

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

CONNECTICUT RIVER BASIN AD-A156 344 HANOVER, NEW HAMPSHIRE HANOVER CENTER RESERVOIR DAM NH 00051 **STATE NO 108.14** PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM Copy available to DTIC does not permit fully legible reproduction JUL 0 5 1985 G FILE COPY DEPARTMENT OF THE ARMY **NEW ENGLAND DIVISION, CORPS OF ENGINEERS** WALTHAM, MASS. 02154 THE A 3110 A_{PP} . ेंत release; **APRIL 1979** $\mathbf{L}_{1,1,2}$. u Unitinited R5 06 11 03

ł

.

モントレ

r

.

•

نت

F

| |

REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
EPORT NUMBER	2. GOVT ACCESS	
NH 00051	AD-A1563	344
ITLE (and Subilita)	-	5. TYPE OF REPORT & PERIOD COVERED
Hanover Center Reservoir Dan	a.	INSPECTION REPORT
TIONAL PROGRAM FOR INSPECTIO	N OF NON-FEDERAL	6 PERFORMING ORG. REPORT NUMBER
<u>MS</u>	······································	S. CONTRACT OR GRANT NUMBER(+)
S. ARMY CORPS OF ENGINEERS W ENGLAND DIVISION		
ERFORMING ORGANIZATION NAME AND A	DDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CONTROLLING OFFICE NAME AND ADDRE		12. REPORT DATE
N ENGLAND DIVISION, NEDED	GINEERJ	April 1979 13. NUMBER OF PAGES
4 TRAPELO ROAD, WALTHAM, MA.		. 40
IONITORING AGENCY NAME & ADDRESS(1)	different from Centrolling C	Diffee) 15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	ISTRIBUTION UNLIM	IITED
DISTRIBUTION STATEMENT (of the Report) PROVAL FOR PUBLIC RELEASE: D		
PROVAL FOR PUBLIC RELEASE: D DISTRIBUTION STATEMENT (of the observect SUPPLEMENTARY NOTES ver program reads: Phase I I wever, the official title of	microd in Direct 20, if differences of the program is:	National Dam Inspection Program; National Program for Inspection of
PROVAL FOR PUBLIC RELEASE: D	microd in Diock 20, if differences of the program is:	National Dam Inspection Program; National Program for Inspection of
PROVAL FOR PUBLIC RELEASE: D DISTRIBUTION STATEMENT (of the observect SUPPLEMENTARY NOTES ver program reads: Phase I I wever, the official title of	miered in Block 20, 11 dille nspection Report, the program is: ate for date of r	National Dam Inspection Program; National Program for Inspection of eport.
PROVAL FOR PUBLIC RELEASE: D DISTRIBUTION STATEMENT (of the obsirect wer program reads: Phase I I wever, the official title of n-Federal Dams; use cover d	miered in Block 20, 11 dille nspection Report, the program is: ate for date of r	National Dam Inspection Program; National Program for Inspection of eport.
PROVAL FOR PUBLIC RELEASE: D DISTRIBUTION STATEMENT (of the observect wer program reads: Phase I I wever, the official title of n-Federal Dams; use cover d EY WORDS (Continue on reverse olds if nece MMS, INSPECTION, DAM SAFETY Connecticut River Basin Hanover New Hampshire	miered in Dieck 20, if diffe nspection Report, the program is: ate for date of r	National Dam Inspection Program; National Program for Inspection of eport.
PROVAL FOR PUBLIC RELEASE: D DISTRIBUTION STATEMENT (of the observect wer program reads: Phase I I wever, the official title of n-Federal Dams; use cover d EV WORDS (Continue on reverse side if nece AMS, INSPECTION, DAM SAFETY Connecticut River Basin Hanover New Hampshire North Branch Mink Brook DSTRACT (Continue on reverse side if nece -The dam has a hydraulic hei storage capacity is about 4 are in good condition. It	miered in Block 20, 11 diffe nspection Report, the program is: ate for date of r every and identify by block ght of 30 ft. and 76 ft. The dam e is small in size	National Dam Inspection Program; National Program for Inspection of eport.
PROVAL FOR PUBLIC RELEASE: D UPPLEMENTARY NOTES Ver program reads: Phase I I vever, the official title of p-Federal Dams; use cover d EY WORDS (Continue on reverse side if nece MS, INSPECTION, DAM SAFETY Connecticut River Basin Hanover New Hampshire North Branch Mink Brook BSTRACT (Continue on reverse side if nece The dam has a hydraulic hei storage capacity is about 4 are in good condition. It A major breach at top of da	miered in Block 20, 11 dillo nspection Report, the program is: ate for date of r 	National Dam Inspection Program; National Program for Inspection of eport. member; a length of 943 ft. Maximum mbankment and qppurtenant structure with a high hazard classification.

.

٠.,

.

۰, Ξ.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

1.8

•

DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION. CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM, MASSACHUSETTS 02154

REPLY TO ATTENTION OF: NEDED

OCT 3 1 1979

Honorable Hugh J. Gallen Governor of the State of New Hampshire State House Concord, New Hampshire 03301

Dear Governor Gallen:

Inclosed is a copy of the Hanover Center Reservoir Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Water Resources Board, the cooperating agency for the State of New Hampshire. In addition, a copy of the report has also been furnished the owner, Hanover Water Works Company.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Water Resources Board for your cooperation in carrying out this program.

Sincerely,

Incl As stated

ľ

MAX B. SCHEIDER Colonel, Corps of Engineers Division Engineer

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

NH00051

Identification No.: Name of Dam: Town: County and State: Stream: Date of Inspection:

Hanover Center Dam Hanover Grafton County, New Hampshire North Branch Mink Brook November 9, 1978

BRIEF ASSESSMENT

The Hanover Center Dam has a hydraulic height of 30 feet, a 14-foot topwidth, sideslopes of 2H:1V, and a length of 943 feet. It is an earthen embankment with a concrete chute-type spillway.

The dam spans a reach of the North Branch Mink Brook, and is located in west central New Hampshire. Maximum storage capacity is about 476 acre-feet. Hanover Center Dam is used for water supply for the Town of Hanover, New Hampshire. The pond is about 2000 feet in length with a surface area of about 33 acres.

The dam embankment and appurtenant structures are in good condition. However, because of an inadequate spillway, the overall rating is fair.

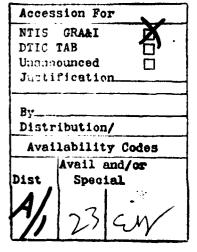
Based on small size and high hazard classifications in accordance with Corps guidelines, the test flood is 1/2 Probable Maximum Flood (PMF). With stoplogs in place, a test flood outflow of 2360 cfs (1275 csm) would overtop the dam by about 0.8 foot. The spillway will pass 800 cfs or about 34 percent of the test flood. With stoplogs removed, the test flood outflow would overtop the dam by about 0.6 foot while the spillway would pass 1320 cfs or about 56 percent of the test flood. A major breach at top of dam could result in the loss of more than 10 lives and excessive property damage.

The owner, Hanover Water Works Company, should implement the results of the recommendations and remedial measures given in Sections 7.2 and 7.3 respectively, within 1 year, except as noted, after receipt of this Phase I inspection report.

Narren U. Duinan

Warren A. Guinan Project Manager N.H. P.E. 2339 This Phase I Inspection Report on Hanover Center Reservoir Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the <u>Recommended Guidelines for Safety Inspection of</u> <u>Dams</u>, and with good engineering judgment and practice, and is hereby submitted for approval.

Joseph q. Mc Elroy


JOSEPH A. MCELROY, MEMBER Foundation & Materials Branch Engineering Division

T1

armey 4. Vezian

CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division

JOSEPH V. FINEGAN, JR., CHAIRIAN Chief, Reservoir Control Center Water Control Branch Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR

Chief, Engineering Division

PREFACE

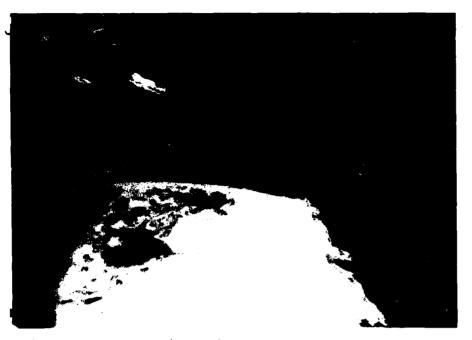
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

iv


TABLE OF CONTENTS

TitlePageLETTER OF TRANSMITTAL.BRIEF ASSESSMENT.BRIEF ASSESSMENT.ivREVIEW BOARD PAGE.ivPREFACE.ivTABLE OF CONTENTS.vOVERVIEW PHOTO.viLOCATION MAP.vii

REPORT

SECTION

1	PROJECT INFORMATION	1-1
	1.1 General	1-1
	1.2 Description of Project	1-1
	1.3 Pertinent Data	1-3
2	ENGINEERING DATA	2-1
	2.1 Design	2-1
	2.2 Construction	2-1
	2.3 Operation	2-1
	2.4 Evaluation	2-1
3	VISUAL INSPECTION.	3-1
5	3.1 Findings	3-1
	3.2 Evaluation	3 - 3
4	OPERATIONAL PROCEDURES	3-3 4-1
4		4-1
	4.1 Procedures	4-1 4-1
	4.3 Maintenance of Operating Facilities	4-1
	4.4 Description of Any Warning System in Effect	4-1
_	4.5 Evaluation	4-1
5	HYDROLOGY AND HYDRAULIC ANALYSIS	5-1
	5.1 Evaluation of Features	5-1
6	STRUCTURAL STABILITY	6-1
	6.1 Evaluation of Structural Stability	6-1
7	ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES	7-1
	7.1 Dam Assessment	7-1
	7.2 Recommendations	7-1
	7.3 Remedial Measures	7-1
	7.4 Alternatives	7-2
	APPENDICES Designat	tion
VIS	SUAL INSPECTION CHECK LISTS	А
	GINEERING DATA	В
PHC	DTOGRAPHS	С
	DROLOGY AND HYDRAULIC COMPUTATIONS	D
	FORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	E

1

Figure 1 - Overview of Hanover Center Dam.

vi

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT HANOVER CENTER DAM

> SECTION I PROJECT INFORMATION

1.1 General

a. <u>Authority</u>. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Crops of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Anderson-Nichols & Company, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to Anderson-Nichols under a letter of November 20, 1978 from Max B. Scheider, Colonel, Corps of Engineers. Contract No. DACW33-79-C-0009 has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) To encourage and prepare the States to initiate quickly, effective dam safety programs for non-Federal dams.

(3) To update, verify, and complete the National Inventory of Dams.

1.2 Description of Project

a. Location. Hanover Center Dam is located in the Town of Hanover, New Hampshire. The dam spans the North Branch Mink Brook, a minor tributary of Mink Brook in the Connecticut River Basin. The dam is about 1.4 miles above the confluence with Mink Brook. The location of the dam is on U.S.G.S. Quadrangle, Mascoma, New Hampshire - Vermont with coordinates approximately at N43° 42' 42", W72° 12' 6", Grafton County, New Hampshire. (See Location Map page vii.)

Description of Dam and Appurtenances. Hanover b. Center Dam impounds the secondary water supply reservoir for the Town of Hanover. The dam consists of an earthen embankment with a concrete lined channel, a wooden stoplog section, and a concrete box chute-type spillway. The dam is about 943 feet long, 30 feet high, and 14 feet wide at the crest. (See Appendix B.) The upstream and downstream faces of the dam have sideslopes of 2H:1V. From south to north, the dam consists of an earthen embankment about 612 feet long with an average height of 10 feet, a 6.5-foot wide concrete chute spillway with a 20-foot wide inlet that houses 5 stoplog bays, a section of earth embankment 210 feet long that varies from 21 to 30 feet in height, and a 101-foot section of earth embankment that ends at natural ground. A valve house is located 100 feet to the south of the north abutment.

c. Size Classification. Small (Hydraulic height - 30 feet; storage - 476 acre-feet), based on height and storage (< 40 feet and \geq 50 to < 1000 acre-feet) as given in Recommended Guidelines for Safety Inspection of Dams.

d. <u>Hazard Classification</u>. High Hazard. A major breach in the dam could probably result in the loss of more than 10 lives and cause excessive property damage. (See Section 5.1 f.)

e. <u>Ownership</u>. Hanover Center Dam is owned by the Hanover Water Works Company.

f. Operator. The Hanover Water Works Company, 47 South Main Street, Hanover, New Hampshire, 03755, is responsible for the operation of the Hanover Center Dam. Phone (603) 643-3439.

g. <u>Purpose of Dam</u>. The dam impounding the Hanover Center Reservoir was constructed to provide a backup water supply for the Town of Hanover.

h. <u>Design and Construction History</u>. The Hanover Center Dam was designed and built in 1961. A complete set of design plans was obtained from the files of Anderson-Nichols.

i. <u>Normal Operational Procedures</u>. The Hanover Center Reservoir is controlled by discharge through the Hanover Center Dam. Normal pool elevation is 1000⁺ MSL. The reservoir level is controlled by releasing water through the 10-inch water supply line to Reservoir No. 2 downstream. This line is flushed at least once a year, at which time the condition of all valves is checked. The stoplogs may be dropped by releasing the needle beams. However, Hanover Water Works stated that no stoplog lifting mechanism exists at Hanover Center Dam. Therefore, the original operating procedures listed on Pages B-4 and B-5 no longer apply.

1.3 Pertinent Data

a. Drainage Area. The drainage area consists of 1.85 square miles (1184 acres) of mountainous, predominantly wooded terrain.

b. Discharge at Damsite

(1) Outlet works (conduits) - one low-leveloutlet. Capacity at top of dam - 13 cfs @ 1005.0' MSL.

(2) The maximum discharge at the damsite is unknown. No records of past overtopping were disclosed.

(3) Ungated spillway capacity @ top of dam - not applicable

(4) Ungated spillway capacity @ test flood elevation - not applicable

(5) Gated spillway capacity @ top of dam - with stoplogs - 800 cfs @ 1005.0' MSL; without stoplogs -1320 cfs @ 1005.0' MSL

(6) Gated spillway capacity @ test flood elevation - with stoplogs - 899 cfs @ 1005.8' MSL; without stoplogs -1371 cfs @ 1005.8' MSL

(7) Total spillway capacity @ test flood elevation - with stoplogs - 899 cfs @ 1005.8' MSL; without stoplogs - 1371 cfs @ 1005.8' MSL

(8) Total project discharge @ test flood elevation - with stoplogs - 2360 cfs @ 1005.8' MSL; without stoplogs - 2360 cfs @ 1005.6' MSL

c. <u>Elevation</u>. (ft. above MSL based on elevation of 992.50 shown on dam plans for spillway crest elevation)

(1) Streambed at centerline of dam - 974.8(downstream toe)

- (2) Maximum tailwater unknown
- (3) Upstream invert low-level outlet 979.5

(4) Recreation pool - not applicable

			•	-
	(5)	Full flood control pool - not applicable	•	• •
removed)	(6)	Spillway crest - 992.5 (assuming all stoplogs		-
	(7)	Design surcharge (original design) - unknown	-	
	(8)	Top of dam - 1005.0		
	(9)	Test flood pool - 1005.8	• "_	
d.	Rese	rvoir (miles)	•	
	(1)	Length of Maximum pool - 0.4		
	(2)	Length of pool at normal pool - 0.4	<u> </u>	-
	(3)	Length of flood control pool - not applicable	•	•
e.	<u>Stor</u>	age (acre-feet)		
	(1)	Recreation pool - not applicable	-	
	(2)	Flood control pool - not applicable		
	(3)	Normal pool - 298		
	(4)	Top of dam - 476	an anisa anisa	
	(5)	Test flood pool - 502	•	
f.	Rese	rvoir Surface (acres)		
	(1)	Recreation pool - not applicable	р • с 1	•
	(2)	Flood control pool - not applicable		
	(3)	Normal pool - 33 (approximate)	-	
	(4)	Test flood pool - 39 (approximate)	_	-
	(5)	Top of dam - 38 (approximate)	•	
g.	Dam			
	(1)	Type - earthen embankment	<u> </u>	-
	(2)	Length - 943' (design)		
	(3)	Height - 30' (structural height)		
	(4)	Sideslopes - 2H:lV U/S and D/S		

1 - 4

4

(5) Topwidth - 14'

(6) Zoning - Imperv_ous core and random pervious fill (See Appendix B - Sketches)

(7) Impervious Core - Plans show a core with an ll' topwidth; 2H:lV sideslope upstream, and a lH:2V side-slope downstream.

