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I. Introduction

Transport and rate coefficients defining the properties of an electron
swarm interacting with a weakly ionized gas and under the influence of an
electric field are well parameterized by E/N, the ratio of the electric field
strength to the neutral gas density, for uniform fields in time and space and
when the electron swarm has lost memory of its initial conditions. Under this
contract we have developed a numerical solution of the time-dependent Boltz-
mann equation for electrons in a weakly ionized gas to study the departures
from the simple E/N parameterization for time-dependent fields or in the pres-
ence of sources of electrons. The spatially homogeneous, time-dependent
Boltzmann equation was solved to give the electron energy distribution func-
tion (EEDF) for a variety of model gases and for nitrogen. A description of
the time-dependent Boltzmann equation and the solution technique is given in

Section II.

An appropriate choice of model gases with simple electron-neutral inter-
actions allows us to examine qualitatively all the transient phenomena that
occur in more reaiistic gas models while retaining computational simplicity.
With the use of simple models, some analytical results are possible and are
useful as a guide to the understanding of the underlying physics in the tran-
sient regime.

in the details.

With the more realistic gas models, the physics is often buried

Comparisons of the numerical resulits with the analytical so-
lutions also provide rigorous tests of the numerical methods used in the com-
puter solution of the Boltzmann equation.
Section III.

These comparisons are discussed in

Several interesting transient phenomena which proved to be quite general

were found in the model studies. For example, we saw overshoots and under-
shoots in the transient electron drift velocities which have analogues in hot
1).

transient phenomena is a cathode-directed component of the current which re-
In

carrier transport in semiconductors (Reference Associated with these

sults from cooling in certain regions of the electron energy distribution.
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general, the macroscopic averages over the energy distribution function such
as the rate coefficients are not monotonically increasing or decreasing func-
tions of time. There can be oscillations present, although these are usually

rather small. A discussion of these phenomena is also given in Section III.

A timely application of these types of calculations is found in the prob-
lem of microwave propogation through the atmosphere. Here, the concern is
very-fast rising and high-power mic-owave breakdown in the atmosphere. Micro-
wave excitation of gas discharges is usually described by an effective field
which allows scaling from DC results (Reference 2). We have performed the
time-dependent Boltzmann calculations using the full time-dependence of the
microwave fields. Results of these calculations are presented and compared
with the conventional models 1in Section IV. This work has been the basis for
the design and analysis of an experiment at Sandia National Laboratories to
measure the temporal growth of current after application of a fast rising mi-
crowave pulse (Reference 3). The very good comparison with experiment gives
us confidence in the numerical methods and input cross section data.

Extensive compilations of measured and calculated electron swarm data ex-
ist as functions of E/N for a variety of gases and gas mixtures (References 4,
5). The utility of these data is in the simple parameterization and hence ap-
plicability of the data to a wide variety of experimental situations. Through
calculations here, we have attempted to quantify the limits of validity of the
E/N parameterization for time-dependent fields. If the field varies rapidly,
the transport and rate coefficients are no longer functions of only E/N and
tne gas composition, but also of time. It is desirable to find a way to ei-
wner modify the extensive swarm data base to include in some macroscopic way

tne time dependence of these swarm parameters or to find a parameterization

setter suited for a macroscopic description of the time-dependent phenomena.
E .~ Section V we present several attempts to formulate a hydrodynamic model to
o se instead of the full kinetic (Boltzmann or Monte Carlo) description when
tre fie'ds are varying in time.
[C
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Questions analagous to those raised for time dependent excitation of
discharges can also be asked in the case of spatially dependent fields. Monte
Carlo calculations have been initiated to study electron transport in spa-
tially varying fields. We find effects (overshoots, undershoots, cathode-di-
rected current components, non-monotonic relaxation, etc.) quite analagous to

those seen in the time dependent calculations (Reference 6). A summary of
this work, conclusions and implications to other problems are presented in
Section VI.

Of the many previous calculations of time-dependent EEDF's, we present
here only a brief outline of the major points. Previous time-dependent calcu-
lations can be divided into three main categories; electron thermalization
(field-free), approach to steady-state (finite field), and high frequency ex-
citation. A good review of this work through 1979 is given by Wilhelm and
Winkler (Reference 7).

There has been quite a bit of both numerical and analytical work related
to the problem of electron thermalization in gases (References 8-13). The
context of much of the previous work on electron thermaiization has been the
relaxation of a beam of electrons injected into a gas. The analytical results
presented in Section III are consistent with the previous analytical results
where comparisons are possible, but our results are more general than the pre-
vioué work for certain classes of probiems.

Wilhelm and Winkler and their coworkers have published a number of papers
(Reference 14) related to the approach to steady-state; i.e, the relaxation of
the EEDF, in which they have solved the two-term form of the time-dependent
Boltzmann equation for a variety of atomic and molecular gases. Their results

are consistent with those in Section IV in that the steady-state is achieved

Puli-attc i s aan. e b gite pav

in times related toc the energy relaxation frequencies and more or less inde-
pendently of the initial conditions. These times can vary orders of magnitude
depending on the gas and the values of the fieid. Braglia and His coworkers
(References 11, 15) and Tagashira and his coworkers (References 16, 17) nave
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also looked at the approach to steady-state using both Boltzmann and Monte
Carlo techniques. Where the Boltzmann equation has been used in these inves-
tigations, it has always been in the form of a time-dependent, second-order

differential equation for the isotropic part of the distribution.

Wilhelm and Winkler (Reference 18) have published the only detailed cal-
culations, to our knowledge, of time-dependent EEDF's as a result of microwave
excitation of an electron swarm. They maintain the full time-dependence of
the field rather than resorting to the effective field model, but they use the

standard two-term form of the Boltzmann equation for these calculations as
well as for their DC field calculations.

Tnere are many other time-dependent Boltzmann calculations and several
computer codes are available to do the problem (Reference 19). In fact, any
iterative solution of the Boltzmann equation is in some sense a time-dependent
solution. These codes have been used to calculate EEDF's when electron-elec-
tron collisions are important, for example. They have not been used in any
systematic way to investigate the transient phenomena or electron transport in
time-dependent fields.

Unique features of the work here are: (1) a more general form of the
time-dependent Boltzmann equation than in the previous catculations is used

here, (2) the analytical results in Section III provide an insight to the
time-dependent phenomena, and most importantly, (3) these calculations are in-
tended to form the basis of a study of electron transport in time-dependent

3

. fields as well as of the approach to steady-state.
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I1. Formulation of the Bolitzmann Equation and Solution Technique

Vo

The Boltzmann equation for electrons under the influence of an electric
field and interacting with a weakly ionized gas can be written (Reference 20);

of
aNt

Z i<y

R (1)

where f(¥,v,t) is the electron energy distribution function (EEDF) which de-

el LY X

pends on the spatial coordinates, T, the velocity vector, v, and time, t. The

acceleration due to the field is a = =-e|{E|{/m, and C is the collision operator

acad?

discussed below. This equation provides a full statistical description of the
microscopic behavior of an electron swarm interacting with a gas and subjected
to an electric field which may be a function of time or space. Factors of N,
the neutral density, are explicitly included throughout this report to illus-
trate the scaling; i.e, the space and time parameters always enter in products
with the density.

When the electrons have lost memory of their initial conditions and if
the fields are uniform in space and time, the hydrodynamic approximation is

-
-]
A

4
‘4
g

assumed to provide an accurate description of the space-time evolution of the

electron swarm. The hydrodynamic approximation can be expressed (Reference J
o0 21)» Ny
o f(F0.0) = 1 3 @-n) ng(fut) (2) :
- j .
e i
- i

where n_, the electron density, is, 3
" ]
it‘ g - [y Y ]
3 n(Ft) = [#(F,0,t) oF :
.
b
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The term “"hydrodynamic", when refering to electron transport in weakly

ot

:‘:n;:-"ﬁ:;’-i‘%i ." . """‘.
h ot
—t

jonized gases, implies a constant exponential growth or decay of the electron
density and that the space-time dependence of the EEDF is fully carried in l4
ne(F,t) (Reference 21). This is expressed by eq.(2). In practice and in con- ;ﬁ
stant fields, this means that the transport and rate coefficients are func- ;j
tions only of E/N and the gas composition. Zf
3
An equivalent expression of the hydrodynamic condition for a steady-state S
situation is (Reference 16, 22), if

fF.0) = €% () (3)

where o« is the spatial growth (or decay) constant.

