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Abstract

Iriterprocess communication is studied without assuming any lower-level
communication primitives. Three classes of communication registers ame
considered, and several constructions are given for implementing one class
of register with a weaker class. A formalism is developed for reasoning about
concurrent systems that does not assume an atomic grain of action.
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1 Introduction
All communication ultimately involves a communication medium whose

state is changed by the sender and observed by the receiver. A sending
processor changes the voltage on a wire and a receiving processor observes
the voltage change; a speaker changes the vibrational state of the air and a
listener senses this change.

Communication acts can be divided into two classes: transient and per-
sstent. In a transient communication, the medium's state is changed only

for the duration of the communication, immediately afterwards reverting to
its "normal" state. A message sent on an ethernet modifies the transmission
medium's state only while the message is in transit; the altered state of the
air lasts only while the speaker is talking. In a persistent communication,
the state change remains after the sender has finished its communication.
Setting a voltage level on a wire, writing on a blackboard, and raising a flag

-* on a flagpole are all examples of persistent communication.
Transient communication is possible only if the receiver is observing the

communication medium while the sender is modifying it. This implies an a
priori synchronization-the receiver must be waiting for the communication
to take place. Communication between truly asynchronous processes must
be persistent, the sender changing the state of the medium and the receiver
able to sense that change at a later time.

Message passing is often considered to be a form of transient communi-
cation between asynchronous processes. However, a closer examination of
asynchronous message passing reveals that it involves a persistent commu-
nication. Messages are placed in a buffer that is periodically tested by the
receiver. Viewed at a low level, message passing is typically accomplished
by putting a message in a buffer and setting an interrupt bit that is tested
on every machine instruction. The receiving process actually consists of
two asynchronous subprocesses: a main process that is usually thought of
as the receiver, and an input process that continuously monitors the com-
munication medium and puts messages in the buffer. The input process
is synchronized with the sender (it is a "slave' process) and communicates
asynchronously with the main process using the buffer as a medium for
persistent communication. -

The subject of this paper is asynchronous interprocess communication, so
only persistent communication is considered. Moreover, I will restrict myself
to unidirectional communication, in which only a single process can modify
the state of the medium. With this restriction, two-way communication
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requires at least two separate communication media, one modified by each
process. However, multiple receivers will be considered. I also restrict my
attention to discrete systems, in which the medium has a finite number
of distinguishable states. The sender can therefore set the medium to one
of a fixed number of persistent states, and the receiver(s) can observe the

~medium's state.
_"7The form of persistent communication that I have described is more
commonly known as a shared register, where the sender and receiver are
called the wvriter and reader, respectively, and the state of the communication

* medium is known as the value of the register. I will use these in the rest of
this paper, so I will consider finite-valued registers with a single writer and
one or more readers.

While the practicat applications of the algorithms described in this pa-
per will be to "small" registem', the larger purpose is to develop insight into,
and formal methods for reasoning about, nonatomic operations to data ob-
jects. In the realm of conventional database theory, atomicity is usually
called "serializability". Moreover, although the notation used in describing
the algorithms suggests a shared-memory implementation, these are really
distributed algorithms, since each shared register is modified by only a single
process. Thus, the results described here can be regarded as a preliminary
investigation of nonserializable operations in a distributed database.

In assuming a single writer, I rule out the possibility of concurrent writes
(to the same register). Since a reader only senses the value, there is no reason
why a read operation must interfere with another read or write operation.
(While reads do interfere with other operations in some forms of memory,
such as magnetic core, this interference is an idiosyncrasy of the particular
technology rather than an inherent property of reading.) I therefore assume
that a read does not affect any other read or any write. However, it is not
clear what effect a concurrent write should have on a read.

In concurrent programming, one traditionally assumes that a writer has
exclusive access to shared data, makcing concurrent reading and writing im-
possible. This assumption is enforced either by requiring the programming
language to provide the necessary exclusive access, or by implementing the
exclusion with a "readers-writers' protocol [31. Such an approach requires
that a reader must wait while a writer is accessing the register, and vice- a
versa. Moreover, any method for achieving such exclusive access, whether
implemented by the programmer or the compiler, requires a lower-level
shared register. At some level, the problem of concurrent access to a shared
register must be faced. It is this problem that will be addressed, so I eschew
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any approach that requires one process to wait for another.
Asynchronous concurrent access to shared registers is usually considered

only at the hardware level, so it is at this level that the methods developed

here could have some direct application. However, concurrent access to
shared data occurs at high levels of abstraction. One cannot allow any
single process exclusive access to the entire social security system's database.
While algorithms for implementing a single register cannot be applied to
such a database, I hope that the formalism developed for analyzing these
algorithms will eventually prove useful for analyzing concurrent systems at
ahigher level. Nevertheless, it is probably best to think of a register as a

low-level component, probably implemented in hardware, when reading this
paper.

Hardware implementations of asynchronous communication often make
assumptions about the relative speeds of the communicating processes. Such
assumptions can lead to simplifications. For example, the problem of con-
structing an atomic register, discussed below, is shown to be easily solved
by assuming that two successive reads of a register cannot be concurrent
with a single write. If one knows how long a write can take, a delay can be
added between successive reads to ensure that this assumption holds. The
results, therefore, apply even to communication between processes of vastly
differing speeds.

I therefore make no assumptions about relative process speed and con-
sider a shared register in which a read can overlap (be concurrent with)
a write. Three possible assumptions about what can happen when a read
overlaps one or more writes are considered.

The weakest possibility is a safe register, in which the only assumption
* made about the value obtained by a read that overlaps a write is that the

read obtain one of the possible values of the register-for example, a read
of a boolean-valued register must obtain either true or false. A read that is
not concurrent with a write is assumed to obtain the correct value-that is,
the most recently written one. However, a read that overlaps a write may
return any possible value.

The next stronger possibility is a regular register, which is safe (a read
not concurrent with a write gets the correct value) and in which a read that
overlaps a write obtains either the old or new value. More generally, a read
that overlaps any series of writes obtains either the value before the first of
the writes or one of the values being written.

The final possibility is an atomic register, which is safe and in which
reads and writes behave as if they occurred in some definite order. In other

3

.p-A



words, for any execution of the system, there is some way of totally ordering .,'
the reads and writes so that the values returned by the reads are the same I..

as if the operations had been performed in that order, with no overlapping.
(It is also required that this ordering should be a reasonable one; the precise
condition is stated below.)

A regular register is obviously stronger than a safe one, since it places a
condition on the value returned by a read that overlaps a write. An atomic
register is stronger than a regular one because, if two successive reads overlap
the same write, then a regular register allows the first read to obtain the
new value and the second read the old value. This is forbidden in an atomic
register, in which the only allowed possibilities are old-old, new-new, and
old-new. In fact, it will be shown that a regular register is atomic if and
only if two successive reads that overlap the same write cannot obtain the
new then the old value. Thus, a regular register is automatically an atomic
one if two successive reads cannot overlap the same write.

These are the only three general classes of register that I have been able
to think of. Each class merits study. Safety seems to be the weakest require-

ment that allows useful communication; I do not know how to achieve any
form of interprocess synchronization with a weaker assumption. Regularity
asserts that a read returns a "reasonable' value, and seems to be a natural
requirement. Atomicity is the most common assumption made about shared
registers, and is provided by current multiport computer memories.' At a
lower level, such as interprocess communication within a single chip, only
safe registers are provided; other classes of register must be implemented a.

using safe ones.
Any method of implementing a single-writer register can be classified by

three "coordinates" with the following values:

I safe, regular, or atomic, according to the strongest assumption that
the register satisfies.

e boolean or multivalued, according to whether the method produces
only boolean registers or registers with any desired number of values.

* ingle-reader or multireader, according to whether the method yields
registers with only one reader or with any desired number of readers.

'However, the standard implementation of a multiport memory does not meet my re-
quirements for an asynchronous register because, if two processes concurrently access a
memory cell, one must wait for the other.
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This produces twelve classes of implementations, partially ordered by

I-

-strength"-for example, a method that produces atomic, multivalued, mul-
tireader registers is stronger than one producing regular, multivalued, single-
reader registers. In this paper, I address the problem of implementing a
register of one class using one or more registers of a weaker class.

The weakest class of register, and therefore the easiest to implement, is
a safe, boolean, single-reader one. This seems to be the most natural kind of
register to implement with current hardware technology, requiring only that
the writer set a voltage level either high or low and that the reader test this
level without disturbing it. A series of constructions of stronger registers
from weaker ones is presented that allows almost every class of register
to be constructed starting from this weakest class. The one exception is
that constructing an atomic, multireader register from any weaker one is
still an open problem. Most of the constructions are simple; the difficult
ones are Construction 4 that implements an m-reader multivalued regular
register using m-reader boolean regular registers, and Construction 5 that
implements a single-reader multivalued atomic register using single-reader
multivalued regular registers.

2 The Constructions

In this section, the algorithms for constructing different classes of registers
are described and informally justified. Rigorous correctness proofs are post-
poned until Section 4, after the necessary formalism is developed.

The algorithms are described by indicating how a write and a read are
performed. I will not bother to indicate the initial state of the shared
registers-it is the one that would result from writing the initial value start-
ing from any arbitrary state.

The first construction implements a multireader safe or regular register
from single-reader ones. It uses the obvious method of having the writer
simply maintain a separate copy of the register for each reader. The for
all statement denotes that its body is executed once for each of the indi-
cated values of i; these separate executions can be done in any order or
concurrently.

Construction I Let vi, .. , vt be single-reader, n-valued registers, where
each vi can be written by the same writer and read by process i, and construct
a single n-valued register v in which the operation v : is performed as
follows:
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for all: iIn {,..,m)
do v p od

and process reads v by reading the value of vi. If the vi are safe or regular
registers, then v is a safe or regular register, respectively.

Any read by process i that does not overlap a write of v does not overlap
a write of vi. If vi is safe, then this read gets the correct value, which shows
that v is safe. If a read of vi by process i overlaps a write of vi, then it
overlaps the write of the same value to v. It follows easily from this that, if
vi is regular, then v is also regular.

