AD-A156 337 INTERPROCESS COHHUNICRTION(U) SRI INTERNATIONAL HENLO
PARK CA L LAMPORT 11 JUN 835 NO@©14-84-C-0621

UNCLASSIFIED F/G 1772

T g T g T -
" RTINSV A I s N A I NN

Aadi Ui Nt Sl g fagist oy M i M g gt gl A w T S P U St P -
Ry AN I St Ao W S A A S YR e S SRR IS N EVA A SIS SNV AR A
i iuy

2. !

5

2.8

o
E

EE

[V I
- .

22 s

I

FEEEEEEE
]
MN
N

[E13 : b
12 | '

EF

Ee
| =
mN
(o]

==
™

=

n
=
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

v
N .
PANIPWl W M Y

.

n“1 .

.‘_.f,- . 1 v

Ll 4
.

[N)

.

I 8

"' l'l'.
hion

.
%]
WP LP I

=T v ¢ . o

AAA

. 3 i
o

-
A J
B
.
‘
B
H
B
’
s
‘
'
+ o
.
.
'
!
il
-

A

[F cnl A .-
"‘ ..‘ N :': v. Rl b
";'_'.. } l‘ et

* . P
v

M A
] ’ ¢ . v a
Ea"zf’.-:’» v

AD-A156 337

.-

Interprocess Communication

Final Report for ONR Project i;;;;;a
N00014-84-C-0621 R

Leslie Lamport

June 11, 1985 =

M FILE COPY

SR ternation

e o —————— e o o e

Tiis desament has bsen g oved
fer public relocse and saly 8
disiribution is unlimited.

DTIC i

ELECTE ;z;n e

[S R
333 Ravenswood Ave. ® Menio Park, CA 94025 5. e
415 326-6200 ¢ TWX: 910-373-2046 & Telex: 334-486 R

t
N
85 6 12 124 AN
... S A T S S v e
------------------------------------ BT T e e A A N N T I S ML R PN
i Bemadamalean . ach N PR L OV T . R Nl G A LL._L;‘L'_L;-"‘L’.'L E W WX} 22 e o= oL ek ol PRI R, RN

N P

als

!
!

- AR
- BT T A
i oSt .'._-'-‘
P B N

To T e T T T ARSI AL N S S S N Ml ML A AR A Al B M N TR e S, el Tl AL e Ol Sl S Rl

5 \A Abstract
Interprocess communication is studied without assuming any lower-level
communication primitives. Three classes of communication registers are
considered, and several constructions are given for implementing one class
of register with a weaker class. A formalism is developed for reasoning about
concurrent systems that does not assume an atomic grain of action.,\)
{ Accession For
THTIS GRASI
PTIC TR 0O
! Al A D
d]
g © pyailobility Ced2s |
ire ~ sl oand,ar
e oy octal
» J..: . : . i
: Mo
[: .
- LSRR B
1S4
b
i ~
\
AR S SN I SN SN NN O, RN NN

|
4

Pt ol]

o

O
.
¢ %"r.% ‘et
f

¢ voo o e
B)
v .

PYRCIAE S aadet
[Y
a_a_e
l'L.J

LN

s

a0 L Y

e

.
.

*

a

A
N

)
P]
Y
LIPS N

Y, e

...

o P
o A d
PP AR
s 509 0
. ’

’
.
s

*rie v vy %
a2l Vet WY,

8 "

*

Contents
1 Introduction 1

2 The Constructions 5

8 The Formal Model 13
3.1 System Executions0c... 0.t 13
3.2 Hierarchical Views 16
33 Register AXiomsttt 21
34 Systems e e e e e 25

4 Correctness Proofs for the Constructions 27
4.1 Proof of Constructions 1,2,and3 27
4.2 Proofof Construction 4 29
43 Proofof Construction & 30

5 Conclusion 35

Appendix 37

noet
vy

........

v
.

r.l: l- ..

IR

N
r\
N
"
-l
W
~

1 Introduction

All communication ultimately involves a communication medium whose
state is changed by the sender and observed by the receiver. A sending
processor changes the voltage on a wire and a receiving processor observes
the voltage change; a speaker changes the vibrational state of the air and a
listener senses this change.

Communication acts can be divided into two classes: transient and per-
sistent. In a transient communication, the medium’s state is changed only
for the duration of the communication, immediately afterwards reverting to
its “normal” state. A message sent on an ethernet modifies the transmission
medium’s state only while the message is in transit; the altered state of the
air lasts only while the speaker is talking. In a persistent communication,
the state change remains after the sender has finished its communication.
Setting a voltage level on a wire, writing on a blackboard, and raising a flag
on a flagpole are all examples of persistent communication.

Transient communication is possible only if the receiver is observing the
communication medium while the sender is modifying it. This implies an a
priori synchronization—the receiver must be waiting for the communication
to take place. Communication between truly asynchronous processes must
be persistent, the sender changing the state of the medium and the receiver
able to sense that change at a later time.

Message passing is often considered to be a form of transient communi-
cation between asynchronous processes. However, a closer examination of
asynchronous message passing reveals that it involves a persistent commu-
nication. Messages are placed in a buffer that is periodically tested by the
receiver. Viewed at a low level, message passing is typically accomplished
by putting a message in a buffer and setting an interrupt bit that is tested
on every machine instruction. The receiving process actually consists of
two asynchronous subprocesses: a main process that is usually thought of
as the receiver, and an snput process that continuously monitors the com-
munication medium and puts messages in the buffer. The input process
is synchronized with the sender (it is a “slave” process) and communicates
asynchronously with the main process using the buffer as a medium for
persistent communication.

The subject of this paper is asynchronous interprocess communication, so
only persistent communication is considered. Moreover, I will restrict myself
to unidirectional communication, in which only a single process can modify
the state of the medium. With this restriction, two-way communication

et
S N

0
.

]

DA
R R
.o
. 2
LA] o

2

s, o -
e
"o et
el

I
e
.
.
s,

.
I B,

RS
e et e e IN
A A I
LI I P P PN

T L T T T N o o = 5 e

v

l| 'J‘,.l‘

requires at least two separate communication media, one modified by each
process. However, multiple receivers will be considered. I also restrict my
attention to discrete systems, in which the medium has a finite number
of distinguishable states. The sender can therefore set the medium to one
of a fixed number of persistent states, and the receiver(s) can observe the
medium’s state.

\BThe form of persistent communication that | have described is more
commonly known as a shared register, where the sender and receiver are
called the writer and reader, respectively, and the state of the communication
medium is known as the value of the register. I will use these in the rest of

this paper, so I will consider finite-valued registers with a single writer and

= one or more readers.

. While the practic?f applications of the algorithms described in this pa-
per will be to “small” registeys, the larger purpose is to develop insight into,
and formal methods for reasoning about, nonatomic operations to data ob-

j jects. In the realm of conventional database theory, atomicity is usually

- called “serializability”. Moreover, although the notation used in describing

SO AS
Y
.

‘
" l.'_‘.

[ald

the algorithms suggests a shared-memory implementation, these are really
distributed algorithms, since each shared register is modified by only a single
process. Thus, the results described here can be regarded as a preliminary
. investigation of nonserializable operations in a distributed database.
In assuming a single writer, I rule out the possibility of concurrent writes
(to the same register). Since a reader only senses the value, there is no reason
why a read operation must interfere with another read or write operation.
(While reads do interfere with other operations in some forms of memory,
such as magnetic core, this interference is an idiosyncrasy of the particular
technology rather than an inherent property of reading.) I therefore assume
- that a read does not affect any other read or any write. However, it is not
clear what effect a concurrent write should have on a read.
In concurrent programming, one traditionally assumes that a writer has
- exclusive access to shared data, making concurrent reading and writing im-
- possible. This assumption is enforced either by requiring the programming
- language to provide the necessary exclusive access, or by implementing the

& exclusion with a “readers-writers® protocol [3]. Such an approach requires
3 that a reader must wait while a writer is accessing the register, and vice- .
versa. Moreover, any method for achieving such exclusive access, whether -
implemented by the programmer or the compiler, requires a lower-level P
. shared register. At some level, the problem of concurrent access to a shared N
.. register must be faced. It is this problem that will be addressed, so I eschew 1:-:;*
- "- _.'r
--'.h\
ey

. .- MRS
" S ety LT T T (T T .\ Lt
PP P el S S ‘L“A—‘i- P S o 2°

O oLy L il s 3 -
.- R R AR S A il Ml el s S)

.h
-
-
,
o
k any approach that requires one process to wait for another. .:',::'_
2 Asynchronous concurrent access to shared registers is usually considered Wi

only at the hardware level, so it is at this level that the methods developed
here could have some direct application. However, concurrent access to
shared data occurs at high levels of abstraction. One cannot allow any
i single process exclusive access to the entire social security system’s database.
~ While algorithms for implementing a single register cannot be applied to
, such a database, 1 hope that the formalism developed for analyzing these
algorithms will eventually prove useful for analyzing concurrent systems at
a higher level. Nevertheless, it is probably best to think of a register as a
low-level component, probably implemented in hardware, when reading this
- paper.
Hardware implementations of asynchronous communication often make

assumptions about the relative speeds of the communicating processes. Such
' assumptions can lead to simplifications. For example, the problem of con-
. structing an atomic register, discussed below, is shown to be easily solved
> by assuming that two successive reads of a register cannot be concurrent
g with a single write. If one knows how long a write can take, a delay can be
added between successive reads to ensure that this assumption holds. The
results, therefore, apply even to communication between processes of vastly
differing speeds.
. I therefore make no assumptions about relative process speed and con-
sider a shared register in which a read can overlap (be concurrent with)
- a write. Three possible assumptions about what can happen when a read
overlaps one or more writes are considered.

The weakest possibility is a safe register, in which the only assumption
X made about the value obtained by a read that overlaps a write is that the
‘ read obtain one of the possible values of the register—for example, a read
of a boolean-valued register must obtain either true or false. A read that is
- not concurrent with a write is assumed to obtain the correct value—that is,
the most recently written one. However, a read that overlaps a write may
return any possible value.

The next stronger possibility is a regular register, which is safe (a read
not concurrent with a write gets the correct value) and in which a read that
overlaps a write obtains either the old or new value. More generally, a read
that overlaps any series of writes obtains either the value before the first of
the writes or one of the values being written.

The final possibility is an atomic register, which is safe and in which
reads and writes behave as if they occurred in some definite order. In other

A AN
R A

3

AN WI AL IS A S Al i AT » ap— P —
.\ \ ~vw e m e e Rt Shoie’ S dvom dy o) . g T Tr————— - -
RO \ '~ u, EREY U e e e, W e o w Ve A el Y] L B S A evL v - >

pPLRLRN PRI TN SR N S R T e P S S S T T e T T e T R S LT L NV e

words, for any execution of the system, there is some way of totally ordering
the reads and writes so that the values returned by the reads are the same
as if the operations had been performed in that order, with no overlapping.
(It is also required that this ordering should be a reasonable one; the precise
condition is stated below.)

A regular register is obviously stronger than a safe one, since it places a
condition on the value returned by a read that overlaps a write. An atomic
register is stronger than a regular one because, if two successive reads overlap
the same write, then a regular register allows the first read to obtain the
new value and the second read the old value. This is forbidden in an atomic
register, in which the only allowed possibilities are old-old, new-new, and
old-new. In fact, it will be shown that a regular register is atomic if and
only if two successive reads that overlap the same write cannot obtain the
new then the old value. Thus, a regular register is automatically an atomic
one if two successive reads cannot overlap the same write.

These are the only three general classes of register that | have been able
to think of. Each class merits study. Safety seems to be the weakest require-
ment that allows useful communication; I do not know how to achieve any
form of interprocess synchronization with a weaker assumption. Regularity
asserts that a read returns a “reasonable” value, and seems to be a natural
requirement. Atomicity is the most common assumption made about shared
registers, and is provided by current multiport computer memories.! At a
lower level, such as interprocess communication within a single chip, only
safe registers are provided; other classes of register must be implemented
using safe ones.

Any method of implementing a single-writer register can be classified by
three “coordinates” with the following values:

e safe, regular, or atomsc, according to the strongest assumption that
the register satisfies.

o boolean or multivalued, according to whether the method produces :
only boolean registers or registers with any desired number of values. N
e single-reader or mullireader, according to whether the method yields L
registers with only one reader or with any desired number of readers.
-— e
'However, the standard implementation of a multiport memory does not meet my re- RO
quirements for an asynchronous register because, if two processes concurrently access a _
memory cell, one must wait for the other. T
. 9
e
S
r R
4 —
5
RS
Y
ey
RN
v
-]
OO O R P S e T T T U i i TR Ut S N NI SR j

ke Pasi ot Mt 2okl WAk Jeaac Saanr
. e e e INC I i ™

. T T
........ P . e -

o NI AW U et Mot g oot Sb-ut e et SR 0 aean dnas imay 0w e - “bd St Yot
e Vel %N LA AR A - g RS Al bl Adt ta e L el i il

This produces twelve classes of implementations, partially ordered by
“strength”—for example, a method that produces atomic, multivalued, mul-
tireader registers is stronger than one producing regular, multivalued, single-
reader registers. In this paper, 1 address the problem of implementing a .
register of one class using one or more registers of a weaker class.