- -

The one-dimensional electron continuity equation in the hydrodynamic re-
gime can be written as,

[l i ’ st . - N 5

N e - J(E)ne - vq4 (L e + DN(E e .
? mt - 7 (f) v)m - nmer? ot 0
Q -
P‘.' -
.

P | . - | . . L,
r- where “i/N is the reaction rate coefficient, Vg 1 the drift velocity and DL Tl
k- 7
b is the longitudinal diffusion coefficient. Equation (4) is the Oth velocity AR
- moment of eq.(l) and the coefficients in eq.(4) can be identified as various ;Ef
E integrals over the EEDF. . ;;
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= 3
| A feature of the hydrodynamic regime is that the coefficients in the ;E
electron continuity equation are functions only of E/N and are independent of fﬁ
space and time. When the externally applied field is a slowly varying func- Ej
tion of space or time, it is supposed that the EEDF responds immediately to Ej3
changes in the field and that the coefficients in the continuity equation can yf
be written as functions of the local, instantaneous value of E/N. e.g., :i?
. vi(z,t) = vi(z,t) = vi(E(z,t)/N). The basis of this is the assumption that ;1
the EEDF is a function of the local field and thus all averages over the EEDF N
are functions of the local field. ﬁi
If the fields are rapidly varying functions of time or space, the EEDF will
also depend on time or space because it cannot instantaneously adjust to 3:
changing fields. In addition, if there are external sources of ionization, 55;
the EEDF will also depend on those sources. Our interest here is in the re- ii
sponse of the EEDF to rapidly varying fields in time and it has been shown ii
that the continuity equation for that case can be written as (Reference 17, e
23), - ]
-
L
7
an, v, ang ane Z:‘
o C N'(t) ng - Vd(t)Wz‘ + DN (t) W + ... (5) L
. n
g o
Fy ’

i !
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A}l averages over the distribution; e.g., the excitation rate coeffi-
cients, will depend on the same parameters as do the coefficients in the elec-

tron continuity equation. Except where there is electron runaway, the long

1 “ PRt

time 1imit of eq.(5) after the field has been changed to a new value is given
by the hydrodynamic continuity equation. .
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The calculations here are of time-dependent, spatially-independent
EEDF's. These EEDF's can be thought of as Oth spatial moments or as coeffi-
cients in the time-dependent equivalent of eq.(2); i.e.,

TG - 3 (@6 @ (-9 n, (Fut).

Thus, the form of the Boltzmann equation that is solved here is,

_af(g)§¢.t) + 2 200F8) L ¢ pe(0) (7,03, (7)

N v,

The method used for the solution of the Boltzmann equation is an extension of
a previously developed technique in which the angular dependence of the veloc-
ity is approximated by a Legendre expansion (Reference 24),

f(O)(V.t) = Z fi (v.t) P'i (COSG)- (8)
1

For isotropic electron-neutral scattering, the collision operator is
given explicitly as,

CLf(vat)] = -E Q¥ (v) v fy (v,t) + U ‘;2 :—V[Q°(v)v‘f°(V.t))
) (9a)
{" +£ 153 Qk (vk) fo (vk.t) + 4vion QIon(vion) fo(vion't)




CIfv.)] = - (V) f, (vt) , >0 (3b)

A full description of the derivation of this collision integral can be found
. in references 20, 24 and 26. The Qk's are the cross sections for electron-

molecule elastic (k=0), inelastic (k) and ionizing (k=ion) collisions. The

total cross section, QT, is the sum of elastic, inelastic, ionizing and at-

taching collisions. The velocities v, are related to the energy loss €y in
the kth inelastic process,

.8 &

Vi = (e + sk) (2e/m)i

Al

4

o 0] o« . .H

and Vion 1S related to the ionization potential €ion by, %
(2 4 i :

Vion (2¢ ewn) (2e/m)2.

B

. o g

There is no scattering-in term due to attachment because electrons are 5

lost to the distribution as a result of an attaching collision. Two electrons ~;

are scattered-in as a result of an ionizing collision, and we have assumed in

-1

writing the ionization contribution to the scattering-in that the two elec-
trons exiting the ionization event share equally the excess energy of the pri-
mary over the ionization potential. This approximation has been discussed be-
fore and has been found to be quite good up to relatively high E/N in NZ
(Reference 21).

Although the solution method developed here is general, the results re-
ported are for a two-term approximation. Several spot checks were made along
the way to verify that the two-term approximation introduces no more error in
the transient regime than it does in the time-independent cases (References
22, 24), and this was found to be the case.
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A convenient way to include anisotropic electron-molecule scattering is
through the Legendre components of the differential scattering cross sections
(Reference 22),

- . do, (v,0) P, (cose) ds, (10)
i c T aér
and,
T Vi

C [fi(V,t)] = - QO (V) v fi(V.t) +

k
2 R
+ %ion Q}on (v

v

jon) T (Wignet), 1> 1.

The method described can include anisotropic scattering through use of the
Qki's, but we present only qualitative results with anisotropic scattering
here. Calculations in the hydrodynamic regime up to moderately high E/N in N2
(Reference 22) have not convifced us that it is necessary to go to the effort
of including the anisotropic scattering except when precision results are re-

quired.

For the computer solution, equation (7) is written in vector form,

aF . (v,t)
i = R..D.  F (v,t) +1 . p. oF(v,t)
Nt I

+ E.j cij (vk) Fj (vk’t) + S(V.t) (12)
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where F = (fo,fl,...). The A, B and D matrices are time-independent and
tridiagonal. C is a time-independent, diagonal matrix that accounts for the
scattering-in terms in the collision integral. S is a vector to describe any
external sources. Sources have not been included so far in the calculations.
The non-zero elements of A, B, and C are;

. AC1,1) = Q% + mv/M (v d@%/dv + 4Q°) |
AGiL ) = -QTv L irl o,
A(T,i+1) = -a(i2+3i+2)/(v(2i+3)) ,
AT, i-1) = a(i%-1)/(v(2i-1)) |
B(1,1) = vZmQ/M |
B(i,1) = 0, i£1
B(1,i+1) = -a(i+1)/(2i+3) ,
B(i,i-1) = -a(i)/(2i-1) ,

CCHL v = Q5 (v ) (v, 2v)

2
ion

(v /v)

C(H,1)(vy ) = 407" (v

ion
Because these matrices are time-independent, their elements are evaluated only
once during the calculation. The time dependence of the RHS is included in
the D matrix. For a time dependent field where E(t) = EOG(t), the non-zero
elements of the D matrix are,

T —_ T " w
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. e K e AR R RN )
. PR 5 L foaa
. L%t et LTI P A e . .

D(i,i%1) = G(t) ,

B(4,1)=0 .
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The solution was found by integrating each component of eq.(12) using a
variable order Adams-Bashforth-Mouton predictor-corrector algorithm (Reference

27). An implicit integration algorithm was necessary for stability.

There were several numerical problems that came up in the implementation Kg

of the solution technique outlined above. For example, the F's are defined on :f
a velocity grid and the velocity derivatives of the F's must be calculated at . gﬁ
each time step in the integration. Further, there is no constraint of posi- ﬂE
tivity on the distribution function in the integration scheme. A problem that Qi
is still outstanding is the implementation of a "breathing" grid in velocity 23
space to allow the distribution function to grow several orders of magnitude L
in velocity space during the course of its evolution and still maintain accu- ?}
racy in the early times. ;j
-

The calculation of the derivatives was made more accurate by avoiding the b
point v=0 in the velocity grid where the odd Legendre components of the EEDF ?ﬁ
are singular (Reference 28). The velocity grid starts at some small but fi- "
nite velocity. Derivatives calculated using splines are difficult because an- i
alytic behavior at the end points must be built into the spline basis set. We ;l
were not able to find any general analytic forms for the derivatives at the ;;
end points in the transient regime. The most stable results were found using =]
finite differences with the constraint that the distribution function is con- i;
tinuous through v, = 0 where v, is the velocity in the field direction. This ff
is physically justifiable and was found to be very solid numerically. Without {?
this constraint, finite differences for the derivatives introduced so much er- j}
ror that the integration routine could not find a solution to within the pre- :i
scribed accuracy at late times. Theldistribution function and its velocity -
derivatives at the high energy end were assumed to go to zero. T?
)

Positivity of the distribution function was forced by using the logorithm "E

of fO in the calculation. The higher Legendre components can be positive or -7
negative and therefore we use the components themselves in the calculations.
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Several attempts were made to construct a time-dependent velocity grid.
We have not yet succeeded in implementing this option, although there is no
reason it cannot be done. Accumulation of numerical error has been a severe
problem in the schemes tried so far.

