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ABSTRACT

. In this thesis, we examine the psefolness of the two-parameter Born
inversion method of Clayton and Stolt (1981) onder idealized conditions. We
implement a constant background procedore to recomstruct lime source

’. synthetic data which simplate a stratified scoustic medium. Specifically,

) - this investigation is ap extention of the sing.. interface work of Weglein,
Violette snd Keho (1985) for double interface models. Since we use offset
dats to recover one-dimensional bulk modulos and density variatioms, this
procedure is termed a 1.5 dimensional inversion. Implicit in these
reconstructed scoustic profiles are errors related to the sapproximate

L inversion. Phase shifts inherent in the modeled wave field cause these
inversion errors not only to propagate, but also to increasse with depth.
Since the model data are exact, we ate able to examine the analytic

i expressions of these inversion artifacts. From this analysis, we develop an
implementation which minimizes inversion errors. This is achieved by both

-~ preconditioning the offset data, and jJudiciously choosing s reference

I velocity in sccordance with inversion gosls. Both of these procedures
however provide limited improvement, and we conclude that this constant
background, frequency domain, method should be enhanced by more

sophisiticated algorithms, Specifically, we suggest the implementation of

either a varisble backgroond procedure, or the refinement algorithm of Hagin

snd Cohen (1984). IS, |
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bulk modulus variation

Fourier transformed bulk modulps variation
dengsity variation

Fourier transformed density variation
coefficient in the forward egquation

coefficient in the forward equation

reference velocity

medium velocities (n = 1,3)
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depth to the first interface
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PREFACE

In seismic exploration, an enmergy source located at the Earth'’'s surface
initietes seismic waves which propagate through the subsurface. A portion
of this seismic energy is reflected by inhomogeneities within the probed
medium, and this reflected response is systematically measured along the
Earth's sorface. In genmeral, the object of seismic exploration is to
determine the nature of the subsorface from these geophysical data. That
is, given knowledge about both the source and receivers, we hope to extract
subsurface information. This informetion depends upon both the mathematical
model upsed to describe the mediom, and the method of inversion. 1In this
investigation, we implement a method, founded in inverse scattering, for
recovering both acoustic parameters.

In our method, we assume that subsurface parameter changes can be
modeled as deviations about a known reference medium. Thus, as the incident
wave field propagates through the medium, amy variation of the wave field
from the reference wave field is attributed to scattering. Expressing
reflected energy as these scattering interactions establishes the
anthematical framework for recovering sobsurface information. Basic to any
mathematical expression for wave propagation is a physical model describing
the assomed natore of the mediom. Typically, these expressions are partial
differential equations which include spatially variant coefficients.
Determining these coefficients determines the model parameters. As
mentioned above, we assume sn acoustic model and recover the corresponding
bolk modunlus and density variationms.

Scattering theory is charscterized by both the forward and inverse

problems. In the forward problem, we specify the model paremeters and

vii
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calculate the corresponding wave response. This procedure has been used in
an iterative scheme to recover subsurfece information, given & data set, we
wonld: (1) calculate & forward response, (2) compare this synthetic response
with the observed response, and (3) minimize the resulting model parameter
differences throngh an iterative procedore. Inverse scattering bhowever
seeks to directly determine the model parameters from the observed data.
These methods are constrained by the specific assomptions which characterize
the model. In this thesis, we consider an approximate inversion scheme for
directly recovering one-dimensional acoustic parameter variations,

Since this inversion scheme is approximate, subsurface phenomenz are
either incorrectly modeled, or not modeled at all. Specifically, our method
is a 1linear procedure which ignores both muoltiple reflections and
transmission losses. Furthermore, all reconstructed parameter changes are
contaminated by linearization errors. We therefore focus our attention on

the reliability of this direct inversion method.
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INTRODUCT ION

The goel of seismic inversiom is to recover subsurface properties from
surface reflection data. For a oparticular method, these recovered
properties depend on the assumed natore of the probed medium. In this
thesis, we examine the usefulness of a well known linear inversion procedure
which extracts acoustic parasmeters from a stratified earth. Before
discussing this method however, we outline the development of other related
techniques.

Prior to the development of direct inversion proceduores, structural
inversion was eaccomplished by wave equation migration methods. These
methods have been refined and are widely used today. Although wave equation
migration methods can accurately locate subsurface reflectors, they can only
qualitatively predict the sizes of corresponding impedance contrasts--hence
the term structural inversion. Briefly, all wave equation migration methods
rely on specific imaging assumptions to map suobsurface reflectivity by
backpropagating the recorded wave field. Recent survey books discuss both
the theoretical background (Morganm, (1983)), and the available techniques
(Berkhout, (1982) and Robinson, (1983)) of wave equation migrationm.

In a 1979 paper, Cohen and Bleistein present and implement a procedure
for the direct inversion of the acoustic wave equation for a two-dimensional
velocity profile. Expressing the forward equation as Green’'s theorem, they
linearize the resulting integral equation and adopt a perturbative approach
before inverting. This linearization admits two assumptions inherent in
wave equation migration: (1) 8sll reflection events are treated as primary
reflections, and (2) a constant velocity medium lies above each reflector.

As demonstrated by Cohen and Bleistein, the linearization does not seriously
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impair their method. In fact, this direct inversion offers an improvement
over the imaging techniques of wave eqoation migration. In direct
inversion, not only are the reflectors imaged, bot also the sizes of
impedance changes are recovered within the linearization assumption. In
effect, this inversion is & direct mapping proceduore which assigns a vealge
of acoustic velocity to a specific subsurface location. In subsequent work,
Bleistein and Cohen (1982) present a three-dimensional inversion algorithm
as well as implement their method for field data. Also, Hagin and Cohen
(1984) refine the previous method to compensate for the effects of the
linearization.

Both wave equation migration and the approximate inversion of Bleistein
and Cohen utilize the conventional common-midpoint stacked section to
simulate a coincident source-receiver configuration. The processing of this
data however eliminates all information concerning the variation of the
reflection coefficient with incident angle. Thus, these techniques cannot
separate density varistions from velocity or bulk modulus variations. As
shown by Clayton and Stolt (1981) and Raz (1981), the above method of linear
inversion provides the mathematical basis for recovering both velocity and
density variations. Both papers present alternate approximate inversion
algorithms for separating the components of impedance. Since both
algorithms are formulated from Born theory, their underlying assumptions are
identical to those of Cohen and Bleistein. In fact, both methods reduoce to
Cohen snd Bleistein’s resnlt for zero offset and constant density. Hanson
(1984) has demonstrated this in his discussion of the three methods.

Although the Born inverse methods of Clayton and Stolt, and Raz both
rely on the angular dependence of the reflection coefficient to separate

velocity and density variations, their approaches are different. The method

‘l' "‘ ‘.A_. b ’
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of Clayton and Stolt is similar to that of Cohen and Bleistein in that the

data must be Fourier transformed over both time and the spatial coordinates.
In contrast, Raz's procedure operates in the time domain. In implementing
Rez's method, Hanson (1984) demonstrates that this time domain slgorithm hsas
greater stability than the frequency domain methods. According to Hanson,
this improved stability derives from the operator’s ability to accurately
record smplitude variations with offset,. (Frequency domain methods
manipulate the entire wave field at once, and thus an accorate reference
velocity 1is necessary for stability.) Hanson admits however that the
careful picking of events, critical to Raz's method, is s tedious chore.
Thus, although Baz’s method leads to more accurate results, there is of yet
no aptomated method of implementation.

In this investigation, we reformulate and implement the frequency
domain method of Clayton and Stolt for synthetic data representing a
stratified acoustic medium, Since we are reconstructing one-dimensional
parameter variations, we require only a single common shot gather. To
forther simplify both the anslysis and the computation of the inversion, we
consider a constant background reference mediom. By examining such
rudimentary problem, we are sble to focus on the reliadbility of two-
parameter, constant background, Born inversion uonder idealized conditions.
We remark also that this thesis is organized as a research progression which

represents the evolation of our understanding.
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DERIVATION OF THE FORWARD AND INVERSE BQUATIONS

Introdaction \

In this chapter, we derive an approximate technique for the direct
inversion of the density and bulk modulus variations of a stratified ¥
acoustic earth., As mentioned above, we reformulate the method of Clayton

and Stolt (1981) to sccommodate s one-dimensional medium. We therefore

present their general result first. In their paper, Clayton and Stolt
express the observed wave field as a Lippmann-Schwinger equation which
represents the sum of all scattering interactions in a two-dimensional
acoustic medium. The resulting integral equation is equivalent to the o
Greon'’'s theorem expression presented by Cohen and Bleistein (1979). To N fﬁ
invert this forward equation, Clayton and Stolt assume that all subsorface

parameter variations are small and apply the first Born approximation. This f; T“
procedure establishes an approximate linear relationship between the medium
variations and the observed data, and it is identical to the linearizationm

inherent in the method of Cohen and Bleistein. Therefore, slthough the ™ "

notation of this derivation is similar to that of Clayton and Stolt, the

derivation of the forward equation adheres largely to the work of Cohen and f; iﬁ
Bleistein. The inversion of the resulting integral equation however relies

on the insights of Clayton and Stolt.
Derivation of the Integral EBquatioa

Wave propagation in a variable density, two-dimensional aconstic medium

is governed by the equation:
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LU = [v LoV ;’—] U= -8(x, - x,)6(z,)S(w) (1) 8 1
R .1

where L is the linear wave operator defined by the middle expression of this

dual equality, U is the pressure wave field, p is the density, K is the buolk k{:{r'=
r modulus, and S(w) is the Fourier transform of the source-time function. In TA i 4
this and other equations, the subscripts g and s denote the receiver and the
. source locations, respectively. The inversion of this equation for the

scoustic medium parameters is in general a nonlinear problem. To overcome - 7.

Wy

this inherent nonlinearity, we express solutions as perturbations about a
& reference mediom where analytic solutions are known. The equation

representing the response of the umpertuorbed medium is given by

3
Lo =}v-.-1 v+ o = -8(x - x)8(z )S(w (2)
rr G Kt r 8 s s

where Lr is the linear operator in the reference medium, U_ is the field in

T

the reference medium, and p, snd K are the reference medium parameters.

We now rewrite equation (1) so as to introduce the scatterinmg potential

V(x,z) and its corresponding perturbations a, and a,. Recogrizing that the

scattering potential which initiates the scattered wave field is merely the ]

difference of the linear operators, L and L, we add end sobtract L to L in _f.~;f;‘

equation (1), After collecting terms, we find .>.-‘
®
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3
vl v+ Lvina |U-= -5z - x)8(z )5 () (3)

Pe xr
where
K P
o ¢
R R (4)
and
wzl
Viz,2) = L sv. 2 v (5)
4 p
o o

Although a, and a, are dimensionless parameters, we consider them as the
medium variations and seek their values in the inversion process. To
recover the actual parameter variations, we need only suobstitute the
inverted values of a, and a, intc equations (4) and solve for p and K.

The wave field represented by U (recorded at the geophone location xg
due to the source at location x.) is the simple integration of all
scatterers over the entire subsurface area. This total wave field is the
sam of the direct wave field traveling from source to receiver and the wave
field reflected from within the sobsurface. The seismic experiment we are
considering consists only of the measurement of the scattered or reflected

wave field. We therefore express the observed field or the dsts as the

difference of the total field and the field in the reference mediom R
D(x ,x ,0) = (0 - U )S(w) (6)
g’ s r

where U, is now thought of as the direct wave. The presense of S(w)
scknowledges that the 1t necessary for amy subsequent inversion are EEF
implicitly band-limited.

To establish a relationship between the data and the parameter

o
R




1 v, %.] D= -V(U_ + D)S(w) . (7

k In order to provide ap approximate linear relationship between the surface

observations and the perturbations, we apply the first Born approximation

L

! and replace the total field by the field in the reference medium. As
slways, the Born spproximation requires that the perturbations and hence the
scattering potential remsin small. We are justified in ignoring the product
i VD appearing on the right hand side of equation (7) as it is of lower order
than the product VO, (Bleistein, 1984). Therefore, the linearized equation

is

3
v-L v+ |p--vosce . (8)
pl‘ xf t

In the 1language of theoretical physics, the above procedure is
equivalent to truncating the Born series representation of equation (7)
sfter the second term. By applying this linearization, we are forcing the
inversion to model all observed dats as primary reflections. The resnlt of
this is thet the inversion csannot properly interpret both tranmsmission
losses and multiple reflections. The addition of other nonlinmesr temms of
the Born series would include such phenomena in the forward equation, but
the inherent nonlinearity would preclade s direct inversion.