(8) Cutoff - Plans indicate 10' wide 3' deep cutoff trench.

(9) Grout curtain - unknown (Plans show that a grout curtain may have been necessary in the bedrock at the north end of the dam.)

h. Diversion and Regulating Tunnel. not applicable

i. Spillway

(1) Type - concrete chute

(2) Length of weir - 18'; tapers to 6 1/2' wide chute 20 feet downstream of stoplogs.

(3) Crest elevation - 992.5 (without stoplogs); 1000.0 (with stoplogs)

(4) Gates - stoplogs (5 bays)

(5) U/S Channel - Hanover Center Reservoir, open, sand and gravel approach channel. The banks surrounding the reservoir have an average slope of 8H:1V. The shore is lined with brush and trees.

(6) D/S Channel - the channel downstream of the spillway is a narrow brook. The streambed is rocky and the valley sides are covered with trees. Immediately downstream of the dam north of the spillway is a small fish pond; the pond empties into the same brook, upstream of the spillway outlet. This small pond assures a minimum water level downstream of the dam to maintain fish life.

j. <u>Regulating Outlets</u>. The primary outlet is a concrete chute spillway that is controlled by stoplogs in 5 bays. Hanover Water Works reported that the stoplogs may be dropped by releasing the needle beams. The stoplogs have remained in place since construction. The cross section at the stoplogs is an 18-foot rectangular section which tapers to 6½ feet wide 20 feet downstream of the stoplogs. A 110-foot long chute discharges into the North

1-5

Branch Mink Brook just below the small pond. A 24-inch cast iron pipe passes through the dam. Connected to the pipe is a valve in the valve house located on the upstream side of the dam. The 24-inch pipe is reduced to a 10-inch cast iron pipe just downstream of the dam. A 10-inch tee connects one leg to a 10-inch water-supply line. The other leg of the tee is a 10-inch line that discharges into the fish pond. A control valve is located over the tee, enabling the operator to release flow through either or both lines. This mechanism could be utilized to lower the reservoir during an emergency.

SECTION 2 ENGINEERING DATA

2.1 Design

The dam was originally designed by Anderson-Nichols & Company, Inc. in 1961. The design plans were obtained from Anderson-Nichols' files (see Appendix B). No other design data were obtained for the dam.

2.2 Construction

The construction was done by Trumbull and Nelson, Hanover, New Hampshire.

2.3 Operation

No engineering operational data were disclosed.

2.4 Evaluation

a. <u>Availability</u>. Limited engineering data were available for the Hanover Center Dam. A search of the files of the New Hampshire Water Resources Board (NHWRB) revealed only a limited amount of recorded information. The design plans were obtained from Anderson-Nichols' files; no computations, design data, or other historical information were found.

b. Adequacy. The final assessments and recommendations of this investigation are based on the plans of the dam, the visual inspection, and the hydrologic and hydraulic calculations.

c. <u>Validity</u>. The plans disclosed are in conformity with the dam as seen on the visual inspection.

SECTION 3 VISUAL INSPECTION

3.1 Findings

a. <u>General</u>. Hanover Center Dam is a low dam which impounds a reservoir of small size. Its overall size classification is small. The watershed above the dam is mountainous and partially forested. The dam is located about 1½ miles upstream of the Village of Etna and about 6 miles upstream of the confluence of Mink Brook and the Connecticut River.

b. Dam. Hanover Center Dam is an earthen embankment, 30 feet high, 943 feet long, and 14 feet wide at the crest.

The upstream face of the dam (See Appendix C - Figure 2) has a slope of 2H:1V. At the time of the inspection, the water level in the reservoir was 12.3 feet below the crest of the dam. The portion of the upstream face that was visible above the water is covered with riprap that is in good condition. Some grass is growing up through the riprap between the normal pool elevation and the crest.

The crest of the dam (See Appendix C - Figure 3) is covered with grass from the south abutment to approximately the center of the dam. From the center of the dam to the north abutment there is a gravel roadway which services a small camp located on a natural knoll, downstream of the center of the dam. There is no vegetation in the two wheel tracks, but the remainder of the crest is covered with grass. The grass on the crest appears to have been mowed regularly. The camp occupant has recently tilled and seeded the roadway on the crest south of the spillway.

The downstream face of the dam (See Appendix C - Figure 4) has a slope of 2H:lV. The entire downstream face is covered with short grass. The downstream face of the dam between the north abutment and the natural knoll at the center of the valley is slightly uneven from approximately mid-height to the toe. It does not appear that this uneveness is the result of any seepage or stability problem. There is a rock drain at the downstream toe between the north abutment and the center knoll. Brush has grown up along a fence which is parallel to and immediately downstream of the toe of the dam from the center knoll to the south abutment. Clearing of the brush has been started and was completed for about half the total length between the south abutment and the center knoll.

c. Appurtenant Structures.

(1) Stoplog Section and Discharge Conduit. A stoplog section overflow spillway and discharge conduit (See Appendix C - Figures 4 & 5) are located near the center of the dam at the natural knoll. The intake channel is 24 feet wide at the mouth, with vertical concrete side walls (tapering down to 18 feet wide at the stoplog supports). The top of the stoplogs are 7.6 feet above the channel bottom. The stoplogs will remain in place indefinitely. (See p. 1-6, item j.) There are 5 stoplog sections approximately 3' 8" wide. The channel bottom is 12.5 feet below the crest of the dam. A 10-foot wide concrete service bridge crosses the channel. The design drawings, prepared by Anderson-Nichols & Company, Inc. in 1961, show two concrete cutoff walls across the bottom of the channel and up the sidewalls. A 6.5' wide, steeply sloping, chute-type concrete box channel approximately 110 feet long discharges to the downstream channel. The height of conduit varies from 6 feet to 11 feet. The concrete structure and stoplog supports were observed to be in good condition. Erosion of concrete is limited to the loss of surface laitance where in contact with water. All exposed steel associated with the chute spillway has been recently painted. The 3-inch thick wood stoplogs were also observed to be in good condition with no evidence of deterioration. Some leakage through the joints and slots was observed recently (24 April 1979). Some small cracks were visible in the concrete south wall at the downstream end of the chute spillway.

The service bridge and railings were also observed to be in good condition.

(2) Water Supply Valve Structure. A 10-foot square concrete structure that supports the valvehouse (See Appendix C - Figure 6) is located approximately 80 feet from the north end of the dam on the upstream face. The valves control flow into the Town of Hanover water supply system. The concrete structure was observed to be in good condition.

3 - 2

d. <u>Reservoir Area</u>. The reservoir (See Appendix C -Figure 7) extends about one-half mile upstream from the dam. Trees surround the shoreline. The northeast shoreline, which is about 150 feet from Hanover Center Road, parallels the road for about 700 feet. Because the water level was low at the time of the inspection, the bottom of the reservoir near the dam was exposed from a point near the spillway to the south abutment. It appears that only a minor amount of silt has accumulated in the reservoir since the dam was constructed in 1961.

Downstream Channel. The downstream channel is e. below the section of the dam between the north abutment and the center knoll. Immediately downstream of this section of the dam is a small fish pond impounded behind a man-made dam. The pond is fed by a 10-inch diameter cast iron tee extension, as well as a 4-inch by-pass The 4-inch line is used to maintain a minimum flow line. into the fish pond. A flow meter connected to the 4-inch line is located at the northern end of the dam near the crest on the downstream face. The chute spillway, near the center of the dam, discharges into the channel (See Appendix C - Figure 8) a short distance downstream of the fish pond dam. The floor of the channel is covered with cobbles and boulders. Brush overhangs the channel and some recently cut brush and trees are lying in the channel. A 12-inch diameter concrete pipe discharges into the brook just below the downstream end of the chute spillway. This concrete pipe channels water collected in a gutter at the downstream toe of the southern end of the dam to the brook.

3.2 Evaluation

Based on the visual inspection, Hanover Center Dam appears to be well maintained and in good condition. However, due to an inadequate spillway, the overall rating is fair.

As part of the routine maintenance and operating program, brush and trees should be cleared from the downstream channel. During future inspections of the dam, attention should be paid to the downstream slope of the dam between the north abutment and the center knoll to verify that the slightly uneven surface is not the result of any seepage or stability problem.

SECTION 4 OPERATIONAL PROCEDURES

4.1 Procedures

The Hanover Water Works Company has operated the reservoir since 1961. (See section 1.2 i. for operational procedures.)

4.2 Maintenance of Dam

The Hanover Water Works Company is responsible for the maintenance of the Hanover Center Dam. Maintenance is done on a regular basis.

4.3 Maintenance of Operating Facilities

The Hanover Water Works Company is responsible for maintaining the operating facilities.

4.4 Description of Any Warning System in Effect

No written warning system was disclosed for the Hanover Center Dam.

4.5 Evaluation

The present maintenance procedures are adequate to ensure that minor problems encountered could be remedied within a reasonable amount of time. The operating procedures should be modified to incorporate periodic testing of the needle beams.

4 - 1

SECTION 5 HYDROLOGIC/HYDRAULIC

5.1 Evaluation of Features

١

a. <u>General</u>. The Hanover Center Dam is an earthen embankment with a concrete chute-type spillway which impounds a small water supply reservoir. The total length of the dam is 943 feet, 18 feet of which consists of the concrete spillway.

b. <u>Design Data</u>. No original hydrologic and hydraulic design data were found or disclosed for the dam.

c. Experience Data. No information regarding past overtopping of the structure was disclosed.

d. <u>Visual Inspections</u>. No visual evidence of overtopping such as damage to the structure was noted at the time of the inspection.

e. <u>Test Flood Analysis</u>. The Hanover Center Dam is classified as small, having a hydraulic height of 30 feet and a maximum storage capacity of 476 acre-feet. This small reservoir contains runoff from a 1.85 square mile drainage area, characterized by mountainous, mostly forested terrain. Using a CSM value of 2550, a Probable Maximum Flood (PMF) of 4718 cfs was obtained. The Recommended Guidelines for Safety Inspection of Dams dictated use of ½ the PMF.

Using ½ PMF, the test flood discharge was determined to be 2360 cfs. The overtopping analysis indicates that, with stoplogs in place, the dam would be overtopped by 0.8 foot during the test flood. The maximum spillway capacity at top of dam is 800 cfs which is 34% of the test flood discharge. With stoplogs removed, the dam would be overtopped by 0.6 foot during the test flood. The maximum spillway capacity at top of dam would be 1320 cfs which is 56% of the test flood discharge. It is likely that the stoplogs would be in place because of the difficulty of removing the pins holding the needle beams. (see p. 1-6, item j.)

f. Dam Failure Analysis. The impace of failure of the dam at top of dam was assessed using the Guidance for Estimated Downstream Dam Failure Hydrographs issued by the Corps of Engineers. The analysis covered the downstream reach extending from the dam to a group of houses north of the Village of Etna, a distance of about 5,900 feet. A breach at top of dam would result in inundation of Hanover Center Road at two brook crossings, as well as wash out a sand and gravel driveway just downstream of the dam. Six houses would be subject to a 9.6-foot increase in stage above the already high 4.0-foot tailwater elevation, inundating them with more than six feet of water. Excessive property damage could result and more than 10 lives would probably be lost.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. <u>Visual Observations</u>. The visual inspection indicated that the dam embankment and appurtenant features are well-maintained and in good condition; however, because of inadequate spillway capacity, the condition of the structure is considered fair. No evidence of seepage or slope instability were observed; evidence of trespassing was minimal.

Standing water was observed in a shallow, small depression near the downstream toe between the south abutment and the center knoll, but no water was being discharged. It appears that the standing water is not the result of seepage from the reservoir.

A slight uneveness of the downstream slope of the dam between the south abutment and the center knoll was noted. It does not appear that this uneveness is the result of any seepage or stability problem.

Design and Construction Data. A complete set of b. design drawings is available. They show that: the dam is founded on glacial till; the central portion and upstream shell of the embankment consist of selected impervious fill; the downstream shell consists of random pervious fill; the upstream face is covered with a 15-inch layer of dumpedrock riprap placed on a 9-inch layer of gravel bedding; a horizontal gravel drainage blanket is placed beneath the downstream shell; a rock toe drain is located at the downstream toe of the dam; a graded filter is between the toe drain and the random pervious fill of the downstream shell; and 6-inch perforated seepage drains are beneath the downstream toe of the dam. The outlets of the two seepage drains between the north abutment and the center knoll were not observed during the inspection; the outlet of the drain between the south abutment and the center knoll was observed; no water was discharging from it.

c. <u>Operating Records</u>. No operating records pertinent to the structural stability of the dam were disclosed. See Section 4 for operating procedures performed by the owner.

d. <u>Post-Construction Changes</u>. No changes appear to have been made since the original construction of the dam.

e. <u>Seismic Stability</u>. This dam is located in Seismic Zone 2 and in accordance with the recommended Phase I guidelines does not warrant seismic analysis. SECTION 7 ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. <u>Condition</u>. The evaluation and visual inspection indicate that Hanover Center Dam is in fair condition. However, the capacity of the spillway is inadequate as discussed in Section 5.

A minor uneveness of the downstream slope and a shallow, small depression with standing water near the downstream toe were observed, but neither condition appears to be related to either a seepage or stability problem. Brush is overhanging the discharge channel and some cut brush and felled trees were noted in the discharge channel.

b. Adequacy of Information. The information available is adequate to assess the condition of the dam. The conclusions about the stability of the dam are based primarily on the results of the visual inspection and a review of the design plans.

c. <u>Urgency</u>. The operating and maintenance recommendations made in 7.3 a. below should be implemented within 1 year after receipt of this Phase I report.

d. <u>Need for Additional Investigation</u>. No additional investigation is required.

7.2 Recommendations

The owner should engage a Registered Professional Engineer to further investigate the adequacy of the spillway capacity, the feasibility of providing an additional emergency spillway and a remote-controlled automated pin release for the stoplog needle beams.

7.3 Remedial Measures

a. <u>Operating and Maintenance Procedures</u>. The owner should:

(1) Keep the brush cut near the downstream toe of the dam between the south abutment and the center knoll.

(2) Clear the brush and trees along the discharge channel for a distance of 20 feet on either side of the channel and for a distance of 100 feet downstream from the fish pond dam or to the limits of the town-owned property, whichever is less. (3) Inspect the dam monthly.

(4) Engage a Registered Professional Engineer to make a comprehensive inspection once every two years.

(5) Establish written operational and maintenance procedures.

(6) Establish a surveillance program for use during and immediately following periods of heavy rainfall, and also a warning program to follow in case of emergency conditions.

7.4 Alternatives

None.

APPENDIX A

.

Ľ

.

