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In this thesis, we examine the usefulness of the two-parameter Born

inversion method of Clayton and Stolt (1981) under idealized conditions. We

implement a constant background procedure to reconstruct line source

synthetic data which simulate a stratified acoustic medium. Specifically,

this investigation is an extention of the singl, interface work of Weglein,

Violette and Keho (1985) for double interface models. Since we use offset

data to recover one-dimensional bulk modulus and density variations, this

procedure is termed a 1.5 dimensional inversion. Implicit in these

reconstructed acoustic profiles are errors related to the approximate

inversion. Phase shifts inherent in the modeled wave field cause these

inversion errors not only to propagate, but also to increase with depth.

Since the model data are exact, we are able to examine the analytic

expressions of these inversion artifacts. From this analysis, we develop an

implementation which minimizes inversion errors. This is achieved by both

preconditioning the offset data, and Judiciously choosing a reference

velocity in accordance with inversion goals. Both of these procedures

however provide limited improvement, and we conclude that this constant

background, frequency domain, method should be enhanced by more

sophisiticated algorithms. Specifically, we suggest the implementation of

either a variable background procedure, or the refinement algoritm of Hegin

and Cohen (1984).

..... . .

P i:- : i ' - '' 
"' 

"_

, °. , t i •• .• ,

I. ,. °oo,.-6

S*'*. . . . . . . . . . . . . . . .-..

*.. .. .. .. ... .. .. .. .. .. -.... .. o|



GLOSARI

bulk modulus variation

11 Fourier transformed bulk modulus variation -

as density variation

12 Fourier transformed density variation

As coefficient in the forward equation
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k1 s Fourier transformed horizontal source coordinate
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PREFACE S

In seismic exploration, an energy source located at the Earth's surface

initiates seismic waves which propagate through the subsurface. A portion

of this seismic energy is reflected by inhomogeneities within the probed

medium, and this reflected response is systematically measured along the

Earth's surface. In general, the object of seismic exploration is to

determine the nature of the subsurface from these geophysical data. That

is, given knowledge about both the source and receivers, we hope to extract

subsurface information. This information depends upon both the mathematical

model used to describe the medium, and the method of inversion. In this

investigation, we implement a method, founded in inverse scattering, for

recovering both acoustic parameters.

In our method, we assume that subsurface parameter changes can be

modeled as deviations about a known reference medium. Thus, as the incident

wave field propagates through the medium, any variation of the wave field

from the reference wave field is attributed to scattering. Expressing

reflected energy as these scattering interactions establishes the

.aathematical framework for recovering subsurface information. Basic to any

mathematical expression for wave propagation is a physical model describing

the assumed nature of the medium. Typically, these expressions are partial

differential equations which include spatially variant coefficients.

Determining these coefficients determines the model parameters. As

mentioned above, we assume an acoustic model and recover the corresponding

bulk modulus and density variations.

Scattering theory is characterized by both the forward and inverse

problems. In the forward problem, we specify the model parameters and

vii 0



calculate the corresponding wave response. This procedure has been used in

an iterative scheme to recover subsurface informationt given a data set, we

would: (1) calculate a forward response, (2) compare this synthetic response

with the observed response, and (3) minimize the resulting model parameter

differences through an iterative procedure. Inverse scattering however

seeks to directly determine the model parameters from the observed data.

These methods are constrained by the specific assumptions which characterize

the model. In this thesis, we consider an approximate inversion scheme for

directly recovering one-dimensional acoustic parameter variations.

Since this inversion scheme is approximate, subsurface phenomena are

either incorrectly modeled, or not modeled at all. Specifically, our method

is a linear procedure which ignores both multiple reflections and0

transmission losses. Furthermore, all reconstructed parameter changes are

contaminated by linearization errors. We therefore focus our attention on

the reliability of this direct inversion method.

SV
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)NTRODU Cr ION

The goal of seismic inversion is to recover subsurface properties from

surface reflection data. For a particular method, these recovered

properties depend on the assumed nature of the probed medium. In this

thesis, we examine the usefulness of a well known linear inversion procedure

which extracts acoustic parameters from a stratified earth. Before

discussing this method however, we outline the development of other related

techniques.

Prior to the development of direct inversion procedures, structural

inversion was accomplished by wave equation migration methods. These

methods have been refined and are widely used today. Although wave equation

migration methods can accurately locate subsurface reflectors, they can only

qualitatively predict the sizes of corresponding impedance contrasts--hence

the term structural inversion. Briefly, all wave equation migration methods

rely on specific imaging assumptions to map subsurface reflectivity by

backpropagating the recorded wave field. Recent survey books discuss both

the theoretical background (Morgan, (1983)), and the available techniques

(Berkhout, (1982) and Robinson, (1983)) of wave equation migration.

In a 1979 paper, Cohen and Bleistein present and implement a procedure

for the direct inversion of the acoustic wave equation for a two-dimensional

velocity profile. Expressing the forward equation as Green's theorem, they

linearize the resulting integral equation and adopt a perturbative approach

before inverting. This linearization admits two assumptions inherent in

wave equation migration: (1) all reflection events are treated as primary

reflections, and (2) a constant velocity medium lies above each reflector. ... -

As demonstrated by Cohen and Bleistein, the linearization does not seriously

-1-1
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impair their method. In fact, this direct inversion offers an improvement

over the imaging techniques of wave equation migration. In direct

inversion, not only are the reflectors imaged, but also the sizes of

impedance changes are recovered within the linearization assumption. In

effect, this inversion is a direct mapping procedure which assigns a value

of acoustic velocity to a specific subsurface location. In subsequent work,

Bleistein and Cohen (1982) present a three-dimensional inversion algorithm

as well as implement their method for field data. Also, Hagin and Cohen

(1984) refine the previous method to compensate for the effects of the

linearization.

Both wave equation migration and the approximate inversion of Bleistein

and Cohen utilize the conventional common-midpoint stacked section to

simulate a coincident source-receiver configuration. The processing of this

data however eliminates all information concerning the variation of the

reflection coefficient with incident angle. Thus, these techniques cannot

separate density variations from velocity or bulk modulus variations. As

shown by Clayton and Stolt (1981) and Raz (1981), the above method of linear

inversion provides the mathematical basis for recovering both velocity and

density variations. Both papers present alternate approximate inversion

algorithms for separating the components of impedance. Since both

algorithms are formulated from Born theory, their underlying assumptions are

identical to those of Cohen and Bleistein. In fact, both methods reduce to

Cohen and Bleistein's result for zero offset and constant density. Hanson

(1984) has demonstrated this in his discussion of the three methods.

Although the Born inverse methods of Clayton and Stolt, and Iaz both

rely on the angular dependence of the reflection coefficient to separate

velocity and density variations, their approaches are different. The method

-2-
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of Clayton and Stolt is similar to that of Cohen and Bleistein in that the

data must be Fourier transformed over both time and the spatial coordinates.

In contrast, Rz's procedure operates in the time domain. In implementing ....

Raz's method, Hanson (1984) demonstrates that this time domain algorithm has

greater stability than the frequency domain methods. According to Hanson,

this improved stability derives from the operator's ability to accurately

record amplitude variations with offset. (Frequency domain methods

manipulate the entire wave field at once, and thus an accurate reference

velocity is necessary for stability.) Hanson admits however that the

careful picking of events, critical to Raz's method, is a tedious chore.

Thus, although Raz's method leads to more accurate results, there is of yet

no automated method of implementation.

In this investigation, we reformulate and implement the frequency

domain method of Clayton and Stolt for synthetic data representing a

stratified acoustic medium. Since we are reconstructing one-dimensional

parameter variations, we require only a single common shot gather. To

further simplify both the analysis and the computation of the inversion, we .

consider a constant background reference medium. By examining such a

rudimentary problem, we are able to focus on the reliability of two-

parameter, constant background, Born inversion under idealized conditions.

We remark also that this thesis is organized as a research progression which

represents the evolution of our understanding.

. ..-* .- .



DEEIATION OF TEE FORWARD AND INVERSE RQUATIONS

Introduction

In this chapter, we derive an approximate technique for the direct

inversion of the density and bulk modulus variations of a stratified

acoustic earth. As mentioned above, we reformulate the method of Clayton

and Stolt (1981) to accommodate a one-dimensional medium. We therefore

present their general result first. In their paper, Clayton and Stolt

express the observed wave field as a Lippmann-Schwinger equation which

represents the sum of all scattering interactions in a two-dimensional

acoustic medium. The resulting integral equation is equivalent to the

Green's theorem expression presented by Cohen and Bleistein (1979). To

invert this forward equation, Clayton and Stolt assume that all subsurface

parameter variations are small and apply the first Born approximation. This

procedure establishes an approximate linear relationship between the medium

variations and the observed data, and it is identical to the linearization

inherent in the method of Cohen and Bleistein. Therefore, although the

notation of this derivation is similar to that of Clayton and Stolt, the

derivation of the forward equation adheres largely to the work of Cohen and

Bleistein. The inversion of the resulting integral equation however relies

on the insights of Clayton and Stolt.

Derivation of the InteStal Bquation

Wave propagation in a variable density, two-dimensional acoustic medium

is governed by the equation:

." -4-
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4. . .3

LU U = -6(x - xs)6(zs)S(W) (1)

where L is the linear wave operator defined by the middle expression of this

dual equality, U is the pressure wave field, p is the density, K is the bulk

modulus, and S(w) is the Fourier transform of the source-time function. In 0

this and other equations, the subscripts g and s denote the receiver and the

source locations, respectively. The inversion of this equation for the

acoustic medium parameters is in general a nonlinear problem. To overcome 0

this inherent nonlinearity, we express solutions as perturbations about a

reference medium where analytic solutions are known. The equation

representing the response of the unperturbed medium is given by 0

-V *-- U = -b(z - I)B(z)S(W) (2)r r Pr K r g

where L r is the linear operator in the reference medium, U r is the field in

the reference medium, and Pr and Kr are the reference medium parameters.

We now rewrite equation (1) to as to introduce the scattering potential

V(x,z) and its corresponding perturbations a, and as. Recognizing that the

scattering potential which initiates the scattered wave field is merely the

difference of the linear operators, L and Lr, we add and subtract Lr to L in

equation (1). After collecting terms, we find

. -'.." " ".



r .+ + V(x,z) U -6(x - x (z)S(W) (3)

where

r "rS= .-- , a - - -1 41.(4)2 -

and

W5 a
1 a5

V(x.z) = - + V a s V . (5)
Kr Pr

Although a, and S3 are dimensionless parameters, we consider them as the

medium variations and seek their values in the inversion process. To

recover the actual parameter variations, we need only substitute the

inverted values of a, and a2 into equations (4) and solve for p and K.

The wave field represented by U (recorded at the geophone location xg

due to the source at location x.) is the simple integration of all

*scatterers over the entire subsurface area. This total wave field is the

sum of the direct wave field traveling from source to receiver and the wave

field reflected from within the subsurface. The seismic experiment we are

considering consists only of the measurement of the scattered or reflected

wave field. We therefore express the observed field or the data as the

difference of the total field and the field in the reference medium

D(xz ,w) (U - U )S(,) (6)

where Ur is now thought of as the direct wave. The presense of S(w)

acknowledges that the i'st necessary for any subsequent inversion are

implicitly band-limited.

To establish a relationship between the data and the parameter

........................... .. .. ..



variations, we subtract equation (2) from equation (3)

0

Y[v + j D = -V(Ur + D)S(w) (7)

In order to provide an approximate linear relationship between the surface

observations and the perturbations, we apply the first Born approximation

and replace the total field by the field in the reference medium. As

always, the Born approximation requires that the perturbations and hence the

scattering potential remain small. We are justified in ignoring the product

VD appearing on the right hand side of equation (7) as it is of lower order

than the product VUr (Bleistein, 1984). Therefore, the linearized equation

is

V - + D -VU S(w) . (8)

In the language of theoretical physics, the above procedure is

equivalent to truncating the Born series representation of equation (7)

after the second term. By applying this linearization, we are forcing the

inversion to model all observed data as primary reflections. The result of

this is that the inversion cannot properly interpret both transmission

losses and multiple reflections. The addition of other nonlinear terms of

the Born series would include such phenomena in the forward equation, but

the inherent nonlinearity would preclude a direct Inversion.

It is convenient to express equation (8) as an integral equation which

-7- 5
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incorporates the Green's function representations of the incident and the

scattered fields

ID(xx,) dx'j dz' Gr(xOiz',z1)0.--

V(x',', )Gr(x',z'jxs ,0w,)S(W) (9)

In order to successfully recover the components of reflectivity, we

have considered wave motion in a two-dimensional medium. In keeping with

the method of Clayton and Stolt (1981). we consider two-dimensional Green's

functions in the above integral equation. The first Green's function in

this expression represents the wave propagating from the scatterer location

to the receiver location. Similarly, the second Green's operator

corresponds to propagation from the source location to the scatterer

location. Both Green's operators represent the outgoing solutions in the

reference medium as indicated by the "+ sign and are derived in Appendix A.

According to equation (9). the surface wave field can be determined if

the parameter variations a, and as are known. Equation (9) is therefore

often referred to as a forward equation. Our goal is to invert this

equation so that the parameter variations are expressed in terms of the

known data.

Inversion of the Integral qnation for the Medium Parameters

For our specific inversion scheme, we are considering only constant

background reference parameters, pr and K r . This approach allows a direct

inversion of equation (9) since the Green's functions have an exact analytic

. .. ,........ ........
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form.

