

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

SAINT JOHN RIVER BASIN Limestone, Maine

DUREPO BROOK DAM ME 00348

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION, CORPS OF ENGINEERS Waltham, Mass. 02154

OTIC FILE COPY

SEPTEMBER 1981

DISTRIBUTION STATEMENT A Approved for public releases Distriction Unlimited

097 10

REPORT DOCUMENTATIO	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
ME 00348			
1. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
Durepo Brook Dam	INSPECTION REPORT		
NATIONAL PROGRAM FOR INSPECTION OF	F NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER	
. AUTHOR(4)		B. CONTRACT OR GRANT NUMBER(#)	
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION			
PERFORMING ORGANIZATION NAME AND ADDRE	SS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
1. CONTROLLING OFFICE NAME AND ADDRESS	·	12. REPORT DATE	
DEPT. OF THE ARMY, CORPS OF ENGIN	EERS	September 1981	
NEW ENGLAND DIVISION, NEDED		13. NUMBER OF PAGES	
424 TRAPELO ROAD, WALTHAM, MA. 02		· 55	
4. MONITORING AGENCY NAME & ADDRESS(It ditte	rent from Controlling Office)	15. SECURITY CLASS. (of this report)	
		UNCLASSIFIED	
		184. DECLASSIFICATION/DOWNGRADING	

16. DISTRIBUTION STATEMENT (of this Report)

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

DAMS, INSPECTION, DAM SAFETY,

Saint John River Basin Limestone Maine Durepo Brook

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The earthfill embankment is 2850 ft. long and 60 ft. high. The facility was found to be in good condition. In the embankment itself there were no dips, sags or other evidence of distress. It is intermediate in size with a high hazard potential. Remedial measures include monitoring the project during heavy rainfall implementing a monthly isual inspection program, developing a downstream warning system and conducting bi-annual technical inspections.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS
424 TRAPELO ROAD
WALTHAM, MASSACHUSETTS 02254

REPLY TO ATTENTION OF:

NEDED

SEP 23 1981

Honorable Joseph E. Brennan Governor of the State of Maine State Capitol Augusta, Maine 04330

Dear Governor Brennan:

Inclosed is a copy of the Durepo Brook Dam (ME-00348) Phase I Inspection Report, prepared under the National Program for Inspection of Non-Federal Dams. This report is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. I approve the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is vitally important.

Copies of this report have been forwarded to the Department of Agriculture and to the owner, the town of Limestone. Copies will be available to the public in thirty days.

I wish to thank you and the Department of Agriculture for your cooperation in this program.

Sincerely,

Incl As stated C. E. EDGAR, III

Colonel, Corps of Engineers

Division Engineer

COO.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes

Avail and/or
Dist
Special

DUREPO BROOK DAM

ME 00348

ST. JOHN RIVER BASIN LIMESTONE, MAINE

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM

PHASE I INSPECTION REPORT

Identification No. : ME 00348

Name of Dam : Durepo Brook

Town : Limestone

County & State : Aroostook, Maine

Stream : Durepo Brook

Date of Inspection : November 8, 1979

BRIEF ASSESSMENT

Durepo Brook Dam is a seven year old dual purpose flood water retarding and low flow augmenting project designed by the USDA Soil Conservation Service. The earth fill embankment is 2850 feet long and 60 feet high. The downstream slope, the crest and the upstream slope above the normal pool are grass covered. A reinforced concrete drop inlet principal spillway leads to a 54 inch diameter reinforced concrete pipe conduit under the dam that discharges into a reinforced concrete impact basin. A grass lined earth cut emergency spillway is provided adjacent to to the right abutment. A sediment and municipal water storage pool is maintained behind the dam at a normal elevation of 615 feet.

The embankment dam, principal spillway drop inlet, principal spillway impact basin and emergency spillway were found in good condition. In the embankment itself, there were no dips, sags or other evidence of distress. While the reinforced concrete structures appeared sound with no evidence of deterioration, the Soils Conservation Service reported March 25, 1981 that the concrete riser has interior, structural cracking which will be repaired this year. The grass cover on the embankment and emergency spillway was well developed. The crest surface had a dirt road running the length of it which was moderately rutted.

Based on a maximum storage of 7,070 acre-feet and a height of 60 feet, Durepo Brook Dam falls within the intermediate size classification. The dam's hazard classification has been established as high based on the potential for loss of more than a few lives in the event of a dam failure. The test flood used was equal to the Probable Maximum Flood. The test flood was estimated for the 20.03 square mile drainage area of rolling terrain using the "Preliminary Guidance for Estimating Maximum Probable Discharges in Phase I Safety Investigations", New England Division Corps of Engineers, March 1978. This yielded a peak inflow of 19,800 cfs and a peak routed outflow of 15,800 cfs.

The computed maximum reservoir level El. 641.6 was below the embankment crest El. 645 NGVD and no overtopping of the embankment would occur.

No urgent or emergency actions are required for Durepo Brook Dam based on this inspection. Remedial measures include monitoring the project during periods of intense rainfall, implementing a monthly visual inspection program, developing a downstream warning system and conducting bi-annual technical inspections.

J.E. Giles, Jr., P. Project Manager

Massachusetts Registration No. 1643

This Phase I Inspection Report on Durepo Brook Dam (ME-00348) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval.

JOSETH W. FINEGAN, JR

MEMBER

Water Control Branch

Engineering Division

Chames Continue

ARAMAST MAHTESIAN, MEMBER
Geotechmical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, CHAIRMAN

Design Branch

Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR

Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Buidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of Phase I investigation: however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservior was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

ction				Page		
tter	of '	Trans	mittal			
ief A	sse	ssmen	nt			
view	Boa	rd Pa	age .			
eface	;			i		
ble o	f C	onten	nts	ii-iv		
rervie	w P	hoto		v		
catio	n M	ap		ví		
			REPORT			
. F	PROJ	ECT I	INFORMATION			
1.1 General						
		а.	Authority	1-1		
		b.	Purpose of Inspection	1-1		
		с.	Scope of Inspection Program	1-1		
1	1.2	Desc	cription of Project	1-2		
		a .	Location	1-2		
		b.	Description of Dam and Appurtenances	1-2		
		с.	Size Classification	1-3		
		d.	Hazard Classification	1-3		
		e.	Ownership	1-3		
		f.	Operator Operator	1-3		
		g.	Purpose of Dam	1-3		
		h.	Design and Construction History	1-3		
		į	Normal Operational Procedure	1-3		

345-072-16

.1	<u>on</u>		Page
	1.3	Pertinent Data	1-3
	ENGI	NEERING DATA	
	2.1	Design Data	2-1
	2.2	Construction Data	2-1
	2.3	Operation Data	2-1
	2.4	Evaluation of Data	2-1
	VISU.	AL INSPECTION	
	3.1	Findings	3-1
		a. General	3-1
		b. Dam	3-1
		c. Appurtenant Structures	3-1
		d. Reservoir Area	3 - 2
		e. Downstream Channel	3-2
	3.2	Evaluation	3-2
	OPER	ATIONAL AND MAINTENANCE PROCEDURES	
	4.1	Operational Procedures	4-1
		a. General	4-1
		b. Description of any Warning System in Effect	4-1
	4.2	Maintenance Procedures	4-1
		a. General	4-1
		b. Operating Facilities	4-1
	4.3	Evaluation	4-1
	EVAL	UATION OF HYDRAULIC/HYDROLOGIC FEATURES	
	5.1	General	5-1
	5.2	Design Data	5 - 1

i	<u>on</u>		Page
	5.3	Experience Data	5-1
	5.4	Test Flood Analysis	5-1
	5.5	Dam Failure Analysis	5-1
	EVAL	UATION OF STRUCTURAL STABILITY	6-1
	6.1	Visual Observation	6-1
	6.2	Design and Construction Data	6-1
	6.3	Post-Construction Changes	6-1
	6.4	Seismic Stability	6-1
	ASSE	SSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	
	7.1	Dam Assessment	7-1
		a. Condition	7-1
		b. Adequacy of Information	7-1
		c. Urgency	7-1
	7.2	Recommendations	7-1
	7.3	Remedial Measures	7-2
	7.4	Alternatives	7-2
		APPENDIXES	
N	CIX A	- INSPECTION CHECKLIST	A-1
N	DIX B	- ENGINEERING DATA	B-1
N	DIX C	- PHOTOGRAPHS	C-1

5-072-16

D-1

ENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS

- (2) Outlet works The outlet impact basin (Photo 4 & 5) was found in good condition. All construction joints were tight. No spalling was observed.
- (3) Emergency spillway The emergency spillway was clear of debris and in good condition with a well developed grass cover (Photos 7 & 8).
- d. Reservoir Area No areas of potential or actual shoreline movement were observed.
- e. <u>Downstream Channel</u> The downstream channel (Photo 6) was clear with no evidence of erosion.

Evaluation - In general, the dam and appurtenances are in good condition. The slopes are stable and the crest is in good shape. The concrete structures are sound. No urgent or emergency repairs are required. The rutting on the crest should not be allowed to get any worse.

SECTION 3

VISUAL INSPECTION

l Findings

General - The field inspection was conducted by L. Seward and J. Jonas of Chas. T. Main, Inc. on 8 November 1979, and J.E. Giles, Jr. on August 12, 1981. On the date of inspection, the Durano Dam and appurtenances were in good condition. No urgent or emergency actions are required at this time.

b. Dam

- (1) Crest The embankment crest was true to line with no apparent dips, sags, cracks or other evidence of distress. The as-built camber was observed and appears unchanged. Wheel tracks and some minor rutting were observed on the crest (Photos 1 & 2). The crest is grass covered with no pavement.
- (2) Upstream slope The upstream slope riprap appeared in good condition. The slope above the normal pool E1. 594 has a well developed tight grass cover (Photo 2). There was no evidence of sloughing or erosion on the slope.
- (3) Downstream slope The downstream slope has a well developed, tight grass cover (Photo 1). No significant gully action was observed on the slope. No slides or sags were observed.
- (4) Downstream toe The downstream toe is generally dry with no boils or seeps observed. A small area of stagnant water was observed 50 yards to the left of the impact basin (Photo 5). No seepage was observed.
- (5) Underdrain system Two 10-inch diameter toe drain collector pipes issue from the dam through a single common 10" outlet. This outlet is approximately 70' to the right of the impact basin at the toe of the dam. No flow was observed. A narrow channel has been formed at the drain outlet with riprap at the opening (photo 9).

c. Appurtenent Structures

(1) Principal Spillway - The principal spillway intake (Photo 4) was observed from shore. The exposed concrete and the trashrack steel appeared in good condition.