VISUAL INSPECTION CHECKLIST

	ECTION CHECKLIST ORGANIZATION	
ROJECT Hanover Center Dam	, N.H. DATE November 9, 1978	
	TIME 1:00 P.M.	
	WEATHER Cool, sunny	
	W.S. ELEV. U.S. DN.S.	
ARTY:	992.7 974.8	
Robert Langen	6. Warren Guinan	
Stephen Gilman	_ 7	
Douglas Ford	8	•
Robert Ojendyk	_ 9	
Ronald Hirschfeld	- 10	
PROJECT FEATURE	INSPECTED BY REMARKS	
Hydrology/Hydraulics	R. Langen/D. Ford	
Structural Stability	S. Gilman	
Soils & Geology	R. Hirschfeld	
		•
•	~	
•		
•		
•		
•		

! ŀ

ļ

	DATE <u>November 9, 19</u> 78		
PROJECT FEATURE Dam Embankment			
DISCIPLINE			
····			
AREA EVALUATED	CONDITION	•	
DAM EMBANKMENT		-	•
Crest Elevation	1005.0' MSL		
Current Pool Elevation	992.7' MSL	•	
Maximum Impoundment to Date	15" above stoplogs		_
Surface Cracks	None apparent	• • .	
Pavement Condition	Not paved	•	•
Movement or Settlement of Crest	None apparent	*	-
Lateral Movement	None apparent		•
Vertical Alignment	Good		
Horizontal Alignment	Good	, •	•
Condition at Abutment and at Concrete Structures	Good	1. j.	
Indications of Movement of Structural Items on Slopes	None apparent		
Trespassing on Slopes	None apparent		
Sloughing or Erosion of Slopes or Abutments	Downstream slope of north section k embankment is slightly uneven from about mid-height to toe.	of	
Rock Slope Protection - Riprap Failures	Riprap on upstream face in good condition.	•	
Unusual Movement or Cracking at or Near Toe	None apparent		
Unusual Embankment or Down- stream Seepage	None apparent. Some standing water in closed depression at downstream	r R	
Piping or Boils	toe of south section. None apparent	-	
Foundation Drainage Features	Plans show drains beneath downstrea half of embankment. Drains were no		
Toe Drains	observed during inspection of rock		
Instrumentation System	at downstream toe of north section of dam.	•.	
Vegetation	None Grass on crest and downstream slope riprap on upstream slope.	- e,	•

A-2

•

PROJECT Hanover Center Dam, N.	H. DATE November 9, 1978	
PROJECT FEATURE Intake Channel	& Structure NAME	
DISCIPLINE	NAME	•
AREA EVALUATED	CONDITION	
DUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE		
a. Approach Channel		
Slope Conditions	No slopes	
Bottom Conditions	Soil bottom of reservoir	•
Rock Slides or Falls	None	
Log Boom	None	• •
Debris	None	
Condition of Concrete Lining	Not visible	
Drains or Weep Holes	None	
. Intake Structure	Not visible	
Condition of Concrete		
Stop Logs and Slots		
		•
		• •
	A-3	

PROJECT <u>Hanover Center Dam. N.H.</u> Control Tower	DATE <u>November 9, 1978</u> NAME	
DISCIPLINE		
DISCIPLINE		
AREA EVALUATED	CONDITION	
OUTLET WORKS - CONTROL TOWER		
a. Concrete and Structural		
General Condition	Good to excellent	
Condition of Joints	Good	
Spalling	None	
Visible Reinforcing	None	
Rusting or Staining of Concrete	None	
Any Seepage or Efflorescence	None visible	
Joint Alignment	Good	
Unusual Seepage or Leaks in Gate Chamber	None visible	•
Cracks	None visible	
Rusting or Corrosion of Steel	None visible	
b. Mechanical and Electrical		
Air Vents	Not applicable	
Float Wells	Not applicable	
Crane Hoist	Not applicable	
Elevator	Not applicable	
Hydraulic System	Not applicable	
Service Gates	Not applicable	
Emergency Gates	Not applicable	• •
Lightning Protection System	Not applicable	
Emergency Power System	Not applicable	
Wiring and Lighting System	Not applicable	

ŀ

... .

..

	TION CHECKLIST	
Hanover Center Dam, N.H. PROJECT	DATE <u>November 9, 1978</u>	
PROJECT FEATUREOutlet Works	NAME	
DISCIPLINE	NAME	•
·	T	-
AREA EVALUATED	CONDITION	_
OUTLET WORKS - TRANSITION AND CONDUIT	Stoplog spillway outlet	
General Condition of Concrete	Good	
Rust or Staining on Concrete	None visible	
Spalling	None visible	
Erosion or Cavitation	None visible	
Cracking	None visible	•
Alignment of Monoliths	Good	
Alignment of Joints	Good	
Numbering of Monoliths		•
Stoplog supports	Steel in contact with water is rusted, original paint gone, steel above water-painted, in good condition.	
	<u> </u>	

L

F

PERIODIC INSPI	ECTION CHECKLIST		
PROJECT Hanover Center Dam, N.H.	DATE November 9, 1978		
PROJECT FEATUREOutlet Works	NAME		· · · ·
DISCIPLINE	NAME		
AREA EVALUATED	CONDITION		
OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL	· · · · · · · · · · · · · · · · · · ·		•
General Condition of Concrete	Good		
Rust or Staining	None visible		
Spalling	None visible]	
Erosion or Cavitation	None visible		
Visible Reinforcing	None		•
Any Seepage or Efflorescence	None		
Condition at Joints	Good	-	
Drain holes	None		•
Channel	Good	'	
Loose Rock or Trees Overhanging Channel	None		•••••
Condition of Discharge Channel	Good		
		•	
			2
		-	•

PERIODIC INSP	ECTION CHECKLIST	
PROJECT Hanover Center Dam, N.H	• DATE November 9, 1978_	•••
PROJECT FEATURE _ Chute spillway	NAME	
DISCIPLINE	NAME	-
AREA EVALUATED	CONDITION	
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS		•
a. Approach Channel		
General Condition	Good	
Loose Rock Overhanging Channel	None	• •
Trees Overhanging Channel	None	
Floor of Approach Channel	Soil bottom of reservoir	
b. Weir and Training Walls		• •
General Condition of Concrete	Good	
Rust or Staining	None visible	
Spalling	None visible	• •
Any Visible Reinforcing	None	
Any Seepage or Effloresœnœ	None	
Drain Holes	None	•
c. Discharge Channel		
General Condition	Fair	
Loose Rock Overhanging Channel	None	• •
Trees Overhanging Channel	Brush overhanging channel	
Floor of Channel	Cobbles and boulders	
Other Obstructions	Some recently cut trees and brush lying in channel. Culvert 500 ft. downstream.	
		• •

;

5

PERIODIC INSPI	ECTION CHECKLIST	
PROJECT Hanover Center Dam, N.I	DATE November 9, 1978	•
PROJECT FEATURE Service Bridge for house	or Valve- NAME	
1	NAME	
AREA EVALUATED	CONDITION	
OUTLET WORKS - SERVICE BRIDGE		
a. Super Structure		•
Bearings	Not applicable	
Anchor Bolts	Not applicable	-
Bridge Seat	Good	
Longitudinal Members	Good	
Underside of Deck		
Secondary Bracing		
Deck	Treated wood - good	
Drainage System	None	erz w o
Railings	None	
Expansion Joints	None	
Paint	Good	• • • • •
b. Abutment & Piers	Not applicable	
General Condition of Concrete		
Alignment of Abutment		٠
Approach to Bridge		•
Condition of Seat & Backwall		
		•
	- °	

1

1

L

.

PERIODIC INSPECTION CHECKLIST				
PROJECT Hanover Center Dam, N.H.	DATE November 9, 1978			
FROJECT FEATURE Service Bridge fo	or Spillway NAME			
DISCIPLINE	NAME	•		
AREA EVALUATED	CONDITION			
OUTLET WORKS - SERVICE BRIDGE				
a. Super Structure		•		
Bearings	Not applicable			
Anchor Bolts	Not applicable			
Bridge Seat	Concrete - good	•		
Longitudinal Members	1			
Underside of Deck	. !			
Secondary Bracing				
Deck	Concrete - good			
Drainage System	None			
Railings	Good			
Expansion Joints	None			
Paint	Good			
D. Abutment & Piers				
General Condition of Concrete	Good			
Alignment of Abutment	Good	•		
Approach to Bridge	Good	:		
Condition of Seat & Backwall	Good			
		•		
		•		

i

A-9

•

Ρ	RO	JECT	Hano	ver	Center	Dam,	NH

DATE November 9, 1978

PROJECT FEATURE Reservoir

NAME R. Langen

AREA EVALUATED	REMARKS
	-
Stability of Shoreline	Good
Sedimentation	Minor
Changes in Watershed Runoff Potential	None
Upstream Hazards	None
Downstream Hazards	Houses adjacent to stream 1 mile downstream; two road crossings
Alert Facilities	None posted
Hydrometeorological Gages	None
Operational & Maintenance Regulations	None posted
	-
	-
	-

APPENDIX B

٢

•

•

.

.

ENGINEERING DATA

	INSPECTION REPORT	• •
Town: He	م م کندلا	
Name of Dam,	Stream and/or Water Body:	
Owner:]-]	anour water Weile Telephone Number:	
	ss;	
Max. Height c	f Dam: <u>35</u> Pond Area: <u>32</u> A Length of Dam: <u>9</u> 4	<u>)</u> • •
FOUNDATION:	E. Th for	
-		······
-		• •
-		
OUTLET WORKS:		•
	5 Steplay Bays 18' total 9' Freid.	
\mathcal{T}	33 deep	
-		
-		
-		
-		• •
ABUTMENTS:		
-		
-		••
-		
-	/	
EMBANKHENT:	Earth Enbert 12' Top 2111 Slipes	•••
-		
-		• •
-	•	
-		
e: Cive Sir: ♥ ♥ ♥	ing, Condition and detailed description for each item, if applicabl	e. ·

F

6

•

ILLMAY: Lengt	th: 18	Freeboard:	
	estimated quanti	ty, etc.	•
<i>N</i>	ove	·	
			•
Changes Since Constru	action or Last In	spection:	•
······································	,,,_,_,_,_,_,_,_,,_,,,,,,,,		
••••••••••••••••••••••••••••••••••••			•
Tail Water Condition:			
Terr water Condition.	3.		
			•
		•	
Overall Condition of	Dam: <u>60</u>	$\overline{\mathcal{O}}$	
Contact With Owner: _	No		• • • • • • • • • • • • • • • • • • •
Contact With Owner: _	No 910 June	<u>- つう</u> Suggested Reinspection	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	$\frac{\gamma\gamma}{B}$ Suggested Reinspection	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	<u>77</u> Suggested Reinspection <u>C</u> Signature <u>J</u>	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	$\frac{\gamma\gamma}{B}$ Suggested Reinspection	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	<u>77</u> Suggested Reinspection <u>C</u> Signature <u>J</u>	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	<u>77</u> Suggested Reinspection <u>C</u> Signature <u>J</u>	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	<u>77</u> Suggested Reinspection <u>C</u> Signature <u>J</u>	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	<u>77</u> Suggested Reinspection <u>C</u> Signature <u>J</u>	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	<u>77</u> Suggested Reinspection <u>C</u> Signature <u>J</u>	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_	No 910 June	<u>n</u> Suggested Reinspection <u>Signature</u> Date	• • • • • • • • • • • • • • • • • • •
Contact With Owner: _ Date of Inspection:_ Class of Dam:	No 90 June Menale	<u>77</u> Suggested Reinspection <u>C</u> Signature <u>J</u>	Date

1

Ŀ

WATER RESOURCES BOARD SITE EVALUATION DATA OWNER: Hanoven Water Works TELEPHONE NO. IMILING ADDRESS: SITE LOCATION (TOWN OR CITY) Haven NAME OF STREAM OR NATERBODY: No Br Mink Brook LOCATION QUADRANGLE: NEIGHT OF (PROPOSED, EXISTING) DAM 30'LENGTH 940' TYPE OF (PROPOSED, EXISTING) STRUCTURE Earth Embank DRAINAGE AREA 25M POND AREA 32A AVAILABLE ARTIFICIAL STORAGE: PERMANENT: _____TEMPORARY: ______TOTAL 29816 EXISTING DEVELOPMENT DOWNSTREAM OF (PROPOSED, EXISTING) STRUCTURE Several Dovices POTENTIAL DEVELOPMENT DOWNSTREAM OF (PROPOSED, EXISTING) STRUCTURE POTENTIAL DAMAGE DOWNSTREAM OF STRUCTURE (EXPLAIN IN DETAIL AND INCLUDE ANY POTEN-TIAL LOSS OF LIFE ESTIMATE) _____ OTHER COMMENTS: CLASS OF STRUCTURE -- NONTELEASE (MENACE) R (B en (DAM # 108, 14 DATE OF INSPECTION: 9 June 7 SIGNED. SIGRATURE B-3 DATE:

CO-ORDINATED ENGINEERING SERVICE

A CO-ORDINATED ENGINEERING SERVICE

ANDERSØN-NICHOLS

BOSTON, MASS. 150 CAUSEWAY STREET CONCORD, N. H. 10 EASTMAN STREET

7 February 1961

EEB 8 1961

Mr. Leonard R. Frost Engineer, Water Resources Board State House Annex Concord, New Hampshire

NEW HAMPSHIRE WATER RESOURCES BOARD

SUBJECT:

Hanover Center Reservoir Operation Our Job C-1541

Dear Mr. Frost:

In your letter of 23 January 1961, you requested some information in regard to the procedure to be followed in the operation of the proposed reservoir at Hanover Center, to be constructed by the Hanover Water Works Company.

The drainage area of the proposed reservoir, as we have now determined it from the U.S. Geological Survey quadrangle sheet, is 1185 acres. The area of the reservoir at elevation 1000 is 32.65 acres, and the volume of the reservoir at elevation 1000 is 298 acre fect.

I have discussed the proposed operation of the reservoir with Mr. Fred Parker, who is acting as Superintendent of the Water Works Company since the death of Mr. Philip Coykendal, and Mr. J. Ross Gamble; Executive Vice-President of the Company. The operating rules for the reservoir which we have decided upon are as follows:

> Whenever the elevation of the water in the reservoir falls below the top of the stop logs in place in the chute spillway, the 4-inch bypass value in the 24-inch value in the value house shall be opened to permit flow to the brook below the dam. The discharge through the by-pass will not be required to exceed the inflow to the reservoir.

"al" Lewis suggests that a centera be included on clance stating "sufficient mater shall price to monitain fish life downstrom". B-4

ANDERSON-NICHOLS & COMPANY, Inc.

Mr. Leonard R. Frost 7 February 1961 Page Two

2.

3.

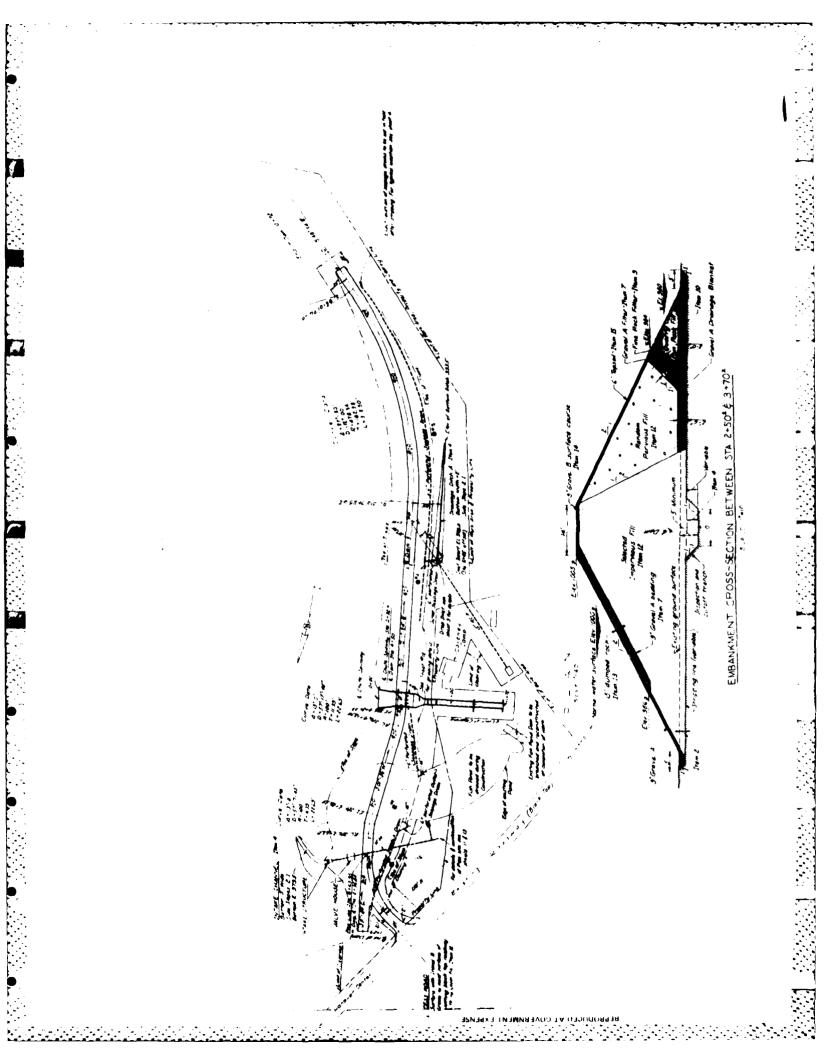
The maximum elevation of the water carried in the reservoir about 1 March of any year shall not exceed 998.5, and at that time, the maximum elevation of the stop logs in place in the chute spillway shall not exceed 999.0. When the snow melt on the drainage area above the dam is about complete, thestop logs in all five bays may be replaced and the water in the reservoir allowed to rise, subject, however, to rules three and four herein.