This construction does not make v an atomic register even if the vi are
atomic. If reads by two different processes i and j both overlap the same
write, it is possible for i to get the new value and j the old value even though
the read by i precedes the read by j-a possibility not allowed by an atomic
register.

The next construction is also trivial; it implements an n-bit safe register
from n single-bit ones.

Construction 2 Let vi, ... , vn be boolean m-reader registers, each written
by the same writer and read by the same set of readers. Let v be the 2"-
valued, m-reader register in which the number with binary representation
u ... Pn is written by

for all i In m).,m} do vi:pi od

and in which the value is read by reading all the vi. If each vi is safe, then
v is safe.

The register v is not regular even if the vi are. A read can return any
value if it overlaps a write that changes the register's value from 0 ... to 
1...1. --

The next construction shows that it is trivial to implement a boolean
regular register from a safe boolean register. In a safe register, a read that
overlaps a write may get any value, while in a regular register it must get
either the old or new value. However, a read of a safe boolean register
must obtain either true or false on any read, so it must return either the
old or new value if it overlaps a write that changes the value. A boolean ]
safe register can fail to be regular only if a read that overlaps a write that
does not change the value returns the other (wrong) value. To prevent this
possibility, one simply does not perform a write that does not change the
value.

6
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Construction 3 Let v be an m-reader boolean register, and let z be a vari-
able internal to the writer (not a shared register) initially equal to the initial
value of v. Define v" to be the m-reader boolean register in which the write
operation v* := p is performed as follows:

if x9 p then v:=#;
z : = p,

and a read of v" is performed by reading v. If v is safe then v" is regular.

There are two known algorithms for implementing a multivalued regular
register from boolean ones. The simpler one employs a unary encoding, in
which the value p is denoted by zeros in bits 0 through p - 1 and a one in
bit p. A reader reads the bits from left to right (0 to n) until it finds a one.
To write the value p, the writer first sc. v, to one and then sets bits p - 1
through I to zero, writing from right to left. (The idea of implementing
shared data by reading and writing its components in different directions
was also used in [4].)

Construction 4 Let vj, ... , v,. be boolean, r-reader registers, and let v be
the n-valued, m-reader register in which the operation v p is performed
by

v 1;
for i:=p-1 step -1 until 1 dovi:=Ood

and a read is performed by:
p : 1; -.o

while v =0 do p + I od;
return p

If each vi is regular, then v is regular.

The correctness of this algorithm is not at all obvious. Indeed, it is not
even obvious that the while loop in the read operation does not "fall off
the end" and try to read the nonexistent register v,+n. This can't happen
because, whenever the writer writes a zero, there is a one to the right of
it. (Since I am assuming that an initial value has been written, some vi
initially equals one.) As an exercise, the reader of this paper can convince
himself that, whenever a reading process sees a one, it was written by either .4
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a concurrent write or by the most recent preceding one, so v is regular. The
formal proof is given in Section 4.

The value of v. is only set to one, never to zero. It can, therefore, be
eliminated; the writer simply never writes it and the reader assumes its value
is one instead of reading it. I will not bother writing down this modification.

Even if all the vi are atomic, Construction 4 does not produce an atomic
register. To see this, suppose that the register initially has the value 3, so
V1 = V2 = 0 and vs = 1, the writer first writes the value 1 then the value 2,
and there are two successive read operations. This can produce the following
sequence of actions:

9 the first read finds v, = 0

* the first write sets vi := 1

* the second write sets v2 :- 1

• the first read finds v2  1 and returns the value 2

* the second read finds v, = 1 and returns the value 1.

In this scenario, the first read obtains a newer value (the one written by the
second write) than the second read (which obtains the one written by the
first write), even though it precedes the second read. This shows that the
register is not atomic.

Construction 4 uses n - 1 boolean regular registers to make an n-valued
one, so it is practical only for small values of n. We would like an algorithm
that requires O(logn) boolean registers to construct an n-valued register.
The second method for constructing a regular multivalued register uses an
algorithm of Peterson [11] that implements an m-reader n-valued atomic
register with m + 2 safe m-reader registers; 2m atomic boolean 2-reader
registers, and two atomic boolean m-reader registers. There is no known al-
gorithm for constructing multivalued m-reader atomic registers from simpler
ones. However, we can apply Peterson's algorithm to construct an n-valued
single-reader atomic register using three safe single-reader n-valued registers
and four single-reader atomic boolean registers. The safe registers can be
implemented with Construction 2, and the atomic boolean registers can be
implemented with Construction 5 below. Since an atomic register is regu-
lar, Construction 1 can then be used to make an m-reader n-valued regular
register from O(3m log n) single-reader boolean regular registers.
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Before giving the algorithm for constructing a two-reader atomic register,
I prove a result that indicates why no trivial algorithm will work. It asserts
that there can be no algorithm in which the writer only writes and the reader
only reads; any algorithm must involve two-way communication between the
reader and the writer.

Theorem: There exists no algorithm to implement an atomic register using
only a finite number of regular registers that can be written by the writer (of
the atomic register).

Proof: I assume such an algorithm and derive a contradiction. Without
loss of generality, I can assume that there is only a single regular register v
written by the writer and read by the reader. (Any algorithm that works
with multiple registers must also work when those registers are combined
into a single large regular register.)

Let v' denote the atomic register that is being implemented. Suppose
that the writer performs an infinite number of writes that change the value
of v*. There must be some pair of values assumed by v*, call them 0 and 1,
such that there are an infinite number of writes that change O's value from
o to 1. Since v can assume only a finite number of values (the hypothesis
states that the original algorithm has only a finite number of registers, and
all registers are taken to have only a finite number of possible values), there
must exist values vo,., v., of v such that vo is the final value of v after
each one of an infinite number of writes of 0 to v', v,, is the final value of v
after each one of an infinite number of writes of 1 to v*, and, for each i < n,
the value of v is changed from vi to vi~l during infinitely many writes that
change the value of v* from 0 to 1.

A read of v* may involve several reads of v. However, by considering only
scenarios in which each of those reads of v obtains the same value, we may
assume that each read of v* reads v only once. Since v assumes each value
vi infinitely often, it must be possible for a sequence of n + 1 consecutive
reads to obtain the values v, V.° , Vi ,

The read that finds v equal to vi and the subsequent read that finds v
equal to vi. 1 could both have overlapped the same write of v, which could
have been a write that occurred in the process of changing v's value from.
o to 1. Therefore, if the read of v that finds v equal to vi returns the value
1, then the subsequent read that finds v equal to vimi must also return the
value 1, since both reads could be overlapping the same write and, in that
case, two successive reads of an atomic register cannot return first the new
value, then the old.

9



The first read, which finds v equal to vn, must return the value 1, since
it could have occurred after the completion of a write of 1. By induction,
this implies that the last read, which found vi equal to vo, must return the
value 1. However, this read could have occurred after a write of 0 and before
any subsequent write, so returning the value 1 would violate the assumption
that the register v" is safe. (An atomic register is a fortiori safe.) This is
the required contradiction.•

This theorem could be expressed and proved using the formalism devel-
oped below, but doing so would lead to no new insight. The formal proof of
this theorem is therefore left as an exercise for the compulsive reader.

The theorem is false if no bound is placed on the number of values a
register can hold. Given a regular register v that can assume an unbounded
number of values, an atomic register v* is implemented as follows. The
writer sets v equal to a pair consisting of the value of v* and a sequential
version number. The reader reads v and compares the version number with
the previous one it read. If the new version number is higher, then it uses
the value it just read; if the new version number is lower, then it forgets
the value and version number it just read and uses the previously read
value. The correctness of this algorithm follows easily from Proposition 9 of
Section 3.3. By assuming registers hold only a bounded set of values, I am
disallowing such algorithms.

Finally, we come -o the algorithm for constructing a single-reader atomic
register from regular ones. To begin, we try to implement an atomic register
v with a regular register v that holds a pair of values, both normally equal.
When v is changed from (p., v.) (denoting v* v .) to (p, p) (denoting v' p)
it is first set to the intermediate value (m, p). The reader reads v and returns
the first component unless it obtains (v, p) after having returned the value p
the last time, in which case it must return the value p to avoid a "new-old"
sequence.

The preceding theorem shows that this idea, by itself, is not enough.
The reader is in a quandary if three successive reads of v obtain the values
(p,p), (avp), and (pav). The first read simply returns p; as I just observed,
the second read must also return p; but what can the third read return?
The second and third reads could both have overlapped a single write that is
changing the value from v to p, so returning v would produce a new-old se-
quence. On the other hand, the third read could have seen a completely new
value, written long after the write that overlapped the second read, so re-

10
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turning p could violate safety-the requirement that a read not overlapping
any write return the correct value.

To overcome this problem, I add another bit to v, which I will call the
color value. When the reader reads v, it sets a shared one-bit register cr
to v's color value. The writer first reads the register Cr and sets v to the
opposite color. (Thus, the reader tries to make cr and v's color the same,
and the writer tries to make them different.) The reader interprets (v, p) as
a p only if its previous read saw a p of the same color. The only source of
embarrassment is now if three successive reads return values (p, t), (iv, p),
and (iv , v) that are all the same color. It will be shown in Section 4 that this
can happen only if the last read actually overlaps the write of (v, p), so it is
allowed to return the value p without violating the safety requirement.

In the following construction, the variable cr is written by the reader
and read by both the reader and the writer. A two-reader register is not
needed, since the reader can maintain a local variable containing the value
that it last wrote into cr. (This is just Construction 1 with m = 2 and the
writer being the second reader.) Such a local variable would complicate the
description, so it is omitted. In the reader's program, the primed variables
denote the values read the previous time, except that, if the reader reads
(p, p) then (v, p), both with the same color, then it "forgets about" the

latter value.

Construction 5 Let V be an n-element set; let w and r be processes; let
v, cw denote a single 2n 2 -valued register that can be written by w and read
by r, where v has a value in V x "V and cw is boolean valued; and let cr be a
boolean register that can be written by r and read by w. Define the n-valued
register v*, with values in V, written by w and read by r by letting the write
v :p be performed by:

v, cw (vi,1p, -cr;
v,cw: (pp),cw

and letting the read operation be performed by the program of Figure 1, where
x and z' are local variables with values in V x V, cr' is a boolean-valued local
variable, and rtn is a local variable with values in V whose final value is the
one returned by the read. Initially, z' , cr' equals (v, cw)ol.

