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1. Introduction
We prove a lower bound of Q(n log n) messages, for the problem of electing a leader in a ring of n

processors. The processors are assumed to be identical except that each has its own uniquE identifier. Each

processor is allowed to know n, the size of the ring. Processors can communicate only with their neighbors in

the ring, by sending messages. We assume that execution of the system is synchroncus, and that all

processors begin their algorithms at the same time. Unlike in previous work, the value of n is arbitrary, and

not constrained to be a power of two. We prove the result for comparison algorithms, but previously known

techniques using Ramsey's theorem show that the result holds under different assumptions.

The problem of determining the number of messages required to elect a leader in a ring has attracted

considerable attention [B,CR,DKR,FL,GHS,HS,IR,L,P,V]. There are deterministic algorithms for the

synchronous model [FL,V] which use 0(n) messages, but which require large amounts of time and which use
the processor ID's to count. The best deterministic algorithms which use comparisons of II)'s only use O(n

log n) messages [HS,GHS,B,DKR,P]. These algorithms work for both the synchronous and asynchronous

models. On the other hand, a lower bound of Q(n log n) (with constant 1/4) has been proved for the number

of messages required if communication is asynchronous [B]. If communication is synchronous, and either (a)

the algorithm is restricted to using comparisons on ID's only, or (b) the algorithm is time-bounded

independently of the size of the set from which the ID's are chosen, then an S(n log n) lower bound (with

constant 1/2) has been established [FL]. However, the results of [FL] require the severe linitation that the

value of n is a power of 2. In this paper, we show how to prove an 9t(n log n) lower bounid for the same

models, but for arbitrary values of n.

Complexity results are often first proved for powers of 2, and then extended to arbit'ary values in a

straightforward way. The lower bound proofs of [FL] do not appear to extend in such a simple manner.

Those lower bounds are proved for a particular highly symmetric circular configuration of ID's, where the

symmetry is based on having a number of processor ID's that is precisely a power of 2. One might construct a

symmetric configuration for a power of 2, and then try to extend it is some way for the extra processors.

However, this strategy introduces special treatment for the extra processors. This special treatment might

change the behavior of the algorithm entirely, perhaps allowing some processor to become el acted easily.

We introduce several nice techniques beyond those in [FL]. Two of these techniques are of particular

interest. First, we generalize the notion of "chains" from [FL], as a way of describin I limitations on
information flow during a computation. Second, we develop a hierarchical assignment of processor ID's that

..... . . . . . . . ..



2

creates considerable "replication symmetry" around the ring. Such an assignment can be produced for

arbitrary values of n. The fact that there are rings of every size having this type of symmetry seems to us to be

quite interesting.

Our new lower bound still requires that either assumption (a) or (b) above hold. We give the proof for case

(a) only, with the result for case (b) following as in [FL], using a reduction defined via Ramsey's theorem.

The constant we obtain for our general S(n log n) bound is 1/(18 log2(9)), which is much smaller than the

constant of 1/2 obtained in [FL]. Thus, for the special case where n is a power of 2, the results of [FL] still

give the strongest known lower bounds.

The remainder of the paper is organized as follows. Section 2 contains the formal model and problem . -

statement. Section 3 contains the general theory used to prove the lower bound for comparison algorithms.

Namely, it is shown that, in a ring with certain "replication symmetry" properties, many messages are

required in order to distinguish certain processors. Section 4 contains a construction of a ring with such

replication symmetry properties. Section 5 integrates the results of Sections 3 and 4, thus yielding the lower

bound result for comparison algorithms. As a corollary, we obtain a corresponding lower bound for time-

bounded algorithms. Section 6 describes remaining questions.

2. Formal Model and Problem Statement
In this section, we describe the formal model we use for our lower bounds. The contents of this section are

summarized from [FL], and the interested reader is referred to the other paper for additional details.

2.1. Algorithms

All processors are assumed to be identical except that each has its own unique identifier, chosen from an ID

space X, a totally ordered set. We assume that all processors begin their election algorithms at the same

time. Each processor is modelled as an automaton that behaves as follows. Initially, the processor has an ID

from an ID space X recorded in its state. At each round, the processor examines its state and decides

whether to send a message to each of its neighbors, and what message to send. Then each processor

receives any messages sent to it in that round. The processor uses its current state and these new messages

to update its state. Certain of the states are designated as "elected" states.