Substituting equation (5) into equation (9), we find

* .9

D(x x w) i/P dxJ dz' G (x Olx',z'iw)

k ka (zl,z') + V*a 1 (', z')V JG(x'.zIxs#0IW)S()) (10)

where k r= w/c r  . Following the derivation of Clayton and Stolt, we

integrate the density term by parts to obtain •

[(x , .0)) =

l/P D dx' z' (k a ',z')G r Ol',',t)G (x',Z'iX,,O, ) .

Ir r g -r .- -

a (x'.z')VG +xs, Olx',z',1) • VG+(x',z' (11
a r £r 

• - -

where we eliminate the boundary terms by assuming that the scattering ... .

potential is of bounded support. Fourier transforming over both source and

receiver locations gives

B(k ,k ,w)

I/p dz' dz' Use (zzC)Gr(ki g O1xezlW)GtW z'U 2ikxe 0W)

- a (x',z')Vg+(k ,Ox'zw) • V6(x',zjk ,O,t,))S(N) (12)
r 8g r' zo

where the tilde denotes the spatial Fourier transform.

In Appendix A, we derive the analytic expressions for the Green's

-9- S



functions represented in equation (12). Inserting these results into

equation (12) and applying the differential operators yields

P
(k k = kk I - k ,k - k

R xs) 4k k r I as zg zs
zg Z5

+ (k k - k k s)I(k - k .- k k Js(w) (13)

This expression establishes an approximate linear relationship between the

Fourier transform of the scattered wave field and the Fourier transform of

the medium variations. As pointed out by Clayton and Stolt, there is more

than enough information inherent in the data to allow an inversion for the -

medium parameters.

In this investigation, we reduce the dimensionality of the problem by

one. That is, we confine our attention to the situation where the medium

parameters depend only on the depth variable. As a result, the offset

surface reflection data must be collected on a line-source, line-receiver

configuration, and only one shot record is required. Since the data varies

in two directions while the medium varies in only one, we term this a 1.5

dimensional inversion. In Appendix B, equation (13) is recast in terms of

the one-dimensional medium parameters to sive

-Pr

B(kz,*,) [k:irf(--2kz) + (2k' ka)ir(-2k ) S() . (14)4k 2z

z

Before inverting the above equation, we must precondition the observed

data. If the data were a recorded time section, then we would have to

-10-
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Fourier transform the data with respect to x, and express the result as a

function of kz . This second processing step would be achieved by applying

the dispersion relation and resampling the resulting function for

appropriate values of Akz . Additionally, we would also have to deconvolve

the source function S(w) within the temporal bandwidth before inverting.

This procedure would require detailed knowledge of the source function which

also might be used in a weighted least squares solution. Furthermore, for a

fixed angle implementation of this method on field data, the deconvolution

of the source function would be critical for accurate inversion results.

For the purposes of this investigation, the above processing steps are

unnecessary since we are considering only synthetic dataP we therefore

express our synthetic data directly as a function of kz and allow all

temporal frequencies to be of equal amplitude. Thus, the forward equation

becomes

(k w) = A (k ,)1 (-2k) + A (k ,O)t(-2k ) (15)
s z z I z a z z

where Dslkz, W) represents the synthetic data, and

2S
-P •

A (k ,w) =

1 Z 4k'c'

zz

(16)
-p0

A (k ,lw) -LE~2 - A (k ,w)
a ~ 2 £z

Since the medium variations, a, and a, are independent of 6), we may S

compute A,, A2. and D. for two distinct values of w and solve for a, and a,

directly. With temporal frequency as the free parameter, the inversion

relations are simplified to become: S

U - 11 - S



It ,4crk2 (k w ) (k ,ws

I(-2k) = (-2k - rkz s z I s z 2(17a)
z z Pr W2 2

1 2

(k w) w : 5 (k OWl r : ( - 2 k z L r- - - ( 1 7 b )" - " .
2 P r1 2 ()2

L 1 2

By expressing the inversion relations in this manner, we observe the near

singular behavior of these functions as w, becomes close to w2. To express

11' and 1 2 ' as functions of depth, we inverse Fourier transform equations

(17).

Since the choice of input frequencies is somewhat arbitrary, we could

attempt a least-squares or an average least-squares solution over frequency

values. This approach would only provide improved results if noisy

synthetic or real data sets were being inverted. In any case, the least-

squares result is given by the solution to the equations:

where the summations are taken over values of w. The derivation of the

preceding result is given in Appendix C.

- 2 -



DEEIVATION OF THE SYNTUETIC DATA

Introduction

In this chapter, we examine the synthetic data which we implement to -

test the inversion. We choose an exact analytic form for the data so as to

IS
create a controlled experiment. This control not only provides a more

confident interpretation of subsequent reconstructions, but also it

simplifies the mathematical analysis. To conform to the requirements of the

inversion, this synthetic data is computed directly in the Fourier domain.

Since we are considering a one-dimensional medium, the synthetic data

is constrained by a line-source, line-receiver configuration. Even though

the medium only varies with depth, the data varies with offset. This

feature of the data provides the information necessary for the separation of

the components of impedance. The specific form of this data is derived from

the point-source results given by Ewing, Iardetzky, and Press (1957). In

our derivation, we follow their approach and develop exvressions for both

single and double interface models. In sunary, the resulting analytic

expressions represent the two-dimensional Fourier transform of the wave

field scattered from a stratified acoustic medium and collected at many

offsets.

Derivation of the Single Interface Data

As an initial attempt, we consider an analytic expression which

represents the response of a single interface. This single interface

situation is modeled by joining two acoustic confstant velocity half-spaces.

-13-
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Since we are inverting for one-dimensional parameter variations, we require

only one shot record, the experiment providing this data is illustrated in

Figure 1. The point source response of this model is derived by Ewing, -- -

Jardetzky, and Press, and its corresponding line-source, line-receiver

expression is derived in Appendix D:

Dskx) = 1 + exp(-211 h) (19)

where h is the depth of the reflector below the source-receiver line,

6 = Ps/P, and

( 2(a)i p0- i ~-k . (20)

S - x 3 
=  x

c' ca

The right side of equation (19) is often referred to as the plane-wave

reflection coefficient for the single interface model (Frisk, 1979), and

this quantity is a function of both the incident angle and the input

frequency.

For our purposes, equation (19) must be written as a function of kz .

This is achieved by observing the dispersion relation, and the resulting

expression is

02

6kz k: + tA
(k W) = exp(-2ik h) (21)

55 6k + k + w A

z z--
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whereA 1  and o k+ k
x zc 2  c r €2 r

To view the shot record associated with this analytic expression, we

have only to apply a two-dimensional FF1 to equation '(19). The result of

this procedure for a particular input model is shown in Figure 2.

Derivation of the Double Interface Data

As an extension of this single interface situation, we consider a

d.ouble interface model. Although this model includes the same assumptions

as the single interface case, there are additional features which may

provide insight. Specifically, the two-interface data will include such

nonlinear effects as multiple reflections and transmission losses. By

inverting this forward model, we should be able to examine the accuracy with

which our linear inversion reconstructs nonlinear data. Furthermore, as the

depth and complexity of the probed medium increases, Born theory predicts

that the associated error will increase. Therefore, by examining this two-

interface model, we investigate the validity of our linear inversion where

it is predicted to breakdown.

For the two-interface forward model, we consider two constant velocity

acoustic half-spaces, separated by a constant velocity acoustic layer. As

with the one-interfac,, model, the source and receivers are located in the

upper half-space. The geometry for this model is illustrated in Figure 3.

To derive the analytic expression, we follow the method of Ewing, Jardetzky,

and Press and determine the displacement potential of the upgoing waves at

the receiver depth. This is accomplished by solving the system of equations

which satisfy the boundary conditions at each interface. The details of
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this derivation are given in Appendix E. Thus, the synthetic data for the '4
"4

two-interface model is given by the plane-wave reflection coefficient I

R + R exp(-2V1 h a) 1
S(kx# ) 1 + R 9 exp(-23h ) exp(-2VxhL) , (22)

where R x and RB are the Rayleigh reflection coefficients at the first and

second interfaces, respectively:

0 -6 2 -v s O
B (k -= , R(k ,W) = (23)

+ z 6y + V-

As before, we define: 61 = p2 P1 , 6a P./P 2
' and

2 2s  0) lrk (24)V 1  = i -- - k ' " p i -- I , = i " - k1
C 1  CaCj.

If the model parameters are matched up across either interface,

equation (22) reduces to equation (19). This feature allows us to implement

equation (22) for either the single or the double interface models.

As in the single interface model, we can express equation (22) as a

function of kz this is the analytic form required by the inversion

relations and is accomplished by rewriting equations (24) as

0 -16-



Vi ij+(a A . a =ik+to A k +, = i k + t A1  (25)

where

1 1 , 1 1 16
A -- j ,A - .(26) 02 2 3

c c cC C C C
I r5 r

To accommodate the Born approximation, we may choose to consider a form 0

of equation (22) which excludes multiple reflections. This expression is

derived in Appendix E and is given by

- kXW) =R exp(-2y h1 ) + R,(l - R:) exp[-2(p;h 1 + V2 h)3 (27)

where (1 - R,2) represents the transmission loss through the layer.

An example of a shot record for this two-interface model is shown in -

Figure 4. This result was computed by applying a two-dimensional FFT to

equation (22).

Before inverting equation (15) for the data represented by equations

(21) and (22), we note that the synthetic data and the inversion are based

r on two different Green's function conventions. Equating the conventions 0

used by Clayton and Stolt (1981). and Ewing, Iardetzky, and Press (1957)

gives a new form to the forward equation:

-17- 0
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a

A l(k ,w) = 2

k cz r
(28) -

A (k .w) -2n - A (k w)
I z I

Thus, to invert equation (15) for the synthetic data discussed in this

chapter, we must replace equation (16) by equation (28).

".'
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ARTIFACTS IN LINEAR INVERSION

Introduction .0

Before considering examples of reconstructed acoustic profiles, we

examine the source of artificial parameter variations which contribute to S

two-parameter reconstructions. As mentioned above, our inversion scheme is

based on a linearization of the nonlinear relationship between the model

parameters and the observed data. This linearization produces errors in all 0

subsequent reconstructions. For instance, a variation in one acoustic

parameter will generate a false variation in its reconstructed counterpart.

We term these artificial parameter changes, inversion artifacts. In this 0

chapter, we discuss the source of these artifacts in the context of linear

inverse theory. Specifically, we outline the method developed by Weglein,

Violette, and KEho (1985) for both identifying and reducing single 0

interface artifacts. (In fact, this thesis represents the double Interface

extention of their work.) In this chapter, most of our conclusions are

derived from the analytic form of the synthetic data. We begin however with 0

a general analysis of the differential equations relevant to our method.

ExaRining the Differential Equation

Consider the differential equation governing wave motion in a

stratified acoustic medium 0

+ ++ a + lai U(x,z,w) -0 (29)

0 zOz 2 r cr 
"
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The spatially transformed wave field satisfies

2 2
W .((k z, W) 0 (30) -(. x + + ±~ 1 + r 2.jjOk#z) 0

I a z • C r C r

and can be rewritten as

k2

2+ V(Z. W) fk 1 ' (kzW) 0 (31)

where w/Cr= kx2 + kz , and

a

V(z,w) a + a (32)

C
r

By applying the Born approximation, we assume that the total field, U, can

be replaced by the field in the reference medium, Ur .  Since the field in

the reference medium satisfies

(..+s k: tr(ke*zW) =0 (33)

it is clear that equation (31) will only be well approximated by equation -

(33) when

ksu >> V(z,w) * (34)
z

For the fixed frequency implementation outlined in the previous chapter, k1z

* values can range from zero to w/C r where wi is the smaller of the two

-20-
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chosen angular frequencies. Thus, for any scattering potential, V, there

exists kz values near zero for which equation (34) is not satisfied, and the

Born approximation is inappropriate. Reconstructed profiles which utilize

low kz data values will be degraded by the inherent nonlinear processes. We

should therefore eliminate low kz data values prior to inversion. In

effect, preconditioning the offset data in this manner allows the linear

inversion to produce more exact results.

Analysis of Single Interface Inversion Artifacts

In the previous section, we examined the differential equation to

determine which portion of the data in the wavenumber domain best satisfies 0

the assumptions in our linear inversion. We found that even though no

wavenumber component of the data is independent of nonlinear effects,

certain portions are more strongly influenced than others. To better 0

understand this observation, we now consider an analytic expression for the

artifacts generated by exact synthetic model data. As a simple example, we

substitute the single interface result given by equation (21) into the 0

inversion relations given by equations (17).

Consider the situation where only the bulk modulus varies across the

interface. In this case, the exact value of the density variation a, is

zero. The reconstructed value of a3 is determined by substituting bs(kzW)

into equation (17b) with p, set equal to P2:

i 2
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a (-2k z ) =
a z

2 2 - [
k + kIa +wfi k:+ k + I ws :I ezp(-2ikz h). (35): -Pr I z + z + '  z +Ik '

This relation represents a density change at z = h and is identified as the

source of the density artifact. After examining this equation, we conclude

that this density artifact will vanish only if A equals zero. Since A is

zero only for both constant density and bulk modulus, it is obvious that our

inversion scheme will always predict a density variation for the case of

constant density. Alternatively, it can be shown that a similar

substitution of the data for a constant bulk modulus model into equation

(17a) leads to a false bulk modulus change. Therefore, even though the

synthetic data has an exact form, the reconstructed acoustic profiles

contain artificial variations which are traced to the linearization of the

inversion.