11-
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x, cr v, Cu';
if cr c r1

then if x, x22
then If x, x', x24 A rtn x24

then skip
else x':=x

else If (x =z' A rn 2) V 2 X

then z':=x
rtn := X

else z' := z
rtn x

else x', cr' := , Cr;
tn x=

Figure 1: Construction 5: the reader's algorithm.

12
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3 The Formal Model

3.1 System Executions

Almost all models of concurrent processes are based upon indivisible atomic
actions as their primitive elements. For example, models in which a process
is represented by a sequence or "trace" [1,12,13] assume that each element
in the sequence represents an indivisible action. Net models [2) and re-
lated formalisms [9,10] assume that the firing of an individual transition is
atomic. Operations to a nonatomic shared register cannot be modeled as
atomic actions, since these formalisms have no concept of two atomic actions.
overlapping in time.

One can model a single read or write operation with two atomic actions:
a start and a finish action. I will employ such a model to motivate the
formalism. However, in the general view of physical systems based upon
special relativity that is discussed in two of my works [7,51, there may be
no single real event that precedes all other events in the operation, and no
single event that follows all others. I will show that assuming such fictitious
start and finish events would result in no loss of generality. However, it
turns out to be easier to reason directly in terms of the nonatomic actions
than to use starting and finishing events.

I therefore eschew more conventional formalisms in favor of one intro-
duced in [6] and refined in [51, in which the primitive elements are operation
executions that are not assumed to be atomic. In this formalism, an execu-
tion of a system is represented as a triple S,-,- - --, where S is a finite or
countably infinite set of operation executions, and - and - - -- are prece-
dence relations on S.

The most general way of viewing the formalism is to consider an opera-
tion execution to be a set of points in four-dimensional space-time. Such a
view is provided in [5]. While using the same formalism as [5], 1 will employ
a less general but more intuitive model. In this model, an operation exe-
cution A is thought of as an activity performed during some time interval
[SAJ AI, where the real numbers SA and IA are the starting and finishing
times of A. I assume that, at any time, only a finite number of operation
executions have begun. Stated formally, a model consists of a set S of op-
eration executions, together with real-valued functions a and f on S such
that the following conditions hold for all A and B in S (where I write SA

and IA instead of s(A) and f(A)):

MI- SAS <A

13



M2. for any real number t: (A *A <t) is finite

An operation execution A is said to be instantaneous if, for any B #6 A, the
numbers 8B. and f lie outside the interval [SA, fA]. Thus, A is instantaneous
if and only if we can set SA equal to fA (shrinking the interval to a point)
without changing the relative order of any starting and finishing times.

Given such a model, we can define the relations -~and - -~ as follows:

A-B fA<8B

A---4B SAA5fB()

Thus, A - B means that A finishes before B starts, and A - - -. B means
that A starts no later than B finishes. We read A - B as "A precedes B"
andA---Bas "A.canaffect B".

Ml, M2 and (1) imply that the following hold for all operation executions
A, B, C, and D in S:

Al. The relation - is an irreflexive partial ordering.

A2. IfA-BthenA---Band B-f-A.

A4.If A -B---C -D then A - D.

AS. For any A, the set of all B such that A B is finite.

Instead of basing the formalism on this model, I adopt the more general
view of [51 and take Al-A5 as axioms.

Definition 1 A system execution is a triple staneou such that S is a
finite or countably infinite set and t. and - - are relations on S that
satisfy A 1-A 5.

Observe that Al Iand A4 imply that ifA Band A -- B then B- A,
so the "and B - /4A" in A2 is superfluous.

Definition I differs from the definition of a system execution given in [5)
because I am considering only terminating operations. In the more general
formalism, Axiom AS needs the hypothesis that A terminates.

Definition 2 A global-time model of a system eecution cn--- con-
sists of a pairs, f of real-valued functions on S satisfying M, M and (1).
It is said to be nondegenerate if, for all A: SA < IA and for all B V6 A:
$A 98B and SA in A
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A nondegenerate global-time model is one in which no two starting or
stopping times are identical. The following result states that any global-
time model can be turned into a nondegenerate one by tiny perturbations of
the starting and finishing times of operation executions. Such perturbations
should be allowed, since no physically meaningful result could depend upon
completely accurate knowledge of these times. (It makes no physical sense
to specify the starting and finishing times of an operation execution down
to the fraction of a micropicosecond.)

Proposition 1 For any any global-time model s, f of a system execution S,
-----. and any i > 0, there exists a nondegenerate global-time model s', fJ
of ,-,--.4such that Is- sAI <c and Jf A - fAI < c for all A E S.

The proofs of this and all other propositions stated in this section are
given in the appendix.

In a global-time model, the starting and finishing times of operations
are totally ordered. Given two operation executions A and B, 8B must be
either greater than or not greater than fA, so the following condition holds.

A#. For any operation executions A and B with A 91 B: A - B or
B---.A.

This condition does not hold for all system executions. (Trivial counterex-
amples are obtained by noting that the empty precedence relations make any
set a system execution.) Condition A# holds only if there is a global-time
model.

Proposition 2 A system execution S, -. has a global-time model if
and only if A# holds.

In the more general interpretation of operation executions given in [5],
condition A# fails to hold for a pair of operation executions A, B if A and
B occur at spatially separated locations, and they both happen within a
time interval that is less than the time needed for light to travel between
their locations. In most systems of practical interest, A# holds for almost
all pairs A, B of operation executions.

The following result shows that we can get a global-time model by adding
extra precedence relations.
Proposition 3 Given any system execution S,---- -. , there exist ezten-

signs of- and - - of-- such that S, ,- is a system excution.

satisfying A #.

is



Later, I will indicate why we can consider the system execution S, --
. to be a reasonable way of viewing the system execution S,-,--..
A system execution satisfying A# is maximal in the sense that no addi-

tional -- or - -- relations can be added. This is because, for any pair of
distinct operation executions A and B, A# implies that either A -- B, or
B-*A,orA--- Band B---.A. Inany of these three cases, adding an
additional precedence relation would violate Al or A2.

When trying to understand an algorithm or its correctness proof, it is
useful to think in terms of a global-time model, drawing pictures of reads and
writes as time intervals. However, I find that the best way to formalize the
proof is to use Axioms Al-A5. The additional assumption A#, implicitly
introduced when using a global-time model, is not needed.

3.2 Hierarchical Views
The same system can be viewed at different levels of detail, with differ-

ent operation executions at each level. Viewed at the customer's level,
a banking system has operation executions such as deposit $10. Viewed
at the programmer's level, this same system executes operations such as .',

dep-amt[cust] := 1000. The fundamental problem of system building is
to implement one system (like a banking system) as a higher-level view of
another system (like a Pascal program).

A higher-level operation consists of a set of lower-level operations-the
set of operations that implement it. Let S,-,- -' be a system execution
and let M be a set whose elements, called higher-level operation erecutions,
are sets of operation executions from S. We consider the starting time s.
of a higher-level operation execution H to be the earliest starting time of all
the operation executions it contains, and its finishing time f.m to be their
latest finishing time. In other words, for every H in M/:

s4 = min(8A:AE )

fH = max(fA:AE ) (2)

In order for this to define real-valued functions a* and f* on ) that satisfy
M1 and M2, it is sufficient for M to satisfy the following two conditions:

H1I. Each element of M is a finite, nonempty set of elements of S.

H2. Each element of S belongs to a finite, nonzero number of elements of
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A set )I of subsets of S satisfying HI and H2 is called a higher-level view
of S. In most cases of interest, M is a partition of S, so each element of
S belongs to exactly one element of M. However, I allow the more general
case in which a single lower-level operation execution is viewed as part of
the implementation of more than one higher-level one.

Let S,-,- - -. be a system execution with a global-time model 8,f, and
let )I be a higher-level view of S. We can define a* and r by (2) and then
use (1) to define 2-. and -*., obtaining a system execution M,- -.,- .
having 0, f' as a global-time model. The precedence relations and ---.
can be obtained directly from - and - - - as follows:

G--*H VAEG:VBEH:A-B

G-!--H 3AEG:3BEH:A---,BorA=B (3)

We can forget about the global-time models and take (3) to be the definitions
of -- and - -4. It is easy to show that, if M satisfies HI and H2 and
and - - - satisfy AI-AS, then -* and - -* also satisfy AI-A5. Therefore, if
N is a higher-level view of S, then ,-- is a system execution. If the
relations - and - - - also satisfy A#, then so do -*. and - -.

Let us now consider what it means for one system to implement another.
If the system execution S,-,- - 4 is an implementation of a system execu-

tion S -,-  ,  then we expect M to be a higher-level view of S-that is,
each operation in X should consist of a set of operation executions of S sat-
isfying HI and H2. This describes the elements of M, but not the precedence

relations 2 and - 4. What should those relations be?
If we consider the system execution S to be the "real" one and N to be

a fictitious grouping of the real operation executions into abstract, higher-
level ones, then the induced relations - and - - are the 'real" precedence
relations on M. These induced relations make the higher-level view M a sys-

tem execution, so they are an obvious choice for the relations -M- and -

However, they may not be the proper choice. Suppose that we are trying to
implement an atomic register using several simpler ones, and consider a read
R and write W to that register-that is, R and W are operation executions
in M that represent a read and write to the register. Atomicity means that

either R ---. W or W 2.. R. However, the two operation executions could
really be concurrent. For example, there could be some operation executions
A and B in the implementation of R and an operation execution C in the
implementation of W with A - C- B, which (by (3)) implies R - W -

17
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and W --*- R. Thus, (by A2) the induced relations -. and --*- cannot be

the desired relations --* and -
When implementing an atomic register from nonatomic ones, in addition

to specifying what set of lower-level operation executions corresponds to an
atomic read or write, one must also specify how to determine whether a
read, which may really be concurrent with a write (according to the induced
relations and --* 4), is considered to precede or follow that write. This
must be specified in such a way that the register satisfies the condition of
atomicity-namely, that each read obtains the value written by the most
recent write. Subject to that requirement, there is a great deal of freedom
in specifying the high-level relation -.