It may be assumed, without loss of generality, that algorithms are in a certain normal form. In this normal

form, the state of each processor records exactly its initial ID and the history of messages received, and each

7.
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.4

message which is sent contains the entire state of the sending processor. We represer-t such history

information by means of LISP S-expressions. The S-expressions that arise during computation are of a

special type, which we will call the well-formed S-expressions over X. The atoms are x E X and NIL. The

well-formed S-expressions over X are just the following: (1) the elements of X, and (2) thcse of the form

(S, s2,s3), where S2 is a well-formea S-expression over X, and s, and s3 are either well-formed S-expressions 1
over X or NIL. Let I(X) denote the set of well-formed S-expressions over X.

The initial states will just be the ID's x E X. Each message will contain exactly the state of the sending

processor. When a processor in state s receives messages si and s2 from its counterclockwise and

clockwise neighbors respectively, its new state will be the S-expression (s,s,s2). (If no message is received

from a neighbor, the atom NIL is used in place of s1 or s as a placeholder.) To complete the algorithm

specification, we define a function which determines when messages are to be sent in either direction, and a

designation of which states indicate that the processor has been elected. Thus, an algorithm over X is a pair

(E,,u), where E C I(X) is the set of elected states, and /, a mapping I(X) x {counterclockwise,clockwise)

{yes,no}, is the message generation function. We assume that the set E of elected states is "closed": if s E E

and s, ,s2 E 1(X) U {NIL), then (s1,s,s2) E E. Thus, once a processor has been elected, it will remain elected.

2.2. Executions

To facilitate discussion, we index the processors in the ring clockwise, as 0,...,n-1. We count indices

modulo n. A ring of size n over ID space X is an n-tuple of elements of X, giving the initial ID's of the

processors 0,...,n-1, in order. A configuration of size n is an n-tuple of S-expressions in Y(X), representing the

states for the n processors. A message vector of size n is an n-tuple of ordered pairs of elements of 1(X) U

{null). It represents the messages sent counterclockwise and clockwise by each of the n processors.

An execution of an algorithm for ring R of size n is an infinite sequence of triples (C1,M,C2), where C1 and C2

are configurations and M is a message vector, all of size n. We require executions to satisfy several

properties. First, the initial configuration must be R. Second, the second configuration in each triple must be

the same as the first configuration in the next triple. Finally, each triple in an execution must describe correct

message generation, as given by u, and correct state changes, as described earlier. An execution fragment

is any finite prefix of an execution.

We now define our complexity measures. We measure the number of messages sent and the number. of

rounds taken only up to the point where a processor becomes elected. (This convention only serves to

.. . . ........ ,...... .. ...--.-•
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strengthen our lower bound.) For any execution e, let finishtime(e) denote the number of the first round after

which a processor has entered a state in E. Let messages(e) denote the number of messages sent during e, P

up to and including round finishtime(e).

2.3. Election of a Leader

Let X be an ID space with lxi > n. A ring algorithm over X is said to elect a leader in rings of size n provided

that in each execution, e, of the algorithm, for a ring R of size n over X, exactly one processor eventually

enters a state in E.

2.4. Comparison Algorithms

We say that two S-expressions, s and s', over X are order-equivalent provided that they are structurally

equivalent as S-expressions, and if two atoms from s satisfy one of the order relations <, = or >, then the

corresponding atoms from s' satisfy the same relation. An algorithm is a comparison algorithm provided that ,

if s and s' are order-equivalent well-formed S-expressions over X, then processors with states s and s'

transmit messages in the same direction or directions and have the same election status. That is, -

FI(s,counterclockwise) = [(s',counterclockwise), /t(s,clockwise) = l,.(s',clockwise), and s is in E exactly if s' is

in E.

