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(, ABSTRACT

:>A center-cracked panel of 7075-Aluminum alloy which has
overaged from the T651 condition was loaded in tension and
subsequently unloaded to zero applied load. The permanent
surface deformation was measured close to the intersections of
the crack front with the free surfaces. The permanent
deformation (being a good indicator of the extent of plastic
deformation) was used to measure the accuracy of finite element
analyses.

The same spetimen was modeled using 20-node
three-dimensional isoparametric elements. A fully incremental
elastic-plastic formulation was employed in the stress
analysis. The residual surface deformations after unloading
were compared to the experimental results.

The average experimental results compare quite favorably
with the finite element predictions. The average results were
employed to minimize the influence of material inhomogeneity,
load misalignment, and lack of symmetry in the fatigue crack.
The scatter in the results from measuring the different sides is

discussed.
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INTRODUCTION

Over the past 35 years, the field of fracture mechanics has Ei:
evolved and developed into an important and useful tool for the o
design of engineering components and structures. Several major
problems dealing with the criticality of cracks in engineering
components and structures can now be answered with great
accuracy. Specifically, problems involving straight cracks in
brittle materials undergoing Mode I deformation only can be
accurately predicted. Most problems which occur in practice,
however, involve materials which are ductile in the loading
applications for which they are employed. Many cracks are also
initiated in sites which involve complicated loading which
involve more than a single fracture mode. Finally, most
problems arising in application involve geometries which can not -
be accurately approximated two-dimensionally. The major e
research in fracture mechanics today, therefore, is geared
toward addressing the issues of ductility, mixed-mode loading

and three-dimensionality.

The issue of plasticity and ductility in fracture specimens
has long been a concern of researchers. Many attempts have been

made to propose fracture criteria which account for ductility

and to develop numerical tools to perform stress analyses. The

development and refinement of the finite element method has ;*‘
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greatly aided the progress in this area. Many two-dimensional
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studies have been performed using elastic-plastic finite element
modeling. While much of the early work has been demonstrated
erroneously, several accurate computational procedures are now

available. The area of failure prediction has not been as

o
"
-
Li
&

successful as the area of stress analysis. No viable ductile
fracture criteria have been proposed which pass the tests of ;f?
specimen and geometry independence, consistent and theoretically ]
sound formulation, and reproducibility. The best that can be

said for the existing criteria is that for limited realms of

A}
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applicability (usually vary within 10-15% of the range of
brittle criteria), the proposed methods offer conservative ;&5
estimates for failure loads which are not as strict as the i;:
brittle predictions. It is important to recognize at the outset Fi?
.Z that elastic-plastic fracture parameters (e.g., J-integral, ufi
;; CTOD, CMOD, etc.) can either be shown to be theoretically aif
invalid for true plasticity problems, or, are simply .E?
experimental observations which not do pass the test of specimen 5;
and geometry independence. B
During the past three years, the authors have focused their iﬁ?
research on addressing the three-dimensional aspects of ductile ‘
fracture. A major first step has been the development of an

accurate and theoretically consistent computational approach to

the stress analysis of three-dimensional fracture specimens. In ' jfﬂ
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.........................
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a series of recent papers [1,2,3], the effect of specimen

thickness, material hardening characteristics and mesh Isf
characteristics have been investigated. These results give much ?%2
insight into the necessary properties for ductile fracture éﬁﬂ
c;iteria. While no new criteria have emerged to date (either }j
from the authors or others), the g~oundwork for analyzing and :ﬁi
assessing criteria has been established. ;Zi
A major problem with ductile fracture problems in _ ’
three-dimensions is the establishment of the accuracy of the i
analysis. Convergence studies are extremely costly and only ii‘
show the consistency of the approach. They in no way guarantee Eﬁf
agreement with the behavior of real materials. To address this Eg;
problem, the study presented in this paper compares the 555
deformation predicted from a full three-dimensional incremental fﬁi
plasticity finite element analysis to the deformations measured ;gg
in the laboratory. A center-cracked panel was chosen for the ;;g
study for two reasons: first, the authors' previous studies :??
have been performed on center-cracked panels and second, the 12
specimen is easier to model with finite elements as the effects E?j
of the loading holes are easier to account for (by using an SR

accurate gauge length). While a successful comparison does not
guarantee the accuracy of any given study other than the
present, it is the most rigorous way of establishing the
validity of the approach and demonstrating the qualitative

agreement of the predictions made previously with the behavior

of real fracture specimens.
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ELASTIC-PLASTIC FINITE ELEMENT FORMULATION