To understand the nature of these artifacts, we examine equation (35)

which represents the artificial density variation generated by a bulk

modulus change. We notice that if we choose w, close to w2 , and if

k: ) w2A , (36)

then the density artifact diminishes, that is, as' -4 0. The criterion

expressed by equation (36) is identical to equation (34) with density held

constant. As before, we satisfy this requirement by eliminating low kz
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offset data prior to inversion. By performing a similar analysis on the

bulk modulus artifact generated by a density change, we confirm that the

requirement suggested by equation (36) will indeed reduce this artifact as

well. We conclude that the condition initiated by our analysis of the

differential equation is verified by our analysis with the synthetic data.

2If we eliminate W from both sides of equation (36), we obtain

C:

cos e )) - 1 (37)

2S

where e represents the angle of incidence with respect to the z-axis. T e

condition expressed by equation (37) suggests that the data corresponding to

large 0 are responsible for the inversion artifacts. Eliminating low kz

data is physically equivalent to excluding large 0 data from the inversion.

Note also, when c1 ( c,, equation (37) becomes cos a) > osSuc where ec

represents the critical angle. To satisfy this condition, we must insure

that e < )c which precludes the use of post-critical data. This observation

is not surprising as the reflection coefficient becomes imaginary with

modulus equal to one for 0 > Oc. Equation (37) however demands more than

just the simple elimination of inhomogeneous waves from the inversion. To

satisfy equation (37), we must eliminate the incident angles which

correspond to a large scattering potential. By permitting these angles to

contribute to the inversion, we are allowing the scattering potential to

become large. This result violates the primary assumption which supports

the applicability of the first Born approximation. Therefore, to diminish

artificial parameter variations, we should eliminate the data which are

characterized by large incident angles since these data correspond to a

-23- I



significant scattered wave field.

In his two-parameter Born inversion scheme, Raz (1981) linearizes the

acoustic reflection coefficient to obtain stable results. In implementing

Raz's method, Hanson (1984) remarks that the reliability of this method

rests largely on the accuracy of this approximation. In fact, Hanson's

results are favorable only when the variation in the reflection coefficient

is small. At large angles, the reflection coefficient deviates appreciably

from the linearized expression, and the method fails. As mentioned by

Clayton and Stolt, the amplitude information inherent in offset data allows

the proper separation of the components of impedance. The above results

however suggest that the large 0 information can seriously degrade

reconstructed acoustic profiles. We conclude that the accuracy of these

methods relies not only on the inherent variation in the reflection

coefficient, but also on the suitability of the Born approximation in

representing this offset information. Later, we will consider synthetic

examples which illustrate this apparent contradiction.

Identification of Single Interface Inversion Artifacts

In this chapter, we have presented the method of Weglein, Violette and

Keho (1985) for enhancing the interpretability of reconstructed acoustic

profiles. As mentioned above, this is accomplished by preconditioning the

input data so as to minimize the effects of nonlinear processes. In their

work, Weglein, Violette, and leho also discuss a method for identifying

these single interface artifacts, we outline this method below. Given a

data set, we would run the inversion for two different kz bandwidths. The

data for the initial inversion would include all permissible kz values while

-24-



the second inverted data set would be filtered to eliminate low kz values.

Since the low kz data is highly dependent on nonlinear processes, the

broadband reconstruction would be less reliable than the band-limited

reconstruction. By comparing these reconstructions, we could identify the

artifact as that variation whose relative amplitude decreased most rapidly

between reconstructions. This artifact could then be ignored in a

subsequent interpretation. In the following chapters, we will examine the

usefulness of this procedure for identifying both single and double

interface artifacts.

L~~~- - -o. -,i ---
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FIXED FREQUENCY SINGLE INTERFACE RECONSTRUCrlONS

Introduction

In this chapter, we examine the reconstructed acoustic profiles of the

single interface synthetic data discussed in Chapter 2. Drawing on the

analysis of the previous chapter, we implement a method for both reducing

and identifying artificial parameter variations. In all these

reconstructions, the reference velocity is chosen to be the velocity in the

first medium. Consequently, the Born-predicted locations of the

reconstructed parameter variations are always correct, and the Born-related

artifacts only affect the amplitudes of the reconstructions. In the

subsequent examples, we not only consider the deficiencies of our linear

theory, but also we emphasize the role of the angularly dependent reflection

coefficient in recovering both acoustic parameters.

Interpretation of the Reconstructions

Due to limitations implicit in conventional acquisition techniques,

seismic data is band-limited at both ends of the spectrum. This loss of

information impairs all subsurface reconstructions provided by direct

inversion procedures. Specifically, the absense of high spatial frequencies

limits the resolution of subsequent images--structural variation within the

high frequency limit is not detected. An equally serious limitation is

created by the loss of low frequency information. The missing low spatial

frequencies contain information about the background or the absolute trend

of the medium. As a result of this limitation, all reconstructed parameter

- 26 -
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changes are signaled by band-limited step functions which deviate about a

constant background medium. The amplitudes and the directions of actual

parameter changes can be inferred from these step functions, but slowly a

varying information cannot be directly recovered. By examining the impulse

response of a layered earth model for several bandwidths, Hanson (1984) has

demonstrated the limitations implicit in band-limited data.

For interpretational purposes, Bleistein and Cohen (1982) choose to

process the data for the derivative of the variation rather than the

variation itself. This result arises from two observations: (1) both the

amplitude and the directon of a parameter change are more easily extracted

from a band-limited delta function than from a band-limited step function,

and (2) the strength of a parameter change can be directly estimated from 0

its corresponding band-limited delta function (Mager and Bleistein, (1979)).

In this investigation, we follow the suggestion of Bleistein and Cohen and

" process for the normal derivative of the perturbations. Since all

reconstructions are contaminated by artifacts of the linear inversion, we

are not concerned with relating these reconstructed amplitudes to the actual

input parameter changes. We note however that the peak amplitudes of these •

sinc-like functions are proportional to the spatial bandwidth

(Mager and Bleistein, (1979)). In presenting the reconstructions, we

normalize the reconstructed profiles to the largest peak value of a, or aS2

and list the corresponding maximum values. This feature aids in the

comparison of different reconstructions. As a general rule, we may only

compare the amplitudes of different reconstructed profiles if their spatial

bandwidths are equivalent.

S0
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Increasing Velocity Reconstructions

In this section, we consider the inverted output of three different

increasing velocity input models. These models simulate : (1) constant

density, (2) constant bulk modulus, and (3) constant normal incidence

impedance structures. Listed with each reconstruction are the input

velocities in feet per second, the input densities in grams per cubic

centimeter, the maximum incident angle in degrees, and the reflector depth

in feet. Also included is a plot of the plane-wave reflection coefficient

with offset. This plot not only demonstrates the nature of the specific

reflection coefficient, but also it indicates the amount of offset data

included in the inversion. Note that when kx exceeds the smallest

wavenumber in either medium, the reflection coefficient becomes imaginary.

We therefore plot the reflection coefficient up to this limit.

In these examples temporal frequency is the free parameter, and the two

input frequencies are listed (in Hz) with the model parameters. The smaller

of these two frequencies determines the maximum k2 value: kzmax r .

The lower limit of the k z bandwidth is fixed by the maximum offset allowed

in the inversion: kzmin = krcosemax. This fact follows from our fixed

frequency formulation. By fixing frequency, we must sweep through a range

of incident angles to generate a suite of kz values. This method for

establishing a spatial bandwidth has its shortcomings. For instance, if we

reduce offset by restricting e, then we necessarily eliminate some low

spatial frequencies from the inversion. In this implementation, the

bandwidth is determined by both the choice of input frequencies and the

maximum offset included in the inversion.

To conform to the seismic bandwidth, we generally do not invert for
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frequencies much larger than 60 Hz. Also, we choose the input frequencies

rather close together since: (1) Born-related artifacts are reduced, and (2)

we only compute the inversion for k z values corresponding to the smaller of

the two input frequencies.

As a first model, we consider a 10% velocity increase with density held

constant. To demonstrate the artificial density variation produced by a

bulk modulus change, we invert this model with all pre-critical offsets

included in the data. This reconstruction is shown in Figure 5. As

expected, the reconstructed bulk modulus predicts the proper parameter

change while the reconstructed density variation records a substantial

artifact. This artifact is a plot of the Fourier transform of equation

(35). As explained in the previous chapter, the origin of this artifact can

be traced to the behavior of the reflection coefficient at far offsets. The

plot of the reflection coefficient for the data inverted in Figure 5 details

this nonlinear behavior. To reduce this artificial density variation, we

have only to eliminate the far offset data which are inconsistent with the

Born approximation. The reconstructed profiles for this case are presented

in Figure 6. Notice that the plot of the reflection coefficient -.

demonstrates the reduction of offset data by an angle of 10 degrees.

Clearly, the density artifact has diminished relative to the actual bulk

7 modulus variation. We note however that we have sacrificed some low spatial

frequencies by discarding some offset information. As mentioned above, by

reducing the spatial bandwidth, we necessarily reduce the amplitudes of the

reconstructed parameter variations. Therefore, by adhering to the

condition of equation (34), we have provid.C an interpretable acoustic

profile for a 10% velocity change.

The preceeding example also demonstrates the artifact identification

-29 -
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procedure of Weglein, Violette, and Keho (1985). By comparing the

reconstructions of Figures 5 and 6, we observe that the relative amplitude

of the density variation has diminished more rapidly than the bulk modulus

variation. Thus, we identify the density change as an artifact of the

linear inversion.

As a second example, we examine the inverted profiles of an input model

2corresponding to a 10% velocity increase for constant bulk modulus: c1 p,

c 2 
1 P. To view the associated bulk modulus artifact, we ran the inversion

for data which includes all pre-critical offsets (see Figure 7). As before,

we reduce the Born-related artifact by excluding the far offset (low kz )

data from the inversion (see Figure 8). Once again, we acknowledge that

this procedure serves to diminish the relative amplitude of the artifact and

could be used as an artifact identification procedure. This reconstruction

however has a different character from the previous example. By comparing

Figures 5 and 7, we notice that the bulk modulus artifact does not dominate

the reconstruction as in the case of the density artifact. This result

suggests a feature of two-parameter Born inversion which should be recalled

when interpreting subsequent reconstructions. Simply stated, the

reconstructed density profiles are less reliable than the reconstructed bulk

modulus profiles. Hanson (1984) has also documented this result in his

implementation of Raz's inverson method. Thus, although we can reduce

artifacts of the inversion, we recognize that both parameter reconstructions

are influenced by differing levels of inaccuracy.

As pointed out by Hanson, the most accurately inverted profiles are

obtained when the density and the bulk modulus vary in a manner which

reduces impedance contrasts. This situation occurred in the previous

example. As an additional example, we consider a model where although both

30
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parameters vary across the interface, the normal incidence impedance remains

constant. The filtered and unfiltered reconstructions of a constant

5 impedance model with 10% parameter changes are shown in Figures 9 and 10, -

respectively. For this input model, the expected reconstruction should

consist of the bulk modulus and density variations moving equal amounts in

opposite directions. In Figure 9, we notice that, once again, the density

variation dominates the reconstruction. As before, we are able to obtain an

interpretable result by preconditioning the offset data prior to inversion

(compare Figures 9 and 10). The primary reason for presenting this example

is to demonstrate the usefulness of two-parameter inversion techniques. By

taking advantage of impedance variations with offset, we are able to

separate the components of reflectivity. Methods which utilize coincident S

source-receiver data can only recover normal incidence impedance changes and

would not interpret a parameter change for the model of Figures 9 and 10.

Decreasing Velocity Reconstructions

When the velocity decreases across the interface, there are no post-

critical data to exclude from the inversion. This allows us to test the

inversion for broadband data. As an initial example, we consider the model

of Figure 5 with the velocities interchanged. This situation is equivalent

to probing the model of Figure 5 from below. A quick look at the plane-wave

reflection coefficient for this model reveals that its magnitude is

identical to that of Figure 5. In Figure 11, we present the broadband

. reconstruction of this model. Clearly, the density artifact is of the same

order as the actual bulk modulus variation. Comparing this broadband

artifact with its counterpart in Figure 5, we observe that both are of equal
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size relative to their respective bulk modulus changes. Since the spatial

bandwidths of these models are different, this equivalence might be traced

to the equivalence of the reflection coefficients. To test this, we invert

the model of Figure 12 for data which correspond to the reflection

coefficient of Figure 6. In comparing the relative sizes of the resulting

density artifacts, we conclude that they indeed are of equal amplitude.

Therefore, the amplitudes of inversion artifacts are determined by the

nonlinear nature of the reflection coefficient. By adhering to the

criterion suggested by equation (37), we can reduce these deleterious

effects.

Constant Velocity Reconstructions

As a final example which illustrates the usefulness of two-parameter

inversion techniques, we consider a constant velocity model. For this

situation, the reflection coefficient is a constant which does not vary with

offset. We therefore gain nothing by filtering the offset data prior to

inversion. This example provides the only situation where our approximate

inversion agrees with the exact result. That is, since there is no velocity

constrast, the Born approximation is exactly satisfied (A, 0). As a

result, both tae Born and exact theories predict that both parameter

variations have equal amplitude and polarity. An example of a broadband

constant velocity reconstruction is illustrated in Figure 13. Clearly, this

two-parameter inversion scheme can accurately predict these subsurface

parameter changes.
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Least-Squares Reconstructions

As mentioned above, inversion results improve if the input frequencies 0

are chosen close together. There is however no criterion which governs the

specific choice of these frequencies. In the previous examples, we chose 60

U* and 62 Hz, because these values both conform to the seismic bandwidth, and

provide reasonable inversion results. To demonstrate that the specific

choice of frequencies is arbitrary, we consider a least-squares solution

over a range of frequency values. In Figure 14, we present a least-squares

reconstruction of the model shown in Figure 6. These results are obtained

by inverting equation (18) with the summation extending from 55 to 65 Hz.