3. Chains
In this section, we describe the general theory needed for our lower bound proof for comparison algorithms. .--

We introduce the concept of a "chain", which describes information flow during an execution of a ring I

algorithm. The notion of a "chain" used in this paper is a substantial generalization of the notion of a "chain" .

used for a similar purpose in [FL]. For comparison algorithms, we show that nonexistence of certain chains

implies that certain processors in a ring remain indistinguishable. Our definition of a chain is rather unusual,

but turns out to be exactly the right description of information flow to prove this indistinguishability.

3.1. Basic Definitions

A k-segment of a ring is a length k sequence of consecutive processors in the ring, in clockwise order. Let

S and T be two k-segments in a ring, with first processors p and q respectively and last processors p' and q'

respectively, and let e be an execution (or execution fragment) of an algorithm in the ring. Then a clockwise ..-

chain in e for (S,T) is a length k subsequence of the steps of e, e, e 2. e k such that the following is true.e1 e2 ... ek,..

In each step e,., a message is sent either by processor p + j - 2 to processor p + j - 1, or else by processor q

+ j. 2 to processor q + j- 1. Thus, a clockwise chain for a pair of segments describes combined information

. . . . . . . . . .... . . . .. ...... ..- -.---



5

flow clockwise in the two segments, from outside the two segments up to the last processors p' and q'. A

counterclockwise chain in e for (S,T) is defined analogously, for information flow counterclockwise: in each

step e,., a message is sent either by processor p' - + 2 to processor p' -j + 1, or else by processor q' - + 2

to processor q' j + 1.

Two length k vectors of X-elements are said to be order-equivalent provided that the elements in

corresponding positions satisfy the same ordering relations in the two vectors. (That is, if the .wo vectors are

a and b, then a, and a, satisfy the same relation, <, = or >, as bi and b,.) Two segments S and T are said to be

order-equivalent in a particular ring R provided that the sequences of initial ID's of the procesors in the two -

segments are order-equivalent.

Let e be an execution fragment. Then maxcw(e) is defined to be the maximum k for which there are

order-equivalent length k segments S and T (possibly with S = T), such that e contains a clockwise chain for.

(S,T). The quantity maxccw(e) is defined analogously. Let sum(e) = maxcw(e) + maxccw(e).

3.2. Limitations on Chains

First, it is obvious that a length 0 execution e has maxcw(e) = maxccw(e) = sum(e) = 0.

The following lemma limits the growth of chains at a single step of an execution.

Lemma 1: Let e be an execution fragment for a ring R, and e' another execution fragment
consisting of all but the last step of e. Then (a) maxcw(e) < maxcw(e') + 1, with maxcw(e) -

maxcw(e') if no messages are sent clockwise at the last step of e, and (b) maxccw(e)
maxccw(e') + 1, with maxccw(e) = maxccw(e') if no messages are sent counterclockwise at the
last step of e.

Proof: We argue part (a). Part (b) is analogous. The second half of the claim is obvious. We
argue the inequality maxcw(e) < maxcw(e') + 1. We may assume that maxcw(e) > 1, since
otherwise the result is obvious.

Let S and T be order-equivalent segments of length maxcw(e) for which there is a clockwise
chain in e. Let S' and T' be the segments of length maxcw(e) - 1 consisting of all but the last
processor in S and T respectively. Then S' and T' are order-equivalent. Moreover, since only the
last message in the chain could have been sent at the last step of e, it must be that e' contains a
clockwise chain for (S',T'). Thus, maxcw(e') _ maxcw(e) - 1, as required. I

-'..
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3.3. Bisegments

In the next subsection, we will show that, for comparison algorithms, limitations on chains in an execution

imply limitations on distinguishability of processors. In order to state those results, we require some

additional definitions.

If k1 and k2 are positive integers, a (k1,k2)-bisegment is defined to be a pair of segments, the first of size k,

and the second of size k2, which overlap in a single processor (the last processor of the first segment and the

first of the second segment). The processor which appears in both segments is called the center of the

bisegment. The spanning segment of a bisegment is the segment obtained by concatenating the two

segments in the bisegment, and removing the duplicated center. Two bisegments are said to be

order-equivalent in a particular ring provided their spanning segments are order-equivalent. Two processors

p and q are (kl,k2 ).equivalent in a particular ring provided that their (k,,k2)-bisegments (i.e. the

(k1 ,k2)-bisegments centered at p and q) are order-equivalent.