- b. Adequacy: The lack of design calculations did not allow for a definitive review. Evaluation was based on visual inspection, past performance history, and sound engineering judgment and experience.
- c. Validity: The limited data available restrict evaluation of the Durepo Brook Dam and appurtenances to the visual inspection and sound engineering judgment. The field inspection indicated that the external features of Durepo Brook Dam substantially agree with those shown on the available plans.

SECTION 2

ENGINEERING DATA

2.1 Design

As built drawings of Durepo Brook Dam are on file at the GSA Federal Archives and Records Center, 380 Trapelo Road, Waltham, MA 02154 (617-223-2657). Design calculations and specifications were not available. The December 1964 Limestone Stream Watershed Work Plan indicates that:

". . .hydrology and hydraulics analyses followed procedures given in the National Engineering Handbook of the Soil Conservation Service, Section 4, Supplement A, Hydrology (NEH 4A) and Section 5, Hydraulics (NEH 5)."

and for civil works:

"All designs are in accord with the latest Soil Conservation Service design criteria as set forth in Engineering Memoranda SCS-27, 31, 4D and 42; Technical Release No. 10; Section 3.21, Hydrology, Supplement A of the National Engineering Handbook; U.S. Weather Bureau Technical Paper No. 40; and other sources of recognized engineering material."

2.2 Construction

The Durepo Dam and appurtenances were constructed in 1974 by the Star Construction Company. No construction records or photographs were available to the inspection team. A set of contract prints pertinent to this report are included in Appendix B.

2.3 Operation

No formal operational procedures were available for review. The principal and emergency spillways are uncontrolled structures requiring neither manual nor automatic operations. No records were found which indicated recent operation of the municipal water supply inlets. The operators stated that the drain sluice gate had been operated recently for the purpose of increasing downstream flow.

2.4 Evaluation

a. Availability: The Soil Conservation Service Construction Specifications for Durepo Brook Dam were reviewed.

j Regulating Outlets

- (1) Description
 - i. Sluice gate to drain reservoir
 - ii. Municipal water supply inlet
 - iii. Municipal water supply inlet
 - iv. Municipal water supply inlet
- (2) Size
 - i. 30" I.D.
 - ii. 10" I.D.
 - iii. 8" I.D.
 - iv. 8" I.D.
- (3) Invert
 - i. El. 593.83'
 - ii. El. 609.58'
 - iii. El. 607.42'
 - iv. El. 605.00'
- (4) Control Mechanism
 - i. Sluice gate with screw operator
 - ii. 10" gate valve
 - iii. 8" gate valve
 - iv. 8" gate valve
- (5) Other N/A

(3) Height

60 feet

(4) Top Width

20 feet

(5) Side Slopes

Upstream 3 Hor. to

l Vert.

Downstream 2.5 Hor. to

1 Vert.

(6) Zoning

2 zones

(7) Impervious Core

Most impervious toward the core

(8) Cutoff

12'-15' trench

(9) Grout curtain

Yes (See Page B-10)

(10) Other

N/A

- h. Diversion and Regulating Tunnel None
- i. Spillway (Principal)
 - (1) Type Reinforced concrete inlet riser to 54" ∮ conduit
 - (2) Length of weir 2 x 9'
 - (3) Crest elevation El. 629.5
 - (4) Gates ungated
 - (5) U/S Channel N/A
 - (6) D/S Channel Natural
 - (7) General Reinforced concrete impact basin at outfall

Spillway (Emergency)

- (8) Crest El. 637.6
- (9) Length of crest 250'
- (10) U/S Channel Grass lined earth channel
- (11) D/S Channel Grass lined earth channel
- (12) General 3 Hor. to 1 Vert. side slopes

	(7)	Emergency spillway crest	637.6
	(8) Desi	Design surcharge (Original gn)	Not Available
	(9)	Top of dam	645.0
	(10)	Test flood surcharge	641.6
d.	Rese	rvoir (Length in feet)	
	(1)	Normal pool	2900
	(2)	Flood control pool	5000
	(3)	Spillway crest pool	3800
	(4)	Top of dam	5400
	(5)	Test flood pool	5000
e.	Stor	age (acre-feet)	•
	(1)	Normal pool	270
	(2)	Flood control oool	4850
	(3)	Spillway (emergency) crest pool	4850
	(4)	Test flood pool	5740
	(5)	Top of dam	7500
f.	Rese	rvoir Surface (acres)	
	(1)	Normal pool	200
	(2)	Flood-control pool	310
	(3)	Spillway crest	310
	(4)	Test flood pool	365
	(5)	Top of dam	425
g.	<u>Dam</u>		
	(1)	Туре	Earthfill
	(2)	Length	2850 feet

b. Discharge at Damsite

- (1) Outlet Works A low stage 3'-4" x 5'-7" ungated inlet on the prinicpal spillway riser is located at invert Elev. 615 NGVD. The principal spillway crest is at Elev. 629.5 NGVD. The emergency spillway is an excavated, grass lined, earth channel. A screw operated sluice gate and 30"% CMP (maximim flow of 130 cfs at Elev. 615 NGVD) provide the capability to drain the reservoir to El. 593.8 NGVD. Three additional regulating inlets are incorporated in the cillway riser. These inlets are open to the reservoir and gated at the riser end. The gate valves are operated from the top of the prinicpal spillway riser.
- (2) Maximum known flood Unknown.
- (3) Principal spillway capacity at top of dam 650 cfs.
- (4) Principal spillway capacity at emergency spillway crest elevation 600 cfs.
- (5) Gated spillway capacity at normal pond elevation N/A.
- (6) Gated spillway capacity at test flood elevation N/A.
- (7) Emergency spillway capacity at test flood elev. 14,800 cfs @ El. 641.6.
- (8) Total project discharge at top of dam N/A. (Test flood is below top of dam).
- (9) Total project discharge at test flood elevation 15,800 cfs @ El. 641.6.

c. <u>Elevations</u> (feet above NGVD)

(1)	Streambed at toe of dam	585
(2)	Bottom of cutoff	573
(3)	Maximum tailwater	Not available
(4)	Normal pool (Depth = 30').	615
(5)	Full flood control pool	637.6
(6)	Principal spillway crest	629.5
	<u>a</u> . High stage	629.5
	b. Low stage	615.0

crest elevation of 637.6 NGVD feet with 3 horizontal to 1 vertical side slopes.

Plans, profiles, and sections of the dam and its appurtenent structures are included in Appendix B. Photographs are shown in Appendix C.

- c. Size Classification The maximum embankment height is 60 feet above the stream channel and the maximum storage is 7070 ac. ft. at Elev. 645 NGVD. This gives the dam an intermediate size classification due to both the height and storage in accordance with the Recommended Guidelines for Safety Inspection of Dams.
- d. <u>Hazard Classification</u> This facility is classified as a high nazard potential dam based on the potential for loss of more than a few lives in the event of a dam failure.
- e. Ownership The dam and associated works are owned by the Town of Limestone, Maine.
- f. Operators The project is designed for unsupervised operation. No manual operations are required to pass a flood flow. The project is operated and maintained by the Town of Limestone, Maine. The responsible person is Mr. Thomas Stevens, Town Manager, Limestone, Maine 04750, Telephone (207) 325-3131.
- g. Purpose of Dam The project is a dual purpose floodwater retarding and low flow augmentation structure of standard USDA SCS design. The reservoir drain intake sluice gate is currently closed and the reservoir maintained at Elev. 615 NGVD.
- h. Design and Construction History The project was designed by the Edward C. Jordan Company, Inc. of Portland Maine for the Soils Coservation Service in 1968 and constructed by Star Construction Company in 1974.
- i. Normal Operating Procedures The reservoir is normally maintained at Elev. 615 NGVD. If the water level falls below the spillway low stage inlet (Elev. 615) then one or more of the inlet valves can be opened to augment the downstream flow. All flood flows are passed through the principal and emergency spillways which are designed for uncontrolled discharge. No other operating procedures are in evidence.

1.3 Pertinent Data

a. Drainage Area - Durepo Brook Dam controls a drainage area of 20.03 square miles. The watershed is approximately 65 percent wooded and 35 percent agricultural with gentle sloping terrain. The range of watershed elevations is from Elev. 810 to Elev. 585. Approximately 4620 acres of the drainage area are within the Loring Air Force Base.

- (2) A field inspection of the facility detailing the visual condition of the dam embankments and appurtenant structures.
- (3) Computations concerning the hydraulics and hydrology of the facility and its relationship to the calculated flood through the existing spillway.
- (4) An assessment of the condition of the facility and corrective measures required.

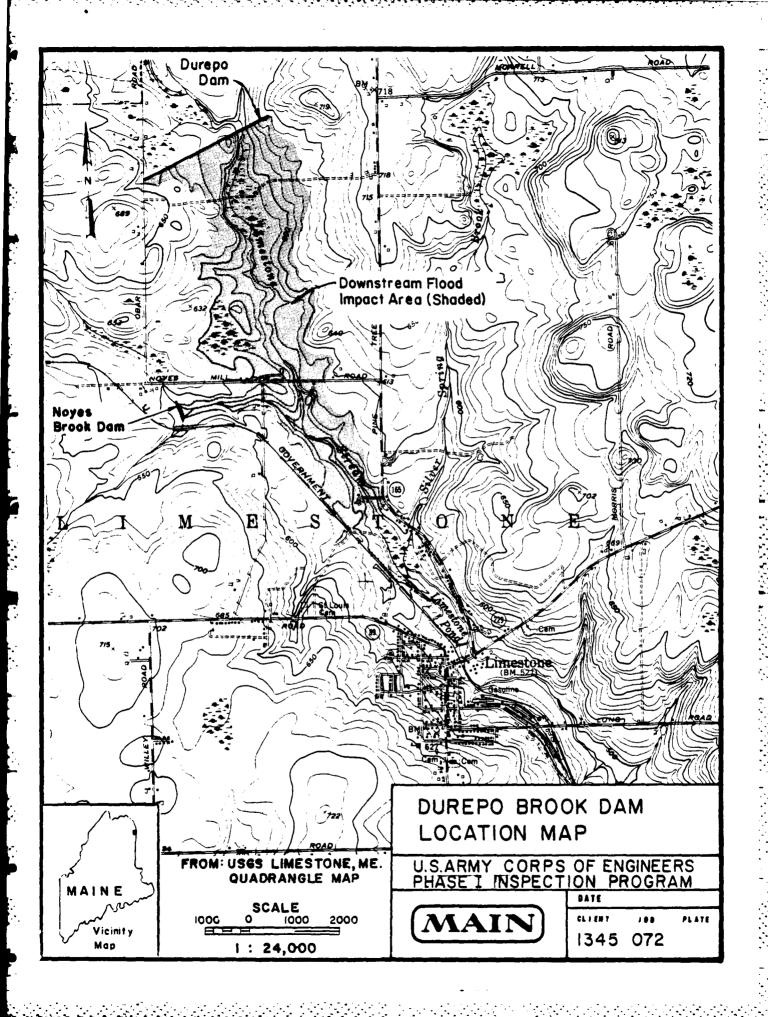
It should be noted that this report does not pass judgment on the safety or stability of the dam other than on a visual basis. The inspection is to identify those features of the dam which need corrective action and/or further study.

