement of Structural Items on Slopes	
Trespassing on Slopes	
Vegetation on Slopes	
Sloughing or Erosion of Slopes or Abutments	
Rock Slope Protection - Riprap Failures	
Unusual Movement or Cracking at or near Toes	
Unusual Embankment or Downstream Seepage	
Piping or Boils	
Foundation Drainage Features	
Toe Drains	
Instrumentation System	

i

.

E
INSPECTION	CHECK LIDI
PROJECT:Kilburn Pond Dam	DATE: May 6, 1980
PROJECT FEATURE: Intake Channel	NAME:
DISCIPLINE:	NAME:
AREA EVALUATED	CONDITIONS
OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE	
a. Approach Channel	
Slope Conditions	Good - ledge
Bottom Conditions	Sedimentation to Elev. 1035.75 - both gates blocked
Rock Slides or Falls	None
Log Boom	None
Debris	None
Condition of Concrete Lining	Not applicable
Drains or Weep Holes	None
b. Intake Structure	
Condition of Concrete	Good
Stop Logs and Slots	None

-

r

,

Ľ

•

.

•

÷

INSPECTIO	IN CHECK LIST
PROJECT: Kilburn Pond Dam	DATE:May 6, 1980
PROJECT FEATURE: Control Tower	NAME:
DISCIPLINE:	NAME:
AREA EVALUATED	CONDITIONS
OUTLET WORKS - CONTROL TOWER	
a. Concrete and Structural	
General Condition	Good
Condition of Joints	Good
Spalling	Minor scaling at upstream water surface
Visible Reinforcing	None
Rusting or Staining of Concrete	Minor
Any Seepage or Efflorescence	None visible
Joint Alignment	Good
Unusual Seepage or Leaks in Gate Chamber	None
Cracks	None
Rusting or Corrosion of Steel	Gratings to well rusted
b. Mechanical and Electrical	
Air Vents	None
Float Wells	None
Crane Hoist	None
Elevator	None
Hydraulic System	None
Service Gates, Emergency Gates	6" dia gate open full, 18" dia gate opened half -both gates blocked by sedimentation -minor flow through 6" dia gate - gate contro mechanism extensively corroded; 18" dia gate operable, 6" dia gate inoperable
Lightning Protection System	None
Emergency Power System	None
wiring and Lighting System	None

in the second se

.

8

.

.

INSPECTION CHECK LIST					
PROJECT:Kilburn Pond Dam	DATE: May 6, 1980				
PROJECT FEATURE: Transition and Conduit	NAME:				
DISCIPLINE:	NAME:				
AREA EVALUATED	CONDITIONS				
OUTLET WORKS - TRANSITION AND CONDUIT	24-inch diameter conduit submerged; could not inspect				
General Condition of Concrete					
Rust or Staining on Concrete					
Spalling					
Erosion or Cavitation					
Cracking					
Alignment of Monoliths					
Alignment of Joints					
Numbering of Monoliths					

PROJECT: Kilburn Pond Dam	DATE: May 6, 1930
PROJECT FEATURE: Outlet Structure	NAME:
DISCIPLINE:	NAME:
AREA EVALUATED	CONDITIONS
OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL	24-inch flap gate submerged; could not inspect
General Condition of Concrete	
Rust or Staining	
Spalling	
Erosion or Cavitation	
Visible Reinforcing	
Any Seepage or Efflorescence	
Condition at Joints	
Drain Holes	None
Channel	
Loose Rock or Trees Overhanging Channel	Many trees overhanging channel
Condition of Discharge Channel	Brush and logs in channel

;

•.

D

.

ł

K

.

#

-

. !

•

•,.

•

PROJECT: Kilburn Pond Dam	DATE: May 6, 1980				
PROJECT FEATURE:Spillway Weir	NAME:				
DISCIPLINE:	NAME:				
AREA EVALUATED	CONDITIONS				
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS					
a. Approach Channel					
General Conditions	Good				
Loose Rock Overhanging Channel	None				
Trees Overhanging Channel	None				
Floor of Approach Channel	Good; appears to be bedrock				
b. Weir and Training Walls					
General Condition of Concrete	Fair to good				
Rust or Staining	Not Visible				
Spalling	Medium scaling on spillway weir and at inter- section of training walls				
Any Visible Reinforcing	None				
Any Seepage or Efflorescence	None visible				
Drain Holes	None				
c. Discharge Channel					
General Condition	Fair				
Loose Rock Overhanging Channel	Some				
Trees Overhanging Channel	Many				
Floor of Channel	Bedrock and boulders				
Other Obstructions	Collected brush at foot of spillway				

Ď

Ľ

.

...0

INSPECTIO	ON CHECK LIST	
ROJECT: Kilburn Pond Dam	DATE: May 6, 1980	
PROJECT FEATURE: <u>Service Bridge</u>	NAME:	
DISCIPLINE:	NAME:	
AREA EVALUATED	CONDITIONS	
OUTLET WORKS - SERVICE BRIDGE		
a. Super Structure		
Bearings	Steel pads welded to channels and bolted to concrete; pads are rusted	
Anchor Bolts	1 bolt of 8 not seated; head up approximately 1 inch but appears to provide lateral support	
Bridge Seat	Concrete - good condition	
Longitudinal Members	7" x 2" steel channels, 2 each span; rusted but no serious corrosion	
Under Side of Deck	See secondary bracing	
Secondary Bracing	Steel cross braces between channels unde deck	
Deck	2" x 6" wood plank	
Drainage System	None	
Railings	2" diameter tubular steel railing, upstream side only, badly rusted	
Expansion Joints	No expansion joints	
Paint	Entire service bridge badly in need of paint	
o. Abutment & Piers		
General Condition of Concrete	Good	
Alignment of Abutment	Good	
Approach to Bridge	Ledge	
Condition of Seat & Backwall	Good	

D

K

.

ł

•

A-9

.

. . .

APPENDIX B

1

ł

ł

-

.

•

ŧ

۱.

ENGINEERING DATA

AVAILABLE ENGINEERING DATA

A set of design plans dated 1934 showing plan, elevation and section for construction of Kilburn Pond Dam, with a set of specifications dated 1934 and a series of material test reports dating between 1934 and 1935 are available at the State of New Hampshire Water Resources Board, 37 Pleasant Street, Concord, New Hampshire 03301. A set of record plans were obtained from Metcalf and Eddy, Inc., Engineers, 50 Staniford Street, Boston, Massachusetts 02114.

. .

2

I

PAST INSPECTION REPORTS

L

.

ł

t

•

(. . .

•

٠

•

ł

د ن

. .

.

· • ·

•. •.

. .

.

State of New Hampshire

WATER RESOURCES BOARD 37 Pleasant Street

Concord, N.H. 03301

TELEPHONE 271-3420

November 13, 1979

Commissioner George T. Gilman Dept. of Resources & Economic Development Parks Division Loudon Road Concord, New Hampshire 03301

Dear Commissioner Gilman:

Under the provisions of RSA Chapter 482, Sections 8 through 15, the New Hampshire Water Resources Board is authorized to inspect all dams in the State which by reason of their physical condition, height, and location may be a menace to public safety.

The dam structure (No. 255.09) located on your property in Kilburn Pond in Pisgah S. P., New Hampshire was inspected on <u>November 8, 1979</u> and as a result of this inspection no visual discrepancies were found at the time of the inspection which would require any corrective measures.

This letter is provided for your information only. If you have any questions, please feel free to call or write.

Sincerely, .

George Wis Such

George I McGee, Sr., Chairman

GMM:paf

Ł

cc: Board of Selectmen,

NEW HAMPSHIRE WATER RESOURCES BOARD

INSPECTION REPORT

Ľ

t

ľ

<u>)</u>

£

• •

-

DE=	D DADUS	DEPT		Talash	and Murthers
$\operatorname{her}: \underline{VKC}$	PARRS	VEFT		tetepn	one Number:
iling Addr	ess:	(<u>+</u>	<	11565	• •• •• •• •• •• •• •• •• •• •• •• •• •• ••
x. Height	of Dam: /====	TO CREST POR	d Area:		Length of Dam: 35'
UNDATION:	LEDGE	GOOD CON	DITION		
	· · · · · · · · · · · · · · · · · · ·				· ····································
	<u></u>			<u></u>	
TLET WORKS	•				
<u>Indi kokko</u>	OGEE	SPILL WAY	26'LONG		
	ZGATE	STEMS AN	D CRANKS	1-6	AND 1-18" CONDUIT
	GATE	SLOT US	OF Z STE	MS	
		·			
	•		<u> </u>		
1177-15 XTTC +					
<u>010101815</u> :	<u>LEVGE</u>				
	·········				
		,			
			<u></u>		
BANKMENT:	LEDGE				
					·····
		<u> </u>			
			<u> </u>		
					

	- 2 -	Dam No. <u>255.09</u>
PILLWAY: Length: EEPAGE: Location, es	<u>26'</u> Freebo DAM timated quantity, etc. So F	Ard: <u>4.75 TO TOP OF CATUAL</u> IS CONC GRAVITY ON LEDGE REEBOARD IS ACTUALLY INFINATE
NONE	OBSERVER	
· ·		· · · · · · · · · · · · · · · · · · ·
nanges Since Construct	ion or Last Inspection:	
ail Water Conditions: <u>MOUN</u> T	AIN BROOK	
overall Condition of Dat	n: <u>GOOP</u>	
Date of Inspection: <u>///</u> llass of Dam: <i>\ わん) - M</i>	7/79 Sugges	ted Reinspection Date
SMALL DAM,	VERY REMOTE Sign	ature Kenneth Stern
	Date	

.

L

,

.

Ł

•

ŧ.

•

...

Note: Give Sizing, Condition and detailed description for each item, if applicable. $$\rm B-5$$

B−5 Server and the first state of the state of a track of a test state of a test and a test state of a test state of

.

Dun No. 255,09 -3-COMMENTS: NO VISUAL PISCREPANCIES . . L • L . -•• B-6 . ٠.

۰.

Dam No. 255.09

SKETCH OF DAM

ŗ

1

L

t

.

;-. 7 1

(Show Plan, Elevation & Cross Sections)

ELEUATION

SECTION

B-7

· · · · ·

, •

NEW HAMPSHIRE WATER CONTROL COMMISSION DATA ON DAMS IN NEW HAMPSHIRE

•

•

ľ

-

K

.

.