Let S = (S1,s 2) and T = (T1,T2) be two (kl,k2).bisegments, e an execution or execution fragment. Then a

clockwise chain in e for (S,T) is a clockwise chain in e for (S1,T1), and a counterclockwise chain for (S,T) is a

counterclockwise chain for (S2,T2). A chain in e for (S,T) is either a clockwise chain or a counterclockwise

chain for (S,T).

3.4. Indistinguishability

In this subsection, we give a lemma which shows that, for comparison algorithms, absence of certain chains -.

implies that certain processors must remain "indistinguishable".

Our notion of "indistinguishability" is defined as follows. If S and T are two ID sequences, each of length k,

and s and t are two S-expressions, then s is congruent to t with respect to (S,T) provided that s and t are

structurally equivalent, and corresponding positions in s and t contains elements from corresponding

positions of S and T, respectively. If S and T are two segments of a particular ring, then s and t are congruent

with respect to (S,T) provided that s and t are congruent with respect to the corresponding sequences of ID's.

Similarly, if S and T are two bisegments of a ring, we say that s and t are congruent with respect to S and T

provided that they are congruent with respect to their spanning segments.

Lemma 2: Let p and q be (k1,k2)-equivalent processors in a ring R, and let S and T be their
respective (k1,k2)-bisegments. Let e be an execution fragment of a comparison algorithm for R, If
there are no chains in e for (ST), then at the end of e, the states of p and q are congruent with
respect to (S,T).

.............................................
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Proof: The proof is by induction on the length of e.

Base: Jel = 0. Neither p nor q has received any messages in e, so they will remain in states which
are congruent with respect to (S,T).

Inductive step: lel > 0, and the result holds for any execution fragment of length shorter than Jel
and any values of k, and k2 . Let e' denote e except for its last step. Then by inductive hypothesis,

p and q remain in states which are congruent with respect to (S,T) up to the end of e'. Consider
what happens at the last step. Let p' and q' be the respective counterclockwise neighbors of p
and q, and p" and q" the respective clockwise neighbors.

Case 1: Both of the following hold: (a) Either p' and q' are in states which are congruent with
respect to (S,T) just after e', or else neither p' nor q' sends a message clockwise at the last step of
e. (b) Either p" and q" are in states which are congruent with respect to (S,T) just after e', or else

neither p" nor q" sends a message counterclockwise at the last step of e.

In this case, it is easy to see that p and q remain in states which are congruent with respect to

(S,T), after e. For if p' and q' are in states which are congruent with respect to (S,T) just after e',

then since the algorithm is a comparison algorithm, they both make the same decision about

whether or not to send a message clockwise at the last step of e. If they both send a message,
Then the messages they send are just their respective states, which are congruent with respect to

(S,T). A similar argument applies to p" and q". It follows that p and q remain in states which are

congruent with respect to (ST) after the last step of e.

Case 2: Processors p' and q' are in states which are not congruent with respect to (S,T) just after

e', and at least one of them sends a message clockwise at the last step of e.

If k, = 1 (i.e. if p and q are at the counterclockwise ends of their respective bisegments), then a

clockwise chain for (S,T) is produced by the message sent at the last step, a contradiction. So

assume that k, > 1. Since p and q are (k,k 2 ).equivalent, it follows that p' and q' are

(k .l,k 2 + 1).equivalent. Let S' and T' denote their respective (k1 l,k 2 + 1)-bisegments. S' and T'

contain exactly the same processors as S and T respectively, but are centered at p' and q' rather

than p and q. Since the states of p' and q' just after e' are not congruent with respect to (S,T), they

are also not congruent with respect to (S',T'). By the inductive hypothesis, there must be a chain

in e' for (S',T'). If there is a counterclockwise chain in e' for (S',T'), then it is also a

counterclockwise chain for (S,T), so there is a counterclockwise chain in e for (S,T). On the other
hand, if there is a clockwise chain in e' for (S',T'), then since at least one of p' and q' sends a

message clockwise at the last step of e, we obtain a clockwise chain in e for (S,T). Either case is a

contradiction.