The implementor cannot be completely free to specify the precedence
relations in the high-level system any way he wishes. For example, if there
is at least one write of every possible value of the register, then any system
execution can be viewed as the implementation of an atomic register by
choosing the -.- relation to be a sequential ordering of the reads and writes
in which every read comes between any write of the value it read and the
next write operation. This could lead to a precedence relation in which
an operation is defined to precede one that really occurred several months
earlier. Such a precedence relation obviously seems absurd, but why? In
a real system, these reads and writes occur deep within the computer; we
never actually see them happen. What is wrong with defining the precedence
relation --- to pretend that these operation executions happened in any
order we wish? After all, we are already pretending, contrary to fact, that
the operations are not concurrent.

In addition to reads and writes to registers, real systems perform ex-
ternally observable operation executions such as printing on terminals. By
observing these operation executions, we can infer some precedence relations
among the internal reads and writes. We need some condition on - and
-- 4 to rule out precedence relations that contradict such observations.

These contradictions are avoided by requiring that the interval in which
we pretend an operation execution occurs (in forming the - and - rela-
tions) be contained within the interval in which it actually occurs. In other
words, we require that a global-time model s), f for M -+ 0 satisfy

.8 A f A (4)
where s* and f* are defined by (2). To reformulate (4) directly in terms of
the precedence relations, I appeal to the following result.
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Proposition 4 Let a, f be a nondegenerate global-time model for a system
execution S,-,- - -- and let be a system execution satisfying A#
such that for any A, B E S: A -~B implies A .~.B. Then there exists
a nondegenerate global-time model a', f for ~ 4 such that, for all
A E S:

8A :5 SA < A 5 IA

This result implies that, if the system executions S,-,- -- and W,-4'.
both satisfy A#, then the ability to choose a' and f satisfying (4) is

equivalent to the following condition:

H3. For any G,H E M: if G -H then G 2 ~H, where -is defined by

tion - if H1-H- are satisfied.

To relate this definition to the preceding discussion of observable oper-
ation executions, we need the following result. Its statement relies upon
the obvious fact that if S,- -,- -- , is a system execution, then T, -,- -

is also a system execution for any subset T of S. (The symbols - and
a nodenote both the relations on S and their restrictions to T. Also, in the
proposition, the set T is identified with the set of all singleton sets (A) for
AE T.)

Proposition 5 Let S U T, -- be a system execution, where S and
are disjoint; let S,-,- -- be an implementation of a system execution M ,
q ui and let and - be the relations defined on M U Ti by (3).

Then there exist precedence relations H, and- hr -- such that:

De Wn T, MT -$ M T is a system execution that is implemented by S u T,

io The restrictions of -T and- to)X equal and respectively.

e The restrictions of iniT# and 'T to h are extensions of the relation.

p..
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To apply this proposition to our discussion of implementations, let S,
---. be an execution of a lower-level system of register reads and writes

implementing a higher-level system execution )?,.~',- .o ed n rtsI Let T' be the set of all other operation executions in the system, including
the observable ones. Proposition 5 means that, while the precedence re-
lations -.- and --- may imply new precedence relations on the operation -

executions in T, these relations (- and are consistent with the "real"
precedence relations If- and - -. on T.

I Note that, when there are global-time models for all the system execu-
tions, the * relations are the same as the original precedence relations on the
set 7', and Proposition 4 implies that the 17'T relations can be chosen also to
be the same as the original precedence relations on 7'. However, in general,
the relation -may contain orderings that imply additional orderings on
the elements of 7' beyond those contained in -*. As a simple example,
let A, B E S, let S, T E 7', let S - A, B - T be the only precedence
relations among these elements, and let X ? S. If A -~B, then Al implies

S T even though S +T.

When implementing a register, I will ignore any operation executions not
involved in the implementation, and consider the system execution compris-
ing only the reads and writes that implement the register. Proposition 5
shows that the implementation cannot lead to any anomalous precedence
relations among the operation executions that are being ignored.

An implementation S,-,- - - of M, M - is said to be trivia! if every
element of M is a singleton set. In other words, a trivial implementation
is one in which each higher-level operation execution is implemented by
a single lower-level one. In a trivial implementation, the sets S and MI

H: are (essentially) the same; the two system executions differ only in their
precedence relations.

Proposition 3 implies that any system execution trivially implements
7 one that satisfies A#, which, by Proposition 2, has a global-time model.

Implementation is transitive-if S--- implements ~ ~which in
turn implements M, M . then S,-,- - -- implements N 4 When
implementing a higher-level system, we can therefore assume the lower-level
system execution has a global-time model. However, there is no reason to
do so; a rigorous correctness proof using Axioms Al-AS will be at least as
simple as one based upon starting and finishing times, and will be more
reliable than an intuitive one based upon pictures of intervals.
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3.3 Register Axioms

The foregoing discussion applies to any system execution. I now consider sys-
tem executions containing reads and writes to registers. In addition to Al-
A5, some axioms special to these kinds of operation executions are needed,
including axioms that provide the formal definitions of safe, regular, and
atomic registers.

Axioms Al-A5 do not require that there be any precedence relations
among operation executions. However, some precedence relation between a
read and a write to the same register must be assumed. (Communication
requires a causal connection between reads and writes.) The following axiom
is assumed; the reader is referred to [5] (where it is labeled 03) for its
justification. Note that it is implied by A#.

r-. B I. For any read R and write W to the same register, R - - W or W - -

R (or both).

Each register is assumed to have a finite set of possible values-for ex-
ample. a boolean-valued register has the possible values true and false. I
assume that any read, whether or not it overlaps a write, obtains one of
these values.

B2. A read of a register obtains one of the values that may be written in
the register.

Thus, a read of a Boolean register cannot obtain a nonsense value like "trise.
This axiom does not assume that the value obtained by a read was ever
actually written in the register.

I assume that a register v is written by only a single writer and that
each write precedes the next. Let VWI, 01~, . denote the sequence of write
operations to the register v, where

Vill _-. V121..

and let 01i denote the value written by Vill. (There may be a finite or
infinite number of write operations 01~.)

A register v is assumed to have some initial value 00~1. It is convenient
to assume that this value is written by a write V101 that precedes (-) all
other reads and writes of v. Eliminating this assumption changes none of

L the results, but it complicates the reasoning because a read that precedes
all writes has to be treated as a separate case.
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Let R be a read of register v, and let

,de {V[k] :-1_.V1k].

JR def (01 lVIkIR)

From A2 and the assumption that V[°] precedes all reads, it follows that
VlOl is in both IR and JR; and from A2 and A5 it follows that IR and JR

are finite. The writes in JR are the ones that could affect R. For the sake
of the following intuitive discussion, suppose that A# holds, so IR is the
set of writes that precede (-) R. (The reader interested in extending
his intuition to the general case should substitute "effectively precedes" for
"precedes"-a concept defined in [5].) The difference JR - IR of these two
sets is the set of writes concurrent with R. The read R can observe "traces"
of the values written by writes in JR - IR, and by the last write in IR. All
traces of earlier writes are assumed to vanish with the completion of the last
write in IR, and no write later than the last one in JR can influence R in
any way.

I will say that R sees v[lil if it can observe traces of the writes Vl1-

through v1. The formal definition is as follows:

Definition 4 A read R of register v is said to see vl'il where:

del af:~/.~Ji = maxk :R -- V k])
L e_ max~k :Vjk] --4- R)

This definition makes sense because i and j are defined to be the maxima of
finite, nonempty sets-AS and A2 imply that they are finite, and they both
contain zero. Also observe that BI implies that i _ j.

I can now give the formal definitions of safe, regular, and live registers.
A safe register is one that obtains the correct value if it is not concurrent
with any write. This is the case if it observes traces of only a single write.

B3. (safe) A read that sees vl1 ,'1 obtains the value v 1.

A regular register is one that obtains a value that it "could have" seen.

B4. (regular) A read that sees OJil obtains a value viki for some k with " -
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An atomic register satisfies the additional requirement that a read is never .7

concurrent with any write.

B5. (atomic) If a read sees v[i'J then i = j.

A safe register satisfies B1-B3, a regular register satisfies B1-B4 (note that
B4 implies B3), and an atomic register satisfies BI-B5.

The following two propositions state some useful properties that are
simple consequences of Definition 4. I introduce the notation of letting vOid "
stand for a read that sees the value v1",l. Thus, part (a) is an abbreviation
for: "If R is a read that sees v['1 jl and R - V~kl then .... (Recall that
Vlkl is the 0ib write of v.)

Proposition 6 (a) If v!iil] Vlkl then j < k.

(b) If V k] 
- vliJ] then k < i.

(c) If vi,Jl -- vlJi' then j 5 i' + 1.

Proposition 7 If R is a read that sees vi1, then

(a) k < j if and only if V kl- -- R.

(b) i < k if and only if R --.Vlk+1.

In a global-time view, atomicity is usually defined to mean that all op-
erations are instantaneous. In B5, it is defined by the requirement that -
a write does not overlap a read. However, two reads may overlap, and a
write could overlap some operation execution that is not a read or write of
the register. It is easy to see that, given a global-time model for a system
execution satisfying B5, without violating conditions B1-B5, we can shrink
the intervals occupied by reads and writes so that they overlap no other
operations. Thus, the original system execution implements one in which
reads and writes of the atomic register are instantaneous.

For a nonatomic register, reads and writes cannot be made instanta-
neous. However, the reads can be made instantaneous.

Proposition 8 Any system ezecution S,-.,- -- having a safe or regular
register v trivially implements a system ezecution S, - in which v is
also safe or regular, such that , has a global-time model in which
every read of v is instantaneous.
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viol Vill V121

Writes: I-"

Reads: R R2 R.1

Time

Figure 2: An interesting collection of reads and writes.

I have observed that a regular register is not necessarily atomic because
two successive reads that overlap the same write could return the new then
the old value. The following result shows that this is the only way a regular
register can fail to be atomic.