The weakest class of register, and therefore the easiest to implement, is
a safe, boolean, single-reader one. This seems to be the most natural kind of

register to implement with current hardware technology, requiring only that
the writer set a voltage level either high or low and that the reader test this i
level without disturbing it. A series of constructions of stronger registers oo

from weaker ones is presented that allows almost every class of register
to be constructed starting from this weakest class. The one exception is
that constructing an atomic, multireader register from any weaker one is
still an open problem. Most of the constructions are simple; the difficult
ones are Construction 4 that implements an m-reader multivalued regular
register using m-reader boolean regular registers, and Construction 5 that
implements a single-reader multivalued atomic register using single-reader
multivalued regular registers.

2 The Constructions D
In this section, the algorithms for constructing different classes of registers -',:.'-:‘
are described and informally justified. Rigorous correctness proofs are post- :f{:j:
poned until Section 4, after the necessary formalism is developed. f\ ol
The algorithms are described by indicating how a write and a read are 3
performed. 1 will not bother to indicate the initial state of the shared ',:'_-f-'
registers—it is the one that would result from writing the initial value start- ‘_'.-::'.:
ing from any arbitrary state. -‘_?}'j
The first construction implements a multireader safe or regular register e
. . . . LR |

from single-reader ones. It uses the obvious method of having the writer
simply maintain a separate copy of the register for each reader. The for "‘:
all statement denotes that its body is executed once for each of the indi- T
cated values of ; these separate executions can be done in any order or ‘V;::?
concurrently. =
Construction 1 Letv,, ..., v, be single-reader, n-valued registers, where :ﬁi
each v; can be written by the same writer and read by process 1, and construct o
a single n-valued register v in which the operation v := p is performed as '.::'::3
Jollows: I
g

P .
St ™, et et e e
Lo A .
D) PR . R .
e RO

s P .

.
AN S

L T S T VR O e e P R S
DR A e A P R R T S S e e Te Tt ettt et et L.
o, e, W S » o, <« . PR G R A S A)

.

v

h

3

4

8

o
B

b/

b

>

1

|

y

p

3

3

3

b

p

e

3

p

3

P

3

b

L'

4

9

p

3

b

b

..................

for all¢ in {1,...,m}
do v;:= p od

and process s reads v by reading the value of v;. If the v; are safe or regular
registers, then v is a safe or regular register, respectively.

Any read by process ¢ that does not overlap a write of v does not overlap
a write of v;. If v; is safe, then this read gets the correct value, which shows
that v is safe. If a read of v; by process ¢ overlaps a write of v;, then it
overlaps the write of the same value to v. It follows easily from this that, if
v; is regular, then v is also regular.

This construction does not make v an atomic register even if the v; are
atomic. If reads by two different processes s and 5 both overlap the same
write, it is possible for ¢ to get the new value and j the old value even though
the read by s precedes the read by j—a possibility not allowed by an atomic
register.

The next construction is also trivial; it implements an n-bit safe register
from n single-bit ones.

Construction 2 Let vy, ..., v, be boolean m-reader registers, each written
by the same writer and read by the same set of readers. Lel v be the 2"-
valued, m-reader register in which the number with binary representation
B1-..1n 18 written by

for all s in {1,...,m} do v;:= p; od

and sn which the value is read by reading all the v;. If each v; 13 safe, then
v 13 safe.

The register v is not regular even if the v; are. A read can return any
value if it overlaps a write that changes the register’s value from 0...0 to
1...1.

The next construction shows that it is trivial to implement a boolean
regular register from a safe boolean register. In a safe register, a read that
overlaps a write may get any value, while in a regular register it must get
either the old or new value. However, a read of a safe boolean register
must obtain either true or false on any read, so it must return either the
old or new value if it overlaps a write that changes the value. A boolean
safe register can fail to be regular only if a read that overlaps a write that
does not change the value returns the other (wrong) value. To prevent this
possibility, one simply does not perform a write that does not change the
value,

Fadi Jagt et et Mast. Shbe S it e Suresr - oiu SE S0 Rt o)

.t

» f’ »

A A A
b AL

LN

v s+ 2"
P
v

- o
. o

N f N
et e A A s s

Construction 8 Let v be an m-reader boolean register, and let z be a vars-
able internal to the writer (not a shared register) snitially equal to the snstial X
value of v. Define v® to be the m-reader boolean register sn which the write S
operation v* := p 18 performed as follows: .

;

ifz# p then v:=p;

z:=p
fi

and a read of v° s performed by reading v. If v is safe then v® is regular. o
There are two known algorithms for implementing a multivalued regular :E:E:t‘

register from boolean ones. The simpler one employs a unary encoding, in
which the value p is denoted by zeros in bits 0 through u — 1 and a one in

bit u. A reader reads the bits from lefi to right (0 to n) until it finds a one. =~
To write the value g, the writer first sc.s v, to one and then sets bits y — 1 -]
through 1 to zero, writing from right to left. (The idea of implementing “..-::'4
shared data by reading and writing its components in different directions -j'.:-f
was also used in [4].) e
Construction 4 Let vy, ..., v, be boolean, m-reader registers, and let v be -
the n-valued, m-reader register sn which the operation v := p s performed f:f ::1
by 23]
v, = 1; :J::ﬁ.::
fors:=p—1step -1 until 1 do v;:=0od pos
and a read is performed by: ki
pi=1; J
whilev, =0 do g :=p+1 od;]
return p <Y

If each v¢ is regular, then v is regular. hES
The correctness of this algorithm is not at all obvious. Indeed, it is not -‘__:-_:
even obvious that the while loop in the read operation does not “fall off i~
the end” and try to read the nonexistent register v,4,. This can’t happen Sy
because, whenever the writer writes a zero, there is a one to the right of ——
it. (Since I am assuming that an initial value has been written, some v; ::'.-ﬂ
initially equals one.) As an exercise, the reader of this paper can convince s
himself that, whenever a reading process sees a one, it was written by either ',-'.::_:
o

7 R

::l’_:w?

O

ooy

n"_-\

.'.--~\

-l . L B L R PCIY DR e e i et a P T
MR O o Lt vt R : . _ .

. . L T P A P e e LT
2t e et e e R e e T T T T e e e T e T e RIS .

a concurrent write or by the most recent preceding one, so v is regular. The
formal proof is given in Section 4.

The value of v, is only set to one, never to zero. It can, therefore, be
eliminated; the writer simply never writes it and the reader assumes its value
is one instead of reading it. I will not bother writing down this modification.

Even if all the v; are atomic, Construction 4 does not produce an atomic
register. To see this, suppose that the register initially has the value 3, so
v; = vz = 0 and vs = 1, the writer first writes the value 1 then the value 2,
and there are two successive read operations. This can produce the following
- sequence of actions:

v
]

e the first read finds v; =0

ML ALA

o the first write sets vy ;=1
o the second write sets vy :=1
e the first read finds vy = 1 and returns the value 2

o the second read finds v; = 1 and returns the value 1.

In this scenario, the first read obtains a newer value (the one written by the
second write) than the second read (which obtains the one written by the
first write), even though it precedes the second read. This shows that the
register is not atomic.

Construction 4 uses n — 1 boolean regular registers to make an n-valued
one, so it is practical only for small values of n. We would like an algorithm
that requires O(logn) boolean registers to construct an n-valued register.
The second method for constructing a regular multivalued register uses an
algorithm of Peterson [11] that implements an m-reader n-valued atomic
register with m + 2 safe m-reader registers; 2m atomic boolean 2-reader
registers, and two atomic boolean m-reader registers. There is no known al-
gorithm for constructing multivalued m-reader atomic registers from simpler
ones. However, we can apply Peterson’s algorithm to construct an n-valued
single-reader atomic register using three safe single-reader n-valued registers
and four single-reader atomic boolean registers. The safe registers can be
implemented with Construction 2, and the atomic boolean registers can be
implemented with Construction 5 below. Since an atomic register is regu-
lar, Construction 1 can then be used to make an m-reader n-valued regular
register from O(3m log n) single-reader boolean regular registers.

. p t e .
A e et T e T T e e Lt e e TN TR e e e, S IR . e
Ba b ns nl alnd ol Don Vo Sin Bt Bk Bt B B 8" 8 e B Rt B Bt e 8o 8 &

O e e e e e e T T e e T e e Y N

R AR N A P A A N T S T T T T N N N T T T R T R T A T R T T T TN YL YUV T v

VLTI

Before giving the algorithm for constructing a two-reader atomic register,
I prove a result that indicates why no trivial algorithm will work. It asserts -:::
that there can be no algorithm in which the writer only writes and the reader
only reads; any algorithm must involve two-way communication between the
reader and the writer.

Theorem: There ezxists no algorithm to implement an atomic register using
only a finite number of regular regssters that can be written by the writer (of
the atomic regsster).

Proof: 1 assume such an algorithm and derive a contradiction. Without
loss of generality, I can assume that there is only a single regular register v
written by the writer and read by the reader. (Any algorithm that works
with multiple registers must also work when those registers are combined
into a single large regular register.) -

Let v* denote the atomic register that is being implemented. Suppose
that the writer performs an infinite number of writes that change the value
of v*. There must be some pair of values assumed by v*, call them 0 and 1,
such that there are an infinite number of writes that change v*’s value from s
0 to 1. Since v can assume only a finite number of values (the hypothesis
states that the original algorithm has only a finite number of registers, and
all registers are taken to have only a finite number of possible values), there -
must exist values vg, ..., v, of v such that vy is the final value of v after o
each one of an infinite number of writes of 0 to v*, v, is the final value of v
after each one of an infinite number of writes of 1 to v°, and, for each ¢ < n,
the value of v is changed from v; to vy, during infinitely many writes that -
change the value of v* from 0 to 1. "

A read of v* may involve several reads of v. However, by considering only
scenarios in which each of those reads of v obtains the same value, we may
assume that each read of v* reads v only once. Since v assumes each value

v; infinitely often, it must be possible for a sequence of n + 1 consecutive .
- reads to obtain the values v,, vq-q, ..., vy. -~
y The read that finds v equal to v; and the subsequent read that finds v K
g equal to v;_; could both have overlapped the same write of v, which could g
- have been a write that occurred in the process of changing v*’s value from e
':; 0 to 1. Therefore, if the read of v° that finds v equal to v; returns the value =
b 1, then the subsequent read that finds v equal to v;_, must also return the .k
:1 N value 1, since both reads could be overlapping the same write and, in that -
- case, two successive reads of an atomic register cannot return first the new ‘
.. value, then the old. o
S

c
9 ~

.

.
e e e,

et et
. -, at .
T e e T e T e e e e e e e e T e et et T e LI R SR SR SR S R SR LSRN SR S PSR S S S S S SR Y
~ o "W TP Sa L Se e et Y S > o 2 A - AT) R TS Tl S AT S WA S . MUY O WY S e s ot 4 o = el o 2 o N g DR VRS, W'

.

AT
PN P

-

The first read, which finds v equal to v,, must return the value 1, since
it could have occurred after the completion of a write of 1. By induction,
this implies that the last read, which found v equal to vy, must return the
value 1. However, this read could have occurred after a write of 0 and before
any subsequent write, so returning the value 1 would violate the assumption
that the register v* is safe. (An atomic register is a fortiors safe.) This is
the required contradiction.

This theorem could be expressed and proved using the formalism devel-
oped below, but doing so would lead to no new insight. The formal proof of
this theorem is therefore left as an exercise for the compulsive reader.

The theorem is false if no bound is placed on the number of values a
register can hold. Given a regular register v that can assume an unbounded
number of values, an atomic register v* is implemented as follows. The
writer sets v equal to a pair consisting of the value of v* and a sequential
version number. The reader reads v and compares the version number with
the previous one it read. If the new version number is higher, then it uses
the value it just read; if the new version number is lower, then it forgets
the value and version number it just read and uses the previously read
value. The correctness of this algorithm follows easily from Proposition 9 of
Section 3.3. By assuming registers hold only a bounded set of values, I am
disallowing such algorithms.

Finally, we come :o the algorithm for constructing a single-reader atomic
register from regular ones. To begin, we try to implement an atomic register
v* with a regular register v that holds a pair of values, both normally equal.
When v is changed from (v, v) (denoting v* = v) to (#, #) (denoting v* = p),
it is first set to the intermediate value (v, p). The reader reads v and returns
the first component unless it obtains (v, u) after having returned the value u
the last time, in which case it must return the value p to avoid a “new-old”
sequence.

The preceding theorem shows that this idea, by itself, is not enough.
The reader is in a quandary if three successive reads of v obtain the values
(#, 1), (v,), and (v, v). The first read simply returns p; as I just observed,
the second read must also return u; but what can the third read return?
The second and third reads could both have overlapped a single write that is
changing the value from v to u, so returning v would produce a new-old se-
quence. On the other hand, the third read could have seen a completely new
value, written long after the write that overlapped the second read, so re-

10

- o et - o e e e . e TN

LR N T T R S e LI I S I TP SR T S - ot . e

P A I B M I L S IR T R S R S S PR S e T R T e A N R
P SR AT PR P VI AV S R AE TR Skl el L WPRL T W e Wt Wi DR DRNE T DR TN WP PR o)

ce

- . \' -" -“ l‘. ." ‘~’- "
SN T e A T

.'.‘.‘~'<“ WIRTE P

AP A . hd hd] M M P R B -t CRPNC

turning p could violate safety—the requirement that a read not overlapping
any write return the correct value.