Case 3: Processors p" and q" are in states which are not congruent with respect to (S,T) just

after e', and at least one of them sends a message counterclockwise at the last step of e. The

argument is analogous to the one for Case 2. I

Thus, we have shown that absence of certain chains implies that certain processors will remain congruent.

-. . . . . . . .-.. :
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6vo corollaries which will be used in our lower bound proof follow from this lemma. The first one says that,

hen chains are short and there are lots of equivalent processors, any message which gets sent has many

)rresponding messages sent at the same time by other processors.

Corollary 3: Let k be a positive integer. Assume ring R is such that every k-segment has at least
i order-equivalent k-segments. Let e be any execution fragment of a comparison algorithm in R, 0'
be another fragment consisting of all but the last step of e, and assume that sum(e') < k. If some
processor p sends a message clockwise (or counterclockwise) at the last step of e, then there are
at least i processors that do the same.

Proof: Consider the case where p sends a message clockwise. The other case is analogous.
Let k1 = maxcw(e') + 1 and k2 = maxccw(e') + 1. The (k,k 2)-bisegment for p has at most k
elements, so that p has at least i (kl,k2)-equivalent processors. Let q be any one of these
processors, and let S atid T be the (k1,k2)-bisegments centered at p and q, respectively. Then
there cannot be a chain in e' for (S,T), by the definitions of maxcw and maxccw. But then Lemma
2 implies that p and q remain congruent with respect to (S,T) at the end of e'; since the algorithm is
a comparison algorithm, q also sends a message clockwise at the last step of e. I

.mma 2 also has the following consequence for comparison algorithms to elect a leader. This corollary says

at long chains must be generated in order to elect a leader, if certain equivalent processors exist.

Corollary 4: Let k be a positive integer. Let R be a ring in which every k-segment S has another
order-equivalent k-segment T. Let e be any execution fragment of a comparison algorithm which
elects a leader in R, such that a leader gets elected in e. Then sum(e) > k.

Proof: Assume not - that sum(e) = maxcw(e) + maxccw(e) < k. Let k1 = maxcw(e) + 1 and k
2

= maxccw(e) + 1. The (k1 ,k2)-bisegment for the processor p that gets elected leader has at most
k elements, so that p has a (k,k 2)-equivalent processor q # p; let S and T be the
(k,k 2)-bisegments centered at p and q, respectively. Then there cannot be a chain in e for (S,T),
by the definition of maxcw and maxccw. But then Lemma 2 implies that p and q remain congruent
with respect to (S,T); since the algorithm is a comparison algorithm, p and q cannot be
distinguished as to leadership. This is a contradiction. I

Replication Symmetry in Rings
n this section, we show, for each n, how to construct a ring, Rn, consisting of n ID's chosen from a

rticular ID space. The ring Rn is constructed to have a large amount of replication symmetry. That is,

gments in Rn have many order-equivalent segments. In the next section, we will show that this replication

mmetry causes the R to require a large number of messages for election of a leader.

n-.---
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1. Hierarchical Organization of Processors

-ix a particular ring size n > 1. Rn will be constructed by first constructing a sequential pattern Pn and then

nnecting its ends to form a ring. The construction of Pn groups the processors using a hierarchy of depth

where d = L (loggn)/2 J. We describe the grouping using a derivation tree of a context-free grammar.

iter, we will use the structure of the derivation tree to assign ID's to the n leaves of the tree and thereby

oduce pattern Pn.

Define the coritext-free grammar G as follows. The nonterminals, representing groups of processors, are A,

id Bi, 1 < i < J, plus B0. There is just one terminal symbol, p, representing a processor. The start symbol is

The productions are:

Bi -, -B A +A 8 Bi~~ A A Bi Bi, forO < i <d - 1,

A -Ai + 1 i+*  Bi+1 i+l i+1  i +1 i+ 1 i + 1 i + 1, 1  < _d 1

A.-4A B A A 8 B B.A. 1 A 1 for 1 < i<d -1,

baBd -- p d, and Ad -4 Pd.

(That is, Bd generates a string consisting of bd p symbols, and analogously for Ad.) The quantities ad and bd

ill be defined later, in such a way as to guarantee that the length of the unique sentence generated by G is n.