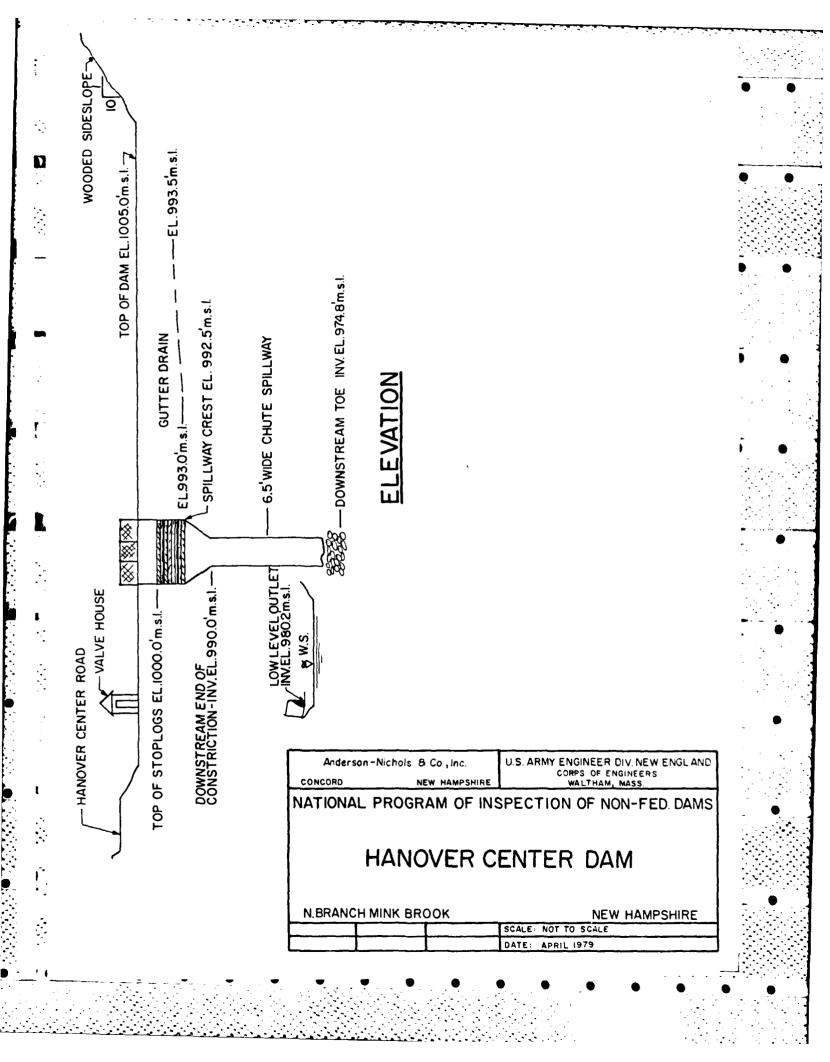
Whenever the elevation of the water in the reservoir exceeds 1000.4, stop logs shall be removed from the chute spillway or water drawn through the pipe line, to control the reservoir water at elevation 1000.4 or lower.

Whenever the water in the reservoir is at elevation 1000 or higher, and there is a measured precipitation at Hanover, in any 24-hour period, in excess of one inch, stop logs shall be removed to control the water at elevation 1000 or lower as long as possible. If, after removal of as many stop logs as possible, the water in the reservoir rises above elevation 1000, a constant watch of the water elevation shall be made, and if it reaches 1002.5, needle beams shall be tripped as necessary to control the water at 1002.5 or lower. Timing of the tripping of successive meedle beams shall be such as to prevent undue rise in the discharge in the brook below the dam.

I believe this to be an acceptable set of reservoir operating rules.

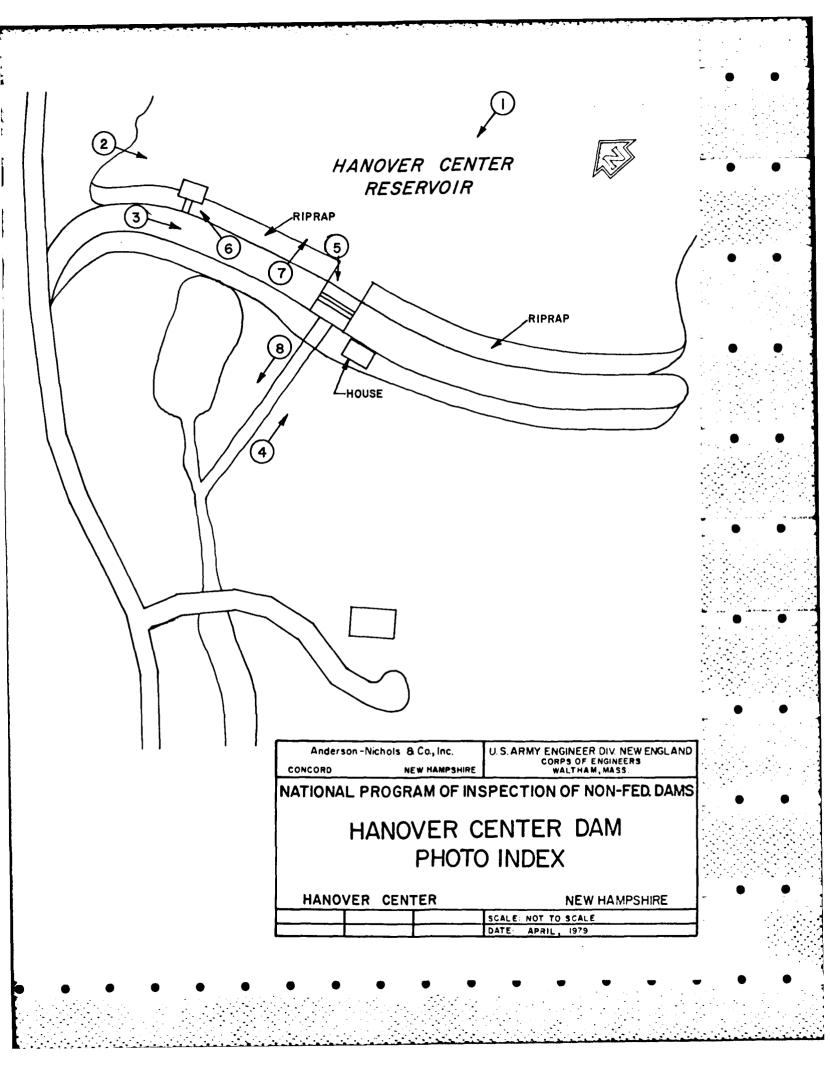
B-5


THE STATE OF NEW HAMPSHIRE


Grafton January 17 County of 1961 ss. STATEMENT OF INTENT TO CONSTRUCT OR-RECONSTRUCT A DAM AT Hanover TO THE WATER RESOURCES BOARD: In compliance with the provisions of RSA 482:3. We, Hanover Water Works Company 1, (Here state name of person or persons, partnership, association, corporation etc.) hereby state our intent to the Water Resources Board to construct, to reconstruct to make repairs to, a dam along, or (cross out portion not applicable) across: North Branch of Mink Brook (Here state name of stream or body of water) 1.5 miles north of Etna Village At a point (Here give location, by distance from mouth of stream, county or municipal boundary) in the town (s) of Hanover in accordance with PRELIMINARY PLANS, and SPECIFICATIONS FILED WITH THIS STATEME T AND MADE A PART HEREOF. We, understand that more detailed plans and specifications may be requested------by the Board in conformance with RSA 482:4 and that, if such plans are requested, construction will not commence until such plans have been filed with and approved by the Board.

B-6

The purpose of the proposed co	onstruction is Municipal Water
	(Here briefly state use to
Supply	
ich stored water is to be put)	
The construction will consist	of an earth embankment
The construction will consist	(Here give brief description of
dam equipped with a reinfo:	rced concrete chute spillway.
ork contemplated including height of d	am)
The dam will be approximat	tely 940 feet long and the maximum height
will be about 30 feet.	
will be about 50 feet.	
11 land to be flowed to owned b	by applicant.
is	
15	
15	Hapover Water Works Company
15	Hanover Water Works Company
15	By A Long Manly
15	$-\Lambda$ (I, λ) (I, λ)
15	By Alloy Manle Marine


Note: This statement together with plans, specifications and information and data filed in connection herewith will remain on file in the office of the Water Resources Board. This statement is to be filed in duplicate.

APPENDIX C

PHOTOGRAPHS

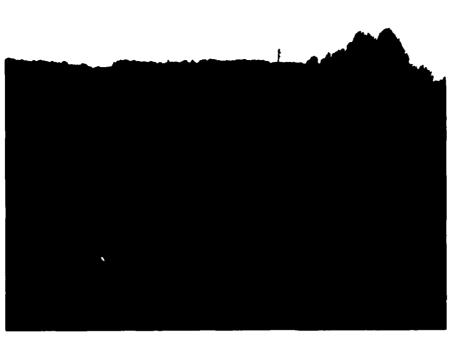


Figure 2 - Looking south at upstream face of dam.

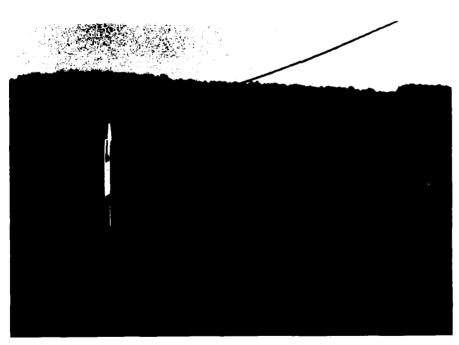


Figure 3 - Looking south along crest of dam.

C-2

• • •

Figure 4 - View of downstream face of dam and chute spillway.

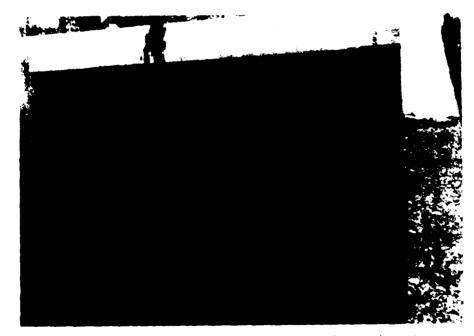


Figure 5 - Looking downstream at stoplogs in chute spillway.

C-3

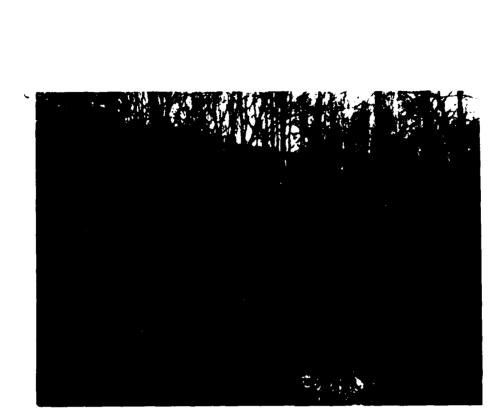


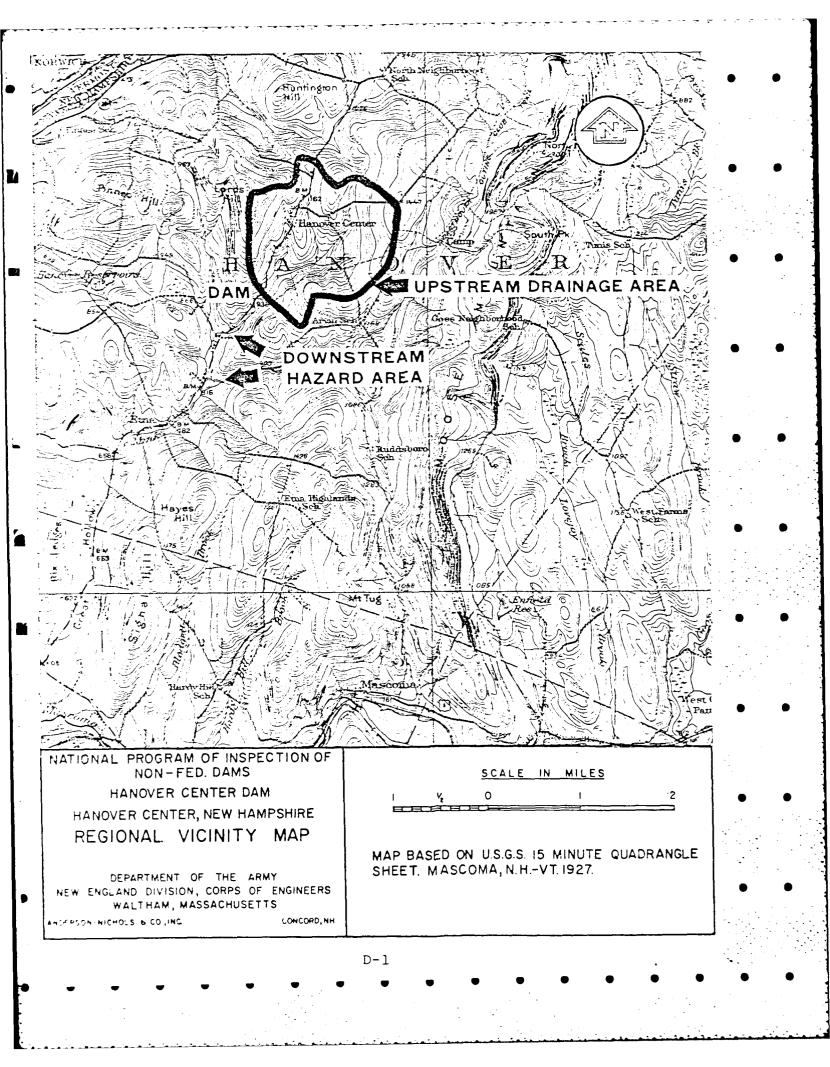
Figure 6 - Looking at gatehouse which contains valve for controlling discharge into water supply line and fish pond.

Figure 7 - Looking east at upstream reservoir.

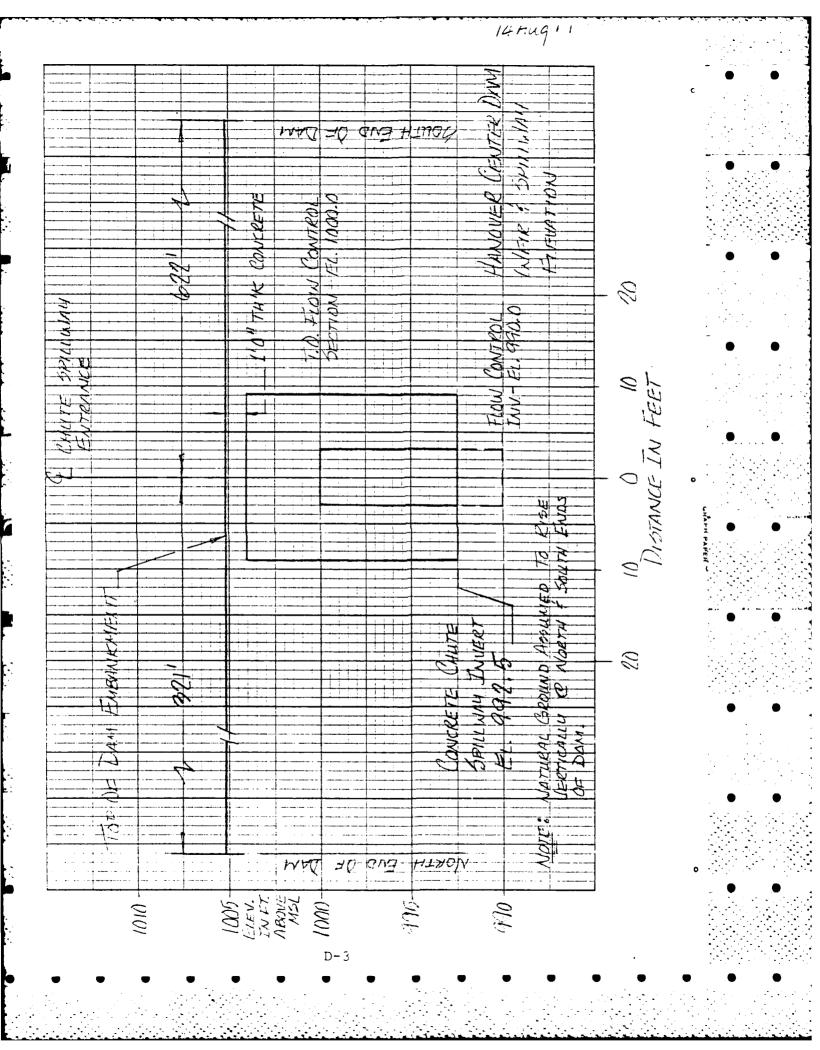
C-4

ł.