The stress analysis in this study is performed utilizing the
finite element method to solve the basic elastic-plastic
éoverning equations for the deformation of continuum solids.

J2 flow theory plasticity is employed with the standard
associative flow law. The Newton-Raphson, or Tangent-Stiffness
approach is employed in the finite element formulation to handle
nonlinearities. The Updated Lagrangian coordinate system is
employed to handle finite strains. The formulation of all
equations is outlined in this section.

The J2 flow theory of plasticity assumes that the material
in question yield, or starts deforming plastically when the
"effective stress' (or von-Mises stress) reaches a critical
value (called the yield stress). Prior to the onset of
plasticity, the material is assumed to behave linear
elastically. Subsequently, the deviatoric stress components are

related to the deviatoric strain rate through the tensor relation

4 g' = R 3
. e yd
l +vS + 3 f(c)S' o
E i Zz e ij e .
oe >0
e = 1
i 4 b (1)

l + v éij (otherwise)
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5
where éij are the deviatoric strain rates given by
T~ _4
o e =€ -1¢ & (2) 3
X ij iy 3 pp 1ij O |

Sij are the current deviatoric stress components given by

Y e .‘-»
a

}
, ]
o 0
‘; S =0, -1lo ) (3) 4
ij ij 35 pp 1ij e
j
S{j are the deviatoric stress components measured relative to -4
the current yield surface center given by ffﬁ
sij = sij - 8y (4) ffi
i
aij are the coordinates in stress space of the current yield . 4

surface center, oy are the Cauchy stress components, €y are

the 'true'" strain components (discussed in a subsequent

section), o_ is the effective stress given by

e

o B

i
.
.
o

o =v3S,. S . (s)
e Z ij 1ij

» e A
e
ettt

and oé is the effective stress measured relative to the current

yield surface center

% 73545 Sy (6) S
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The function f(oe) is derived from the uniaxial stress-strain
curve and is consistent with the Associated Plasticity Theory (a
complete discussion is given in Reference [4])). Derivation of
f(oe) for a multilinear representation of the stress-strain
éurve will be discussed subsequently.

For plastic strains which are incompressible, the
hydrostatic plastic strain rate is zero. The total hydrostatic
strain rate, therefore, is related to the related to the

hydrostatic stress rate by

€ =1-2vag (7)
PP

Engineering materials exhibit different types of uniaxial
hardening behavior when subsequently unloaded after being
plastically deformed. Generally, the behavior falls between two
extremes called kinematic and isotropic hardening. The uniaxial
representation of these behaviors for a bilinear material are
shown in Figure 1. To allow for various hardening behaviors in
the multiaxial formulation, the yield surface is permitted to
move and expand under certain constraints. These motions are
controlled by a single parameter, B, which can be varied from 0
to 1. A value of zero represents isotropic behavior and a value
of 1 represents kinematic behavior. The resulting yield
surfaces in a three-dimensional principle stress space are shown
in Figure 2. The yield surface center moves at a rate governed

by
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Uniaxial Bilinear Representation of Kinematic
and Isotropic Hardening.
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Figure 2: Hardening Models in Principle Stress Space.
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To allow for finite strains and rotations, Updated Qj
Lagrangian approach is adopted [5]. The coordinate system is 2;
convected with the deformation. In this coordinate system, the ;;1
""true strain'" rate is related to the determination rate (or ;

velocity) through

%; " ik fxa (10)