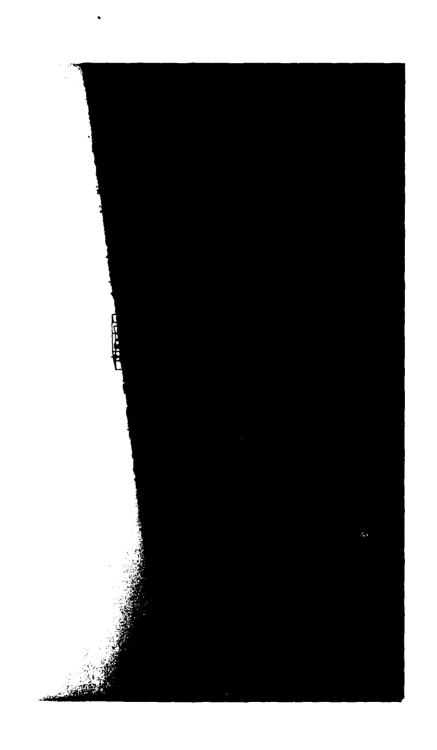
1.2 Description of Project

- a. Location The Durepo Brook Dam is located on Durepo Brook approximately 100 feet downstream from its confluence with Butterfield Brook and 3.0 miles NNW of the Town of Limestone, Aroostook County, Maine. The dam location is included on U.S.G.S. 7.5 minute series Quadrangle, Limestone, Maine with approximate coordinates N46°56'43", W67°50'25".
- b. Description of Dam and Appurtenances The project is a dual purpose floodwater retarding and low flow augmentation structure. It consists of three principal features: an earthfill dam, a principal spillway, and an emergency spillway. The dam is 2850 feet long, 60 feet high, and 20 feet wide at its crest (Elev. 645.0 NGVD). Material excavated from the reservoir area was used for the fill in the dam. The fill materials are of glacial till origin with zoning limited to placing the more impervious material in the core and the more pervious material in the outside shells. The structure has a chimney drain and drain blanket system with two collector pipes and a central cutoff trench.

The principal spillway is an ungated drop intake to a 54 inch diameter reinforced concrete pipe under the dam. This riser has a high and low stage orifice. The low stage orifice at Elev. 615.5 NGVD is 3'-4" high x 5'-7". The principal spillway opening at Elev. 629.5 is open on two sides of the riser, each opening being 9'-0" wide x 4'-6" high. The 54-inch pipe is provided with anti-seep collars and discharges into a reinforced concrete impact basin (energy dissipator). There are three municipal water supply inlets on the spillway inlet riser. Two are 8" diameters at about elevations 605 and 608 and the third is a 10" diameter at elevation 610. All three have gate valves which are normally closed. A 30" Ø reservoir drain is provided to drain the storage to Invert Elev. 593.8 NGVD. The emergency spillway is an excavated, grass lined, earth channel adjacent to the right abutment. It is 250 feet wide at

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT


DUREPO BROOK DAM, LIMESTONE MAINE


SECTION I

PROJECT INFORMATION

1.1 General

- a. Authority Public Law 92-367, August 8, 1972 authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Chas. T. Main, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Maine. Authorization and notice to proceed were issued to Chas. T. Main, Inc. under a letter of November 6, 1979 from Max B. Scheider, Colonel, Corps of Engineers. Contract No. DACW 33-80-C-0011 has been assigned by the Corps of Engineers for this work.
- b. Purpose The purposes of the inspection program are:
 - (1) To perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.
 - (2) To encourage and prepare the states to initiate effective dam safety programs for non-Federal dams.
 - (3) To update, verify and complete the National Inventory of Dams.
- c. Scope of Inspection Program The scope of this Phase I inspection report includes:
 - (1) Gathering, reviewing and presenting all available data as can be obtained from the owners, previous owners, the state and other associated parties.

DUREPO BROOK DAM VIEW FROM RIGHT BANK OF RESERVOIR

Section							<u>P</u>	age
VDDEMUIA E -	INFORMATION	ΔS	CONTAINED	TN	THE	NATIONAL.	E	-1

INVENTORY OF DAMS

SECTION 4

OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

- a. General: The principal and emergency spillways are uncontrolled crest structures. No manual operations are required to insure safe passage of a flood flow. No recent operation of the regulating outlet valves is reported. The 30" diameter reservoir drain was recently operated without problems according to the operator (Town Manager).
- b. Description of Downstream Warning System: No warning system or emergency evacuation plans are in effect for this project.

4.2 Maintenance Procedures

- a. General: The Town of Limestone has an operation and maintenance agreement with the Soil Conservation Service. Each dam is inspected at least once annually and after every major storm. An inspection report is prepared and any required maintenance is then performed by the town.
- b. Operating Facilities: There are no manual operating facilities at this structure except for the reservoir drain gate and municipal water inlet valves on the principal spillway riser. No regular maintenance procedures for the project operating facilities are specified.

4.3 Evaluation

The operating and maintenance procedures are limited for this project. The owner should establish procedures to inspect the structures regularly, to keep the embankment free of brush and trees, and to monitor the project during periods of intense rainfall.

The owner should arrange to have a technical inspection made on an annual basis. The owner should establish a warning system to follow in the event of emergency conditions.

SECTION 5

EVALUATION OF HYDROLOGIC AND HYDRAULIC FEATURES

- 5.1 General The watershed is 20.03 square miles of undeveloped rolling terrain. The dam is located on Durepo Brook, about 100' downstream from the confluence with Butterfield Brook. The earth embankment develops sufficient storage to reduce the Probable Maximum Flood (PMF) peak from 19,800 cfs to 15,800 cfs (about 20% reduction).
- Design Data The dam was designed by the Edward C. Jordan Co., Inc. for the Soil Conservation Service, U.S. Department of Agriculture. The top of the dam elevation is at Elev. 645.0 with a maximum height of 60 feet (capacity 7070 ac ft.). This dam is classified as intermediate size. The principal spillway consists of a reinforced concrete riser, a gated reservoir drain, a 54" oconduit with anti-seep collars and an energy dissipating structure at the outlet with a rip-rapped channel. The dam is equipped with an emergency spillway located adjacent to the right abutment. The plans show that the emergency spillway channel bottom width is 250 feet which has a crest elevation of 637.6 feet with channel side slopes of 3:1.
- 5.3 Experience Data There are no records of past floods or any overtopping of the dam.
- 5.4 Test Flood Analysis - Based upon "Preliminary Guidance for Estimating Maximum Probable Discharge", dated March 1978, the watershed classification (rolling), and our hydraulic computations, the test flood for this high hazard, intermediate size dam is estimated to be equivalent to the PMF of 19,800 cfs. The flood routing starting elevation was selected to be the reservoir pool elevation 629.5, and the inflow hydrograph peak was reduced by the volume between emergency spillway crest and principal spillway intake elevations. For this particular portion of Maine, the PMF runoff is assumed to be 13". The routed test flood outflow was determined in accordance with Corps of Engineers "Guidance for Estimating Effect of Surcharge Storage on Maximum Probable Discharges", and the hydraulic characteristics of the dam. Spillway discharge was computed as open channel flow. The routed test flood outflow was determined to be 15,800 cfs, and the corresponding water surface E1. 641.6 ft. The top of the dam El. is 645.0 ft and thus the dam would not be overtopped. The emergency spillway capacity is more tham 100 percent of PMF. As a check, a second test flood routing was performed assuming weir control in the emergency spillway and the dam was not overtopped under these conditions.
- 5.5 Dam Failure Analysis The volume in the reservoir corresponding to the water surface elevation 641.6 is 5800 acre-feet which is considered at the time of dam of failure. The impact of failure was assessed using the "Rule of Thumb Guidance for Estimating Downstream Dam Failure Hydrographs"

prepared by the Corps of Engineers. The breach discharge was estimated with the maximum water surface elevation during a PMF event. The breach width was selected to be 35 percent of the length of the dam at midheight. The downstream discharge is a sum of the breach discharge and the discharge from the principal and emergency spillways. The total peak discharge was estimated to be 655,600 cfs. The result of the calculations included in Appendix D.

In view of these results it can be concluded that during prefailure conditions no homes will be damaged near the Noyes Mill Road Bridge (Reach 6, depth 12.9 ft) and two homes will be damaged near the Van Buren Road Bridge (Reach 14, depth 13.5 ft). In the event of a dam failure at least four homes will be impacted near the Noyes Mill Road Bridge and six homes will be impacted near the Van Buren Road Bridge by an initial wave of 30-35 feet. This wave would flood these homes by approximately 15-25 feet. Thus this dam represents a high hazard structure since it can be assumed that more than a few lives would be lost in the event of a dam failure.

SECTION 6

EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observation

The visual inspection of November 8, 1979 revealed no dips, sags, depressions or other evidence of instability.

6.2 Design and Construction Data

Original design calculations and construction records were not available for review in preparing this report. The construction drawings for the dam were reviewed. The construction specification f Durepo Brook Dam was reviewed.

6.3 Post Construction Changes

No evidence of modification to the dam since construction was observed.

6.4 Seismic Stability

The dam is located in Seismic Zone No. 2 and, in accordance with recommended Phase I guidelines, does not warrant seismic analysis.

SECTION 7

ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

- a. <u>Condition</u> The visual inspection indicates that Durepo Brook Dam is in good condition.
- b. Adequacy of Information The lack of in-depth engineering data did not allow for a definitive review. Therefore, the adequacy of this dam could not be assessed from the standpoint of reviewing design and construction data but is based primarily on visual inspection, past performance history and sound engineering judgment.
- by the owner within two years of receipt of this Phase I Inspection Report.