To overcome this problem, I add another bit to v, which 1 will call the
color value. When the reader reads v, it sets a shared one-bit register cr

to v’s color value. The writer first reads the register ¢r and sets v to the :j-::
opposite color. (Thus, the reader tries to make cr and v’s color the same, e
and the writer tries to make them different.) The reader interprets (v,) as "
a p only if its previous read saw a g of the same color. The only source of ,_,.j

embarrassment is now if three successive reads return values (g, u), (v,),
and (v, v) that are all the same color. It will be shown in Section 4 that this
can happen only if the last read actually overlaps the write of (v, p), so it is
allowed to return the value p without violating the safety requirement.

In the following construction, the variable cr is written by the reader
and read by both the reader and the writer. A two-reader register is not
needed, since the reader can maintain a local variable containing the value
that it last wrote into cr. (This is just Construction 1 with m = 2 and the
writer being the second reader.) Such a local variable would complicate the
deseription, so it is omitted. In the reader’s program, the primed variables
denote the values read the previous time, except that, if the reader reads
(#, #) then (v,p), both with the same color, then it “forgets about® the
latter value.

Construction 5 Let V be an n-clement set; let w and r be processes; let
v,cw denote a single 2n2-valued register that can be written by w and read
by r, where v has a value in V x V and cw s boolean valued; and let cr be a
boolean register that can be written by r and read by w. Define the n-valued
register v*, with values in V, written by w and read by r by letting the write
v* := p be performed by:

v,cw = (vq, pt), ~er;
v,cw = (p,p),cw -—
and letting the read operation be performed by the program of Figure 1, where :
z and 2’ are local variables with values in V x V, cr' i3 a boolean-valued local

variable, and rtn 13 a local variable with values in V whose final value s the
one returned by the read. Initially, z', cr' equals (v, cw)C], L

11 —

Qe ae SR e e ore

Z,er i= v, cW;
if cr = cr'
then if T = T2
then if z) = 2} # 2y Artn = 1
then skip
else z' :=z;
rin = I)
fi
else if(z=2'Artn=2)Vz| =12
then 7' := z;
rin 1= 12
else 7' := z;
rin := 1,

o=
]
]
~

fi
fi
else z',cr' := z,cr;
rin ;=1

Figure 1: Construction 5: the reader’s algorithm.

12

—— R N T T T T v I N T T Wy Yo I I i ¥ s % %~ 5
S e e et A AT T T LR R TN TR TR G G L TR s L T R T R T L e A A A A ST

3 The Formal Model

3.1 System Executions

Almost all models of concurrent processes are based upon indivisible atomic -
actions as their primitive elements. For example, models in which a process e
is represented by a sequence or “trace” [1,12,13] assume that each element e
in the sequence represents an indivisible action. Net models [2] and re- ,
lated formalisms [9,10] assume that the firing of an individual transition is -
atomic. Operations to a nonatomic shared register cannot be modeled as ‘
atomic actions, since these formalisms have no concept of two atomic actions

overlapping in time.

One can model a single read or write operation with two atomic actions: "
a start and a finish action. I will employ such a model to motivate the s
formalism. However, in the general view of physical systems based upon .
special relativity that is discussed in two of my works [7,5], there may be
no single real event that precedes all other events in the operation, and no o
single event that follows all others. I will show that assuming such fictitious
start and finish events would result in no loss of generality. However, it
turns out to be easier to reason directly in terms of the nonatomic actions
than to use starting and finishing events.

I therefore eschew more conventional formalisms in favor of one intro-
duced in [6] and refined in [5], in which the primitive elements are operation
ezeculions that are not assumed to be atomic. In this formalism, an execu-
tion of a system is represented as a triple §,—,- -+, where § is a finite or e
countably infinite set of operation executions, and — and - - + are prece- o=
dence relations on §. '

The most general way of viewing the formalism is to consider an opera-
tion execution to be a set of points in four-dimensional space-time. Such a .
view is provided in [5]. While using the same formalism as [5], I will employ i
a less general but more intuitive model. In this model, an operation exe- -
cution A is thought of as an activity performed during some time interval
[s4+ fa], where the real numbers s, and f4 are the starting and finishing
times of A. | assume that, at any time, only a finite number of operation ~-_'.jj
executions have begun. Stated formally, a model consists of a set § of op- e
eration executions, together with real-valued functions s and f on § such

B
4 ‘g

P l-'l. ot

s .

.......
PLNY
'l‘.'l""'l"
.
Y.

A

that the following conditions hold for all A and B in § (where I write 54 h—‘
and f, instead of s(A) and f(A)): i
ML. 84 < fa N

N

13

]

" e
PRY

s y s
P A

L e e e A e T T e T ST et e ¢ AT T e T L e T e e e et e e e e e e e B AP

) -

RN L T i R A A S PR A R N R Ty e e e T 3 . R L R R T T
PR R G PSP POPN. VP T W P S SR A W R S i R W P o S PP PRI S0, na e B e A g e S e gt ta- Sar ah Sat .

N M2. for any real number ¢: {A :s4 <t} is finite :-::'_:‘::_
"_: An operation execution A is said to be instantaneous if, for any B # A, the '_ZE::::
i numbers sp and fp lie outside the interval [s,, f4]. Thus, A is instantaneous —
if and only if we can set s4 equal to f4 (shrinking the interval to a point) 2~

without changing the relative order of any starting and finishing times.)

Given such a model, we can define the relations — and - ~ + as follows: o

A—B = fi<sp 2

A--+B = 3,<fB (1) "*1

Thus, A — B means that A finishes before B starts, and A - - + B means . ‘;::1

that A starts no later than B finishes. We read A — B as “A precedes B” :fj-'_:j

and A--- B as “A can affect B”. e

M1, M2 and (1) imply that the following hold for all operation executions H

A B, C,and Din §: S

Al. The relation — is an irreflexive partial ordering. ':‘

A2. f A— Bthen A--+Band B-{+ A.

A3. fA—+B--+CorA--+B— Cthen A--C. Pt

n

A4. fA— B--+C — D then A — D. e

Ab5. For any A, the set of all B such that A -/~ B is finite. t

Instead of basing the formalism on this model, I adopt the more general P_,}

view of [5] and take A1-A5 as axioms. -

Definition 1 A system execution ss a triple S,—,--+ such that S 1s a :Z:j'-'fj

finite or countably infinite set and — and - -+ are relations on S that o

satisfy A1-AS. N

Observe that Al and A4 imply that if A— Band A--+ B then B-{- 4, e

so the “and B -#-+ A” in A2 is superfluous. heeg

Definition 1 differs from the definition of a system execution given in [5) e

because | am considering only terminating operations. In the more general j-'.:'__-;

formalism, Axiom A5 needs the hypothesis that A terminates. ;::::,4

Definition 2 A global-time model of a system ezecution §,—~-+ con-
sists of a pasr 8, f of real-valued functions on S satisfying M1, M2 and (1).
It ss said to be nondegenerate of, for all A: s4 < fa and for all B # A:
sa#28p and s # [B.

14

........

A nondegenerate global-time model is one in which no two starting or
stopping times are identical. The following result states that any global-
time model can be turned into a nondegenerate one by tiny perturbations of
the starting and finishing times of operation executions. Such perturbations
should be allowed, since no physically meaningful result could depend upon
completely accurate knowledge of these times. (It makes no physical sense
to specify the starting and finishing times of an operation execution down
to the fraction of a micropicosecond.)

Proposition 1 For any any global-time model s, f of a system ezecution S,
—,-~= and any ¢ > 0, there ezists a nondegenerate global-tsime model s', f!
of S,—— -+ such that |s', —s4| < e and |f}, — fal <€ forall AES.

The proofs of this and all other propositions stated in this section are
given in the appendix.

In a global-time model, the starting and finishing times of operations
are totally ordered. Given two operation executions A and B, sg must be
either greater than or not greater than f4, so the following condition holds.

A#. For any operation executions A and B with A # B: A — B or
B--4 A

This condition does not hold for all system executions. (Trivial counterex-
amples are obtained by noting that the empty precedence relations make any
set a system execution.) Condition A# holds only if there is a global-time
model.

Proposition 2 A system ezecution S,— - -+ has a global-tsme model ¢f
and only if A# holds.

In the more general interpretation of operation executions given in 5],
condition A# fails to hold for a pair of operation executions A, B if A and
B occur at spatially separated locations, and they both happen within a
time interval that is less than the time needed for light to travel between
their locations. In most systems of practical interest, A# holds for almost
all pairs A, B of operation executions.

The following result shows that we can get a global-time model by adding
extra precedence relations.

Proposition 8 Given any system ezecution S,——,- -+, there ezist exten-
. ! 1] !] o .
stons — of — and - -~ of - -+ such that §,— ,- - + 13 a system ezecution

satssfying AW,

-

', ". “.r" ‘U'
n'.“ .7 .Q.

e e
S

1 L e te e

) e b S Lt

l’
XA
R

Tyt et 8
RO . v‘:_l‘;l ;l (]
KN W ST oy

.
e
s ‘e s 8 e

.
oy
s e o 8

AR TR R AC B S A Pl T S AP AP S S P S G B PR NI R A Al S R AT AT T i A S Al

Later, 1 will indicate why we can consider the system execution §,—
,-~ = to be a reasonable way of viewing the system execution §,—---.

A system execution satisfying A# is maximal in the sense that no addi-
tional — or - - » relations can be added. This is because, for any pair of
distinct operation executions A and B, A# implies that either A — B, or
B— A,or A--+ B and B--+ A. In any of these three cases, adding an
additional precedence relation would violate Al or A2.

When trying to understand an algorithm or its correctness proof, it is
useful to think in terms of a global-time model, drawing pictures of reads and
writes as time intervals. However, I find that the best way to formalize the
proof is to use Axioms Al1-AS5. The additional assumption A#, implicitly
introduced when using a global-time model, is not needed.

3.2 Hierarchical Views

A '.‘r

()
’

The same system can be viewed at different levels of detail, with differ-
ent operation executions at each level. Viewed at the customer’s level,
a banking system has operation executions such as deposit $10. Viewed
at the programmer’s level, this same system executes operations such as
dep_amt|cust] := 1000. The fundamental problem of system building is
to implement one system (like a banking system) as a higher-level view of
another system (like a Pascal program).

A higher-level operation consists of a set of lower-level operations—the
set of operations that implement it. Let §,—,- -~ be a system execution
and let ¥ be a set whose elements, called higher-level operation ezecutions,
are sets of operation executions from S. We consider the starting time s}
of a higher-level operation execution H to be the earliest starting time of all
the operation executions it contains, and its finishing time ff; to be their
latest finishing time. In other words, for every H in X:

)
1,0,

-
13

-
.

sy min{s, : A € ¥}
Jiu = max{fs: A€ ¥} (2)

In order for this to define real-valued functions s* and f* on ¥ that satisfy
M1 and M2, it is sufficient for ¥ to satisfy the following two conditions:

H1. Each element of ¥ is a finite, nonempty set of elements of S.
H2. Each element of § belongs to a finite, nonzero number of elements of

X

16

..

......

............................

A set X of subsets of § satisfying H1 and H2 is called a higher-level view
of S. In most cases of interest, ¥ is a partition of §, 30 each element of
S belongs to exactly one element of ¥. However, I allow the more general
case in which a single lower-level operation execution is viewed as part of
the implementation of more than one higher-level one.

Let §$,—,- - + be a system execution with a global-time model s, f, and
let ¥ be a higher-level view of §. We can define s* and f* by (2) and then -
use (1) to define'— and -2+, obtaining a system execution ¥,——,-2+ o
baving s, f* as a global-time model. The precedence relations — and - 2+
can be obtained directly from — and - - + as follows:

G-~ H = YA€G:VBe€H:A—B -
G-2+H = 3A€G:3BE€H:A--+BorA=B (3)

We can forget about the global-time models and take (3) to be the definitions g
of = and - 2+, It is easy to show that, if ¥ satisfies H1 and H2 and — o
and - - -+ satisfy A1-A5, then — and - 2 ~ also satisfy A1-A5. Therefore, if
X is a higher-level view of §, then ¥,——,- 2+ is a system execution. If the
relations — and - - + also satisfy A#, then so do — and -2+

Let us now consider what it means for one system to implement another. -0
If the system execution §,—,- - -+ is an implementation of a system execu- :
tion $,—xo,-3' +, then we expect ¥ to be a higher-level view of $—that is,
each operation in ¥ should consist of a set of operation executions of § sat-
isfying H1 and H2. This describes the elements of ¥, but not the precedence
relations = and - ¥ +. What should those relations be? hoar

If we consider the system execution § to be the “real” one and ¥ to be e

a fictitious grouping of the real operation executions into abstract, higher- :‘-:::1
level ones, then the induced relations — and - 2 + are the “real” precedence RS
relations on ¥. These induced relations make the higher-level view ¥ a sys- :;
tem execution, so they are an obvious choice for the relations X, and-¥.. -~y
However, they may not be the proper choice. Suppose that we are trying to T
implement an atomic register using several simpler ones, and consider a read T
R and write W to that register—that is, R and W are operation executions <.
in ¥ that represent a read and write to the register. Atomicity means that J
either R 25 W or W 24 R. However, the two operation executions could .
really be concurrent. For example, there could be some operation executions AR
A and B in the implementation of R and an operation execution C in the \
implementation of W with A — C — B, which (by (3)) implies R-*+ W :-\-j:::
RS

o

17 <

e

o~y

.“‘..“

Y

B

T

oy

s

T e A e T I e T i e e I T e e, e T

e A S i et N Sl Bl et AT st St N 1 o ST RN i e g, g aei e N e e et bt e AR - adi i
A N PR LT W, YW, 8 Sl %

’
.