Figure 8 - View of discharge channel below chute spillway outlet.


.

....


APPENDIX D

1

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

OFET HUDROLOGU & HUDRAULICS 14 415 79 Hancver Center Dam Dirinage area = 1.85 mi2 Size classification: Small Hazard classification: High Test flood = 1/2 PMF Criculate the PMF using Pheliminary Guidance for Estimation Maximum Probable Discharges in Phase I Dam Safety Investigations, March, 1978, firstage elope of chainage area is 350 ft/mile; therefore, in montainous curve will be used to obtain a CSIA vail 1.55 mi? (2550 054) = 4718 cfs = PMF 1/2 PMF = 4718/2 = 2359 c/s = say 1/2 PMF = 2260 cfs Detructure surcharge height to pass QD, of 7260 cts, : The test 21000 inflow. To obtain this, a discharge Arting curve must be generated for Hanover Center Dan Out-low would occur finet through the concurre chiere waters would inundate the dam embankment che: t. Ir trial (), assume that the stoplogs have been removed; in trial (), assume that the stoplogs are in place

14 F. ug 79 Develop a rating awive at the dam ... D'Assume: Stoplogs have been removed and obstruction to flow due to stoplog holding columns is regligible. Below elevation 1000.0, low flow controls; Above elevation 1000.0, pressure flow controls; Above elevation 1005.0, pressure à wein fin Along chute spillway, critical depth occurs at point where channel bottom slope changes from mild to steep = el. 990.0. Chitical depth = $D_c = \left(\frac{O}{\sqrt{9}b}\right)^{2/3}$ for a suct channel * Contraction loss may be expressed as: $h = (Q)^2$, where C = 0.96 (CMa_2) and $M = \sqrt{\frac{2q}{1-(a_2/a_1)^2}}$, $a_1 = u/s$ X-sect. culvertaica Friction losses are regligible. From equation 8-29, p. 5-8, Brater & King, Harobook From equations 12-13, 14 p. 12-21, Brates & King, tions zeek of Hysian es.

En low this constitution, assume a discinge ...

141.

$$G = 100 \text{ cfs}$$

$$D_{c} = \left(\frac{100}{\sqrt{32.2}(6.5)}\right)^{2/3} = 1.94^{-1}$$

$$M = \sqrt{\frac{2(32.2)}{1-(72/207)^{2}}} = 8.56^{-1}, \quad \alpha_{1}/\alpha_{2} = 72/207^{-1}$$

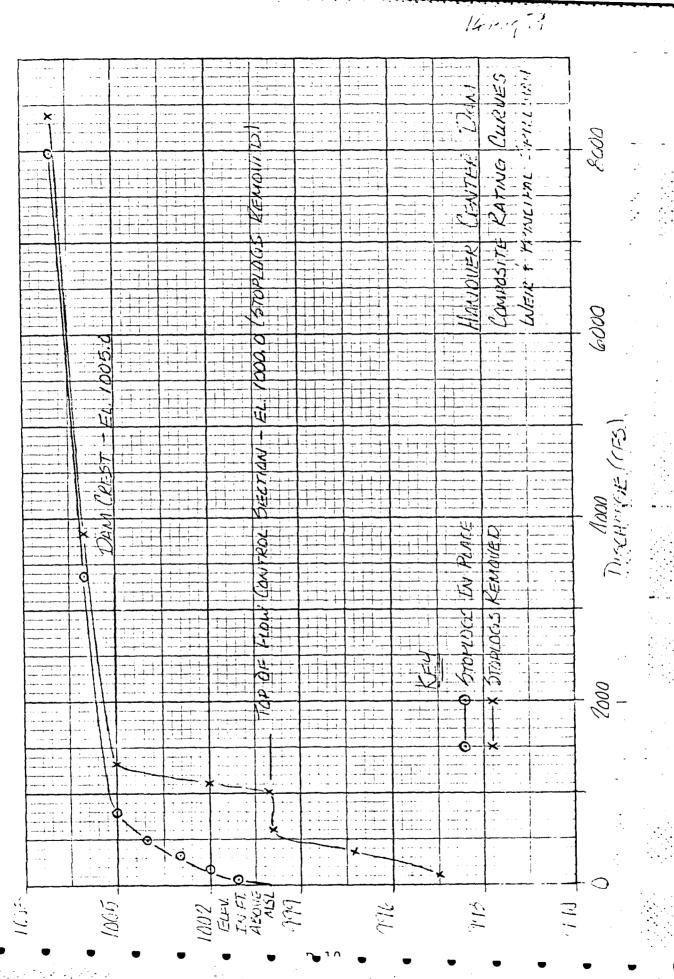
$$h = \left(\frac{100}{0.98(8.56)72}\right)^{2} = 0.03^{-1}$$

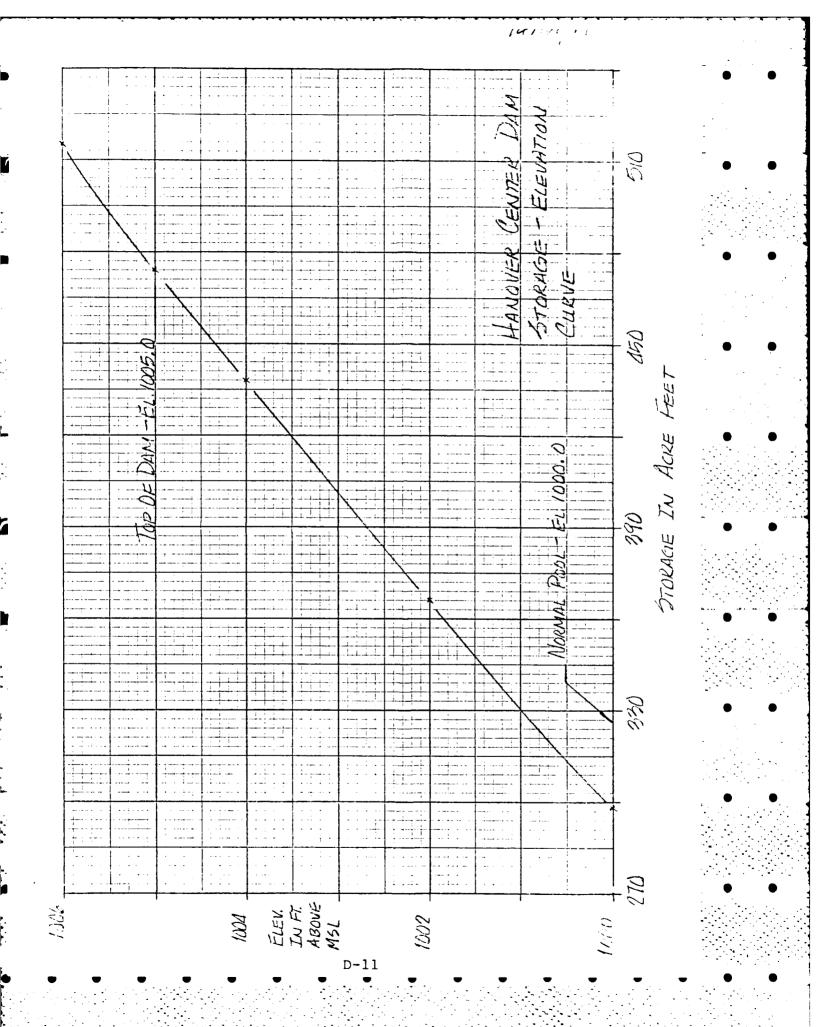
elevation loss = 2.5'

Reservoir surject elevation = 790.0 + 1.94 + 0.03 + 2.5 = 994.5 Q = 350 cfs $D_{c} = \left(\frac{350}{\sqrt{32.2}(6.5)}\right)^{2/3} = 4.48^{1/3}$ M = 8.56

$$h = \left(\frac{350}{0.98(8.56)72}\right)^2 = 0.34'$$

elevation loss = 2:51


Reservoir surface devation = 990.0 + 4.48 + 0.34 + 2.5 = 997.3


14 /		•
$C = 600 \text{ mis} \\ D_{2} = \left(\frac{600}{\text{Y=2.2}(6.5)}\right)^{\frac{3}{2}} = 6.42^{1}$	<u> </u>	
$M = \mathcal{B}.56$		
$h = \left(\frac{600}{0.96(8.56)72}\right)^2 = 0.98'$		
elevation loss = 2,5'	• *	
Reservoir curface elevation = 990.0 + 6.42 + 0.98 + 2.5 = 999.9	. *	•
At a sustaine > 600 cts, pressure flow Managh The chute spiritury occurs.		
Pressure fine through a rectangular, concrete and can be seconibed using the orifice equation:	C17	•
G = Cartaph where C = 0.6*, a = area chopsing=6 and h = 11/s w.s. elev elev. EE of g	5 4 cchil	1
11.0. Eevalue: h(ft) Q(cfs)	-	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
1006.0 11 1384 1007.0 12 1446	-	
* These 4-11 or. 2. 4-25 Brates & King, Harabesh Chirden		

air, i 14 Aug T? FERRE MER. 1005.0, were the occurs over the sam chesty Les work equation to compute addition in the top of down on bankmint: $P = CLif^{\frac{3}{2}} \quad where \ C = 2.6^{*}, \ L = 7.13'$ W.S. Elevation H(4) Q(c3) Composite Q (were + orifice 2452 1006.0 3836 2 6935 8381 1007.0 Inmossifie Rating Data (stoplogs removed) $Q(f_{s})$ W.S. Elevation 994.5 100 Low Flow 997.3 390 999.9 600 1001.0 1022 PRESSURE Flow 1104 LCC2.0 1320 1005.0 PRESSURE E 3836 1006.0 Wein Flow 1007.0 8381 Use the above dota to establish a rating curve for the dam (see p.D-10). * Table 5-3 on p. 5-40, Brater & King, He above - durulies

the less the E Assund: Maplinge and in place-and ender 1090.pg duitigent gegin allemand allem Signing chief, which seems a much Dutflow = O when reservoir surface is at elevation 1000.0. Below elevation 1004.0, were good and they Between elevations 1004.0 and 1005.0, chissing How controls; Above elevation 1005.0; presentes and weik flow control. Use well equation, $Q = CLH^{3/2}$, to nate flow such sight of crest; $C = 3.4^{+}$, L = 18'. W.E. Elevation H(=) Q (cf=) 1001.0 61 1002.0 2 173 1003,0 3 318 1 490 11:4.0 With the acceruoir surface at elevation 1005.0, pressure ite would occur through the opening above Every clast. To compute prassure flow, use the suffice equation, $Q = Ca \sqrt{2gh}$, where $C = 0.5^{T}$ and $a = 18(4) = 72 \text{ ft}^2$. * Estimated with reference to table 5-3, p. 5-40, Brater & King, Handbon's of Hydraulice. 7 Estimatis' will l'élérère to table 4-11, p.4-23, Brailes & Dig, Handbook of Hypenilles.

میں میں میں اور		
	14 199	
$f_{27} = C_2 V_{2qh}$		• •
1). <u>H</u> (4)	P(c=)	
1005.0 3 1006.0 4 1007.0 5	801 924 1034	
Above elevation 1005.0, dam crist; from the obtained the following dam enbankment:	wein flow occurs over the computations on p.D-7 wer gliens over the top of the	C.
W.S. Elevotica Quis		
1006.0 2452 1007.0 6935		
Le preste Rating Data	- (stopiogs in place)	
· · · · · · · · · · · · · · · · · · ·	$(c^{2} \leq)$	
1002.0 Wein Flow 1 1003.0 3 1004.0 4	61 73 318 490	
1026.0 Prossure à É	<u>501</u> 3376 7969	
$\frac{1}{2} = \frac{1}{2} $	estables a rating curve	
1		• •

herin: 9 STORAGE ROUTING - HANDVER CENTER DAL. Annume storing and in which industry in successive storinge. Hanover Water Warks the no processive for removing the stoplage. Test 1000 = 1/2 PMF = 2360 cfs, stage = 1005.6* 1 in 126 storage = 298 ac-2t, stage = 1000.0, surface area = 33 acrès (Rp. = 1360 cfs, stage = 1005.8, storage = 506 ac-it F.06-298 = 208 ac-ft 205 ac-ft 1.55 mil 640 ac 12 in. = 2.11 in. Junoff = STOR 1 $Q_{Fz} = Q_{P_1} \left(1 - \frac{570 r}{9.5} \right) = 2360 \left(1 - \frac{2.11}{9.5} \right) = 1836 c_{fs}^{2}$ @ 1836 cfe, staje = 1005.6, storage = 497 ac ft 497-298 = 199 ac-ft $199 ac-ft \cdot \frac{1}{1.87ml^2} \cdot \frac{1ml^2}{640ac} \cdot \frac{12ln}{ft} = 2.02 \text{ in , sure } = 570\text{R}2$ Average of (\$7061; STOR2) = 2.07 m. 02 0.173 ft. 1.14 $0.173 \div .1.85 m^2 . 640 nc = 204.8 nc-14$

* Greiner prenter, p. D-10. Viere reinig curve, p. D-11.

D-12

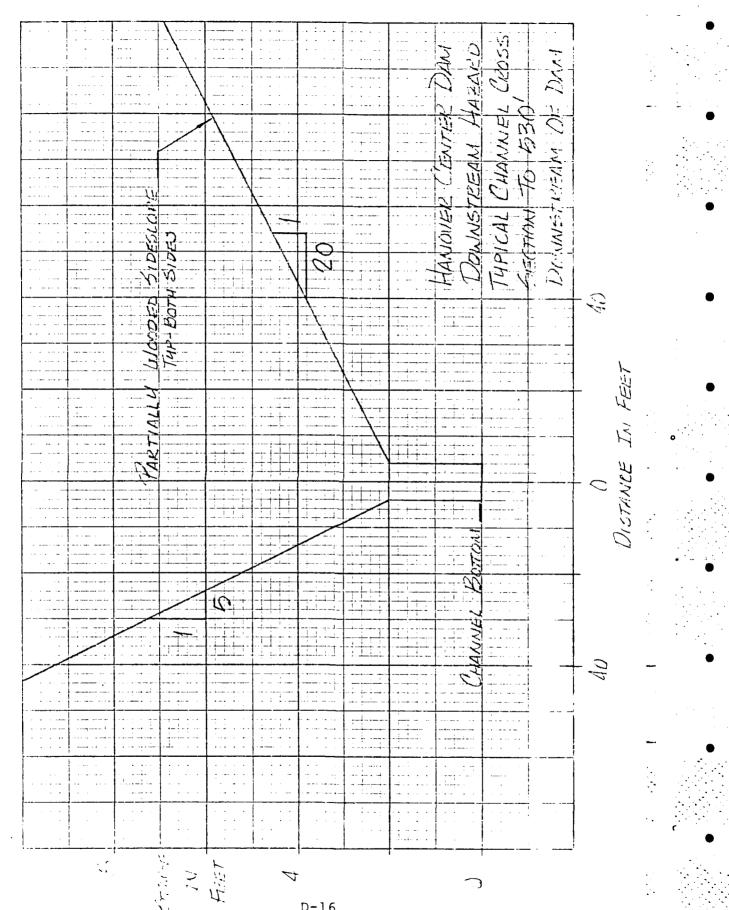
ÉTERAGE REUTING (CONT.) 631.5 1 178 - 1:12. Sac-- $B = 505.6 \text{ ac-}H, = 4006.6, P_{F3} = 2560 \text{ cm}^{2}$ Qp3 = 2260 cfs = 1/2 PMF = Test 21001 the test flood. Test flood = 1/2 PMF Test flood alschnige = 2240 ofs Test find zevalin = 1005.5 Top of Sam embankment = 1005.0; ... dam Smbankment would be overtopped by 0.8 fact Swing the test flood. ✓ bee hating curve, p. D-11.
★ bee hating curve, p. D-10.