It is convenient to express egquation (8) as an integral equation which

_7- 91
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incorporeates the Green's function representstions of the incident and the

scattered fields

D(xs.!‘.w) =_I dx'_{ dz’ G:(x‘.olx'.z'lu)

(9)

* V(x', 2%, @6z, 2" |x,, 0r0)S (w)

In order to soccessfully recover the components of reflectivity, we
have considered wave motion in a two-dimensiona]l medium. In keeping with
the method of Clayton and Stolt (1981), we consider two-dimensionsl Green's
functions in the above integral equation. The first Green’s function in
this expression represents the wave propagating from the scatterer location
to the receiver location, Similarly, the second Green's operstor
corresponds to propagstion from the sounrce location to the scatterer
location. Both Green'’s operators represent the outgoing solutions in the
reference medium as indicated by the "+” sign and are derived in Appendix A.

According to equation (9), the surface wave field can be determinmed if
the parameter variations a, and s, are known. Equation (9) is therefore
often referred to as a forwsrd equstion. Our goal is to inmvert this
equation so that the parameter variations asre expressed in temms of the

known data.
Iaversion of the Iantegral Egquatioa for the Nediwm Parameters

For our specific inversion scheme, we are considering only coamstant
background reference parameters, p, and K.. This approach sllows s direct

inversion of eqoation (9) since the Green’s functions have an exact smalytic
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form.

Substituting equation (5) into equation (9), we find

D(xs.x‘.w) = llpr _I dx'_! dz' G:(xs.OIx'.z'lw)

. [ k:ll(x'.z') +V . a (x2")V ]G:(x',z'lx‘.OrW)S(w) (10)

vhere k.= w/c, . Following the derivation of Clayton and Stolt, we

integrate the density term by parts to obtain o .

Y

Dix ,x ,w) =
g s

f ’ T ’ 3 ’ ’ + L 4 + ’ ’
llpr _I dx _J dz' {ka (x',2 )Gt(xs.olx ’Z ’")G:(x 2 |x..0fw)

—p— .

- az(x'.z')VG:(xg.0|x',z',w) . VG:(x',z'|x‘,o;m)}S(w) (11)

L PR
LINTSTV G N

where we ecliminate the boundsry terms by assuming that the scattering ff}'fzfﬁ

potential is of bounded support. Fourier transforming over both soorce and N

receiver locations gives

B(k 'k ,0) =
xg’ 18
llpr _I dx'_j dz' {k:l‘(x'.z')E:(kx‘.OIx'.z'ru)a:(!'.z'Ik“.Orw)

- a (x2 IV (kL 0lxztre) - Y (2t 20 |k, 0,0))S (w) (12)
r xg r xs

where the tilde denotes the spatisl Fourier transform.

In Appendix A, we derive the analytic expressions for the Green's
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functions represented in equation (12). Inserting these resnolts into

equation (12) and eapplying the differential operators yields

- P
A D(k ;k pw) = £ [k" (k - k ’-k - k )
Ig xs zgkzs r1 xg xs zg zs
+ (kzgkzs - kxgkxs)'i(kxg - kxs'-kzg - kzs) ]S(w) . (13)

|
i

This expression establishes an approximate linear relationship between the

Fourier transform of the scattered wave field and the Fourier tramsform of

the medium variations. As pointed oot by Clayton and Stolt, there is wore K
® than enough information inherent in the dsta to allow an inversion for the -
- medium parameters.
:.'_? In this investigation, we reduce the dimensionslity of the problem by
i one. That is, we confine our attention to the sitoation where the medium -

parameters depend only on the depth variable. As a resuolt, the offset

surface reflection data muost be collected on a line-source, line-receiver
ﬂ configuration, and only one shot record is required. Since the data varies .

in two directions while the mediom varies in only one, we term this a 1.5
dimensional inversion. In Appendix B, equation (13) is recast in terms of
'. the one-dimensional medium parsmeters to give

]

: Pe [ s s s E
L D(k ,0) = — | K ¥ (-2k ) + (2k - k )¥ (-2k ) ]S(w) . (14) g
@ z ‘k’ r1 z z r 3 z
i z j
:t.': - ifh
Before inverting the above equation, we most precondition the observed N
o
data. If the data were a recorded time section, then we would have to -]
- o
o
l‘.
; - 10 - -
r -
f
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Fourier transform the data with respect to x, and express the result es a
function of k,. This second processing step would be achieved by applying
the dispersion relation end resampling the resulting fonction for
appropriate values of Akz. Additionally, we would also have to deconvolve
the soprce function S(w) within the temporal bandwidth before invertinmg.
This procedure would require detailed knowledge of the sonrce function which
8l1so might be nsed in & weighted least squares solution. Furthermore, for s
fixed angle implementation of this method on field data, the deconvolution
of the source function would be critical for accurate inversion resuolts.
For the purposes of this investigation, the above processing steps are
unnecessary since we arte considering only synthetic dats, we therefore
express our synthetic dats directly as a function of k, and allow all
temporal frequencies to be of equal amplitude. Thus, the forward eqoation

becomes

Ds(kz,w) = ‘;‘k,'”)';"zkz’ + A:(kz.m)t’(—Zkz) (15)

where Bs(kz.m) tepresents the synthetic data, and

3
-p

(o]

Ax(k , ) = <
z 4k c,

N e

(16)

pl‘
Ak L0 = =5 - A (kL0 .

Since the medium variations, a, and sy, are independent of w, we may

compute A,, A,, and 5, for two distinct values of ® and solve for a, and 1,

directly. VWith temporal frequency as the free parameter, the inversion

relations are simplified to become:
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2 3 o~
ek, | B (k.o -b(x,0)

’ 1]
(-2 ) = ¥ (-2k ) - —3 (178) _
r w, -,
T t T
, oD (k,w)-0D(kx,0)
T,(-2k) = 2 13 2 " : s z 3 . (17b)
z Pe @, - o,

By expressing the inversion relations in this manner, we observe the near
singular behavior of these fonctions ss w, becomes close to wy. To express
€, and %,' as functions of depth, we inverse Fourier transform equetions
(17).

Since the choice of input frequencies is somewhat arbitrary, we counld -
attempt a least-squares or an average least-squares solution over frequency
values. This approach would only provide improved results if npoisy
synthetic or real data sets were being inverted. In any case, the least- -

squares resalt is given by the sclution to the equations:

3 Sam, ][ o3,

r‘. (18)

N 3 -~

[- } A, } A, 2 Ale

o

4 .

:1- where the summations are taken over values of w. The derivation of the :
[.v preceding result is given in Appendix C. 4
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DERIVATION OF THE SYNTHETIC DATA

Introduoction

In this chapter, we examine the synthetic data which we implement to
test the inversion. We choose an exact analytic form for the data so as to
create a controlled experiment. This control not only provides a more
confident interpretation of sobsequent reconstructioms, bot also it
simplifies the mathematical analysis. To conform to the requirements of the
inversion, this synthetic data is computed directly in the Fourier domain.

Since we are considering a one-dimensionasl medium, the synthetic data
is constrained by a line-soorce, line-receiver configuration. Even though
the mediom only varies with depth, the data varies with offset. This
feature of the data provides the information necessary for the separation of
the components of impedance. The specific form of this data is derived from
the point-source resnolts given by Pwing, Jardetzky, and Press (1957). 1In
our derivation, we follow their approach and develop exnressions for both
single and double interface models. In summary, the resulting analytic
expressions represent the two-dimensional Fourier transform of the wave
field scattered from a stratified acoustic medium and collected at many

offsets.

Derivation of the Siagle Iaterface Data

As an initial attempt, we consider sn analytic expression which

represents the response of a single interface. This single interface

sitostion is modeled by joining two acoustic constant velocity hailf-spasces.
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Since we are inverting for onme-dimensional parameter variationms, we require
only one shot record, the experiment providing this data is illustrated in
Figure 1. The point source response of this model is derived by Ewing,
Jardetzky, and Press, and its corresponding lime-source, line-receiver

expression is derived in Appendix D:

= 5y, - ¥,
Ds(kx'm) = m exp(-2y1h) (19)

where b is the depth of the reflector below the sowrce-receiver 1line,

8§ = p,/py, and

. (20)

i
[y

yl—

The right side of equation (19) is often referred to as the plane-wave
reflection coefficient for the single interface model (Frisk, 1979), &and
this quantity is a fonction of both the incident angle and the input
frequency.

For our purposes, equation (19) must be written as a fonction of k,.
This is achieved by observing the dispersion relation, and the resalting

expression is

3
8k, - l K+ wA

I 2 2
8k + k. +wA
z 2

B(x,0 = exp(-2ik h) (21)
8 z z
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where A1 = —_—

c

, and

c C

3 3 2
3 4 T

To view the shot record associated with this analytic expression, we
have only to apply a two-dimensional FFT to equatiom ‘(19). The resuclt of

this procedure for a particular inpaut model is shown in Figunre 2.

Derivation of the Domble Interface Dats

As en extension of this sin;le interface situation, we consider a
double interface model. Althomgh this model inclodes the same asssumptions
as the single interface case, there are additional features which may
provide insight., Specifically, the two-interface deta will include such
nonlinear effects as moltiple reflections and trensmission losses. By
inverting this forward model, we should be able to examine the accuracy with
which our linear inversion reconstructs nonlinear data. Furtbermore, as the
depth and complexity of the probed medium increases, Borm theory predicts
that the associated error will increase. Therefore, by examining this two-
interface model, we investigate the validity of our linear inversion where
it is predicted to breakdown.

For the two-interface forward model, we consider two comstant velocity

scobstic half-spaces, separated by a constant velocity acoustic layer. As
with the one-interfac: model, the source and receivers are located in the

opper half-space. The geometry for this model is illustrated inm Figure 3. T

To derive the anslytic expression, we follow the method of EBwing, Jardetzky, ,‘f'-,;
and Press and determine the displacement potential of the upgoing waves at Eiiftg
the receiver depth. This is accomplished by solving the system of equations ’il'?
which satisfy the boundary conditions at each interface. The details of fi:i5§
e

R

;. .
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this derivation are given in Appendix P, Thus, the synthetic data for the

two-interface model is given by the plane-wave reflection coefficient

b §
1 +RB exp(-2y,h))

R+ R, exp(-2y’h‘)

exp(-2¢y,h ) , (22) -

where R, and R, are the Rayleigh reflection coefficients at the first and

second interfaces, respectively:

s Y R o - 0 (23)
Rl(kx’w) = m » ’(kx.w) = m .
- ..
..4
As before, we define: &, = p,/p;, 83 = py/p,» and ei
]
2 3
v, = i s Wy =1 S N R S 7)) -
<,

If the model parsmeters sre matched up across either interface,
equation (22) reduces to equation (19), This feature allows us to implement
equation (22) for either the single or the double interface aodels.

As in the single interface model, we can express equation (22) as »
function of kzr this is the snalytic form required by the inversion

relations and is accomplished by rewriting equations (24) as

- 16 -
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. 2 2 _ . ) 3 _ . kz 2 (25)
Ul—x kz+wA .yz—x kz+wA‘ .U.—x z+wA,
where
1 1 1 1
A=_Z-_3 » A3=-T-_3 . (26)
c c c c
3 r 3 4

To sccommodate the Born approximation, we may choose to consider a form
of equation (22) which exclpdes multiple reflections. This expression is

derived in Appendix E apd is given by

1

~ 3
Ds(kx.w) =R_exp(-2ph ) + R (1 - R)) expl-2(ph + y’hz)] (27)

where (1 - Rt’) represents the transmission loss through the layer.

An example of a shot record for this two-interface model is shown in
Figure 4. This result was computed by applying a two-dimensional FFI to
equation (22).

Before inverting equation (15) for the data represented by equations
(21) and (22), we note that the synthetic data and the inversion are based
on two different Green’'s function conventions. Equating the conventions
ssed by Clayton and Stolt (1981), and Ewing, Jardetzky, and Press (1957)

gives 8 new form to the forward equation:

-17 -
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(28)
A(k ,w) = -2n - A (k ,uw) .
1 "z 12

Thus, to invert equation (15) for the synthetic data discossed in this

chapter, we most replace equation (16) by equation (28).
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ARTIFACTS IN LINEAR INVERSION

Introduction

Before considering examples of reconstructed acoustic profiles, we
examine the source of artificisl parameter variastions which contribate to
two-parameter reconstructions. As mentioned above, our inversion scheme is
based on s linearization of the nonlinear relationship between the model
parameters and the observed data. This linearization produces errors in all
subsequent reconstructions. For instance, a variation in ome acounstic
parameter will generate a false variation in its reconstructed counterpart.
We term these artificial parameter changes, inversion artifacts. In this
chapter, we discuss the source of these artifacts in the context of linear
inverse theory. Specifically, we outline the method developed by Weglein,
Violette, and EKeho (1985) for both identifying and reducing single
interface artifacts. (In fact, this thesis represents the dooble interface
extention of their work.) In this chapter, most of oor conclusions are
derived from the analytic form of the synthetic data. We begin however with

2 general analysis of the differential equnations relevant to our method.