In the absence of rotation the stress tensor is related to the

strain rate tensor in the classical manner, i.e

b
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) au  au
. W = 1 i - _J (11) .
- ij 2 axX_ ax
< j i

This stress measure is the Cauchy stress. Under finite

rotations, the stress tensor is not invariant. At zero

strain rate, the stress rate is given by where W are the

rotation rates
g =W o - W o (12)
The total stress-deformation relation is, therefore,

o =C ¢ _ +W o -W o (13)
ij ijkl k1l ik kj kj ik

Equations (1) - (13) form a complete incremental
representation of finite plastic deformation. It only remains,
therefore, to quantify the uniaxial behavior through the
function f(oe). There are many functional ways to represent
uniaxial loading behavior. From a computation standpoint, a
multilinear representation is easily implemented and, by

allowing for enough segments, can be arbitrarily accurate. ﬁ

s e e
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Consider the multilinear representation of a true stress-true
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strain curve shown in Figure 3. The functional relationship

E] between the stress and strain are given by E
: o
: "1« ) + 22 (o ) *m ( )
T € =g o -0 - g e o -0 T
‘ ETE 27 %Y TES Vs % E o “‘1
(14) .
l o <o < :
' m - m+l S
> - ‘4
The plastic strain rate, therefore, is given by -
e =a o /E (15) -
P m e -
Using equation (1) and recognizing that for uniaxial
deformation, effective quantities are proportional to the f‘i
- uniaxial components, the function f(ce) can be reduced to ?Eﬁ
s i :;;
h £(0,) = ay/Eo, (16) - d
o The function is only linearly dependent on the current slope of
L the uniaxial curve. By specifying enough segments, virtually S
any hardening behavior can be accurately described. : 1

Equations (1), (8) and (9) provide the fundamental
relationships between stress and strain rates. The equilibrium g
conditions (governing equations) for a continuum body in the

absence of body forces and inertia effects can be written as
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13 “‘._::'.
3. /3x. = 0 (17) '-
1) J
with the boundary conditions »gi
o n =T ons t
ij J i T -
and (18) =
u =u_ onS
i i u .
where T; are the specified loading rates on the boundary if
experiencing applied tractions (ST) and uj are the ;;
velocities specified on the remainder of the boundary (Sy,). ;3
Equation (13) provides the fundamental relation between ﬁﬁ
the stress state and the deformation gradients. For many L
rroblems in application the assumption of '"small strain" ;?
introduces minimal error (mathematically, this means assuming ;2
infinitesimal displacements and strains). If this assumption
is made, the strain rates are related to the velocity o
;3 gradients by
- ¢ = 1(3u./3x. + 3u /dx ) 19 )
t' TR 2t ! TR T (19)
2
L.,:-.
L- T
:.:_
T e L e -




14

This simplification also means that the reference coordinate
system and the material coordinate system are coincidental
throughout the deformation. In the computer code described,
the option of finite or infinitesimal strain theory is left to
the user. The use finite strains slows convergence
considerably for problems where the deformations are small.
As the strains grow, however, the solutions assuming
infinitesimal theory diverge from the finite strain results.
Eventually infinitesimal solutions will fail to converge
regardless of how small the load increments are taken.

By either employing the Principle of Virtual Work for
increments of displacement or by performing the standard
Galerkin technique on the governing equations, (17) and (18),

the finite element equations governing the nodal velocities,

ﬂ. can be written in terms of the loading rate vector, R, in

the fornm

K(U)

.
~ e ~

g-§=o (20)

The standard finite element assumptions made are given by

e e e SRR e e el
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: u=N.U

g e =B .0

i (21)
o = D(U) . ¢

E T

' K(U) = T I B D(U) B dV

\ elements element volume ~ ~ o~

where N are the shape functions. The set of rate
equations (20) will be integrated one load increment (AR)

at a given time to determine the corresponding new

displacement increment, AU. The Newton-Raphson or tangent

stiffness solution procedure is employed. At load increment

L + 1, the initial solution AUl ) is found from
~L+

i
K(U . AU = AR 22
~(~L) U R .1 (22)