ELENCH ALLENCE - HANGUER CENTER DAL Propose: Determine Supremaple and inden and a . Accume: Stopleys in place; water surface of maximum peol = 1005.0 Upstream niverbed elevation = 980.0 Tip = 5/27 WB 17 40% where WE = breach width 9 = 32,2 1/sec= 40= pool elev. - u/s nivertea elev. Itanover Center Dan::
W_L = 210⁺(0.4) = 84 fr

Y₀ = 1005.0-950.0 = 25 fr $Q_{p_1} = 8/27(84)\sqrt{32.2}(25)^{3/2} = 17,656 \text{ cm}^{5}$ Arrecebert discharge = 800° cfs Total Brack Q=17,456+800 = 18,106, 214 18,100 d. + Day a Paction (2101) of the total fill sam une multiplied by 40% to citan she brack what The sinchard engineer fit that a bruch and organized only of the new sent 2101 if the gran c. Dansmitht. V Geography permit p. D-10.

2 - Charles and the and the Charles

D


- it have the CAIP CHINET IS REality and the Side services it is ascumed the dam. In the contains and and privel read that passes over it would be covered damased. In effect, a "breach dissa" wello occle, resulting in little, it any, attentiation of the flood waters released by a treat of and

Here a typical circe section of the reach from the is at 12 some to the first connecte cultert excountered, occut 520 fost downstream. Develop a siecharge rating curric using the Mamming Equation 6 $Q = 1.49 AR^{2/3} S^{1/2}$

While n = composite channel norghuiss coefficient 4 = anca of section (H2) R = hyperville norios (H) 5 = bloce of norch

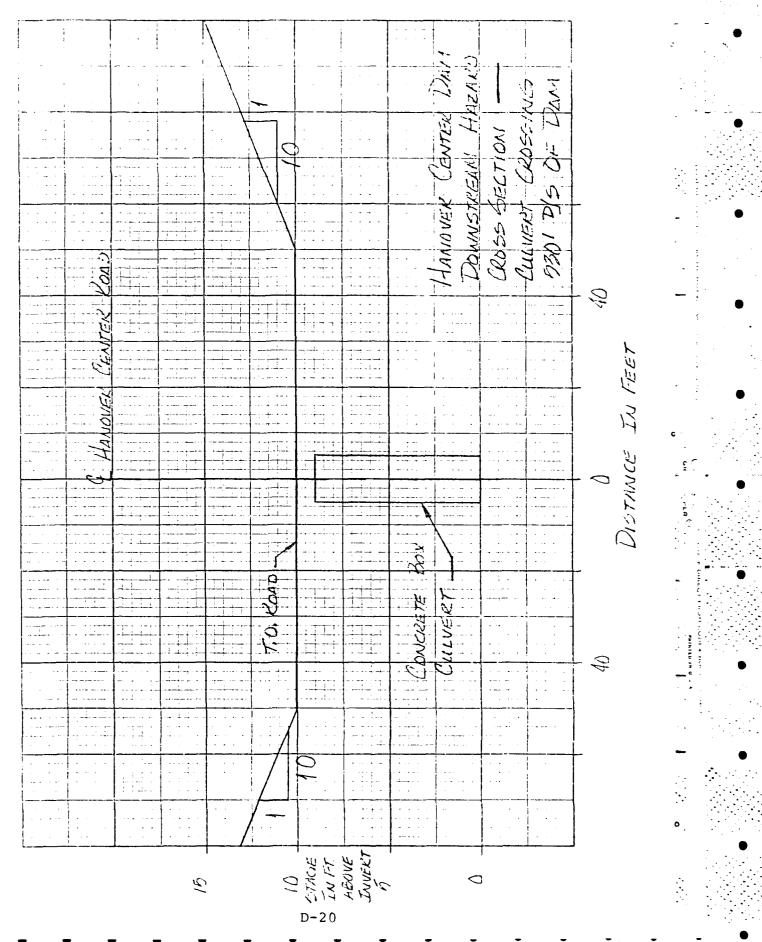
 $\frac{1}{r_{1}} \int_{-\infty}^{\infty} \frac{1}{r_{2}} \int_{-\infty}^{$

The finite below refer to the cross statistics in the cross statistics and the cross statistics

. 1

• • • • •

ing port


D-16

P. C.C. A.S.	(1111 (CG1.T.)	······································	
	<u> (1) je (1)</u>	Dist	
	2	$A = 2(6) = 16^{1/2}$ $WP = 8 + 4 = 12^{-6}$ $Z = A / (1 + 2) = 1 + 12^{-6}$ $T = 7.66 (16) (1 + 2)^{-6} = 1.45^{-6}$	
2	57	$A = 5(6) + \frac{1}{2}(5)(2)^{2} + \frac{1}{2}(20)(2)$ $= 152.5 f^{2}$ $WP = 12 + 5.1(3) + 20(2) = 67.2 f^{2}$ $R = 152.5/57.3 = 1.75 f^{2}$ $Q = 7.66(152.5)(1.75)^{2} = 1696 c^{2}$	
3	B	$A = S(S) + \frac{1}{2} (5) (5)^{2} = 514 ft^{2}$ $UP = \frac{12}{5} + 5.1(6) + \frac{10}{5} (6)^{2} = \frac{11}{5} + \frac{11}{5} (6) + \frac{10}{5} (6)^{2} = \frac{11}{5} + \frac{11}{5} (6)^{2} + \frac{11}{5} = \frac{11}{5} + \frac{11}{5} (7)^{2} = \frac{11}{5} + \frac{11}$	
	10	$\begin{aligned} A &= 10(E) + \frac{1}{2} \frac{\pi}{2} \frac{\pi}{2} \frac{\pi}{2} \\ &+ \frac{1}{2} \frac{\pi}{20} \frac{\pi}{4} = \frac{5\pi}{20} \frac{\pi}{4} \\ \frac{\pi}{2} \frac{\pi}{20} \frac{\pi}{4} = \frac{\pi}{20} \frac{\pi}{4} \\ R &= \frac{850}{212} \frac{\pi}{2} = 4.14 \\ R &= \frac{7.66}{3\pi} \frac{\pi}{4.14} = 17,380 \\ \frac{\pi}{20} = 10,380 \\ \frac{\pi}{2$	
	12	$\begin{array}{l} A = 12(8) + \frac{1}{2}(5)(10)^{2} \\ + \frac{1}{2}(20)(10)^{2} &= 1346 \text{ff}^{2} \\ WP = 12 \; + \; 5.1(10) \; + \; 50(10) = 265 \; \text{ff} \\ K = 1346/263 = \; 5.12 \; \text{ff} \\ Q = \; 7.66(1246)(5.12)^{3/2} = \; 30, \; 628 \; \text{ff} \end{array}$	4
the fie of Anting cur	ove data to	de l'a l'alience	

.... · · .i - . . : CENTER L'UNI JOUINSTEENAL HAZARD F. • • • • • -i- i... DECTION-TO いりのきま 1. I. I. I. RATING CURVE __ ` ••••• -. HANOVEN Let Dell CKD-----1.1.1 COUN Ĺ. •- • - • • 1 •----1.... IRONO DISCHARGE IN CTS -----·-- ·-- ·--4-+ 4 +++ ---------------. . . -1----____. - - - - - - -İ İ ----____ --------------- ----- - -فسلمست <u>. . . .</u> . . ÷... --<u>-</u>-_____, • • • • • . . _____ -----· · · · · · · · · ļ ساليد د. زيانيد الد 000;3 - • - • --------• . .. i • • • . . ---------1 · • -• • • • • ----------· · · · • • • \bigcirc DJIKIEM DJIKIEM STACIE IN FT. AROVE 4

. . : /

14 Aug 79 BREACH ANALUSIS (CONT.) Returning to the nating curve on p. D-18 ... $\widehat{a} = 800 \text{ efs} (anticedent constituent), stage = 3.2'$ $<math display="block"> \widehat{a} = 18,460 \text{ efs} (total breach Q), stage = 10.2'$: an increase in stage due to breach of 10.2-3.2 = 7.0 feet results. Analyze the 2nd culvert downstream of Hancock Center Dam 24' T concrete 9' box culvert Use onifice equation to calculate capacity of opening flowing full ... Q = Carzan Upetriain stage = 10 feet, $C = 0.8^*$ Q = 0.8(90) V29(5.5) = 1355 cfs 418,460 cfs Culvert will not carry total breach Q; .: use the Manning Equation to rate flow through the culvert up to a stage of 10 feet. A higher stage will result in wern flow over Hanover Center Rond, and orifice flow Through the concrete box culvert ... $\hat{G} = 1.49 AR^{2/3} 5^{1/2}, K = 1.49 5^{1/2} = 1.49 (0.066)^{1/2} = 15.3$ Weir flow, $Q = CLH^{3/2}$, $C = 2.6^{\circ}$; trials follow on p. D-21. Note: The breach wave inundates the culvest instant anecusly. Therefore, the stope downstriam of the cuivit would be realigible when calculating flow through the culvert (orifice equation). * Estimated from toble 4-11, p. 4-36; * Estimated from toble 7-3, p. 5-40, Brater and King, Handbook of Hydraulies.

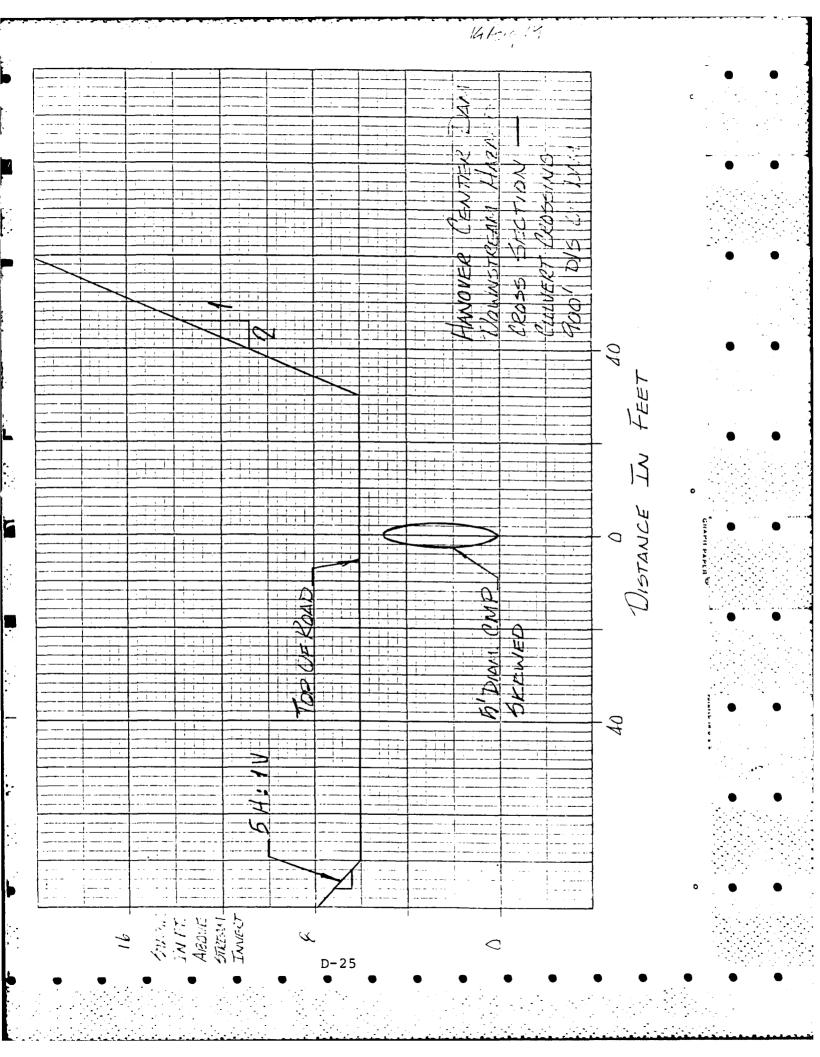
17

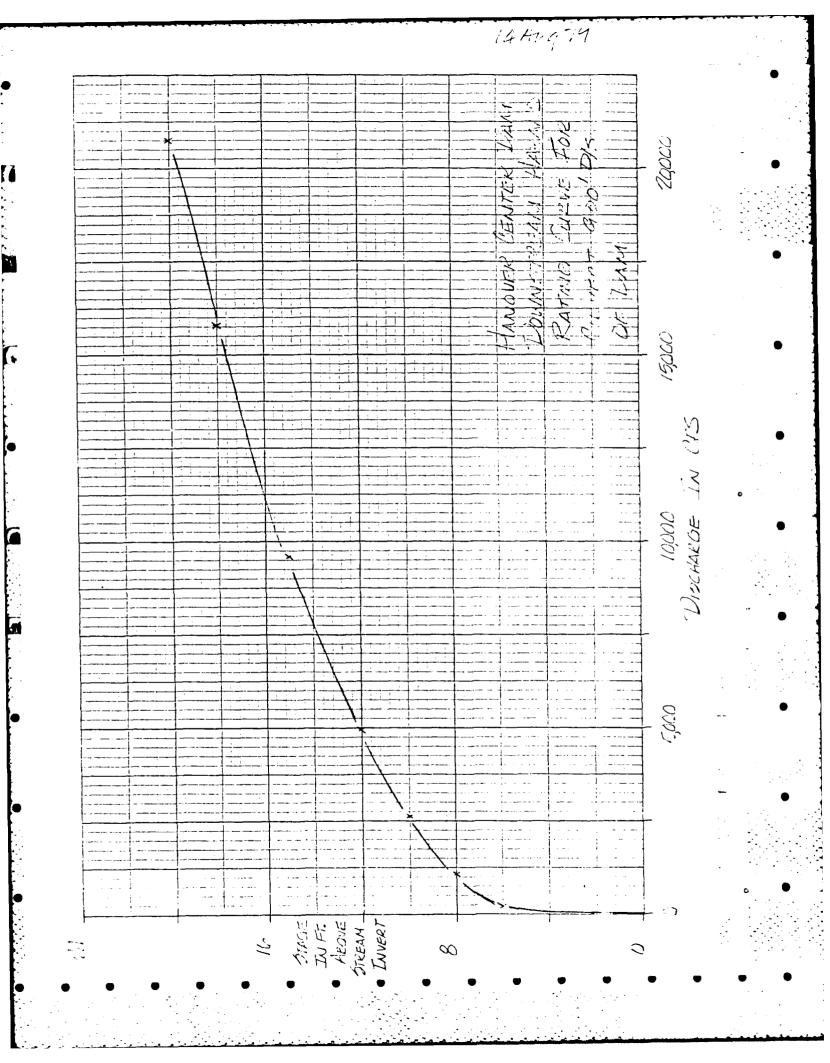
Ì

6

-

141.1.1. Descharge To A Me. = tage (14) $A = 10(3) = 2 - (4^{-1})$ $\overline{\mathbb{C}}$ 川戸=10+2三二二/ R=A/00===1,0=1,85 4 Q=15, E(30)(1.53) = 1999 d. A= 10(4) = 60 42 2 6 UP = 10 + 2(2) = 22 4R= 60/22 = 1.72 14 Q= 15.2(60)(2.73) == 1.9= ... A = 10(5) = 5 - 1/2 = 1 õ WP = 10 + 2(E) = 26 f''R= Strate = Zara 12 Q=19,3(EC) (3.34) = 2591 cm Q = Ca. 12gh = 0.6(90) (29(5.5) = 1255 ds Ĺ 10 $Q = Ca \sqrt{2gh} + CLH^{3/2}$ [--12 $\begin{aligned} \hat{Q} &= C \mathcal{E}(2n) \sqrt{2q(7.5)} + 2 \mathcal{E}(2n) - \frac{17}{2} \\ &+ 2 \mathcal{E}(2n) (2) (2)^{2-1} (2n) = 24657 \text{ ers} \end{aligned}$ $Q = 0.8(90)^{1/2} q(10.5) + 2.6(105)^{1/2} (5)^{3/2}$ 1 15 +2(1/2)(5)(10)(5)3/2(2.6) = 6233. (55) $Q = 0.8(30)\overline{12q(3,7)} + 2.6(100)(5)^{3/2}$ 7 18 + 2(1/2)(8)(10)(8)=12, 713 c/s $Q = 0.8(90) \sqrt{29(16.5)} + 2.6(100)(11)^{3/2}$ 21 \mathcal{B} + 2(1/2)(11)(10)(11)3/2(2.6) = 11 167 c/s des the correctiona to de coppa discharge 16 ang cuite ...