The solution scheme presented here is more general than the several pre-
vious time-dependent Boltzmann calculations (References 14, 18, 19). We are
not restricted to a two-term Legendre expansion of the velocity dependence of
the distribution function and as much detail as is desired can be included in
the differential cross section data describing the interaction of the elec-
trons with the neutral gas particles. Most importantly, we do not assume that
all the angle moments are in equilibrium with the isotropic component of the
EEDF. Although these previous approximations are not bad, as will be seen,
the usual form of the Boltzmann equation that has been used previously; i.e.,

one second order differential equation for f., is not the most convenient form

O!
for examining the underlying physics and the transient phenomena.

13

-
.
-
}.
b,
3
}‘
b
h

.
3

ry T,

R e S - . Cet e e . Y - PP A e e = . -
- - R PR CLt e P “
B A . R R T P SN RIS
e Me p et . e -t e

S . R e A P N S P Lt g
Sty i o ieiensd il ctioioleds P DO O W O S T W0y § R U WO P W T W L/ Wk Wi T Gy Ny Wi WP G T Y a1




111. Model Results

In this section results of numerical and analytical calculations are pre-
sented for the time-dependent EEDF and rate and transport coefficients in sev-
eral simple model gases. Where, to the author's knowledge, the analytical re-

sults have not been previously published, more detail is given.
1. Zero Field, Power Law Cross Sections

In the absence of an electric field, a swarm of hot electrons will even-
tually cool to a maxwellian at the gas temperature. We study here a simpli-

fied model of this situation in which the gas temperature is zero and the only
electron-neutral scattering processes are elastic (Reference 29). Further,
the cross section is assumed to be isotropic and to depend on some integer
power n of the electron velocity. This model is mostly of theoretical inter-
est, but it provides a stringent test of the numerical method and some quali-
tative insight to the relaxation.

g ame. SO AR ANAS b

I—-——-rrv-y, "

After expansion of the EEDF in a Legendre series, the Boltzmann equation
for the field-free cooling problem may be written as a set of uncoupled dif-

ferential equations (any coupling of the angular parts of the velocity is due
to the field),

p o, L oma o4

e o - T2 viof

[ aNt vz M v [QO 0] ’ (13)
o of .

an 1 = _ 0 s 1 >0. (14)
o W % v

The solution of eq. (14) is,

L E s ans o S0 o o
Il o

;T' fi (vst) = f. (v,0) exp (-08 v Nt). (15)
: 14
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A general solution of eq. (13) by be found by first defining a function g

Q° v4 f

m
9= ¥ o o

and a new velocity variable t = 1(v) such that,
2 = 9
C N

The general solution for g is,

g (vot) = F (t+1)

where

Flo+x) = B @v*f (v,0).

For an electron scattering cross section of the form,

o

qv"

x|3
0
[
"

the variable t can be expressed in terms of the velocity,

v
dv' -{n + 1
tlv) = j.o qv.n+2 ® av nel , no> -1,

Conversely, the expression for v in terms of 1 is,
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viz) = [ -(n +1) ] Vin+1)

Then,

F (0,1) q vn+4 fo (v,0)
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(n+4)/(n+1) 1/(n+1)
q <-(n+1)> £ {<-gn+1)> i 0]’
qQr 0 Qs

from which it follows that

n+)

(n+4)/(n+1)
4 +1
e s <r;-1n-qtvn”> o [<

Let
1/(n+]
n+l
Y= n+1 -qtvn+]
“ren
- n+4
F(t + 1) = q (yv) £, (yv,0)
16

n+
n+l -atv

)

1/(n+1)
T) » 0] .
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Imposing the condition of normalization, we find the general solution for if
-~
|,
4 .
y f, (yv,0) y>o .
f,o(v,t) = (16) =
0 y<o "
. ).
where I
( ]/ "‘:
n+1 -
4] (n+1)
+ -
n+1 —qtvn ! n o> - L
y = < exp (Qg vNt) n=-l
0 n < =1 ]
'
There are no normalizable solutions for n < -1 because the collision fre- ﬁ;
quency goes to zero at high energies. Thus the constant collision frequency, ]
n=-1, represents a Timit of how fast the cross section can decrease with ve- Qi
locity and still lead to a physical solution for the EEDF even for a zero —
field. We will see further examples of the unique behavior for n=-1 in finite L
fields. The cut-off at y=0 in eq.(16) follows by noting that the normaliza- =13
tion in velocity space must be independent of time since in this model no ﬁ}
electrons are created or destroyed.
There are several interesting points to be noted in the above solutions. -
- The first point is that an initial delta function distribution function pre- R
- serves its shape throughout the relaxation. This was discussed by Eaton and
. Holoway (Reference 19) and Braglia (Reference 11). and is particular to the
< g
: assumption of a zero gas temperature. During the relaxation of an initial )
[‘ delta function EEDF the monoenergetic velocity at any time t for a constant "
cross section model, n=0, can be written, =
p v(t) = wv(t=0) [V + v(t=0) gNt] -1 "
{ 17 -]
. -
- 1
}¢ :
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and the corresponding electron energy as a function of time is,

1=0
e(t) = (%e) 0] e )

The average velocity and energy thus relax, not exponentially, but with powers
of time. The average energy also depends on powers of time for other initial
distributions as well, and in particuiar for a Druyvestynian. Such a power
law dependence of the relaxation indicates a continuous spectrum of eigenva-

lues.
Note also that if the initial EEDF is maxwellian, ]
)
fO(V,O) = A exp(-BvZ) .
5
then, for n=-1, 4
; ]
fo (vot) = lexp(vt)]” £ [v exp (vt), o] . 1
‘ 1
1
i.e., an initial maxwellian also preserves its shape throughout the relaxation 1
- as has been discussed by Anderson and Shuler (Reference 13). .
' Further, the consequences of anisotropic scattering on the relaxation 3
o .

rates can be seen qualitatively by writing out eqs. (13) and (14) with a gen-
eral form for the collision operator,

T

o
PR

18 ,

—_—

s "ok

- - . [ ENC L B " R .
- . . - : N " e . - 4 . - . . - . " .. N v - . v, . e . N N . . -, . .
t‘-— e N AT A L L e s s PR A T NP, W PR AP RN Dot R S0 Del Py E. T € S S VORI, YO0 0 SPT-Uo Wt S VTR WA I WSS ¥ |




Pt~ e i e~ A~ S AP i e i i Pl it e, Bttt S Rag ~Edb et S A N i S N LN % Tita an Ese 1A TR TAR VS A "Bl “A RN i A sl il Sall Ml Sl Sal il Sl A

<"
Lt
S

.
ot

—y
¥
af o
[ = m 3 4,00 _ o0 ¢ e
Wt z B T (v, - o) 1] (17) )
af ; m 1. 3 440 _ o0
i = - - vf.+ ¥ —2 = [v - Q;) f.] 18 -
- 0 _ 40 f
= (Qo Qi) V 1-. . 4
-
i =
1 The solutions of these equations are the same as for egs. (13) and (14). o
’ Since for forward scattering the quantity (QOO-QOT) is less than QOO, the re- o
S laxation of the Legendre components of the EEDF is slower when the forward an- jj
:; isotropies in the cross sections are considered. ;*
g
X The field-free relaxation of an initially steady-state distribution func-
: tion towards the gas temperature, assumed to be zero, represents a severe test
i of the numerical procedures used in the computer code. Figure 1 shows the re- i
E sults of one such comparison for a constant cross section model. This figure ;f
i\ - E
) compares the EEDF's at an instant in time, Nt = 1.3x1010 cm 3sec, when the
b
d initial electron energy has dropped to less than 10% of its initial value. X
! -
E The initial EEDF was assumed to be that appropriate to a constant cross sec- E“
’ tion model at 1 Td with an elastic cross section of 6.6x10-18 cm2 and a mass i;:
: ratio m/M=.1. The two-term approximation was used for both the analytical and fg
9 numerical calculation. Two points are to be noted in this figure. First, the Q;
;; agreement between the two curves is quite good over several orders of magni- i;
T tude. The analytical EEDF drops abruptly to exactly zero at a velocity of gi
[’ 5.6x107 cm/sec for this example. Second, the EEDF is not a monotonically de- i;j
E creasing function of velocity throughout the relaxation. Steady-state two- ?;
- term EEDF's are monotonically decreasing functions of velocity, but this mono- :5
8 tonic behavior is not typical of the transient EEDF's except for the constant =
b collision frequency model. Q?
|
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Figure 1. Isotropic EEDF for a constant cross section model at ome instant in
the field-free relaxation The dashed curve is the computer result and the

solid curve is the analytical solution.
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While the analytical results from this electron cooling model are
primarily of theoretical interest, they were of considerable help in debugging
the computer code. Simple models of the electron cooling problem have been
discussed by several investigators, and in general we agree with the previous
results.