B&D21284

LOCATION	STATE NO
Town Winchester	:: County Cneshire
Stream <u>Kilburn on</u>	<u>d</u>
Basin-Primary <u>Conn.R.</u>	:: Secondary Kilburn Br. Ashuelot R.
Local Name	
Coordinates—Lat	:: Long.
GENERAL DATA	
Drainage area: ControlledSq.	Mi.: Uncontrolled
Overall length of dam	e of Construction <u>1935</u>
Height: Stream bed to highest elev1	5 ft.: Max. Structure10.25 / ft.
Cost—Dam	: Reservoir
DESCRIPTION Concrete .Ogee fac	e /
Waste Gates	
Туре	
Number: Size	ft. high x ft. wide
Elevation Invert	sq. ft
Hoist	
Waste Gates Conduit Number	Materials
Embankment	
Туре	
Height—Max.	ft.: Min ft
TopWidth	ft
Slopes—Upstream	: Downstream
Length-Bight of Spillway	: Left of Spillway
Spillway	
Materials of Construction	crete
Length-Total 2bays@13'= 26!	
Height of permanent section-Max.	10.25.ft.: Min.
FlashboardsType	tteight
Elevation-Permanent Crest	40: Top of Flashboard
Flood Canacity	cfs :
Abutments	
Materials:	
Freeboard: Max. 4.75	ft.: Min
Headworks to Power Devel(See "D	pata on Power Development")
OWNER Hinsdale Water Wor	rks
PEMAPKE (To be inspected)
REMARNS	, ,
Tabulation By RLT	Date 9/27/39

B-8

	CALCULATION SHEET	Date
lefers to 1 - 3 7 to 1		Nade By A
HE.E.C. En mary a	and the second of the second of the second of the	<u>,</u>
		••••••••••••••••••••••••••••••••••••••
Terrature Parts Da	Feelen Ford's We	ع
4473	eg in 2- 2-	• • • • •
4406 .67 mi	<u> + 4 = 0</u> 0 = ,	2 min - 12.5 ans
	· · · · ·	•
Fulmer Tomes it	Tellowers Tomos "	te 🕰 🗛 👘 🖓 👘 🖓 👘 🖓 👘 👘
(moburles 15 min Band Ari	e) a second s	
22.79	4 5 6 3	· · · · · · · · · · · · · · · · · · ·
2/10 1.50 mil		,
• • • •		· · · · · · · · · · · · · · · · · · ·
HERITIONAL LIF		
	1011 300-250 = 550	x.43 = 236,5" pare"
<u></u>	n na serie de la companya de la comp	· · · · · · · · · · · · · · · · · · ·
	147 700-250 - 750	x, x 3 / 1 9 8, 37
57 9		
		· · · · · · · · · · · · · · · · · · ·
Lieway /o Gao GANTS	147 600-250 F 250	×,43 / 50.5
	•	• •·· ·• • • •• •• •• •• • • • • • • •
5951 256 ALS		··· ·· ·· -·· ···
		· · · · · · · · · · · · · · · · · · ·
Maran Frank Mas	÷	• • • • • • • • • • • • • • • • • • • •
vier en	140 ELSIDHO 4027	••••••••••••••••••••••••••••••••••••••
2595	11035 27.24 43	= : Ar = 24.10
0 = 2 = 17. Lo an	· · · · · · · · · · · · · · · · · · ·	and in production of deside
1 - + + 7	= 6820000-1-	51 1 50 0 0 0 code
927= 16.21		
3405		
27 49 6.56 40.3	37"= 1 114 700 P' = 37.3	Encore a sty of a main
ATELE 1035	ELE 1 4 35 27,84.	
9909		1 2 20 25.0 6
87 c 11.21 of	13 25,06 X VOUNS : 1002 JOD	ent in 1 page 1, 2 1/2 dais
4367	= a to to a to and , a .	187950000000
2260 1509	6420000 11 2	51150 0 2 11
3 7	TAL FEE6,000 "	69945,300 11
3405 1.54 27.9	= 1 0 = 1113600 0 = [= 5.5	· · · · · · · · · · · · · · · · · · ·
ATELE 1032,5		<u>and an </u>
Prove Sulter Prove TRACE	<u>234</u>	
ء ٤ ٤ ٢	· ·	
<u>70 - 0</u> - 72	··· · · · · · · · · ·	 .
275-1	······································	······································
14.47 13.17 - 3.24	1. The - 8-9/2- 1 = 20,-5	
	B-10	

.

• • •

2

i

.

X

. .

•

•

•

	/		CALCU	LATION	SHEET	Date	
Refers to	<u> </u>	<u> </u>	•••••			Made By	S
~	~ ~ 0						• • • • • • •
		1.45 x 2	4 = 3		e. '	· · · · · · · · · · · · · · · · · · ·	
		· •					
				•	•		
• •	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·				
1043	· · · · · · · · · · · · · · · · · · ·	<u>_</u>	/3		× ·		
- 7 0 - 3		••••••••••••••••••••••••••••••••••••••		_			
- ••		· ·	• -				
•••		· · · ·			· · · · · ·	·····	
1040	, . L			×	L		
		· · · · ·				· · · · · · · · · · · · · · · · · · ·	
,	Dine	- .					 .
1-1	- میشی		2-(19-8-2)	Ann			- mar
,		ک ر	2.5 4	85.	:4	-	
1.5	6.11	.6	ی . ^ی بر بر . سی بر	155.1	9		
2.	9,41	.8	25,2	1237.1	2		
237 .	13.1.6 .	le	<u>ي ج</u> .	3270	9		
- 7	14.77	1.08		268,0	<u>,</u> , , ,		
	14,03		24.86		. 47 - 1 - 1 - 1 - 1 . C		·
. 54_	16.10	1,144	24 20	430,1	E max	expected ford	- 1.09 dow Two.
\$ 7	16.12	1,149	24552	- 40,2,3	5	· · · · · · · · · · · · · · · · · ·	
. M. 3	-12.27	1,152	24848		-7		
. 2 0	I how the	1.12	24.44	40 8.3			
· · · · · · · · · · · · · · · · · · ·	17.20	1,2	24.8	4 2 9 . 9	4		
	21.50	1.4	24.6	536,2	- 8		
	26.14	1.58	24.42	2 34.3	<u>. : : : .</u>	in the second	11-1575-2-
	· · · · · · · · · · · ·	· · · • • • • • • • • • • • • • • • • •					
	· ····						
	in an	······································	•••••••		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		···· · · ·					
-	يحجو فيادي						
					· · · · · · · · ·		
_ ·		· · · · · · · · · · · · · · · · · · ·					

D

n 1 1

•

ľ

.

L

.

Ì

Ł

l

PLANS AND DETAILS

•

Σ

.

1

۰.

Ľ

۰.

. •

÷

APPENDIX C

D

.

L

ġ

. ۱

SELECTED PHOTOGRAPHS

Photo No. 1 - General view of lake from dam.

I

1

ľ

1

ľ

Photo No. 2 - General view of dam from lake.

Photo No. 5 - Close-up of gate house.

Photo No. 6 - Close-up view of upstream face of gate house.

Ì.

ľ

•

1

•

ĺ

Photo No. 9 - Close-up of scaling at intersection of downstream face of spillway and training wall.

Photo No. 10 - Downstream channel from toe of dam.

1

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

• • •

SIEIA CONSULTANTS INC. ENGINEERS / PLANNERS BOSTON , MASS. Rochester, N.H.

CLIENT_	Penn	COFIS	2=	FILSWEERS
PROJEC	T KILE	IFIL FO	12 2	DANI
DETAIL	74583	: 27:12	C.A.	<u> </u>

JOB NO. 274-779) PAGE 1 25 7-3 COMPTO. BY 145 DATE 117 -) CK'D. BY BUP DATE 55 50

T. SASIC DATA

Γ

X

.

A. DRAINAGE AREA

- 1. 1.65 SQ. MILES FRYM CALOS SATED STEP: SHELLED BY PLANIMETERING ON J.S.S.S. SHEET
- 2. DRAINAGE AREA NOULD SE CLASSIFIED AS NOWITH NOUS. BUT USE FOLLING CURVE FOR ESTIMATING MARE TO ACCOUNT FOR BAKER FOND AND SIGNIFICANT SWAMES AREAS IN DRAINAGE SASIN.

B. DAM AND STORAGE INFORMATION

1. SIZE CLASSIFICATION : SMALL SASED ON STORAGE (250 AND < 1,000 FORE-FEET)

> AS INDICATED SELOW, STORAGE AT CREST OF DAM ESTIMATED TO SE 461 ACRE-FEET

2. HAZARD BITENTIAL : SIGN = CANT

MAY MOACT THE HOUSE AND STATE SOME SE &

3. STOPAGE INFORMATION

DESSR. STIVE INFORMATION	ELEVATION, FEE- (NSID)	SIRFACE ASEA (ACRES)	STORANE Fore-feet)	
1050 CONTUR	1050.0	60.0	744	
1045 CONTOUR	1045.0	+3.5	473	
orest of DAM	10-4.75	47.9	401	
SPILLWAY OFEST	1949.9	37.07*	153	
235 - 23NTE 19	1035.0	25.50		
WATTR SUPPACE (AUS. 1954)	1052.5	29.46 ×	_	
APPROX, CAD STOP 2 DAM	252.0	, +	5	
TEST FLOOD	.045.2 B.	2	493	

SIEIA CONSULTANTS INC. ENGINEERS / PLANNERS BOSTON , MASS. Rochester, N.H.

CLIENT APPLY COFOS OF ENSINEERS	JOB NO. 27720	PAGE	<u> </u>
PROJECT KLAJAN FOND DAM	COMPTO. BY KMS	DATE	5/2:30
DETAIL - SPOLOSIC CALOS	CK'O. BY	DATE	515190

NOTES (1) SUPPACE APEAS NOICHTED SY (*) APE FROM CALCS DATED 12/5/3+ (2) SURFACE AREA @ 10+5 CONTOUR DETERMINED SY FLANIMETERING METCALF & EDDN FLAN DATED SEFT. 133+; OTHER SURFACE AREAS BY INTERPOLATION & FROJECTION

C. SPILLWAY INFORMATION

- 1. FERMANENT SPILLWAY CONSISTS OF A 26.0 FEET LONG OGEE-CRESTED WEIR; SPILLWAY CREST ELEV. = 1040.0
- 2. DISCHARGE OVER SPILLWAY GIVEN BY BROAD-CRESTED WEIR EQUATION

Q = CLH 3/2 (STANDARD HANDSOOK FOR CE'S, MERRITT)

WHERE: Q = DISCHARGE, CFS L = WEIR LENGTH, feet H = HEAD ABOVE CREST, feet C = DISCHARGE COEFF. - NIMERICALLY DEFINED SY FIG. 21-67 IN MERRIT'S TEXT

I. ESTIMATE EFFECT OF SURCHARGE STORAGE ON MAXMUM PROBABLE DISCHARGE

A. DEVELOP STAGE-DISCHARGE CURVE FOR DUTFLOW FROM DAM

1. DEFINE SOURCES OF OUTFLOW

- a. Discharge over spillway Aeove elev. 1040.0 -As defined above
- 2. DISCHARGE OVER ABUTMENTS AND OTHER LIN AFEAS ALONG DAM SASELINE (SEE FIGURE I) ABUTE ELEV. 1043.5 - USE BROAD-CRESTED WEIR EDIATION WITH C = 2.6

D-3

Σ

UIETZUEN CORPUKATION MADE IN U.B.A

ľ

JAL NO DIRIZGEN GRANH PAREK

٦C Z

.