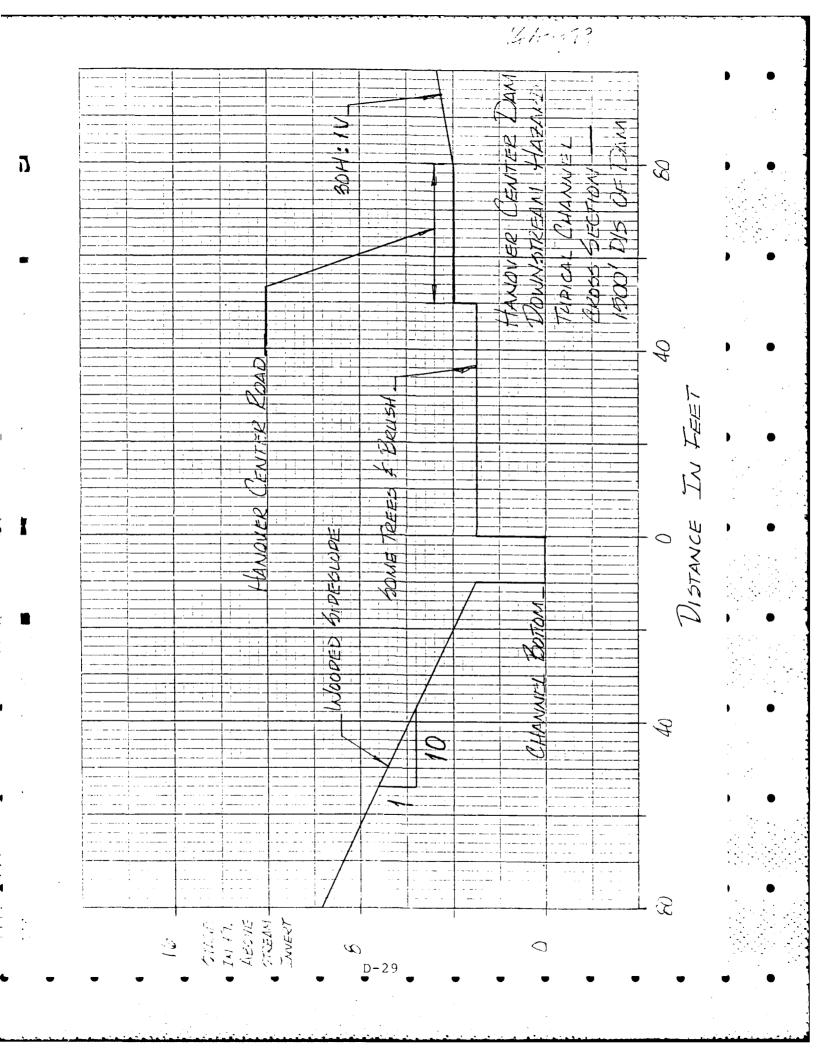

× ------DAN 1 - ---. HAZAND FOA D/:F 20000 HANDVHE CENTER KATING CURVE CHINER 5301 POUNSTREAM -+ - • · · · · · · • -(...⁷ ···· + +-++ 00021 . – . ----..... -- ----------------•--------·---CHJ - --Pedilering + Frond Could Front <u>___</u>__ ------ i_.. 1-1 -----. . •••••• Cukut • • • • • IQOX) DISCHALGE ----· · · · · · -----· · · · · · 4 (1 LCVLL/1212) -----• • • • -----. . . ---. . . . · · · · · · · · · · · · · - - - • · · · · · •••• ----• ----NT NT ----. <u>_t_</u> **.** X --------••• ł 000% · | · · · . . . - - - - -. 1 ···· · · · ---------X .i.... • - -+----<u>\</u> ----• • • • ••• - • • · · · · · •••• • i-. ••• · • . . ·.. . . × AFUN STREM がにし 91 2 • Ś D-22

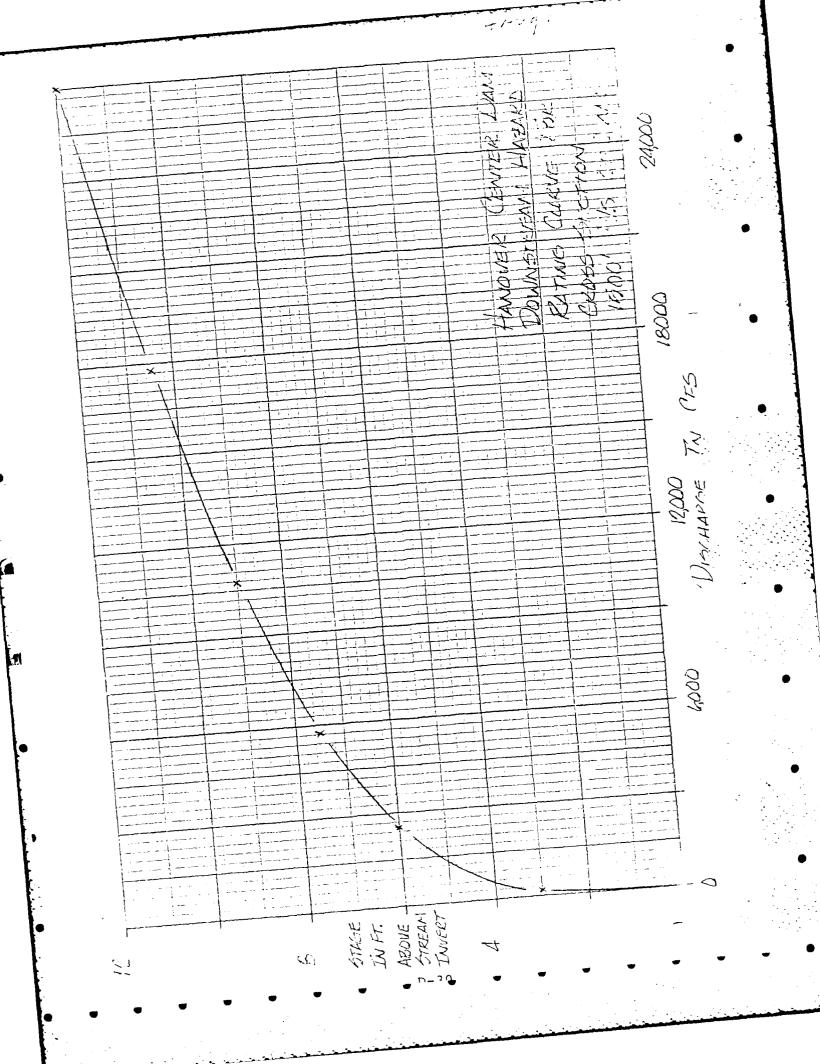

Gr. 4. 17

141 7. E. A. A. ANALASIS (Comme Losi Mang de Mara Maring Curve on -22 ... 14= FOR 12, 5-09E = 3.21 3 Qz = 18,400 de, stage = 20.01 : an increase in stage due to breach of 20,0-212 = 16.5 feet respite. Excessive damage to Herrice and in id accur. A dana pulvert is located a seed age into accession of its data. It is of conjugated motion specificating a croce cectural area of only 20 entre the. Tractore, only co flow through the allost and with flow over the one would result. The culture is Free led just upstream of the first man of marted structures encountered downstream of 120 atom. Asam, because the breach wave would assive of the culturest instantancously, the stoge downstring. If the culturest would be requigible when calculating the culturest would be requigible when calculating the culture of the culturest (as not constring). Use the white equation to calculate for over Handres Co. In Road Caller Read. The trials below rich to the cross action on p. D-25.

D-23

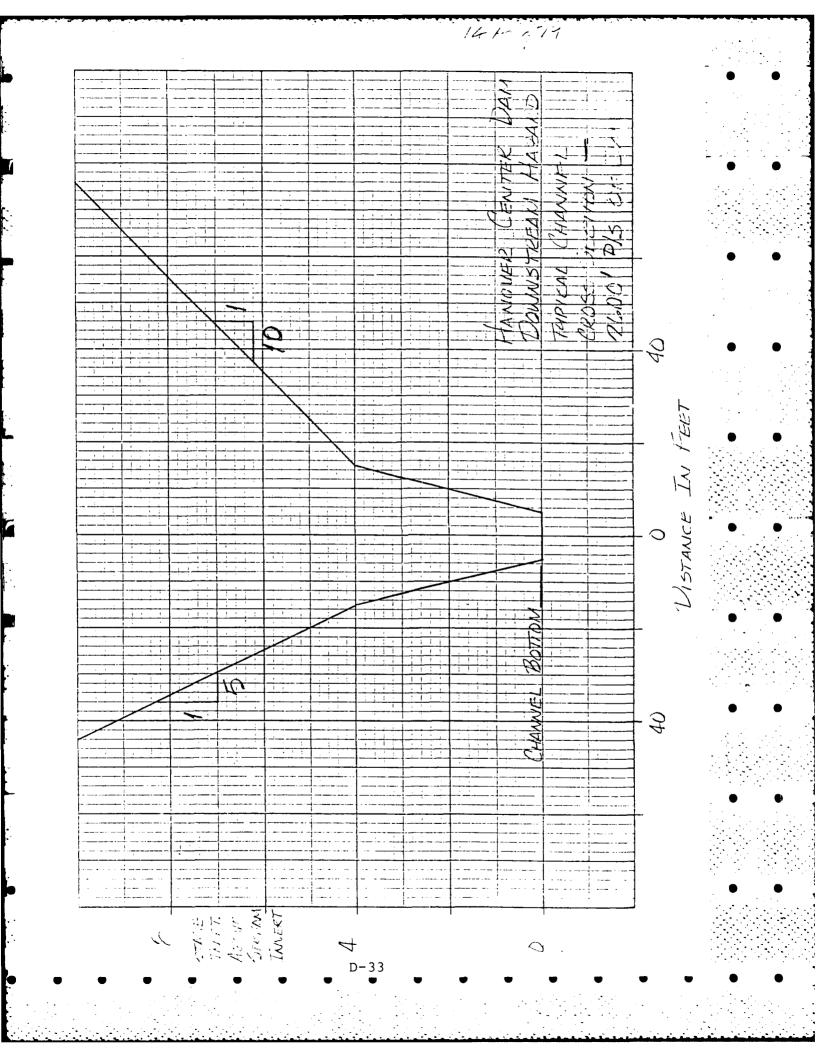
LAERAH F. VALME . J. L. 14.1. 5+0;e(4) 2120-21-2 Tila: Me. $Q = Cartan = 2 = 0.7^{-7}$ 6 Q=0.7/19.6) 125(6) = 216 de Q= CalZgn + C,LH?'2, C,= 5.6 2 ${\mathcal S}$ $\begin{aligned} & \mathcal{Q} = 0.7 (19.6) \overline{12q(\Xi,\Xi)} + 2.6 (10) (2)^{3/2} \\ & + 2.6 (1/2) (2)^{2} (2)^{5/2} + 2.6 (1/2) (2)^{(2)} (2)^{5/2} \end{aligned}$ = 1,045 c 75 $Q = 0.7(19.6)^{1/2} = (7.5) + 2.6 (10)^{1/2}$ 3 10 + 2.6 (12)(4)(2)(4)=+ 2.6(1)(5)= = 3573 0/2 $Q = 0.7(19.6) \sqrt{2}q(9.5) + 2.6(100)(6)^{-1/2}$ 1 12 + 2.6(1/2)(6)(2)(6)3/2 + 2.6(1/2)(6)(5)(6) = 4963 - 4 Q=0.7(9.6) [-q(12.5) + 2.4; no) (7.1) 5 15 +2.6(1/2)(9)(9)31/2 + 2.6(2) 7.5 7 = 9,421 c/s Q= 0.7(19.6) 20 (15.5) + 2. Mai (15) 18 6 = 15,781 03 S=0.7(19.6) 1= (11:) + 2.6 20 7 + 2. 6/12)(14)(2)(14) + 2.5 = - - - (4) = 20.754 0/3 ilse the accel bala to accept a discharge having con-* Echando Frontalic 4-11, p. 4-37, Berlin & Mary Analisk A support CE. Freedora tren talle E-E, p. C-40, Brains EKin, Harain : Starter and the

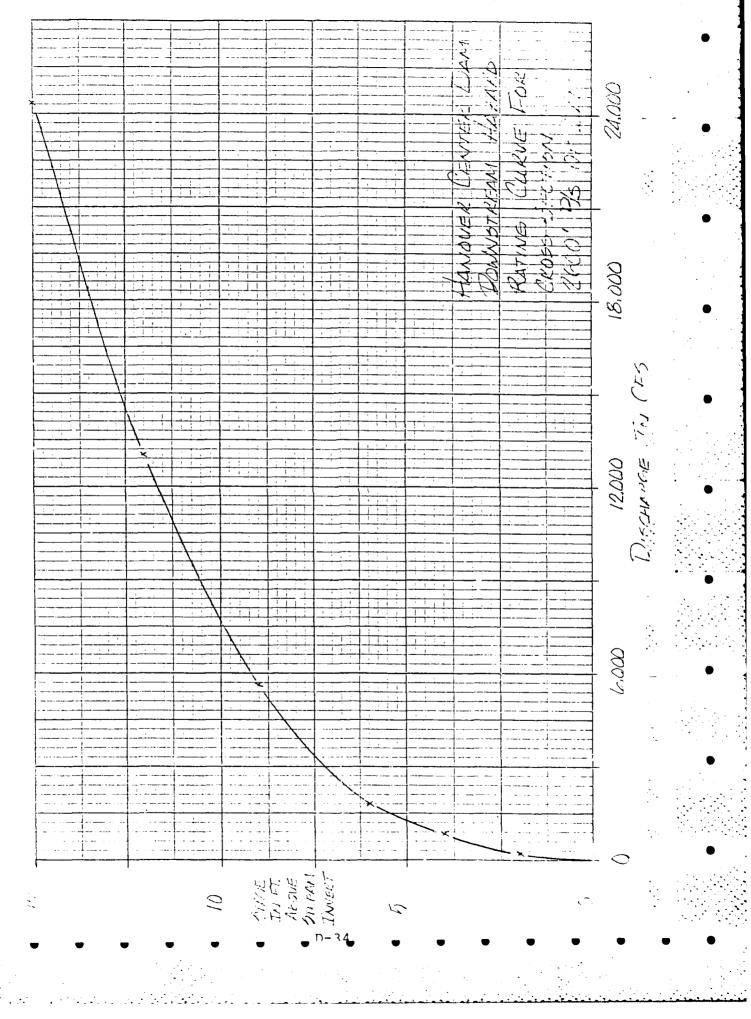



Le may to the data pour of the I-Ik. $\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix}$ 2. In increase in stage due to beschird 19.0-76=11.4 feet in a result. The first innovited structure encountered is localed just 30 feet downstructure of the current of thet. I've sill elevation is 8.8 feet about the stream with Therefore, the house would be maininged by alt - 10.2 (R.O-B.B) feet of water after a burnet of same here damage and loss of 2-3 live could recult. The next two houses involted and and located along a REACH Wheese typical chess seeing, is shown on page D-20. Me He Monning Equation to develop a singe-discharge relationship for this case section: Q= 49 4.2 212 51/2 where K= 1.49 51/2 $\frac{1}{1000} = 0.05, \quad 5 = \frac{140 - 920}{1000} = 0.02$ $K = 1.49 (0.02)^{1/2} = 4.21$ The triple below relea to the cuss section on 2. D-29.