For each i, 0 < i < d, define the level i sentential form of G to be the unique string over {Ai,E,) derivable in

. There are exactly 9' nonterminal symbols in the level i sentential form. Moreover, for each i, the number of

,mbols A. is exactly one less that the number of symbols B.

Lemma 5: In the level i sentential form of G, 0 < i < d, the number of symbols A. is L 9'/2 J, and
the number of symbols B. is r 9i/2 1.

Proof: By induction on i. I

All A, nodes derive a terminal string of the same length; let us call this length a . Similarly, all El nodes derive

terminal string of the same length, which we will call b.. Let ci = min(a,b), for all i, 1 < i < d.

We next describe how to select the values ad and bd. They are chosen in such a way that the total length of

ie unique sentence derived in G is exactly n, and so that Ibd - adl is small. We use the following.

Lemma 6: Let m, n > 0 be integers. Then there are integers a and b such that n = am + b(m +
1) and lb -al < m.

Proof: Fix m. If m = 0, then a = b = n suffices, so assume that m > 1. We proceed by
induction on n.

7 - -7-. . -
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Basis: n = 0. Then a = b = 0 suffices.

Inductive step: Assume that n = am + b(m + 1) and lb- al m. We will produce a' and b' such
thatn + 1 = a'm + b'(m + 1)andlb'-a'I < m. Ther are two cases:

Case 1. b -a < m- 2. Then let a' = a- 1 andb' = b + 1. The equation is satisfied, and b' -a'
b-a + 2. Thenb'-a' >b-a> -m,andb'-a'- (m-2) + 2 = m, as needed.

Case 2. b -a > m- 1.

Then let a' = a + m and b' = b -m + 1. The equation is satisfied, and b' -a' = b- a- 2m + 1.
Then b' a'm-1 -2m + 1 = -m,and b' -a' < b- a since m > 1. Thus, b' -a' m, as needed.
I

Let m = L 9d/2 J. It is easy to see that m is O(n1/ 2), and in particular, that m < n1 /2/2. Using Lemma 6,

choose ad and bd to be integers such that n = adm + bd(m + 1) and lbd- adl 5 m. We must show that ad and

bd are nonnegative: if either of ad and bd is negative, then max(ad,bd) < m - 1, so n = adm + bd(m + 1)

2(m 2) < n/2, a contradiction.

Lemma 7: The length of the unique sentence generated by G is n.

Proof: By Lemma 5, there are exactly L 9d/2 J = m symbols Ad' and exactly r 9d/2 1 = m + 1
symbols Bd in the level d sentential form of G. Since n = adm + bd(m + 1), the result holds. I

We have already noted that m is e(n" 2). Since ad is nonnegative, we have that n 2 bd(m+ 1). Using the

lower bound on m, we see that bd is O(n/ 2).

The final lemma of this subsection gives the exact value of the difference c1- c1  "

Lemma 8: The difference c,- c 1 = 4 9d (i + 1)(n -bd)/m, for 0 < i< d- 1.

Proof: We first show that if ai+1 < b 1, then a ( b. This follows since a = 5a + 4b <
4a+ 1 + 5bi+ 1 = b. A similar fact holds if b1 " a+ Next we note that ai - a,+1 = b" b 1  

•

4(ai+ 1 + bi+ 1). Thus no matterwhich of ai,1 and bi+1 issmaller, c,- c,+ 1 = 4(a+ 1 + bl)"

From the choice of ad and bd, we have ad + bd = (n - bd)/m. It follows that + b 1
9 d.(i + 1)(n. bd)/m. Substituting into the expression for ci - ci+ gives the desired result. I

4.2. Labelling of Processors

Let X be the ID space consisting of all strings of length d + 1 whose elements are nonnegative integers,

with the strings ordered lexicographically; X is the ID space from which the pattern Pn will be constructed.