Examining the Differeatial Equation

Consider the differential equation governing wave motion in

stratified anconstic mediom

3 3’ 2 3 2

_9_ [ JhES § (l)— + 2— [y + —?— [ a — ] U(!. l.m) = 0 . (29)
3 2 2 2 1 0z 3 9z

ox 9z c .
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The spatislly transformed wave field satisfies

]
%) w d /] ~ _
Ct 4

and can be rewritten as

3

AL ] Bk, z,0 =0 (31)
z X

oz

where m’/crz = kx’ +k, 2, and

3
b
; ? ) )
. ©
i r

By applying the Born approximation, we assume that the total field, U, can

be replaced by the field in the reference mediuom, U,. Since the field in

;_t:'_ the reference medium satisfies
&
. a’ ,
. — ¢ kz ] U (k2,0 =0 , {33)
2 0z
ﬁ. it is clear thst equation (31) will only be well spproximated by equation
b
L (33) when
- 0 » Vil . (34)
® 2

For the fixed frequency implemepntation outlined in the previouvs chapter, k,

values can range from zero to &,/c. where w, is the smaller of the two
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thosen angolar frequencies. Thus, for any scattering potential, V, there

exists k, values near zero for which equation (34) is not satisfied, and the
Born approximation is inappropriate. Reconstructed profiles which otilize
low k, data values will be degraded by the inherent nmonlinear processes. We
should therefore eliminate low k, data valuoes prior to inmversion. In
effect, preconditioning the offset date in this manner allows the linear

inversion to produce more exact results.

Analysis of Single Interface Inversion Artifacts

In the previous section, we examined the differential equation to
determine which portion of the data in the wavenumber domain best satisfies
the assomptions in our linear inversion. We found that even though no
wavenomber component of the data is independent of nonlinear effects,
certsin portions are more strongly infloenced than others. To better
understand this observation, we now consider an analytic expression for the
artifacts geperated by exact synthetic model data. As a simple example, we
substitute the single interface resnlt given by equation (21) into the
inversion relations given by equations (17).

Consider the situation where only the bulk modulus varies across the
interface. In this case, the exact valpe of the density variation a, is
zero. The reconstracted valone of a, is determined by substitoting ﬁs(kz'w)

into equation (17b) with p, set equal to p,:
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exp(-2ik h). (35)

This relatioi represents s density change at z = h and is identified as the
source of the density artifact. After examining this equation, we conclude
that this density artifact will vanish omly if A equals zero. Since A is
zero only for both constant density and buolk modulus, it is obvious that our
inversion scheme will always predict a demsity variation for the case of
constant density. Alternatively, it can be shown that e similar
substitution of the data for a constant bulk modulos model into equation
(17a) leads to a false bulk modulos change. Therefore, even though the
synthetic data has an exact form, the recomstructed acoustic profiles
contein artificial variations which are traced to the linesrization of the
inversion.

To understand the nature of these artifacts, we examine equation (35)
which represents the artificial density variation generated by s buolk

modulus change. We notice that if we choose w; close to w,, and if

s 3
kz > wdA |, (36)

then the density artifact diminishes, that is, a,’ - 0. The criterion
expressed by equation (36) is identical to equstion (34) with density held

constant. As before, we satisfy this requirement by eliminating low kl

. )
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offset data prior to inversion. By performing a similar analysis on the
bulk modulus artifsct generated by a density change, we confirp that the

requirement sunggested by equation (36) will indeed redoce this artifact as

well. We conclode that the condition initiated by our analysis of the R
differential equation is verified by our analysis with the synthetic data. '_:
) If we eliminate w® from both sides of equation (36), we obtain .
-]
3 -
3 ¢, ]
cos 8 » | — -1 (37) 1
c, 1
e
1
4
where O represents the angle of incidence with respect to the z-axis. The 3
condition expressed by equation (37) suggests that the dats correspomding to 4
[ ]
large 6 are responsible for the inversion artifacts. Eliminating low kz _'.:
data is physically equivalent to excloding large 6 data from the inversion. ._:-:' N
5 Note also, when ¢, ¢ c,, equation (37) becomes cos*6 > cos’Gc where 6, . . -
represents the critical angle. To sstisfy this condition, we most insure -
that @ < 6. which precludes the use of post-critical data. This observation i
b is not surprising as the reflection coefficient becomes imaginary with = 4
[
r
| modulos equal to ome for 6 > 6 ., Equation (37) however demands more than
just the simple elimination of inhomogeneous waves from the imversion. To
satisfy equation (37), we most eliminate the incident angles which
- [ J
correspond to a large scattering potential, By permitting these angles to 1
contribute to the inversion, we sre allowing the scattering potential to -
become large. This resuvlt violates the primary assumption which supports ]
®
{
the applicability of the first Born spproximation. Therefore, to diminish )
T
srtificial parameter varistions, we should eliminate the data which are S
characterized by large incident arngles since these data correspond to a - ]
_J ® )
T
RICURNES
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significant scattered wave field.
In his two-parameter Born inversion scheme, Raz (1981) 1lineerizes the
n acoustic reflection coefficient to obtain stable resplts. In implementing
::'.i Raz’'s method, Hanson (1984) remarks that the reliability of this method
rests largely on the accoracy of this approximation. In fact, Hanson's
I results are favorable only when the variation in the reflection coefficient
is small. At large angles, the reflection coefficient deviates appreciably
from the linearized expression, and the method fails. As mentioned by
r; Clayton snd Stolt, the amplitude information inherent in offset data sllows
the proper separation of the components of impedance. The above results
bowever suggest that the 1large O information can seriously degrade
® reconstructed acoustic profiles. We conclude that the accuracy of these
' methods relies not only on the inherent variation in the reflection
coefficient, bot also on the suitability of the Born approximstion in
E representing this offset information. Later, we will consider synthetic

examples which illustrate this apparent contradiction.
h‘ Ideatificatios of Single Iaterface Inversion Artifscts

: In this chapter, we have presented the method of Weglein, Violette and
E. Keho (1985) for enhancing the interpretability of reconstrocted scoustic
' profiles. As mentioned above, this is accomplished by preconditioning the
. input data so as to minimize the effects of monlinear processes. In their
E. work, Weglein, Violette, and Keho also discuss a method for identifying
|

these single interface artifacts; we outline this method below. Given a

:I" data set, we would run the inversion for two different k, bandwidths., The

data for the initial inversion would inclpnde all permissible kz valoes while
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the second inverted data set would be filtered to eliminate low k, valuges.
Since the low k, data is highly dependent on nponlipear processes, the
broadband reconstruction would be 1less relisble than the band-limited
reconstruction. By comparirg these recomstroctions, we could identify the
artifact as that varistion whose relative amplitude decreased most rapidly
between reconstructions. This sartifact could then be ignored in a
subsequent interpretation. In the following chapters, we will examine the
usefulness of this proceduore for identifying both single and double

interface artifacts.
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FIXED FREQUENCY SINGLE INTERFACE RECONSTRUCTIONS

Introduction

In this chapter, we examine the reconstrocted scoustic profiles of the
single interface synthetic data discussed in Chapter 2. Drawing on the
analysis of the previous chapter, we implement s method for both redocing
and identifying artificial parameter variations. In all these

reconstructions, the reference velocity is chosen to be the velocity in the

first mediom, Consequently, the Born-predicted 1locations of the
reconstructed parameter variations are always correct, and the Borm-related
artifacts only affect the amplitudes of the reconstructions, In the

subsequent examples, we not only consider the deficiencies of ounr linear

Ly e et

theory, but also we emphasize the role of the angularly dependent reflection

coefficient in recovering both acounstic parameters.

Interpretation of the Reconstructions

Due to limitations implicit im conventional acquisition techniques,
seismic data is band-limited at both ends of the spectrom. This loss of
information impairs all sobsurface reconstructions provided by direct
inversion procedures. Specifically, the absense of high spatial frequencies
limits the resolation of subsequent images--structural variation within the
high frequency limit is not detected. An eqoally serious limitation is ]
created by the loss of low frequency information. The missing low spatiel
frequencies contain information about the background or the absolute trend ) -

of the medium. As a result of this limitation, all reconstructed parameter
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changes are signaled by band-limited step functions which deviate aboot =
constant background mediom. The amplitudes and the directions of actuoal
parameter changes can be inferred from these step functions, buot slowly
varying information cannot be directly recovered. By examining the impulse
response of a layered earth model for several bandwidths, Hanson (1984) has
demonstrated the limitations implicit in band-limited data.

For interpretational porposes, Bleistein and Cohen (1982) choose to
process the data for the derivative of the variation rather than the
variation itself. This result arises from two observations: (1) both the
amplitude and the directon of a parameter change are more easily extracted
from a band-limited delta function than from a band-limited step function,
and (2) the strength of a parameter change can be directly estimated from
its corresponding band-limited delta function (Mager and Bleistein, (1979)).
In this investigation, we follow the suggestion of Bleistein and Cohen and
process for the normal derivative of the perturbations. Since all
reconstruoctions are contaminated by artifacts of the linear inversion, we
are not concerned with relating these reconstructed amplitudes to the actoal
input parameter changes. We note however that the peak amplitudes of these
sinc-like functions are proportional to the spatial bandwidth
(Mager and Bleistein, (1979)). In presenting the reconstructions, we
normalize the reconstructed profiles to the largest peak value of a; or a,
and 1list the corresponding maximum values. This featore aids in the
comparison of different reconstructions. As a general rule, we may only
compare the amplitudes of different reconstrocted profiles if their spatial

bandwidths are equivalent.
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Increasing Velocity Reconstructions

In this section, we consider the inverted outpant of three different
increasing velocity input models., These models simolate : (1) constant
density, (2) constsnt buolk modulus, and (3) constant normal incidence
impedance structures. Listed with each reconstruction are the input
velocities in feet per second, the input demsities in grams per cubic
centimeter, the maximum incident angle in degrees, and the reflector depth
in feet. Also included is a plot of the plane-wave reflection coefficient
with offset. This plot not only demonstrates the nature of the specific
reflection coefficient, but also it indicates the amount of offset data
included in the inversion. Note theat when k; exceeds the smallest
wavenomber in either medium, the reflection coefficient becomes imaginmary.
We therefore plot the reflection coefficient up to this limit.

In these examples temporal frequency is the free parameter, and the two

inpot frequencies are listed (in Hz) with the model paremeters. The smaller

of these two frequencies determines the maximom kz valoe: Kypo o wl/cr,
The lower limit of the k, bandwidth is fixed by the maximum offset allowed

in the inversion: k

k cos8 This fact follows from our fixed

zmin max®

frequency formulation. By fixing frequency, we muost sweep through a range
of incident angles to generate a soite of kz valoues. This method for
establishing s spstial bandwidth bhas its shortcomings. For imstance, if we
reduce offset by restricting 6, then we necessarily eoliminate some low
spatisl frequencies from the inversion. In this implementation, the
bandwidth is determined by both the choice of input frequencies and the
maximom offset included in the inversion.

To conform to the seismic bandwidth, we generally do not invert for
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frequencies moch larger than 60 Hz, Also, we choose the input frequencies
rather close together since: (1) Born-related artifacts sre reduced, and (2)
ve only compute the inversion for k, velues corresponding to the smaller of
the two input frequencies.

As a first model, we consider a 10% velocity increase with demnsity held
constant. To demonstrate the artificial density variation produced by e
bulk modulas change, we invert this model with all pre-critical offsets
included in the data. This reconstruction is shown in Figore 5. As
expected, the reconstructed bulk modolus predicts the proper parameter
change while the reconstructed density variation records a substantial
artifact. This artifact is a plot of the Fourier transform of equation
(35)., As explained in the previous chapter, the origin of this artifact can
be traced to the behavior of the reflection coefficient st far offsets., The
plot of the reflection coefficient for the data inverted in Figure 5 details
this ponlinear behavior. To reduce this artificial density variation, we
have only to eliminate the far offset data which are inconsistent with the
Born approximation. The reconstructed profiles for this case are presented
in Figure 6. Notice that the ©plot of the reflection coefficient
demonstrates the reduction of offset data by an angle of 10 degrees.
Clearly, the density artifact has diminished relative to the actual bulk
modulos variation. We mnote however that we bave sacrificed some low spatial
frequencies by discarding some offset information. As mentioned asbove, by
reducing the spatial bandwidth, we necessarily reduce the amplitudes of the
reconstructed parameter variations. Therefore, by adhering to the
condition of equation (34), we have provided an interpretable acoustic
profile for a 10% velocity change.

