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ABSTRACT

A center-cracked panel of 7075-Aluminum alloy which has p..-

overaged from the T651 condition was loaded in tension and

subsequently unloaded to zero applied load. The permanent

surface deformation was measured close to the intersections of

the crack front with the free surfaces. The permanent

deformation (being a good indicator of the extent of plastic

deformation) was used to measure the accuracy of finite element

analyses.

The same spe-timen was modeled using 20-node

three-dimensional isoparametric elements. A fully incremental

elastic-plastic formulation was employed in the stress

analysis. The residual surface deformations after unloading

were compared to the experimental results.

The average experimental results compare quite favorably

with the finite element predictions. The average results were

employed to minimize the influence of material inhomogeneity,

load misalignment, and lack of symmetry in the fatigue crack.

The scatter in the results from measuring the different sides is

discussed.
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INTRODUCTION

Over the past 35 years, the field of fracture mechanics has

evolved and developed into an important and useful tool for the

design of engineering components and structures. Several major

problems dealing with the criticality of cracks in engineering

components and structures can now be answered with great

accuracy. Specifically, problems involving straight cracks in

brittle materials undergoing Mode I deformation only can be

accurately predicted. Most problems which occur in practice,

however, involve materials which are ductile in the loading

applications for which they are employed. Many cracks are also

initiated in sites which involve complicated loading which

involve more than a single fracture mode. Finally, most

problems arising in application involve geometries which can not

be accurately approximated two-dimensionally. The major

research in fracture mechanics today, therefore, is geared

toward addressing the issues of ductility, mixed-mode loading

and three-dimensionality.

The issue of plasticity and ductility in fracture specimens

has long been a concern of researchers. Many attempts have been

made to propose fracture criteria which account for ductility

and to develop numerical tools to perform stress analyses. The

development and refinement of the finite element method has
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greatly aided the progress in this area. Many two-dimensional

studies have been performed using elastic-plastic finite element

modeling. While much of the early work has been demonstrated

erroneously, several accurate computational procedures are now -

available. The area of failure prediction has not been as

successful as the area of stress analysis. No viable ductile

fracture criteria have been proposed which pass the tests of

specimen and geometry independence, consistent and theoretically

sound formulation, and reproducibility. The best that can be

said for the existing criteria is that for limited realms of

applicability (usually vary within 1O-15% of the range of

brittle criteria), the proposed methods offer conservative

estimates for failure loads which are not as strict as the

brittle predictions. It is important to recognize at the outset

that elastic-plastic fracture parameters (e.g., J-integral,

CTOD, CMOD, etc.) can either be shown to be theoretically

invalid for true plasticity problems, or, are simply

experimental observations which not do pass the test of specimen

and geometry independence.

During the past three years, the authors have focused their

research on addressing the three-dimensional aspects of ductile

fracture. A major first step has been the development of an

accurate and theoretically consistent computational approach to

the stress analysis of three-dimensional fracture specimens. In

...................................................................-.- '
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a series of recent papers (1,2,3], the effect of specimen

thickness, material hardening characteristics and mesh

characteristics have been investigated. These results give much

insight into the necessary properties for ductile fracture

criteria. While no new criteria have emerged to date (either

from the authors or others), the p-oundwork for analyzing and

assessing criteria has been established.

A major problem with ductile fracture problems in

three-dimensions is the establishment oF the accuracy of the

analysis. Convergence studies are extromely costly and only

show the consistency of the approach. They in no way guarantee

agreement with the behavior of real materials. To address this

problem, the study presented in this paper compares the

deformation predicted from a full three-dimensional incremental

plasticity finite element analysis to the deformations measured

in the laboratory. A center-cracked panel was chosen for the

study for two reasons: first, the authors' previous studies

have been performed on center-cracked panels and second, the ..J

specimen is easier to model with finite elements as the effects

of the loading holes are easier to account for (by using an

accurate gauge length). While a successful comparison does not

guarantee the accuracy of any given study other than the

present, it is the most rigorous way of establishing the

validity of the approach and demonstrating the qualitative

agreement of the predictions made previously with the behavior

of real fracture specimens.
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ELASTIC-PLASTIC FINITE ELEMENT FORMULATION

The stress analysis in this study is performed utilizing the

finite element method to solve the basic elastic-plastic

governing equations for the deformation of continuum solids.

J2 flow theory plasticity is employed with the standard

associative flow law. The Newton-Raphson, or Tangent-Stiffness

approach is employed in the finite element formulation to handle

nonlinearities. The Updated Lagrangian coordinate system is

employed to handle finite strains. The formulation of all

equations is outlined in this section.