7.2 Recommendations - None

7.3 Remedial Measures The owner should:

- a. Develop a downstream warning plan to be implemented in the event of an emergency at the dam.
- b. Establish a system to monitor the project during periods of intense rainfall.
- c. Implement a monthly visual inspection program of the dam and appurtenances. Observations should be noted in a maintenance log.
- d. Conduct a technical inspection of the project every two years.
- e. Establish regular maintenance procedures at the project and continue to keep the embankment free of brush and trees.
- f. Obtain and maintain a set of as-built drawings and exploratory program reports.
- g. Assure operability of the four valves controlling the regulating outlets on the spillway riser; especially the low level drain.
- h. Prevent the rutting on the crest from becoming more severe.

7.4 Alternatives

There are no practical alternatives to the recommendations of Sections 7.2 and 7.3.

APPENDIX A

FIELD INSPECTION CHECK LIST

INSPECTION CHECKLIST PARTY ORGANIZATION

PRO	JECT Durepo Brook Dam		DATE TIME	Nov. 8,	1979	
				HER Fair	-cold	
			U.S.	ELEV.	U.S.	DN.S.
			•			
PAR	TY:					
1	Lewis B. Seward - Hydrologist	6				
2	Jan N. Jonas - Civil Engineer	7			······································	
3	Peerless J. Snow - Limestone Tow Manager					
i	J.E. Giles, Jr Project Manager					
i	August 12, 1981					
	PROJECT FEATURE		I	NSPECTED	BY REMA	RKS
1	All of the project features were	insp	ected b	y each pa	arty member.	
2	······································					
!						
ł						
l						
í						
ì						
8.					V - 114 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
9.					- 1	
10.					· · · · · · · · · · · · · · · · · · ·	
<u> </u>						

PROJECT Durepo Brook Dam

PROJECT FEATURE Earthfill Dam -Flood Control

DISCIPLINE Hydro

DATE Nov. 8, 1979

NAME Lewis B. Seward

NAME Jan N. Jonas

AREA EVALUATED	CONDITIONS
DAM EMBANKMENT	
Crest Elevation	645
Current Pool Elevation	not known - see pictures
Maximum Impoundment to Date	3,465 ac. ft.
Surface Cracks	none
Pavement Condition	unpaved roadway
Movement or Settlement of Crest	not visible
Lateral Movement	not visible
Vertical Alignment	not visible
Horizontal Alignment	not visible
Condition at Abutment and at Concrete Structures	no signs of deterioration; at concrete intake & outlet riprap
Indications of Movement of Structural Items on Slopes	none
Trespassing on Slopes	none
Vegetation on Slopes	thick grass, never mowed
Sloughing or Erosion of Slopes or Abutments	none -
Rock Slope Protection - Riprap Failures	riprap at the upstream slope at waterline
Unusual Movement or Cracking at or near Toes	none
Unusual Embankment or Downstream Seepage	some wet spot with stagnant water at the downstream slope 50 yds
Piping or Boils	from outlet none
Foundation Drainage Features	none visible
Toe Drains	none visible
Instrumentation System	<pre>piezometers at d/s outlet structure</pre>
}	

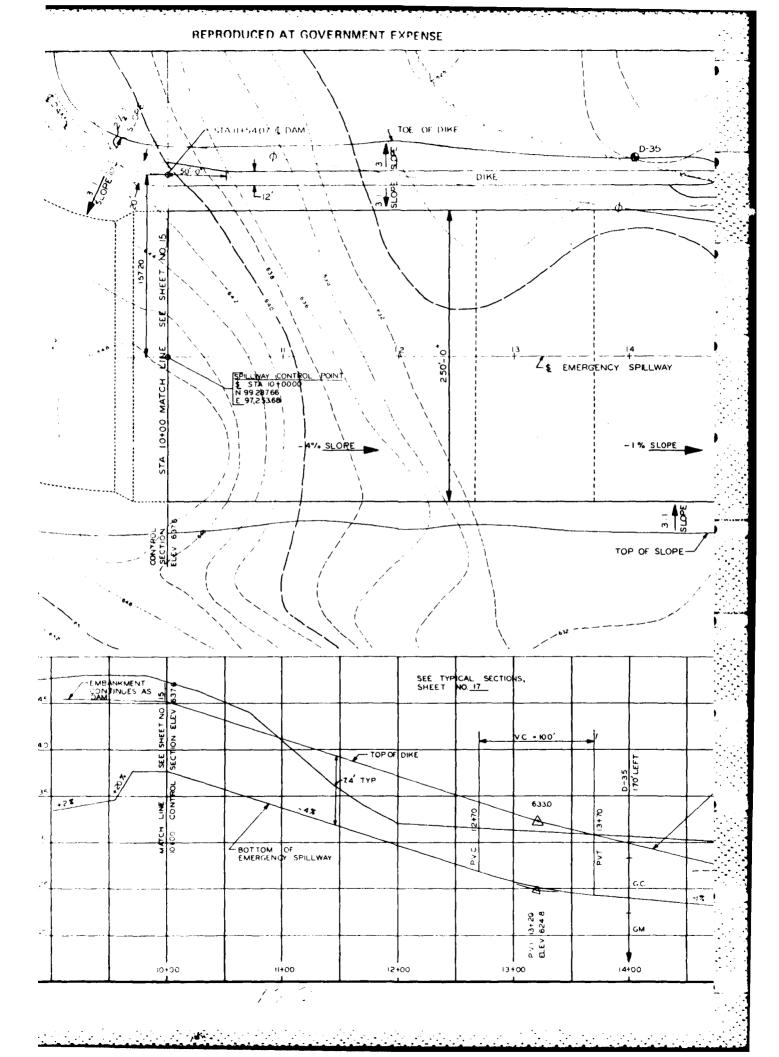
PROJECT	Durepo	Brook Dam	 ·	DATE_	Nov. 8, 1979
PROJECT	FEATURE_	Earthfill		NAME_	Lewis B. Seward
DISCIPLI	NE Hyd	ro	 control	NAME_	Jan N. Jonas

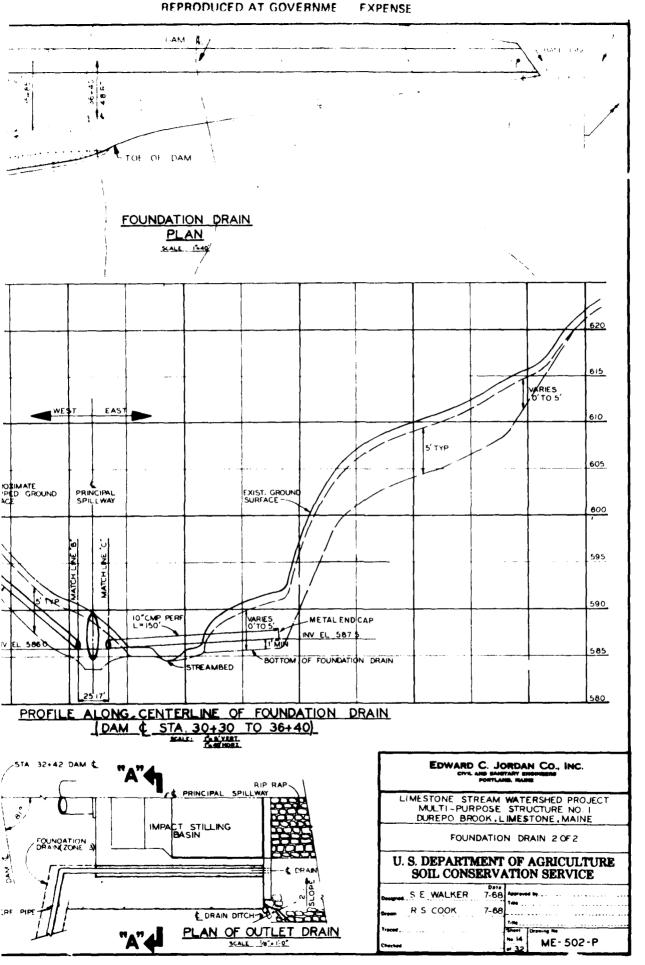
	AREA EVALUATED	CONDITIONS		
OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE				
a.	Approach Channel Slope Conditions Bottom Conditions Rock Slides or Falls Log Boom Debris Condition of Concrete Lining	not applicable		
.	Intake Structure Condition of Concrete Stop Logs and Slots	not applicable		
		-		

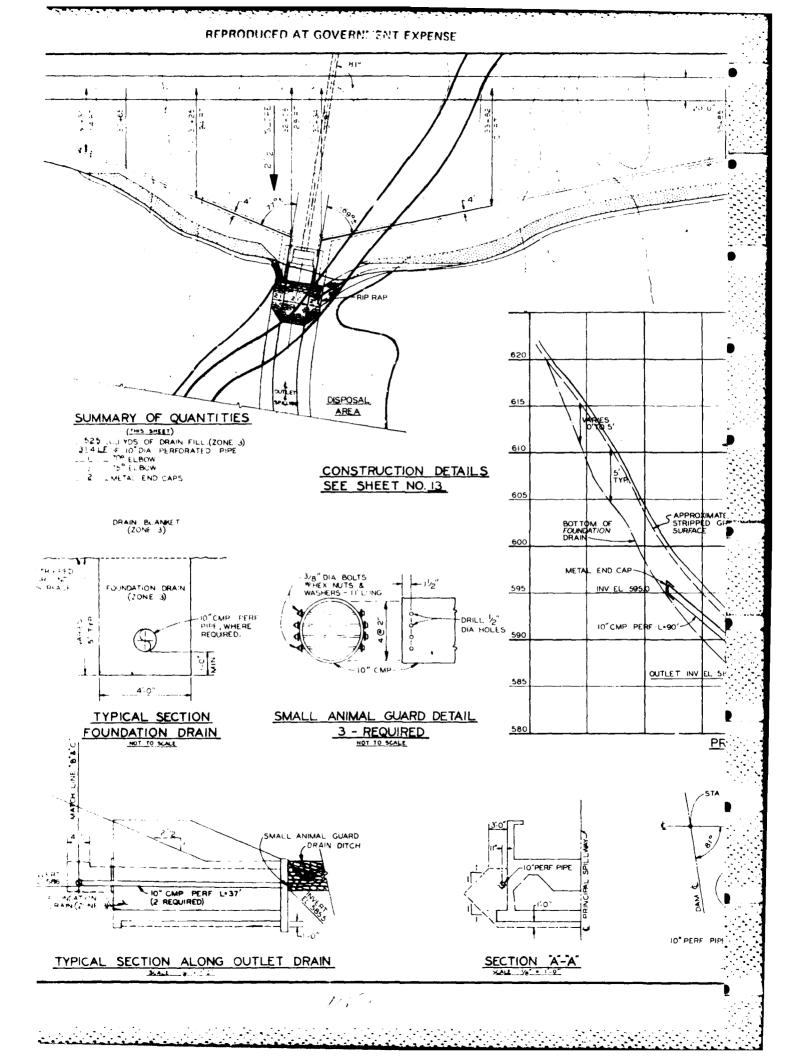
PROJECT_	Durepo Br	cook Dam			DATE_	Nov. 8, 1979
PROJECT	FEATURE	Earthfill	dam -	flood	NAME_	Lewis B. Seward
DISCIPLI	NE Hydro)		control	NAME_	Jan N. Jonas