SIEIA CONSULTANTS INC. ENGINEERS / PLANNERS BOSTON , MASS. Rochester, N.H.

CLIENT ACAN COPES OF ENSWEERS	JOB NO. 274-720	PAGE.	+ 1= 35
PROJECT KILSURN PSND DAM	COMPTO. BY KWS	DATE	5/2:30
DETAIL HYDEDIDG CALCS	CK'D. BY	DATE.	559-)

2. DISCHARGE OVER SPILLWAY

ELEVATION, feet (NGVD)	Ċ	(fee==)	;+ (fee+)	Q (c+s)
1040.0			0	0
1041.0	3.4	26	1	33
1042.0	3.6		2	265
1043.0	3.65		3	493
1044.0	3.75		4	730
1045.0	3.85		5	1120
10+6.0	3.9		6	1430
1047.0	3.95		7	1300
10+3.0	3.95		3	2320
1043.0	3.95		2 C	2770
1050.0	3.95	*	:0	5250

3. DISCHARGE AT LEFT ASITMENT (ABDIE ELEI. 1944.0)

ELEVATION, Feet (NGVD)	C		2177 - (fee-)	 (2≠s)
1044.0			0	0
075.0	2.6	3	2.5	Ξ
2-6.2		6	1	10
1047.0		9	1.5	
1043.0		.2	2	33
1049.0		17	2.5	
,250.0	¥	22	. 3	217

4. DISCHARGE AT LOW FOUNT 33 FEET EAST DE LEET REPORT

ELEVATON). feet NSID)	2	<u>ب</u>	жер — Еврот	
940.0	0	15	2.25	
5-17.0		23	2.75	ن ت
243.2		30	1.35	12.5
		 ,	10-2	1-7
	¥		2.15	596

÷

•

E

-

ł

Ì

•

5- ر

SIEIA CONSULTANTS INC. ENGINEERS / PLANNERS

5

Ł

BOSTON , MASS. Rochester, N.H.

CLIENT APMY COPPS DE ENGINEERS	JOB NO. 274-7-201	PAGE	5 1= 33
PROJECT SILEVEN FOND DAN	COMPTO BY VAS	DATE	=== 32
DETAIL HYDROLDGIC CALOS	Ск'р. Ву	DATE	5/5/2

5. DISCHARGE AT LOW FOUNT 110 FEET EAST OF LEFT ABUTWENT

ELEVATION, Feet (1515)	С	(feet)	ד, בתע (דפיב-	- ⊋ _(;3)
10:00	2.5	20	2.25	7
1045.0		31	2.75	52
1245.2		42	1.25	153
10-7.0		57	1 1.75	5+5
1943.0		72	2.25	352
1049.0		34	2.75	336
1050.7	1	35	3.25	1510

6. DISCHARGE AT RIGHT ABUTMENT ABUTE ELEV. 1044.75)

ELEVATION, feet (NSVD)	С	(fee+)	xrz H (feet)	
10-+5.0	2.6	4	0.12	< /
1046.0		3	Disz	:0
1047.0		15	1.2	40
1048.0		23	1.62	/23
1049.0		23	2.2	225
1050.0	1	33	2.62	557

7. DISCHAPSE AT LOW POINT 32 FEET NEST OF SOM ASUMENT

ELEVATION, feet (NSID)	С	(; (;===-)	له مرد (جوو-)	37 (13-3)
1024.0		_	2	2
;045.0	2.6	15).E	1-
1046.0	•	31	1.2	Ĵ
1247.2		75	1.0	2-7
1043.0		163	1.4	72
:243.0		175	2.3	1537
1252.2	Ť		5.2	2723

シー台

GLIENT / / / / / / / 27 2 / / / / ///	JOB NO.	
PROJECT NIFIFY SHO DAM	COMPTO. BY KINS	5232
DETAIL - SEPLOS O CALOS	CK'D. BY _ CWP	51530

Б

,

I

•

ELEIA-: 011. fee+ (NG12)	SALLARY Q.	23	24	25	1 23	2-	
10-2.2	0	0	0	Э		2	5
1241.2	33	Ă	4	4	1 Å	+	و بز
1942.0	265			T			و ۔
19-3.9	493	1		O		ĩ	
1044.0	730	Ó	Y	7	7	0	برجبه بر
125.0	22	3	Ö	52	Ó	1 17	11_
10-6.0	1430	16	5	153	10	31	مر مرجعه ا
10-17.0	1900	£5	39	343	40	247	262
10-3.0	2320	33	:03	632	123	72+	<i>حوے</i>
1049.0	2770	175	247	996	225	,537	300
1050.0	3250	237	336	,310	364	2703	332

8. TOTAL DISCHARGE - SUMMAR ZED GRASHICALLY IN ESUSE

D-7

PROJECT Kilburg Pond Dam COMPTO BY END DATE DITL DETAIL Hydrologic Cales ____ CK'D. BY _____ CAS___ DATE _5131 **N** ¹-Effect of surcharge storage on max. prob. discharge в. 1. Pertinent Data a. Drainage area = 1.65 syuare miles b. Characteristics of basin - Mountainous, out use round.
c. Test flood = 1/2 PMF d. Follow Army Corps' procedure 2. <u>STEP 1</u>: Determine Peak Inflow Q_{D1} from Guide Curve a. the maximum probable discharge was estimated to be 2,200 cfs/sq.m. t . PMF = (2,200 cfs/sq.m.) (1.65 sq.m.les) = 3,630 cfs L 1/2 PMF = 1,820 cfs 3. <u>STEP 2:</u> Determine surcharge height to pass Q_{F1}, STOF₁, and Q_{P2} f a. from Figure 1 determine surcharge height to pass _{P1} = surcharge elevation = 104 elev. spellway crest = 104(Survinge height determine volume of surcharge STOP, in inches of Ъ. runoff () détermine storage in live feet in term manner a determine surface of pond it surfaces i from Figure 2 = 50.5 sizes (b) délimine nouverage sur-ace little ceturent creat poor and sur-area poor D-9

Π

DIETZGEN CORPORATION MADE IN ULBUAL

-11 DIETZGEN GRAPH PAPER 10 X 10 PER INCH

01-17E

NC.

ł

D-10

SIEIA CONSULTANTS INC. Engineers / planners

D

BOSTON , MASS. Rochester, N.H.

CLIENT Army Corps	_ Јов No. <u>274-7901</u>	PAGE	10 0+ 33
PROJECT Kilburn Pond Dam	COMPTO BY BWP	DATE .	= 17/90
DETAIL Hydrologic Cales	_ CK'D. BY	_ DATE	- 2.19
(c) multin	In manage Surface	area	مرجع مرجع الم
	The cousion in		المناجعة المعادية المعادية

$$STOR_{1} = \frac{Volume of storage (as acre-inches)}{drainage area}$$

$$STOR_{1} = \frac{(37.07 \text{ acres } + 50.5 \text{ acres})(6.0 \text{ f}_{+})(12''/\text{ f}_{+})}{(1.65 \text{ sg.m}_{i})(640 \text{ acres}/\text{ sg.m}_{i})}$$

STOR = 2.99 inches

c. determine Q_{P2}

$$Q_{P2} = Q_{P1} \left(1 - \frac{STOR_1}{Q.5''} \right)$$

 $Q_{P2} = \left(1, 820cts \right) \left(1 - \frac{2.99''}{9.5''} \right)$
 $Q_{P2} \approx 1, 250 cts$

- 4. STEP 3: Determine surcharge height in CTTP, to pass $Q_{\rm P2}$ and then $Q_{\rm P3}$
 - a. From Figure 1 determine surcharge height to pass $Q_{p_2} = 1.250$ cts

Surge equation = 1045.11

 $2ic_{1} = p_{1} + u_{2} = 10 + 0.0$

and at encourse line in a 49.7 when

SUPERMENT FOR SUPER

D-11

SEIA CONSULTANTS INC.

D,

BOSTON , MASS. Rochester, N.H.

CLIENT_A	rmy Cor			JOB NO27	4-7901	PAGE_	<u> 11 o+ 35</u>
PROJECT	MIL	rn Hond	Jam_	- COMPTO. BY	BWP	DATE _	<u> </u>
DETAIL	Hydrol	logic Calcs	•	_ Ск'о. Ву	KMS		5-5-32
	b.	determine STOR ₂	STOR ₂	27.07 21182 - 2 (1.65 :	43.5 aured 33. mi) (X5+ (6+ j 20rez	<u>a /a</u> /a
			= 2.	48 inches			

c. Average STOR_1 and STOR_2

$$STOR_{AVG} = \frac{STOR_{1} + STOR_{2}}{2}$$

$$STOR_{AVG} = \frac{2.99 (n + 2.43)}{2}$$

$$STOR_{AVG} = 5.73 \text{ scres}$$

d. determine Q_{P3}

ь.

$$Q_{P3} = (1, 320 \text{ cfs}) \left(1 - \frac{2.73''}{9.5''}\right)$$

 $Q_{P3} \approx 1, 300 \text{ cfs}$

5. STEP 4: Determine surcharge height for Qp3 and STOR3

a. from Figure 1 surcharge height for $Q_{p_3} = \frac{1}{200} C^2$

Surcharge cleartin $\approx 1045.2^{\circ}$ clev. 52. $\cos \omega$ creat = 1040.0 Surcharge height = 5.2 part Surcharge cleartin ≈ 43.000

determine STOR₃
STOR₃ =
$$\frac{(37.07 ac + 49.0 ac}{c})(5.17.07 ac}{(1.65 z, m)}(5.17.07 ac})$$