In comparing Figures 6 and 14, we acknowledge that the reconstructions are

similar in character and would lead to equivalent interpretations. Their

only difference lies in the frequency content of the reconstructed profiles.

The similarity of these results is not alarming. We do not expect the

least-squares procedure to improve the inversion of synthetic data since

this method is only useful when considering noisy synthetic or field data

sets. The above example merely demonstrates that inversion results are not

strictly dependent on the choice of input frequencies. As mentioned above,

the two frequencies should be chosen close together, and should be large --

enough to provide a sufficient bandwidth for stable computation.

0- .' .
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FIXED FUBQUBICY DOUBLE DITERFACE RECOSTRUCTIONS

Introduction

In all wave equation methods which transform surface reflection data

into a map of subsurface reflectors, the selection of a background velocity

profile determines the accuracy of the results. For Born inverse methods,

this reference velocity affects not only the migration of the image, but

also the recovery of the amplitude information. These results are

demonstrated in a simple example by Weglein and Gray (1983). In this

example, they consider the single parameter Born reconstruction of a one-

dimensional medium for various constant background velocities. They

conclude that constant background Born techniques cannot simultaneously

determine both the location and the size of a single parameter change.

As mentioned above, our inversion scheme assumes that the velocity in

the first medium is the constant background velocity. Consequently, the

locations of both parameter variations are correct for the first reflector

while the amplitudes are necessarily incorrect. In addition, these

amplitudes are further complicated by the apparent link between the

parameter variations. The deficiencies of Born methods do not improve with

depth. In fact, both the locations and the amplitudes of the parameter

variations for the second reflector will be incorrect. In this chapter, we

examine the reconstructions of the double interface synthetic data derived

in Chapter 2. When examining these reconstructions, we use the first

reconstructed reflector aa a measure for the accuracy of the second

reconstructed reflector. For interpretational purposes, it is safe to

assume that the amplitude of the first change is correct if the data have
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been filtered. The following examples will expose the deficiencies inherent

in the formulation of our approximate inversion. As before, we will attempt

to rectify inversion artifacts by filtering the input date prior to

inversion.

Examples of Double Interface Reconstructions

To conform to realistic earth models, we considered 10% parameter

changes for the single interface model. By filtering the input data, were

able to obtain interpretable reconstructions. For the double interface

model, we begin by considering two consecutive 10% parameter changes. In

Figure 15, we present the reconstruction of a constant density model with

the layer separating two half-spaces of equal but lower velocity. Clearly,

the inversion is unstable for this input model, the density artifact

r associated with the second interface dominates the reconstruction. To

improve this reconstruction, we adhere to the previous strategy and

eliminate far offset data prior to inversion (see Figure 16). In comparing

Figures 15 and 16, we observe that this procedure does not improve the

interpretability of the reconstruction--eliminating low kz data merely

reduces the spatial bandwidth. Furthermore, the artifact identification

procedure outlined in Chapter 3 is not effective in delineating the double

interface density artifact. We conclude that this procedure is limited to

situations where the inverted wave field is accurately modeled above the

reflector of interest. We note also that the density artifact incorrectly

establishes the location of the second interface. Born theory however would .,

predict a location shallower than 3000 feet rather than deeper. Thus, it

appears that this inversion scheme produces unstable results for this model,
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and these results are not improved by further filtering the input data.

Since this method is based on a weak scatterer approximation, we expect

stable reconstructions for smaller parameter changes. In Figures 17 and 18,

we present the reconstructed profiles of the model of Figure 15 with the 10%

velocity changes replaced by 11 and 0.1% changes, respectively. In all

three models, the maximum offset, the input frequencies, and the reflector

depths are equivalent. Turning first to Figure 17, we observe that although

the density artifact continues to dominate the reconstruction, the overall

results are more stable. Note that the reflection coefficient is trivial

for all offsets in this inversion, yet the reconstruction is inaccurate.

This result further demonstrates that the low k5 filter has a limited

application for the two-interface situation. When the parameter changes ire

reduced by another order of magnitude (see Figure 18). the reconstruction is

interpretable, however, the density artifact located at the second interface

still exists. For this model, the reflection coefficient is too small to be

distinguished from the kx-axis. From the preceeding examples, we conclude

that this inversion method cannot properly interpret two successive real

earth parameter changes. As shown, the inversion results are only accurate

for a cumulative change of 0.2%.

In the previous chapter, we examined a constant bulk modulus model to

illustrate that inversion results improve for parameter changes which

minimize impedance contrasts. In Figures 19 through 21, we present the

reconstructed profiles of double interface, constant bulk modulus, models.

These models are consecutively equivalent to the models of Figures 15, 17,
01

and 18 with only the densities adjusted to simulate constant bulk modulus.

For example, the spatial bandwidth, the velocity contrasts, and the

reflector locations are equal for the models of Figures 15 and 19, however.
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the input density profile of Figure 19 produces a constant bulk modulus. By

equating all but the input densities, we insure that the limitations imposed

by the Born approximation are identical. This allows a simple comparison 0

between the two models. Similarly, the constant density models of Figures

17 and 18 can be compared with the constant bulk modulus models of

Figures 20 and 21, respectively. Thus, in considering these six

reconstructions, we can compare results within each constant parameter set

or against its counterpart in the other set.

Considering Figure 19 first, we notice that the density change located

at the second interface dominates the reconstruction. This change should be

of equal amplitude and opposite polarity as the change which delineates the

first interface. We therefore consider this reconstruction to be unstable.

In fact the character of this reconstruction resembles the unstable constant

density reconstruction of Figure 15. The differing density profile only

j affects the response at the first interface, We conclude that for velocity

contrasts of this magnitude, the inversion results are unstable, regardless

of the input density profile. It is also important to note that the

reconstructed density is responsible for the instability. This result ID

reinforces the previous statement that the reconstructed density is less

reliable than the reconstructed bulk modulus.

Next, we examine the constant bulk modulus reconstruction of Figure 20.

Although the velocity structure in this model corresponds to the constant

density model of Figure 17, this reconstruction is superior. In Figure 17,

the density artifact at the second interface dominates the reconstruction.

In Figure 20, the density change at the second interface is only slightly

incorrect in amplitude and location. Also, the bulk modulus artifact is

quite small. Thus, for 1% velocity changes, the input density profile of
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Figure 20 reduces the impedance contrasts and improves the inversion. In

fact, the accuracy of this reconstruction is comparable to that of Figure

18, even though the velocity contrasts are ten times greater. This further

suggests that artificial bulk modulus variations are less damaging than

artificial density variations.

Finially, we consider the reconstruction of Figure 21. As expected,

this result is almost exact, the bulk modulus artifact is trivial. In

comparing all three constant bulk modulus reconstructions with all three

constant density reconstructions, we conclude that the former set are more

accurate than the latter. This result is attributed both to the reduction

of impedance across the interfaces, and the controlling influence of the

density variation in all reconstructions. We must admit however that the

inversion is unstable for the realistic earth models of Figures 15 and 19.

Returning to the constant density model of Figure 15, we consider two

equivalent models but for the depth of the second interface. In Figure 22,

we present the reconstruction of this model with a shallower second

reflector. The model of Figure 23 is characterized by a deeper second

reflector. In comparing these three reconstructions, we conclude the the

error associated with the approximate reconstruction of the first interface

increases with depth. Therefore, not only is this fixed frequency procedure

unstable for two realistic parameter changes, but also the accuracy of all

reconstructions depends on the depth of the second reflector. Instead of

speculating as to the origin of these deficiencies, we take advantage of the

exact form of the model data to analyze inversion artifacts. Before we do

this, we reformulate the inversion to both improve stability and simplify

analysis.

0I
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FIXED ANGLE DIVERSIeON

Introduction

In the previous inversion scheme, temporal frequency is chosen as the

free variable when solving for the parameter variations. In that

formulation, the necessary suite of kz values is generated by sweeping

through a range of incident angles for each fixed wave vector. A

prohibitive consequence of this procedure is that the elimination of the

detrimental far offsets severely reduces the spatial bandwidth. As a

result, the inversion becomes unstable. To overcome this instability, we

reformulate the inversion in terms of fixed incident angles. Instead of

choosing two fixed frequencies, we now choose two fixed incident angles when

solving for the parameter variations. The kz values are computed by

establishing a temporal frequency bandwidth for the fixed angle wave vector.

As we will see, this formulation achieves greater stability as the offset --..-

information and the spatial bandwidth are no longer linked. In this new -

formulation, we can choose incident angles which correspond to Born- -

compatible reflection coefficients with no restriction on spatial bandwidth.

This procedure is not unique. In his time domain formulation, Raz (1981)

utilizes two distinct offsets when recovering both velocity and density. .

Therefore, in this chapter, we reformulate the inversion to improve the

stability of the output. To demonstrate this improvement, we re-invert the

models, previously considered in the fixed frequency formulation. As an

additional feature, this reformulation simplifies the computation of the

inverted profiles.

39
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Reformulation of the Inversion

In this section, we rewrite the forward equation in terms of the

incident angle 0. This is achieved by substituting the definition

k !L cos9 (38)
z c

r

in equations (28):

A 1 0) -
cos e

(39)

A (9) -2n- A ()
I I

where

Ds(kz O) = A (l)IL(-2k ) + A () Ir( -2k ) (40)5 Z 1

To invert equation (40) for the transformed medium variations, we compute

Al, Al, and D. for two values of e and solve for I. and 'i2:

- (kI Z 0 (k z 03)
'I(-2k ) = 3 (-2k ) it a 1 (41a)

Sec 9 -sec -

e [ ec 9) D (k ,e ) - sec 2 O 5 (k ,e )I'(-2k ( 41b)
z 21t 2 _

,sec - sec J

04
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Clearly, this inversion procedure is computationally simpler than the

previous method since equations (39) are independent of kz . For a specific

0, A, and A2 are numbers which weight each spatial component of the data 0

equally. This result not only simplifies the computation, but also it

reduces the complexity of future mathematical analysis. Once again, we note

the near singular behavior of the denominator of equations (41) for 9D close S

to 93. As before, we have only to inverse Fourier transform equations (41)

to express the parameter variations as a function of depth.

To compute the synthetic data for this method, we generate the k z  0

values by fixing the incident angle and sweeping through a specified range

of temporal frequencies. For this fixed angle formulation, we re-express

the single interface data of equation (21) as

2
P 2  "c
-- 1+ r
p a

S (k Z'G) = 1 COS I exp(-2ik b) , (42)
2z

P 2, Cr:A L

-+ 1 + -P•Cos Oj

and the double interface data of equation (22) as

[ R (9) + R (O)exp(-2V2h) (

rk ,+ R1 (8)R2(O)exp(-2sh) jexp(2V~h1 ) (43)

where R, and Ra are the Rayleigh reflection coefficients at the first and

second interfaces respectively, and
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k I + 1; = ik 1 + ik +
z Z 2 cCos e cos e Cos

From these expressions, we observe that the Rayleigh reflection coefficients

are also independent of kz .

Examples of Fixed Angle Reconstructioas

In this section, we examine fixed angle reconstructions of single and

double interface models presented in Chapters 4 and 5. To compare the two

inversion procedures, we equate both the input model parameters and the

spatial bandwidths before inverting. In all of these examples, we examine

the reconstruction of a constant density profile, this allows us to test the

inversion for unfavorable conditions. As an initial example, we consider

the fixed angle reconstruction of the single interface model shown in Figure

6 (see Figure 24). Note that we now list the input angles (in degrees) and

the temporal bandwidth, instead of the input frequencies and the maximum

offset. In comparing Figures 6 and 24, we observe that the bulk modulus

variations are strikingly similar while the density artifact is smaller in

the fixed angle reconstruction. This improvement results from our ability

to confine the wave vector to a region which corresponds to a small

reflected wave field. In other words, in the fixed angle implementation, we

0i are able to satisfy equation (37) by choosing incident angles close to zero.

Consequently, the reflection coefficient satisfies the Born approximation.

*This idea can be seen by comparing the plots of the reflection coefficients

in Figures 6 and 24. In the fixed angle implementation, the reflection
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coefficient maintains the low values determined by the incident angle of 10

degrees, whereas its counterpart in Figure 6 traces out values corresponding

I k to 55 degrees. Clearly, the plot of the reflection coefficient for the

fixed angle implementation appears linear (constant). The selection of

incident angles in the fixed angle method is arbitrary. We note however

that as in the fixed frequency formulation, inversion artifacts diminish if

the input parameters (the incident angles in this case) are chosen close to

each other. In all subsequent reconstructions, we select the angles of 5

and 10 degrees to comply with the Born approximation. Therefore, the

flexibility of the fixed angle procedure provides more accurate results as

the spatial bandwidth is no longer linked to the offset information.