AREA EVALUATED	CONDITIONS
LET WORKS - CONTROL TOWER	
Concrete and Structural	•
General Condition	very good
Condition of Joints	construction tight
Spalling	none
Visible Reinforcing	none
Rusting or Staining of Concrete	none
Any Seepage or Efflorescene	none
Joint Alignment	good
Unusual Seepage or Leaks in Gate Chamber	not known
Cracks	none visible
Rusting or Corrosion of Steel	none
Mechanical and Electrical	
Air Vents	none
Float Wells	none
Crane Hoist	none -
Elevator	none
Hydraulic System	none
Service Gates	in operation condition
Emergency Gates	not known
Lightning Protection System	none
Emergency Power System	none
Wiring and Lighting System in Gate Chamber	none
·	

PROJECT_	Durepo	Brook Dam		DATE Nov. 8, 1979
PROJECT	FEATURE_	Earthfill dam	flood	NAME Lewis B. Seward
DISCIPLI	NE Hydr	0		NAME Jan N. Jonas


AREA EVALUATED	CONDITIONS
TLET WORKS - TRANSITION AND CON-	not applicable
neral Condition of Concrete	
st or Staining on Concrete	
alling	
osion or Cavitation	
acking	
ignment of Monoliths	
ignment of Joints.	
umbering of Monoliths	
}	-
·	


OJECT Dure	po Brook Dam		DATE Nov. 8, 1979
OJECT FEAT	URE Earthfil	Dam - flood	NAME Lewis B. Seward
:SCIPLINE		control	NAME Jan N. Jonas


AREA EVALUATED	CONDITIONS
ET WORKS - OUTLET STRUCTURE OUTLET CHANNEL	
ral Condition of Concrete or Staining ling ion or Cavitation	very good none none none
ble Reinforcing Seepage or Efflorescence Lition at Joints	none none visible tight
.n Holes inel	Foundation drain outlets at wing walls - no -outflow
Oose Rock or Trees Overhanging Channel Condition of Discharge Channel	none grassed embankments w/riprap
·	<u>-</u>

PROJECT Durepo Brook Dam	DATE Nov. 8, 1979
PROJECT FEATURE Earthfill dam - Flood control	NAME Lewis B. Seward
DISCIPLINE Hydro	NAME Jan N. Jonas

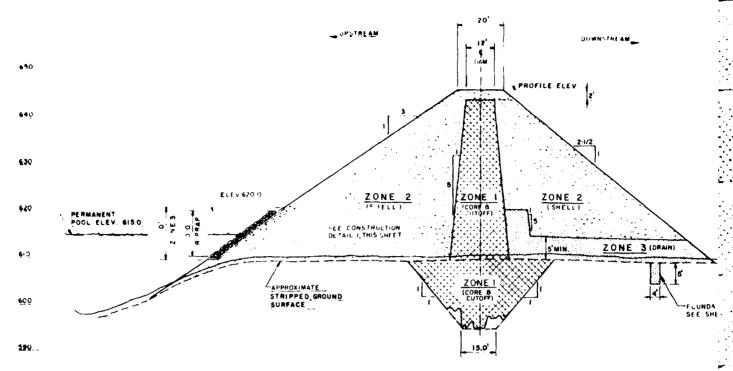
AREA EVALUATED	CONDITIONS
TLET WORKS - SPILLWAY WEIR, PROACH AND DISCHARGE CHANNELS	
Approach Channel	
General Condition	good - grassed excavated slopes
Loose Rock Overhanging Channel	none
Trees Overhanging Channel	none
Floor of Approach Channel	weathered rock partially grassed
Weir and Training Walls	not applicable
General Condition of Concrete	
Rust or Staining	
Spalling	
Any Visible Reinforcing	
Any Seepage or Efflorescence	
Drain Holes	
Discharge Channel	nothing downstream
General Condition	, , , , , , , , , , , , , , , , , , , ,
Loose Rock Overhanging Channel	
Trees Overhanging Channel	
Floor of Channel	
Other Obstructions	

ORAIN: EXISTING GROUND SURFACE SIQ F. UNDATION DRAIN SEE SHEET NO 14.

0 N	REMARKS
IPACTION	
INUM DENSITY	
IF MAXIMUM DENSITY M D 698, METHOD D	MATERIAL MEETING THE REQUIREMENTS FOR ZONE I MAY BE ENCOUNTERED IN THE CUT-OFF TRENCH EXCAVATION AND IN PORTIONS OF BORROW AREA NS 2
F MAXIMUM DENSITY M D 698, METHOD	MATERIAL MEETING THE REQUIREMENTS FOR ZONE 2 MAY BE ENCOUNTERED IN THE EMERGENCY SPILLWAY EXCAVATION AND IN PORTIGNS OF BORROW AREA Nº. 1
JONSTRUCTION FICATION	LIMITED QUANTITIES OF MATERIAL MEETING THE PEQUIREMENTS FOR ZONE 3 WERE EN- COUNTERED IN TEST PITS P-15 @ 3.5 TO 9.3' AND P-24 @ 2 TO 7'. AN OFF-SITE BORROW SOURCE MAY BE REQUIRED.
IONSTRUCTION IFICATION (6)	MATERIAL MEETING THE REQUIREMENTS FOR ZONE 4 MAY BE OBTAINED BY QUARRYING AT THE BITE, NOWEVER AN OFF SITE SOURCE MAY BE USED.

CONSTRUCTION DETAILS:

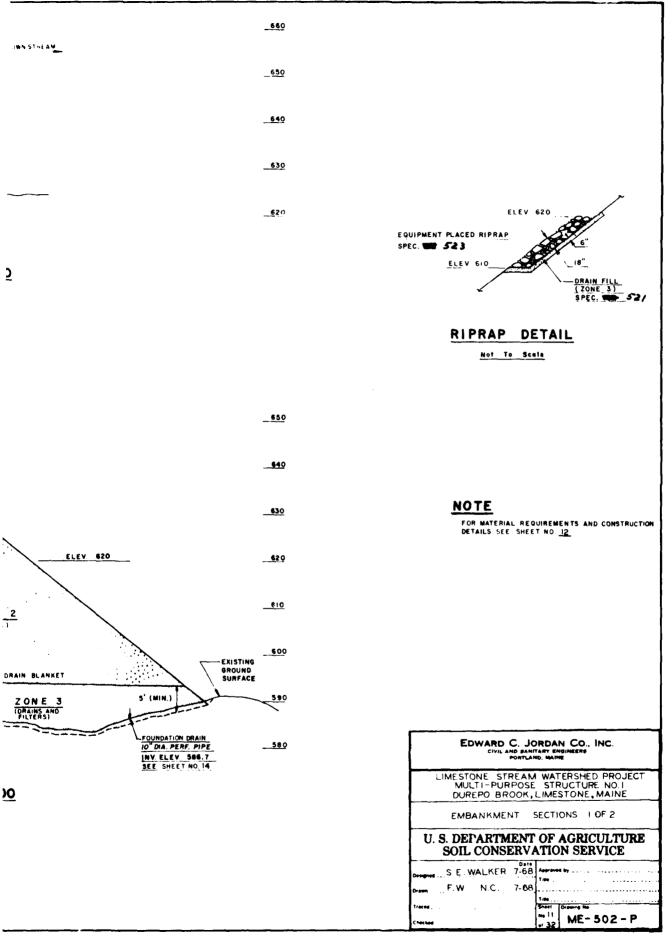
- MATERIALS NOT MEETING THE REQUIREMENTS FOR ZONE 2
 MIT MEETING THE REQUIREMENTS FOR ZONE 1 MAY BE INCORPORATED IN THE UPSTHEAM SHELL HOWEVER THE DOWNSTREAM SHELL MUST BE CONSTRUCTED OF MATERIALS MEETING ZONE 2 REQUIREMENTS.
- 2 211 PORTIONS OF THE STRIPPED FOUNDATION SURFACE ON WHICH ZONE 1 (A ZONE 2 MATERIALS ARE TO BE PLACE SHALL BE SCARIFIED TO A DEPTH OF 6 INCHES AND COMPACTED, PRIOR TO PLACEMENT OF THE EMBANKMENT MATERIALS
 3 4LL PORTIONS OF THE STRIPPED FOUNDATION SURFACE ON WHICH
- 3 4LL PORTIONS OF THE STRIPPED FOUNDATION SURFACE ON WHICH ZONE 3 MATERIALS ARE TO BE PLACE SHALL BE PREPARED IN ACCORDANCE WITH CONSTRUCTION SPECIFICATION WERE 24
- 4 ALL BEDROCK SURFACES EXPOSED BY THE CUT OFF THENCH EXCAVA-TION SHALL BE THOROUGHLY CLEANED AND INSPECTED BY THE ENGINEER PRIOR TO THE PLACEMENT OF THE CUTOFF TRENCH BACK-FILL