2. Moment Equations with Finite Fields

The moment equations, velocity averages over the Boltzmann equation, have
been widely used to describe electron transport for plasma (Reference 30) and
solid-state (Reference 1) physics. A description of electron transport for
weakly ionized gases based on the moment equations is less easy to implement,
but nonetheless general. The continuity equation for electrons as given in
eq. (4) is the Oth velocity moment of the Boltzmann equation and forms the ba-
sis for most models of gas discharges. If the coefficients in eq. (4) are
known as functions of E/N and the gas composition, then eq.(4) provides a de-
scription of the time and space dependence of the electron density, and it is
not necessary to find the solution for the distribution function from a ki-
netic (Boltzmann or Monte Carlo) model.

The general form of the velocity moments of the time-dependent Boltzmann
eq. (7) can be written,

PR T N .

P P N T |

[T A W S )

av" ]
i = -2 i+) _3 n-1 - a i - !
N NoTeea (D Vi TR e (i) VI ;
y
+ n+2
X j-v C[fi] dv, (19) }
i}i where we define the moments as speed and angle averages over the EEDF, :
N 4
LJ :
20 3
L V? (t) = .f v P; (cos9) f(¥,t) dv . (20) \
r‘;/- i
]
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The first few moments are,

ane = avg = 2 C[f ] dv

aNt aNt v 0 ' (216)
v = 1 = - a8 o

R N T P

s’ = w2 = -z o [ vF el av. (21c)

Nt Nt 3 1

These equations correspond physically to a spatially homogeneous or a spa-
tially integrated description of an electron swarm and, hence, the Oth moment
does not contain the spatial gradient terms seen in eq.(4).

There are two aspects of egs.(21) that complicate the solution of the mo-
ment equations. First, the form of the collision terms cannot be determined
in general without knowledge of the EEDF. In some cases it is possible to ar-
gue for a particular form of the EEDF and then to perform the integral numeri-
cally (Reference 31). In highly ionized gases, for exampie, the EEDF is max-
wellian. Another approach has been to parameterize the EEDF by one of the
moments, the average energy (References 32, 33) or the average velocity, for

example, and to solve the resulting coupled set of moment equations.

A second complication that occurs in the solution of the moment equations
is that the moments are each coupled at most to the one higher and the one
lower in angle through the field term and, depending on the energy dependence
of the cross sections, to other speed moments throuagh the collision terms.
Some truncation of the set of equations must therefore be assumed. There are
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certain established procedures for truncation of the moment equations for
highly ionized gases (Reference 30) and this truncation can always be carried

out at a higher order to assess the effect of the truncation empirically.

In many applications in gas discharge physics, we are also interested in
determining the excitation rate coefficients. These can be determined in
principle from a knowledge of all the moments; but, in practice, it is more
convenient to return to a kinetic description for the calculation of excita-
tion rate coefficients.

It is informative to look at solutions of the moment equations for cer-
tain model cases. If we assume a constant collision frequency and no ioniza-
tion or attachment, rate equations for the moments can be written as

sv°
) = 0, : (22a)
aNt
aVn . n-1

i _ - a _(i+1) (n-i) Vigp - 8 i (n+i+1) yn-]
aNt N (2i+3) N (Zi-1) i-1

+v V¥V, i o. (22b)
i

Although these forms for the moment equations are often assumed to be accurate
in general, it is only for a constant collision frequency model that the col-
lision integrals reduce to the simple analytical expressions given in the last
terms of the RHS's of the equations above.

It is interesting to note here that the i=n moments are coupled only to
the lower moments. In particular, the drift velocity moment, i=n=1, depends
only on the i=n=0 moment and is independent of how the moment équations are
truncated. Independently of the cross section model, the drift velocity moment
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is coupled to the higher order moments only through collision terms. This
weak coupling explains why the drift velocity is so little affected by the
two-term approximation compared to the average energy, for example. Further,
in the collisionless limit, the drift velocity and average energy are given
exactly by the two-term approximation because there is no coupling to the
higher-order moments. The two-term EEDF's will be in error, but the drift and
average energy moments will be exact.

When the acceleration due to the field in the constant collision fre-
quency model is independent of time, the solutions of the i=n=0; i=n=1; and
i=0,n=1 moments can be written,

ne(t) = Constant, (23a)
. a, -vt = -vt
vglt) = S (e -1) - vy (t=o)e ™77, (23b)
2. _ m 2
<> =B exp(-2 " vt) + A exp(-vt) +a°~ M | (23c)
2 m

\Y

The electron density is constant in time because there are no electron
Creation or destruction mechanisms in this model. From eq.(23b) it can be
seen that the difference between vd(t) and the final steady-state value of the
drift velocity decays like exp(-vt) and the steady-state drift velocity is
a/v. In eq.(23c) above, A depends on the value of the drift velocity at t=0
and B is a function of the initial value of the average electron energy. The
average electron energy approaches its steady-state value with two time con-
stants. The term including exp(-vt) describes the coupling between the di-
rected component of the velocity and the random velocity. The directed veloc-
ity is converted to random velocity after each collision. The tonger time
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constant in the term exp(-2(m/M)vt) represents an energy exchange frequency
and describes how fast the electrons transfer energy to the neutrals due to

elastic collisions and the associated recoil energy loss.

Solutions can also be found for the higher moments in the constant colli-
sion frequency model. In general the relaxation of the even, higher-order

speed moments, V2n is a sum of terms with different time constants including

terms up to exp(-ZE(m/M)vt) where n > M/2m is an analytical cut-off because no
relaxation occurs faster than the collision time. Thus the even, higher-order
speed moments equilibrate with the successively lower-order, even speed mo-
ments until they all follow the time dependence of the average energy. The
slowest time constant is the energy exchange frequency, and at late times in
the relaxation all the even-order speed moments relax with the average elec-
tron energy. When ionization is present, the slowest time constant will be

the inverse of the ionization frequency and all moments will eventually relax
0

like the electron density (Reference 23). The normalized moments Vni/ ) 0’

will, however, be constant at late times.

If it 1is assumed that af1 /3t = 0 for i>0, or egquivalently, that

aV"i/at=0 for i>0, the only time dependence in the solutions of the moment
equations will be exp(-2(m/M)vt) and an initial maxwellian will relax through
a series of maxwellians to the steady-state EEDF. A1l previous Boltzmann cal-
culations make this assumption (References 14, 18, 19) and it is valid for
times > v-l. At early times, the transient EEDF's are non-maxwellian; the de-
viation from a maxwellian at early times is due to the conversion of directed
to random velocity. Because the directed velocity is usually a small fraction
of the random velocity, the deviation from a maxwellian will be small. As the
ratio of the energy exchange frequency to the momentum exchange frequency in-
gcreases, the non-maxwellian region becomes correspondingly more important in
the overall relaxation.

The implications of anisotropic scattering in the solutions of the moment
equations are similar to those discussed for field-free case. If only elastic
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recoil energy losses are considered, relaxation will be slower because the ii
energy exchange will be slower. If inelastic processes are also considered, ii
the energy exchange will be dominated by the inelastic processes and the ani- ;3
sotropic scattering will not appreciably affect the energy exchange frequency. 3

It can, however, significantly affect the momentum exchange frequency and
hence the validity of the usual approximation that afi/at=0 for i > 0.

Solutions to the moment equations can also be found for time-dependent
fields. If this constant collision frequency model is extended to the case of
a time dependent acceleration of the form a=a0cos(wt), the solutions of the

i=n=1 moment equation can be written,

-vt a
= = 0 -
vd(t) vd(t 0) e + -2 Fofs cos[wt - arccos Feff] (24)

where, 2
1/2 -

2 -

AY) T

Fop = | (25) -

eff NN mz i -

.

]

From eq.(24) it can be seen that the instantaneous drift velocity differs :25

by the factor Feff from the value that would follow from the solution of ;f
eq.(22b) as given in eq.(23b) and using a local field approximation. There is fﬁf
also a phase shift given by the same factor Feff' This phase shift describes jf:
how the current lags the applied voltage in an rf excited discharge in the re- ZL:
gion where the field is uniform and penetrates the body of the plasma. ;Q

The form of Feff is identical to the modification of the field in the ef- :
fective field treatment of rf EEDF's. The effective field concept was derived

by Holstein (Reference 25) in 1946, and it is based on several approximations.