As demonstrated in the previous example, the fixed angle implementation

improves single interface reconstructions by further discriminating against

nonlinear portions of the offset data. We now apply this method to invert

double interface models and compare these results with their corresponding

fixed frequency reconstructions. As a first example, we invert the constant

density model of Figure 15 by the fixed angle method, this result is shown

in Figure 25. As before, we are able to compare these reconstructions since

both inversion mtthods are computed for equivalent spatial bandwidths. In

comparing Figures 15 and 25, we notice that the density artifact at the

* second interface dominates both reconstructions. However, the instability

inherent in the fixed frequency reconstruction is not present in the fixed

angle reconstruction. In the fixed angle reconstruction, the Born-predicted

0 location of the density artifact is correct. Thus, although the fixed angle

technique enhances the character of this reconstruction, the results

indicate that Born methods cannot successfully reconstruct both acoustic

* +parameters for 10% velocity changes.
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To continue this comparison, we consider two other constant density

models with 1% and 0.1% velocity changes, respectively. In Figure 26, we

present the fixed angle reconstruction of the 1% velocity contrast model of

Figure 17. In comparing these two reconstructed profiles, we observe that

the fixed angle profile is more accurate than the fixed frequency profile.

In the fixed angle reconstruction, the density artifact located at the

second reflector is one third the size of its fixed frequency counterpart.

Nevertheless, this artifact is still appreciable. To complete this series

of comparisons, we consider the fixed angle reconstruction of the 0.1%

velocity contrast model shown in Figure 18 (see Figure 27). Although both

reconstructed profiles are interpretable in terms of the input model, the

results of Figure 27 are superior. As before, the density artifact is

smaller for the fixed angle reconstruction. Therefore, even though the

aforementioned advantages of the fixed angle method improve the

reconstructions, the inversion method is still unreliable for real earth

parameter changes.

In the fixed frequency double interface examples of the previous

chapter, we presented evidence which suggested that errors associated with

the incomplete (Born) reconstruction of the first interface propagate with

depth. To verify this statement, we consider fixed angle reconstructions of

a constant density input model for various depths of the second reflector.

We choose the input model of Figure 26. Note that in the fixed frequency

demonstration of this phenomenon, we considered 0.1% velocity contrasts.

For the fixed angle example, we consider 1% velocity contrasts across the

interfaces. In Figures 28 and 29, we present the reconstructed profiles of

the model of Figure 26 with the second reflector located at 2000 and 4000

feet, respectively. In comparing these three figures, we conclude that the

-44-
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error does in fact increase with depth. This feature of Born inversion is

equally damaging for both inversion procedures.

In comparing the fixed angle reconstructions of Figures 26. 28, and 29,

we observe that the error affects not only the amplitude but also the

location of the parameter changes associated with the second interface.

* This result follows from the assumption of a constant background velocity.

By assuming a constant background velocity, we force the inversion to model

all waves as if they are propagating at the reference velocity. In this

example, the reference velocity is the velocity in the first medium. Since

this velocity is slower than the velocity in the second medium, the

reconstructed parameter changes are located above their expected locations.

This feature of the inversion is more obvious in the fixed angle example

than in the corresponding fixed frequency example because the velocity

contrasts are larger. In the next chapter, we consider the origin of

inversion artifacts in the context of the preceeding discussion.

In the above examples, we equate spatial bandwidths between inversion

procedures to allow a direct comparison of the amplitudes of the

reconstructed profiles. This apparent limitation is in opposition to the

flexibility of the fixed angle approach. In the fixed angle approach, we

may choose any spatial bandwidth for any incident angle. As a result, we

are free to select input date in accordance with the assumptions implicit in

the linear inversion. Unlike the fixed frequency method, the stability of

the results are not compromised by the bandwidth restrictions effected by

the Born approximation.
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INVERSION ARTIFAC'S REVISITED

Inttoduction

In Chapter 3, we examined the analytic form of the artificial parameter

variations associated with the Born reconstruction of the first interface.

We showed that these artifacts could be reduced by emphasizing certain

portions of the offset data in the inversion process. In fact, these single

interface artifacts can practically be eliminated through the flexibility of

the fixed angle implementation. In addition to these false parameter

variations, Born theory inaccurately predicts the size of the actual

parameter change at the first interface, even if the velocity in the first

medium is selected as the reference velocity. Fortunately, this amplitude

error is trivial. When considering the double interface reconstructions, we

demonstrated that the errors associated with the incomplete reconstruction

of the first interface increase with depth. Thus, even though these errors

are not severe at the first interface, they are significant at the second

interface. In this chapter, we examine the analytic expressions of the

artifacts which characterize the reconstructed changes at the second

interface. This analysis both verifies previous conclusions and provides

insight into a possible correction of errors implicit in two-parameter,

constant background, Born inversion.

Analyaa of Double Interface Artifacts

As in the single interface analysis, we substitute constant parameter

model data into the corresponding inversion relation to obtain an expression
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for the artifact. Specifically, we will again consider the density artifact

produced by a bulk modulus change. For this double interface analysis, we

exploit the simplicity offered by the fixed angle implementation. Since the

multiple reflections do not interfere with the primary reflections, we

utilize the fixed angle expression of the model data given by equation (27)

*f (k,) = R1 (9)exp(-2#1 h1 ) + RB1 ()T(G)exp[-2(f 1 h1 + 12hs)] (45) 0
s Z

where vs and Vs are computed according to equations (44) and T represents

the transmission loss through the layer. In this expression, each term

represents the primary reflection event for each interface. Substituting

equation (45) with a constant density profile and an arbitrary reference

velocity into equation (41b), we obtain an expression for the density

artifact:

re1 -2 z 2n(secS9 - sec 29 )

2 2 /$sec
29B1  2 exp[-2ik (1 + c A/cose9 2) h I

+ sec 9 B (09) exp[-2ik + + c /£h ]

112 1 1Z r£ 1 2

a a

sec 20 B (0 )(O) exp-2ik (h + (I + C2A /cos 91/2 h ()
21 z Ir 1 2

- sec 9 B1 (9)T(9 ) exp(-2ik [h + (1 + c A /c]0} (46)

where B,(9) and B1 (G) are defined as the constant density Rayleigh

reflection coefficients at the first and second interfaces, respectively.

If the reference velocity is the velocity in the first medium, then A = 0.

and the density artifact is given by
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1(-2k) = a0 _ _
z 2n(sec - sec e )

se 2 B (9) as e]"

S ec 9ec- sec B (B exp(-2ik h )h
2. 111 1 z I

+ sec 2 B () )T () exp(-2ik [h + (I + CaA /cos 2  )1/Sh ]}
22 1 1 a

a 1 /2
sec OB 2 (9)T ( ) expf-2ikz[hl + (1 + c A /cos B2 ) h 2  (47)

The expression given by equation (47) corresponds to the spatial

Fourier transform of the density artifacts plotted in Figures 25 through 32.

To understand the nature of these artifacts, we will analyze this expression

in the context of Born theory. Considering the first term in this equation,

we observe that this expression is the fixed angle analog of equation (35).

This term represents the artificial density variation produced by the

incomplete reconstruction of the bulk modulus at the first interface.

Reviewing the density artifacts plotted in the aforementioned figures, we

see that this term is insignificant. The density artifact located at the "

first interface does not compromise the overall accuracy of the

reconstruction since the input angles comply with the Born approximation.

In contrast, the second and third terms of equation (47) combine to form the

deleterious density artifact associated with the second interface.

Before examining the analytic expression for the second interface

density artifact, we recall some assumptions implicit in the linear

inversion. The primary assumption of Born inversion is that individual

scattering interactions do not significantly affect the incident wave field.

Thus, the total wave field is approximated by the reference wave field, and

-48-



the inversion models all wave motion as the wave field propagating in the

reference medium. Consequently, for our problem, the wave field propagating

in the second medium is phase shifted with respect to the wave field -

propagating in the first or reference medium. This phase shift is not

accounted for by the inversion and contributes to inversion errors. In our

analysis of single interface artifacts, we demonstrated that the weak

scatterer assumption is satisfied if we select offset data which minimize

the energy of the reflected wave field. As shown above, this requirement is

not sufficient for the accurate reconstruction of the second reflector. To

better understand inversion errors, we must consider the effect of the phase

shift encountered by the incident field at the first interface.

Returning to equation (47), we observe that the sum of the second and

third terms of this expression form the density artifact which delineates

the second interface. In general, these two terms represent two delta

functions whose amplitudes are similar in magnitude, yet opposite in sign.

Furthermore, these delta functions are characterized by different phase

shifts which affect their respective locations in the spatial domain. In

fact, these two phase shifts are the manifestation of the phase shifting of

the incident field in the second medium. That is, if A, were zero, then the

wave field in the second medium would be in phase with the reference wave

field, and the phase shifts which characterize these two delta functions

would vanish. As a result, the second interface artifact would be

represented by a single delta function whose amplitude would be of the same

order as that of the single interface artifact. Therefore, as the velocity

constrast at the first interface decreases in accordance with the Born

approximation, the phase shifts inherent in equation (47) diminish, and the

second interface artifact decreases. Upon further inspection, we conclude
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that the relative amplitude and phase differences between these two delta

functions are dependent on the input angles. For example, as e1 approaches

Q., both the phases and the moduli of these two terms become equal, and the

two expressions cancel. Likewise, as the values of G1 and e1 diverge, the

two delta functions become more dissimilar in amplitude and phase, and the

artifact increases. Thus, as in the single interface situation, the

artifact associated with the second interface diminishes as 0, approaches

1. This second interface artifact however is affected in both amplitude

amd phase. Simply stated, it is the phase shifts implicit in these

expressions which are responsible for the deleterious nature of the second

i.nterface artifacts.

In the previous discussion, we observed that since the incident field

is phase shifted at the first interface, the reconstructed second interface

is characterized by a sum of two phase shifted delta functions. These phase

shifts are represented by

rA 1/2

1 + (48)

where c, is the velocity in the first medium, Gi is the incident angle, and

A, is the velocity contrast at the first interface. As mentioned above,

both the difference between these phase shifts as well as their magnitudes

influence the quality of the reconstruction. For instance, if the second

term of equation (48) vanishes, then the field in the second medium is in

phase with the incident field, and inversion results are improved. Thus, to

rectify inversion errors, we should minimize the size of this term in the

phase shifts. This is accomplished by considering models which are
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characterized by both a small velocity contrast at the first interface, and

near normal wave vectors. Considering briefly the constant density models

of Figures 25 through 27, we conclude that indeed both criteria are

necessary--only the model of Figure 27 where 0.1% velocity contrasts are

inverted leads to an insignificant density artifact at the second interface.

Therefore, by adhering to the weak scatterer assumption, we minimize the

phase shift of the incident wave field which enables an accurate

reconstruction of the second reflector.

In examining equation (48), we note that only the strength of the first

velocity contrast affects the magnitudes of the phase shifts implicit in the

second interface density artifact. Consequently, a large velocity contrast

at the first interface limits the accuracy of subsequently reconstructed

parameter changes. To demonstrate this result, we consider two models which

consist of both a 0.1% and a 10% velocity change. In these two models, the

order of the velocity changes are reversed so as to reveal the influence of

A1 on the reconstructions (see Figures 30 and 31). Turning to Figure 30

first, we note that the 0.1% velocity change at the first interface does not

seriously impair the reconstruction of the 10% velocity change at the second

interface. This is the expected result as A. is trivial in this case.

Comparing the reconstructions of the 10% velocity changes for both models,

we observe that the corresponding density artifact is larger in Figure 30

than in Figure 31. We also note that the actual bulk modulus change in

Figure 30 is slightly antisymetric. (This asymmetry verifies that the

actual parameter change is also a aum of two band-limited delta functions.)

Based on the previous discussion, we conclude that these features are

accumulative manifestations of the slight phase shift incurred at the first

interface. When comparing the reconstructions of Figures 30 and 31

-51l- 9



directly, we notice that they are not simple mirror images of each other.

Since A2 is appreciable for the model of Figure 31, the reconstructed

parameter changes associated with the second interface are noticeably

incorrect in both size and location. Thus, although the sizes of the

reconstructed parameter changes at the second interface are weighted by the

corresponding reflection coefficient, the overall character of these

variations is determined by the phase shifts given in equation (48).

When considering the general features of double interface

reconstructions, we observed that errors associated with the Born

reconstruction of the first interface increase with depth. These errors

affect both the sizes and the locations of the reconstructed parameter

changes delineating the second interface. By examining the expression for

the density artifact given by equation (47), we can understand the depth

dependent nature of the error. In the second and third terms of equation

(47), we notice that each corresponding phase shift is weighted by the depth

of the second reflector. Thus as h. increases, the magnitudes of these

phase shifts also increase. This result may also be understood in the

context of Born theory. In Born inverse methods, the scattered wave field

is estimated by the second term in the Born series. As a result, the

suitability of this estimation depends upon the convergence of the higher

order terms. If this series converges slowly, then the first Born

approximation inadequately describes the scattered wave field. In any case,

since the higher order terms in the Born series are integral expressions,

the error associated with their convergence increases as the limits of0I

integration increase. That is, errors implicit in the linear inversion

accumulate as we integrate the wave field over greater and greater depths.

In conclusion, we maintain that the predicted sizes and locations of the
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second parameter changes are determined by both the phase shifting of the

incident wave and the depth of the second interface.

Inversion Artifacts and the Reference Velocity

In the previous reconstructions, the reference velocity is chosen to beU S

the velocity in the first medicm. As a result, the wave field in the second

medium is phase shifted with respect to the wave field in the reference

medium, and this causes inversion errors to increase with depth. In Born

inversion however, we need not choose the reference velocity to be the

velocity in the first medium. The specific choice of a reference velocity

depends on the goals of the inversion. In this section, we examine the

influence of the reference velocity on inversion artifacts. To do this, we

invert a constant density model for different reference velocities and

interpret the results in terms of equation (46). As mentioned above,

equation (46) represents the double interface density artifact for an

arbitrary reference velocity. From this expression, we observe that the

reconstruction of each interface is the summation of two phase shifted delta

functions. Thus, if the reference velocity is neither c. nor c2. then each

reconstructed interface is characterized by the accumulative errors produced

by these phase shifts. As a result, not only are both the sizes and

locations of the parameter changes incorrect for each interface, but also

the extent of these errors are determined by the depths of the interfaces.