SIE A CONSULTANTS INC. BOSTON , MASS. ENGINEERS / PLANNERS ROCHESTER, N.H. JOB NO. 274-7901 PAGE 12 3- 33 COMPTO BY BWP DATE 5/7/95 GLIENT Army Corps PROJECT KILDUIG Port Dam COMPTO BY EWP DETAIL Hydrologic Calcs ____ CK'D. BY ____ MS STOR, = 2.54 inches c. determine STOR_{AVG} $STOR_{AVG} = -2.73 in + 2.54 in.$ STORANC = 2.63 Inches d. determine $Q_{P\mu}$ $Q_{p4} = (1,920 \text{ cfs})(1 - \frac{2.63''}{2.53''})$ Qp4 = 1.320 cts 6. STEP 5: Determine surcharge height for $Q_{p_{ij}}$ and STOR_{ij} From Figure 1 surcharge height for $Q_{p_{\mu}} = 1.320$ Cm a. Surcharse similar to 1245.2' elev. = 1040.0' surcharge height = 5.2 tect Surface area at Surcharge clevation = 49. Jack determine STOR₄ STOR₄ = $\frac{(37.07 \text{ ac} + 49.0 \text{ ac})(5.2^{+})(12'' 1^{+})}{(1.65 \text{ sg.mi})(6+0 \text{ ac}/\text{ sg.mi})}$ ь. $STOR_4 = 2.54$ inches c. determine STOR_{AVS}

Π

 $STOR_{AVG} = \frac{2.63 \text{ in } + 2.54 \text{ in}}{2}$ = 2.59 inches

SIEIA CONSULTANTS INC. BOSTON , MASS. ENGINEERS / PLANNERS ROCHESTER, N.H. CLIENT FILL JOB NO. 274-7901 PAGE 13 ST 33 PROJECT - FILL DAM COMPTO BY CUP DATE 517/90 CK'D. BY KMS DATE FIERD DETAIL ____impace Gales STORA and STORANG agree to within 2% Therefore accept routed test - sol discharge equal to 1,320 cts at Europerica 21212-7. In Conclusion a. Routed test flood discurse = 1,320cts will outop-2 dan by \$ 0.5 feet b. Eciliway Capacity (1) water surface at dam crest - 2.21stion = 1044.75' $Q = (3.3)(262+)(1044.75'-1040.0)^{3/2} \approx 1.020cts$ (E) water surface at test - sub oleration = 1045.2' $Q = (3.35)(26f+)(1045.2 - 1040.0)^{3/2} \approx 1,190cfs$ C. Alucegate (flapgate) Capacity - discharge unit ce introlled by 6" and 13" Stuccegates (1) use onfice discharge equation Q = CaVZah (Standard Handbook for CE's, Merrit) and assume damary over spulling does not affect spilling discharge (2) water surface at dam crest - elev = 1049.75' $Q = (0.6) \left[(0.25)^2 \Pi \right] \left[(2) (32.2) (1044.75' - 1033.75') \right]^{\frac{1}{2}} +$ → (0.6) [(0.75)² m] [2)(32.2)(1044.75' - 1031.75')] 1/2 ~ 34 cm (3) water surface at test fload clevation = 1045.2.1 $Q = (0.6) [(0.25)^2 \text{ tr}] [(2)(32.2)(1075.2' - 1033.45') +$ ````(0.6)[(0.75)°T][(2)(32.2)(1045.2'-103:.75)]^{//2} ≈ 35 c=

B

SIEIA CONSULTANTS INC. Engineers / planners	BOSTON , MASS. Rochester, N.H.	
GLIENT - Corps	JOB NO. 274-701	- PAGE 14 cf 37
PROJECT Kilburg Prail Dam	Сомрто. Ву <u>КИ 5</u>	DATE 53195
III. Using "Rule of Thumb" Failure Hydrographs Exan	Guidance for Est nine Impact of I	timating Downstriam
A. Since Spillway long dam the tachester r Spillway with the dam may be Si	this Caree comp coulding from deca water surface at gruficiant	ared to lighth of angle over the I the crest of
1. from Previous (over spillway of dam = Hydrologic Calco	calcs. Steady S with water Su 1,020 cts (see .)	-face at crest p D-14 st
2 Using Stage - Disc of failure disch stage discharge a. Reach 1 - b. Reach 2 - c. Reach 3 - d. Reach 3 - e Reach 5 -	ange Curve: prepare ange cietirmine in each reach (≈ 3.4 feet ≈ 2.7 feet ≈ 3.0 feet ≈ 3.5 feet ≈ 8.4 heat	stor milling see Frink 4)
3. The failure of computed and reacles using for Estimating This failure du Of the Stead hazard is sign discharge then alefined by the No significant state discharge shall be deter The Epinitura	discharge Should routed throug the "Rule of The Bounstream Fe Ischarge Should be y state discharge micantly increase the Dazard class s routing procedure increase in hazard increase in hazard runcrease in hazard increase in hazard crest.	h the stream unt" Greidence where Hydrosraphs. a routed on top e. If the d by the fulling infration will be 2. If there is h over the steady h classification the clim at

.....

5

.

t

Ľ

.

.

*

SIEIA CONSULTANTS INC. BOSTON , MASS ROCHESTER, N.H. ENGINEERS / PLANNERS ____ JOB NO. 274-790 CLIENT Army Corps PROJECT Suburn Pinch PAGE COMPTO. BY BUP 519190 Jam DATE ___ DETAIL Huntro sale Cales _____? - CK'D. BY _____ D B. Reach 1 1. STEP 1: Determine reservoir storage at time of failure from previous calcs. storage = 461 acre - + 207 2. <u>STEP 2</u>: Determine Peak Failure Outflow Q_{P1} a. $Q_{P1} = (8/27) W_{b} \sqrt{g} Y_{0}^{3/2}$ where: $W_{\rm b}$ = Breach width (use 40% of total length) ŧ = (0.4) (33 feet) ~ 33 reet between which outcroppings = 13.2 feet Y_{c} = Total height from channel bed to pool E level at failure Assume failure occurs at gate house and of dam, consequently Yo will vary due to variable level of channel bottom Yo = 1044.75'- 1029.5'= 15.25ft - 6ft Yoz = 1044.75 - 1030.75' = 14.0 ft for 5 ft Yo3 = 1044.75' - '032.5' = 12.25ft for 2.2ft $Q_{P1} = (8/27)(32.2)^{1/2} (6f)(15.25f)^{3/2} +$ $(5f_{-})(14.6)^{3/2} + (2.2f_{-})(12.2f_{-})^{3/2}$ $Q_{0} \approx 1,200$ cfs í 5-16

SIEIA CONSULTANTS INC. Engineers / planners

÷

t

K

 BOSTON , MASS. Rochester, N.H.