The preceeding example also demonstrates the artifact identificstion
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procedure of Weglein, Violette, and Eeho (1985). By comparing the
reconstructions of Figures § and 6, we observe that the relative amplitude
of the density variation has diminished more rapidly than the buolk modoluos
variation. Thos, we identify the density change as an artifact of the
linear inversion.

As & second example, we examine the inverted profiles of an input model
corresponding to a 10% velocity incresse for comstant bulk modulus: °;’°1 =
c,’p,. To view the associated bulk modulus artifact, we run the imversion
for data which includes all pre-critical offsets (see Figure 7). As before,
we reduce the Born-related artifact by excluding the far offset (low kz)
data from the inversion (see Figure 8). Once again, we acknowledge that
this procedure serves to diminish the relative amplitude of the artifact and
could be nsed as an artifact identification procedure. This reconstruction
however has & different character from the previous example. By comparing
Figures S and 7, we notice that the bulk modulus artifact does not dominate
the reconstruction as in the case of the density artifect. This result
suggests a feature of two-parameter Born inversion which should be recslled
when interpreting subsequent reconstructions. Simply stated, the
reconstructed density profiles are less reliable than the reconstructed bulk
modulus profiles. Hanson (1984) has also docomented this resolt in his
implementation of Raz’'s inverson method. Thus, although we can reduace
artifscts of the inversion, we recognize that both parameter reconstractions
are influenced by differing levels of imaccuracy.

As pointed out by Hanson, the most accurately inverted profiles are
obtained when the density and the bulk modulus vary in a manner which
redoces impedance contrasts. This situation occurred in the previouns

example. As an additional example, we consider s model where although both
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parameters vary across the interface, the normal incidence impedsnce remains
constant. The filtered and unfiltered reconstructions of a constant
impedance model with 10% parameter changes are shown in Figures 9 and 10,
respectively. For this input model, the expected recomstruction shoold
consist of the bulk modulus and demsity variations moving equal amounnts in
opposite directions. In Figure 9, we notice that, once egain, the density
variation dominates the reconstraction. As before, we are able to obtain an
interpretable result by preconditioning the offset dats prior to imversion
(compare Figures 9 and 10). The primary resson for presenting this example
is to demonstrate the usefulness of two-parameter inversion techniques. By
taking advantage of impedance variations with offset, we are able to
separate the components of reflectivity. Methods which ovtilize coincident
source-receiver data can only recover mormal incidence impedance changes and

would not interpret a parameter change for the model of Figures 9 and 10.

Decreasing Velocity Reconstructions

When the velocity decreases across the interface, there sre no post-
critical data to exclude from the inversion., This sllows us to test the
inversion for brosdband deta. As an initial example, we consider the model
of Figure 5 with the velocities interchanged. This sitvation is equivalent
to probing the model of Figure § from below. A quick look at the plane-wave
reflection coefficient for this model reveals that its magnitode is
identical to that of Figare 5. In Figure 11, we present the broadband
reconstruction of this model. Clearly, the density artifact is of the same
order as the actosl buolk modolus varistion. Comparing this broadband

artifact with its counterpart in Figure 5, we observe that both are of equal
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size relative to their respective bulk modulos changes. Since the spatial
bandwidths of these models are different, this equivalence might be traced
to the equivalence of the reflection coefficients. To test this, we invert
the model of Figure 12 for dats which correspond to the reflection
coefficient of Figure 6. In comparing the relative sizes of the resulting
density artifacts, we conclode that they indeed are of equal amplitude.
Therefore, the amplitudes of imversion artifacts are determined by the
nonlinear natore of the reflection coefficient. By adhering to the
criterion suggested by equation (37), we can reduce these deleteriouns

effects.

Constant Velocity Recoastructions

As a final example which illustrates the osefulness of two-parameter
inversion techniques, we consider a constant velocity model. For this
situation, the reflection coefficient is s constant which does not vary with
offset. We therefore gain nothing by filtering the offset datas prior to
inversion. This example provides the only situation where our approximate
inversion agrees with the exact result. Thet is, since there is no velocity
constrast, the Bora aspproximation is exactly satisfied (A, = 0). As =
tesult, both the Born and exact theories predict that both parameter
variations have equal asmplitode snd polarity. An example of a broadband
constant velocity reconstruction is illuostrated in Figore 13, Clearly, this
two-parameter inversion scheme can accurately predict these subsurface

parameter changes.
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Least-Squares Reconstructions

i As mentioned sbove, inversion resolts improve if the input frequencies

are chosen close together. There is however no criterion which governs the

specific choice of these frequencies. In the previous examples, we chose 60
) and 62 Hz, becavse these values both conform to the seismic bandwidth, and
provide reasonable inversion results. To demonstrate that the specific
choice of frequencies is arbitrary, we consider a lesast-squares solution
over a range of frequency valuoes, In Figure 14, we present a least-squares
reconstroction of the model shown in Figure 6. These results are obtaiped
by inverting equation (18) with the summation extending from 55 to 65 Hz.
In comparing Figures 6 and 14, we acknowledge that the reconstructions are
similar in character and would lead to equivalent interpretations. Their
only difference lies in the frequency content of the reconstructed profiles.
i The similarity of these resplts is not alarming. We do not expect the

least-squares procedure to improve the inversion of synthetic datas since

this method is only uoseful when considering noisy synthetic or field dats

. sets. The asbove example merely demonstrates that inversion results are not

strictly dependent on the choice of imput frequencies. As mentionmed above,

the two frequencies shoold be chosen close together, and should be large

enough to provide s sufficient bandwidth for stable computation.
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FIXED FRBQUENCY DOUBLE INTERFACE RECONSTRUCTIONS

Introduction —_

In all wave equation methods which transform sorface reflection data
into a map of subsorface reflectors, the selection of a background velocity
profile determines the accuracy of the results. For Born inverse methods,
this reference velocity affects not only the migration of the image, but
also the recovery of the amplitode information. These results are
demonstrated in a simple example by Weglein and Gray (1983). In this
example, they consider the single parsmeter Bornm recomstruction of a one-
dimensional mediom for various constant backgroond velocities. They
conclude that constant background Born techmiques cannot simultaneonsly
determine both the location and the size of a single parameter change.

As mentioned above, our inversion scheme assumes that the velocity in .
the first medium is the constant background velocity. Consequently, the
locations of both parameter variations are correct for the first reflector

while the amplitudes are necessarily incorrect. In addition, these

amplitudes are fuorther complicated by the apparent 1link between the
parameter variations. The deficiencies of Born methods do not improve with
depth. In fact, both the locations and the amplitudes of the parameter
variations for the second reflector will be incorrect. In this chapter, we ' ]
examine the reconstructions of the double imterface synthetic data derived
in Chapter 2. VWhen examining these reconstructions, we use the first
reconstructed reflector asx a measure for the accuracy of the second DR
reconstruocted reflector. For interpretational purposes, it is safe to i_i‘h

assume that the amplitude of the first change is correct if the data have

- 34 - ]
-]
-_Ai
.1

L . A . 3 Tt e . R T T T T TR TS
At e . ‘. e o o s o 4 o .8 'c e s e o e a2 A T Tl il s PP U DI S I U S ULV IR AN U U YA GF S S A S Dol W O |




r--~. e —_—— S ey S ."!L"\...‘..n-._-k-.E-_‘:‘»v‘sl.‘—#

A been filtered. The following examples will expose the deficiencies imherent

in the formulation of our approximate inversion. As before, we will attempt {*_.:
“ to rectify inversion artifacts by filtering the inpot data prior to - g
ioversion.

rl Examples of Double Ianterface Recomstructions

To conform to realistic earth models, we considered 10% parameter
changes for the single interfsce model. By filtering the input data, were
t esble to obtain interpretable reconstructions. For the double interface

; model, we begin by comnsidering two consecutive 10% parameter changes. In

Figure 15, we present the reconstruction of a constant density model with
;' the layer separating two half-spaces of equal but lower velocity. Clearly,

the inversion is unstable for this inpot model, the density artifact

associated with the second interface dominates the reconstruoction. To .
improve this reconstruction, we adhere to the previoos strategy and
eliminate far offset data prior to inversion (see Figore 16). In comparing

Figures 15 and 16, we observe that this procedure does not improve the =

interpretability of the reconstruction--eliminating 1low kz data merely
reduces the spatial bandwidth., Forthermore, the artifact identification
procedure outlined in Chapter 3 is mot effective in delineating the double ' ';;
interface density artifact. We conclode that this procedare is limited to
sitoations where the inverted wave field is accurately modeled above the :-. i1
reflector of interest. We note also that the density artifact incorrectly ;
establishes the location of the second interface. Born theory however wounld
predict s location shallower then 3000 feet rather than deeper. Thus, it

appears that this inversion scheme produces unstable resolts for this model,

- 35 -

....................................
...................................
......




3
L

.

and these results are not improved by further filtering the input data.

Since this method is based on a weak scatterer approximation, we expect
stable reconstructions for smaller parameter changes. In Figures 17 and 18,
we present the reconstructed profiles of the model of Figure 15 with the 10%
velocity changes replaced by 1% and 0.1% changes, respectively. In all
three models, the maximom offset, the inpot frequencies, and the reflector
depths are equivalent. Turning first to Figuore 17, we observe that although
the density artifact continues to dominate the recomstruction, the overall
results sre more stable. Note that the reflection coefficient is trivial
for 1ll offsets in this inversion, yet the reconstroction is inaccurate.
This result further demonstrates that the low k, filter has a limited
lbplication for the two-interface situation. When the parameter changes are
reduced by snother order of magnitude (see Figure 18), the recomstruction is
interpretable; however, the density artifact located at the second interface
still exists. For this model, the reflection coefficient is too small to be
distinguished from the kx-lxis. From the preceeding examples, we conclude
that this inversion method cannot properly interpret two soccessive real
earth parameter changes. As shown, the inversion results are only accorate
for s cumulative change of 0.2%.

In the previons chapter, we examined a constant bulk modulos model to
illuostrate that inversion results improve for parameter changes which
minimize impedance contrasts. In Figures 19 through 21, we present the
reconstructed profiles of double interface, constant bulk modulus, models.
These models are consecotively equivalent to the models of Figures 15, 17,
and 18 with only the densities adjusted to simulate conmstant bulk modulus.
For example, the spatial bandwidth, the velocity contrasts, and the

reflector locations are equal for the models of Figores 15 and 19, however,
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the inpot density profile of Figure 19 prodoces a constant bulk modulus. By
equating all but the input densities, we insure thast the limitations imposed
by the Born approximation are identical. This allows a simple comperison
between the two models. Similarly, the constant density models of Figures
17 and 18 can be compared with the constant bulk modolus models of
Figures 20 and 21, respectively. Thus, in considering these six
reconstructions, we can compare results within each constant parameter set
or against its coonterpart in the other set.

Considering Figure 19 first, we notice that the density change located
st the second interface dominates the reconstruoction. This change shounld be
of equal amplitude and opposite polarity as the change which delineates the
first interface. We therefore consider this reconstruction to be unstable.
In fact the character of this reconstruction resembles the unstable constant
density reconstruction of Figure 15. The differing demsity profile only
affects the response at the first interface. We conclude that for velocity
contrasts of this magnitude, the inversion results are unstable, regardless
of the input density profile. It is also important to mnote that the
reconstructed density is responsible for the instability. This resunlt
reinforces the previons statement that the reconstructed density is less
relisble than the reconstrocted bulk modulus.

Next, we examine the constant bulk modulus reconmstroction of Figure 20.
Although the velocity straoctore in this model corresponds to the constant
density model of Figure 17, this reconstruction is superior. In Figore 17,
the density artifact at the second interface dominates the reconstruction.
In Figure 20, the density change at the second interface is omly slightly

incorrect in amplitode and location. Also, the bulk modules artifact is

quite small. Thus, for 1% velocity changes, the input density profile of ‘-
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Figure 20 redoces the impedance contrasts and improves the inversion. In
fact, the accoracy of this reconstruction is comparable to that of Figore

‘ 18, even though the velocity contrasts are ten times greater. This fuorther - -
suggests that artificial buolk modulus variations are less damaging then
artificial density variastions.