As before, we note that the strengths of these phase shifts depend on the

angle of incidence, the velocity contrast, and the reference velocity. We

also recall that these phase shifts which spatially separate the delta

functions only exist if the wave field above the reconstructed interface is
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phase shifted with respect to the reference wave field.

In Figure 32, we present the reconstruction of a constant density model

with the reference velocity equal to the velocity in the first medium. In

this example, the reconstruction of the first interface is essentially

correct while the reconstruction of the second interface suffers from

accumulative phase errors. Considering the first reconstructed reflector,

we observe that the locations of the parameter changes are correct? Born

theory however predicts slight errors in the reconstruction of their

corresponding amplitudes. For our purposes, we view this reconstruction as

the prototype for both interfaces in all subsequent examples. To provide a

proper comparison between this reconstruction and other relevant

reconstructions, we list the amplitudes of these variations in Table 1 (see

page 55).

In Figure 33, we reconstruct the model of Figure 32 with the reference

velocity equal to the layer velocity. Consequently, the wave field in the

layer is in phase with the reference wave field since A = 0. In this

example however, the wave field in the first medium is phase shifted with

respect to the reference wave field (A 0: 0). We conclude that the artifact

associated with the first interface is characterized by two phase shifted

delta functions while that of the second interface consists of only one

delta function. Thus, as the wave field propagates out of phase to the

first reflector, the error inherent in the Born reconstruction of this

reflector grows in size. From Figure 33, we observe that this accumulative

error affects both the sizes and the locations of the parameter changes.

Comparing the parameter amplitudes of this reconstruction with their

counterparts in Figure 32 (see Table 1), we conclude that both parameter

changes have
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increased in size. In fact, there is now a noticeable density artifact

located at the fi-st interface. Considering the second reflector, we

observe that the error in this reconstruction is similar to that of the

first interface (see Table 1).

FIGURE K max pImax K max p amax

32 0.093 -- 0.140 0.108

33 0.103 0.005 0.103 0.005

35 0.095 0.002 0.095 0.002

Table 1. List of the maximum parameter amplitudes for Figures 32, 33,
and 35.

Since the wave field in the layer is in phase with the reference wave field,

the errors established at the first interface propagate to the second

reflector but do not grow in size. Thus, the location error at the second

interface is identical to that at the first interface. There are however

.. slight amplitude errors associated with the incomplete reconstruction of the

second reflector. To further illustrate that these inversion errors do not

*iS
increase within the layer, we consider this model for a deeper second

reflector (see Figure 34). In comparing Figures 33 and 34, we conclude that

the inversion errors associated with the second interface are identical to

those of the first. Therefore, by establishing the reference velocity as

the layer velocity, we have distributed the inversion error between both

reflectors, and now these errors are sensitive to the depth of the first

reflector.

As mentioned above, if the reference velocity is neither c, nor c2, -

then both reflectors are reconstructed by a sum of two phase shifted delta

functions. As the depths of these reflectors increase, the corresponding
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phase discrepancies also increase, and the inversion errors grow in size.

These observations follow directly from equation (46). To demonstrate this

result, we reconstruct the previous constant density model for a reference

velocity midway between c. and c 2,r in Figure 35, we present this example

with Cr = 5025 ft/sec. Comparing this reconstruction with that of Figure 33,

we observe that the inversion errors associated with the first interface

have diminished. By reducing the reference velocity, we have reduced phase

shifts in the first two terms of equation (46), thereby reducing the

accumulative errors. Thus, both the density artifact and the location error

decrease at the first interface. From Table 1, we also note that the

amplitude of the bulk modulus variation is also reduced. In fact, it is

close to its counterpart in Figure 32. Unlike the model of Figure 33, the

wave field in the layer of Figure 35 is phase shifted with respect to the

reference wave field. As a result, the inversion errors produced at the

first interface not only propagate with depth, but also they increase with

depth. To demonstrate this feature, we invert the model of Figure 35 for a

deeper second reflector (see Figure 36). Clearly, the reconstruction of the

second reflector in Figure 36 is characterized by greater inversion errors--

the predicted parameter variations are both larger and shallower. In

conclusion, we

observe that this intermediate reference velocity effectively distributes

the inversion error. In fact, this reconstruction is superior to that of

Figure 33 as the locations and the amplitudes of both velocity changes are

more accurate.

In the above examples, we demonstrate that by adjusting the reference

velocity, we may distribute the inversion errors between the reconstruction

of each interface. Depending on the goals of the inversion, this procedure
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might be advantageous. For example, when comparing Figures 32 and 35, we

might conclude that Figure 35 is a more accurate reconstruction of the input

a g model. Even though all amplitudes and locations are incorrect, this

reconstruction is not dominated by the error associated with the second

reflector. We might however wish to reconstruct the first interface with

precision. In that case, the reconstruction of Figure 32 would be superior

to that of Figure 35. Therefore, since errors are an inevitable consequence

of constant background inversion, we choose a reference velocity so as to

m inimize the errors, deemed most deleterious to our goals.

'0.
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In this thesis, we implement the two-parameter, constant background,

Born inversion method of Clayton and Stolt (1981) for acoustic synthetic

data which represent single and double interface models. Since these data

are exact, we are able to compare reconstructed acoustic profiles with their

analytic expressions. We direct this analysis toward understanding the

error implicit in the approximate inversion. As a result, we devise an

implementation which provides more reliable interpretations of Born

reconstructions.

From our analysis, we observe that inversion errors are minimized if

the offset data is preconditioned in accordance with the Born approximation.

Specifically, we reduce the energy of the reflected wave field by

eliminating the offset data which are characterized by large angles of

incidence. These deleterious data however provide the greatest variation in

the reflection coefficient. As pointed out by Clayton and Sto' (1981), it

is the angular dependence of the reflection coefficient which allows the

separation of the components of reflectivity. Therefore, inherent in our

method is a contradiction of objectives: the linear inversion requires the

elimination of data which enhance the recovery of both acouttic parameters.

By selecting a fixed angle implementation, we are able to separate

bandwidth considerations from data preconditioning requirements.

Consequently, the flexibility afforded by this implementation leads to

stable results. In fact, for single interface models, the reconstructed

profiles are almost exact. For double interface models however, the

reconstructions suffer from sizeable Born-related artifacts. To understand

the nature of these artifacts, we examine their analytic expressions. Since
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the reconstructed density variation is less reliable than its corresponding.

bulk modulus variation, we focus our analysis on double interface density

artifacts. As a result, we test the inversion for the input models which

provide the least favorable results.

In our analysis of double interface density artifacts, we observe that

the reference velocity influences the interpretability of the

reconstructions. In general, the reference velocity affects the phase

shifts inherent in the modeled wave field. As evidenced by our examples,

this phase shifting causes inversion artifacts to increase with depth--these

accumulative phase errors seriously can compromise the usefulness of this

inversion technique. We therefore select a reference velocity which reduces

the errors, considered most harmful to our inversion objective.

This investigation establishes that this two-parameter. constant

background, linear inversion cannot accurately reconstruct two consecutive,

real earth, parameter changes, even under idealized conditions. The data

requirements preclude the applicability of the Born approximation for

recovering the acoustic parameter changes, typical of geophysical problems.

Thus, this inversion accurately reconstructs only weak scattering -

interactions. To improve the usefulness of this technique, we could

implement the inversion for a variable reference velocity. If accurate

migration velocities are obtained, this approach will reduce the relative

sizes of parameter changes, and hence validate the weak scatterer

assumption. As a result, accumultive phase errors will be reduced.

Applying the refinement algorithm developed by Hagin and Cohen (1984)

to this two-parameter procedure would reduce the accumulative errors,

implicit in the linear inversion. According to this refinement algorithm,

Born-related errors are recursively eliminated from constant background •
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reconstructions. Consequently, this procedure provides an improved estimate

of subsurface parameter variations. This method however requires an

accurate estimate of real earth parameter changes from measurements of their

reconstructed counterparts. To insure accurate estimates, a method for

separating artifacts from true parameter variations would have to be

developed. Perhaps however, the single interface artifact identification

procedure presented by Weglein, Violette, and Keho (1985) could be used to

test each successive reflector for inversion artifacts. Since the

aforementioned refinement scheme would eliminate accumulative errors, this

identification procedure could be applied with confidence at each interface.

We note that this method would be most useful for noisy synthetic or field

data sets. Implementing the refinement procedure in conjunction with this

artifact identification method would be computationally more efficient than

implementing a variable background inversion. Furthermore, these methods

require only an accurate estimate of the velocity in the first medium,

whereas variable background inversion requires an accurate estimate of all

migration velocities. Therefore, this postprocessing refinement algorithm

might improve two-parameter reconstructions by efficiently reducing the

effects of accumulative errors.
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APPENIhX A: TiANSFORKED GREEN4'S FUNCTIONS

In this Appendix, we present the Fourier transforms of the analytic

expressions for the Green's functions in equation (10). These Green's

functions ere the resolven' for the constant background, two-dimensional

*wave operator. If Pr and Kr are assumed constant, Lr becomes

L =L V24.6 (A-1)
r r J

rS

The Green's function representing wave propagation from the scatterer

location to the geophone location solves

j -+ 7 Gr -P6 (xg x')b(z') .(A-2)

Introducing the spatial Fourier transform over the receiver coordinates as

* ~ (k ,O1x1,z'tw) -2-fdx G (X ,o1x',z',ei) exp(-ik z (A-3)
*r xg __ g r g xg g

we apply this transform to equation (A-2) to obtain the following ordinary

differential equation for the function
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[1 -p]
d[ 2 + k J (k ,OIx',z'IW) r- exp(-ik xlb(z') (A-4)dzz  z; owg -

where k = .

zg 2r xg

Two linearly independent solutions to the homogeneous form of (A-4) are

given by

A Ap
+ r ep(rik - z'J) exp(-ikxg ) (A-5)r I zg xgg

where dr+ represents the outgoing solution and Gr- represents the incoming

solution. For our purposes, we are interested only in the outgoing solution

and have only to determine the quantity A+ .

We determine A+ by imposing two conditions at the scatterer depth which

characterize the nature of the scatterer. These conditions are: (1) that

the function be continuous, and (2) that its first derivative have a jump

equal to the source term over an interval containing z'. These conditions

yield:

A+ i
A - (A-6)

zg

0J

* and, at the receiver location, the Green's function is given by
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9*(k Olx,ztw) exp[-i(k xo --k Iz'1)J/2k A-7)r xg -e xg zg zg

We now perform a similar analysis to determine the transformed Green's

function which characterizes propagation from the source location to the

scatterer location. The only difference between this derivation and the

previous one is that the Fourier transform over the source coordinates has

the opposite sense as equation (A-3). This difference results in a sign

change on the argument of the exponential: 0

iPr

9r -'z'lkx.o,. r expf-i(kx x' + k ,Izl,;/2kz. (A-$)
rJ

where kz
S xs-.
r

We now make the observation that the parameter variations are zero for z

less than zero. This result allows us to drop the absolute value signs in

equations (A-7) and (A-8) before substitution into equation (10)

S
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APPENDIX B: ONE-DIUWIS IONAL FORWARD MQUATION

In this Appendix, we derive the one-dimensional forward equation

from the two-dimensional forward equation. This is accomplished by

assuming that the probed medium is independent of both transverse

directions. As a result, the observed offset data is only a function

of 1g - xs .  Explicitly writing the spatial Fourier transform of the

left hand side of equation (13)

0
D(kxg kxs(w) = dx s D(x - x , w)exp[-l(k x - kx )], (B-1)xgx T S1d s X2 9 xs s -

we express this result in terms of midpoint, half-offset coordinates:

= (x - x )/2 , m ' (x + x )/2 (B-2)g s g

to obtain

Dlk kxw) dx 2 dxh D(2xh, w)

exp[-ik (lb + x)] exp[ikxslx - ') (B-3)
n m

0i
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where dxgdx = 2 dxhdXm

Rewriting equation (B-3)

B(kx, kx,) = 2dx D(2xh,) exp[-i(k + k )xh ]xg -- I h h xg xs b

• dx exp[-i(k - k )x (B-4)
m xg x& m

we recognize both integrals as Fourier transforms:

N(k ,k ,w) = 6(k - k )D[(k - k )/2,w] (B-5) 0
xg xs xg xs xg xs

Turning to the right hand side of equation (13), we write the

transformed model variations as Fourier transforms

i.(k kxs -k -k = L- dx dz ai(x.z) e1 xg is zg zs 2 .ir J I

exp[-i(k - k )]x exp[i(k + k )z] (B-6)ig xs zs zg

where ai represents both parameter variations. For a i independent of

x, this result becomes

-67- 5
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Ik - k ,-k - k ) = 6(k - k )I (-k - k ) B-7)
i g -ks' zg zs ig is i zg zs

Thus, for a one-dimensional medium, the linear equations are:

6(k - k )B[(k + k )/2,w] =xg xs xg xs

4k k k 6 -k ) (-k - k
zs k zg rs I Zg zs

(kk - k k)(k - k )1r (-k - k ) JS(w). (B-9)

Integrating both sides of equation (B-8) with respect to kxs, and

observing that k k and k kzs, we find

D(kxw) - k 3 (-2k) + (k - k1 )i 2(-2k) S(W) (B-9)m 4ks

z

By the dispersion relation, the right hand side of (B-9) is expressed

only as a function of kz, yielding equation (14).
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APPENDIX C: LEAST-SQUARES SOLUTION OVER TEMPORAL FROQUENCY

The forward equation expressed by equation (15) can be solved for the

medium parmeters by applying least-squares principles. In general, the

least squares criterion maintains that we minimize the square of the

difference between the desired and the actual expressions. In our case, the

desired earth response is the data itself. The actual response however is

the right hand side of equation (15). Thus, the least squares error is:

S

E D- jI - A ]T (C-1)

where the summation is taken over a specified range of frequency values.