GLIENT <u>Corps</u> JOB NO. <u>274-2801</u> PAGE <u>Solution</u> PROJECT <u>Extended</u> Constra By <u>The Page</u> <u>Solution</u> Derive <u>The mail Colore</u> Constra By <u>The Date</u> <u>Fridden</u> Derive <u>The colore</u> Colore Constra By <u>The particulation</u> Derive <u>Solution</u> IS <u>Significant</u> <u>Constrained</u> <u>Ander</u> as <u>added</u> to the failure discourse <u>Matter</u> as <u>added</u> to the failure discourse a <u>added</u> to the failure discourse b <u>Soc</u>	ENGINEERS / PLANNERS	ROCHESTER, N.H.
Project Little to the constraint of the constra	GLIENT FALMAN CORCS	_ JOB NO. 374-7901 PAGE6 - 35
Detail <u>Here spec</u> (also <u>Correction</u> Date <u>Interior</u> <u>Correction</u> <u>C</u>	PROJECT _ HIBURA Part	_ COMPTO BY DATE
b. Since the decidence oper the underlaw price of the epilloway is significant. The decidence operation added to the telline decidence operation of the epilloway = (3.3) (18.9 feet) (4.75) ^{3/2} × 7400 fs C QPI(TOTRI) = 1,200 cfs + 740 cfs = 1940 cfs C QPI(TOTRI) = 1,200 cfs + 740 cfs = 1940 cfs C QPI(TOTRI) = 1,200 cfs + 740 cfs = 1940 cfs C QPI(TOTRI) = 1,200 cfs + 740 cfs = 1940 cfs C QPI(TOTRI) = 1,200 cfs + 740 cfs = 1940 cfs C QPI(TOTRI) = 0.056 (3) Channel shape = 70,056 (3) Channel shape = 70,056 (4) Channel shape = 70,057 (5) Channel shape = 70,057 (6) Channel shape = 70,057 (7) Channel shape = 70,057 (8) Channel shape = 70,057 (9) Channel shape = 70,057 (10) Stace Under = 1040 cfs = 70 = 100 eff and find rodume in reach (11) Stace (depth of Four) = 2.164 (tohicage = 5.564) among pressive decomp (2) Nolume in reach = (reach learn) (cross = 100 eff (2) Nolume in reach = (reach learn) (cross = 100 eff X-area = (0.5)(2.16-1/40.1 + 60.0) ≈ 105 + r ² Nolume = N_1 = (105 ft)(2300 ft) = 5.5 and the N_1 < 52 = 70 chan under the C = 2000 ft C	DETAIL Coles	CK'D. BY DATE
the epillosy is Significant The decision with a added to the filling discharge $Q_{P,Spillosy} = (3.3)(18.9 feet)(4.75)^{3/2} \approx 740c5$ $C_{P,I}(tota) = 1,200 cfs + 740cfs = 1940c5$ 3. Propere stage discharge curve for Peach 1 a. Pertinent Data (1) Reach length = 2,300 feet (2) Channel Stope ≈ 0.056 (3) Channel Stope ≈ 0.056 (3) Channel Stope ≈ 0.056 (3) Channel Stope $\approx 10^{-221}$ with (4) Channel Stope $\approx 10^{-221}$ with (5) Cace width $\approx 10^{-221}$ b. See Figure 4 for stage of the stope for $S_{2} = 1/940c^{-1}$ for $= 5.5$ and (1) Stope (dept of for $S_{2} = 1/940c^{-1}$ for $= 5.5$ and (2) Nolume in teach = (teach length) (cross - teach) X -area = $(0.5)(2.1 + (40.2 + 60.4)) \approx 105 + 10^{-2}$ Nolume = $V_{1} = \frac{(105 + 5)(2300 + 1)}{43,560 + 17are} \approx 5.5$ are for $V_{1} < \frac{5}{2}$ or the math C_{2} (2) Nolume in teach = $(1 - \frac{11}{2})$ $C_{2,1,1} = C_{2} = (1 - \frac{11}{2})$ $C_{2,1,1} = C_{2} = C_{2} = (1 - \frac{11}{2})$	6. Since the du	scharge over the unfailed corr of it
Le dédel to the fillure disclarge $QP_{spillurg} = (3.3)(18.9 fiel)(4.75)^{3/2} \approx 740 e^{5}$ $CQP_{1}(tota) = 1,200 e^{5} + 740 e^{5} = 1940 e^{5}$ 3. Propere stage disclarge turke for Peach 1 a. Pertiment Data (1) Reach length = 2,300 feet (2) Channel slope ≈ 0.056 (3) Channel slope ≈ 0.056 (3) Channel slope ≈ 10.056 (4) Channel slope ≈ 10.056 (5) Channel slope ≈ 10.056 (6) Channel slope ≈ 10.056 (7) Channel slope ≈ 10.056 (8) Channel slope ≈ 10.056 (9) Channel slope ≈ 10.056 (9) Channel slope ≈ 10.056 (9) Channel slope ≈ 10.056 (9) Channel slope ≈ 10.056 (10) Stage (deft of slope) ≈ 2.1646 (total sug = 5.5 feet (10) Stage (deft of slope) ≈ 2.1646 (total sug = 5.5 feet $\frac{1000}{2000} e^{1000} $	the conclusion	15 Significant This duschars must
$Q_{Pspillusy} = (3.3)(18.8 feet)(4.75)^{3/2} \approx 7.40c5$ $C Q_{Pi}(total) = 1,200 cfs + 740cfs = 1,940c5$ 3. Propare stage discinger curve for Reach 1 a. Perticent Data (1) Reach length = 2,300 feet (3) Channel shipe = 0.056 (3) Channel shipe = 10.056 (4) Channel shipe = 10.056 (5) Race Width ≈ 10.054 (5) Race Width ≈ 10.054 (6) Stage 4 for stage - Unines curve (7) Stage Out from reach (1) Stage (Lapto of Such ≈ 2.164 (1) Stage (Such ≈ 2.164 (1) Such ≈ 2.164 (1) Stage (Such ≈ 2.	ce added	to the failure discharge
$c Q_{Pi}(Torni) = 1,200 cfs + 740 cfs = 1,940 cs$ 3. Propere stage discharge turke for Reach 1 a. Pertinent Data (i) Reach length = 2,300 feet (ii) Channel shape = 0.056 (ii) Channel shape = trapezoisis (iii) Channel shape = trapezoisis (iii) Channel shape = trapezoisis (iii) See Figure 4 for stage for C ₀ = 1,940 cft for Figure 4 and find rolling in rolling (i) Stage (depth of Tow) = 2.1644 (Toke may = 5.564) above preduite discord (ii) Stage (depth of Tow) = 2.1644 (Toke may = 5.564) above preduite discord (iii) Stage (depth of Tow) = 2.1644 (Toke may = 5.564) above preduite discord (iii) Stage (depth of Tow) = 2.1644 (Toke may = 5.564) above preduite discord (ii) Stage (depth of Tow) = 2.1644 (Toke may = 5.564) above preduite discord (ii) Stage (depth of Tow) = 2.1644 (Toke may = 5.564) above preduite discord (ii) Stage (depth of Tow) = 2.1644 (Toke may = 5.564) above preduite discord (iii) Stage (depth of Tow) = 2.1644 (Toke may = 5.564) above preduite discord (ii) Stage (depth of Tow) = 105 for Volume = V_1 = (105 ft ²)(2300 ft) x-area = (0.5)(2.1 for (40 is + 60 ft)) = 105 for Volume = V_1 = (105 ft ²)(2300 ft) (iii) = 5.5 avents (iii) Depth of Perture (iii) Depth of Perture	PP Spillwar	= $(3.3)(18.8f_{22}t)(4.75)^{3/2} \approx 740cf_{3}$
3. Prepare stage discharge curve for Peach 1 a. Pertiment Data (1) Reach length = 2,300 feet (2) Channel shape = 0.056 (3) Channel shape = trapizziolat (5) Take width = 10 deat b. See Figure 4 for stage of curve curve 4. Estimate Reach Oxtoficou a. Determine stage for $C_{p,1} = 1,940$ cm for the shape of shape = 5.5 ket and find volume in rolain (1) Stage (dapth of curve) = 2.1 ket (toki shape = 5.5 ket and find volume in rolain (1) Stage (dapth of curve) = 2.1 ket (toki shape = 5.5 ket and find volume in rolain (2) Nolume in reach = (teach length) (troot - the shape = 5.5 act X-area = (0.5)(2.1 -), (40 to + 60 -) = 105 + t ² Volume = V_1 = (105 ft ²)(2300 ft) X-area = (0.5)(2.1 -), (40 to + 60 -) = 5.5 act = 1 V ₁ $\leq \frac{5}{2}$ is rolain which or b. Determine frequence $V_1 \leq \frac{5}{2}$ is rolain which or $V_1 \leq \frac{5}{2}$ is rolain which or $V_2 = \frac{1}{2}(200 \text{ cm})$	C QPI(TOTAL) =	1,200 cfs + 740 cfs = 1,940 cfs
a. Terrinent langth = 2,300 feet (1) Reach length = 0.056 (2) Channel shape = trapizziola (3) Channel shape = trapizziola (4) Channel shape = trapizziola (5) Taze which = 10 teat (5) Taze which = 10 teat (6) See Figure 4 for $C_{p} = 1,940ct$ for Figure 4 and find rodume in roduce (1) Stage (dath of Two) = 2.1 feet (tothisne = 5.5 feet above pressure deman (2) Nolume in reach = (reach length) (cross - thermal X-area = (0.5)(2.1 for (40 to + 60 for)) = 105 for Volume = V_1 = (105 for (2300 for)) = 5.5 acreft Volume = V_1 = (105 for (2300 for)) = 5.5 acreft Volume = V_1 = (10 for (1 for (200 for (100 f	3. Preçare stage ou	escharge surve for French 1
(1) Netter length = 0.056 (2) Channel slope = 0.05 (3) Channel slope = repeterial (5) Tape which = 10 and (5) Tape which = 10 and (5) Tape which = 10 and (6) See Figure 4 for stage for $C_{12} = 1/240ct$ for Figure 4 a. Determine stage for $C_{12} = 1/240ct$ for Figure 4 and find volume in rouch (1) Stage (det of Four) = 2.164 (Taktore = 5.564) (2) Volume in reach = (reach length) (interpresent) (2) Volume in reach = (reach length) (interpresent) X-area = (0.5)(2.1 for (0.1 + 60-1) = 105 for Volume = V_1 = (105 ft^2)(2300 ft) = 5.5 atrest Volume = V_1 = (105 ft^2)(2300 ft) = 5.5 atrest Volume = V_1 = (105 ft^2)(2300 ft) = 5.5 atrest Volume = V_1 = (105 ft^2)(2300 ft) = 5.5 atrest Volume = V_1 = (105 ft^2)(1 - 5.5 atrest) Control = (104 Join) (1 - 5.5 atrest) Control = (104 Join) (1 - 5.5 atrest) Control = 1920 cont	a. Pertinent D	Landth = 2300 Seat
(a) Channel Shiple = 0.05 (b) Channel shiple = rapiezish (c) Channel shiple = rapiezish (c) Case which = 10 dest (c) Case which = 10 dest (c) See Figure 4 for stage for $C_{p} = 1,940ct$ for $T_{pure 4}$ and find rolume in rolum (c) Stage (dest of Tow) = 2.16tt (tokisher = 5.56tt above preduce differed (interpr) (cross - therein) (c) Volume in reach = (teach interpr) (cross - therein) X-area = (0.5)(2.1 for (40 to + 60 for)) = 105 ft ² Volume = V_1 = (105 ft ²)(2300 ftr) $V_1 < \frac{5}{2}$ is rolume which is $V_1 < \frac{5}{2}$ is rolume which is $C_{22,22,42} = C_{22} (1 - \frac{V_{12}}{2})$ $C_{22,22,42} = C_{22} (1 - \frac{V_{12}}{2})$ $C_{22,22,42} = C_{22} (1 - \frac{V_{12}}{2})$	(1) Ketten	r = 0.056
(d) Channel shipe = trapizoida (d) Channel shipe = trapizoida (e) Gaze width = 10 tait b. See Figure 4 for stage - channel intra 4. Estimate Reach Outflow a. Determine stage for $C_p = 1,940ctr = tran = yunnel 4$ and find volume in rolach (1) Stage (depty of flow) = 2.1 feet (tobe says = 5.5 feet above preduline during (2) Nolume in reach = (reach length) (cross = transient) X-area = (0.5)(2.1 fr, 40 is + 60 fr) = 105 ft ² Volume = V_1 = (105 ft ²) (2300 ft) $V_1 < \frac{5}{2}$ is rolan work or b. Determine $T_{2,2,2,1}$ $Q_{=2,2,2,4} = Q_2 (1 - \frac{V_{1,1}}{43,560 ft}) = 5.5 acreft Crosse work of T_{2,2,2,1}Q_{=2,2,2,4} = Q_2 (1 - \frac{V_{1,1}}{43,500 ft})C_{2,2,2,4} = 1,920 the$	(2) Channel	
(1) Channel Shake - 10 period (5) Tase which = 10 period b. See Figure 4 for stage - dimension introd 4. Estimate Reach Outflow a. Determine stage for $C_{p,1} = 1,940$ for the superational (1) Stage (depth of Tow) ≈ 2.1 for (Tohis superational) (2) Volume in reach = (reach length) (Cross-Human) X-area = (0.5)(2.1 for (40 in the control)) X-area = (0.5)(2.1 for (40 in the control)) X-area = (0.5)(2.1 for (40 in the control)) X-area = (0.5)(2.1 for (40 in the control)) (2) Volume = V_1 = (105 ft^2)(2300 ft)) ≈ 5.5 acres to Volume = V_1 = (105 ft^2)(2300 ft)) ≈ 5.5 acres to (2) Determine Trainel (100 ft/2) (2300 ft)) ≈ 5.5 acres to (3) Determine Trainel (100 ft/2) (2300 ft)) ≈ 5.5 acres to (4) $C = 2 + 0.43$ ≈ 0 (1 $- \frac{V(1)}{2}$) $C = 2 + 0.43$ ≈ 0 (1 $- \frac{V(1)}{2}$) $C = 2 + 0.43$ ≈ 0 (1 $- \frac{V(1)}{2}$) $C = 2 + 0.43$ ≈ 0 (1 $- \frac{V(1)}{2}$)	(4) (here a)	
b. See Figure 4 for stage - discourse intro 4. Estimate Reach Oxteticu a. Determine stage for $C_p = 1.940cm$ for $T_{pure 4}$ and find volume in rotation (1) Stage (dast of four) $\approx 2.16ct$ (tobe trap = 5.5 bef above presenting discourse (2) Volume in reach = (reach length) (inter of channel) X -area = (0.5)(2.1 for (40 for + 60 for) $\approx 105 to t^{2}$ Volume = $V_1 = \frac{(105 ft^2)(2300 ft)}{43,560 ft^{2}/are} \approx 5.5$ acreft $V_1 \leq \frac{5}{2}$ is rotate with or C = 2 to to t C = 2 to to t $C = 2 to t = (1 - \frac{V_1 + V_2}{2})$ $C = 2 to t = (1 - \frac{V_1 + V_2}{2})(1 - \frac{5.5 to t}{25 to t})$ C = 2 to t = 1.920 to t	C) Channel	$d_{1} + \frac{1}{2} \approx 10 - 20 \frac{1}{2}$
4. Estimate Recon Outifice a. Determine stage for $C_{p_1} = 1.940ct$ from Equipe 4 and find volume in rotain (1) Stage (depth of - out) $\approx 2.16t$ (total trag = 5.5 bet above prevalue discover (2) Nolume in reach = (reach isotri) (cross - the train) X -area = (0.5)(2.1 - (40 - 40 - 3) $\approx 105 + t^{2}$ Nolume = $V_1 = \frac{(105 + t^{2})(2300 + 3)}{43,560 + t^{2}are} \approx 5.5$ acres to $V_1 < \frac{5}{2}$ is reach until or $V_1 < \frac{5}{2}$ is reach until or $C_{2,2} = C_{2,2} = C_{2,2} = C_{2,2} = C_{2,2} = C_{2,2}$ $C_{2,2} = C_{2,2} = C_{2,2} = (1 - \frac{V_{1,2}}{2})$ $C_{2,2} = C_{2,2} = C_{2,2} = (1 - \frac{V_{1,2}}{2})$ $C_{2,2} = C_{2,2} $	h See Figure 4	4 for strange - the correction of
4. Estimate Rein Ontificu a. Determine stage for $C_{p} = 1,940ct$ for $= yune 4$ and find volume in rouch (1) Stage (depth of four) ≈ 2.1 feet (tobe say = 5.5 feet <u>store pre-altred dense</u> (2) Nolume in reach = (reach length) (cross-channel) X -area = (0.5)(2.1-1)(40 + 60-1) ≈ 105 ft ³ Volume = $V_1 = \frac{(105 \text{ ft}^2)(2300 \text{ ft})}{43,560 \text{ ft}^3 \text{ are}} \approx 5.5$ acres to $V_1 < \frac{5}{2}$ is rouch units on b. Determine $= V_1 = Q_p (1 - \frac{V_1 N}{2})$ $C_{22-20-1} = Q_p (1 - \frac{V_1 N}{2})$ $C_{23-20-1} = (1000 \text{ ft})(1 - \frac{5.5 \text{ are}}{43,560 \text{ ft}})$ $C_{23-20-1} = (1000 \text{ ft})(1 - \frac{5.5 \text{ are}}{43,560 \text{ ft}})$	D. Dec Gare	
a. Determine stage for $C_{pi} = 1,940c\pi$ for $T_{quee} = 4$ and find volume in reach (1) Stage (depth of four) ≈ 2.1 feet (total stage = 5.5 feet above prevailing discover (2) Volume in reach = (reach ientri) (cross- total stage) $X-area = (0.5)(2.1 - 1, 40 + 60 - 1) \approx 105 + t^{2}$ Volume = $V_{1} = \frac{(105 \text{ ff}^{2})(2300 \text{ ff})}{43,560 \text{ ff}^{2}/\text{are}} \approx 5.5$ acress $V_{1} < \frac{5}{2}$ is reach until $0r$ b. Determine T_{22} (mass) $Q_{22-2,2,2} = Q_{2} (1 - \frac{11}{2})$ $C_{22-2,2,2} = Q_{2} (1 - \frac{11}{2})$ $C_{22,22,2} = 1,920$ into	4. Estimate Reach	C Out Flow
$X-area = (0.5)(2.12.12.14024 + 60.2) \approx 105 + t^{2}$ $Volume = V_{1} = \frac{(105 + t^{2})(2300 + t)}{43,560 + t^{2}are} \approx 5.5 acrest$ $V_{1} < \frac{5}{2} = 0 \text{ recently } 0$ $C=2-0.42 = Q_{2} (1 - \frac{V_{1}}{2})$ $C=2-0.42 = Q_{2} (1 - \frac{V_{1}}{2})$ $C=2-0.42 = (1-2)(1 - \frac{5.5}{2600000})$ $C=2-0.42 = (1-2)(1 - \frac{5.5}{26000000})$	a. Determine st and find vo (1) Stage (a <u>above</u> press (2) Volume in r	tage for $C_{p_1} = 1,940cm$ row $= 20024$ depth of $= 1000$) ≈ 2.1 feet (Total size = 5.5 feet allore discharge reach = (reach length) (cross-timetric) treach = (reach length) (cross-timetric)
Volume = $V_1 = \frac{(105 \text{ ft}^2)(2300 \text{ ft})}{43,560 \text{ ft}^2/are} \approx 5.5 \text{ acres} + V_1 < \frac{5}{2}$ e. rown with or b. Determine $P_2(100)$ $Q_{=2}(100) = Q_2(1 - \frac{V_1 N}{2})$ $Q_{=2}(100) = Q_2(1 - \frac{V_1 N}{2})$ $Q_{=2}(100) = (100) = (1 - \frac{5.5 \text{ and}}{430000000})$ $Q_{=2}(100) = (100) = (100) = (1 - \frac{5.5 \text{ and}}{4300000000})$	X-area =	$= (0.5)(2.1(40.1+60) \approx 105 +t^{2}$
$V_{1} < \frac{5}{2} = rice value or Q=2-rice) = Q_{2} \left(1 - \frac{V_{1}V}{2}\right)$ $C_{2} = c_{2} \left(1 - \frac{V_{1}V}{2}\right) \left(1 - \frac{5.5 \text{ model}}{45 \text{ model}}\right)$ $C_{2} = \frac{1}{9} 20 \text{ cm}$	Volume =	$= V_1 = \frac{(105 \text{ fr}^2)(2300 \text{ fr})}{43,560 \text{ fr}^2/aure} \approx 5.5 \text{ acre}^{-1}$
b. Determine $P_{2}(m, n)$ $Q_{22}(m, n) = Q_{2}\left(1 - \frac{V_{1}N}{2}\right)$ $C_{2}(m, n) = (12m)(1 - \frac{5.5mm}{46mm})$ $C_{2}(m, n) = \frac{1}{920}$		Vi 23 Per recent unit Dr
$Q_{=2,-2,+2} = Q_{p} \left(1 - \frac{V_{1}}{5}\right)$ $C_{=2,-2,+2} = \left(1,-2,-2,-2\right) \left(1 - \frac{5.5}{25} + \frac{1}{25}\right)$ $C_{=2,-2,+2} = \frac{1}{9} \frac{920}{5} + \frac{1}{5}$	b. Determone	
$C_{F2(TRMA)} = (190)^{-1} (1 - \frac{5.5}{46000000000000000000000000000000000000$		$= Q_{2} \left(1 - \frac{V_{11}}{\epsilon} \right)$
$C_{FOCTEMPLY} = 1,920 \text{ LTER}$		$= (12.3)_{2-2} (1 - \frac{5.5}{46000000000000000000000000000000000000$
	CF2(TRIA-)	= 1,920