- Finially, we consider the reconstruction of Figure 21. As expected,
this result is almost exacty the bulk modolus artifact is trivial. In
comparing all three constant bulk moduluos reconstructions with all three

r constant density reconstructions, we conclude that the former set are more
accorate than the latter. This resolt is attriboted both to the redoction
of impedance across the interfaces, and the controlling imfluence of the
density variation in all reconstructions. We most admit however that the
inversion is onstsble for the realistic earth models of Figures 15 and 19,

Returning to the constant demsity model of Figuore 15, we consider two

i equivalent models but for the depth of the second interface. In Figure 22, b

we present the reconstruction of this model with a shallower second

reflector. The model of Figure 23 is characterized by a deeper second

= teflector. In comparing these three reconstructions, we conclode the the - 2 4
error associated with the approximate reconstruction of the first interfeace .
incresses with depth. Therefore, not only is this fixed frequency procedore

unstable for two realistic parameter changes, bot also the accorscy of all

o
\ 1
reconstructions depends on the depth of the second reflector. Instead of o]
speculating as to the origin of these deficiencies, we take advantage of the
L B
° exact form of the model data to analyze inversion artifacts. Before we do -
! 3
L this, we reformuolate the inversion to both improve stability and simplify BN
analysis. ]
- NS
® 1
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FIXED ANGLE INVERS ION
4
n Introdaction - . 4
In the previous inversion scheme, temporal frequency is chosen es the :
B free varisble when solving for the parameter variations, In thst ® :
formolation, the necessary suite of kz values 1is genmersted by sweeping ]
through a range of incident angles for each fizxed wave vector. A
prohibitive consequence of this procedure is that the elimination of the °
detrimental far offsets severely reduces the spatial bandwidth. As a '  ’4
resolt, the inversion becomes unstable. To overcome this instability, we :
i reformulate the inversion in terms of fixed incident angles. Instead of ®
i choosing two fixed frequencies, we now choose two fixed incident angles when
) solving for the parameter variations. The k, velues are computed by
E establishing a temporal frequency bandwidth for the fixed angle wave vector. ®
. As we will see, this formulation achieves greater stability as the offset :Z‘j'.-i-_.»_:.'
- information and the spatial bandwidth are no longer linked. In this new
n formulation, we c¢an choose incident angles which correspond to Born- ~.
r compatible reflection coefficients with no restriction on spatial bandwidth.
This procedure is not unique. In his time domain formulation, Raz (1981) -1
- ptilizes two distinct offsets when recovering both velocity and density. . 1
Therefore, in this chapter, we reformulate the inversion to improve the
stability of the output. To demonstrate this improvement, we re-inmvert the J
models, previounsly considered in the fixed frequency formuolation. As an ‘

additional feature, this reformuplation simplifies the compotstion of the

inverted profiles.
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Reformulation of the Inversion

In this section, we rewrite the forward equation in terms of the

incident angle ©. This is achieved by substituting the definition

k= 2 cos® (38)
z c
r
in equations (28):
[ A(8) = T
b cos 6
(39)

s ' A (8) = -2n - A _(8)
3 1
where

Ds(kz.G) = AI(O)I‘(—Zkz) + A’(O)l’(-Zkz) . (40)

To invert equation (40) for the transformed medium variations, we compute

A,, A,, and Es for two values of 6 and solve for %, and §,:

, , [ B,x.0) - B (k.60
: al(—Zkz) = i’(—Zkz) + = Py Y (41a)
L sec 6, - sec O,
. sec’e D (k,8) - sec’e B (x .0 )
@ ¥ (-2k) = L 1z 1 1s 2 (41b)
. 3 z 2n 3 3 . }
L . sec 9l - sec 9’
3
9 R
»i.‘ R
2
b
1
L.' p
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Clearly, this inversion procedure is compotationally simpler than tke

[ previoos method since equations (39) are independent of k,. For s specific

. 8, A, and A, are nombers which weight each spatisl component of the dats ®
equally. This result not only simplifies the computation, buot also it 'f
redoces the complexity of future mathematical analysis. Once sgain, we note :

3

the near singolar behavior of the denmominator of equations (41) for 6, close e

1

to 8,. As before, we have only to inverse Fourier transform equations (41) 1

to express the parameter variations as a fonction of depth. X

4

To compute the synthetic data for this method, we generaste the k, ® ]
values by fixing the incident angle and sweeping throogh a specified range
of temporal frequencies. For this fixzxed angle formulation, we re-express

t L
the single interface data of equation (21) as ®

o

. p_’. - 1 + ctil

r ~ s )

- B (x_,0) = . 208 8 | exp(-2ik h) . (42) ° ‘1

a
pz crAl
-_—t 1 + Py .
Py cos 6 | ,_

i .

s )
and the double interface data of equation (22) as 4

®

-4

~ B (8) + B (8)exp(-2¢,b ) 1
X .,0) = -

r D,k ®) T+ B, (O)F, (0exp(-2p,,) | °*P("2#D,) (43) o |
where B, snd R, sre the Rayleigh reflection coefficients at the first and S
second interfaces respectively, and :

»

L

) o |

' 3

- d
:
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(44)

cos 6 cos ©

From these expressions, we observe that the Rayleigh reflection coefficients

are also independent of kz.

Examples of Fixed Angle Reconmstructioas

In this section, we examine fixed angle reconstructions of simgle and
dpouble interface models presented in Chapters 4 and 5. To compsre the two
inversion procedares, we equate both the input model parameters and the \
spatisl bandwidths before imverting. In all of these examples, we examine
the reconstruoction of a constant density profile, this allows ns to test the
inversion for unfavorable conditions. As an initial example, we consider : 3

the fixed angle reconstruction of the single interface model shown in Figure

.y

6 (see Figure 24). Note that we now list the input anmgles (in degrees) and

the temporal bandwidth, instead of the inpot frequencies and the msximom

o i el oaal

offset. In comparing Figures 6 and 24, we observe that the bulk modulos

variations are strikingly similar while the density artifact is smaller in

the fixed angle reconstruction. This improvement resolts from our ability

Consequently, the reflection coefficient satisfies the Born approximation,

i )
[ to confine the wave vector to a region which corresponds to a small

[ reflected wsve field., In other words, in the fixed angle implementation, we

; are able to satisfy equstion (37) by choosing incident angles close to zero.

@

1

[

This idea can be seen by comparing the plots of the reflection coefficients

in Figures 6 and 24. In the fixed angle implementation, the reflection
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coefficient maintains the low values determiped by the incident angle of 10
degrees, wherees its counterpart in Figure 6 traces out velues corresponding
to 55 degrees. Clearly, the plot of the reflection coefficient for the
fixed angle implementation appears linear (constant). The selection of
incident angles in the fixed angle method is arbitrary. We note however
that as in the fixed frequency formulation, inversion artifacts diminish if
the input parameters (the incident angles in this case) are chosen close to
each other. In all subsequent reconstructions, we select the angles of §
and 10 degrees to comply with the Born approximation. Therefore, the
flexibility of the fixed angle procedure provides more accurate results as
the spatial bandwidth is no longer linked to the offset information.

As demonstrated in the previons example, the fixed angle implementation
improves single interface reconstructions by further discriminating agaimst
nonlinear portions of the offset data, We now apply this method to invert
double interface models and compare these resnlts with their corresponding
fixed frequency reconstructions. As a first example, we invert the constant
density model of Figure 15 by the fixed angle method, this result is shown
in Figore 25, As before, we are able to compare these reconstructions since
both inversion methods are computed for equivalent spatial bandwidths., In
compering Figures 15 and 25, we notice that the density artifact at the
second interfsce dominates both reconstractions. However, the instability
inherent in the fixed frequency reconstruction is not present in the fixed
sngle reconstruction. In the fixed angle recomstruction, the Borm-predicted
location of the density artifact is correct. Thus, although the fixed angle
technique enhances the character of this reconstroction, the resolts
indicate that Born methods cannot successfully reconstruct both acoastic

parameters for 10% velocity changes.
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To continoe this comparison, we consider two other constant demnsity
models with 1% and 0.1% velocity changes, respectively. In Figore 26, we
present the fixed angle reconstruction of the 1% velocity contrast model of K
Figure 17. In comparing these two reconstructed profiles, we observe that

the fixed angle profile is more accurate than the fixed frequency profile.

PP S WL L)

In the fixed angle recomstruction, the density artifact located at the 6
second reflector is one third the size of its fixed frequency counterpart.

Nevertheless, this artifact is still appreciable. To complete this series 7
of comparisons, we consider the fixed angle reconstruction of the 0.1%
velocity contrast model shown in Figure 18 (see Figure 27). Althoogh both
reconstructed profiles are interpretable in terms of the inpot model, the d
results of Figure 27 are superior, As before, the density artifact is

smaller for the fixed angle reconstruction. Therefore, even though the _ n

aforementioned advantages of the fixed angle method improve the
reconstructions, the inversion method is still uonreliable for teal earth o
parameter changes.

In the fixed frequency double interface examples of the previous
chapter, we presented evidence which suggested that errors associated with T
the incomplete (Born) reconstraction of the first interface propagate with
depth. To verify this statement, we consider fixed angle reconstructions of
a8 constant density input model for various depths of the second reflector.
We choose the input model of Figure 26. Note that in the fixed frequency
demonstration of this phenomenon, we considered 0.1% velocity contrasts.
For the fixed angle example, we consider 1% velocity contrasts across the
interfaces, In Figures 28 and 29, we present the reconstructed profiles of
the model of Figure 26 with the second reflector located et 2000 and 4000

feet, respoctively. In comparing these three figures, we conclode that the
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error does in fact incresse with depth. This feature of Borm imversion is
equally damaging for both inversion procedores,

In comparing the fixed angle reconstructions of Figores 26, 28, and 29,
we observe that the error affects not only the amplitode bot also the
location of the parsmeter changes associated with the second interface.
This resolt follows from the assumption of s constant background velocity.
By assuming a constant backgroond velocity, we force the inversion to model
8ll waves as if they are propagating st the reference velocity. In this
example, the reference velocity is the velocity in the first medium. Since
this velocity is slower than the velocity in the second medium, the
reconstructed parameter changes are located above their expected locstions,
This featore of the inversion is more obvious in the fixed angle example
then in the corresponding fixed frequency example becsuose the velocity
contrasts are larger. In the next chapter, we conmsider the origin of
inversion artifacts in the context of the preceeding discussion,

In the above examples, we equate spatial bandwidths between inversion
procedures to allow a direct comparison of the amplitudes of the
reconstructed profiles. This apparent limitation is in opposition to the
flexibility of the fixed angle approach. In the fixed angle spprosch, we
may choose any spatial bandwidth for any incident angle. As a result, we
are free to select input data in sccordance with the assomptions implicit in
the linear inversion. Unlike the fixed frequency method, the stability of
the results are not compromised by the bandwidth restrictions effected by

the Born approximation.
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INVERSION ARTIFACTS REVISITED

Introduction = -

In Chapter 3, we examined the analytic form of the artificial parameter

R
Aaa a2

varistions associated with the Born reconstroction of the first interface.
We showed that these artifacts could be reduced by emphasizing certain
portions of the offset data in the inversion process. In fsct, these single ]
interface artifacts can practically be eliminated through the flexibility of 1
the fixed angle implementation. In addition to these false parameter . i
variations, Born theory inaccorately predicts the size of the actual
parameter change at the first interface, even if the velocity in the first 1
medium is selected as the reference velocity. Fortenately, this amplituode

error is trivial. When considering the double interface reconstructions, we ]

demonstrated that the errors associated with the incomplete reconstruction - - 4
of the first interface increase with depth. Thus, even though these errors
are not severe at the first interface, they are significant at the second
interface. In this chapter, we examine the analytic expressions of the -

artifacts which <characterize the reconstructed changes at the second

interface. This analysis both verifies previous conclusions and provides
insight into a possible correction of errors implicit in two-parameter,
constant background, Born inversion.