The J2 flow theory of plasticity assumes that the material

in question yield, or starts deforming plastically when the

"effective stress" (or von-Mises stress) reaches a critical

value (called the yield stress). Prior to the onset of

plasticity, the material is assumed to behave linear

elastically. Subsequently, the deviatoric stress components are

related to the deviatoric strain rate through the tensor relation

1 +. + 3 f~a ) S'f )S [:j::yd] (1)i

> -0e /:

1 v (otherwise) 
"--- -- -- i j " ':
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where eij are the deviatoric strain rates given by

e -c -1"c 6 (2)
ij ij 3 pp ij

Sij are the current deviatoric stress components given by

S =1 %6 (3)

Sjj are the deviatoric stress components measured relative to

the current yield surface center given by

S = - a.. (4)
i-I-

ai~j are the coordinates in stress space of the current yield

surface center, aij are the Cauchy stress components, cU are

the "true" strain components (discussed in a subsequent

section), o is the effective stress given by

S= 3~S~S~ (5)
e 7 ij ij

and Oe is the effective stress measured relative to the current

yield surface center

a =/3 S . (6)
e 7 ij ij -'o!

. . . . . . . . .. . . . . . . .
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The function f(ae) is derived from the uniaxial stress-strain

curve and is consistent with the Associated Plasticity Theory (a

complete discussion is given in Reference [4]). Derivation of

f( e ) for a multilinear representation of the stress-strain

curve will be discussed subsequently.

For plastic strains which are incompressible, the

hydrostatic plastic strain rate is zero. The total hydrostatic

strain rate, therefore, is related to the related to the

hydrostatic stress rate by

= - 2v o (7)
pp E pp

Engineering materials exhibit different types of uniaxial

hardening behavior when subsequently unloaded after being

plastically deformed. Generally, the behavior falls between two

extremes called kinematic and isotropic hardening. The uniaxial

representation of these behaviors for a bilinear material are

shown in Figure 1. To allow for various hardening behaviors in

the multiaxial formulation, the yield surface is permitted to

move and expand under certain constraints. These motions are

controlled by a single parameter, 0, which can be varied from 0

to 1. A value of zero represents isotropic behavior and a value

of 1 represents kinematic behavior. The resulting yield

surfaces in a three-dimensional principle stress space are shown

in Figure 2. The yield surface center moves at a rate governed

by
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Figure 2: Hardening Models in Principle Stress Space.
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2 r1
3 OS S /(o) Iy 0 0
2 k1 k1 e e yd

ij > 0 -e >0

0 (otherwise)

(8)

0 0 - Isotropic Hardening

0 = 1 - Kinematic Hardening

a = 2 0 + 2 0(o - a ) (9)
y y max y

To allow for finite strains and rotations, Updated

Lagrangian approach is adopted [5]. The coordinate system is

convected with the deformation. In this coordinate system, the

"true strain" rate is related to the determination rate (or

velocity) through

C=C (10)
ij ijkl kl

In the absence of rotation the stress tensor is related to the

strain rate tensor in the classical manner, i.e..

...................................................

....................... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ................................
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8aU au
ij ax ax

This stress measure is the Cauchy stress. Under finite

rotations, the stress tensor is not invariant. At zero

strain rate, the stress rate is given by where W are the

rotation rates

S=W o - W a (12)
ij ip pi pi ip

The total stress-deformation relation is, therefore,

: C +W a -W a (13)
ij ijkl kl ik ki kj ik-

Equations (1) - (13) form a complete incremental

representation of finite plastic deformation. It only remains,

therefore, to quantify the uniaxial behavior through the

function f(ae). There are many functional ways to represente

uniaxial loading behavior. From a computation standpoint, a

multilinear representation is easily implemented and, by

allowing for enough segments, can be arbitrarily accurate.

Consider the multilinear representation of a true stress-true
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strain curve shown in Figure 3. The functional relationship

between the stress and strain are given by

S + .1(a - o1) + 2 Cc - a ) + ... m Co -2M a a
E E 2 1 E- 3 2 E-m

(14)

0 <0<0
m - m+1

The plastic strain rate, therefore, is given by

C - a /E (15)
p m e

Using equation (1) and recognizing that for uniaxial

deformation, effective quantities are proportional to the

uniaxial components, the function f(ae) can be reduced to

f(a = CLm/EOe (16)

The function is only linearly dependent on the current slope of

the uniaxial curve. By specifying enough segments, virtually

any hardening behavior can be accurately described.