»
The electrons gain energy, on the average, in an oscillating field only when T3
they collide with the neutrals. The effective field concept models this by o]
R
4
T
26 o
3
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replacing the cosine time dependence of the field with an effective average
heating field. In his derivation of the effective field, Holstein assumed

that the velocity derivative of the isotropic part of the EEDF changes very
little over one cycle of the field. The usual two-term approximation, which Kk

replaces two partial differential equations with one second order ODE for fo,

e
e

depends on this approximation for AC fields (References 18, 19, 25). Also, in
. the usual two-term treatment of AC fields, since it is only the averages over f
one cycle of the field that are accessible, that treatment cannot resolve the 1
phase shift between the drift velocity and the applied voltage. By following ﬁf
the time-dependence of the EEDF subjected to an rf field, it is possible to Ny
examine the validity of the effective field concept. Results from these com- -
parisons in nitrogen will be discussed in Section IV. E
t It is not possible to solve the moment equations analytically for a more
:.' general collision model than the constant collision frequency model. For a -
i cross section which depends on powers of the velocity greater than -1, the i
= system of moment equations is further coupled through the collision terms. :;
E ) These are in principle numerically solvable, but it is just as easy to solve 3
“ the Boltzmann equation. This coupling implies that the clean separation of “
5 time constants does not appear for any model other than the constant collision j
E{u frequency case. This implication will be validated in the numerical results i
C:t to follow. 3
A
T 3. Numerical Results in Finite Fields ]
E In this section results of the numerical calculations of the time-depen- 'i
A dent EEDF using the computer code described above are presented. The results
f’ are first shown for the model cases where we have analytical results are
. available for comparison.
F‘ a. Constant Collision Frequency
@
3 ._
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Figure 2 shows the isotropic part of the EEDF for a constant collision
frequency model when the field is suddenly decreased. The initial (1 Td) and
final (.5 Td) EEDF's are shown along with three at intermediate times. The

9 cm3/sec. The

normalized collision freguency v/N in this example was 5.93x10°
time-dependence of the drift velocity and average electron energy from the nu-
merical calculations agree exactly with the analysis from the moment equa-~
tions. The drift velocity drops very quickly to its final, steady-state value
and the average energy approaches its steady-state value more slowly. The ex-
ponential time constants for the drift velocity and average electron energy
are (v)-l and (2(m/M)v)-1, respectively. The deviation from a maxwellian EEDF

at the early times is too small to be resolved on the scale of Fig. 2.

The isotropic part of the EEDF can be fit with an “apparent" E/N such
that

f, (v.t,E(t)/N] f, [vat=0,(E(t)/N) 1. (26)

app

A1l the time-dependent speed averages over the distribution function after a
short time can be found from a knowledge of the steady-state averages as func-

tions of E/N using the parameterization in eq.(26). This apparent E/N, shown

badelndndaded Ak denbonleminne

in Fig. 3 for the same model as in Fig. 2, represents an eariy attempt to de-
scribe the the transient behavior of the average properties of the EEDF from a

AL

knowledge of the steady-state of local field distributions. It is valid only ]
for a constant collision frequency. In this parameterization, the electrons :
don't remember their history, but rather feel an apparent field that is !
greater than the instantaneous field. 1
¢ )

S

b. Constant Cross Sectiocn

.v PN 1.
P

- The constant collision frequency model is a very special limiting case

whose transient behavior is not typical of more realistic models. A constant

ALY NI TR

cross section model, while retaining the computational simplicity of the con-
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“igure 2. Isotrcpic EEDF relaxation for a constant collision frequency mode®.
The initia! EEDF is the steady-state EEDF at 1 Td and the E/N during relaxa-
tion is .5 Td.
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2. The apparent E/N

were found by fitting the time-dependent EEDF's to the analytical form

steady-state sclution.
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stant collision frequency model, illustrates all the transient phenomena seen

in the more detailed and realistic cross section models. The numerical values

for the parameters used in this model are; ) .

Q = constant = 1x10718 ¢l . fﬁ

. m/M = .01, i"

E(t=0)/N = 1 Td |

E(t>0)/N = .5 Td . ij

Figure 4 shows the transition of the isotropic part of the EEDF from a ;

steady-state at 1 Td to a steady-state at .5 Td. The derivative afo(v=0)/av 'i

is > 0 for the transient distribution. In the steady-state two-term approxi- i»;

mation, that derivative is identically zero. The positive derivative at v =0 o

in the steady-state two-term approximation implies a changing sign in fl. (we :

find a nonzero derivative at zero in general in the steady-state multi-term -

solutions, but this only implies a changing sign of fl in the two-term approx- ;f

imation.) 4

Several interesting features are seen in Fig. 5 which shows the relaxa- i?

tion of the fl component for the same model as in Fig. 4. The rapid collapse !7:

3 of the momentum as the field is suddenly decreased can be seen clearly in the S

E left of the figure. The abrupt decrease in fl is easy to understand. In the f;

F' absence of a field, the electron momentum is lost after one collision (assum- ;ﬂ

tJ ing isotropic scattering), and when the field is suddenly decreased, the elec- (ﬁ

f tron momentum gained between collisions is suddenly decreased. This is re- fﬁ

E: flected after one collision in fl‘ The subsequent puild-up of the momentum as E:E

g the EEDF approaches the new steady-state is very much slower than the collapse L

r} at early time and reflects the energy readjustment to steady-state. i“i
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T igure 5. Anisotropic EEDF for the conditions of Fig. 4.
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The changing sign of fl is coupled to the relaxation of the average elec-
tron energy and to the energy dependence of the collision frequency. The phe-
nomenon is quite general and appears for all cases except a constant collision
frequency when the field is decreased. When tne field is suddenly reduced,
the positive directed flux of high energy electrons will be rapidly attenuated
due to collisions; the field will not be sufficient to maintain the flux of
high energy electrons against the collisional retardation forces. The elec-
trons comprising this flux will be redistributed uniformly in angle (assuming
isotropic scattering) on lower velocity shells. On the other hand, the neg-
ative directed flux of high energy electrons will be attenuated to a lesser
extent because these electrons stream against the field to lower total ener-
gies and into a region of decreasing collision frequency. Thus the rapid col-
1isional depopulation of the high energy electrons reappears, in part, as a
streaming-in source of the negative directed flux, and the net effect is an
excess population of negative velocity electrons through the EEDF readjustment
to the new field value. Cooling of the EEDF is thus effected not only by

electrons colliding with the neutrals but also by electrons streaming against
the field.

Figure 6 jllustrates the behavior of the average energy and the drift ve-
locity for the model in Figs. 4 and 5. In steady-state the collisional energy
lost is balanced by the energy gained due to the field which is proportional
to the drift velocity. The dashed line in the figure is ratio of the col-
lional energy lost to E/N, Rc' This yields the collisional energy lost in
units of the drift velocity (Reference 14), and when RC is equal to the drift
velocity, a steady-state has been reached. All three curves in the figure
reach their steady-state values at approximately the same value of Nt, which
is on the order of the inverse of the steady-state value of the energy ex-
change frequency.

The most striking feature appearing Fig. 6 is the undershoot in the drift
velocity persisting until steady-state is reached. This undershoot occurs for

all cases for when the field is decreased and when the electron mobiiity or
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Figure 6. Average energy, drift velocity and the ratio of the collisional
power lost to E/N as functions of time for the conditions of Figs. 4 and 5.
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collision frequency is a function of the electron energy. Until the energy
relaxes to its lower, steady-state value, the mobility will continue to be too
Jow. The electrons will experience too many collisions and the drift velocity
will be correspondingly too low. It is clear why this effect is not seen for
constant collision frequencies where electron mobility is independent of en-
ergy. The field cooling of a portion of the EEDF referred to above thus ap-
pears macroscopically as a reduced drift velocity or reduced power gained by
the electrons from the field.

Although the models used in Figs. 1-6 include only elastic scattering,
the large ratio of the electron to neutral mass has the effect of simulating
inelastic processes and these models are expected to be indicative of tran-
sient phenomena in molecular gases.