Amalysis of Double Iantorface Artifacts

As in the single interface analysis, we substitute constant parameter

model dats into the corresponding inversion relation to obtain an expression
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for the artifact. Specifically, we will sgain consider the density artifact
prodoced by 2 bulk modulus change. For this dooble interface analysis, we
exploit the simplicity offered by the fixed angle implementation. Since the
multiple reflections do not interfere with the primary reflections, we

otilize the fixed angle expression of the model date given by equation (27)

B‘(xz.e) = R (8)exp(-2y.h ) + B, ()T(®)expl-2(y,h, + ¢,h,)] (45)

where y. and ¢, are computed according to equations (44) and T represents
the transmission loss throogh the layer. In this expression, each term
represents the primary reflection event for each interface. Substituting
equation (45) with a constant density profile and an arbitrary reference
velocity into equation (41b), we obtain an expression for the density

artifact:

1

’
T (-2x ) =
: z 2n(sec’9; - sec’Oz)

2 . 3 3 1/3
[ sec 6 B (0 ) exp[-21kz(l + ctA/cos 6,) " h,l]

3 . 3 3 1/3
sec 6 B (8,) exp[-21kz(1 + crA/cos 8,.) hll

+

3 ) 3
sec 8 B (6 )T(0 ) exp(-Zikz[h‘ + (1 + ctAllcos 91)1/’h’]]

sec’® B (6 )T(8) exp(-2ik [b + (1 + c:Al/cos’O’)‘,’h’]l (46)

where B,(6) and B,(8) are defined as the constant density Rayleigh
reflection coefficients at the first and second interfaces, respectively.
If the reference velocity is the velocity in the first medium, then A = 0,

snd the density artifact is given by
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l’(-2k ) =

2n(sec161 - sec’Gz)
. [sec 6B (8 ) - sec 6B (8 )1 exp(-2ik b )
3 1 b i3 3 z 1
+ 30¢°0 B (8 )T(8 ) exp(-2ik [h_ + (1 + c A /cos’6 )/ n 1)
32 3 1 1 z b Y 11 b § 2

- 0c70,B,(0,)T(6,) exp(-24k [b, + (1 + c.4,/cos’8,)" b 1) ] . (M)

The expression givem by equation (47) corresponds to the spatial
Fourier transform of the density artifacts plotted in Figures 25 through 32.
To understand the matuore of these artifacts, we will analyze this expression
in the context of Born theory. Considering the first term in this equation,

we observe that this expression is the fixed angle analog of equation (35).

This term represents the artificial density varistion produoced by the -
incomplete reconstruction of the bulk modolus at the first interface.
Reviewing the density artifacts plotted in the aforementioned figures, we
see that this term is insignificant. The density artifact located at the -
first interface does mnot compromise the overall accuracy of the
reconstruction since the input angles comply with the Born approximation.

In contrast, the second and third terms of equation (47) combine to form the

deleteriouns density artifact associated with the second interface.

Before exsmining the analytic expression for the second interface
density artifact, we recall some assumptions implicit 4in the 1linear
inversion. The primary assumption of Born inversion is that individual Qi iﬁf
scattering interactions do not significantly affect the incident wave field. f -}f

. _1

Thos, the total wave field is approximated by the referemce wave field, and R
1

1
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the inversion models all wave motion as the wave field propagating in the
reference mediam, Consequently, for our problem, the wave field propagating
in the second mediom is phase shifted with respect to the wave field oo
propagating in the first or reference medium. This phase shift is not
accounted for by the inversion and contributes to inversion errors. In our

analysis of single interface artifacts, we demonstrated that the weak R |

scatterer assumption is satisfied if we select offset data which minimize
the energy of the reflected wave field. As shown above, this requirement is
not sofficient for the accurate reconstruction of the second reflector. To
jj better onderstand inversion errors, we must consider the effect of the phase
shift encountered by the incident field at the first interface.
; Returning to equation (47), we observe that the sum of the second and
third terms of this expression form the density artifact which delineates
the second interface. In general, these two terms represent two delta
functions whose amplitudes are similar in magnitude, yet opposite in sign.
Furthermore, these delts functions are characterized by different phase
shifts which sffect their respective locations in the spatial domain. In
fact, these two phase shifts are the manifestation of the phase shiftinmg of
the incident field in the second medium, That is, if A, were zero, then the
wave field in the second medium would be in phase with the reference wave

field, and the phase shifts which characterize these two delta functions

would wvanish. As & result, the second interface artifact woold be
represented by & single delta function whose amplitude would be of the same
order as that of the single interface artifact. Therefore, as the velocity
constrast at the first interface decreases in sccordance with the Born
approximation, the phase shifts inherent in equation (47) diminish, and the

second interface artifact decreases. Upon further inmspection, we conclude
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that the relative amplitude and phase differences between these two delts

functions are dependent on the input angles. For example, &8s 6, approaches
©;, both the phases and the modoli of these two terms become equel, and the —_— =
two expressions cencel. Likewise, as the values of O, and 6, diverge, the
two delta functions become more dissimilar in amplitude and phase, and the
nrtifict increases. Thus, as in the single interface situation, the
artifact associated with the second interface diminishes as 6, spprosches
@,. This second interface artifact however is affected in both amplitude
and phase. Simply stated, it is the phase shifts implicit in these
expressions which are responsible for the deleterious nature of the second
interface artifacts.

In the previous discussion, we observed that since the incident field
is phase shifted at the first interface, the reconstructed second interface
is characterized by a sum of two phase shifted delta functions. These phase

shifts are represented by 2 e

14— (48)

where c, is the velocity in the first medium, 6; is the incident anmgle, and

4, is the velocity contrast at the first interface. As mentioned above,
both the difference between these phase shifts as well as their magnitudes
influence the quality of the reconstruction. For instance, if the second - {::1
term of equation (48) vanishes, then the field in the second medimm is in
phase with the incident field, and inversion results are improved. Thus, to
rectify inversion errors, we should minimize the size of this term in the

phase shifts. This is accomplished by considering models which are
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characterized by both a small velocity contrast at the first interface, and
nesr normal wave vectors. Considering briefly the constant depsity models
of Figures 25 through 27, we conclude that indeed both criteria are
necessary--only the model of Figore 27 where 0.1% velocity contrasts are
inverted leads to an insignificant density artifact at the second interface.
Therefore, by adhering to the weak scatterer assomption, we minimize the
phase shift of the inmcident wave field which enables an accuorate
reconstruction of the second reflector.

In examining equation (48), we note that only the stremgth of the first
velocity contrast affects the magnitudes of the phase shifts implicit in the
second interface density artifact. Consequently, s large velocity contrast
st the first interface limits the accuracy of subsequently reconstructed
parameter changes. To demonstrate this result, we consider two models which
consist of both a 0.1% and s 10% velocity change. In these two models, the
order of the velocity changes are reversed so as to reveal the influence of
A, on the reconstructions (see Figures 30 and 31). Turping to Figure 30
first, we note that the 0.1% velocity change at the first interface does not
serionsly impair the reconstroction of the 10% velocity change at the second
interface. This is the expected result as A, is trivial in this case.
Comparing the reconstructions of the 10% velocity changes for both models,
we observe that the corresponding demsity srtifact is larger in Figure 30
than in Figore 31. We also note that the actusl bulk modolus change in
Figure 30 is slightly antisymmetric. (This asymmetry verifies that the
sctual parameter change is also s sum of two band-limited delta functions.)
Based on the previous discussion, we conclude that these features are
accomuletive manifestations of the slight phase shift incuorred at the first

interface. When comparing the reconstructions of Figures 30 and 31
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directly, we notice that they are not simple mirror images of each other.

t

Since A, is sappreciable for the model of Figure 31, the reconstrocted
parameter changes associeted with the second interface are mnoticeably
incorrect in both size and location. Thos, althoogh the sizes of the
reconstructed parameter changes at the second interface are weighted by the
corresponding reflection coefficient, the overall character of these
variations is determined by the phase shifts given in equation (48).

When considering the genersl featores of doaoble interface
reconstructions, we observed that errors associated with the Born
reconstruction of the first interface increase with depth. These errors
affect both the sizes and the locetions of the reconstructed parsmeter

changes delineating the second interface. By examining the expression for

the density artifact given by equation (47), we can understand the depth
dependent nature of the error. In the second and third terms of equation
(47), we notice that each corresponding phase shift is weighted by the depth -
of the second reflector. Thus as h, increases, the magnitudes of these
phase shifts also increase. This result may also be understood in the 5 ‘::'.4
context of Born theory. In Born inverse methods, the scattered wave field - N -4
is estimated by the second term in the Born series. As a result, the
soitability of this estimation depends uapon the convergence of the higher

order terms, If this series converges slowly, then the first Born

spproximation inadequately describes the scattered wave field. In any case,
= since the higher order terms in the Born series are integral expressions,
the error associated with their convergence increases as the limits of

integration incresse. That is, errors implicit im the linesr inversion

PRI
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PP

sccumolate a5 we integrate the wave field over greater and greater depths. ‘_'-'~'

R

In conclusion, we maintsin that the predicted sizes and locations of the
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second parameter changes are determined by both the phase shifting of the

incident wave and the depth of the second interface.

Inversion Artifacts and the Reference Velocity

In the previous reconstructions, the reference velocity is chosen to be
the velocity in the first medium. As a resolt, the wave field in the second
mediom is phase shifted with respect to the wave field in the reference
medium, and this causes inversion errors to increase with depth, In Born
inversion however, we need not choose the reference velocity to be the
velocity in the first mediom. The specific choice of a reference velocity
depends on the goals of the inversion. In this section, we examine the
influence of the reference velocity on inversion artifacts. To do this, we
invert a constant density model for different reference velocities and
interpret the resplts in terms of eoquation (46). As mentioned sabove,
equation (46) represents the double interface density artifact for an
srbitrary reference velocity. From this expression, we observe that the
reconstruction of each interface is the summstion of two phase shifted delta
functions. Thuos, if the reference velocity is meither ¢, nor c,, then each
reconstrocted interface is characterized by the accumulative errors produced
by these phase shifts. As a result, not only sre both the sizes and
locations of the parameter changes incorrect for each interface, but also
the extent of these errors are determined by the depths of the interfaces.
As before, we note that the strengths of these phase shifts depend on the
sngle of incidence, the velocity contrast, and the reference velocity. We
also recall that these phase shifts which spatiaslly separate the delts

functions only exist if the wave field above the reconstructed interface is
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phase shifted with respect to the reference wave field.

In Figure 32, we present the reconstruction of 2 constant demsity model
with the reference velocity equal to the velocity in the first medium. 1In
this example, the reconstroction of the first interface is essentially
correct while the reconstruction of the second interface suffers from
accamolative phase errors. Considering the first reconstructed reflector,
we observe that the locations of the parameter changes are correct; Born
theory however predicts slight errors in the recomstruction of their
corresponding amplitudes. For our purposes, we view this reconstruction as
the prototype for both interfaces in all suobsequent examples. To provide a
pfoper comparison between this reconstruction and other relevant
reconstructions, we list the amplitudes of these variations in Table 1 (see
page S55).

In Figure 33, we reconstruct the model of Figure 32 with the reference
velocity equal to the layer velocity. Consequently, the wave field in the
layer is in phase with the reference wave field since A, = 0. In this
example however, the wave field in the first medium is phase shifted with
respect to the reference wave field (A # 0). We conclude that the artifact
sssociated with the first interface is characterized by two phase shifted
delts fonctions while thet of the second interface comsists of only one
delta fonction. Thus, as the wave field propagates out of phase to the
first reflector, the error inherent in the Born reconstruction of this
reflector grows in size. From Figure 33, we observe that this accomulative
error affects both the sizes and the locations of the parameter changes.
Comparing the parameter amplitades of this reconstroction with their
coonterparts in Figore 32 (see Table 1), we conciude that both parameter

changes have
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increased in size. In fact, there is pow 2 noticesble density artifact
located at the first interface. Considering the second reflector, we
observe that the error in this reconstroction is similar to that of the

first interface (see Table 1).

FIGURE K max p max K max p_max
1 1 3 3

32 0.093 - 0.140 0.108

33 0.103 0.005 0.103 0.005

35 0.095 0.002 0.095 0.002

Table 1. List of the maximam perameter amplitudes for Figures 32, 33,
and 35.

Since the wave field in the layer is in phase with the reference wave field,
the errors estsblished at the first interface propagate to the second
reflector but do not grow in size. Thuos, the location error st the second
interface is identical to that at the first interface. There are however
slight amplitode errors associated with the incomplete reconstruction of the
second reflector., To further illustrate that these inversiom errors do not
increase within the layer, we consider this model for & deeper second
reflector (see Figure 34). In comparing Figures 33 and 34, we conclude that
the inversion errors associsted with the second interface are identical to
those of the first. Therefore, by establishing the reference velocity as
the layer velocity, we have distributed the inversion error between both
reflectors, snd now these errors are sensitive to the depth of the first
ceflector.