The '"new'" displacement is then used in the stiffness matrix,

m i
K(U +« £ AU ), and a new correction is obtained from
L i=1 L+l

T
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i NI B T AT A T AT e T oT e, =Lt~
T T e A bt o o a i St B 2 st e Bt > v RO ol St dhi AU N A -
AR IR DA S St IR it

i M+

u 2 au . AU AR -
‘ KOO+ gt Y - 8% %
% i
U « T AU (23)
L it Yia ,
| | [ OKW) au = B
\ UL -~ ~  ~Ls+l

where the integral is approximated using Simpson's rule. The

procedure is repeated until two convergence criteria are met:

2 2
i+l
F /| AR < C
~L+1 ~L+1 - 1
and (24)

';;i: 2 2
. i+l
o F /|R < C
.i ~L+1 ~L+1 - 2
E? where R 1 is the total load at step L + 1.

O ~L+
5 In this study, 20-node quadratic isoparametric elements

were employed exclusively. All integration was carried out

utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.

Strains were calculated at the Gauss integration points in
each element from the strain-displacement relations of (19).
Stresses were cumulatively calculated at the Gauss points from

the stress-strain relations.
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Directly calculating strains and stresses from the finite
element relations (21) at points on element boundaries

inherently yields poor results. This is especially true when

c0

shape functions are employed. A superior approach is to
célculate the stresses and strains at the Legendre quadrature
points and to extrapolate or smooth them to the boundaries.
This approach has been shown to yield very accurate results
for a wide variety of geometric mappings. In this study the
smoothing technique as developed in [6] is employed for all
stress and strain evaluations.

For elastic-plastic studies, the authors prefer to model

the crack front region with a convergent mesh of conventional

elements rather than to employ a '"'singular'" element.

Experience with both elastic and elastic-plastic studies [3,7] .. 1

demonstrates this approach to be accurate (although, for S

elastic problems, more costly). Since the nature of the

singularity is unknown in the elastic-plastic problem, it is Tgi
presumptuous to employ a singular element and may lead to iif
erroneous results. Efk
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¥ PROBLEM DESCRIPTION ;;ﬂ
|
- Consider a panel of overaged 7075 (T7651) aluminum with a
central through the thickness crack. A typical panel is shown SE]
in Figure 4. The panel used in this study had a width of E
8.89cm and a crack length to width ratio of 0.5. The specimen }ff
thickness was 0.984mm and the specimen length was 17.78cm. ) :
The uniaxial stress-strain curve for the material is shown in .‘j
Figure 5. The metallurgical aspects of this material and its fj
ductility are discussed in a subsequent section. _“
Since the panel was loaded normal to the crack only, ]
symmetry allowed the modeling of one octant. The finite E?%
element grid used in this study is shown in Figures 6a, 6b and iﬁ
6c. The smallest elements near the crack front had planer 73}
dimensions of a/20 (where a is the half length of the crack). -ﬁ
The convergence of this grid is discussed in [3,7]. k:j
The grid shown consists of 96 20-node isoparametric ;ﬁ;
elements with 624 total nodes. The total grid has 1872
degrees of frcedom. The system was solved by the frontal B

method. The total storage required for the entire program was 7ﬂ?
2.2 Megabytes (for double precision computations). Total h‘ﬂ

runtime for the problem discussed was 48CPU Hours on a VAX

11/780. o
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Typical Center Cracked Panel.

Figure 4:
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EXPERIMENTAL PROCEDURE

The ease and accuracy of measurement of the crack 1ip
plastic zone shape will be high if the plastic zone is very
large. This would require a material in a very ductile
condition. However, such high ductility would create & largs
curvature in the crack front during fatigue precracking and
difficulties in obtaining convergence in finite element
analysis. Hence, an alloy in a moderately ductile contitiocm
was found to be desirable. These conditions were obtaijned in
7075 aluminum alloy by overaging from the T651 conditiem for
72 hours at 178°C (352°F). In this T7651 condition the alloy
had a yield strength of 307MPa and ultimate tensile strength
of 407MPa.