*We define Pn by describing an assignment of ID's to n processors, corresponding to the leaves of the
.°n

- . U

... . . . . . . . . . . . . . . . . .
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derivation tree of G. In order to do this, we associate labels with the nodes of the derivation tree. The label of

the root of the tree is the null string. If a node with a corresponding nonterminal Ai or B, 0 < i < d -1, is I.

labelled by the string w, then the labels of its n',e children are respectively wO, wi, w2, w3, w8, w7, w6, w5,

w4. If a node with a corresponding nonterminal A is labelled by the string w, then the labels of its ad children
d

are respectively wO, wi ,..., w(ad- 1). If a node with a corresponding nonterminal Bd is labelled by the string w,

then the labels of its bd children are respectively wO, wl ,..., w(bd - 1). Processor ID's are generated by
interpreting the labels of the leaves as elements of X, i.e. as length d + 1 strings of nonnegative integers,

ordered lexicograpically.

In the level i sentential form of G, define an ordered pair of nonterminal symbols to be "of type AA"

provided that it consists of the two symbols AiA, and the label of the node of the first nonterminal is ,

lexicographically greater than that of the second. We use analogous definitions for types AA, A>B, A<B,

B>A, BA, B>B and B<B. p

We now show that the level i sentential form has equal numbers of consecutive pairs of nonterminals of the

eight possible types.
Lemma 9: In the level i sentential form of G, 0 < i < d, the number of occurrences of

consecutive pairs of each of the eight types A>A, AA, A)B, A<B, B)A, B<A, 8)B and B<B is exactly t.
L 9'/8 J.

Proof: It suffices to show that the numbers of occurrences of the eight types of pairs are equal,
since the total number of pairs is exactly 9'. 1 = 8 L 9i/8 J. We proceed by induction on i. For the
basis, i = 0, the result is vacuously true. Assume that the result is true for i, and consider the level
i + 1 sentential form. There are two kinds of pairs of level i + 1 nonterminals: those in which both
elements are derived from the same level i nonterminal node, and those in which the two elements
are derived from two different level i nonterminal nodes. Each level i nonterminal node generates
a length 9 sequence of level i + 1 nonterminals, in which each of the eight types of pairs has
exactly one occurrence. Therefore, there are equal numbers of the eight possible types among
the pairs which are derived from the same level i non'terminal node. Also, each pair which is
derived from two different level i nonterminal nodes is of the same type as the corresponding pair - -

of parent nodes; the inductive hypothesis implies that there are equal numbers of the eight
possible types among these pairs, as well. The result follows. I

In any level i sentential form, note that the pair consisting of the last nonterminal node followed by the first

nonterminal node, is of type B>B.

* . . * . -. .- *-.-- ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C.. . * •.. . .
. . . . . . . . - . . . .. . . * * * - . *. **o.**°
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4.3. Replication Symmetry

The ring Rn is constructed by folding the sequential pattern Pn constructed in the preceding subsections

into a ring; the sequential pattern Pn is arranged around the circle in clockwise order. In this subsection, we

state a lemma which describes the replication symmetry of Rn.This lemma will be used in the next section, to

yield our lower bound for the number of messages required by a comparison algorithm to elect a leader.

Lemma 10: Let 1 < i < d. Let S be any segment of Rn of length at most ci + 1. Then there are
at least L 9'/8 J segments of Rn that are order-equivalent to S, including S itself.

Proof: Let S be a segment of Rn, of length at most ci + 1. Then S is contained in the subtrees of
at most two nonterminal nodes at level i. These two are either two consecutive nonterminal nodes,
or else the last and first nonterminals in the sentential form. Let t be the type of this ordered pair of
nonterminal nodes.

By Lemma 9, there are at least L 9i/8 J instances of type t consecutive pairs of nonterminal
nodes in the level i sentential form. Each of these instances of a pair of type t contains a segment
which is order-equivalent to S.

5. Lower Bound
In this section, we state and prove our lower bound for the number of messages required by a comparison

algorithm to elect a leader. We use the symmetric rings Rn constructed in the previous section, and the two

corollaries from Section 3.
Theorem 11: Let .A be a comparison algorithm over an arbitrary ID space, X, which elects a

leader in rings of size n. Then there is an execution, e, of . for which messages(e) > U(n log n).