.l .!
AN

L]
. e
PRI T T

1.,

.'.'-.'-
L

Lp ‘444‘..'- 2l

and W -2+ R. Thus, (by A2) the induced relations — and - 2 + cannot be

the desired relations —— and - ¥

When implementing an atomic register from nonatomic ones, in addition
to specifying what set of lower-level operation executions corresponds to an
atomic read or write, one must also specify how to determine whether a
read, which may really be concurrent with a write (according to the induced
relations — and -~ +), is considered to precede or follow that write. This
must be specified in such a way that the register satisfies the condition of
atomicity—namely, that each read obtains the value written by the most
recent write. Subject to that requirement, there is a great deal of freedom
in specifying the high-level relation A,

The implementor cannot be completely free to specify the precedence
relations in the high-level system any way he wishes. For example, if there
is at least one write of every possible value of the register, then any system
execution can be viewed as the implementation of an atomic register by
choosing the -, relation to be a sequential ordering of the reads and writes
in which every read comes between any write of the value it read and the
next write operation. This could lead to a precedence relation in which
an operation is defined to precede one that really occurred several months
earlier. Such a precedence relation obviously seems absurd, but why? In
a real system, these reads and writes occur deep within the computer; we
never actually see them happen. What is wrong with defining the precedence
relation =~ to pretend that these operation executions happened in any
order we wish? After all, we are already pretending, contrary to fact, that
the operations are not concurrent.

In addition to reads and writes to registers, real systems perform ex-
ternally observable operation executions such as printing on terminals. By
observing these operation executions, we can infer some precedence relations
among the internal reads and writes. We need some condition on =~ and
-¥. to rule out precedence relations that contradict such observations.

These contradictions are avoided by requiring that the interval in which
we pretend an operation execution occurs (in forming the —— and - + rela-
tions) be contained within the interval in which it actually occurs. In other

words, we require that a global-time model s¥, f* for ¥,—5 - ¥+ satisfy

<A< ASN)
where s* and f* are defined by (2). To reformulate (4) directly in terms of
the precedence relations, I appeal to the following result.

18

‘-.‘L ;‘L [L‘“-.L‘I.L‘L

.....
.....

o

CLEEE V.Y Tt s oaEmY s e -

Y R I

.............
................

Proposition 4 Let s, f be a nondegenerate global-time model for a system
ezecution $,— ,~-+ and let S ,—'—0,- libes system ezecution satisfying A #

RS AR

EAPRERENESEAEN | PSR

such that for any A,B € S: A — B implies A —— B. Then there ezists
a nondegenerate global-time model s', f' for § — -2 such that, for all
A€ES: .:‘
A<y <fi<fa RN
This result implies that, if the system executions §$,— - -+ and ¥ ,—}(-¢, ;..]1
- ¥, both satisfy A#, then the ability to choose s* and J¥ satisfying (4) is :—«i
equivalent to the following condition: el
H3. For any G, H € : if G =~ H then G =~ H, where — is defined by ‘
(3). 4
RS
This should serve to motivate the following formal definition, which does ..
not mention global-time models. -:::-;i
Definition 8 A system ezecution $,—,- -+ implements a system ezecu- E',:::.::
tion X ,—L,— Y. tf H1-HS are satisfied. -f-:-ﬁ
Toied
To relate this definition to the preceding discussion of observable oper- =1
ation executions, we need the following result. Its statement relies upon .j-:::-,
the obvious fact that if §,—,--+ is a system execution, then T ,— - -~ -:ij:
is also a system execution for any subset T of S. (The symbols — and L)
- - + denote both the relations on § and their restrictions to T. Also, in the __4
I proposition, the set T is identified with the set of all singleton sets {A} for e
AET) e
Proposition § Let SUT,—,- -+ be a system ezecution, where S and T <
are disjoint; let §$,— - -+ be an implementation of a system ezecution ¥, 3
l0,-11«; and let —— and -2+ be the relations defined on ¥ U T by (3).
Then there exist precedence relations 2% and 2"+ such that:
e ¥UT, ﬂ,-N-T* 18 @ system ezecution that s smplemented by SUT , — :';
o The restrictions of XL, and ¥+ to ¥ equal A, ond A, respectively. __‘11
e The restrictions of X7, and X4 to T are extensions of the relations \:
— and - 24, respectively. Ny
-.:_'.]
)
D.- i
19 .,,_1
Z.;.'.-h
.f‘
D =

e — EC R ORI A A v it e IR A Sl N oA A AL AL ST SUL SAL AR h /S ST TR TITY a Te T

N To apply this proposition to our discussion of implementations, let S,
" —,- -~ be an execution of a lower-level system of register reads and writes
i implementing a higher-level system execution)(,—L,- ¥, of reads and writes.

Let T be the set of all other operation executions in the system, including
the observable ones. Proposition 5 means that, while the precedence re-
lations = and - ¥ may imply new precedence relations on the operation
: executions in T, these relations (2= and -'+) are consistent with the “real”
N precedence relations — and -+ on 7.

l Note that, when there are global-time models for all the system execu-
tions, the * relations are the same as the original precedence relations on the
set T, and Proposition 4 implies that the ¥ T relations can be chosen also to
be the same as the original precedence relations on T. However, in general,
the relation —— may contain orderings that imply additional orderings on
i the elements of T beyond those contained in —. As a simple example,
let A,Be€ S,let S,T € T,let S — A, B — T be the only precedence

relations among these elements, and let ¥ = §. If A LN B, then Al implies
*

S XL T even though S - T.

When implementing a register, I will ignore any operation executions not
involved in the implementation, and consider the system execution compris-
ing only the reads and writes that implement the register. Proposition 5
shows that the implementation cannot lead to any anomalous precedence
relations among the operation executions that are being ignored.

An implementation §,—,- -+ of ¥ ,—L,- ¥, is said to be trivial if every
element of ¥ is a singleton set. In other words, a trivial implementation
is one in which each higher-level operation execution is implemented by
a single lower-level one. In a trivial implementation, the sets § and ¥
are (essentially) the same; the two system executions differ only in their
precedence relations.

Proposition 3 implies that any system execution trivially implements
one that satisfies A#, which, by Proposition 2, has a global-time model.
Implementation is transitive—if §,—,- - « implements § t L, -1. whichin -
turn implements ¥ ,—X—o,- ¥, then § ,—,~ -« implements ¥ ,-lo,- ¥ .. When :ji':j

AL A

RN AL ARAR AR
h . e
se Tt Tt

b

20

implementing a higher-level system, we can therefore assume the lower-level :_'.'j:'"
system execution has a global-time model. However, there is no reason to __j
do so0; a rigorous correctness proof using Axioms A1-A5 will be at least as o
simple as one based upon starting and finishing times, and will be more RS
reliable than an intuitive one based upon pictures of intervals. ‘;'_::.-:

R

Y

C e e e e e e e, I
B I T IR T AL I AP SRR C TR Yl VAP SRR V)
- . P e . -

et et OO . IR R AP TY ORI I SRR IR IR S A RN NSRS SRR
PRV LI AL AP Tl S AP T AR, WU VAP GV A7 S . P AP AR5 LIPS P S PSR A S F L W V. Badafe

3.3 Register Axioms

The foregoing discussion applies to any system execution. I now consider sys-
tem executions containing reads and writes to registers. In addition to Al-
AS5, some axioms special to these kinds of operation executions are needed,
including axioms that provide the formal definitions of safe, regular, and
atomic registers.

Axioms Al1-A5 do not require that there be any precedence relations
among operation executions. However, some precedence relation between a
E read and a write to the same register must be assumed. (Communication
requires a causal connection between reads and writes.) The following axiom
is assumed; the reader is referred to [5] (where it is labeled C3) for its

justification. Note that it is implied by A#.

P Bl. For any read R and write W to the same register, R--+W or W - -+
P R (or both).

:;_:; Each register is assumed to have a finite set of possible values—for ex-
" ample, a boolean-valued register has the possible values true and false. |
e assume that any read, whether or not it overlaps a write, obtains one of
= .

. these values

- B2. A read of a register obtains one of the values that may be written in
A the register.

i
'4‘ ’

Thus, a read of a Boolean register cannot obtain a nonsense value like “trise”.
This axiom does not assume that the value obtained by a read was ever

‘ actually written in the register. :-j:.:
e 1 assume that a register v is written by only a single writer and that AN
o each write precedes the next. Let Vm, Vlzl, ... denote the sequence of write :}i:}
o operations to the register v, where <
;!: V[“-——.V[zl—.... -L?—.‘
Cf: and let v/l denote the value written by vl (There may be a finite or 5};‘{;
infinite number of write operations V[ﬂ.) \
s A register v is assumed to have some initial value vl%. It is convenient . 1
E‘ to assume that this value is written by a write V% that precedes (—) all -
N other reads and writes of v. Eliminating this assumption changes none of f:-::1
E‘_ the results, but it complicates the reasoning because a read that precedes T
G all writes has to be treated as a separate case. b
W T
N

3 21

vy
R
. LN

+ e
LR NN

LIS }

------------ R T A TR PRt B SR B i T L T R
C ISP U N -5 T YH V.27 Wl UiV Yhdv SRt SOAr S Y S50 -1

ﬁ'u
A

3

¥

L.l

L

3

b

.

A

Let R be a read of register v, and let

Ig & (v p_y.viy
Jrp & (v yIH__, R}

From A2 and the assumption that VI% precedes all reads, it follows that
V% is in both I and Jg; and from A2 and A5 it follows that Ig and Jg
are finite. The writes in Jg are the ones that could affect R. For the sake
of the following intuitive discussion, suppose that A# holds, so Ig is the
set of writes that precede (—) R. (The reader interested in extending
his intuition to the general case should substitute “effectively precedes” for
“precedes®—a concept defined in [5].) The difference Jg — Ig of these two
sets is the set of writes concurrent with R. The read R can observe “traces”
of the values written by writes in Jgp — I, and by the last write in Ig. All
traces of earlier writes are assumed to vanish with the completion of the last
write in Ig, and no write later than the last one in Jg can influence R in
any way.

I will say that R sees vl if it can observe traces of the writes Vil
through VU1, The formal definition is as follows:

Definition 4 A read R of register v is said to see vltdl where:

i o max{k : R - /- VI¥}
j ¥ max{k: V¥l .- 4 R}

This definition makes sense because ¢ and j are defined to be the maxima of
finite, nonempty sets—AS5 and A2 imply that they are finite, and they both
contain zero. Also observe that Bl implies that s < j.

I can now give the formal definitions of safe, regular, and live registers.
A safe register is one that obtains the correct value if it is not concurrent
with any write. This is the case if it observes traces of only a single write.

B3. (safe) A read that sees vl obtains the value vl,

A regular register is one that obtains a value that it “could have” seen.

]

IR

LGS n‘. A

B4. (regular) A read that sees vl*J! obtains a value vl*l for some k with
1<k<y

l,l
4

!‘ l'

22

]
(

PRI
S

I
-, '
' " ! *_a 0
PR MDA ST LW S W ST

R T R tel e
R R L

- - . . . - - o
S UL T L T T et T T e e T T T T e T e e T e s e e e T AT R S T N T Tt R R Tty
PRIV P PRI Ty P Wi S Yo SRS W W T VPRSI RS W SR WAL SR VAT RS TSR T AT BTG FETS VS TSI PSS-S VE PO A VS ..

e

An atomic register satisfies the additional requirement that a read is never
concurrent with any write.

B5. (atomic) If a read sees vl"] then ¢ = j.

A safe register satisfies B1-B3, a regular register satisfies B1-B4 (note that
B4 implies B3), and an atomic register satisfies B1-BS5.

The following two propositions state some useful properties that are
simple consequences of Definition 4. I introduce the notation of letting vl*]
stand for a read that sees the value v/, Thus, part (a) is an abbreviation
for: “If R is a read that sees vl%l and R — VI*| then” (Recall that
VI# s the k*® write of v.)

Proposition 6 (a) If vl*] — VI then 5 < k.
(b) If VI — olid] then k < .
(c) If vl — ol"3] then 5 < ¢ + 1.