Equations (1), (8) and (9) provide the fundamental

relationships between stress and strain rates. The equilibrium

conditions (governing equations) for a continuum body in the

absence of body forces and inertia effects can be written as
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a /ax = 0 (17)

with the boundary conditions

a n =t on Sij j i T

and (18)

=u onS
i i u

where ti are the specified loading rates on the boundary

experiencing applied tractions (ST) and ui are the

velocities specified on the remainder of the boundary (Su).

Equation (13) provides the fundamental relation between

the stress state and the deformation gradients. For many

problems in application the assumption of "small strain"

introduces Ininimal error (mathematically, this means assuming

infinitesimal displacements and strains). If this assumption

is made, the strain rates are related to the velocity

gradients by

= (3+ / 8 ) (19)
i lau*/ax
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This simplification also means that the reference coordinate

system and the material coordinate system are coincidental

throughout the deformation. In the computer code described,

the option of finite or infinitesimal strain theory is left to

the user. The use finite strains slows convergence

considerably for problems where the deformations are small.

As the strains grow, however, the solutions assuming

infinitesimal theory diverge from the finite strain results.

Eventually infinitesimal solutions will fail to converge

regardless of how small the load increments are taken.

By either employing the Principle of Virtual Work for

increments of displacement or by performing the standard

Galerkin technique on the governing equations, (17) and (18),

the finite element equations governing the nodal velocities,

U, can be written in terms of the loading rate vector, R, in

the form

K(U) 0 - R = 0 (20)

The standard finite element assumptions made are given by



is

u N U

cBU

(21)

o = D(U) . .

T
K(U) = E I B D(U) B dV

elements element volume ..... .

where N are the shape functions. The set of rate

equations (20) will be integrated one load increment (AR)

at a given time to determine the corresponding new

displacement increment, AU. The Newton-Raphson or tangent

stiffness solution procedure is employed. At load increment

L + 1, the initial solution AU i  is found from
~L+l

i
K(U) •AU =AR (22)

~ L ~L+l ~L+l

The "new" displacement is then used in the stiffness matrix,

m i
K(U E AUI)' and a new correction is obtained from

L i-I L+1.

:...

. ... . .. .. . .,. " ". . ",. .. ...... . .. _. •. ... . . . .. _bj _. . . . . . . . .._ ' '' '- - ",_ Z'
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K[U + A U' U M+l R
- i=l -L+1 -L+l -L+.

U+ E AU (23)
L i=1 L+l i~l

JSU K(U) dU F
U - - - L+lL

where the integral is approximated using Simpson's rule. The

procedure is repeated until two convergence criteria are met:

i+l
-L+l -L+l < 1

and (24)

22
i+l

F~ <C
~L+I /-L+ - 2

where R is the total load at step L + 1.

~L+1

In this study, 20-node quadratic isoparametric elements

were employed exclusively. All integration was carried out

utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.

Strains were calculated at the Gauss integration points in

each element from the strain-displacement relations of (19).

Stresses were cumulatively calculated at the Gauss points from

the stress-strain relations.
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Directly calculating strains and stresses from the finite

element relations (21) at points on element boundaries

inherently yields poor results. This is especially true when

C0 shape functions are employed. A superior approach is to

calculate the stresses and strains at the Legendre quadrature

points and to extrapolate or smooth them to the boundaries.

This approach has been shown to yield very accurate results

for a wide variety of geometric mappings. In this study the

smoothing technique as developed in [6] is employed for all

stress and strain evaluations.

For elastic-plastic studies, the authors prefer to model

the crack front region with a convergent mesh of conventional

elements rather than to employ a "singular" element.

Experience with both elastic and elastic-plastic studies [3,7]

demonstrates this approach to be accurate (although, for

elastic problems, more costly). Since the nature of the

singularity is unknown in the elastic-plastic problem, it is

presumptuous to employ a singular element and may lead to

erroneous results.

* * . * .,. .. *-~* -
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PROBLEM DESCRIPTION

Consider a panel of overaged 7075 (T7651) aluminum with a

central through the thickness crack. A typical panel is shown

in Figure 4. The panel used in this study had a width of

8.89cm and a crack length to width ratio of 0.5. The specimen

thickness was 0.984mm and the specimen length was 17.78cm.

The uniaxial stress-strain curve for the material is shown in

Figure 5. The metallurgical aspects of this material and its

ductility are discussed in a subsequent section.