This error is minimized by setting its partial derivatives with respect to

each parameter equal to zero:

E-- 2j W -rA . A~j 

(C-2)

8E=2 1) -A W - A ir A = 0
a j -j I Ij 2 j I

The resulting system of equation is known as the normal equations given by

equations (18). The solution of the normal equations yields the least-

squares determination of the medium parameters.
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APPENDIX D: SINGLE INTERFACE LINE SOURCE ACOUSTIC DATA

In this Appendix, we reduce the point source expression for wave

propagation in two semi-infinite media to the line source result. On

page 96 of Ewing, Jardetzky, and Press (1957), the scattered wave field

in the first medium is given by

By81 - PV

Ds(r,w) = dk sy{ + Y2 (exp[-p1 (z + h)]Jo(kr)kJ/V1  (D-1)

where 6 = P,/Pa' and h is the distance of the source above the

interface. In this expression, r and z represent cylindrical

coordinates and thus:

i k- (D-2)

k

where k k + k
x y

For layered media, the above point source result has circular

symmetry, and we recognize equation (D-1) as the Fourier-Bessel

transform. Rewriting equation (D-1) as a Fourier transform in
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rectangular coordinates, the field at z = h becomes 0

D (x, y,w~) Jdk dk &jY1 -+s Y 6P + ;/,

(exp(-2ph)J/;#.M exp[-i(k x + k y)] (D-3)
x y

Since the probed medium is assumed independent of the y-direction, we

may integrate over this direction to obtain the line source result

6S

s(Y) = 2 dk + [exp(-2V/,h)/V/1 ] exp(-ikxx) (D-4)

where now

k Y i -- k (D-5)

Fourier transforming equation (D-4), we find

(k ,) - [exp(-2$ 1h)/I 1 ] (D-6)

7 1. .
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For interpretational purposes, Cohen and Bleistein (1982) suggest

that it is more desirable to process data for the normal derivative of

the variation rather than the variation itself. For our purposes, this

derivative is achieved by multiplying equation (D-6) by V, which leaves

equation (19).
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APPENDU : DERIVATION OF THE DOUBLE INTERFACE FORWARD MODEL

The purpose of this Appendix is to derive the expression for the

scattered wavefield generated by the two-interface acoustic model. The

specifics of this model are illustrated in Figure 3. The method of

determination is to solve the system of equations which satisfy the boundary

conditions at each interface for the displacement potential representing the

upgoing wave field in the first medium. The details of the procedure are

similar to examples presented by Ewing, Jar~etzky, and Press (1957).

Omitting the time factor, we can express the potential in the first

medium as

= J= dk -- J (kr) exp(-V;.z) + dk J 3,(kr) exp(-vyz) (E-l)

4

where 0. is the quantity to be determined. All other quantities are defined

in Chapter 2 as well as in Ewing, Jardetzky, and Press. The first term in -

equation (E-l) represents the direct wave while the second term corresponds S

to the upgoing or scattered wave field. The potential in the second medium

is

-dk Jolkr) exp(-ysz) + dk Q J (kr) exp(v3 z) . (E-2)

These two terms correspond to the summation of the upward and the downward

traveling waves which reflect many times within the layer. Finally, the

potential in the third medium is given by
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CD

=J dk J°(kr) exp(y, z) (E-3)

which represents the downgoing wave field in the lower half-space.

The potentials 0, and 0. must satisfy the boundary conditions:

p 1 L =  
p21 • 

= 
a (E-4)

at the first interface. These conditions express the notion that both the

pressure and the normal displacement are continuous across the interface.

Similarly, the potentials in the second and third media must satisfy the

boundary conditions:

aP2 ao,, .3

P 2 2  = ,0 , = _- (E-5)

at the second interface. These conditions lead to a system of four linear

equations expressed by

AB C , (F-6)

wh e r e
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exp(V IhI)/PI -rIexp(P2 h 1 )/Y 2  -&1exp(M 2 h1 )/Y3  0

exp ( y h ) exp( -k2h•) -exp ( 3 2h 0

0 exp(-5H )/1V exp(VH$)IMV -6aexp(YH)/ . "

0 -exp(-Mfh,) exp(p 2h5 ) exp(-Mlh,)

h= h1 + h2, and

-k/yVexp(Urh.)

kexp ( -j;1b 1)

C

0

0

As before, we are interested in the plane-wave reflection coefficient,

and this quantity corresponds directly to Q1. Solving for Q,, we obtain

equation (21). An expression similar to equation (21) is presented by Frisk S

(1979), in his paper, Frisk discusses many characteristics of the plane-

wave reflection coefficient for single and double interface models.

By representing the denominator of equation (21) as an infinite sum, we

are able to decompose the forward model into its component reflected events.

Thus, equation (21) becomes

exp(-2h)xp(-2h) (-I) (R()nexp(-2n2h)" (E-7)
1 11
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Carrying out a portion of the summation, and collecting terms, we obtain

z
01 Rexp(-211 h, ) + R3 (1 - R,,)exp[-2(Vh 1 + 5iph1 )]

z 2+ R1R3(1 -a)exp[-2(i 1 h + 2j 3 h,)] + (E-8)

where: the first term corresponds to the reflection from the first

interface, the second term corresponds to the reflection from the second

interface, and the third term corresponds to the first multiple reflection

from within the layer. By writing the data in this form. we are able to

establish a forward model which excludes multiple reflections. Not only

does such an expression provide more favorable data for the linear

inversion, but also it yields a less complicated analytic expression. This

result is given by equation (25).

0

67

* -76-

. .....
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Figure 1. Diagram of the Single interface experiment.
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INPUT MODEL

C1 5000.0 01 1.0000

C2 =5500.0 D2 =1.0000

30.0 < F < 70.0

Figure 2. Shot record of a typical single interface forward model.
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Shot Geophones 0
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h1
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pa

Figure 3. Diagr m of the double interfece e perisent.
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INPUT MODEL

C1 5000.0 DI 1.2100

C2 = 5500.0 02 = 1.0000

C3 = 5000.0 03 = 1.2100

F 30.0 <F < 70.0

Fisare 4. Shot record of a typical doable interface forward model.
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INPUT MODEL REFLECTION COEFF.

Cl 5000.0 0l 1.0000 e 65
Iwo;100*

C2 = 5500.0 D2 = 1.0000

F1 60.0 F2 = 62.0

* K2

KX

DENSITY VRRIRTION [MAX = 1.)

SI 0

-1 I I I

0 50o 1000 1500 202 2502

DEPTH (FEET)

BULK MODULUS VRRIATION IMRX = 1.3)
1 I

Cr 0-1

0 500 1000 1500 2000 2500

DEPTH (FEET]

Figure S. Fixed frequency, increasing velocity, constant density,
single interface reconstruction for all pre-critical date.
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INPUT MODEL REFLECTION COEFF.

Cl 5000.0 D1 = 1.0000 8 5 5

100

C2 =5500.0 D2 =1.0000

_ _ _ _ _ _ _ _ _ _ _ _ If

F1 60.0 F2 = 62. 0

U K2

imKX

DENSITY VRIRIRTION CMRX =0.2)

0 500 1000 1500 2000 2502

DEPTH (FEET)]

BULK MODULUS VARIRTION (MRX 0.91

Soo0 1000 1500 2000 2502
EPTI [FEET)

Figure 6. Fixed frequency, increasing velocity. constant density,
single interface reconstruction for filtered data.
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INPUT MODEL REFLECTION COEFF.

C- ,= 5000.0 D1 - 1.2100 9 = 65 B

10X

C2 5500.0 D2 = 1.0000 E

a:

F1 = 60.0 F2 = 62.0

0 K2
KX

DENSITY VARIATION (MIX = 2. 61

r.u

- 1 I I

d515 1000 100 2002 2502

DEPTH (FEET)

BULK MODULUS VARIRTION MRX = 0 .3)

_i-1 I S
0 500 1000 1500 2000 2500

DEPTH (FEET)

Figure 7. Fixed frequency, increasing velocity, constant bulk modulus,
single interface reconstruction for all pro-critical data.
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INPUT MODEL REFLECTION COEFF.

D
it ~Cl - 0107.0 Dl = 1.2)02 ex,5

C2 = 5502.0 D2 - 1.0000

F1 = 60.0 F2 = 62.0

0 K2

., KX

rip DENSITY VARIATION [MAx 1.0;

-- 1 II ;

500 1000 150220 2S;!,

DEPTH [FEET)

BULK MODULUS VARIRTION (A = X .)

• I I I I

* -1 I I ) 1e :a,- P
50 1000 15OZ2'2z

DEPTH (FEET)

Figure 8. Fixed frequency, increasing velocity, constant bulk modulus,
single interface reconstruction for filtered data.
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INPUT MODEL REFLECTION COEFF.

CI 5000.0 Dl- 1.1000 - 5
useX

C2 -5500. 0 D2 =1. 0000

F1 60.0 F2 =62. 0

5 1K2
KX

DENSITY VRRIRTION [MRX =1.8)

Cu

0 00 1two 1500 2000 258
DEPTH (FEET)

MILK~ MODULUS VRRIRTION (MRX =0.6)

So o m2O

DEPTH(FEET
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INPUT MODEL REFLECTION COEFF.

C1 5000.0 D! - 1. 1000 0 55

C2 - 5500.0 D2 - 1.0000

F1 -60.0 F2- 62.0

8 K2
KX

DENSITY VRRIRTION IMRX 0.5)
I

* S

I 500 1000 1500 200 2500
DEPTH (FEET)

BULK MODULL'S VRRIRTION (MRX = 0.5)
1 I I

0-1lIII

0 see 1Iw0 1500 29W020
DEPTH (FEET)

Filure 10. Fixed frequency, increeaing velocity. constat impedance,
single interface reconstruction for filtered data.
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INPUT MODEL REFLECTION COEFF.

C W5500.0 DI - 1.0000 6tm 90

C2 5000.0 D2 - 1.0000 i0

F1 - 60.0 F2 = 62.0

I KI

KX

DENSITY VARIRTION (MX = 4.3)

' - ----------.

DEPTH (FEET)

BULK MODULUS VARIATION (MRX =57

se 50 10 1500 2M0 2500
DEPTH (FEET)

Figure 11. Fized frequency. decreasing velocity, constant de,.itY.
single interface reconstruction for broadband date.
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INPUT MODEL REFLECTION COEFF.

CI - 5500.0 DI - 1.0000 - 64

C2 - 5000.0 D2 - 1.0000

F1 - 60.0 F2 , 62.0

• KI

KX

DENSITY VARIATION (MRX - 0.21
Ii

a' 0

- 1 IIII

S50 1000 1580 2000 250e
DEPTH (FEET)

BULK MODULUS VRRIATION MRX = 1. 2)
I I

-1- o

*m 5low1 1510 2800 250
DEPTH (FEET)

Figre 12. Fized frequency. decreasing velocity, constant density.
single interface reconstruction for filtered date.
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INPUT MODEL REFLECTION COE FF.

C1 5000.0 DI 1.1000 9 90

C2 -5000. 0 02 a1. 0000

Fl 60.0 F2 a62. 0

I KI
KX

DENSITY VRRIRTION (MRX =1.5)

cc 0

6 Sao two0 15sm35 2500
DEPTH (FEET)
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INPUT MODEL REFLECTION COEFF.
*

C1 u 5000.0 DI * 1.0000 9 55 MAX:

C2 - 5500.0 D2 - 1.0000

FMIN = 55.0 FMAX 65.0

I 1(-B K2_

KX

DENSITY VRRIRTION (MAX = 0.1)

DEPTH (FEET)

BULK MODULUS VARIATION (MRX -0. 7)

I I

a,

-1 iIII ,

* 500 liM 1500 2 2500
DEPTH [FEET)

Figure 14. Least-squares, constant density, single interface recon-
struction for the input model of Figure 6.
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INPUT MODEL REFLECTION COEFF.

C1 1 5000.0 D1 1.0000 e 55
100 "": ° ""

C2 * 5500. 0 D2 , 1.0000

C3 5000.0 D3 = 1.0000

F1 = 60.0 F2 = 62.0 
K2

KX

DENSITY VRRIRTION MPX =16.9

-1 I ____________ - .-

0 100Z z0oz 30co 40L0 5.
DEPTH [FEET)

BULK~ MODULUS VARIRTION CMPX =4.0)
. .V f - •

- 1 Ii I 4 . .. .---

0 1000 2002 3000 402 5000

DEPTH (FEET]

Filar# 1S. Fixed frequency* constant denuity, double interface cocon-
Wtrction for 10% velocity changes.
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INPUT MODEL REFLECTION CDEFF.

Cl 5000.0 DI = 1.0000 8 45

C2 I 5500. 0 D2 1. 0000

C3 - 5000.0 D3 = 1.0000

F1 " 60.0 F2 = 62. 0 -

KX

DENSITY VARIRTION (MRX = 7.8]

F I I I

-10 DEPTH 3900 410000
DEPTH (FEET)

BULK MODULUS VRRIRTION (MRX = 3.3)

-, I

0 1o0 2930 480O 500-
DEPTH (FEET J

Figure 16. More bilhly filtered reconstruction of Filure is.
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INPUT MODEL REFLECTION COEFF.