Proposition 7 If R is a read that sees vI*3], then

(a) k<7 ifand only f VI -4 R
(b) i <k if and only if R - -+ VIk+1],

In a global-time view, atomicity is usually defined to mean that all op-
erations are instantaneous. In BS5, it is defined by the requirement that
a write does not overlap a read. However, two reads may overlap, and a
write could overlap some operation execution that is not a read or write of
the register. It is easy to see that, given a global-time model for a system
execution satisfying B5, without violating conditions B1-B5, we can shrink
the intervals occupied by reads and writes so that they overlap no other
operations. Thus, the original system execution implements one in which
reads and writes of the atomic register are instantaneous.

For a nonatomic register, reads and writes cannot be made instanta-
neous. However, the reads can be made instantaneous.

Proposition 8 Any system ezecution S,— - -+ having a safe or regular
register v trivially implements a system ezecution S,——~L+ in which v is
also safe or regular, such that $,——-'+ has a global-time model in which
every read of v 18 instantaneous.

-y

BRI . .l . N
IR S . LIPS IPRL PR TNt e S e et T Te T e e Ta T T e T T N T T T
-t P R W W LaP SRS P P IR S 2N USSP v SUNE ST SO WA SOUE WL T VI TN W R DR g N W W R S

S I S A B Bt i SO I I Sl e i

vl vil vizl
Writes: H—— A A

Rl Rz Rs g

11
Reads: } 1 T — |

Time

Figure 2: An interesting collection of reads and writes.

I have observed that a regular register is not necessarily atomic because
two successive reads that overlap the same write could return the new then
the old value. The following result shows that this is the only way a regular
register can fail to be atomic.

Proposition 9 Let §,—,- -+ be a system ezecution contasining reads and
writes to a regular register v, and let ¢ be an integer-valued function on the
set of reads such that:

1. If R sees vl then i < ¢(R) < j.
2. A read R returns the value v!#(R)l,
8. If R— R' then ¢(R) < ¢(R').

Then S,—,- -~ trivially implements a system ezecution in which v s aa
atomic register.

A function ¢ satisfying the first two properties exists if and only if v is
regular. One might be tempted to replace these three properties with the
requirement that v be regular and that the following hold:

3 If olidl — Yl ther'x.there exist k and k' with i <k<jand
#' < k' < 5" such that vl*J] returns the value vl¥ and vl"4'] returns the
value vl¥],

However, this does not imply atomicity. As a counterexample, let ool =
vl2l = 0 and vl = 1, let Ry, Rz, Rs be the three reads shown in Figure 2,
and suppose that R; and Ry return the value 1 while Ry returns the value
0. The reader can show that this register is regular, but no such ¢ can be
constructed; there is no way to interpret these reads and writes as belonging
to an atomic register while maintaining the given orderings among the writes
and among the reads.

24

Vet
et

. et T T e T T e e et
Londhanliadn da S ol oo lia 80l e on ol

If two reads cannot overlap the same write, then vl¥l — ¢li"J] implies
7 < ¢'. This implies that any ¢ satisfying conditions 1 and 2 of Proposition 9
also satisfies condition 3. But such a ¢ exists if v is regular, so any regular I
register trivially implements an atomic one if two reads cannot overlap a
single write.

3.4 Systems

I have defined a system execution, but not a system. Formally, a system is -
Just a set of system executions—a set that represents all possible executions .
of the system. o

Definition § A system is a set of system ezecutions. The system S s o
satd to contain a register v satisfying one or more of the properties B1-B5 e
if every system ezecution in S contains a sequence VIl — ... of writes
with associated values v\, ... and o set of reads satisfysng the corresponding
properties.

The usual method of describing a system is with a program written in
some programming language. Each execution of such a program describes a
system execution, and the program represents the system consisting of the
set of all such executions. The only operation executions that concern us
are reads and writes of a register; “calculation” steps can be ignored. For
example, execution of the statement z := y V z includes three operation
executions: a read of y, a read of z, and a write of z. It does not matter
whether or not the computation of the V is considered to be a separate op-
eration execution. What is significant is that each of the two reads precedes
(—) the write; no precedence relation is assumed between the two reads.

A formal semantics for a programming language can be given by defining,
for each syntactically correct program, the set of all possible executions.
This is done by recursively defining a succession of lower and lower higher-

. —

level views, in which each operation execution represents a single execution o

of a syntactic program unit.? At the highest-level view, a system execution el

consists of a single operation execution that represents an execution of the

entire program. A view in which an execution of the statement S;T is a A
single operation execution is refined into one in which an execution consists s

2For nonterminating programs, the formalism must be extended to allow a nontermi- ;;‘-_::

nating higher-level operation execution that consists of an infinite set of lower-level

operation executions. ~
P—‘\..

25 —

S

cod

s PR

0y
FERE W e e s e, B e e e et e e et et e . e e T et .
-

PRI _..'\:._-‘ . LRI
DRPRAEY SRS TN GG G I, TR Sl s

»-.”--‘
T
of an execution of S followed by (—) an execution of T.3 While this ::::":_:
kind of formal semantics may be useful in studying subtle programming j-j::-'_
language issues, it is unnecessary for the simple language constructs used in e

the algorithms of this paper, so I will just employ these ideas informally.

Having defined what a system is, I should define what it means for one R
system to implement another. The definition is, of course, in terms of the L
definition of what it means for one system execution to implement another. .

Definition 8 The system S implements a system H if there s a mapping
t : S — H such that, for every system ezecution S,—,--+ in S, §,—, L
- == implements (S, —,- - +).

Note that for S to implement H, every execution of S must correspond T
to some execution of H. The converse is not required; I do not insist that i
every possible execution of H have a corresponding implementation. A ole
higher-level description H of a system can be viewed as a specification of .
its implementation—a specification that describes all allowed behaviors, but
does not require any particular behavior.

This definition raises the question of how we can specify that the system
must actually do anything. The specification of a banking system must
allow a possible system execution in which no customers happen to use an
automatic teller machine on a particular afternoon, and it must include the
possibility that a customer will enter an invalid request. How can we rule
out an implementation in which the machine simply ignores all customer
requests during an afternoon, or interprets any request as an invalid one?

The answer lies in the concept of an snterface specification, discussed in
[8]. The specification must explicitly describe how certain interface opera-
tions are to be implemented; their implementation is not left to the imple- -
mentor. The interface specification for the bank includes a description of
what sequences of keystrokes at the teller machine constitute valid requests, T
and the set of system executions only includes ones in which every valid re-
quest is serviced. What it means for someone to use the machine is part of -—
the interface specification, so the possibility of no one using the machine on R
some afternoon does not allow the implementation to ignore someone who e
does use it. i

Since this paper considers only the internal operations that effect com- w
munication between processes within the system, not the interface opera-
tions that effect communication between the system and its environment, I

CPL L

. s f PR
.-, L R S T
L P P
. e ot Nt L
. PR
- PR R D PP

’

v

.l 'l L

2In the general case, we must also allow the possibility that an execution of ;T consists
of a nonterminating execution of S.

P R NN
« s T e Wt

] r
L. Iy

I

26

F N T el e et e e e e e e e e e e e e e et ettt
et e T et et g T e T, -t o, W et P I T L TR VR

LR) o . [SERPLIY L A R e P L T e I Bt LI
s, . . e gt . . GOSN S .

o ta . - . PUCREE M . « e e PRI R " a e a'ets
- . N ~ . . » - - . - . -
PN TR BRI S AT W A S TP PR Y P, PR NE WD WY WP WIS TV TEIPL AT Sl S Sl Gl AT Sl Pl L) - PRIy .

DAECH N Al oyl i i L A A A Akt aa A eSS i i A S et i R M =

will ignore interface specifications. The interested reader is referred to [8]
for a discussion of this subject.

4 Correctness Proofs for the Constructions

4.1 Proof of Constructions 1, 2, and 3

These constructions are all simple, and the correctness proofs are essentially
trivial. Formal proofs add no further insight into the constructions, but they
do illustrate how the formalism developed in the preceding section is applied
to actual algorithms. I therefore indicate all the formal details in the proof
of Construction 1. The formal proofs for the other two constructions are
just briefly sketched.

Recall that, in Construction 1, the m-reader register v is implemented by
the m single-reader registers v;. Formally, this construction defines a system,
which [denote by S, that is the set of all system executions consisting of
reads and writes of the v; such that the only operations to these registers are
the ones indicated by the readers’ and writer’s programs. Thus, S consists
of all system executions $,—,- - + such that:

e § consists of reads and writes of the registers v;. -—1

e Each v; is written by the same writer and is read only by the ¢*} reader.

e For any ¢ and j: if the write V.-“’l occurs, then the write V’-{"] also ocurs,

and v!-k"l —_— vy‘].

The third condition expresses the formal semantics of the writer’s algorithm, i
asserting that a write of v is done by writing all the v;, and that a write of o]
v is completed before the next one is begun. :

To say that the v; are safe or regular means that the system S is further
restricted to contain only system executions that satisfy B1-B3 or B1-B4,
when each v; is substituted for v in those conditions.

To show that this construction implements a register v, Definition 6 Sl
states that we must construct a mapping ¢ from S to the system H, which
consists of the set of all system executions formed by reads and writes to an :
m-reader register v. To say that v is safe or regular means that H contains ¥
only system executions satisfying B1-B3 or B1-B4.

In giving the readers’ and writer’s algorithms, the construction implies)
that, for each system execution §,—,--+ of S, the set ¢(S) of operation o

27 g

@ nl e e e e e e e el sl w e .o . P .- . el e e RN . .
. R R et e T e e e . e - ST AT AT et e
e P S I e Ty T e Te e e e e T s T, e AR TR L A et P

LR ASEREEE A TR AL AL BPUL I SN L S a7 TR AR T S A I IR EaiS D
PRI IR I W R IR, P AP NG VL DN I ST WAL IS U DAL IPAL AL DAL I AP DPACILIG TR T S T DL D i P UL T U U PP, S i, Y.

e S A B Rl gL Al AP Al Yl i i) A I et IR et CRMERF e GF S D Ahh 4 L AR oAl MO S aREa ahgiongn Pufifar Sar ges Sesednge S St Sate I T

-‘. A

P4
e

executions of ¢(§, —,- - +) is the higher-level view of §,— - - » consisting

of all writes VI* of the form {Vl["l, .. ,V,[,f]}, for V.-“'l € S, and all reads of N
the form {R;}, where R; € § is a read of v;. (The write VI[* exists in ¢(5) o
if and only if some, and hence all, V,-U’l exists.) Conditions HI and H2 are
obviously satisfied, so this is indeed a higher-level view. To complete the
mapping ¢, we must define the precedence relations £, and - ¥+ so that
(S, —,--~) is defined to be ¢($),—”—0,- ¥, Proving the correctness of the S
construction means showing that: -iia
1. ¢(S),25,- ¥+ is a system execution—that is, it satisfies A1-AS5.
2. §,—,- -~ implements t(S),—N—v,-)-‘-o—that is, H1-H3 are satisfied.
3. ($),~ - ¥+ is in H—that is, B1-B3 or B1-B4 are satisfied. e
The precedence relations on ¢(S) are defined to be the “real” ones, with 7: VY
G = H if and only if G really precedes H. Formally, this means that we let S
—2, and - ¥~ be the induced relations —— and - *~, defined by (3). Recall ol
from Section 3.2 that the induced precedence relations make any higher-level S
view a system execution, so 1 is satisfied. I have already observed that H1 —
and H2, which are independent of the choice of precedence relations, are o
satisfied, and H3 is trivially satisfied by the induced precedence relations, ::::;:
so 2 holds. Therefore, we need only show that, if B1-B3 or B1-B4 are :j:(-_t
satisfied for reads and writes of each of the registers v; in §,—,-~ -+, then by
they are also satisfied by the register v of ¢($),-L»,- Y. i
Property Bl for ¢(§),—,- 7+ follows easily from, (3) and property Bl K
for §,—,--+. Property B2 is immediate. The informal proof of B3 is as :ff::]

follows: if a read of v by process 1 does not overlap a write (in ¢($)), then
the read of v; does not overlap any write of v;, so it obtains the correct
value. A formal proof is based upon:

X. Ifaread R; in §,——,- - < sees v!-"'q, then the corresponding read { R;}

in 1(§),——,- 2+ sees vl¥] where K < k<<,

The proof of X is a straightforward application of (3) and Defintion 4. Prop-

erty X easily implies that, if B3 or B4 holds for §,—,- - +, then it holds for)

(§),——,- 2 +. This completes the formal proof of Construction 1. -
The formal proof of Construction 2 is quite similar. Again, the induced

precedence relations are used to turn a higher-level view into a system execu-

tion. The proof of Construction 3 is a bit trickier because a write operation

28 —

...
‘‘‘‘‘‘‘

v T,
N 4

hd W W, W, —p—yy
“ . e Sul] N .
SR - KRGl B2

to v* that does not change its value consists only of the read operation to
the internal variable z. This means that the induced precedence relations do
not necessarily satisfy Bl; they must be extended to make Bl hold. This can
be done by applying Proposition 3, though a more “economical” extension
can also be constructed.

4.2 Proof of Construction 4

The higher-level system execution of reads and writes to v is defined to
have the induced precedence relations — and - 2+. As in the above proofs,
verifying that this defines an implementation and that Bl holds is trivial.
The only problems are proving B2—namely, showing that the reader must
find some v; equal to one—and proving B4 (which implies B3).