¢. Reid Model Atom

We turn now to a different model which includes one inelastic process -
the Reid model atom (Reference 34), This model considers a constant elastic
cross section of 6.x10-16 cm2 and an inelastic cross section with a threshold
at .2 eV which increases linearly with energy. Figure 7 shows the relaxation
of the drift velocity, average energy and excitation rate coefficient to a
steady~state distribution at 24 Td for an inelastic cross section with a slope
of 1.x1071% cm®/eV above the threshold at .2 eV. The EEDF at t=0 was an iso-
tropic maxwellian at a temperature of .176 eV. This figure shows the very
different transient behaviors of the three average quantities. They all reach
their steady-state value at about the same reduced time, Nt=3.5x108 cm3/sec.
Here an avershoot is seen in the drift velocity of about 30% with a slight
secondary undershoot of about 4%. The average energy and the rate coefficient
also display undershoots and overshoots but which are not nearly as pronounced
as that in the drift velocity.

One of the purposes of this study is to determine the difference between

the Jocal field values of the transport and rate coefficients and their values
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Figure 7. Average energy. drift velocity and excitation rate coefficient as
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calculated from the time-dependent Boltzmann equation, i.e., vd(E(t)/N)-vd(t),
where vd(E(t)/N) is the local field (the instantaneous field) value of the
drift velocity. Figure 8 shows both values of the drift velocity as a func-
tion of Nt for the same model as in Fig. 7 but with an inelastic cross section

of slope 2x10-16 cm2/ev. The turn-on time of the field, also shown in the

CRNC IV W & S N0 2 e S O 5 'Oy WL, )

figure, is somewhat faster than the energy exchange time at steady-state
(4.3x108 cm-3sec) b.t slower than the momentum exchange time (1.8x107 y |
cm-3sec). It can be seen that the local value of the drift velocity differs
from the calculated value by as much as 25%. The instantaneous field value is
greater than vd(t) initially where the electrons are sluggish in responding to
the field, but less than vd(t) in the region of the overshoot where the elec- -
tron mobility is higher than its steady-state value. For this particular

model, the time-dependent average energy is well approximated by the Tlocal

i
<
E
B
4

field value primarily because the initial and steady-state values of the aver-
age energy do not differ greatly. The local field value of the rate coeffi-
cient is not a good approximation to the time~dependent value from the Boltz-
mann calculation. These results show the combined effects of the initial EEDF
relaxation and the time-dependent field.

Figure 9 illustrates the effect of a finite turn-on time of the field on b
the overshoot in the drift velocity. The model parameters are the same as in i
Fig. 8. The field is turned-on exponentially as indicated in the figure. The ?
drift velocity overshoot decreases from a maximum of 42% for a field which 3
turns on faster than the momentum exchange time to a maximum of 15% for a 1
field which turns on about twice as fast as the energy relaxes. :
A
The isotropic and cos® components of the time-dependent EEDF's are shown 9
= in Figs. 10-17 for the Reid model atom as the model parameters are varied. }
P, -
~ -6 _ 3
- Figures 10 and 11 show the EEDF's corresponding to the B=1x10 cm™/sec
S curve in Fig. 9. (The instability occurring at low velocities and at steady- _ 4
3 . state is due to numerical procedures which have since been improved to elimi- 3
! nate the oscillations. See Figs. 4-5.) The EEDF at t=0 was a maxwellian cor- ]
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Figure 8. Comparision of the time-dependent drift veiocity with the local
field value for a time-dependent field. The conditions are as in Fig. 7 but
with a slope of 2.E~16 cmz/eV for the inelastic cross section.
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Figure 9. Time-dependent drift velocities for conditions as in Fig. 8 for

three different time-dependent fields.
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responding to an average electron energy of about .33 eV. The negative slope
in fO at low velocities corresponds to the region of positive fl. This ca-
thode-directed component of the current is the same effect that was seen in
tne EEDF relaxation in Fig. 5. Note that the inelastic cross section thresh-
old corresponds to 2,65x107 cm/sec.

As the frequency for the turn-on of the field is lowered to B=1x10-8
cm3/sec, the relaxation of the EEDF's seen in Figs. 12 and 13 is smoother, the
cathode-directed current component almost disappears. Figs. 14 and 15 show
the EEDF reiaxation for B=1x10-6 cm3/sec as in Figs. 10 and 11 but the slope
of the cross section was increased a factor of four to 8x10-16 cmz/eV. The re-
laxation is faster, as would be expected on the basis of the moment argue-
ments. In the region of positive fl, the magnitude of fl is increased; the
cathode-directed current component is enhanced. This behavior is consistent

with the picture described above for the existence of the phenomena.

Another parameter that was varied in these model calculations was the av-
erage energy of the initial maxwellian. In Figs. 16 and 17 the relaxation of
the EEDF is shown for the same model parameters as in Figs. 10 and 11 but with
an initial average energy of .65 eV. <{(Note the change in the view angle in
Fig. 16.) The final average electron energy is .85 eV for these parameters.
The cathode-directed current component is again enhanced. This is at first
surprising since the initial and final average energies are closer. However,
for the same average electron energy, a maxwellian initial EEDF has more high
energy electrons than does the EEDF for this mode!. Because of the increasing
collision frequency with increasing energy, the collisional redistribution of
electrons is faster and hence the negative directed flux is increased. Thus,

the cathode-directed current component is enhanced.

A final parameter varied in these model studies was the field frequency.
The full time dependence of the field E=E0cos((w/N)Nt) was included in these
calculations for the Reid model atom with an inelastic cross section of slope

2x10-16 cmZ/eV. An effective field model is often used to model rf exctita-
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tion. As discussed after eq.(24), the form of the effective field was derived
by Holstein by averaging the Boltzmann equation over one cycle of the field
yielding a coefficient which multiplies the factor E/N,

, 1/2
E E NG ]
N ={ N > (27)
eff ms V? + wz

where the v's are velocity aependent. This form has been used in previous
calculations of rf excitation . Often, however, an effective v independent of
velocity is used in eq.(27) to allow a simple scaling from dc to rf results.
When the v's are independent of velocity, the scaling is exact as was seen in
the discussion of the moment equations. Figure 18 shows the normalized colli-
sion frequency as a function of velocity for the model atom here. It is far
from constant and difficult to estimate an "effective" constant collision fre-
quency.

The full time dependence of the field for the calculations is retained
here. However, unless the applications demand the detail of a full time-de-
pendent calculation, we find it is appropriate to use the field in the form of
eq.(27) provided that the velocity dependence of the collision frequency is
explicitly included and provided the field does not oscillate significantly
faster than the energy exchange. That is, averages of guantities over one cy-
cle of the field compare well with the calculations using the field as given
in eq.(27). Recall that the derivation leading to eq.(27) is particular to
the two-term approximation and is only valid to that order. 1In the case that
the energy exchange is faster than the field frequency, the EEDF can keep up
with the oscillations in the field and a local field approximation with a
slowly varying field should be used.

Figures 19-21 show the isotropic part of the EEDF for three different

field frequencies. These frequencies are indicated in Fig. 18 for comparison

with the collision freguency. The calculations are not shown through the full
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relaxation, but the figures illustrate the response of the EEDF to different
field frequencies. For comparison, steady-state inelastic rate coefficients
are 1.5x10_8, 2.8x10-8 and 4.5x10-8 cm3/sec for the normalized field frequen-
cies, w/N, of 1x1077, 4x1078

not possible a priori to estimate the proper collision frequency for use with

and 2)(10-8 cm3/sec, respectively. Since it is
the standard effective field model, we make no attempt to compare.

Tc conclude, in these model studies we have used comparisons with analyt-
ical results to guide the development of the numerical methods used in the
time-dependent Boltzmann calculations. The code has performed well for a va-
riety of strenuous tests and we have confidence in the accuracy of the re-
suits. In the constant cross section model and the Reid model atom, we find
examples of all the transient phenomena seen in the more detailed calculations
Jdstng realistic cross sections. Differences between these results and the ni-

trngen -esults to be presented below are in detail only.
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IV. Calculations in Nitrogen

Time-dependent Boltzmann calculations have peen performed in nitrogen fcr
a realistic but simplified set of cross sections (Reference 35). These cross
sections are shown in Fig. 22. Four excitation levels are considerea; effec-
tive vibrational, triplet and singlet excitation and ionization. Time-inde-
pendent calculations using this set of cross sections have demonstrated that
they yield rate and transport coefficients within 10% of the values obtained
using a full set of 24 inelastic cross sections for E/N greater than 100 Td
(Reference 35). This set of cross sections considerable reduces the computa-
tional times while retaining the essence of the physics for average electron
energies greater than about 2 eV, the peak in the vibrational cross sections.
New electronrs born in the ionization events are included in these calcula-
tions, and the electrons exiting the ionization event are assumed to share
equally the excess energy of the primary over the ijonization potential. All
¢ross sections are isotropic.