EREACH AN	IALUSIE (CONTJ	14 Frig 79										
TAIOC No.	<u>549 (c. 14)</u>	<u>Zizerry</u>	•									
/	H	$A = \Xi(10) = \Xi(14)^{4}$ $W = 10 + 4 = 16 - 14$ $R = A(W) = \Xi(16)^{4} = 1.52^{-4}$ $Q = 4.21(\Xi(30))^{4} = 5^{-2} = 192^{-2} = 1$	•									
2	6	$\begin{split} &A = 6(10) + \frac{1}{2}(3)^{2}(10) + 3(50) + \frac{1}{2}(50) + \frac{1}{2}(2)^{2}(30) = 375 + \frac{1}{2}^{2} \\ &W P = 16 + \frac{3}{10} + \frac{50}{50} + \frac{1}{30} + \frac{50}{50} = 157 + \frac{1}{50} \\ &R = \frac{375}{187} = \frac{2.01}{54} + \frac{51}{54} \\ &Q = 4.21 + \frac{375}{2.01} + \frac{2.01}{54} = \frac{2.513}{54} \\ &= \frac{1}{5} + \frac{1}{5$										
3	7.5	$\begin{array}{l} A = 7.5 (10) + \frac{1}{2} (4.5)^{2} (10) + 4.5 (50) + 5.5 (5-) \\ + \frac{1}{2} (3.5)^{2} (30) = 690 f + 2 \\ WP = 16 + 4.5 (10) + 81 + 3.5 (30) = 5.47 f + \\ R = \frac{690}{247} = 2.79 + \\ Q = 4.21 (690) (5.79)^{2/3} = 5.753 c \end{array}$	•									
4	9	$\begin{array}{l} A = 9(10) + \frac{1}{2}(6)^{2}(10) + 6(50) + \frac{1}{2}(50) \\ + \frac{1}{2}(5)^{2}(30) = 1095 \frac{1}{4}^{2} \\ \frac{1}{2}(5)^{2}(30) + \frac{1}{6}(10) + \frac{1}{6}(10) = \frac{1}{2}(7) \frac{1}{4} \\ \frac{1}{6}(10)^{2}(10)^$										
17	,0.5	$A = 10,5(10) + \frac{1}{2}(7,5)^{2}(10) + 7,5(50) + 6(5(60)) + \frac{1}{2}(6(5)^{2}(30) = 1590 + 6(5(50)) + \frac{1}{2}(6(5)^{2}(30)) = 1590 + \frac{1}{2}(10) + \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(10) = \frac{1}{2}(10) + \frac{1}{2}(10) = \frac{1}{2}(1$										
	12	$\begin{array}{l} A = i2(10) + 1/2(9)^2(10) + 9(50) - 5(50) \\ + 1/2(8)^2(30) = 2175 \\ & & \\ WF = 16 + 9(10) + 81 + 5(50) = 227 \\ R = 2175/427 = 5.09 \\ R = 4.21(2175)(5.07)^{3/3} = 27,025 \\ & & \\ Q = 4.21(2175)(5.07)^{3/3} = 27,025 \\ & & \\ \end{array}$										
	n sin is druct	- D-28										

1


. • :: •



14/2927 ELACT ALALUSIE (CAST.) interne in Characher curve in 1. 3-30 ... 8 CA = 500 - 2, Stage = 4.41 2 Q: - 18,460 cis, stage = 10,61 : an increase in stage due to a breach is M.G. 4.4 = be feet. There are two haves along this Icaph while sill elevations are approximately 5.7 bet above the stream mont. Therefore, these hauses would be inundated by about 4.9 (10.6-5.7) fort of water after a breach of dam. Severe damage and loss of 4-6 kines could result. A second populated area is located guart side hat downstricam of the days. Use the Manny Equation to develop a stage-discharge relationer.p for the reach as resculed by the close rection on p. D-33. Q=1.49 AR213 51/2, K=1.49 51/2 $\frac{1}{1200} = 0.05 \qquad = 920 - 500 = 0.033$ 1= 1.49 6.0= "" = E.41 The trade attender the second of the second D-31

All and 2 19 19 19 11 212 <u>127</u>. Durching $A = \frac{1}{2} \frac{2}{2} \frac{1}{10+20} = \frac{20}{20} \frac{1}{20}$ 1 WP= 10+10,5 = 20.5 ft R = 4/WP = 31/20,5 = 1.44 1: Q=5.41(25)(1.44)2/== 207 - $A = \frac{1}{2}(4) \left[\frac{1}{2} + \frac{3}{2} + \frac{3}{2} \right] = 80 ft^{-1}$ 4 11P= 10+2112= 21.6 H R= 80/31.6 = 2.73 4 Q=======(60)(2,==)======= A = 50+ 2(3)+ 1/2(2)(2)+ 1/2 1/10 = 170 11 =) 6 $\mathcal{DP} = 31.6 + 2(5.7) + 2(2) = 20.6 / 3$ $\mathcal{L} = 170/61.8 = 2.75.43$ A = 80 + 5(30) + 1/2(5) (5) + 1/- (-) (-) = 417.5 4 9 WP= 31.6+5(5.1)+5(10)= 17.1 14 R= 111.5/107.1 = 3.90 = Q=15, +1 (417,5) (3,90)2/3 = 55,91 c/ $A = 80 + 8(30) + 1/2(8)^{2}(5) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}(6) + 1/2(8)^{2}($ 12 5 WP= 31,6 + 8(=,1) + 8(10) = 152.4 14 R= 800/152,4 = 5,25 1; $Q = F_{1}A_{1}(8nn_{1}(z_{1},z_{1})^{2/2}) = \int_{z_{1}}^{z_{1}} f_{2} \int_{z_{1$ A = 50 + 11/50 + 15 (56 - 11/10)= 49-1.-MAR 21.6 + ME. 2 + M(10) = 197.7 14 R= 1290/197,7 = 6,53 fr Q= 10.41 (1092) (6.02) 12 = 11,221 - 12 Ment and do to the participant in the D-32

¥

 ETTING LALASS (CONT.)

 $= Q_{A} = 600 \text{ c/s}, \text{ stage} = 4.0^{1}$ $= Q_{E} = 15,460 \text{ c/s}, \text{ stage} = 13.6^{1}$ $= \alpha_{1}, \alpha_{2}\alpha_{3}e \text{ in stage} \text{ due to branch, stage} = 13.6^{1}$

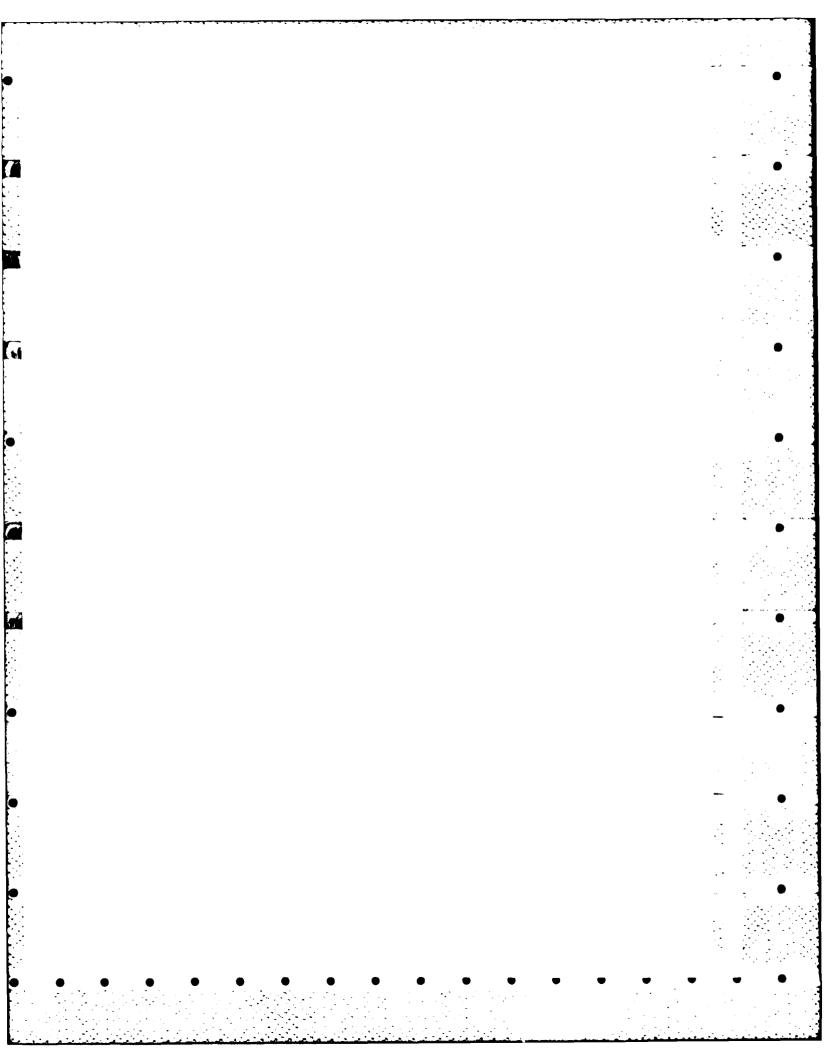
141.979

would result. This chie six houses filling this with the effective filling the second of the second by about 6.6 (13.6-7.0) feet of water after a breach of dam. Source damage and loss of 6-10. (ince could figuit.

The polarization of the second of the second s

If a breach at top of dam cacuuld, a said and grave I drivenay would perbachy be washed our. Hamover Center Road would be inundated at two prook crossings, probably resulting in severc driving to the road. Seven houses would be murdated with here from six feet of water, causing excessive property damage and encorgening more than ten since. Therefore, Handrer Spiner Dam has been close ind as High Hazard.

LOW LEVEL GUTLET CARACITY


 $\begin{array}{rcl} \underline{Uee} & Orderics equation, & G = Caller, \\ a \equiv cross contracts product to <math>c.z \equiv 1.2 \\ h \equiv head deficient (= 1005.0 - (979.5 + (12/2)) = 25.1 \ ft. \\ C = 2 \end{array}$

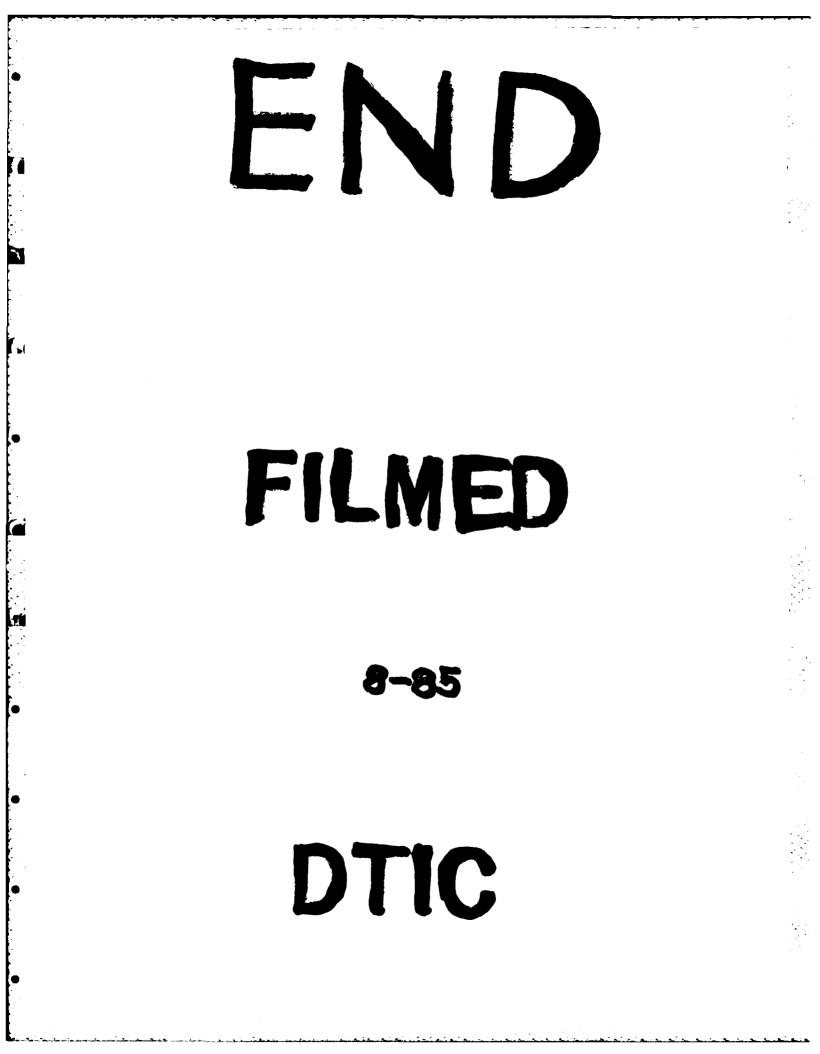
Fina: C, coefficient of Sicharge $C = C_p / A_p / IZq$, $C_p = A_p / \frac{2q}{1 + K_1 + K_2 L_p}$

 $K_{L} = entrance | 0 = 0.5 \ \nabla$ $K_{F} = \int c dirin | 0 = 0.06 \ N = integrates credition = 0.016$ $A_{0} = a = 0.55 \ ft^{2}$ $L_{p} = \int c q dr p = 0.55 \ ft^{2}$ $L_{p} = \int c q dr p = 25 \ ft$ $C_{p} = condition \ d discharge interpointing \ A_{p} \notin Eq$ $C = condition \ d discharge$

★ Frank equation 2-12, p. 2-24, Coil Constraint State 1
★ Frank England Alloward.
▼ Frank 2017, 1.639, Schward, Frankt, ..., Sollars Natch. icon in Englaceding. Table E. I, E. 641, Echwoo, Francet, ..., Sources interface and all the the present suge

LOUI LEVEL DUTLET CAPACITY (CONT.) $C_p = A_p \sqrt{\frac{29}{1+K_L+K_LL_p}} = 0.55 \sqrt{\frac{64.4}{1+0.5+(0.05)(25)}}$ $C_p = 2.55$ $C = C_p / \dot{H}_p / \sqrt{2g} = 2.55 / 0.55 / \sqrt{24.4}$ 2 = 0.58 Q = Carzah * $Q = 0.58(0.55) \sqrt{2(q)(26.1)} = 13 c^{2} =$ * Equalion 4-10, p. 4-10, Brator & King, Handbock of Hydraulics. D37

APPENDIX E


INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

6

		1		HAVIFED 305 A VEHIUALE N 1 H											•		
MEST)	7212,1 27APH74	PORVILATION	2 1000	131 UWN FLUN NEU N N	-		THH WIPTION LOCKS	CONSTRUCTION BY	H HUHAS CO	-	MATEN HES BI	INSPECTION	AUU 1972			·	•
	UAH 1342.7	LEN LENTEN RESENVOIN (1) NEAREST DOWNSTREAM CITY-TOWN-VILLAGE		MPOUNDING CAPACITIES			2	CONSTRU	INC MANOVEH MATL	DPERATION	ATER RES	AUTHORITY FOR INSPECTION	PUBLIC LAW 92-367				•
NAME	CLNTER RESERVOIR	HANUVER	HANUVER (a)	1000 1000 1000 1000 1000 1000 1000 100	ABKS		VOLUME POWEN CAPACITY	(I) ENGINEERING BY	<i>.</i>		RES HU		1NC 09HUV/8	REMARKS			
135-11 135-11		EN UAM ()) RIVER OR STREAM	I BRANCH MINK ISRUUK	R PUF		e	1320	(e) DWNER	MATEH WUHKS CO AN		HE9 HD NH WATER	INSFECTION BY	+ COMPANY		REMUVED		•
STATE CONNEY DIET	20 00 47 0	HALOVEN CLNTEH	HTHON AN IC	TYPE OF DAM		6	1 2 2 2 2 1 8 2 2 1 8 2 2 1 8 2 2 2 1 8 2 2 2 2	MO		DESIGN	T T T T T T T T T T T T T T T T T T T		ANDERSUN-NICHOLS		13-510PL0GS		
	NH 31 140				·				v								

.

ς.