Proposition 9 Let S,-,--- be a system execution containing reads and
writes to a regular register v, and let 4p be an integer-valued function on the

set of reads such that:

1. If R sees vl'il, then i < O(R) < j.
2. A read R returns the value v4()l.

3. If R -. R' then O(R) !5 4 (R').

Then S ,-,- --. trivially implements a system execution in which v is an
atomic register.

A function 0 satisfying the first two properties exists if and only if v is
regular. One might be tempted to replace these three properties with the
requirement that v be regular and that the following hold:

3' If vli'J l - vl,'l, then there exist k and k' with i < k < j and

i' < k' < j' such that v1 ,'l returns the value vlkl and v"",'l returns the
value vlk'.

However, this does not imply atomicity. As a counterexample, let viol -
V[21 =0 and vC' =1, let Ri, R2, R3 be the three reads shown in Figure 2,
and suppose that R, and R3 return the value I while R2 returns the value
0. The reader can show that this register is regular, but no such 0 can be
constructed; there is no way to interpret these reads and writes as belonging
to an atomic register while maintaining the given orderings among the writes
and among the reads.
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If two reads cannot overlap the same write, then vt",j1  vl"'j'l implies
j sV. This implies that any 4i satisfying conditions 1 and 2 of Proposition 9
also satisfies condition 3. But such a 0i exists if v is regular, so any regular
register trivially implements an atomic one if two reads cannot overlap a
single write.

3.4 Systems

I have defined a system execution, but not a system. Formally, a system is
just a set of system executions-a set that represents all possible executions
of the system.

Definition 5 A system is a aet of system executions. The system S is
said to contain a register v satisfying one or more of the properties B1-B5
if every system execution in S contains a sequence 0I1..... . of writes
with associated values v 1 .l... and a set of reads satisfying the corresponding
properties.

The usual method of describing a system is with a program written in
some programming language. Each execution of such a program describes a
system execution, and the program represents the system consisting of the
set of all such executions. The only operation executions that concern us
are reads and writes of a register; "calculation" steps can be ignored. For
example, execution of the statement z : y V z includes three operation
executions: a read of y, a read of z, and a write of x. It does not matter
whether or not the computation of the V is considered to be a separate op-
eration execution. What is significant is that each of the two reads precedes

(-)the write; no precedence relation is assumed between the two reads.
A formal semantics for a programming language can be given by defining,

for each syntactically correct program, the set of all possible executions.
This is done by recursively defining a succession of lower and lower higher-
level views, in which each operation execution represents a single execution
of a syntactic program unit.2 At the highest-level view, a system execution
consists of a single operation execution that represents an execution of the
entire program. A view in which an execution of the statement S; T is a
single operation execution is refined into one in which an execution consists

2 For nonterminating programs, the formalism must be extended to allow a nontermi-
nating higher-level operation execution that consists of an infinite set of lower-level
operation executions.
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of an execution of S followed by (-) an execution of T.' While this
kind of formal semantics may be useful in studying subtle programming
language issues, it is unnecessary for the simple language constructs used in
the algorithms of this paper, so I will just employ these ideas informally.

Having defined what a system is, I should define what it means for one
system to implement another. The definition is, of course, in terms of the
definition of what it means for one system execution to implement another.

Definition 6 The system S implements a system H if there is a mapping
t: S - H such that, for every system execution S,-,-- in S, S,--,

implements (S,-.--..).

Note that for S to implement H, every execution of S must correspond
to some execution of H. The converse is not required; I do not insist that
every possible execution of H have a corresponding implementation. A
higher-level description H of a system can be viewed as a specification of
its implementation-a specification that describes all allowed behaviors, but
does not require any particular behavior.

This definition raises the question of how we can specify that the system
must actually do anything. The specification of a banking system must
allow a possible system execution in which no customers happen to use an
automatic teller machine on a particular afternoon, and it must include the
possibility that a customer will enter an invalid request. How can we rule
out an implementation in which the machine simply ignores all customer ..-

requests during an afternoon, or interprets any request as an invalid one?
The answer lies in the concept of an interface specification, discussed in -

[8]. The specification must explicitly describe how certain interface opera-
tions are to be implemented; their implementation is not left to the imple-
mentor. The interface specification for the bank includes a description of
what sequences of keystrokes at the teller machine constitute valid requests,
and the set of system executions only includes ones in which every valid re-
quest is serviced. What it means for someone to use the machine is part of
the interface specification, so the possibility of no one using the machine on
some afternoon does not allow the implementation to ignore someone who
does use it.

Since this paper considers only the internal operations that effect com-
munication between processes within the system, not the interface opera-
tions that effect communication between the system and its environment, I
aln the general case, we must also allow the possibility that an execution of S; T consists

of a nonterrninating execution of S.
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will ignore interface specifications. The interested reader is referred to [8J
for a discussion of this subject.

4 Correctness Proofs for the Constructions

4.1 Proof of Constructions 1, 2, and 3

These constructions are all simple, and the correctness proofs are essentiallyA
trivial. Formal proofs add no further insight into the constructions, but they
do illustrate how the formalism developed in the preceding section is applied
to actual algorithms. I therefore indicate all the formal details in the proof
of Construction 1. The formal proofs for the other two constructions are

just briefly sketched.4
Recall that, in Construction 1, the rn-reader register v is implemented by

the m single-reader registers vi. Formally, this construction defines a system,
which I denote by S, that is the set of all system executions consisting of
reads and writes of the vi such that the only operations to these registers are
the ones indicated by the readers' and writer's programs. Thus, S consists
of all system executions S ,-,- - -such that:

* S consists of reads and writes of the registers vi. -
* Each vi is written by the same writer and is read only by the 1,h reader.

V(hI~l lo C
*For any i and j: if the write V occurs, then the write V~las crs,

and tk-ll , 1k4

The third condition expresses the formal semantics of the writer's algorithm,
asserting that a write of v' is done by writing all the vi, and that a write of
v is completed before the next one is begun.

To say that the vi are safe or regular means that the system S is further
restricted to contain only system executions that satisfy 131-133 or 131-134,
when each vi is substituted for v in those conditions.

To show that this construction implements a register v, Definition 6
states that we must construct a mapping i from S to the system H, which
consists of the set of all system executions formed by reads and writes to an
rn-reader register v. To say that v is safe or regular means that H contains
only system executions satisfying 131-133 or 131-134.

In giving the readers' and writer's algorithms, the construction implies
that, for each system execution S,-,- - of S, the set t(S) of operation
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executions of &(S, -b--)is the higher-level view of S,-,- - 4consisting

of all writes Vlkl othform VI,..vI
1,fo jklES, and all reads of

the form (14), where R, E S is a read of v.. (The write Vlkl exists in L(S)
if and only if some, and hence allt Vjl exists.) Conditions HI and H12 are
obviously satisfied, so this is indeed a higher-level view. To complete the
mapping i, we must define the precedence relations -. and - -~so that
I (S' is defined to be (S),- Proving the correctness of the
construction means showing that:

I. 1(s),-~, M -0 is a system execution-that is, it satisfies AI-A5.

iM

2. S,-,- -implements --- that is, 111-13 are satisfied.

3. is),2L, -lin H-that is, 131-133 or 13-134 are satisfied.

The precedence relations on (S) are defined to be the "real" ones, with
o a H if and only if G really precedes H. Formally, this means that we let
if and y- be the induced relations HI and , defined by (3). Recall
from Section 3.2 that the induced precedence relations make any higher-level
view a system execution, so I is satisfied. I have already observed that Hi I
and 12, which are independent of the choice of precedence relations, are
satisfied, and 13 is trivially satisfied by the induced precedence relations,
so 2 holds. Therefore, we need only show that, if 31-13 or 131-4 are
satisfied for reads and writes of each of the registers vi in S,-,- -- , then
they are also satisfied by the register v of a(S), H-3s

Property BI for t(S),-*-, - follows easily from, (3) and property B3i
for S,-,- - -. Property B2 is immediate. The informal proof of B3 is as
follows: if a read of v by process i does not overlap a write (in l(S)), then
the read of vi does not overlap any write of vi, so it obtains the correct
value. A formal proof is based upon:

X. If a read 14 in ,-,- - r sees vi., then the corresponding read (14)
in i(S),-,- -. sees vlk',1, where k' < k <5 1: 1'.

The proof of X is a straightforward application of (3) and Defintion 4. Prop-
erty X easily implies that, if B3 or B4 holds for S,-,- - -, then it holds for

~ !.,~This completes the formal proof of Construction 1.
The formal proof of Construction 2 is quite similar. Again, the induced

precedence relations are used to turn a higher-level view into a system execu-
tion. The proof of Construction 3 is a bit trickier because a write operation

28

.. %-



o -

to v* that does not change its value consists only of the read operation to
the internal variable z. This means that the induced precedence relations do
not necessarily satisfy BI; they must be extended to make BI hold. This can
be done by applying Proposition 3, though a more "economical" extension
can also be constructed.

4.2 Proof of Construction 4

The higher-level system execution of reads and writes to v is defined to
have the induced precedence relations -- and - --. As in the above proofs,
verifying that this defines an implementation and that BI holds is trivial.
The only problems are proving B2-namely, showing that the reader must
find some vi equal to one-and proving B4 (which implies B3).

I first prove the following property:

Y. If a read returns the value p, then there is some k such that v1'l #,
and the read sees v',1 ] with I < k < r.

If B2 holds, then property Y implies B4.
Reasoning about the construction is complicated by the fact that a write

of v does not write all the vi, so the write of vi that occurs during the kth
write of v is not necessarily the th write of vi. To overcome this difficulty,
I introduce new names for the write operations to the vj. If vj is written

.during the execution of Vthen I let WJ"1 denote that write of vj; other-

wise, V:k] is undefined. Thus, every write Vil of vw" is also named W!i'i for

some ' > 1. 1 will say that a read of vi sees w " if it sees vll,?] and the
writes W l°' and W!' are the same writes as Vjflj and Vj[r], respectively.

Note that, because the writer's algorithm writes from "right to left", if W!

exists, then so do all the MJ., with j < i. In particular, Wi"' exists for all k.
Let R be a read that returns the value p, and let p be the sth value, so

R consists of the sequence of reads RI - "" - Ri, where each Ri is a
read of vj. All the Rj return the value 0 except R,, which returns the value
1. Let R see vil'r] and let each Rj see aA (i ' )l. By regularity of vj, there
is some k(j) with 1(j) < k(j) 5 r(j) such that W*(' )] writes a 1 and W k j)

writes a 0 for 1 _5 j < i. Thus, vlk"i)l is the value read by R, so it suffices to
show that I !< k(i) :5 r.