The specimen geometry used for this study was the
center-cracked type with width, w = 89mm and crack lenj:h,
2a = 44.5mm. Fatigue cracks were initiated and extend:d from
machined notches to obtain sharp crack tips. The fatijue
precracking was performed at a load at least 50% lower thax
the load applied for plastic zone formation. After the
fatigue crack was grown, the specimen was loaded to a tesired
load value to produce plastic zones at crack tips. The
maximum load was limited by the load needed for crack jrowi
initiation, as the experimental results were to be compared

with the results of finite element analysis without crack
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extension. Attempts were made to obtain as large a plastic
zone as possible without crack growth; hence, the selected
load was very close to that needed for stable crack growth
initiation. Although initiation of stable crack growth is
generally accompanied by a sudden drop in the load, in ductile
materials, this drop is not easily detectable. Hence, to
assure that no crack growth took place during loading, the
specimen was fatigue cracked again after plastic zone size
measurement to extend the crack approximately 2.5 to Smm. The
specimen was then loaded to fracture. If crack growth
occurred during initial loading for formation of the plastic
zone, the crack growth region would be marked by a dull
appearance, distinguishing it from the fatigue crack growth
region on either side. The results from such specimens were
rejected.

The plastic zone size was determined by measuring the

permanent reduction in thickness after the specimen was

initially loaded and unloaded. The contours of the plastic
zones were measured using a surface profile measuring device.
The sensor of the device consisted of a pointer with a small
tip radius attached to one end of a thin hardened titanium

p. alloy sheet that was 51mm long, 19mm wide and 1.3mm thick.
The other end of the sheet was rigidly mounted by sandwiching

between two aluminum pieces. Two strain gauges of resistance

120ohms were mounted on each face of the titanium alloy
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sheet. These strain gauges formed four arms of a Wheatstone
bridge circuit. The circuit was similar to those used in load
cells, extensometers and clip gauges. The output from the
circuit was proportional to the movement of the pointer. The
signal was amplified using a D.C. conditioner. The use of the
thin titanium alloy sheet reduced the pressure on the specimen
by the pointer, and scratching of the surface was minimized.
The specimen was mounted horizontally on a table with two
micrometer screw feeds at right angles to each other. The
specimen was mounted in such a way that the direction of crack
(x-direction) was parallel to the direction of traverse of one
micrometer screw. When the sensor was mounted the pointer was
pressing against the specimen vertically. The specimen was
moved underneath the sensor using the micrometer screw-feeds.
The output from the sensor was used to drive the x-axis of an

Xx-y recorder. The y-direction displacement of the table was

measured using an extensometer attached to the system, and the
output from the extensometer was used to drive the y-axis of

the x-y recorder. Several traverses in the y-direction were

rr' made for each face of the specimen at regular intervals of
{ distance from the crack tip in the x-direction. The curves
E obtained from these traverses were used to establish points
ﬁ. around the crack tip corresponding to a given thickness

reduction. From these, contour lines for different

thicknesse. were established. This process was repeated for

all the four faces of the specimen.

......................................
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EXPERIMENTAL RESULTS

The contour lines delineate the size and shape of the %a
plastic zone. The thickness of the specimen falls between iii
those required for plane stress and plane strain conditions.
The plastic zones obtained had a shape representative of this
thickness range.