۰.

SIEIA CONSULTANTS INC. ENGINEERS / PLANNERS

GLIENT Army Corps	بالمراجع المراجع	274 - 790	PAGE.	7 5+ 3
PROJECT Kilburn Pond Dam		: BWP	OATE	<u></u>
DETAIL Hydrologic Calco	C .	KM5	DATE .	<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>
c. Compute V_{2}	QP1 (TRIAL	L)		

From Figure 4 determine stage for Qp((TFIAL)

Stage = 2.1 feat (Total Stage = 5.5 feet) above prefailure discharge X-area = (0.5)(2.1+)(40++60+)= $105+t^2$ $V_2 = -\frac{(105-t^2)(2300+t)}{43.560+t^2/are}$ $V_2 = 5.5 \text{ acre } -ft$

d. Average V_1 and V_2 and compute -2

(1) $Vavg = \frac{V_1 + V_2}{2}$ $Vavg = \frac{5.5ac-i}{2} + 5.5ac-i+$

Vavg = 5.5 acre-ft

(2) $Q_{P2} = Q_{T1} \left(-\frac{1}{5} \right)$ $Q_{P2} = \left(1,940 \text{ cts} \right) \left(1 - \frac{5.5}{461} \right)$

QP2 = 1,920 cts

SIEIA CONSULTANTS INC. ENGINEERS / PLANNERS GLIENT Army Corps PROJECT Kibirg Pord Dam Compt 74 _____ DATE _ = 19 9: DETAIL Hydrologic Cales. CKO Fr B. Reach 2 | STEP 3 : Prepare star + Scharge - - - - - Feach a. Pertinent Data (1) Reach length = 3,600 feet (2) Channel slope ≈ 0.0056 (.3) Manning n = 0.05(4) Channel share - trapezocial (5) Base width ≈ 20 feet b. See Figure 4 for stage- in curve 2. STEP 4: Estimate Reach Outflow a. Determine stage for $Q_{p2} = 1,920$ Cfs from Figure 4 and find volume in Stage (depth of (1)) = 1.7 feet (Total Stage = 4.4.) above prefailure dischange (1)(2) Volume in reaches (service spech) (cross-sectional) area of channel) $\begin{array}{l} x_{-area} = (0.5)(1.7 -)(240f_{+} + 365 -) \\ = 5.14 \ f_{+}^{2} \end{array}$ Volume = $V_1 = \frac{(514 \text{ L}^2)(2500 \text{ F})}{43.560 \text{ F}^3/1078}$ = 47.5 acre - --× < ² . . . b. Determine Q_{P3(T} QPB(TEIA Col. ! -

Q. . . (TP. ... =

•

BIELA CONSULTANTS INC
ENGINEERS PLANNERS
Devoir Annu 2003
PROJECT KINNERS
CONDICE V2 TOTATION ON THE Date THE STREET
C. COMPUTE V2 TOTA PROTECTION STREET OF THE CREET
C. COMPUTE V2 TOTA PROTECTION STREET OF THE CREET
Stage : 1.5 Feet
Stage : 1.5 Feet
Conditioned States
X-are 1 : (0.5)(1.5 ft)(240 ft + 350 ft)

$$x - 473 ft^2$$

 $V_2 = \frac{(4.43 m)(3.600 ft)}{33,560 ft)/acce}$
 $V_2 = 36.6 acre = ft$
d. Average V1 and V2 and compute Qp3
(1) Vavg = $\frac{V_1 + V_2}{2}$
 $Varg = \frac{42.5 acref + 36.6 acreft}{2}$
 $Vavg = 39.5 acre - feet
(2) Qp3 = Q_2 (1 - \frac{Vavg}{3})$
 $Qp3 = (1,920 cf_3)(1 - \frac{39.5}{451})$
 $Qp3 = (1,920 cf_3)(1 - \frac{39.5}{451})$