Definition 4 implies W " ("11 - - - R, which by (3) implies Vr '(iI -- . R,
which implies r(i) _5 r. Hence, k(i) <_ r.
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For any p with p <_ 1, Definition 4 implies that R - VIpI, which implies
that R, -/4 W1 , which in turn implies that p 5 1(1). Hence, i _ i(1).-
Since 1(j) :_ k(j), it suffices to prove that k(j) 5 1(j + 1) for 1 5 j < i.

Since k(j) <5 r(j), Definition 4 implies that Wk(')l -]-- R-. Because
14'1k '(il writes a zero, WJk(")l exists, and we have

W -~i l kW(iJ - ,-.i+1 -" -i-- j!,.

where the two relations are implied by the order in which writing
and reading of the individual vi are performed. By A4, this implies that
WR (j)l -  R., which, by A2, implies R,i - " W .()l. By Definition 4,
this implies that k(j) < 1(j + 1), completing the proof of property Y.

To complete the proof of the construction, I must only prove that every
read does return a value. Let R and the values 1(j), k(j), and r(j) be as
above, except let i = n and drop the assumption that R, obtains the value
1. To prove B2, I must prove that R. does obtain the value 1. -.

The samc argument used above shows that,if R - obtains a zero, then that
zero was written by some write WIA(i) ] , which implies that W!k(j)l exists and-I J+1

k(j) <_ 1(j + 1). Since R. obtains the value written by W.[k*n),, it must
obtain a I unless k(n) = 0 and the initial value is not the nth one. Suppose
the initial value v01 is the pth value, encoded with vp = 1, p < n. Since R.
obtains the value 0, we must have k(p) > 0, which implies that k(n) > 0, so
R, obtains the value 1. This completes the proof of the construction.

4.3 Proof of Construction 5

This construction defines a set M, consisting of reads and writes of v*, that
is a higher-level view of a system execution S,-.,- -- whose operation
executions are reads and writes of the two shared registers v, cw and er. As
usual, *2. and da* denote the induced precedence relations on S that are -

defined by (3).
Let u denote the shared register v, cw of the algorithm. In this con-

struction, the write V*OCl of v*, for k > 0, is implemented by the sequence
R -- U[2k- 1 -. U12kJ, where R is a read of cr and U'1 is the Sth write of
U. The initial write V 101 of v is just the initial write U10l of u.

4Note that the same argument does not prove that I < 1(i) because Wi.p) does not
necessarily exist.
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Since there is only one reader, the reads of v* are totally ordered by
The jib read Si of v consists of the sequence R, -! CR where R- is the
jib read of u and CR!' 1 is the #i write of cr. For notational convenience, I
assume an imaginary read Ro of u that returns the value ulo1, and I define
So to be the sequence of operations Ro --. C RI'l. The operation So is taken -

to be the one that sets the initial values of z' and cr'.
The proof of correctness is based upon Proposition 9. Letting 0(i) denote

O(Sj, to apply that proposition, it suffices to choose the (i) such that the
following three properties hold:

k

* Si returns the value v4[#') 1 .

* If Si sees Oll1 "I then 1 5 0'(i) < r

e Ifj < ithen 0()S4(i).

I start by defining a function 10 such that R, returns the value ul"') and,
if R, sees u1l,"1 then 1 5 10'(i) :5 r. Since u is regular, such a 1t' exists.
Proposition 6 implies:

Z1.~~~~. Ifj ten.1i -1

By Proposition 7, U100- - R, - U100+11. Suppose 0(4i) =2k.

Since Uh2kl is part of Velk], U12k+1 is art of V*ld+1, and R, is part of
Si, this implies V * -!., S, s .s Vok Hence property 2 is satisfied if

0()= k. Next, suppose thait 0(i) = 2k -1, where k > 0. Since Vl2k-1l
is part of Vof, we have Vno i -!- Si-!.- Vlk] -. 0 Vtlk+ so property 2
is satisfied if 0(i) = k - 1. But we also have V+1lu VON], ad IJ so
property 2 is also satisfied if 0(i) Rk - 1. To summarize, property 2 is
satisfied by if the following holds:

Z2. (a) If ,(4i) = 2k then 44i) = k.
(b) If V1(i) = 2k - I then 0(i) =k or 0$(i) =k - 1.

The second statement in the algorithm of Figure I consists of nested
If statements, so executing it executes exactly one innermost then or else
claus, will use a sequence of t (for then) and e (for else) characters
to de.- .e such an innermost clause; for example, tee denotes the second
innermost else clause, which is executed if Zi # X2 and z~j = z'= Z2.

Let a Itt-read be one that executes the ttt clause of the reader's algo-
Srithm, and let a nice read be one that is not a ttt-read. The initial read So

is defined to be nice. For any i > 0, let S(i) denote the largest integer such
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that i(i) < i and S,y) is nice. In other words, S,y) is the last nice read
before Si. A ttt-read does not change the value of rtn, z', or er'. Therefore,
when the execution of Si begins, tn has the value returned by Syli) and
z, cr' has the value u[O('r ('))] read by Ry(.

I first define 0(i) inductively for all nice reads, starting with 0(O) = 0.
The definition will be made so that Z2 holds for all i. Let i be a nice read,
i > 0, and assume that properties 1-3 and Z2 hold with x(i) substituted for i.
In the following discussion, I will refer to the values of variables immediately
after the execution of the first statement in the reader's algorithm during
the operation execution Si. Thus, z, cr is the value u[l'(0l read by R, rtn
is the value v.*{r)] returned by SO(), and z', cr' is the value u1( 0 )] read
by R, ().

Consider first the case t,(i) = 2k - 1. In this case, z - vl k-1I and
Z2 = v*lkl . If zI 0 z2 , then properties I and Z2 are satisfied only by
defining 0(i) to equal k - 1 if Si returns the value z, and to equal k if Si
returns the value Z2. In other words, 0b(i) equals k if Si executes the tet
clause and equals k - 1 otherwise. Since Z2 is satisfied, property 2 holds. -"

To prove property 3 for i, it suffices to prove that 0(ir(i)) < 0(i), since
property 3 is assumed to hold for r(i). Property Zi implies that f(O(i)) --
2k, so Z2 implies that O(ir(i)) can be greater than 0(i) only in two cases:
(i) ¢,(r(i)) = 2k and 0(i) i k - 1, or (ii) 10(x(i)) = 2k - 1, O(ir(i)) = k, and
0(i) = k- 1. But ,('(r)) =2k implies that z' = = zz, so Si executes the
tet clause and 0(i) =k. Hence, case (i) is impossible. If ((ir(i)) = 2k - 1
and 0(i) = k, then z' = z and S#1i) executes the tet clause, so rtn' z2 .
Hence, Si must also execute the tet clause, so 0(i) = k, showing that case (ii)
is impossible. This completes the case 0(i) = 2k - I and z, z.-.

If !,(i) = 2k - I and z , = X2, then I define 0(i) to be the maximum
of k - 1 and 0(7r(i)). Zi and Z2 (for ir(i)) imply that O(ir(i)) < k, so this
defines 0#() to equal either k - I or k. At this point, I note the following
property for later use:

Z3. If ,(i) = 2k - ! , = Z2, and 0(i) = k, then there is a nice read Ri
with j < i such that ,h(j) = 2k.

The proof of Z3 is by induction on i. The hypothesis Zi, and Z2 imply that
either ¢,(jr(i)) = 2k, in which case we can let j f (i), or else 10(nr(i)) .
2k - 1 and O(r(i)) = k, in which case we apply Z3 with r(i) substituted for

S..

Returning to the definition of 0(i), in the case under consideration
(¢,(i) = 2k - I and z1 = z2), properties 1, 2, and Z2 are satisfied because
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0i(i) equals either k - 1 or k. Moreover, we obviously have (ir(i)) < 0()
so property 3 is also satisfied. This completes the case tf~)= 2k - 1 and
X1 #z4 2 .

Finally, I consider the case =ki 2k, where 0(i) must be defined to
equal k to satisfy Z2. In this case, x, = X2 =VIkl and Si executes the
tte clause, returning the value xj. (Since Si is assumed to be nice, it does
not execute the Ut clause.) Hence, property 1 is satisfied. Since Z2 holds,
property 2 is satisfied. To prove property 3 for i, it suffices to show that
0 (iri) 4(i), since the property holds for ;r (i). By Zi1, 0 (ir(i)) :5 2k +1, so
44(w(i)) c an be greater than 0 (i) only if 0 (ir(i)) = 2k+ I and 0 (ir (i)) = k +1.
There are two possibilities to consider: (i) ' 0 42 and (ii) x' = 4. In
case (i), 40(;r(i)) can equal k + 1 only if Srj executes the tet clause, which
implies that z 96 x2 and rtn = 4; but this is impossible since Si executes
the tte clause. In case (ii), Z3 implies that, if O(ir(i)) = k + 1, then there
exists j < ir(i) with '()=2k + 2. But Zi implies that this is impossible,
since j < i and 0b(i) = 2k. Hence, property 3 holds. This completes the
construction of 0(i) for all nice reads Si.

To complete the definition of 40, if Si is a ttt-read, I define 0i(i) to equal
PM 0(7ri)). Since Si returns the same value as Sr(y), property I is satisfied.

Property 3 obviously holds, since it holds for nice reads and q0 assigns to
every ttt-read the same value as it assigns the most recent nice read. The
only thing left to prove is that property 2 holds for a ttt-read Si. This is
perhaps the most subtle proof of the entire paper. It involves proving the
remark made earlier, that, if a sequence of reads obtains the values (p, )
(VI P), and (v, v), all of the same color, then the last read overlaps the write
of(V, P).