I first prove the following property:

Y. If a read returns the value p, then there is some k such that oIkl = B
and the read sees vl with I < k < .

If B2 holds, then property Y implies B4,

Reasoning about the construction is complicated by the fact that a write
of v does not write all the vj, so the write of v; that occurs during the kb
write of v is not necessarily the k'® write of v;. To overcome this difficulty,
I introduce new names for the write operations to the v;. If v; is written

during the execution of V“‘], then I let W}kl denote that write of v;; other-
wise, W}"] is undefined. Thus, every write ij of v; is also named W}"l for

some I' > [. 1 will say that a read of v; sees wg-'""l if it sees vl'"! and the

writes W’m and WJ!"] are the same writes as Vj[l] and Vj[r], respectively.
Note that, because the writer’s algorithm writes from “right to left”, if W.-m
exists, then so do all the W}k] with 5 < 1. In particular, Wl["l exists for all £.

Let R be a read that returns the value g, and let g be the s*® value, so

R consists of the sequence of reads Ry — --- ~— Ry, where each R; is a
read of v;. All the R; return the value 0 except R;, which returns the value

1. Let R see vl'*] and let each R; see wy(j he @, By regularity of v;, there
is some k(7) with I(7) < k() < r() such that W,!"('.)] writes a 1 and W}km
writes a 0 for 1 € 5 < 4. Thus, vl¥0)] js the value read by R, so it suffices to
show that | < k() <r.

Definition 4 implies W.!'(")] - -+ R;, which by (3) implies vkl _ 2, R,
which implies r(¢) < r. Hence, k(s) < r.

29

................................

. L o ,,
0 r,'-. [, ‘." S
s ' . S .
LR AR
[N AR

.....
A‘-".' .
95 W PO PLN

Lot - - e ?':—‘H_‘_. -l"..mi. Al N el e MMM Mk DML S v Sk SEML JSbu Mt R et el i S mran m e el s el 2 oia s g an aea)
3 - R s e Ta e RaCEA

r_-_q
Rt
R
For any p with p < I, Definition 4 implies that R - # + VIPl, which implies]
that Ry - §+ WP, which in turn implies that p < I(1). Hence, I < I(1).* S
Since {(5) < k(3), it suffices to prove that k(;) <I(j+1) for 1 < 5 <. i
Since k(7) < r(y), Definition 4 implies that WJ!"(J)I --~+ R;. Because o
W}"U) writes a zero, W}i({)] exists, and we have :'_‘._'-'_:
ali ali o
w}-{»(i’)l —_— w’(6] _——- Rj —_ Rj-H ‘\: N
where the two — relations are implied by the order in which writing o
and reading of the individual v; are performed. By A4, this implies that e
W’l:,({ n_, i+1, Which, by A2, implies Rjyy -f+ W}:(: 2 By Definition 4, f:_:
this implies that k(5) < {(5 + 1), completing the proof of property Y.

To complete the proof of the construction, I must only prove that every

read does return a value. Let R and the values I(3), k(;), and r(;) be as -
above, except let 1+ = n and drop the assumption that R; obtains the value }-_Z:'{l
1. To prove B2, | must prove that R, does obtain the value 1. '-'::-"
The samc argument used above shows that,if R; obtains a zero, then that ::
zero was written by some write W}"(’)], which implies that W}:f{" exists and e

k(s) < (7 +1). Since R, obtains the value written by W,[."("”, it must -
obtain a 1 unless k(n) = 0 and the initial value is not the n*® one. Suppose L
the initial value vl is the p'® value, encoded with vp=1,p < n. Since R,

obtains the value 0, we must have k(p) > 0, which implies that k(n) > 0, so

R, obtains the value 1. This completes the proof of the construction.

4.3 Proof of Construction 5

This construction defines a set ¥, consisting of reads and writes of v*, that oy

is a higher-level view of a system execution §,—, -+ whose operation :

executions are reads and writes of the two shared registers v, cw and cr. As

usual, — and da+ denote the induced precedence relations on $ that are -

defined by (3). .
Let u denote the shared register v,cw of the algorithm. In this con-

struction, the write V*[¥ of v*, for k > 0, is implemented by the sequence :"f-.f:
R — Ul2k=1} _, Y12kl where R is a read of cr and Ul is the i*® write of e g
%t. The initial write V*[% of v* is just the initial write Ul of u. -
*Note that the same argument does not prove that | < I(s) because W..[”l does not :.-:::
necessarily exist. s
\-_\:

o

30 a

..‘...‘

...

..

Since there is only one reader, the reads of v* are totally ordered by —.
The s** read S; of v* consists of the sequence R; — C R where R; is the
s** read of u and C Rl is the i*® write of er. For notational convenience, 1 o]
assume an imaginary read Ro of u that returns the value ul®, and I define
So to be the sequence of operations Ry — C RI%. The operation Sp is taken

to be the one that sets the initial values of z’ and cr'.
The proof of correctness is based upon Proposition 9. Letting ¢(s) denote N
#(S;:), to apply that proposition, it suffices to choose the ¢(s) such that the by
following three properties hold: -
. L

e S; returns the value p*l¢6) . -j:,"-

o If S; sees v*l""] then I < ¢(s) < r. R

o If j < then ¢(5) < ¢(3). o

I start by defining a function ¢ such that R; returns the value ul¥(? and, e '::?
if R; sees ull"] then | < ¢¥(s) € r. Since u is regular, such a ¢ exists. 7 .-ti

Proposition 6 implies:]
Z1. If y < ¢ then ¢(y) < ¢(¢) - 1.

By Proposition 7, UWG)N --4 R; ~- o UW@OH Sypnose ¢(5) = 2k.
Since Ul?H is part of VI U[24+1] s part of V*I*+1] and R; is part of
S;, this implies V** -2+ §; -2+ yelkta Hence, property 2 is satisfied if
¢(s) = k. Next, suppose that ¢(§) = 2k — 1, where k& > 0. Since VI2¢-1]
is part of VI8 we have Vo.M 2. §; . 2, yolll 2, yelb+l o5 property 2
is satisfied if ¢(f) = k — 1. But we also have yelk=1] 2, yeld] _ 2, R;, so
property 2 is also satisfied if ¢(¢) = k — 1. To summarize, property 2 is
satisfied by 1 if the following holds:

Z2. (a) If ¢(s) = 2k then ¢(s) = k. -
(b) If (s) = 2k — 1 then ¢(s) = k or ¢(s) = k—1. o

The second statement in the algorithm of Figure 1 consists of nested
if statements, so executing it executes exactly one innermost then or else
clausr * will use a sequence of t (for then) and e (for else) characters
to de. .e such an innermost clause; for example, tee denotes the second
innermost else clause, which is executed if z, # z; and 7} = z} = z,.

Let a ttt-read be one that executes the ttt clause of the reader’s algo- :
rithm, and let a nice read be one that is not a ttt-read. The initial read Sp ")
is defined to be nice. For any ¢ > 0, let 7(s) denote the largest integer such N

31

P
N N

 r
2
bl B

... I A W L M NI
LI P NI) ~ S St |
RIS YR i'k'.&. LW,

MACAEMENET B RN

oo &
..
P

.

f_:: that x(s) < ¢ and S,(;) is nice. In other words, S,(; is the last nice read -
b before S;. A ttt-read does not change the value of rtn, z', or ¢r’. Therefore,

" when the execution of S; begins, rin has the value returned by S,(; and

i z',cr' has the value ul¥(*())] read by Ry(q).

I first define ¢(s) inductively for all nice reads, starting with ¢(0) = 0.
. The definition will be made so that Z2 holds for all 5. Let s be a nice read,
5 s+ > 0, and assume that properties 1-3 and Z2 hold with x(¢) substituted fors.
In the following discussion, I will refer to the values of variables immediately SO
after the execution of the first statement in the reader’s algorithm during -
the operation execution S;. Thus, z, cr is the value ul¥()] read by R;, rtn
is the value v*!#"()) returned by S4(i)» and 2',cr’ is the value ulv(*()] pead

by R.;)-

Consider first the case ¢(s) = 2k ~ 1. In this case, z; = v* 111 and o
o = TS zy # z7, then properties 1 and Z2 are satisfied only by Y
defining ¢(¢) to equal k — 1 if S; returns the value z; and to equal k if S; o o
returns the value z;. In other words, ¢(t) equals k if S; executes the tet N

clause and equals k — 1 otherwise. Since Z2 is satisfied, property 2 holds. -

To prove property 3 for 1, it suffices to prove that ¢(7(s)) < ¢(s), since DT
property 3 is assumed to hold for #(f). Property Z1 implies that ¢(¢(s)) < ___*
2k, so Z2 implies that ¢(n(r}) can be greater than ¢(¢) only in two cases: .
(i) ¥(n(s)) = 2k and ¢(s¢) = k =1, or (i) ¥(n(¢)) = 2k ~ 1, &(n(+)) = &, and
#(¢) = k=1. But y(7(r)) = 2k implies that z} = z = 22, s0 S; executes the
tet clause and ¢(1) = k. Hence, case (i) is impossible. If ¢(#(¢)) = 2k — 1
and ¢(s) = k, then z' = z and S,(;) executes the tet clause, so rtn' = z}.
Hence, S; must also execute the tet clause, so ¢(s) = k, showing that case (ii)
is impossible. This completes the case y(s) = 2k — 1 and z; # z,. SN

If (s) = 2k = 1 and z, = z;, then | define ¢(s) to be the maximum N
of k — 1 and ¢(n(¢)). Z1 and Z2 (for x(s)) imply that ¢(x(s)) < &, so this
defines ¢(f) to equal either £ — 1 or k. At this point, I note the following
property for later use:

\ 23. If y(s) = 2k - 1, 2, = 22, and ¢(s) = £, then there is a nice read R; =

- with 5 < ¢ such that ¥(y) = 2k.

The proof of Z3 is by induction on s. The hypothesis Z1, and Z2 imply that

- either ¢/(7(¢)) = 2k, in which case we can let 5 = 7(s), or else y(n(s)) = .

b, 2k — 1 and ¢(x(1)) = k, in which case we apply Z3 with n(s) substituted for

- s. RN
a Returning to the definition of ¢(i), in the case under consideration .j:::‘

(¥(s) = 2k — 1 and z; = z2), properties 1, 2, and Z2 are satisfied because e

i

3 32 -

= o

- oy

«
.
-

......

Al e a’a a2’

adhadi

PPATATR AL B L .

CEMAETAMIIL S S et ey G ewe Sben Sowl siws aaih Sar ek sees SR s sl e o
~ e e LN SRl e e T e .

YRR S A St A A T Sl A e Y

#(s) equals either k — 1 or k. Moreover, we obviously have ¢(7(s)) < ¢(s),
so property 3 is also satisfied. This completes the case ¥(¢) = 2k — 1 and
I # xz.

Finally, I consider the case (¢} = 2k, where ¢(s) must be defined to
equal k to satisfy Z2. In this case, 2; = z, = v*!*l and S; executes the
tte clause, returning the value z;. (Since S; is assumed to be nice, it does
not execute the ttt clause.) Hence, property 1 is satisfied. Since Z2 holds,
property 2 is satisfied. To prove property 3 for i, it suffices to show that
é(n(¢)) < ¢(¢), since the property holds for (). By Z1, ¢(n(s)) < 2k+1, so
#(7(1)) can be greater than ¢(s) only if ¢(7(s)) = 2k +1 and ¢(x(s)) = k+1.
There are two possibilities to consider: (i) z} # 2} and (ii) 2z} = 5. In
case (i), #(7(s)) can equal k + 1 only if S,(;) executes the tet clause, which
implies that z} # z5 and rtn = z); but this is impossible since S; executes
the tte clause. In case (ii}, Z3 implies that, if ¢(7(s)) = &k + 1, then there
exists § < m(¢) with ¥(y) = 2k + 2. But Z1 implies that this is impossible,
since 7 < ¢ and ¢(f) = 2k. Hence, property 3 holds. This completes the
construction of ¢(1) for all nice reads S;.

To complete the definition of ¢, if S; is a ttt-read, I define ¢(¢) to equal
é(n(1)). Since S; returns the same value as S,(;), property 1 is satisfied.
Property 3 obviously holds, since it holds for nice reads and ¢ assigns to
every ttt-read the same value as it assigns the most recent nice read. The
only thing left to prove is that property 2 holds for a ttt-read S;. This is
perhaps the most subtle proof of the entire paper. It involves proving the
remark made earlier, that, if a sequence of reads obtains the values (g, &),
(v, n), and (v, v), all of the same color, then the last read overlaps the write
of (v,).

Let S; be a ttt-read, and let (s,), ¢ be the value ul¥()] read by R;. Since
S; executes the ttt clause, 2', c', which is the value ul¥(*()] read by Rei),
must equal (v, pt), ¢ for some v # p, so ¢(n(s)) is odd. Let ¢(n(s)) = 2k - 1.
Since S; executes the ttt clause, S,(;) must return p, so it must execute the
tet clause. This implies that ¢(n(f)) = &, so ¢(s) = k, and that the value of
cw read by the operation execution S,(;)—; must also equal ¢, so C Rlx()-1l
writes the value ¢. The following operation executions must therefore be
performed in sequence by the reader (each one —’s the next, but the
reader may perform other, intervening operation executions):

o CRI"6)-1); writes cr(n(s) - 1] = ¢

o Ry reads ul?*~1 = (v, p),c

33

................................
.............................
........