J-20

DETAIL Hydrologia Calos. CKID F. M.T. C 5-C. Reach 3 1. STEP 3: Prepare state-discharge . . for Fea a. Pertinent Data (1) Reach leng+1 = 3,500 feet (2) Channel slow = 0.094(3) Manning n = 0.05(4) Channel share - trapezoida. (5) Base width = 10 -eet b. See Figure 4 for start -discharge surve 2. STEP 4: Estimate Reach Outflow a. Determine stage for $1_3 = 1,750$ cfs from and find volume is the h Ì (1) Stage (depth of the a 1.8 feet above prefative discharge (2) Volume in reach = (reach le π th) $\begin{pmatrix} 2\pi e^{2\pi i t} \\ \pi e^{2\pi i t} \end{pmatrix}$ X-area = $(0.5)(1.9 - -)(37 - - + = 82 + -^2)$ Volume = $V_{-} = \frac{(82 f_{+}^{2})(3500 f_{+})}{42560 f_{+}^{2}}$ = 6.6 aure-feet K i i.react ength. 5. Determine Qp4(TPC) $Q_{P4(TETA)} = Q_{P3} \left(1 - \frac{V_1}{2} \right)$ °₽4(TPIN) = (1750 c+c, -Qp4 (TRIAL) = 1,720 2-2 $\mathcal{D}^{-\pm 1}$

Compute V2 using CE+(T c. From Figure 4 determine thage for Qp4(Stage ~ !. 3 -22+ (Tota X-area = (0.5) (1.3 -) (37- + ≈ 82 -+² $V_2 = \frac{(82+t^2)(3.500+t)}{43,560+t^2/acre}$ $v_2 = 6.6$ acre-feet d. Average V_1 and V_2 and compute Q_{p4} (1) Vavg = $\frac{V_1 + V_2}{2}$ $V_{avg} = \frac{6.6ac-f++6.6ac-f+}{2}$ Vavg = 6.6 acre - feet (2) $Q_{P:\frac{1}{2}} = Q_{P:\frac{1}{2}} \left(1 - \frac{Vavg}{S}\right)$ $Q_{P4} = (1,750 \text{ cfs}) (1 - \frac{6.6}{4.1})$ Qp4 = 1,720 cts D-22

SIEA CONSULTANTS INC. BOSTON , MASS. ENGINEERS / PLANNERS ROCHESTER, N.H. - JOB NO. 374-7901 CLIENT TRANS PAGE 22 3-PROJECT HINTER TAIL JAM COMPTO BY THE _ DATE _ - 2, 2 DETAIL HUNDED DEL CACCO CK'D. BY KAS DATE _____ 2 2 3. F D. Reach 4 1. STEP 3: Prepare stage-discharge curve for Frae. Ŀ a. Pertnent Data. (1) FI Emails dam is brated it the end of + reach, approximation 300 -ees uporeum rom Route 63 indust. The dam le incircumate 140 feet long, with a 43 feet long of 4 feet liep Di-Shapad wer spinning. The dim important a small point with a surface area of uppro 15,000 sq. tt. In the part water was within from tills infoundment and cased-inrough Filtration plant located just 'selow the dam. filtitation phant has been acardinat and no in Supplies water to the town of Hinsdule. This Ì all water orthoging this impoundment process Epilling to the continuation FR lour Erock. (2) see Figure 4 for the stage- inclusion our 2. STEP 4: Estimate Reach Out from a. Determine Stage for Qp4 = 1720 - From F and find Johna in reach 1. Stage = 2.2 feet 2.900 <u>Prefailure</u> discharge (Turne Stage = 5 (2) Nolume in reach = (Stage) (surray and or p $Volume = V_1 = \frac{(2.2 \pm 1)(15 000 - 2)}{43 \pm 100 - 2)acre}$ V. = 0.8 acre-Lect b. Determine (PPSCTR :-) $\mathcal{O}_{\text{PS}_{\text{TR}}(Ab)} = \mathcal{O}_{\text{Ps}_{\text{TR}}} \left(1 - \frac{V_1}{S} \right)$ D-23

CLIENT_	11 -ces	JOB NO. 274- 7901	PAGE3 01 3
PROJECT	The tel the	COMPTO BY	DATE79/30
DETAIL	<u>a avec</u>	Ck'o. By(DATE
	QPSCRU	(1,720 cts)(1-	$-\frac{0.5}{461}$
	QPS (TR	(AL) = 1,7200-2	
	c. Emputer	V2 verre PP5 (TRAL	,
	From F	igure 4 distormine.	Starzaner Orsina
	St	age ≈ 2.2 feet	(Turk Steeps = 5.7
	c	l'are pretailere discharge	
	$V_2 = (2$	2.2 <u>-ee+) (15 00 1+2)</u> 13.500 ++2/acre	-
		0	
	$V_{z} = 0$.0 whe - teet	
	d. Average	V_1 and V_2 and com	quite Op5
	(1) Vavg =	$= \frac{V_1 + V_2}{2}$	
	Vava =	$\frac{0.8 a_{-1} + 0.8 a}{2}$	<u>c-++</u>
	Vare =	0.9 acre-feet	
		Q Vavo	
	$(\mathcal{L}) \forall P_{\mathcal{D}}$	$= \psi_{P4} \left(1 - \frac{1}{5} \right)$	-)
			08
	O_{P5}	= (1,720c-s)(1-	4:(6:)
	_		
	$Q_{ m p,5}$	= 1,7202-5	

.

ý

•

CLIENT_	Army Corps	Jos No	7:- 000	PAGE_	24 0+ 33
PROJECT	- Kibin Pord D	Compri	7 Y	DATE _	5/3/30
DETAIL _	Hydrologic Calcs.	CK't f	·/ <u> </u>	DATE _	_ ار نو ف
E	. Reach 5				
	L. STEP 3 : Prep	are stage-discha	inge curve f	or Beach 5	
	a. Pertinent	: Data			
	Discha	rae through :	reach chr	oilet cy	and very
	benea	th' Rte 63	and road	way tro	file.
	Inform	nation pertaini	ing to c	whent in	L -caluting
	Profile	e is included	i in Sec	tim I =	
	Hydro	logic Calcs. T	Reach Cent	· tauais .	300 feet.
				~	
	b. See Fig	ure 6 in Sec	tion I of	the man	sque Cales
	- eter	vation - discharg	a curve		
• · · · • • • · · · · · · · · · · · · ·	2. <u>STEP 4</u> : Esti	imate Reach Cutfl	0		
	Determine		17300		
	a. Determine	stage for V_{P5} =	= 1, 7200	n na tra fil	are o
	and iinc	I VOLUME IN PEAC	1		
	(1) Stag	re (denth of flow	- 2.6 feet	- (T.h.	l Stage = 11.0
	about about	e pretailure discharge			·
	(2) Volu	me it reach = (r	-on-h lonot	(mss-se	ectional
					channel/
	Σ	$x_{-are_{a}} = (0.5)($	Z.67+)(157	+ + 390	+ +)
		= 514 :	+2		
	Volu	ume = 7 = (51)	<u>4 ftz) (200</u>	$(-\hat{+})$	
		-	+3,560 f== /ac	nî.	
		= 3.5	acre - Les	, ,	
			•	-	
		$v_1 < \frac{3}{2}$	5 2 i reach 1	ength OK	
				<u>د</u>	
•	b. Determine	e ^Q PG'TRIAL)			

 $Q_{PG(-1)AL} = (1,720cis)(1-\frac{3.5}{4GL})$ Qp6(TRIAL) = = = 10 c-3 D-25

SIEIA	CON	SULTANTS	INC.
ENGINE	EAS /	PLANNERS	

K

RETERNED, MASS

CLIENT Army Corps	JOB NO. 14-731	PAGE	25 - 13
PROJECT TOTAL	COM TO BY BUP	DATE	5030
DETAIL Hydrologic Cales	CK'D. TY	DATE	

c. Compute V₂ using O_{FG(TOTO}

From Figure 6 determine stage Con Rp (TRIAL)

Stage = 2.6 feet <u>source pretailure</u> discharge X-area = (0.5)(2.6 ft) (15 ft + 390 ft) ≈ 514 ft² $V_2 = \frac{(514 \text{ ft}^2)(300 \text{ ft})}{43,560 \text{ ft}^2/aire}$ $V_2 = 3.5 \text{ acre-feet}$

d. Average V_1 and V_2 and compute $Q_{P\,G}$

(1)
$$Vavg = \frac{V_1 + V_2}{2}$$

 $Vavg = \frac{3.5 + c_2 + 3.5 - c_2 + c_2}{2}$

$$Vavg = 3.5 acre - feet$$
(2) $Q_{P6} = Q_{P5} \left(1 - \frac{Vav_{P}}{5}\right)$
 $Q_{P6} = (1,720 cf_{5}) \left(1 - \frac{3.5}{461}\right)$
 $Q_{P6} = 1,710 cf_{5}$

D-26

D

ľ

ļ

.

•.

÷., . . D-29

· .

.

.

٠.

SIELA CONSULTANTS INC.

E

ľ

BOSTON , MASS.

ENGINEERS / PLANNERS	ROCHESTER, N.H.	
CLIENT <u>Array Corps</u> PROJECT <u>Fillous</u> <u>Project</u> <u>Dan</u> DETAIL <u>Hydrologic</u> <u>Alcs</u> F. <u>Conclusions</u> <u>resulting</u> With water Surface	JOB NO. <u>274-790</u> COMPTO. BY <u>BUID</u> CK'D. BY <u>KM5</u> from Aralysis of at clam crest	PAGE TO ST 33 DATE <u>5/9/20</u> DATE <u>3/2/30</u> Culture 2+ clan
1. The two mayor f	counts of interest	are Reaches 4
2. Reach 4 - The Eignificantly in discharge. The p overtop the chi failure dischar be overtopped	routed failure des create the harand cretailure destarge am in Reser 4 ; ge would cause t by about 1.7	charge would vier the protocolor would not the dam to feet
? Read 5 - The Significantly inc discharge. It	routed Lailure d' rease the parant of appears that The	us harge wents ver the prefamine cultert beneti

Route 63 has adaquate capacity to pancille in Prefailure discharge, however, the failure discharge would cause the roadway to be over topped in about 2.5 feet. Further more, water would rice to rearly a foat above the sell of the house located adjacent to Route 63

SIEIA CONSULTANTS INC. BOSTON , MASS. ENGINEERS / PLANNERS ROCHESTER, N.H. CLIENT GARA JOB NO. 274-7901 PAGE 29 -- 23 PROJECT KIST TAL ---- COMPTO. BY ZWP _DATE _____ DETAIL L'A brobaic Cales CK'D. BY KIS DATE _ 2. 2 -20 I Discharge at Route 63 subwit A. Tracharge through culturet (found full) 1. Pertinent Data a use Manning Equation to determine culvert discharge $Q = A \frac{1.436}{n} R^{2/3} S^{1/2}$ Q = decharge ers shere: A = cross-dectional derca ت تستايات ا R= rutrance radue ľ 5 = Tunet Sope b culvert data (1) cast-in-place elle saile and room natural stream channel as the (2) dimensions Road way (:12, ≈ 533--) 2,4 <u>5.2'</u> 2274 2.21 turder much in met 2 Length on cuturent = 31 meet コーミン

F

.