The results of the time-dependent calculations in nitrogen showed no new
features beyond those already discussed from the model calculations. The de-
tailed structure of the relaxation of the transport and rate coefficients dif-
fers from model to model but the same effects of drift velocity avershoots,
undershoot, cathode-directed current components and nonmonotonic relaxation of

the transport and rate coefficients appear in the nitrogen calculations as
well.

Although the transport and rate coefficients relax with different time
dependences, the steady-state values are all reached at about the same time.
At low E/N where ionization is not very important, that time correlates with
the energy relaxation time, more or less independentily of the initial cordi-
tions. Relaxation is complete in most cases by Nt = .5 to 1.Ox108 cm_3sec for
Z/N < 300 Td. Thus for pressures greater than severa! torr, the relaxation is
subnanosecond. At lower pressures, the transient effects persist to times

long enough that they may be impcriani in certain applications.
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At the nigher vaiues of E/N, ionization occurs very rapidly and is very
efficient at equilibrating the electron energies. figure 23 shows the relaxa-
tion of tre iorvzation rate coefficient, the average energy and the drift ve-

o . . . . . -
iozity at 3CC0 7d. The relaxation of these parameters is complete by 2.5x10

3 -

tmosel, tr ooy .0 nmsec at 1 otorr. Because the ionization frequency saturates
v ~ran TN, wrers 5 oar ypper limit to the speed of the relaxation. The up-
opr cmono2r e corizgrion rate is l.9x10-7 cm “sec from the cross section
T3ta C ~an. o inz oo larcer-goiden (Reference 36).

sre Ii.rse D7 trts o work an interesting application of these types of
2 . ozt 7 came Lp cr otne context of the propogation of high-power, fast-

TTCIoMTTowdve o S5 tnrough the atmosphere. In contrast to the DC exam-
oies L7 wm adowe, tre microwave EEDF's and all averages over the EEDF depend
ot n'y or TN, Dut 2alsc on the field frequency. Figure 24 illustrates tnhe
regiors o “nterest an an E/N versus E/w diagram. The upper left corner is
the nigr frequency ~imit where the only dependence is on E/w (Reference 37),
and tre lower rignt ccrner is the DC 1imit where only E/N need be specified.
The dots on tne figure snow where our calculations have been performed (Refer-
ence 38).

The AC caiculations were done first using the full time dependence of tne
field, E(t):EOcos(wt). The ionization rate and average energy were then founc
as averages over severai cycles of the field after a quasi-steady-state was
reached. Resuits from these calculations are shown in Fig. 25 as a function
of E/w for two different values of the ratio w/MN, appropriate to 35 GHz at 2.8
and 35 Torr. We can follow the turn-over in the jonization rate coefficient
at high fields because electron runaway will not occur in a nonrelativistic
treatment of an oscillating field, even though the average electron energies
are extremely nigh. Tne highest fie'd strength in these calculationrs was
4x105 V/em at 35 GHz. 7o continue to even higher field strenghts woulag re-

guire a rejativistic treatment and more cross secticn data
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figure 23. Time-dependent ionization rate coefficient, average electron en-

l ergy and drift velocity in nitrogen at 3000 Td.
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Fiqure 25. lonization rate coefficients and average electron energy as func-

tions of E/w for two different pressures at 35 GHz.
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These calculations were also done using the velocity dependent form of
the effective field (Reference 37) to compare with the full time-dependent
calculations. We find that the velocity dependent effective field is good for
values of the ratio of the field frequency to the collision frequency, w/v,
less than two and for E/w less than about 7.><10—7 Vsec/cm. At higher values
of E/w and for w/v greater than two, the effective field predicts electron
runaway which does not occur in a nonrelativistic treatment of rf fields.
Thus, the effective field in the form given in eq. (27) is not valid when the
ionization rate is high. It should be possible to push the validity of the
effective field to higher frequencies and higher E/w if the ionization fre-
quency were included in the collision frequency (v*v+vi), but this has not
peen tested. For a high E/w and for w/v greater than about four, the results
are independent of N. That is, the high-frequency limit is reached.

Recently experimental verification of the predictions from these micro-
wave calculations has been achieved for low field powers at Sandia National
Laboratories (Reference 3). The experiment measures the nonexponential region
of the current growth after application of a fast rising microwave field, and
the neutral pressures in the experiment are low enough (.1 to 1 Torr) that the
region of nonexponential electron density growth is measureable. Figure 26 is
a preliminary comparison of the calculations and the experiment for an E/N of
800 Td and a field frequency of about 3 GHz. The good comparison of the cal-
culations with the experiment is as much a test of the input cross section
data as it is a test of the model used to calculate the jonization rates. It

is gratifying in any case to see such good comparisons.

"y Can
e
'J

il
-
PN

.
L‘AAI.A—.“

62

v
e

e 5 3 - - . ~ Te N - T Tl . . - , - syt ) .
R NI S . PR TP " PR TP WS P P WP o PR SOy W Al LT WIS o (] % - . nleianl




- T ———————py - - e e e
" " - AU e B S A S A TRy k

o ud I

L agm e

~
N
].W

AR .

EXPERIMENT .

LOG (N (t) /N (0) )

.B - :

L o
r _ :
! -
.

: .2 - -
a y .

Y

-

1

0 2 4 6 8
‘ Nt (108cm —3g)
}

[

@

Figure 26. Comparision of calculated and experimental growth of current for
the Sandia experiment at 800 Td, 3 GHz arc¢ .1 Torr.

B P it i A

63

.............................

ol ry A - - Y 2 Ce . W W . ~ —_— 2 . i e S m .‘ "‘_.-.




T Y T T L T e T N TN e e e T T T T T A T T N W T W TN T G e i g R W W T W T e T S e TV T TE TTe S LS % W

V. Hydrodynamic-1like Models

In this section we discuss the several attempts made to parameterize the

time-dependence of the transport and rate coefficients appearing in the elec- Lﬁ
tron continuity eq.(4) in such a way that the results from one calculation or ;%
measurement can be scaled to ancther. Lacking such a scaling or parameteriza- .
tion, we are forced to perform the calculations or the measurements for each . Ld
specific time-dependent field. Fﬂ
It is useful to distinguish two types of time-dependent phencomena ; the X
relaxation of the EEDF near a boundary or source of electrons and electron BE
transport in a time-dependent field. When sources are present, the EEDF will -
depend on those sources and a general parameterization for arbitrary sources
seems unlikely to be found. However, in the absence of sources or boundaries,
but when the field is time-dependent, some parameterization may be possible. .4
-
The validity of the Tocal field approximation has been questioned by many .;
previous workers and several attempts have been made to find a way to "fix"
the local field approximation. However, most of these efforts have been in -]
the context of both the cathode boundary and the spatially varying field in 1
the cathode fall of a steady-state discharge. Several years ago Chen and
Phelps (Reference 39) took into account the low ionization coefficient near :f
the cathode by including a finite turn-on or relaxation distance for the joni- c;
zation rate after wnhich the ionization rate was assumed to follow the local 1
field. Addressing a similar problem, Marode and his colleagues (Reference 32) 3
parameterized the fonization rate by the average electron energy which was al- ;
lTowed to increase in a prescribed way in the cathode fall region. This param-
eterization assumes tnat all EEDF moments follow the spatial variation of the =Y
average eiectron energy. Later, an English and French group (Reference 40) :i
- proposed a '"memory-modified" field parameterization of the non-local ioniza- if
: tion rate due to both field gradients in the cathode fall and the cathode ) :?
;, boundary. Ingold has developed ways to approximate the collision terms in the 3
;; space and time dependent moment equations which, in principle, yield the de- ::
o .
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sired results (Reference 31). Al1l of these approaches are somewhat empirical
but they do address the problem of a non-local dependence on the fieid and
provide models in a limited parameter range of the non-uniform field electron

transport.

Models to include time-dependence in the macroscopic parameters of a hy-
drodynamic~like model have also been attempted. 7o inciude the effects of a
time-dependent field on the ionization rate coefficient, Longmire assumed that
the collision terms in the first three moment eguations are well-approximated
by the constant collision frequency model (Reference 33). He then allowed the
three time constants appearing in the three moment eguations to be functions
of the (time-dependent) average electron energy. Thus, the average electron
energy replaces E/N as the parameter in this model. It was seen earlier that
at late times in the relaxation and for a constant collision frequency model,
this is a valid parameterization, but its validity is restricted to those con-
ditions. This model is identical in principle to the moment methods of Ingold
and Marode but differs in which parameters are assumed known and which are
calculated. Aleksandrov, et al (Reference 41) present an interesting approach
discussed in detail below which is identical in form to the result of Thornber

(Reference 42) for the same probiem in electron transport in semiconductors.