As mentioned sbove, if the reference velocity is neither €, DOr c,,
then both reflectors are reconstrocted by a sum of two phase shifted delts

fonctions. As the depths of these reflectors increase, the corresponding
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phase discrepancies also increase, and the inversion errors grow in size.
These observations follow directly from equation (46). To demonstrate this
result, we reconstruct the previous constant density model for a reference
velocity midway between ¢, and c,7 in Figure 35, we present this example
with ¢, = 5025 ft/sec. Comparing this reconstroction with that of Figure 33,
we observe that the inversion errors associated with the first interface
have diminished. By redocing the reference velocity, we have reduced phase
shifts in the first two terms of equation (46), thereby reducing the
accumplative errors. Thus, both the demsity artifact and the location error
decrease at the first interface. From Table 1, we also note that the
amplitude of the bulk modulus veariation is also redomced. In fact, it is
close to its connterpart in Figure 32. Jnlike the model of Figure 33, the
wave field in the layer of Figure 35 is phase shifted with respect to the
reference wave field, As 8 result, the inversion errors prodoced at the
first interface not only propagate with depth, but also they increase with
depth. To demonstrate this feature, we invert the model of Figore 35 for a
deeper second reflector (see Figure 36). Clearly, the reconstruction of the
second reflector in Figore 36 is characterized by greater inversion errors--
the predicted parameter variations are both larger and shallower. In
conclosion, we
observe thet this intermediate reference velocity effectively distribotes
the inversion error. In fact, this reconstroction is superior to that of
Figure 33 as the locations and the amplitudes of both velocity changes sare
more accurate.

In the above examples, we demonstrate that by adjosting the reference
velocity, we may distribute the inversion errors between the recomstruction

of each interface. Depending on the goals of the inversion, this procedure
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might be advsntageous. For example, when comparing Figores 32 and 35, we
might conclude that Figure 35 is a more sccarate reconstruction of the impuot
model. Even thoegh all emplitudes and locations are imcorrect, this
reconstruction is not dominated by the errcr associated with the second
reflector. We might however wish to reconstruct the first interface with
precision. In that case, the reconstruction of Figure 32 wopld be superior
to that of Figure 35. Therefore, since errors are an inevitable comsequence
of constant background inversion, we choose a reference velocity so as to

winimize the errors, deemed most deleterions to our goals.
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CONCLUS IONS

In this thesis, we implement the two-parameter, constant background,
Born inversion method of Clayton and Stolt (1981) for acoustic synthetic
date which represent single and double interface models. Since these date
are exact, we are sble to compare reconstructed acoustic profiles with their
anslytic expressions. We direct this analysis toward ounderstanding the
error implicit in the approximate imversion. As & resolt, we devise an
implementation which provides more reliable interpretations of Born
reconstructions,

From our analysis, we observe that inversion errors ere minimized if
the offset data is preconditioned in accordance with the Born approximation.
Specifically, we reduce the energy of the reflected wave field by
eliminating the offset data which are characterized by large angles of
incidence. These deleterious dats however provide the greatest variationm in
the reflection coefficient. As pointed oot by Cleyton and Sto.* (1981), it
is the angolar dependence of the reflection coefficient which allows the
sepsration of the components of reflectivity. Therefore, inherent in our
method is a contradiction of objectives: the linear inversion requires the
elimination of data which enhance the recovery of both sacooctic parameters.

By selecting a fixed angle implementation, we are able to separste
bandwidth considerations from data preconditioning requirements.
Consequently, the flexibility afforded by this implementation leads to
stable resuolts. In fact, for single interface models, the recomstructed
profiles are almost exact. For double interface models however, the
reconstructions suffer from sizeable Born-related artifacts. To onderstand

the nstore of these srtifacts, we examine their analytic expressiomns. Since
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the reconstruocted density variation is less reliable than its corresponding

bulk modolos variation, we focus our anelysis on double interface density
artifacts. As a result, we test the inversion for the inpot models which
provide the least favorable results.

In our analysis of double interface density artifacts, we observe that
the reference velocity influences the interpretability of the
reconstructions. In general, the reference velocity affects the pbase
shifts inherent in the modeled wave field. As evidenced by our examples,
this phase shifting causes inversion artifacts to increase with depth--these
accumulative phase errors seriously can compromise the usefulness of this
inversion technique. We therefore select a reference velocity which reduces
the errors, considered most harmfol to our inversion objective.

This investigation establishes that this two-parameter, constant
background, linear inversion cannot accorately recomstruct two consecutive,
real earth, parameter changes, even under idealized conditions. The data
requirements preclude the applicability of the Born approximation for
recovering the acoustic parameter changes, typical of geopbysical problems.
Thaus, this inversion accurately reconstrocts only weak scattering
interactions. To improve the usefulness of this technique, we could
implement the inversion for a variable reference velocity. If accurate
migration velocities are obtained, this spproach will reduce the relative
sizes of parameter changes, and hence validate the weak scatterer
assumption., As s resuolt, accumultive phase errors will be reduced.

Applying the refinement algorithm developed by Hagin and Coben (1984)
to this two-parameter oprocedure would reduce the sccomunletive errors,
implicit in the linear inversion., According to this refinement algorithm,

Born-related errors are recursively eliminated from constant background
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reconstructions. Consequently, this procedore provides an improved estimate
of subsorface parameter variationms. This method however requires an
accurate estimate of real earth parameter changes from measurements of their - =
reconstructed counterparts. To insure accurate estimates, a method for
separating artifacts from ¢troe parsmeter variations would have to be

developed. Perhaps however, the single interface artifact identification

procedure presented by Weglein, Violette, and Keho (1985) could be used to

test each successive reflector for inversion artifacts. Since the

b Jame o e

F, aforementioned refinement scheme would eliminate accumolative errors, this 4
‘I

identification procedure could be applied with confidence at each interface.

P

We note that this method would be most useful for noisy synthetic or field

}. data sets. Implementing the refinement procedure in conjunction with this ' 1
E artifact identification method would be computationally more efficient than '_:
b ¢
. implementing & variable background inversion. Furthermore, these methods -{.‘
4 require only san accurate estimate of the velocity im the first medium, - '—v-i
F whereas variable background inversion requires an accurate estimate of all 4
- migration velocities. Therefore, this postprocessing refimement algorithm
tﬂ might improve two-parameter reconstructions by efficiently reducing the - ;
:jA effects of accumulative errors. ‘
o -
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APPENDIX A: TRANSFORMED GREEN'S FUNCTIONS

In this Appendix, we present the Fourier transforms of the eanalytic
expressions for the Green's functions in equation (10). These Green's
functions are the resolven‘; for the constant background, two-dimensional

wave operator. If p, and K. are assumed constant, L, becomes

3
3 (0]

L = L |vs ) (A-1)
pr

9 3
c
T

The Green’s function representing wave propagation from the scatterer

location to the geophone location solves

3
vis & 16 =-p6lx -x")8(z") . (A-2)
r r g

2
c
1 o

Introdaocing the spatial Fourier transform over the receiver coordinates as

1
» " ’ T cm—— N '. ' - . A—3
Er(xxg 0|x',z'r0) Izn I dxs Gr(xg 0|x’,z'rw) expl ikxsxs) (A-3)

we apply this transform to equation (A-2) to obtain the following ordinmary

differential equation for the function at:
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3 P
d 3 T :
— + k 6 (x ,0lx,z2'rw) = — exp(-ik_ x')6(z') (a-4)
dzz zg ] r xg '7; xg
h)’ T
where &k = -— - X .
18 JER
r

Iwvo linearly independent solutions to the homogeneous form of (A-4) are

given by

A+p

LI

"o4!

~ r -, , _ -
G exp(+xkzg|z -2z l) exp( ikxgx;) (A-5)

where ar+ represents the outgoing solution and Et' represents the incoming
solution. For our purposes, we are interested only in the outgoing solation
and have only to determine the quantity A*.

We determine A* by imposing two conditions at the scatterer depth which
characterize the npature of the scatterer. These conditions are: (1) that
the function be continuouns, and (2) that its first derivative have a jump

equsl to the source term over an interval containing z’. These conditions

yield:

A = '21— ! (A-6)

end, at the receiver location, the Green'’s function is given by
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ip
a:(kxg.()lx‘.z"w) =t exp[-i(kxgx' - kzglz’l)]/Zkzg . (A-7)

V=

We now perform s similar sanalysis to determine the transformed Green's
function which characterizes propagation from the souarce locstion to the
scatterer location. The only difference between this derivation and the
previons one is that the Foorier transform over the somrce coordinates has
the opposite sense as equation (A-3). This difference resaolts in a sign

change on the arguoment of the exponential:

+ ip:
ar(x‘.z'|kxs,0rm) = —— expl-i(k
2n

X kDl . (A-8)

where Kk =

We now make the observation that the parameter varistions are zerc for z
less than zero, This resnlt allows us to drop the asbsolute value signs in

equations (A-7) and (A-8) ©before substitotion into equation (10)
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APPENDIX B: ONE-DIMENS IONAL FORWARD BQUATION

In this Appendix, we derive the one-dimensional forward equation
from the two-dimensional forward equation. This is accomplished by
assaming that the probed mediom is independent of botk transverse
directions. As a result, the observed offset data is only s fonction

of g - X4 Bxplicitly writing the spatial Fourier transform of the

left hand side of equation (13)

de jdx D(x - x ,w)expl-i(k x -k x )], (B-1)
n g s 8 s x5 8 x5 s

[

Bk .k ,o) =
Xg XS

N

we express this resolt in terms of midpoint, half-offset coordinates:

5 = (x8 - xs)/2 . x = (xs + x‘)/2 (B-2)

v T [ I A A A A A T ~ ¥ ECH g v d

P I )

o to obtain

r 1

{ 1

P . <

.- ]

B ® @

, 1 -

} D » ’ T »

0 (kxs kxs w) Tn J dx- I deh D(2xh w) 4

P» ) -y

b *.4.

_- . exl’[—ik“(xh +x)) explik (x - x )] (B-3) e

@
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where dxgdxs = 2dxhdxm .

Rewriting equation (B-3)

[--]
S 1
Pix ,x ,u) = , -
(kx8 kxs o) T3 l 2dxh D(Zxh w) expl i(kxg + kxs)xh]
-0

« ] dx expl-i(k -k )x] , (B-4)
m xg x3 m

we recognize both integrals as Fourier transforms:

B(x ,k ,w) =58k -k HB(x -k )/2,0] . (B-5)
X8 b &3 X8 b ¢ 3 X8 Xs

Torning to the right hand side of equation (13), we write the

transformed model variations as Fourier transforms

o @
T (k -k , -k -k ) = 1—-1 dxdj dz a;(x,1z)
i xg xs %] s 2n 1

« expl-i(k -k )lx expli(k + X )z1 (B-6)
g xs z8 zg

vhere s; represents both parameter variations. For a; independent of

x, this result becomes
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Ii(k -k_,-k -k ) = b8k -k )Y (-k - ) . B-7)
xg xs zg zs xg xs i 18 zs

Adl g2 -

Thus, for a one-dimensional mediom, the linear equations are:

6(k -k J)B(x + Xk )/2,0] =
xg Xxs xg xs

-p
r [ 3 o~
— k 8(k -x )% (-k -k )
4kzskz8 r xg xs 1 g s

+ (k. k. -k k )8(k_ -k )¥ (-k -k ) ]S(w). (B-8)
zg zs Xg xs xg xs 3 zg zs

LS T Dy Oy

Integrating both sides of equation (B-8) with respect to k,.. end

observing that kxs =k,  and kzs = k,q4 we find

[T WP

-p
Bk ,o) = —F [ x*% (-2k) + (x° - )% (-21 ) ]S(w) . (B-9)
x 4k’ r 3 z z x 3 2
z

TN PPy

By the dispersion relation, the right hand side of (B-9) is expressed

only as a fonction of k , yielding equation (14).

"
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APPENDIX C: LEAST-SQUARES SOLUTION OVER TEMPORAL FRBQUENCY

The forward equation expressed by equation (15) can be solved for the
mediom parmeters by applying least-squares principles. Ipn general, the
least squares criterion maintains that we minimize the square of the
difference between the desired and the actoel expressions. In ounr case, the
desired earth response is the data itself. The actual responmse however is

the right hand side of equation (15). Thus, the least squares error is:

=?[0,-A,t—n,t] (c-1)
3 IJI ’J’

where the summation is taken over a specified range of frequency values.
This error is mipimized by setting its partial derivatives with respect to

each parameter equal to zero:

|
o

a - b~ -
5—- ;[D - "1 A:j"z ]AIJ

g%i 2? [Dj S AE AT, ]A’j = .