Cl 5000.0 01 1.0000 9 5

C2 = 5050.0 D2 01.0000

30000

C3 = 5000.0 D3 = 1.0000

F1 = 60.0 F2 = 62.0 
a K2

KX

DENSITY VARIRTION (MAX = 0.3)

-1 I

0 1002 2000 3004000 50L

DEPTH [FEET)

BULK MODULUS VRRIRTION (MAX 0.1 1.

_1 I II
0 j 4

1o0 2000 3000 4000 5000
DEPTH (FEET)

Figure 17. Fixed frequency& constant density, double interface reocn-
struction for 1% velocity changes.
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I NPUT MODEL REFLECT I ON COEFF.

C1 5000.0 DI 1.0000 6 = 5-

C2 , 5005.0 D2 = 1.0000

3r

C3 = 5000.0 D3 1.0000

F1 60.0 F2 =62.0 - j
• K2

KX

DENSITY VRRIRTION (MAX = 0.0)
I I I

-1 I II

0 1000 2000 3000 400L 50
DEPTH (FEET)

BULK MODULUS VRRIRTION (MAx
1 I

0 lw1 2000 3000 4D0O 5002

DEPTH (FEET)

Figure 18. Fixed frequency, constant density. double iaterface recon-

struction for 0.1% velocity cbanges.
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INPUT MODEL RtEFLECT ION COEFF.

C 1 5000. 0 Dl 1 1. 2100 a 55

lowe

C2 -5500. 0 D2 -1. 0000

C3 -5000.0 D3 =1.2100i

FI=60.0 F2 -62. 0
S K2

KX

DENSITY VRRIRTION (MAX =4. 3)

0 Boo0 2800 3M0 4000 5000
DEPTH (FEET)

BILK MODULUS VARIATION IMRX 1.7)

DEPTH (FEET)

* Fixurs 19. Pied frequency, constant bulk modulus. double interface re-
construction for 10% velocity ebsnges.
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INPUT MODEL REFLECTION COEFF. -

Cl 5000.0 D = 1. 0201 8"x = 55
I 000.. "

C2 5050.0 D2 1.0000

C3 = 5000.0 D3 = 1.0201

F1 = 60.0 F2 = 62.0 
U K2

DENSITY VRRIRTION [MmX = 0.1)

1 jl

100Z 2000 300 4000 503

DEPTH [FEET.

BULK MODULUS VARIRTION (MAX = 0 0)

I I I I I

00

0 1000 2000 3000 4000 5000

DEPTH [FEET)

Figure 20. Fized frequency. constant bulk modulus, double interface re-

construction for 11 velocity changes.

69

• - 96 - "

• . . . " i-. -.- - -i -. . . . .'. ".. ... .- ,- -. -- . . - - - - . -/ .,.-.... . . . ., -....-.... . . . . .. '-.- -.-.-. .-.. . . .".,
.. . . . . . . .



. . ... -

INPUT MODEL REFLECTION COEFF.

C1 = 5000.0 D 1.0020 = 5

C2 = 5005.0 D2 = 1.0000

C3 = 5000.0 D3 = 1.0020

F1 = 60.0 F2 = 62.0 0 1

KX

DENSITY VARIRTION (MRX = 0.0]

1

0 1000 2003000 4000 5000

DEP'TH [FEET)

BULK MODULUS VRRI RT I ON CMRX = 0.0-
I II

b 0

F-
-1IIII

m0 1000 200 3000 4000 5000

DEPTH (FEET)

Figure 21. Fixed frequency. constant bulk modulus, double interface re-

construction for 0.1% velocity changes.
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INPUT MODEL RtEFLECT ION COEFF.

Cl -5000.0 DI 1.0000 6 55

Iwo

C2 =5005. 0 D2 =1. 0000
-i

C3 -5000. 0 03 =1. 0000

Fl 60.0 F2 =62.0
U K2

KX

DENSITY VARIATION (MRX =0.0)

U1000 2000 3000 4000 5000
DEPTH (FEET)

BULK MODULUS VARIATION (MRX =0. 0)

1300 2000 M40

DEPTH (FEET)

Figure 22. Reconstruction of the model of Figure 18 but for a usalower
second reflector.
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INPUT MODEL REFLECTION COEFF.

C1 5000.0 D1 = 1.0000 g 55
Iwo m

C2 - 5005.0 D2 = 1.0000

4900 V0

C3 , 5000.0 D3 , 1.0000

F1 = 60.0 F2 - 62.0 0I
D K2

KX

DENSITY VRRIRTION [MAX = 0.0)
I I

ruJ

-1 /I t IS

0 1000 2000 3000 4000 5000
DEPTH (FEET)

BULK MODULUS VRRIRTION (MAX 0.0)

j -7/

-1 II

0 1000 2000 300 40 ,509"-
DEPTH (FEET)

Figure 23. Reconstructlon of the model of Figure 18 but for a deeper
second reflector.
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INPUT MODEL REFLECTION COEFF.

C1 - 5000.0 D1 - 1.0000

C2 - 5500.0 02 - 1.0000

91 5.0 82 - 10.0

35.0 < F < 60.0 
B K2

KX

DENSITY VARIATION (MRX - 0.0)
I I I I

-1 I Io I

DEPTH (FEET)
'" BULK MODULUS VRRIRTIDN (MRX -0.93 "

I

-. i

-1 I I I .,-

DEPTH (FEET) ''

Figure 24. Fixed angle reconstruction of the model of Filre 6.
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INPUT MODEL REFLECTION CC3EFF.

C1 SO500.0 DI 1.0000

sue
C2 - 5500. 0 02 - 1. 0000 c

C3 a 5000. 0 D3 - 1. 0000

81 =5.0 92 w 10.0U

35. 0 <F <60. 0 KX

DENSITY VARIATION (MAX =10.0)D

ru a
a:

1000 BULK 3MODU 5000
DET FEET)

13LK MDU1USVARIATION (MAX =9.6)

a vr
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INPUT MODEL REFLECTION COEFF.

Cl- 5000.0 D 1 1.0000

C2 - 5050.0 D2 - 1.0000

C3 - 5000.0 D3 - 1.0000

81 * 5.0 92 , 10.0 n I
K2

35.0 < F < 60.0 KX

DENSITY VARIRTION MRX = 0.1)
1!

-i I I I

I 1000 2000 3WO 4000 SON

DEPTH (FEET)

BULK MODULUS VRRIRTION (MRX - 0. 1)
SI I I I

-I ' I

Iw 2Me w 300 4100sa
DEPTH (FEET)

Figure 26. Fixed angle recostructiom of the model of Figre 17.
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INPUT MODEL REFLECT ION COEFF.

Cl - 5000.0 Dl - 1.0000
1000 " -""

C2 *5005. 0 D2 *1. 0000

C3 - 5000.0 03 - 1.0000

Ei 5.0 92 - 10.0 - --
m K2

35.0 < F < 60.0 KX

DENSITY VRRIRTION [MRX = 0.0)

_1 I I I•

0 1000 2000 4000 5000
DEPTH (FEET)

BULK MODULUS VRRIRTION (MAX = 0.0)
I

-1
two00 2000 209 4m0 5000

DEPTH (FEET)

Figure 27. Fixed sagle reconstruction of the model of Figure 18
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INPUT MODEL REFLECTION COEFF.

C1 - 5000.0 DI - 1.0000
Iw~o

C2 - 5050.0 D2 - 1.0000

C3 = 5000.0 D3 - 1.0000

61 - 5.0 82 - 10.0 UB K2

35.0 < F < 60.0 KX

DENSITY VARIRTION (MAX -0. 1 )

-t I!

a low 2NO8 3000 4800 5O

DEPTH (FEET)

BULK MODULUS VRRIRTION (MAX - 0.1)
t

-1 I 3
I 11100 210 3100 4800 S

DEPTH (FEET)

Figure 23. ecoustrectlon of the model of Fiere* 26 but for s usbllover
second reflector.
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INPUT MODEL REFLECTION COEFF.

C1 - 5000.0 D1 = 1.0000

S1600 uC2 - 505O. 0 D2 - I .0000

C3 - 5000.0 D3 - 1.0000

61 - 5.0 82 - 10.0 6
U K2

35.0 < F < 60.0 KX 0

DENSITY VARIRTION (MRX = 0.2)
! I

ru 0 cFc
-I I I ... .....______

U 1000 2O 3000 4000 500 
DEPTH (FEET)

BULK MODULUS VARIRTION (MAX = 0.2)

AA.--.-

-I I I I ...._______

two30 200 3M0 40W 500
DEPTH (FEET)

Filur# 2P. BecolstrlctioI of the model of Filr* 26 bet for a deeper

secoad reflector.
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INPUT MODEL REFLECTION COEFF.

C1 = 5000.0 DI = 1.0000

C2 - 5005.0 D2 = 1.0000

3m-

C3 - 5505.5 D3 - 1.0000

91 - 5.0 92 = 10.0
I K3

35.0 <F < 60.0 KX

DENSITY VRRIRTION (MAX 0. 1 3

0u0 I I

-1

a 1000 2000 3000 4000 5000
DEPTH [FEET)

BULK MODULUS VRRIRTION [MAx 0.9)

-I
I Iw0 200 300w40 5000

DEPTH (FEET)

Figure 30. Fixed malle, constant density, double ilterface. recon-
etruction for 0.11 and 10% velocity chmnie.
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INPUT MODEL REFLECTION COEFF.

C1 - 5000.0 DI - 1.0000

C2 - 5500.0 D2 - 1.0000
3M in

C3 , 5505.5 D3 1.0000

61 - 5.0 92 = 10.0 8
B K3

35.0 < F < 60.0 KX

DENSITY VRRIRTION (MAX 0. 1)
SI 0

-1 I I I" .. ;

r 1000 00 3000 4000 5000
DEPTH (FEET)

BULK MODULUS VRRIRTION (MAX 0.9)

1 I 8 I

r 107

i* 100 2000 3000 4000 5000
DEPTH (FEET)

lFtlere 31. *eonostructiOlt of tihe model of Fipure 30 but with the order .""

of the veoloetty cbeule8 fs~orsed. .- "-..,
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INPUT MODEL REFLECTION COEFF.
Si

C1 - 5000.0 Dl - 1.0000

saw0

C2 = 5050.0 D2 - 1.0000
i00n

C3 - 5100.0 D3 = 1.0000

8l - 5.0 62 = 10.0 -
0 K3

35.0 < F < 60.0 KX

DENSITY VRRIRTION (MRX = 0.1)
1 ,

a

-1I I I

0 1000 2000 3000 4000 5000

- .- •DEPTH (FEET)

BULK MODULUS VRRIATION (MRX - 0. 1)

a: :.:

a l800 2M 3000 480 500w

DEPTH (FEET)

Figure 32. Fixed agle, constant density, double interface reconstrc-
tion with IS velocity chmIses.
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INPUT MODEL REFLECTION COEFF.

C1 - 5000.0 D1 a 1.0000

C2 - 5050.0 D2 - 1.0000

woo

C3 , 5100.0 D3 , 1.0000

81 - 5.0 82 - 10.0 .
a K3

35.0 < F < 60.0 KX

DENSITY VARIATION [MRX = 0.1)
I I I I

-I I

a 1000 2000 3000 4000 5000
DEPTH [FEET)

BULK MODULUS VARIATION [MRX = 0. 1)

0

ccS

. .

-I I

a IN0O 2000 300 4100 500
DEPTH (FEET)

Figure 33. Reconstruction of Filure 32 with the reference velocity
equal to the layer velocity.
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I NPUT MODEL REFLECTION COEFF.

C1 5000.0 DI 1.0000

C2 = 5050.0 02 = 1.0000

400

C3 - 5100.0 D3 - 1.0000

91 - 5.0 82 - 10.0 0
0 K3

35.0 < F < 60.0 KX

DENSITY VRRIRTION MRX = 0. 1)

ru 0
a:

0 p I

1000 20o 3000 4000 500-
DEPTH (FEET)

BULK MODULUS VARIRTION MnRX = 0. 1

DEPTH (FEET)]

Figure $4. Reconstruction of Figue 33 bat for a deeper second to- " -

11
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I NPUT MODEL REFLECTION COEFF.

Cl -5000.0 Dl 1.0000

C2 -5050. 0 02 - .00

C3 - 5100.0 03 - 1.0000

61 5.o 82 - 10.0U

35. 0 < F <60o.0 KX K3

DENSITY VARIATION (MAX =0. 0)

1k

a

0 1000 2000 3090WOSa
DEPTHI (FEET)

FigurBUL MODLU RecoIsrTctio ofR Fiar 0.1] terfeecvlct
1qa to32Ttsc



INPUT MODEL REFLECTION COEFF. "
mI

C1 5000.0 D1 - 1.0000
1000

C2 - 5050.0 D2 - 1. 0000

400

C3 = 5100.0 D3 - 1.0000

a1 = 5.0 62 = 10.0
35.0 < F < 60.0 Kx

DENSITY VRRIRTION [MX = 0.1 3

I !I

-1 I I

0 1000 2000 3000 4000 5000
DEPTH (FEET)

BULK MODULUS VARIATION (MX = 0. .1)
1 1 % "

-1
* 1000 2000 3000 4000 5000

DEPTH (FEET)

Figure 36. Reconstruction of Figure 85 but for m deeper second re-
flector.
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