W WL W W L iad Phadit® A SR)
. S YRR SRR

..............
........................
- o -t

. -~ . . *
Lt Fe it ey,
€ Pt .

»

»

ey e v s e,
AN STt et
ot . St S e
ala - R

"
prw ot o

v

e

& .A' N
'.1')'."1 .

PRy LW
Y hN
o 2 w3

" L]
B A

!

LI

00

W e e W e e e, e e e v - s Ty \ peas w - ~ S — et s -
ST ST T e YT I T R Y S N T R T T T N T T N T N T S T T T e T e T TR YTV e e AT A A B et T TG

e Ik

e R;: reads ulvO)l = (v,0), ¢

:
ML

E* o CRI: writes crll = ¢

I Moreover, the reads between S,(;) and S; also write the value ¢ in cr.
Therefore, crll = ¢ for all § with m(¢) — 1 < 5 < 4. Note also that
¢(i) = ¢(n(s)) = k - 1.

It follows from Z1 that y(s) > 2k—2. If ¢(¢) = 2k —2, then Proposition 7
implies that R; --+ U [2k-1] " However, that proposition also implies that
Ul2k-1 __, Ry(). Since U [2k-2] __, pl2k-1] gpq R.(;; — Ri, we see that
Ulze-2l —, R, - -4 Ul2k-1l, This implies V-1 -2, g, -2, vel¥ Since
é(s) = k — 1, property 2 follows from Proposition 7.

I have shown that ¢(f) > 2k — 2 and property 2 holds if ¥(s) = 2k — 2.
To finish the proof, I now show that ¢(i) = 2k — 2 by assuming ¢(s) > s
2k — 2 and obtaining a contradiction. Since ul2¥=1l equals (v,), c and UlZ¥] "."'"4
equals (i, pt), neither of which equals ul*()] (because p # v), we must have S
¥(i) > 2k. Let crl'*] denote the read of cr in the write of v* of which U¥()]
is a part. Since U W) sets cw to ¢, the read crl'") must obtain the value :
=c¢. The writer must therefore perform the following sequence of operation ::.{;_-
executions, where each —’s the next. (There may be other, intervening o
operation executions.)

. . o ULK: writes ul2kl = (p, p), ¢

- o crll: reads the value —¢
i o UG writes ulvO)] = (v,v),¢
-
By Proposition 7 (and the definition of ¢), Ry(;) --+ U [24], We therefore ;:-.:j;
have ._::-_:
: CcRI*(-11 _, Regi) -~ Ulzkl —, oplirl e
.< so CRI*&=1 — ¢oli+], By part (b) of Proposition 6, this implies 7(5) ~ 1 < _ -]
- L . . . : =1
| Proposition 7 implies U WOl -4 R;, so B
erltt) — W@l oL, g, — CRIY) %
.. This implies crlh"l — CRU), so part (a) of Proposition 6 implies r < 5. We RS
!f therefore have 1[)(:') —1 <1 < r <4, so regularity of cr implies that crlt7] R J
g obtains a value erl/] with ¥(s) =1 € 5 < i. However, I already observed that -
- all such values equal ¢, and crl*’] obtains the value =c. This is the required
- contradiction, completing the proof.
2 34 -7
: 3
» ":.:.'::
N e]
- o)
, i
: —1
B e e e S I B T T e e e T e S T e

F'-"".'.'.'~'_.‘-'.'.'..‘.-.- et T T T T TN A T T T e TR T Ve LR TSNS e i Lo e L vt =S iy S N ST S R SR I

b

L
8 .
= . =
4
E‘:
N R
b .
X 0
- o
o,

% ‘0

P
PR
‘e

(e
9

E;l'; 5 Conclusion o
. I bave defined three classes of shared registers for asynchronous interprocess -:j:{:
communication and provided algorithms for implementing one class in terms -
of a weaker class. For single-writer registers, the only unsolved problem is -
implementing a multireader atomic register. A solution probably exists, v
but it undoubtedly requires that a reader communicate with all other read- s
ers as well as with the writer. Also, more efficient implementations than :'_ji-:j
Constructions 4 and 5 probably exist. For multivalued registers, Peterson’s o
algorithm {11] combined with Construction 5 provides a more efficient im- o
plementation of a regular register than Construction 4, and a more efficient o
implementation of a single-reader atomic register than Construction 5. How-
ever, in this solution, Construction 4 is still needed to implement the regular T R
register used in Construction 5. 1
I have not addressed the question of multiwriter shared registers. It is ’]
not clear what assumptions one should make about the effect of overlapping = 1‘
writes. The one case that is straightforward is that of an atomic multiwriter R
register—the kind of register traditionally assumed in shared-variable con- DO
current programs. This raises the problem of implementing a multiwriter i
atomic register from single-writer ones. An unpublished algorithm of Bard —
Bloom implements a two-writer atomic register using single-writer atomic =
registers. e
In addition to studying shared registers, I have also developed a formal- . '.::
ism for reasoning about concurrent systems that is not based upon atomic]
actions. Starting from a more general, relativistic viewpoint, I showed that e
one can, with no essential loss of generality, think in terms of starting and - 4
finishing times of operations. While starting and finishing times are intu- O
itively more appealing, and can be useful in proving metatheorems about L
general systems, rigorous reasoning about specific algorithms is best done in —
the general formalism, using Axioms A1-A5. These axioms seem to contain -:;'.-:-‘
the fundamental properties of temporal relations among operation execu- —

tions that are needed to analyze concurrent algorithms.

References

[1] A. Mazurkiewicz. Semantics of Concurrent Systems: A Modular Fized _
Point Trace Approach. Technical Report 84-19, Institute of Applied 1
Mathematics and Computer Science, University of Leiden, 1984. :

35 T

-
P T T S e S PSR . .) .

N VLTV R S I T IR TR TR Sl TP I A o, L L T L i T U T S ST Y .. !
LI I e T T e I T S I e e Ce Tl e % e LT %t e e YT B AL L T Y T T YA L B N S

ER A AR S T PSR S A A I S, I Sy NI MRSl P B N St Sl St AT TS Tl S A AU W I SN SR S AP AR S

[2] W. Brauer, editor.
Berlin, 1980.

Net Theory and Applications. Springer-Verlag,

[3] P. J. Courtois, F. Heymans, and David L. Parnas. Concurrent con-
trol with “readers” and “writers”. Communications of the ACM,
14(10):190-199, October 1971.

[4] Leslie Lamport. Concurrent reading and writing. Communzcations of
the ACM, 20(11):806-811, November 1977.

[5] Leslie Lamport. The mutual exclusion problem. To appear in JACM.

[6] Leslie Lamport. A new approach to proving the correctness of multi-
process programs. ACM Transactions on Programming Languages and
Systems, 1(1):84-97, July 1979.

[7] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, July 1978.

[8] Leslie Lamport. What it means for a concurrent program to satisfy a
specification: why no one has specified priority. In Proceedings of the
Twelfth ACM Symposium on Principles of Programming Languages,
ACM SIGACT-SIGPLAN, New Orleans, January 1985.

[9] Peter E. Lauer, Michael W. Shields, and Eike Best. Formal Theory
of the Basic COSY Notation. Technical Report TR143, Computing

Laboratory, University of Newcastle upon Tyne, 1979.

[10] R. Milner. A Calculus of Communicating Systems. Springer-Verlag,

Berlin, 1980.

Gary L. Peterson. Concurrent reading while writing. ACM Trans-
actions on Programming Languages and Systems, 5(1):46-55, January
1983.

[11]

[12] A. Pnueli. The temporal logic of programs. In Proc. of the 18th Sympo-

stum on the Foundatsons of Computer Science, ACM, November 1977.

(13] Glynn Winskel. Events in Computation. PhD thesis, Edinburgh Uni-
versity, 1980.

36

——l SN el

KRR
(R T A
I
1,‘.‘..“‘.‘.,.'.'.

3

) N
A T o O W

[
D
e
a,
-
DS
-—

h
]

......

R NUAaC A Jhen v Aae boen Mren e Svem mven ben - T — T ———————

..........

Appendix

Proof of Proposition 1

It follows from (1) that, for any operation execution A in §, the relations
— and - - - are not changed by either of the following two changes to the
global-time model, where § > 0:

1. Changing s4 to sy~ 6 if, forall B€ §: fg < s4 implies fg < 54 ~ 6.
2. Changing fato f4+é if, forall B€ §: f4 < sp implies f4 +6 < s4.

Let T denote the set of numbers s4 and f4 for all Ain §, and for any real
t,let S(t)={reT:r<t}and F(t) = {r € T : r > t}). M2 implies that
for any t, max S(t) < t and t < min F(t).

For any A, if 54 equals sg or fg for some B # A, 1 can change s4 to
s4 — 6, where 0 < § < ¢ is chosen so that s4 — § > max S(s4). Similarly,
if fa equals sp or fp for some B # A, I can change f4 to f4 + 6, where
0<é<eand f4 +6 < min F(sy).

The details of the formal proof, which involves an inductive definition of
s' and f’ based upon the countability of §, is left to the reader.

Proof of Propositions 2 and 3

The “only if” part of Proposition 2 follows immediately from (1). To prove
Proposition 3 and the “if” part of Proposition 2, I prove that, for every
system execution §,— - -, there exists a global-time model s, f such that
for every A,B€ §:

e A — Bimplies f4 < sp
e A---+ Bimplies 54 < fB

The relations — and - !+ defined by this global-time model satisfy the
requirements of Proposition 3. Moreover, if §,——,- - - satisfies A#, then
- 2+ must equal - - -, since if A# holds then A - /~ B implies B — A,

which implies B — 4, 50 A- /-o B, and A -/~ B implies B - -+ A, which

implies B---+ A, s0 A -/-+ B.
The following proposition is used in this proof and in a later one.

37

...
....................................

IR

"

PN

1 ’ S .
r) .' l. . 3

I
RN [LERCIE A
PR TS

S

-
enuareyl
= 4

e .
Coe ., .
St e el
LA A
- T e . [B e l‘ " , "
PO PPN U STV SR S AW

!
L4

MR I AEC AU i s I Dt S B AT et i R it Bt i e e S e e A S A A A M St g aedl ol el st o A ogid - oo

Proposition 10 Let T be the set consisting of all elements of the form sa
and fa for A € S (the elements of T are uninterpreted symbols, not nec-
essarily real numbers), and let < be the smallest transitively closed relation
such that

L]]fA—’Bthean-<83.
e IfA--+Bor A= B thens, < fp.

Then < s an srreflezive partial ordering.

Proof: Define the relations 2., 2, and 4, on T as follows:
e For all A: s4 = fa.
e fi — sp if and only if A — B.
o 5o % fgifand onlyif A--~ B.

Let — be the union of the three relations —, —, and —d», so < is the
transitive closure of —. It suffices to prove that — is an acyclic relation.

The proof is by contradiction. Choose a shortest cycle formed by the —
relation. A cycle composed entirely of —— and -2+ relations would violate
Al, so the cycle must contain a portion of the form:

fa—2sp % fosp

since —— is the only relation from an f to an s and there are no s to s or f
to f relations. I can apply A4 to deduce that f4 L. sp, which contradicts
our assumption that the cycle had minimal length, proving Proposition 10. |

a Returning to the proof of Propositions 2 and 3, we see that < is an T
g irreflexive acyclic relation. Moreover, A5 implies that, for any t € T, t < s

g for all but a finite number of elements s. This, together with the countability
% of T, implies that -t can be completed to a total ordering < such that -
there is an order-preserving isomorphism of T with a subset of the natural T
numbers. Identifying the elements of T with the corresponding natural
& numbers provides the desired global-time model.

Proof of Proposition 4 - :

Let T be the set of all numbers s4 and f4 for A € §, and let < be the partial =N
ordering on T defined as in Proposition 10 for the precedence relations -

38

St et PRI N R T N I P SR PRI . " \ B DL R AT VY Y
'.J._-_--~-11‘-An---11'1n.--.-_..‘._----‘.:4."J'-“i‘-_.‘ PP Py RPN - G P

A A A R AT ™ It AP AE S e it et O st S -ms & a2 Pl St o s — v DI Jaue an e Sngy s oo T T
NN L S) T T I P - . S . . I Dl Pl it Pl H

and - -, namely, the smallest partial order such that 4 ~— B implies '_-'.:'.‘-,‘
fa < sp, and A -isBorA=28 implies s4 < fg. Observe that the _'.:-:f'
following hold for all A and Bin §: C
(a) Either s4 < fgor fp < 3,4 (by A#).
(b) fa < sg implies f4 < sp (by H3).
To prove the proposition, it suffices to construct s’. f’ such that® s < &' <
J' < f and for all A and B: f4 < sg implies f), < sy and s4 < fp implies
sty < fp .
Let s', f' be any global model satisfying 3
Ji < s implies f4 < 35 (5)
The pair of operation executions A, B is said to be out of order for &', f' S
if fo < sp and s < f),. It follows from (a) and (b) that, if there are no -
out-of-order pairs, then &', f’ satisfies the conditions of the proposition. ‘ N
I will construct ¢, f' inductively by constructing a sequence of nonde- I
generate models &', f* with s* < &**1 < fi+! < 7 having s0, f° equal to s, f N
and s', f' equal to their limit. This is done by first choosing the enumera- -
tion of all out-of-order pairs of s, f such that, for any subset of them, the —
minimal element is the one A, B having the smallest value of f4 and, among -

all such pairs A, B', the one having the largest value of sg. It follows from
M2 that such a minimal element exists for any nonempty set, so this defines
an enumeration of the out-of-order pairs of s, f.