(C-23

The resulting system of equation is known as the normal equations given by
equations (18). The solotion of the pormal equations yields the least-

squares determination of the medium parsmeters.
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APPENDIX D: SINGLE INTERFACE LINE SOURCE ACOUSTIC DATA

In this Appendix, we redoce the point source expression for wave
propagation in two semi-infinite media to the lime source resunlt. On
page 96 of Ewing, Jardetzky, and Press (1957), the scattered wave field

in the first medium is given by

T sy, -

3 3
Ds(r.w) = I dk TRAEEA {exp[—vx(z + h)1J (kc)k}/y, (D-1)

1 3
where & = p,/p,» and h is the distance of the source above the
interface. In this ezxpression, r end 2z represent <cylindrical

coordinates and thus:

(D-2)

where k = k’ + k

For layered media, the sabove point sowrce result has circolar
symmetry, and we recognize eqoation (D-1) as the Fourier-Bessel

transform. Rewriting equation (D-1) as ¢ Fourier transform in
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rectangular coordinates, the field at 2z = h becomes

s, - ¥,
Ds(x» yow) = dkx dky W

© lexp(-2y0)1/yp, - exp['i(kxx + kyy)] . (D-3)

Since the probed medium is assumed independent of the y-direction, we

may integrate over this direction to obtein the line soumrce result

by, - ¥, .
Ds(x,w) = 2n dk E;C—:fic lexp(-2y h)/¥,] exp(—xkxx) (D-4)
where now
3 s 3 N
v, =i w_,"k, . v, =i 3’-;—kx . (D-5)
c, c,
Fourier transforming equation (D-4), we find
b (x ., s - Y [
s kxn(ﬂ = W exp(-luxh)/U,] . (D-6)
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For interpretational porposes, Cohen and Bleistein (1982) sunggest
that it is more desirable to process data for the normal derivative of
the variation rather than the variation itself. For our purposes, this

derivative is achieved by multiplying equation (D-6) by ¢, which leaves

equation (19).
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APPENDIX E: DERIVATION OF THE DOUBLE INTERFACE FORVARD MODEL

k The opurpose of this Appendix is to derive the expression for the P
scattered wavefield generated by the two-interface acoustic model. The
specifics of this model are illostrated in Figure 3. The method of
* determination is to solve the system of equations which satisfy the boundery °
conditions et esch interface for the displacement potential representing the
[ opgoing wave field in the first mediom. The details of the procedure are
similar to examples presented by Ewing, Jardetzky, and Press (1957). ) ®

Omitting the time factor, we can express the potentiasl in the first

‘ wedium as
.o
@ @ U
! x Q,
] .= | dk ;: Y, (kr) exp(-y z) + | dk -E J,(kr) exp(-y z) (E-1)
®
where Q, is the quantity to be determined. All other quantities are defined
io Chapter 2 as well as in Bwing, Jardetzky, and Press. The first term in
equation (E-1) represents the direct wave while the second term corresponds L]
to the opgoing or scattered wave field. The potentisl in the second mediom
is
[
(- -3
Ql Ql
p, = | dk -y—Jo(kr) exp(-y’z) + | dx R Jo(kr) exp(uzz) . (BE-2)
3 2
o
These two terms correspond to the summation of the upward sund the downward ]
traveling waves which reflect many times within the layer. Finally, the : '
potential in the third medium is given by ._‘"-"Z
[
o |
- 173 - 1




T a
9, - Jdk ;’l 3, (kr) exp(y,z) (E-3)

which represents the downgoing wave field in the lower half-space.

The potentials p, and ¢, must satisfy the boundary conditions:

Plp‘ = Pzﬂz . . (E-4)

at the first interfece. These conditions express the notion that both the
pressure and the pormal displacement are continooos across the interface.

Similarly, the potentials in the second and third media most satisfy the

boundary conditions:

PP, = 0,8, ’ ¥z 3z (E-5)

at the second interface. These conditions lead to a system of four linmear

equations expressed by

AB = C , (F-6)

where
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ey

exp(#lhl)/y‘ -Slexp(yzhl)/yz -51exp(y3h1)/y3 0
exp(ylhl) exp(—yzhl) —exp(y’hl) 0
A =
0 exp(-y’H’)/yz exp(y’B')/H‘ —bzexp(bgﬂ')/y'
0 -exp(-y’h') exp(bgh') exp(—b&h.) J

b, =h, +h,, and

-

-k/vlexp(ylh‘)

kexp(-ulhl)

As before, we are interested in the plame-wave reflection coefficient,
and this quantity corresponds directly to Q,. Solving for Q,, we obteain
equation (21). An expression similar to equation (21) is presented by Frisk
(1979), in his paper, Frisk discusses many characteristics of the plane-
wave reflection coefficient for single and double interface models.

By representing the denominator of equation (21) as an infinite sum, we
are able to decompose the forward model into its component reflected events.

Thus, equation (21) becomes

Q2 = exp(-2¢,0) [8, + Bemp-20,8) ] ) (-1)(R R expt-20p,1,). (D)
n=0
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Carrying out a portion of the summation, and collecting terms, we obtain

Q, = Ryexp(-2p,h,) + R, (1 - R)exp[-2(p,h, + p,b,)]

+ RRL(1 - R)expl-2(ph, + 2ph )] + o (E-8)

where: the first term corresponds to the reflection from the first
interface, the second term corresponds to the reflection from the second
interface, and the third term corresponds to the first moltiple reflection
from within the lsyer. By writing the data in this form. we are able to
establish a forward model which excludes multiple reflections. Not only
does such &an expression provide more favorable data for the linear
inversion, but also it yields a less complicated analytic expression. This

result is given by equation (25).
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Figore 1. Diagram of the single interface sxperiment.
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INPUT MODEL

‘ Cl = S000.20 D1 = 1.8202

Ce = 5S5002.8 D2 = 1.000202




P Shot N 7~ Geophones

Figore 3. Disgram of the dooble intsrface experiment.
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Figure 4. Shot record of a typical dooble interface forward model.
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Figore 11. Fized frequency, decreasing velocity, comstant density,
single interface reconstruction for brosdband data.
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Figure 12. Fized frequency. decreasing velocity, constaat density,
single interface reconstruction for filtered dats.
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Figore 13. Fized frequency, comstant velocity, sisgle iaterface recon-
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3
1

.........




W N T TP L TR TmR—————"— A e B S-S S-S S O R Sy g

INPUT MODEL REFLECTION COEFF.
e —~
C1 = 5002.2 D1 = 1.2000 0., = 55

C2 = SS500.0 D2 = 1.0000

ABS(R)

FMIN = 55,2 FMRX = 65.0 ~

] - J
[ K2
KX
DENSITY VRRIRTION (MAX = @.1)
sea 1800 1502 2000 asee -

DEPTH (FEET)
BULK MODULUS VRARIATION (MAX = 2.7)

1 L} L] T 1

- .
p°. -
= L i
- -
b
#. -1 L L 1 =7
F - 2 500 1000 1500 2500 .
= DEPTH (FEET)

z 3
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Figore 15. Fized frequency, constant density, dounble imterface cgecon-
struction for 10% velocity changes.
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Figure 16. More highly filtered recomstruction of Figure 185.
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Figorse 17. Fized frequency, constasnt density, doudle isterface recon-
stroction for 1% velocity changes.
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Figore 18. Fized frequency, constsnt density, double interface recon- R
stroction for 0.1% velocity changes. RS
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Figure 19. Fized froquency, comstant bulk modulus, double imterface re- S

constraction for 10% velocity changes.
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Figore 20. Fized frequency, constant bulk modolos, double interface re-
copstruction for 1% velocity changes.
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Figore 21. Fixed frequency, constant dbulk modolus, douoble interface re-
constroction for 0.1% velocity changes.

T ........... —p y PO P S o S el - - R Ty T ey e N

P )




P S A R Y

INPUT MODEL REFLECTION COEFF.
[} t -
Cl = S@22.0 Dl = 1.02000 e = 55
MRX
1802
C2 = S905.0 D2 = 1.8000 @
2000 0
&
C3 = Spp2.2 D3 = 1.0000
Fl = 6.0 Fe = 62.9 e l J
] K2
KX
DENSITY VARRIARTION (MRX = B.2)
1 T =T v !

ae awinr

-1 ! ] 1 —
e 1220 eoee 3000 4002 Seoe
DEPTH (FEET)

BULK MODULUS VARIATION (MRX = 2.8)

1 A 1 1

T —"*Wyl f%{'v‘i h~—

-1 i\ 1 1
[ 1029 2000 3002 4020 5000
DEPTH (FEET)
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Figore 23. Reconstruction of the model of Figure 18 but for s deeper
second reflector.
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Figore 24. Fized angle reconstruction of the model of Figure 6.
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Figure 27. Fized angle reconstruction of the modsl of Figure 18.
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Figore 32. Fixed angle, constant density, doudle interface reconstruc- R
tion with 1% velocity changes. S
o1
3
.4
.9
:_1
- 108 - . 1
e T T e e AT e e S T e ,.J




INPUT

r" --------- T T T ST T T T
. RN
[ o]

——
o °

MODEL

.y

C1

S5000.02

D1 = 1.0000

1000
Ce

5050.0

D2 = 1.02000

c3

s EENER SR g

S100.0

ABS(R)

D3 = 1.0000

-

5.0

ez = 10.0

35.0 < F < 60.0
DENSITY VARIATION

REFLECTION COEFF.

1
L
.". .V‘._ .‘1
L v:‘ A
’ e
®

1

K3
KX

(MRAX = B@.1)

:

—|

1202

) 91

Y T 1 .
'.' L v‘v‘ : . :~.
2000 3200 4002 Seee R )

DEPTH (FEET)

1002

BULK MODULUS VARIATIDN (MAX = B.1) J
1 T 1 : 4
-1 1 | .‘ i

2000
DEPTH (FEET)

Figore 33. Reconstruction of Figure 32 with

squal to the layer wvelocity.

- 109 -

the reference vwelocity

t".~:;.3:'-2?:;
° .




) e B Shan R T W N T T e o w o wTw ey
............ N N W T N W e n I A A Kl

A
INPUT MODEL REFLECTION COEFF. Lo
(] 1 r ‘. _,.:
C1 = S022.8 DI = 1.9000 L
1000 Lo
C2 = 5050.0 D2 = 1.8000 z R
4200 @ N
€3 = 5102.2 D3 = 1.2000
8l = 5.2 82 = 10.0 e . -
)} K3 ~
35.90 < F < 62.0 KX
DENSITY VRARIATION (MAX = 2.1)
- 1 . — T -— .
g .0 i
P‘: E g 2 'l' k'l'.‘. 'l'l' .‘:::
-1 1 ] 1 1 - -_“
2 1820 2000 3020 4200 5022
DEPTH (FEET)
BULK MODULUS VARIATION (MRX =B.1) DR
1 - T \
- 2 & il | —
#.
-1 I A 1
- ° 1000 2000 3000 4202 50002

DEPTH (FEET)

! Figore 34. BReconstruction of Figure 33 bdat for a deeper second re-
i flector. ) -




;.
INPUT MODEL REFLECTION COEFF.
N e 1 i
Cl = SP22.2 D1 = 1.2020
1002
Ce = 5050.2 D2 = 1.00020 g i
-] 9000 @
C3 = S100.0 D3 = 1.0000
8l = 5.0 e2 = 10.0 ] . )
2 K3
35.0 < F < 62.0 KX
DENSITY VARIATION (MAX = 2.0@)
l ¥ ¥ v 1
g z _——‘WJV"" 'n. l"M'.'.
-1 b L | 1
2 1922 2000 3222 4000 Seoe
DEPTH (FEET)
BULK MODULUS VRRIATION (MRX = @.1)
1 N 1

3 . it -1 o
o e e
.9
-1 —l 1 1
[ 1820 2082 3020 4000 Soo2
DEPTH (FEET)
N Y
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In this thesis, we examine: the usefulness of the two-parameter Born

inversion method of Clayton and Stolt (i&ﬂffrnnder idealized conditions. We
implement & constant background procedure to recomnstract line sonrce
synthetic data which simulate a stratified acoustic medium. Specifically,
this investigation is an extention of the single interface work ef-Wegleia, ‘|
~Violette and Keho(1985) for double interface models. Since we use offset
data to recover ome-dimensional bulk modulus and density variatioms, this
procedure is termed a 1.5 dimensional inversion. Implicit in these
reconstructed acounstic profiles asre errors related to the approximate
inversion. Phase shifts inherent in the modeled wave field caunse these
inversion errors not only to propagate, but also to increase with depth.
Since the model data are exact, we are able to examine the analytic
expressions of these inversion artifacts. From this analysis, we develop an
implementation which minimizes inversion errors. This is achieved by both
preconditioning the offset datas, and judiciously choosing a reference
velocity in accordance with inversion goals. Both of these procedures
however provide limited improvement, and we conclude that this constant
background, frequency domain, method should be enhanced by wmore
sophisiticated algorithms. Specifically, we suggest the implementation of
either a variable background procedure, or the refinement slgorithm of Hagin

and Cohen (19847, L’éy Fa N
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