Proof: Assume n is fixed, and at least 4. This ensures that the depth d = L(logsn)/2J is at least
2. It suffices to consider the ID space X consisting of length d + 1 strings of nonnegative integers,
ordered lexicographically. Assume the ring R is used. Let e be the execution fragment for
which terminates just when the elected processor enters an "elected" state. By Lemma 10, every
segment of length c2 + 1 has at least one other order-equivalent segment in Rn. (The Lemma
actually implies that there are at least nine others, but we do not require this fact here.) Thus, by
Corollary 4, execution e must progress from having a sum of 0 to having a sum of at least c2 + 1.

' Consider any step of e at which the sum first stops being at most k, for any k < c By Lemma 9,
the sum increases by at most 2 at this step. Moreover, if no messages are sent clockwise (resp.,
counterclockwise) at this step, then the sum increases by at most 1.

Let e' be the prefix of e preceding this step. Then sum(e') < c + 1. Lemma 10 implies that any
segment of length c. + 1 has at least L 9i/8 J order-equivalent segments in Rn. Thus by Corollary

-". 3, if any messages are sent clockwise at this step, then at least L 9'/8 J messages are sent
clockwise, and similarly for messages sent counterclockwise. Thus, if the sum increases by 1 at
this step, at least L 9'/8 J messages are sent, while if the sum increases by 2 at this step, then at

.' . .,
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least twice that number of messages are sent. It follows that the cost of increasing the sum from 0
to at least c2 + 1 can be apportioned as a cost of at least L 9'/8 J for each increase from k to k +
1, where k S - C1

We now total up the number of messages sent in e. Grouping increases according to level, we
see that the number of messages sent must be at least

Y'1 2 ,.. ,di L 9'/8 J (c,C1 +1 1).

By Lemma 8, this quantity is equal to

71i2.A-1 L 9'/8 J (4 - gd-(i+) (n -bd)/m)

=4 ((n -bd)/m)i=.- L 9'/8 J 9"-(I")

((n.............- -18 d(i.1 b1  gd- (i 1)1

The first summation evaluates to (d-2) 9d.1/8, while the second is bounded above by Od*2/ 8 .

Thus, the message bound is at least

4 ((n - d)/M )f(d-2) 9d-1/ 8 gd.2/ 83 .

Since m =L Od, 2 J~ < 9 d/ 2 , this is at least

8 ((n -bd) [d (d-2) 9 0-1/ 8* gd-2/ 8 ]

=(n - bd) [(d-2)/9- 1/81] =(n - bd) [d/9 -0(1)].

Since bd is 0(n 1 /2), the message bound is at least

=(n -0(n112)) [d/9 - 0(1)]

=(n - 0(n11 ) [((I /2)log~n)/9 -0(1)]

=n ((1 /2)log~n) /9- 0(n)

=(n 10g 2 n)/(18 10g 29) -0(n). I

We have just shown that algorithms which are restricted to use only comparisons of ID's require at least U(n

log n) messages in the worst case. We now state a corollary which shows that the given lower bound applies

for time-bounded algorithms as well. More specifically, we conclude that there is a (very fast-growing)

function f with the following property. If the time is required to be bounded by some t in the worst case, and
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ID's are chosen from any ID space having at least f(n,t) elements, then any algorithm requires G(n log n)

messages in the worst case.

Corollary 12: There exists a function f such that for any n, t, the following holds. Let X be an
arbitrary ID space with at least f(n,t) elements. Let .4. be any algorithm over X which elects a leader
in rings of size n, and for which finishtime(e) __ t for all executions e for rings of size n. Then there
is an execution, e, of At for which messages(e) is 11(n log n).

Proof: The proof is analogous to a similar one in [FL]. It is based on a transformation from
time-bounded algorithms to comparison algorithms, using Ramsey's theorem. (The Idea for the
transformation, presented in the paracomputer model, originally appeared in [Si]. Snir [S2]
credits Yao [Y] with inspiration for the construction.) I

6. Remaining Questions
The general U(n log n) bound which we have proved has a very small constant, 1/(18 log2(9)). In contrast,

the best constant known for an upper bound is around 1.4 [P,DKR]. It remains to close this gap. For certain

values of n (such as powers of 2), we do have a narrower gap, because the proof in [FL] produces a lower

bound with a larger constant. It is possible that there are certain properties of the number n (e.g. properties

of its prime factorization) that affect the size of the constant. It would be interesting to understand these

relationships.
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