Let S, be a ttt-read, and let (it, p), c be the value ulv00i1 read by R,. Since
5, executes the ttt clause, X' cr' which is the value tjO'r) read by Rr(j),
must equal (Y, p), c for some vi~p so Ot~n(i)) is odd. Let Pb(i(i)) = 2k-i1.
Since Si executes the ttt clause, Sw~i) must return pu, so it must execute the
tet clause. This implies that O(ir(i)) = k, so 0(i) = k, and that the value of
cw read by the operation execution Sy)-,. must also equal c, so CRf'r(I)1l]
writes the value c. The following operation executions must therefore be
performed in sequence by the reader (each one -'s the next, but the
reader may perform other, intervening operation executions):

e CR1f00'11: writes crfr(i) - 1] =C

e R1(y): reads U[2k11 = (m, p), c
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* Ri: reads JlOY)l -(v, vi), c

e CRN': writes cr"1 
- c

Moreover, the reads between Sy() and Si also write the value c in cr.
Therefore, cr1~1 = c for all jwith 7r(i) -1 j s. Note also that
0(i) = =~i) k - 1.

It follows from Zi that t'(i) 2k -2. If O(i) =2k -2, then Proposition 7

imlis ht i -- U2]l However, that proposition also implies that
Ulkl-4R,y. Since Ul2k- 2 1 Ul2k-1l and R )- R,, we see that

U12k-21 - Ri- U[2k-1l. This implies V'1k-11 - -. Sis Volkl. Since
0(i) =k - 1, property 2 follows from Proposition 7.

I have shown that io(i) >: 2k - 2 and property 2 holds if 0(i) =2k - 2.
To finish the proof, I now show that vk(i) =2k - 2 by assuming Vb(i) >

p 2k - 2 and obtaining a contradiction. Since U[2k-11 equals (v, it), c and Ul2kl
equals (p, p), neither of which equals uIO'(') (because p 0& v), we must have
0(i) > 2k. Let crl'l denote the read of cr in the write of v* of which U1001~
is a part. Since 1 1  sets civ to c, the read crl',] must obtain the value
--1c. The writer must therefore perform the following sequence of operation
executions, where each -'s the next. (There may be other, intervening
operation executions.)

e O1ki: writes U12k] -(p)C

*crPl']: reads the value -,c

*U('001): writes uI[O(i)] (V,V), c

BProposition 7 (and the definition of 0i), Rr (j) -- 4u].We therefore
have

CRCWs1 -U RJ(k) - -4 lr

so CRIC()1l cr11,ri. By part (b) of Proposition 6, this implies ir(i) - 1I

Proposition 7 implies U1I'P(') - - - Ri, so

cr11"1 
- UIO(i)J - - Ri . CRI'l

This implies cr1 ' ~ CR!'1 , so part (a) of Proposition 6 implies r:5 i. We
therefore have 0(4i) - 1 :5 1 < r <5 i, so regularity of cr implies that crl1"1

obtains a value cr1~l with jb(i) - 1I <- i. However, I already observed that
all such values equal c, and cr'1 "I obtains the value -c. This is the required
contradiction, completing the proof.
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5 Conclusion

I have defined three classes of shared registers for asynchronous interprocess
communication and provided algorithms for implementing one class in terms
of a weaker class. For single-writer registers, the only unsolved problem is
implementing a multireader atomic register. A solution probably exists,
but it undoubtedly requires that a reader communicate with all other read-
ers as well as with the writer. Also, more efficient implementations than
Constructions 4 and 5 probably exist. For multivalued registers, Peterson's
algorithm f1l combined with Construction 5 provides a more efficient im-
plementation of a regular register than Construction 4, and a more efficient
implementation of a single-reader atomic register than Construction 5. How-
ever, in this solution, Construction 4 is still needed to implement the regular
register used in Construction 5.

I have not addressed the question of multiwriter shared registers. It is
not clear what assumptions one should make about the effect of overlapping
writes. The one case that is straightforward is that of an atomic multiwriter
register-the kind of register traditionally assumed in shared-variable con-
current programs. This raises the problem of implementing a multiwriter
atomic register from single-writer ones. An unpublished algorithm of Bard
Bloom implements a two-writer atomic register using single-writer atomic
registers.

In addition to studying shared registers, I have also developed a formal-
ism for reasoning about concurrent systems that is not based upon atomic
actions. Starting from a more general, relativistic viewpoint, I showed that
one can, with no essential loss of generality, think in terms of starting and
finishing times of operations. While starting and finishing times are intu-
itively more appealing, and can be useful in proving metatheorems about
general systems, rigorous reasoning about specific algorithms is best done in
the general formalism, using Axioms Al-AS. These axioms seem to contain
the fundamental properties of temporal relations among operation execu-
tions that are needed to analyze concurrent algorithms.
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Appendix

Proof of Proposition 1

It follows from (1) that, for any operation execution A in S, the relations
-band - - - are not changed by either of the following two changes to the

global-time model, where 6 > 0:

1. Changing SA to SA -6 if, for all B E S: lB < SA implies lB < SA -.

2. Changing IA to f +6b if, for all B E S: IA < 3B implies fA+ b <SA.

Let T denote the set of numbers SA and fA for all A in S, and for any real
t, let S(t) ={r E T : r < t) and F(t) =(r E T : r > t). M2 implies that
for any t, max S(t) < t and t < min F(t).

For any A, if 4 equals 8B or 18 for some B # A, I can change 8.4 to
$A - 6, where 0 < 6 < ( is chosen so that BA - 6 > maXS(SA). Similarly,
if IA equals 3B or lB for some B #6 A, I can change f4 to fA + 6, where
o < 6 < i and fA + 6 <min F(SA).

The details of the formal proof, which involves an inductive definition of
W~ and f' based upon the countability of S, is left to the reader.

Proof of Propositions 2 and 3

The "only if" part of Proposition 2 follows immediately from (1). To prove
Proposition 3 and the "if" part of Proposition 2, 1 prove that, for every
system execution S,-,- - -, there exists a global-time model B, f such that
for every A, B E S:

9 A -~B implies f4 <B

A A- - Bimplies. -A

The relations -2. and .!.defined by this global-time model satisfy the
requirements of Proposition 3. Moreover, if S,-,- - - satisfies A#, then

-#must equal -- ,since if A# holds then A -- B implies B -~ A,
which implies B A, so A -/ B, and A -9.B implies B - -- A, which

implies B - .1 - A, so A +B.
The following proposition is used in this proof and in a later one.
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Proposition 10 Let T be the set consisting of all elements of the fortr SA

and fA for A E S (the elements of T are uninterpreted symbols, not nec-

essarily real numbers), and let - be the smallest transitively closed relation
such that

* IfA B then fA sB.

SIf A--- B or a= B then SA <fB.

Then -< is an irreflezive partial ordering.

Proof: Define the relations . . and _d- on T as follows:

* For all A: $A 0 fA.

0 fA ' sB if and only if A - B.

d
s 4A -- fB if and only if A - - B.

Let- be the union of the three relations - . and -, so -< is the

transitive closure of -.. It suffices to prove that - is an acyclic relation.

The proof is by contradiction. Choose a shortest cycle formed by the
relation. A cycle composed entirely of - and ! relations would violate

Al, so the cycle must contain a portion of the form:

d

fA sB - fC 
S

D

since - is the only relation from an f to an s and there are no s to s or f
to f relations. I can apply A4 to deduce that fA SD o, which contradicts

our assumption that the cycle had minimal length, proving Proposition 10. I

Returning to the proof of Propositions 2 and 3, we see that -< is an
irreflexive acyclic relation. Moreover, A5 implies that, for any t E T, I -< s
for all but a finite number of elements s. This, together with the countability
of T, implies that -, can be completed to a total ordering < such that

there is an order-preserving isomorphism of T with a subset of the natural
numbers. Identifying the elements of T with the corresponding natural
numbers provides the desired global-time model.

Proof of Proposition 4

Let T be the set of all numbers SA and fA for A E S, and let -< be the partial
ordering on T defined as in Proposition 10 for the precedence relations
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and---, namely, the smallest partial order such that .4 ._ B implies

JA "< sB, and A -.- B or A = B implies 8.4 -< f8 Observe that the
following hold for all A and B in S:

(a) Either $A " fB or Ia "' JA (by A#).

(b) IA < 8B implies IA -< 8B (by H3).

To prove the proposition, it suffices to construct a'. f such that ' s < a' <
11< f and for all A and B: fA -< 8B implies f' < s'B and S4 - fI implies
$A < fB.

Let s', f' be any global model satisfying
ft <1S' implies 'A K (5)

The pair of operation executions A, B is said to be out of order for a', ."
if fA -< 8B and s' < fJ. It follows from (a) and (b) that, if there are no
out-of-order pairs, then a', f' satisfies the conditions of the proposition.

I will construct se, f' inductively by constructing a sequence of nonde-
generate models .i, f with a' < 

i+1 < f'l 5 fi having s° , r0 equal to a, f
and s', f' equal to their limit. This is done by first choosing the enumera-
tion of all out-of-order pairs of 9, f such that, for any subset of them, the
minimal element is the one A, B having the smallest value of fA and, among
all such pairs A, B', the one having the largest value of 8B. It follows from
M2 that such a minimal element exists for any nonempty set, so this defines
an enumeration of the out-of-order pairs of a, f.

If A, B is the s5 h out-of-order pair, then s', f' will be defined to be the
same as s - ,fi- except that s - .< rA < < 1A-1. This implies that,,
the set of out-of-order pairs for 9', J' equals the set of out-of-order pairs for
Si-1, P-1 minus the pair A, B. Moreover, it follows from AS and (b) that

any operation execution belongs to only a finite number of out-of-order pairs
of s, f, so the limit s', f of the models a', f' exists, satisfies (5), and has no
out-of-order pairs, proving the proposition.