If A, B is the §*® out-of-order pair, then s*, f* will be defined to be the
same as s'~1, fi~1 except that ag“ < fi < s < fi. This implies that

the set of out-of-order pairs for s*, f* equals the set of out-of-order pairs for T
s=1, £~! minus the pair A, B. Moreover, it follows from A5 and (b) that o
any operation execution belongs to only a finite number of out-of-order pairs S
of s, f, so the limit &', f' of the models s*, f* exists, satisfies (5), and has no s
out-of-order pairs, proving the proposition. =
For notational convenience, the construction of s*, f* from s*~!, f*=1is -~
given for the case { = 0. So, I assume that s, f satisfies (b}, which is the R
same as (5), and has a minimal out-of-order pair A, B. I construct s!, f? o
by decreasing f4 a.tfd increasing sp to get fi < s.}?, without creating any R
new out-of-order pairs. (The construction for any ¢ is the same except with R
more superscripts.) -
I employ the usual notation that, for functions f and g with the same domain, f < g if -
and only if f(z) £ g(z) for all z in their domain. R
39 -

-

e

B g e g e e e S R e

s R IR R——————— ORI i s it B, s) hiC
" " At i i Lt s -'.~',-‘;~‘,t',-‘,-‘"_-x".-'.~.':‘-..f."-v S R R T T T vy

Let X be the operation execution with the largest value of sx such that
sx =< fa; if there is no such X, let sx = —oco. It follows from (b) and the
nondegeneracy of s, f that sy < f4. Observe that there is no C with s¢
in the interval (max(sx,sp), f4], since, by choice of sx, this would imply
fa < sx, which would contradict the maximality of sg. Therefore, if 1
define f} to be max(sx, sp)?, then s, f! satisfies (5) and has the same set
of out-of-order pairs as s, f, where t* denotes a value larger than ¢ such that
there is no value sc or fc in the interval (t,tt].

If sp > sx, so fi = s}, then I can define s} to be (f)* and it is clear
that s!, f! also satisfies (5) and has the same set of out-of-order points as
s, f! except that A, B is not out of order for s!, f!, so we are done.

Therefore, I need only consider the case s < sx. (Since sx < f4, we
must have sp # sx.) I claim that there is no fc in the interval {sp,sx]. If
there were, then (a) and (b) imply that fc < sx and sp < fc, which, since
sx < fa, would imply sg < f4, contrary to the assumption that A, B is
out of order for s, f. Therefore, defining s° to be the same as s except with
sp = s%, we see that 5%, f! satisfies (5) and has the same set of out-of-order
pairs as s, f!. Replacing s by s'® and starting our argument again, we are
in the case s < s3 that was considered above. This completes the proof.

Proof of Proposition 5

If — and - -+ are any relations in a set §, let the completion of — and
- -+ be the relations — and -2+, where — is the smallest transitively
closed extension of — such that A — B--+C - D implies A —— D,
and -2 - is the union of - - » and ——. Thus, A . Bif and only if there
exists a chain

A=A = ---= A,=B

where == denotes either — or — C - -+ D — for some C and D.

Proposition 11 If — satisfies A5; —,-2+ s the completion of —
,--=; and — {3 acyclic; then S,~-liisa system ezecution.

Proof: 1 must show that §,—— - satisfies A1-A5. The only nonob-
vious part is, in the proof of A2, showing that, if A — B, then B -{- A.
However, as observed above, this follows from Al and A4. B

To prove Proposition §, let —~ be the union of the relations —— and
—L, and let - 2+ be the union of - ¥+ and the restriction of = to T. Note

40

-

v

PR
..
.-

PR N
P AT
Los, 2,

2

Y
L‘l"_l"‘

r
t

]

WA
.'. " ."I "'
L T T Sy’ SR

!

RS SN S SPUIL S S
LR A S R

R Y . - -
LT Tt M. C .'-_.\‘- iy

that the restriction of — to ¥ equals X (by H3). I define ”—TO,-N-T~ to be
the completion of —=,- 24,

I claim that, to prove Proposition 5, it suffices to show that LLAH acyclic
and the restrictions of 2> and - to X equal 2, and-¥a. Proposition 11
then implies that ¥ U T,”—To,J-T-o is a system execution, which is easily seen
to be implemented by § U T,—,- - +. (The definition of 22, and *+ im-
plies that their restrictions to T are extensions of — and - 2 +.)

Moreover, I claim that it suffices to prove that the restriction of o X
equals .. 1t follows immediately from the definition of -+ and A2 that,
if the restriction of 2L equals -x—., then the restriction of *~'~ to ¥ must
equal - ¥ .. Furihermore, the definition of the completion and the acyclicity
of — imply that, any cycle of X7, relations must include an element of A,
so A 2L A must hold for some A € ¥. I the restriction of X to H equals
2., then the acyclicity of 2% follows from the acyclicity of X, Thus, it
suffices to prove that, if A LAR B,then A X B

By definition of "—To, if A XL B then there exists a chain A = Ay =
... => A, = B, where => denotes either - or ~— C -2+ D 2.
Note that, f A; and A;4, are both in X, then A; = A;4, implies that
Ag X, Aiy1, and, if they are both in T, then A; = A4, implies that
A Ai41. Therefore, it suffices to show that any such chain that is of

minimal length has length one.
If three consecutive elements A;, A;4;, and A;42 in this chain are either

all in ¥ or all in T, by the transitivity of ~, and -~ it follows that
A; => Aiy2. Therefore, in a minimal-length chain, A; must be in ¥ if s is
odd andin T if ¢ is even. If n > O, then we have A; = A; = Aj;, with
A; and As in ¥ and A; in T. A =% relation between an element of ¥ and
an element of T must be a — relation. Considering the two possible cases
for each == relation, using Al and A4 for the relations — and -2+, it
follows from A, => A; => Ajs that A; — A; -2+ As, so A; => A;. This
contradicts the assumption of the minimality of n, proving that n = 1 and

A2 B, which completes the proof of the proposition.

Proof of Propositions 6 and 7

Parts (a) and (b) of Proposition 6 are an immediate consequence of Defini-
tion 4. To prove part (c), observe that this definition implies V1] - - + yl&l,

41

The result is immediate if § = 0. If § > 0, then V=1l — VU], Combining .:f::'_
these two relations with the hypothesis, we have N
V=1 —, ylil o _, glidl —, ") =
Axiom A4 implies that vi-l —, v["""'l, which, by A2, implies ol"d') -f- »’:-'..-'_‘
VIi-11, This finishes the proof of Proposition 6. j-'_l‘_::
To prove part (a) of Proposition 7, observe that it follows immediately T
from Definition 4 that VI8 - -4 R implies k < 3. Conversely, | assume k < j _';'-jf
and show this implies vi--J R. Since VIl --4 R, the desired conclusion R
is immediate if £ = 5. If ¥ < 3, then vik — VU, and it follows from A3. e
For part (b), Definition 7 implies that, if s < k', then R --+ VI¥],
Letting k' = k + 1, this shows that, if s < k, then R - - + VI¥+1], Conversely, L
suppose R--~+VI¥*1] then k +1#4. If k+ 1 < ¢, then VIt+1] — VI 5o e
A3 would imply R--- vl contrary to Definition 4. Hence, we must have Fe
t < k+ 1301 <k, completing the proof of Proposition 7. LN
Proof of Propositions 8 and 9 :‘_:I-_j:
Apply Proposition 3 to extend the given — and - - - relations so they satisfy :j'.:-:‘
A#. It follows from B1 that this extension does not add any new precedence oot
relations between reads and writes. A read sees v["j], as defined by these new “:'
relations, if and only if it sees vl"/! in the original system execution. Hence, N
the new system execution, which satisfies A#, satisfies the hypotheses of the NN
appropriate proposition. Applying Proposition 2, I can therefore assume a :'::}.'
nondegenerate global-time model for the system execution. N
For the proof of Proposition 9, let ¢ be the assumed function. For the o
proof of Propositicn 8, ¢ is defined as follows. If R is a read that sees vl¥], S
for a safe register define ¢(R) to equal 5, and for a regular register define it :;:'.f.
to be a value satisfying conditions 1 and 2 in the hypothesis of Proposition 9. g
(B4 implies that such a definition is possible.) b
I first show that §,—,- -+ (which I am assuming to have a nondegen-

erate global-time model) trivially implements a system execution in which
reads are instantaneous, which is all that is required to prove Proposition 8. o
Given the nondegenerate global-time model s, f for §,—,- - -, it suffices to RN
find a global-time model &', f’ with s < s' < f' < f in which all reads are N
instantaneous, such that B1-B4 hold for the system execution defined by

Uy] AP
s f.
For notational convenience, let s; and f; denote s,y and f, (), respec- T
tively. Let &', f' be the same as s, f except that, for a read R, define s/ to N
42 "
===
W
R
=
A R A e e e e S e e

equal the maximum of the following three quantities:

" .'. -l. »

T

o (s4r))* :
o max{sp : ¢(R') < ¢(R) and spr < fp}* . L

and define fg to equal (s'z)*. When the appropriate careful definition of t*
is given, this results in a nondegenerate global-time model in which every
read is instantaneous. I must check that, for any read R: sg < sj < fi < '“]
fr, B1-B3 remain satisfied, and B4 remains satisfies when v is regular. oy

It is immediate by the definition of s} that sp < s. Since fi = (sk)*,
to establish the remaining inequalities I need to show that fi < fr. If R :';';*'
sees vl then, by Definition 4, s; < fr (the strict inequality comes from
nondegeneracy), and, since ¢(R) < j, 84(r) < fr. The required inequality
now follows easily from the definition of s).

I must now show that B1-B3 and, if v is regular, B4 hold for the new
precedence relations. B1 and B2 are trivial. For B3 and B4, consider what
a read sees in the new system execution if it sees vl*/] in the original one.
There are three cases:

1. If f4(r) < sr then

(a) if sp < 84(r)41 then R sees vl¢(R)14(R)]
(b) if s4(r)+1 < SR then R sees vl#(R)-4(R)+1)

2. If Sp < f¢(n) then R sees v[é(R)-lvé(R)].

Moreover, it is immediate from Definition 4 that case 1(b) is impossible s
if ¢(R) = 5, which is the case when v is assumed to be only safe. This S
definition also implies that f; < sg if and only if + = 5. Thus, when v is
only safe, R sees vl"l in the new system execution if and only if it does :f’,
a in the old, proving B3. For the case when v is regular, B3 and B4 follow
immediately from the fact that R returns the value vl#(®)l, This finishes the
proof of Proposition 8.
g To complete the proof of Proposition 9, I first show that, if 6(R) < ¢(S)
- for reads R and S, then fi < s%. The third hypothesis about ¢ implies that,
if ¢(R) < ¢(S), then sg < fs. By the definition of s&, this implies that s
o is greater than each of the three quantities of which s/ is the maximum, so .
}"’i < a'fg Since reads are instantaneous with respect to ', f', this implies :‘.-::j:
L r < 8g- o]

43 i

N A A OO B A A e Soe i SN O S P o T A

L 4
P

AR

]

I must construct a new global-time model s”, f, in which writes are]

also instantaneous and B1-B3 are still satisfied, so that s", f* is the same o

as &', f except for writes, and for any write VI¥: s}, < sl < fI < f1. (Note S

that B5 follows from the fact that reads and writes are instantaneous, and L.

B4 follows from B3 and B5.) s

Let s} be the maximum of the two quantities s} and max{f; : ¢(R) =)

k—1}*, and let f! be (s!)*. Since v!*(®)] is one of the values “seen” by e

R in the system execution defined by ¢, f', if §(R) = k — 1 then s% < f}, ::'.--'.j

which implies that s} < fi. We therefore have s’ < s" < f" < f’, and reads f"“

and writes are both instantaneous in s", f”. Again, Bl and B2 are trivial, oo

so I need only prove B3. e

Since reads and writes are instantaneous, B5 holds—a read R sees vl*]; S

I must show that ¢ = ¢(R). The definition of s”" implies that fp = f < _ .f-.::

84(R)41+ | must therefore show that s p) < si. In the global-time model -y

s', f', the read R “sees the value” vl$(R)l 5o s4(r) < g By definition of 5", G

we can have s¢) > s only if there exists some R' with ¢(R') < ¢(R) and g::::?

Jr > sk. However, I showed above that R' < R implies fg, < sp, which
completes the proof.

. o
’.'l'l

44 —

.............

Fardii - dlek ¥ gl e P

DTIC

I
’

e

pareny,