A set of contour lines obtained from one face of the
specimen are shown in Fig. 7. The scatter in the data for the
outer contour lines is higher than the inner ones. This is
because the rate of thickness variation decreases with
increasing distance from the cracked tip, as can be seen from
the differences in the spacings between adjacent contour S
lines. Although the resolution of the sensor is very high and

is limited only by the extent of the amplification of the

e

signal, errors can be introduced due to any nonplanarity of

the initial specimen surface and slight variations in the

pressure applied on the micrometer screws while advancing
manually. The planarity of the surface was checked initially

before deforming the specimen. The variations- in pressure can

ABA SV e
""'A'...‘ RS
' PRI S B

cause an error of approximately 0.0025mm. The depth of

0.0051mm and 0.0102mm represented by the outer contour lines

are very sensitive to these variations. The scatter in the
data, also is produced by the nonhomogeneity of the material,
caused by coring and inclusions during casting and orientation

effects during subsequent mechanical processing.
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It is also seen that the plastic zone is not exactly .

el

symmetrical to the initial notch direction, which also can be

attributed to inhomogeneity. Plastic deformation occurs more e

EARAD
At ol

extensively in the softer regions. Material inhomogeneity
also may cause change in the orientation of the fatigue crack,
which tilts the zone ahead of it. Nonsymmetry can also be 1 @
produced by misalignment of the specimen and the testing
machine, but the misalignment in the set up used was K
negligible.

In the finite element analysis inhomogeneity is not taken
into consideration and hence, the zone is assumed to be
symmetrical. A comparison with the finite element results can
be made by averaging the distance of each set of contour lines
from the initial notch direction. Such contour lines :_j
determined from the four faces are shown in Figs. 8-11. The §f§
zone sizes are slightly different for the four faces. This :?d
also results from the uneven crack growth during fatigue f;ﬂ
cracking due to inhomogeneity. Since the excess deformation
in one region is compensated by the lack of it in another,

averaging the results minimizes the error involved. e
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COMPARISON EXPERIMENTAL AND FINITE ELEMENT RESULTS

-
é The finite element analysis discussed previously was i;
performed and the residual deformation after unloading the .::
! specimen was calculated. These results were plotted as 1
. contraction contours and are shown in Fig. 12. The average
results (the average of all four sides as previously ]
G discussed) are also plotted from the experiment. The results o
- from the finite element analysis are in good agreement with u:j
_? those obtained from the experiment. Zi:
;ﬁ The finite element predicts slightly more plasticity than gj
the experiment predicts. This is expected since the finite {3
element formulation assumes all nonlinearity is due to plastic ;;i
ii (or permanent) deformation. In real materials, however, there Eai
- is some recoverable nonlinear deformation (i.e., nonlinear :
elastic deformation). The averaging, material inhomogeneity i:j
ii and error in the two methods more than account for the :;?
- deviations (less than 4%, maximum). E
. -
. -
-
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CONCLUDING REMARKS

Comparison was made between the experimental and finite
element surface contractions for a center-cracked panel. The
results compare favorably indicating the accuracy and
realistic modeling of this finite element formulation and
modeling. The deviations between the results which were
observed are less than can be accounted for due to inherent
error in the measurements. In fact, the results are more
accurate than one would expect.

It is important to highlight several factors when
discussing three dimensional finite element analyses in
general, and in particular for nonlinear problems. The
results are highly dependent on the grid characteristics and
. on the convergence algorithm employed. Additional degrees of
o freedom do not guarantee a more accurate solution {1,2,3].

- When employing three dimensional finite element models,
convergence studies alone are not sufficient. Comparison
between predictions and true material behavior is essential.
With regard to fracture problems, it is essential to compare
predictions from analysis with local parameters as erroneous
local models can be forced to produce results which agree
globally (i.e., on remote quantities, e.g., nonlinear

compliance).
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The unique aspect of the study presented in this paper is
the direct comparison with experimentally measured local
quantities demonstrates the accuracy of the modeling
employed. This approach can now confidently be applied to
fracture problems for the testing of fracture criteria and the
prediction of crack growth and instability. Without such a
demonstration, numerical solutions and verification of failure
criteria are always suspect. Due to the complicated nature of
the problem, each component of the analysis must be verified
independently to guarantee accurate solutions and meaningful
predictions. This component is lacking in three-dimensional

studies reported to date.
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