For notational convenience, the construction of 8', P' from s" , P- 1 is
given for the case i = 0. So, I assume that s, f satisfies (b), which is the
same as (5), and has a minimal out-of-order pair A, B. I construct s,11
by decreasing fA and increasing sB to get fl < 9B, without creating any
new out-of-order pairs. (The construction for any i is the same except with
more superscripts.)
'I employ the usual notation that, for functions f and g with the same domain, f _ g if

and only if f(z) :5 g(z) for all z in their domain.
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Let X be the operation execution with the largest value of ax such that
Sx -- fA; if there is no such X, let ax-= -oo. It follows from (b) and the
nondegeneracy of a, f that ax < fA. Observe that there is no C with sc-
in the interval (max(sx, sB), fAl, since, by choice of sx, this would imply
fA -< sx, which would contradict the maximality of 8B. Therefore, if I
define fA to be max(sx, sB)+, then s, fl satisfies (5) and has the same set
of out-of-order pairs as a, f, where t+ denotes a value larger than t such that
there is no value sc or fc in the interval (t, t+].

If B > sx, so fA' = s+ , then I can define s' to be (fA)+ and it is clear
that s', f also satisfies (5) and has the same set of out-of-order points as
a, f 1 except that A, B is not out of order for ', f1 , so we are done.

Therefore, I need only consider the case 8 B < sx. (Since ax -< fA we
must have 8B 9 sx.) I claim that there is no fc in the interval [sB, sx]. If
there were, then (a) and (b) imply that fc -" ax and 8B -< Ic, which, since
sx -< fA, would imply 8B -< fA, contrary to the assumption that A, B is
out of order for a, f. Therefore, defining s5 to be the same as a except with
s8= + , we see that s-5, f 1 satisfies (5) and has the same set of out-of-order
pairs as s, fl. Replacing s by s-5 and starting our argument again, we are
in the case s4 < 8B that was considered above. This completes the proof.

Proof of Proposition 5

If -. and - - -- are any relations in a set S, let the completion of - and
-- - be the relations 2 and -, where is the smallest transitively
closed extension of- such that A - B-- C L D implies A 2 D,
and -- is the union of --- and - Thus, A - B if and only if there
exists a chain

." ~A fAl fi " fi A. B

where = denotes either - or - C - -- D - for some C and D.

Proposition 11 If - satisfies A5; ..-. ,_ 1. is the completion of -
and is acyclic; then i, s-,- -- *a a system execution.

Proof: I must show that ,--,--. satisfies A1-AS. The only nonob-
vious part is, in the proof of A2, showing that, if A B, then B - / A.
However, as observed above, this follows from Al and A4. I

To prove Proposition 5, let -- be the union of the relations * and
and let -2.. be the union of -u. and the restriction of !* to T. Note -
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that the restriction of -- to N equals - (by H3). I define -_L.- ,_.. to be
the completion of , o.

I claim that, to prove Proposition 5, it suffices to show that -.4 is acyclic
and the restrictions of M L and _.. to N equal M and - -.-. Proposition 11

then implies that ) U T,- , is a system execution, which is easily seen
to be implemented by S U T,-,- - --. (The definition of and .Y., im-
plies that their restrictions to 7 are extensions of --- and - -4.)

Moreover, I claim that it suffices to prove that the restriction of YT to N

equals --. It follows immediately from the definition of - # and A2 that,

if the restriction of equals -, then the restriction of -_-.4 to must
equal - -. Furthermore, the definition of the completion and the acyclicity

of * imply that, any cycle of -- relations must include an element of )1,
so A A must hold for some A E X(. If the restriction of . to N equals
--- , then the acyclicity of , follows from the acyclicity of -. Thus, it

suffices to prove that, if A L B, then A .... B.

By definition of _., if A . B then there exists a chain A -A, =
• A,, = B, where = denotes either -s24 or - C0-# ., D -- '-.

Note that, f Ai and Ai+j are both in M, then Ai = Ai+j implies that
Ai - Ai+i, and, if they are both in T, then Ai = Ai+j implies that
Ai - Ai+,. Therefore, it suffices to show that any such chain that is of
minimal length has length one.

If three consecutive elements Ai, Ai+,, and Ai+2 in this chain are either

all in Y or all in T, by the transitivity of Y and .- !- it follows that
Ai = Ai+2.Therefore, in a minimal-length chain, Ai must be in )I if i is
odd and in T if i is even. If n > 0, then we have A, ==* A2 ==* A3, with
A, and A3 in ? and A2 in T. A -0- relation between an element of ;I and
an element of T must be a - relation. Considering the two possible cases
for each =fi relation, using Al and A4 for the relations - and --*-, it
follows from A, ==* A2 = A3 that Al --Y-- A2 - A3, so A, ==- A3 . This
contradicts the assumption of the minimality of n, proving that n = 1 and
A + B, which completes the proof of the proposition.

Proof of Propositions 6 and 7

Parts (a) and (b) of Proposition 6 are an immediate consequence of Defini-
tion 4. To prove part (c), observe that this definition implies Vlil - - Vi
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The result is immediate if j 0 0. If j > 0, then Vi --. Vl. Combining

these two relations with the hypothesis, we have

vUi-, i_ _ .U Vliil _ viii,

Axiom A4 implies that V'-11 - vli'lA, which, by A2, implies vO1 'l - -
Vj-11. This finishes the proof of Proposition 6.

To prove part (a) of Proposition 7, observe that it follows immediately
from Definition 4 that VI"l - -, R implies k _< j. Conversely, I assume k _ j
and show this implies Viki _ - R. Since Vi - - - R, the desired conclusion
is immediate if k = I. If k <j, then V1*J - ViA, and it follows from A3.

For part (b), Definition 7 implies that, if i < V, then R --. VI"' i.
Letting k' = k + 1, this shows that, if i S k, then R - - - Vlk+1l. Conversely,
suppose R - - -, VIk+'l, then k + 1 96 i. If k + 1 < i, then VIk+ll --. V[1, so
A3 would imply R - - - VWq contrary to Definition 4. Hence, we must have
i < k + I so i !5 k, completing the proof of Proposition 7.

Proof of Propositions 8 and 9

Apply Proposition 3 to extend the given -. and - - relations so they satisfy
A#. It follows from BI that this extension does not add any new precedence
relations between reads and writes. A read sees v',i' l , as defined by these new
relations, if and only if it sees vOJId in the original system execution. Hence,
the new system execution, which satisfies A#, satisfies the hypotheses of the
appropriate proposition. Applying Proposition 2, 1 can therefore assume a
nondegenerate global-time model for the system execution.

For the proof of Proposition 9, let 4 be the assumed function. For the
proof of Proposition 8, 0 is defined as follows. If R is a read that sees vli,
for a safe register define O(R) to equal j, and for a regular register define it
to be a value satisfying conditions 1 and 2 in the hypothesis of Proposition 9.
(B4 implies that such a definition is possible.)

I first show that S,-.,- - -, (which I am assuming to have a nondegen-
erate global-time model) trivially implements a system execution in which
reads are instantaneous, which is all that is required to prove Proposition 8.
Given the nondegenerate global-time model s, f for S,-,- ---, it suffices to
find a global-time model a', f with s < s' < f :5 f in which all reads are
instantaneous, such that BI-B4 hold for the system execution defined by
s, fI.

For notational convenience, let s and fi denote svij and fvtI, respec-
tively. Let s', f be the same as s, f except that, for a read R, define qR to
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equal the maximum of the following three quantities:
i •~ 8R .--

0 maxlsR, :(R') < O(R) and 8R1 < fR}+

and define fz to equal (s)+. When the appropriate careful definition of t+

is given, this results in a nondegenerate global-time model in which every
read is instantaneous. I must check that, for any read R: SR _ sR <_ fR -5
fR, B1-B3 remain satisfied, and B4 remains satisfies when v is regular.

It is immediate by the definition of s that sR < 4'. Since fR = (s'_) + ,

to establish the remaining inequalities I need to show that R < fR. If R
sees v1i 'JI, then, by Definition 4, si < fR (the strict inequality comes from
nondegeneracy), and, since O(R) < j, 8(R) < fR. The required inequality
now follows easily from the definition of 4R.

I must now show that BI-B3 and, if v is regular, B4 hold for the new
precedence relations. BI and B2 are trivial. For B3 and B4, consider what
a read sees in the new system execution if it sees v41 in the original one.
There are three cases:

1. If fO(R) < SR then

(a) if R < 8s(R)+1 then R sees v[#(R),#(R)l

(b) if 8 #(R)+l < SR then R sees V[O(R),O(R)+1J

2. If 8 R < f#(R) then R sees V[O(R )- I,#(R )]

Moreover, it is immediate from Definition 4 that case 1(b) is impossible
if O(R) j, which is the case when v is assumed to be only safe. This
definition also implies that fI < SR if and only if i = j. Thus, when v is
only safe, R sees 0A in the new system execution if and only if it does
in the old, proving B3. For the case when v is regular, B3 and B4 follow
immediately from the fact that R returns the value v[#(R)l. This finishes the
proof of Proposition 8.

To complete the proof of Proposition 9, 1 first show that, if O(R) < O(S)
for reads R and S, then fR < 4'. The third hypothesis about 0 implies that,
if (R) < O(S), then SR < fs. By the definition of s, this implies that s
is greater than each of the three quantities of which 4 is the maximum, so
8R < s. Since reads are instantaneous with respect to s, f, this implies

f < 8
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I must construct a new global-time model a", in which writes are
also instantaneous and 131-133 are still satisfied, so that 9",]*i is the same
as a',!' except for writes, and for any write Vlkl: s'h, :5s k': k (Note
that B5 follows from the fact that reads and writes are instantaneous, and
B4 follows from B3 and B5.)

Let s" be the maximum of the two quantities s'k and max~fkt : (R
k - 1}+, and let fk" be (stki)+. Since v1#(R)l is one of the values "seen" by
R in the system execution defined by a',!', if O(R) = k I then s'R < fk,
which implies that s'" < fA. We therefore have W'< s"" < <fand reads
and writes are both instantaneous in .s", ". Again, BI and B2 are trivial,
so I need only prove B3.

Since reads and writes are instantaneous, B5 holds-a read R sees 0A,"1
I must show that i = O(R). The definition of a" implies that f," = R<
3 R" I I must therefore show that 'S()<4.R I h global-timemoe
a', f', the read R "sees the value" v[O(R)l, so s,(, < sR. By definition of s",
we can have s",)> sR~ only if there exists some W' with 0(RW) < Of(R) and

A,' > 4. However, I showed above that R< R implies fR, < s, which
completes the proof.

44

777.-



* ILMED

8-85_

DTIC