The works of Thornber and Aleksandrov give a form for each of the time-
dependent transport coefficients that looks like a Taylor series in the powers
of the time-derivative of the field. The coefficients of the time-derivatives
are functions of the Jccal field, E(Nt)/N. Although the motivation for the
parameterization by Aleksandrov and Thornber differ from each other and from
the motivation suggested here, the results are equivalent. The parameteriza-
tion of Aleksandrov and Thornber is at first sight very appealing because the

definition of a transport coefficient is through the relation (Reference 43),

Flux = Transport Coefficient x Gradient
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Thus, any gradient in the system will produce a flux in an attempt to smooth
the gradient. If the time derivative of the field is considered as a gradi-
ent, there should be nonclassical fluxes in response to that gradient. Fol-
lowing this idea, the flux in the electron continuity equation is the sum of a
flux due to the gradient in the electron density, the standard electron trans-
port mechanism, and a flux due to the time-dependent field. Such a model is
very attractive; it provides a computational scheme for the new transport
coefficients and it provides a way to generalize experimental or computational
results. In addition, this parameterization preserves the scaling with
E(Nt)/N. The proposed form of the continuity equation is,

v () oo o

INt
E(Nt) S(E(NE)/N) Y 2Me
e () ) e

. <D N(E(:t)) . y2<Eg:t)> agEgNt)/N)>
a(Nz)

(28)

L aNt

where the ¥'s are the new transport coefficients and all transport coeffi-
cients depend only on the local field. To be useful, this model must provide
us with a scheme for calculating the ¥'s. The hydrodynamic~like version of
eq.(6) includes the additional gradient,

/

o vJ) ( ____iﬂj;lﬁ_.:> V)J n (r t) (29\

Equations for the evolution of the f(j‘J)'s can be found by combining
eqs. (29) and (7),

[a‘ Vv - C] f(o'o)(v) = 0

T,
Nt
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The ¥, coefficients can be found, N

. h

o = s av (31a) N

< &

(31b) ;

; o= s, f00E) a4 .

R Y

} R

ﬂll The form of the equations for (30) and (31) are similar to the equations for ;

[ the f(1)'s in the hydrodynamic formalism. We solved for the ¥ coefficients .

b .

t using a hydrodynamic code. 3

o ]

| @ These results for the ¥'s can be compared with the "measured" values from -
- the full time-dependent Boltzmann calculations. The difference between the
- full Boltzmann results and the local field values for the drift velocity are

shown in Fig. 27 for a constant cross section model with elastic scattering |

only and a mass ratio of .1. The time dependence of the field was, 1

]

= R

E(:t) = E(:t 0) (1 - exp(-8Nt)) ;

]‘

1

and the initial EEDF was the steady-state EEDF at .5 Td. This choice of the
initial EEDF eliminates consideration of boundaries or sources and the depar-

tures from the local field values are due only to the time-dependent field.

From these calculations we can "measure" xl‘

= [uglt) - vg(ENe)/N)] 7 PEQRIN | (32)
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Figure 27. Difference between the drift velocity from the Boltzmann calcula-
. tior and the local field value for three different time-dependent fields as a

function of the dimensionless time BNt.
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The "measured" values of ¥, are compared in Fig. 28 with the calculated value

from eq.(32). The measurements show that the ¥.'s are not independent of

d(E(t)/N)/d(Nt) as required by the first order tieory presented above to be
valid. A second order theory fits the data better but not over the entire pa-
rameter range. We were not encouraged from these results to proceed to any
higher orders even though the calculated value of ¥ from eq.(31b) are close

to the measured value as is seen in the figure.

Aleksandrov and Thornber give numerical values of the ¥ coefficients for
certain cases but make no comparison with any "measured" values. They have
also extended these ideas to the case of spatial gradients, and it is possible
that the theory is more appropriate for the spatially varying field than for
the time-dependent field.
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1 from eq.(32)
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VI. Summary and Conclusions

We have presented a numerical solution of the time-dependent Boltzmann
equation and have jllustrated its use with model calculations. These model
calculations are relatively fast computationally and much easier to consider
for analysis than the more realistic cross section models. A summary of the
results of the calculations in nitrogen is presented, but the results differ
only in detail from the model calculations. The model calculations serve to

illustrate all the transient phenomena seen in tne more detailed calculations.

Based on the previously published results and those presented here,
sources can be neglected for Nt > (vu/N)-l. The electrons lose memory of
their initial conditions for times greater than the energy exchange time.
Previous calculations and those presented here show that this relaxation time
can vary orders of magnitude depending on the gas composition and E/N. Limits
on the applicability of the local field approximation have been explored. Ex-
cept for E(Nt)/N's which vary rapidly on the scale of several times the energy
exchange frequency, the local field is a valid parameter for the coefficients

in the electron continuity equation.

Several attempts have been made to find a parameterization of the time-
dependent transport and rate coefficients, or to formulate a hydrodynamic-like
model for time-dependent fields. Previous efforts, to describe, for example,
the ionization rate in the nonuniform field region of a discnarge, have beer
examined for application in the time-dependent problem. We have not succeeded

in finding such a macroscopic description for the time-dependent cases.

The electron continuity equation, only requires information on the elec-
tron density growth (or decay) constants and the electron flux. By restrict-
ing the information sought in the EEDF to the growth constants and the flux,
phenomena which may be important in some applications are not observed. For
example, while the net electron current is sensibly directed toward the anode

throughout the relaxation of the EEDF, there 1is a component of the current
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{ which flows to the catnode and which consists of the low velocity electrons

t The moments which are most sensitive to this component are not usuaily °“n-
iir cluded in models of gas discharges. This problem is similar to tnat expectec
T in eiectron runaway. If the bulk distribution dominates the runaway component
at all times due to ionization, the moments and information requirec 1n the
continuity equation are independent of the runaway fiux. This arguement sug-

gests that in certain applications, a description based solely on tne continu-

ity equation is of limited utility. This probiem nas peen recogn:zed De‘aore,

put a systematic attempt to resolve it has not been made.
Many previous Boltzmann calculations of the time-dependence of the EEDF's
*‘! nave been published. A good review is given in Wilheim and wWinkler (Reference
1 7). As was mentioned in the introduction, the previocus time-dependent Bolt:z-
S mann calculations have assumed a two-term approximation and that the aniso-
! tropic component of the distribution is in equilibrium with the isotropic
f. part; i.e., afl/at=0. Although the calculations discussed above are all two-

term results, we have performed multi-term calculations as spot checks along
the way to verify that the error introduced by the two-term approximaticn ‘s
no more severe in the transient regime than it is in the steady-state regime.
[ This has been verified in all the model cases and in nitrogen. The neglect 2of
the time derivative of fl is a good approximation for the most part. However,
if the detailed response of an electron swarm to an rf field is desirec., the
neglect of the time derivative is no longer justified. For example, <here ‘s

no phase shift between the applied voltage and the current if 3¢, ,3t=0.

i

Again, due to the particular form of the Boltzmann equation commocriy usec
¢ with the two-term approximation, a single second order differential eauatio-
[~ for fO in the place of two coupled first order differential eguations for
foand fl‘ the drift velocity overshoots ang uncersrocts and tne catrogde-o -

rected component of the current have not been previously reported in the aas

———TY —

discharge literature.
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Electron transport in semiconductors is described by a model which is
formally equivalent to that used here (Reference 1). There the phenomena of
drift velocity overshoot and undershoots have been inferred from measurements
of the frequency dependence of the conductivity in semiconductors. Considera-
ble theoretical effort has been devoted to the explanation, and the pnhenomena
we see here are consistent with the explanations given in that literature. We
anticipate that there should also be a cathode-directed component of the cur-
rent associated with the transient electron transport in semiconductors. It
is interesting to speculate as to the effect of this current component in fast

switching in semiconductors.

[n a separate effort but related to this work we have begun Monte Carlo
calculations of electron transport in nonuniform fields in space (Reference
6). All the phenomena seen in the transient regime are also seen in the nonu-
niform field regions. The explanations for the effects are directly analagous
to the explanations in spatially varying fields are directly analagous to the
explanations given here for the time-dependent fields. It is tempting to
speculate that tnrough the judicious tailoring of the field distributions in
space or the time-dependence of the applied voltage that we can tailor a elec-
tron energy distribution function to fill specific requirements for specific

applications.
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