Since the panel was loaded normal to the crack only,

symmetry allowed the modeling of one octant. The finite

element grid used in this study is shown in Figures 6a, 6b and

6c. The smallest elements near the crack front had planer

dimensions of a/20 (where a is the half length of the crack).

The convergence of this grid is discussed in (3,7].

The grid shown consists of 96 20-node isoparametric

elements with 624 total nodes. The total grid has 1872

degrees of freedom. The system was solved by the frontal

method. The total storage required for the entire program was

2.2 Megabytes (for double precision computations). Total

runtime for the problem discussed was 48CPU Hours on a VAX

11/780.

.! ."...... ".... ".. ".. .. "."....-......'-'.""..."-.."."....".-."."..", . " - ".. ""." ", ... -. "". .- "..-. . . . . :
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Figure 4: Typical Center Cracked Panel.
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EXPERIMENTAL PROCEDURE

The ease and accuracy .of measurement of the crack lh.p

plastic zone shape will be high if the plastic zone is very

large. This would require a material in a very ductile

condition. However, such high ductility would create i large

curvature in the crack front during fatigue precrackinj and

difficulties in obtaining convergence in finite elemeni

analysis. Hence, an alloy in a moderately ductile contitioa

was found to be desirable. These conditions were obtained n

7075 aluminum alloy by overaging from the T651 condition for

72 hours at 178°C (352 0 F). In this T7651 condition the afloy

had a yield strength of 307MPa and ultimate tensile strength

of 407MPa.

The specimen geometry used for this study was the

center-cracked type with width, w = 89mm and crack lenjih,

2a = 44.5mm. Fatigue cracks were initiated and extended from

machined notches to obtain sharp crack tips. The fatilue

precracking was performed at a load at least 50% lower than,

the load applied for plastic zone formation. After tht

fatigue crack was grown, the specimen was loaded to a le's i

load value to produce plastic zones at crack tips. The

maximum load was limited by the load needed for crack 1row.trx

initiation, as the experimental results were to be comyare&

with the results of finite element analysis without cra:-

.-.0, .. . - -.. .. . . - .. . . - .. . . . i ,'. L . . . . i i _ L - _I . L i '
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extension. Attempts were made to obtain as large a plastic

zone as possible without crack growth; hence, the selected

load was very close to that needed for stable crack growth

initiation. Although initiation of stable crack growth is

generally accompanied by a sudden drop in the load, in ductile

materials, this drop is not easily detectable. Hence, to

assure that no crack growth took place during loading, the

specimen was fatigue cracked again after plastic zone size

measurement to extend the crack approximately 2.5 to 5mm. The

specimen was then loaded to fracture. If crack growth

occurred during initial loading for formation of the plastic

zone, the crack growth region would be marked by a dull

appearance, distinguishing it from the fatigue crack growth

region on either side. The results from such specimens were

rejected.

The plastic zone size was determined by measuring the

permanent reduction in thickness after the specimen was

initially loaded and unloaded. The contours of the plastic

zones were measured using a surface profile measuring device.

The sensor of the device consisted of a pointer with a small

tip radius attached to one end of a thin hardened titanium

alloy sheet that was 51mm long, 19mm wide and 1.3mm thick.

The other end of the sheet was rigidly mounted by sandwiching

between two aluminum pieces. Two strain gauges of resistance

120ohms were mounted on each face of the titanium alloy

....;.... ... ..... ..... . ................-...... -- ., -.. . .... . ....... -. - -.. -.. .-
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sheet. These strain gauges formed four arms of a Wheatstone

bridge circuit. The circuit was similar to those used in load

cells, extensometers and clip gauges. The output from the

circuit was proportional to the movement of the pointer. The

signal was amplified using a D.C. conditioner. The use of the

thin titanium alloy sheet reduced the pressure on the specimen

by the pointer, and scratching of the surface was minimized.

The specimen was mounted horizontally on a table with two

micrometer screw feeds at right angles to each other. The

specimen was mounted in such a way that the direction of crack

(x-direction) was parallel to the direction of traverse of one

micrometer screw. When the sensor was mounted the pointer was

pressing against the specimen vertically. The specimen was

moved underneath the sensor using the micrometer screw-feeds.