2-31

. . . .

SIE A CONSULTANTS INC. ENGINEERS / PLANNERS

BOSTON , MASS. ROCHESTER, N.H.

CLIENT HEAN ADS	JOB NO. 224-22)	PAGE.	31 24 33
PROJECT	COMPTO. BY	DATE	
DETAIL Hy imingue Cales	CK'D. BY	DATE.	512 20

Elevation (f+)	Constant	(+2e+)	O (cfs
536	654	D.5	462
537		1.5	501
539		2.5	1034
539		3.5	1220
540		4.5	1390
54		5.5	1530
542	V V	6.5	1670

.

I

C Discharge over roadway.

1 Portment Data

a use croad crested weir équation with C=2.6 $Q = CLH^{3/2}$

E Elevation VS Discharge Tuleir

	Elevation (ft)	С	L £ -	Hug -	
	538			C	
	539	2.6	170	0.5	54
	540		350	1.0	a g
	54		410	.5	<u>ر</u> ک
	542	•	430	2.0	2530
D. Total File	discharge tre 6	us claud	tion diata	e Dia inclusiona	r, zel

D-32

2-34

.

•

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

APPENDIX E

ŀ

6

ł

E

Ē

•

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

AMAGE AMAGE AMAGE AMAGE AMAGE AMAGE AMAGE AMAGE 0005 0.2 x11.50444 PONJ A 27.25+2 12.011.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 0 0 0 0		Θ			() ()	DEDRET DATE	
Incy leg Incy	E COUNTY DET STATE COUNTY DE	<u>a</u> rt	NAME		LATITUDE (NORTH)	(WEST)	DAY MO YR	
OPOLUA NAME MARE C RECURDENT 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101	- 405 02	KILSURN POND (۲ ۵ ۳		5.5464	7226.2	1edu <80	
No Altrivia Altrivia Altrivia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	BORULA	0 R NAME		NAME OF	(H) IMPOUNDMENT			
0 (i)			11 ×	С. С. И. Ч.				
Andress Reader Reader Construction construction (1) France 1 <th1< th=""> 1 1 <th< td=""><td>(i)</td><td>•</td><td></td><td>(9)</td><td></td><td>Ē</td><td>۲</td><td></td></th<></th1<>	(i)	•		(9)		Ē	۲	
1 1	RIVER	I OR STREAM	NE	AREST DOWNSTREAM FY - TOWN - VILLAGE		FROM DAW (MI.)	POPULATION	
(b) (c) (c) <td>I NE KILGUMM HAU</td> <td>.</td> <td>MINSOALE</td> <td></td> <td></td> <td>12</td> <td>5472</td> <td></td>	I NE KILGUMM HAU	.	MINSOALE			12	5472	
TYPE OF DAM OWNETED PUBPOSES REMARKS REMONING CAPACITIES LINE OF DAM OWNETED PUBPOSES REMONING CAPACITIES LINE OF DAM LINE OF DAM <thline dam<="" of="" th=""> <thline dam<="" of="" th=""> <</thline></thline>	(i) (i)	(2)		(1)	6			
G01 1915 C 15 15 15 233 VED N N 13-1071 STATE EKNARS REMARS R	TYPE OF DAM COMPLETE	PURPOSES	RUC- HYDRAU GHT HEIGHT	MPOUNDING CAPAC	RMAN U	5T U.A	- FED R	1744
Initial Static Choice Static Stati	-1955 1955	C,	15 15	+ + + + +	\$ 652	њО ' м	Ŗ	Z
REMARKS 71-1071 STATE CENSUS 21-041NFT-RELD CUTC-ETE 23-AFTINTINE VATER S IPPLY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•					
7)-1071 STAFF CFASUS 21-WETAFREED (UPCEETE 23-AFFINITIES VATER SIPPLY) 0 00<			REMARKS				·····	
0 (1) (2) (3) (1) (2) (3) (4) (4) (4) (4) 1 1 1 1 1 1 1 1 (2) (4) (4) (4) 1 1 2 1 2 1 1 2 1 (2) (4) (4) 1 (2) (2) (2) (2) (4) (4) (4) 1 (2) (2) (4) (4) (4) (4) (1) (2) (2) (4) (4) (4) (1) (2) (4) (4) (4) (4) (1) (2) (4) (4) (4) (4) (1) (2) (4) (4) (4) (4) (1) (2) (4) (4) (4) (4) (1) (4) (4) (4) (4) (4) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) <td>21-1971 STATE CENSI</td> <td>S 21-HE INFORCE</td> <td>D CONCRETE 2</td> <td>3-444-5-</td> <td>VATEN S</td> <td>۲۹۹</td> <td>י י הוי</td> <td></td>	21-1971 STATE CENSI	S 21-HE INFORCE	D CONCRETE 2	3-444-5-	VATEN S	۲۹۹	י י הוי	
7 10 10 10 12 10 12 10 </td <td>(a) (a) (a) (a) /S SPILLWAY M/ M/ AS Crited, Truel WIQTH DIS</td> <td>(#) (#) (#) (#) (#) (#) (#) (#) (#) (#)</td> <td>POWER CAPAC</td> <td>11 V (II) (II) 11 V NOJ LENGY H</td> <td>NA NA NA</td> <td>VIGATION L</td> <td>(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)</td> <td>I'M HL</td>	(a) (a) (a) (a) /S SPILLWAY M/ M/ AS Crited, Truel WIQTH DIS	(#) (#) (#) (#) (#) (#) (#) (#) (#) (#)	POWER CAPAC	11 V (II) (II) 11 V NOJ LENGY H	NA NA NA	VIGATION L	(a)	I'M HL
(a) (a) (a) OWNER ENGINEERING BY CONSTRUCTION BY OWNER ENGINEERING BY CONSTRUCTION BY OWNER (b) (c) (c) (c) (c) (c	42 11 CS 4	1020						
OWNER ENGINEERING BY CONSTRUCTION BY Chun GP HTASDALE METCALE - TAT In A VILLEA LO INC Certain METCALE - TAT In A VILLEA LO INC Certain MEGULATORY AGENCY MAINTENANCE Im Matter HES HOAHD VET AATEH WES HOAHD MAINTENANCE Im Matter HES HOAHD VET AATEH WES HOAHD MAINTENANCE Im Matter HES HOAHD VET AATEH WES HOAHD MAINTENANCE Im Matter HES HOAHD VET AATEH WES HOAHD VET AATEH WES HOAHD Im Matter HES HOAHD VET AATEH WES HOAHD VET AATEH WES HOAHD MSPECTION BY M MO VET AATEH WES HOAHD Imspection BY MO VET MATHORITY FOR INSPECTION Imspection BY DAY HO PL 92-3507 M Imspection BY MO PL 92-3507 M Imspection BY MATHORITY FOR INSPECTION MATHORITY FOR INSPECTION			(0)					
Chan GP HTASGALE METCALE METCALE METCALE MAILLEA CG IAC (e) (e) (e) (e) (f) (f) (f) 0658GN (f) (f) (f) (f) (f) (f) (f) (f) (f) (f) </td <td>OWNER</td> <td></td> <td>ENGINEERING BY</td> <td> </td> <td>CONSTRUCT</td> <td>LION BY</td> <td></td> <td></td>	OWNER		ENGINEERING BY		CONSTRUCT	LION BY		
(*) (*) (*) (*) DESIGN 0 REGULATORY AGENCY (*) (*) DESIGN 0 0 0 0 Imater MES 1 1 1 1 1	DWN DE MINSDALE	METCALF	A C 2.2	> < 2	1662 20	1.10		
DESIGN REGULATORY AGENCY 0ESIGN CONSTRUCTION MAINTENANCE Imately web side 'immately web side MAINTENANCE Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side Imately web side <td< td=""><td>(c</td><td>(\$)</td><td></td><td>(1)</td><td></td><td>8</td><td></td><td></td></td<>	(c	(\$)		(1)		8		
IN MATCH CONSTRUCTION OPERATION MAINTENANCE MAILER HES HOAKD 'LH MATCH ME S HOAKD 'LH MATCH ME A ATCH WES HOAKD 'LH MATCH WE S HOAKD 'LH MATCH WERECTION BY (S)		38	GULATORY AGENCY					
IN MATER HES HIGHER 'NH MATER HES BEAKER FOR ALTER HES HIGHER 'NH MATER HER AUTHORITY FOR INSPECTION INSPECTION BY MO YR MO YR MO YR AUTHORITY FOR INSPECTION IE CONSULTANTS INC 'O 'NO YR PL 92-3-7 REMARKS	DESIGN	CONSTRUCTION		OPERATION	-+	MAINTENAN		
(b) (b) (c) (c) INSPECTION BY INSPECTION DATE AUTHORITY FOR INSPECTION INSPECTION BY Day MO YR AUTHORITY FOR INSPECTION Inspection By UO PR AUTHORITY FOR INSPECTION Inspection By UO PR AUTHORITY FOR INSPECTION Inspection By UO PR AUTHORITY FOR INSPECTION Inspectin By UO PR	IN MATCH HES HUAHD	'IN MATEN HES	4 LY CARLO	ATEN GES NOA	к г.». [с.н	ATEN UE	S HUARU	
INSPECTION BY INSPECTION DATE AUTHORITY FOR INSPECTION SEA CONSULTANTS INC USE CONSULTANTS INC (SOUTAVAD) PL 92-3N7 (B) REMARKS	(a)		۲		۲			
SEA CONSULTANTS INC USH:AYAN PL 92-357 () REMARKS	INSPECTIO	4 BY	DAY MO YR	AUTH	ORITY FOR IN	SPECTICN		
BEMARKS	EA CONSULTANTS IN		UBHAVAU	PL ap-3n7				
REWARKS			۲					
		-	REMARKS				. <u> </u>	

ER/UATE

F.

Г 1

1 Ŧ.

. ۲. T

1. 1

. . .

1

ſ

ें **के**

· • •

۰. ۰.

END

FILMED

8-85

DTIC

2 States and the state of the s