The output from the sensor was used to drive the x-axis of an

x-y recorder. The y-direction displacement of the table was

measured using an extensometer attached to the system, and the

output from the extensometer was used to drive the y-axis of

the x-y recorder. Several traverses in the y-direction were

made for each face of the specimen at regular intervals of

distance from the crack tip in the x-direction. The curves

obtained from these traverses were used to establish points

around the crack tip corresponding to a given thickness

reduction. From these, contour lines for different

thicknesse. were established. This process was repeated for

all the four faces of the specimen.
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EXPERIMENTAL RESULTS

The contour lines delineate the size and shape of the

plastic zone. The thickness of the specimen falls between

those required for plane stress and plane strain conditions.

The plastic zones obtained had a shape representative of this

thickness range.

A set of contour lines obtained from one face of the

specimen are shown in Fig. 7. The scatter in the data for the

outer contour lines is higher than the inner ones. This is

because the rate of thickness variation decreases with

increasing distance from the cracked tip, as can be seen from

the differences in the spacings between adjacent contour

lines. Although the resolution of the sensor is very high and

is limited only by the extent of the amplification of the

signal, errors can be introduced due to any nonplanarity of

the initial specimen surface and slight variations in the

pressure applied on the micrometer screws while advancing

manually. The planarity of the surface was checked initially

before deforming the specimen. The variations- in pressure can

cause an error of approximately 0.0025mm. The depth of

0.0051mm and 0.0102mm represented by the outer contour lines

are very sensitive to these variations. The scatter in the

data, also is produced by the nonhomogeneity of the material,

caused by coring and inclusions during casting and orientation

effects during subsequent mechanical processing.
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It is also seen that the plastic zone is not exactly

symmetrical to the initial notch direction, which also can be

attributed to inhomogeneity. Plastic deformation occurs more

extensively in the softer regions. Material inhomogeneity

also may cause change in the orientation of the fatigue crack,

which tilts the zone ahead of it. Nonsymmetry can also be

produced by misalignment of the specimen and the testing

machine, but the misalignment in the set up used was

negligible.

In the finite element analysis inhomogeneity is not taken

into consideration and hence, the zone is assumed to be

symmetrical. A comparison with the finite element results can

be made by averaging the distance of each set of contour lines

from the initial notch direction. Such contour lines

determined from the four faces are shown in Figs. 8-11. The

zone sizes are slightly different for the four faces. This

also results from the uneven crack growth during fatigue

cracking due to inhomogeneity. Since the excess deformation

in one region is compensated by the lack of it in another,

averaging the results minimizes the error involved.

......... *...
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COMPARISON EXPERIMENTAL AND FINITE ELEMENT RESULTS

The finite element analysis discussed previously was

performed and the residual deformation after unloading the

specimen was calculated. These results were plotted as

contraction contours and are shown in Fig. 12. The average

results (the average of all four sides as previously

discussed) are also plotted from the experiment. The results

from the finite element analysis are in good agreement with

those obtained from the experiment.

The finite element predicts slightly more plasticity than

the experiment predicts. This is expected since the finite

element formulation assumes all nonlinearity is due to plastic

(or permanent) deformation. In real materials, however, there

is some recoverable nonlinear deformation (i.e., nonlinear

elastic deformation). The averaging, material inhomogeneity

and error in the two methods more than account for the

deviations (less than 4%, maximum).

3
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CONCLUDING REMARKS

Comparison was made between the experimental and finite

element surface contractions for a center-cracked panel. The

results compare favorably indicating the accuracy and

realistic modeling of this finite element formulation and

modeling. The deviations between the results which were

observed are less than can be accounted for due to inherent

error in the measurements. In fact, the results are more

accurate than one would expect.

It is important to highlight several factors when

discussing three dimensional finite element analyses in

general, and in particular for nonlinear problems. The

results are highly dependent on the grid characteristics and

on the convergence algorithm employed. Additional degrees of

freedom do not guarantee a more accurate solution [1,2,3].

When employing three dimensional finite element models,

convergence studies alone are not sufficient. Comparison

between predictions and true material behavior is essential.

With regard to fracture problems, it is essential to compare

predictions from analysis with local parameters as erroneous

local models can be forced to produce results which agree

globally (i.e., on remote quantities, e.g., nonlinear

compliance).
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The unique aspect of the study presented in this paper is

the direct comparison with experimentally measured local

quantities demonstrates the accuracy of the modeling

employed. This approach can now confidently be applied to

fracture problems for the testing of fracture criteria and the

prediction of crack growth and instability. Without such a

demonstration, numerical solutions and verification of failure

criteria are always suspect. Due to the complicated nature of

the problem, each component of the analysis must be verified

independently to guarantee accurate solutions and meaningful

predictions. This component is lacking in three-dimensional

studies reported to date.
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