EDWARD C. JORDAN CO., INC. CIVIL AND SANITARY ENGINEERS PORTLAND, MANE

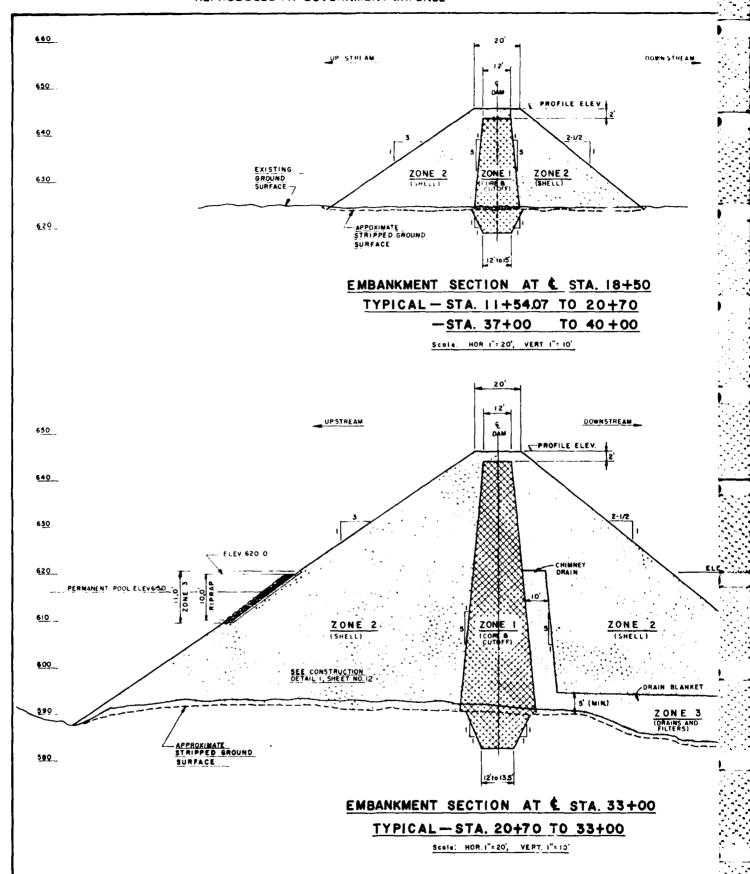
LIMESTONE STREAM WATERSHED PROJECT MULTI-PURPOSE STRUCTURE NO I DUREPO BROOK, LIMESTONE, MAINE

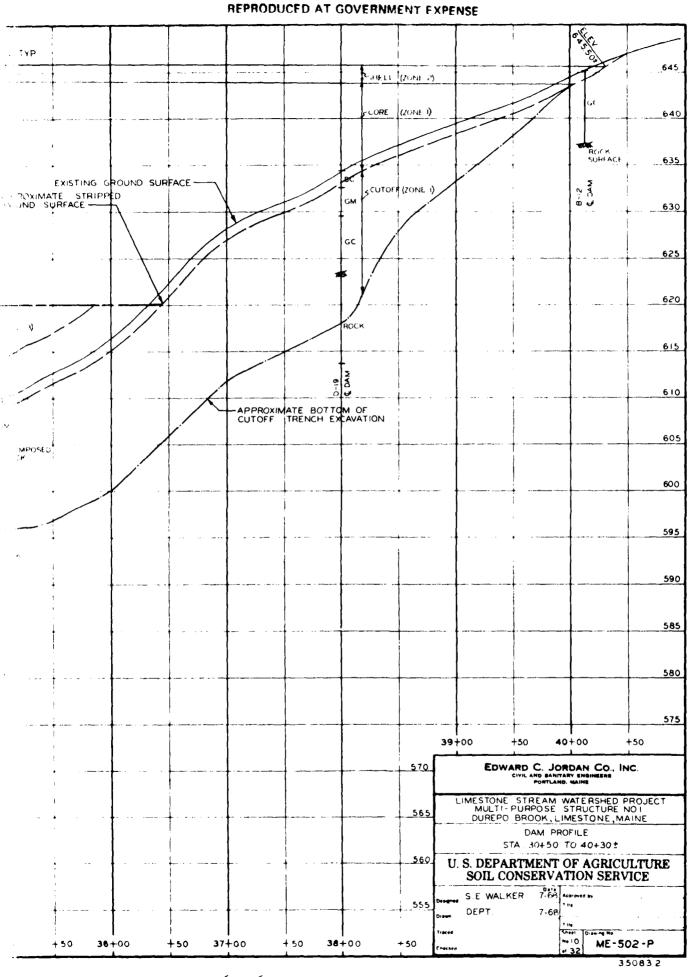
EMBANKMENT SECTION 2 OF 2

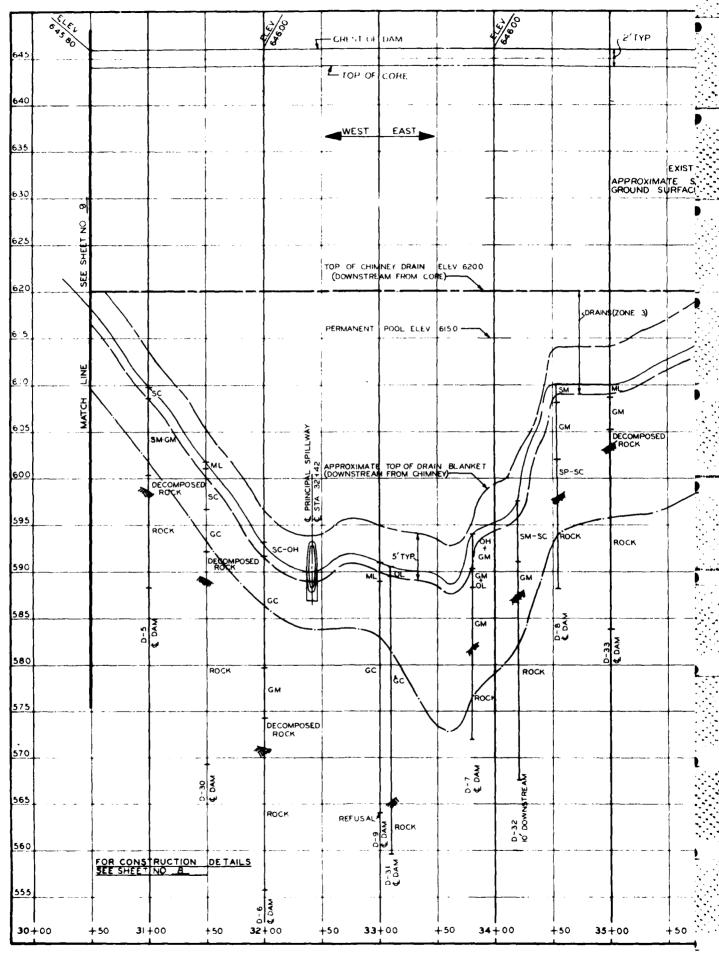
U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE


Designed .	SEWA	LKER	7-68	
Drawn	F. W	NC	7-68	1.04
Traces .				Title
Checked				No 12 ME - 502 - P

EMBANKMENT SECTION AT & STA. 35+00 TYPICAL - STA. 33+00 TO 37+00


Scale: HOR.I"= 20', VERT. I"=10'


ZONE	MATERIAL							CONSTRUCTION				
	DESCRIPTION			GRADATION				PLASTICITY	MAXIMUM	MOISTURE	COMPACTION	
		BUNN ICLE	A SE	PERCENT BY WEIGHT PASSING DESIGNATED SIEVE		PLASTICITY	THICKNESS	CONTENT	:			
		PART	PART	I IN.	*4	40	200	(LL-PL)			¢1°	MINIMUM DENSIT
CORE AND	CLAYEYGRAVEL (GC, UR CLAYEYSAND (SC: (GLACIAL TILL) FROM EMER— BENCY SPILLWAY EXCAVATION REPRESENTED BY MATERIAL. IN 1857 PIT TP-5 @ 2' TO B' OR BORROW AREA Nº I REPRESENTED				50 % (MIN.)		30% ;MIN }	5 (MIN)	9 IN LOOSE	OMC -1% TO OMC+2%	А	95% OF MAXIMUM DEN BY ASTM D 698, METHOR
ONST SPEC #27 SHELL CONST SPEC #23	BY MATERIAL IN TESTPITAS 2705 SILTY GRAVEL (GM) OR SILTY SAND (SM, FROM BORROWAREA Nº2 REPRENTED BY MATERIAL FROM TEST PIT B-1 o 15 TO 7	10 IN			35 % (MIN)		30 % (MAX)	5 (MAX)	12 IN LOOSE	OMC - 2% TO OMC + 2%	A	95% OF MAXIMUM DENS BY ASTM 0 698, METHO D
3 DRAINS AND FILTERS	WELL GRACED GRAVELLY SAND (SW) OR SANDY GRAVEL (GW)	6 IN			35% TO 75%	TO	0% TO 5%	NON- PLASTIC	9 IN. L00\$E			(SEE CONSTRUCTION SPECIFICATION
CONST SPEC	MARD DURABLE ROCK FRAGMENTS OR FIELD STONES	18 IN	12 IN	10 % (MAX.)	• 	·			IB IN LOOSE			(SEE CONSTRUCTION SPECIFICATION 6/



REPRODUCED AT GOVERNMENT EXPENSE

35083.2

192

35083.2-

REPRODUCED AT GOVERNMENT EXPENSE 700° P 27 B-5 BORROW BORNOW FIELO

1/2

References

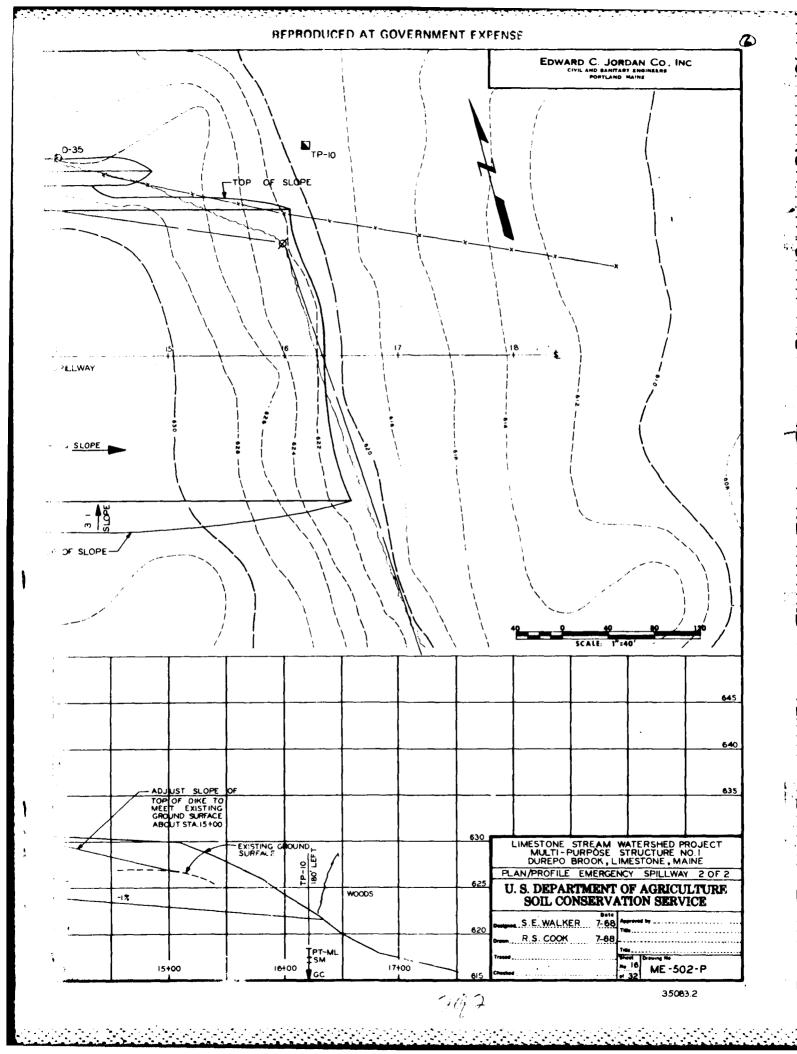
Material from the following references was extracted and incorporated herein:

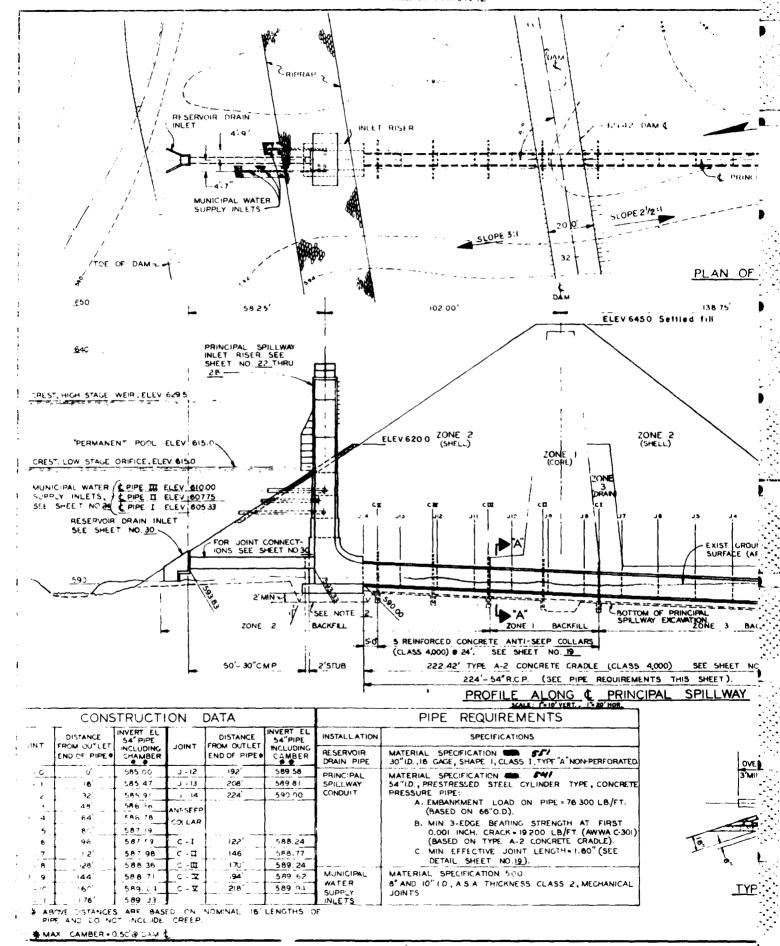
- a. "Limestone Stream Watershed Work Plan" Central Aroostook Soil Conservation District December, 1964.
- b. "Durepo Brook Construction Drawings"
- c. "Durepo Brook Invitation to Bid" March 1971 SCS construction specification (Typ.)
- d. SCS Technical Information Retrieval System Printout.

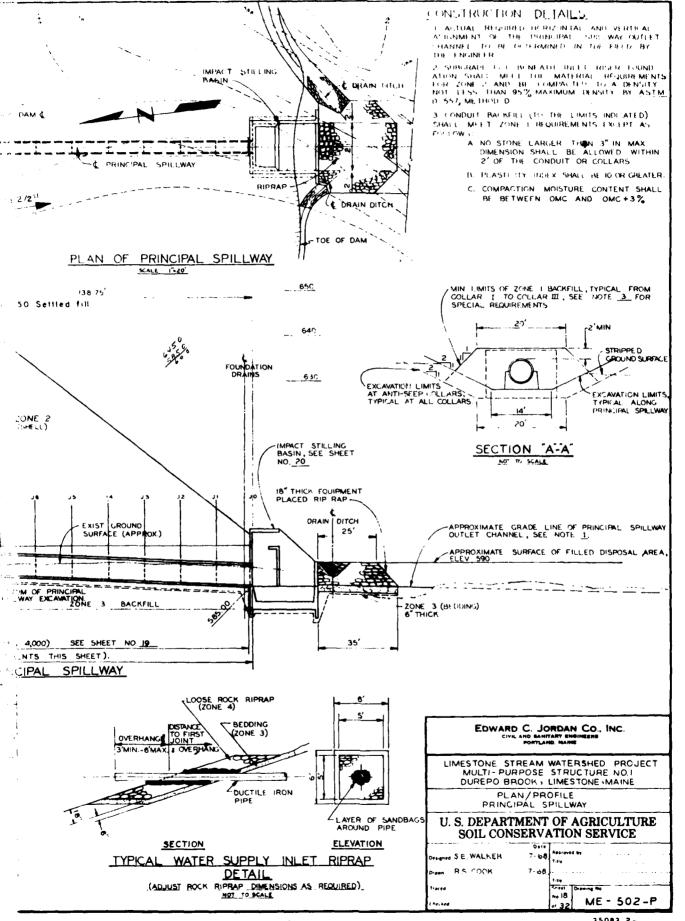
APPENDIX B

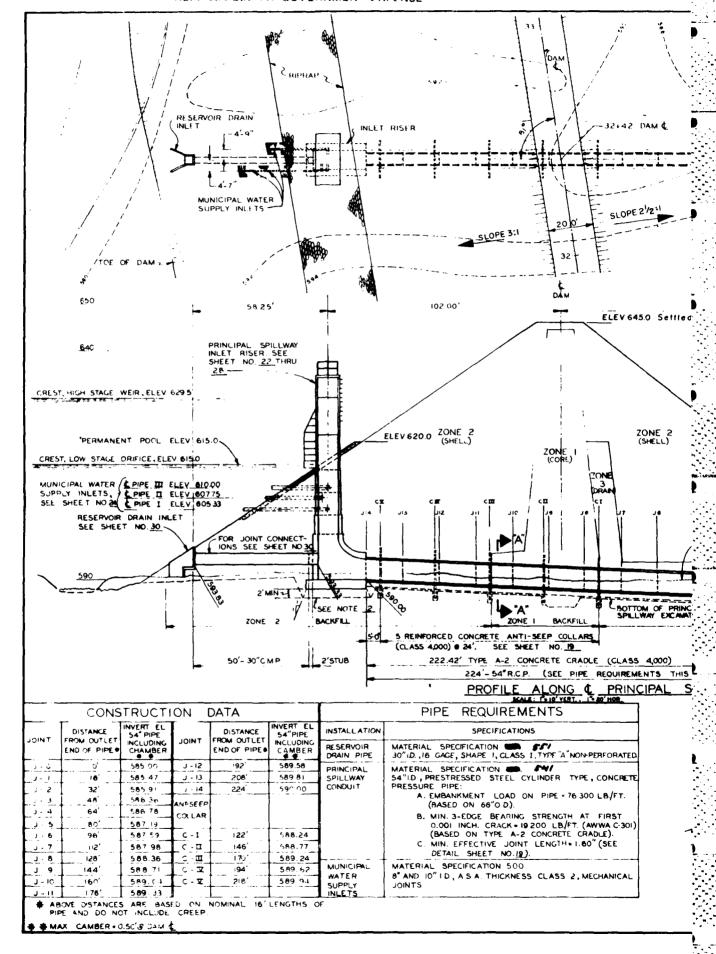
ENGINEERING DATA

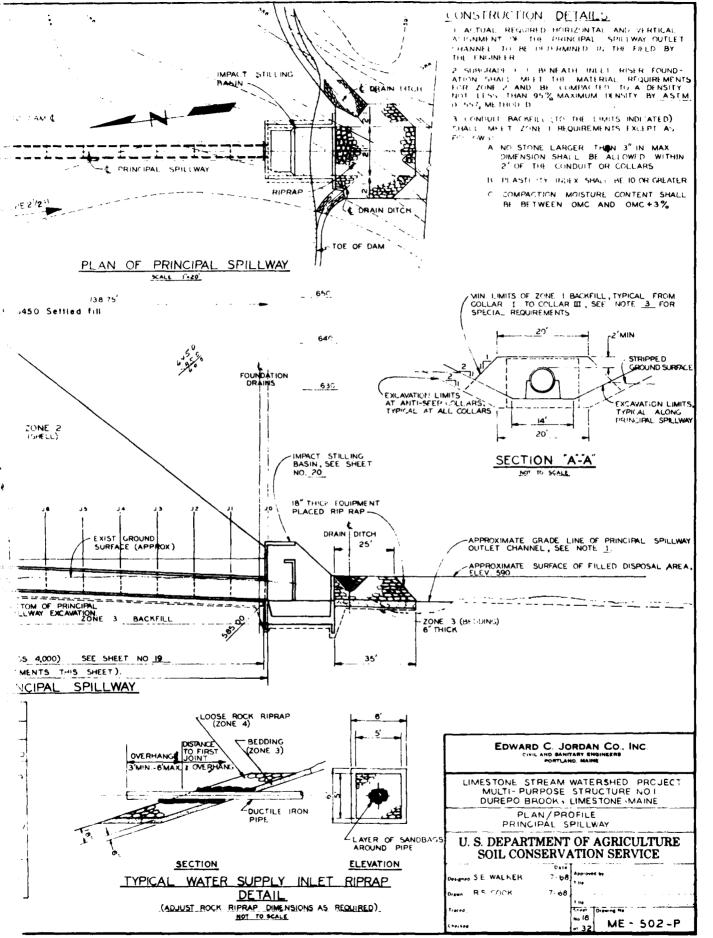
Note: 1. All design records are in storage at the:

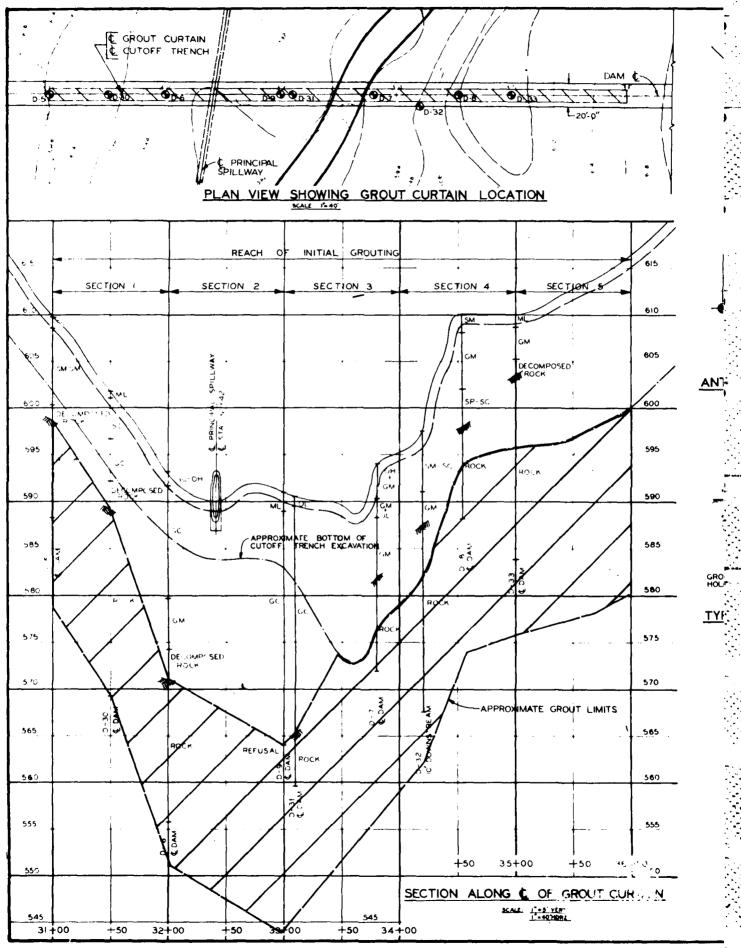

National Archives and Records Service GSA Federal Archives and Records Center 380 Trapelo Road, Waltham, Massachusetts 02154 617-223-2657

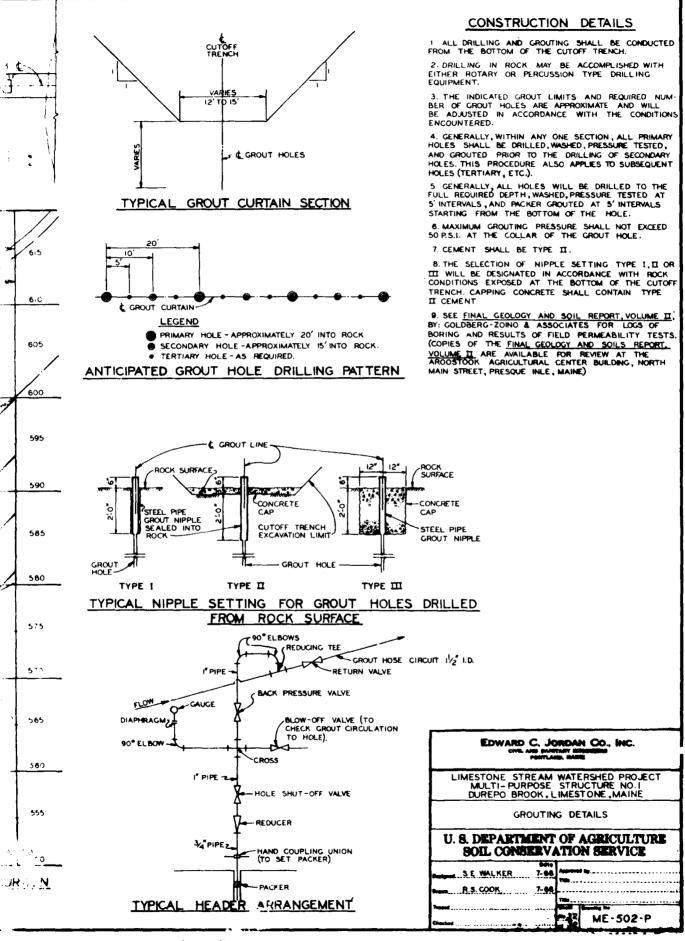

- 2. No past inspection reports were available for review.
- 3. The following drawings are construction prints from the U. S. Department of Agriculture, Soil Conservation Service, Project No. ME-502-P.


	Title of Drawing	Sheet Number
1.	Location of Borings and Test Pits	4 of 32
2.	Dam Profile	10 of 32
3.	Embankment Sections 1 of 2	11 of 32
4.	Embankment Section 2 of 2	12 of 32
	Foundation Drain 2 of 2	14 of 32
	Plan/Profile Emergency Spillway 2 of 2	16 of 32
	Plan/Profile Principal Spillway	18 of 32
8.	Grouting Details	32 of 32


PROJECT_	Durepo :	Brook Dam			DATE_	Nov. 8, 1979
PROJECT	FEATURE_	Earthfill	dam		NAME_	Lewis B. Seward
DISCIPLI	NE Hydro			control	NAME	Jan N. Jonas


AREA EVALUATED .	CONDITIONS				
UTLET WORKS - SERVICE BRIDGE	None				
. Super Structure					
Bearings					
Anchor Bolts					
Bridge Seat					
Longitudinal Members					
Under Side of Deck					
Secondary Bracing					
Deck					
Drainage System					
Railings					
Expansion Joints					
Paint					
. Abutment & Piers					
General Condition of Concrete					
Alignment of Abutment					
Approach to Bridge					
Condition of Seat & Backwall					





APPENDIX C

PHOTOGRAPHS

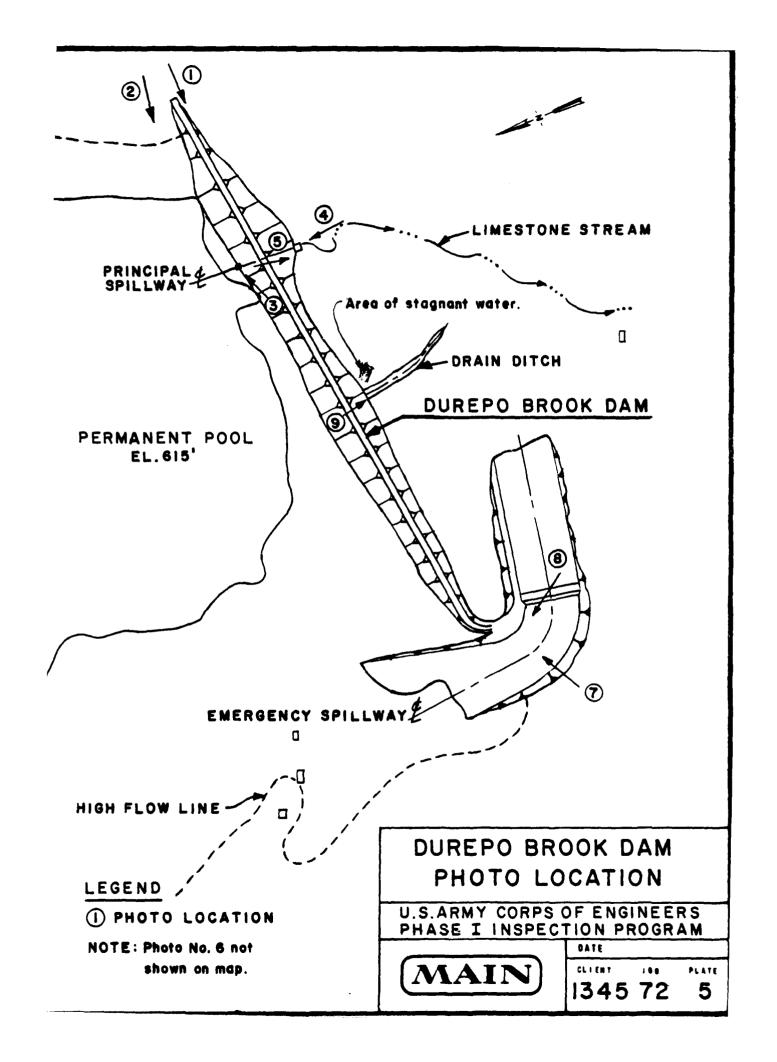


Photo 1

Downstream Slope

from left Abutment

Photo 2
Upstream Slope from
left Abutment

Photo 3

Principal Spillway

Photo 4

Impact Basin

Photo 5

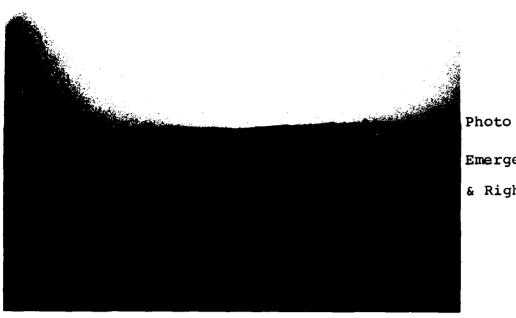

Downstream Channel

Photo 6

Noyes Mill Road

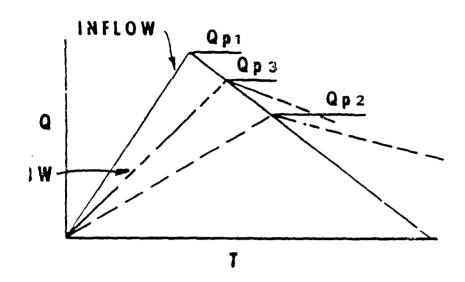
Box Culvert

Emergency Spillway
& Right Abutment

Emergency Spillway
Upstream Approach
Channel looking
Upstream

Photo 9

Toe Drain outfall


& Downstream Channel

St. 25+00

APPENDIX D

HYDROLOGIC & HYDRAULIC COMPUTATIONS

ON MAXIMUM PROBABLE DISCHARGES

- TEP 1: Determine Peak Inflow (Qp1) from Guide Curves.
- TEP 2: a. Determine Surcharge Height To Pass ''Qp1''.
 - b. Determine Volume of Surcharge (STOR1) In Inches of Runoff.
 - c. Maximum Probable Flood Runoff In New England equals Approx. 19'', Therefore:

$$Qp2 = Qp1 \times (1 - \frac{STOR1}{19})$$

- iTEP 3: a. Determine Surcharge Height and "STOR2" To Pass "Qp2"
 - b. Average "STOR1" and "STOR2" and Determine Average Surcharge and Resulting Peak Outflow "Qp3".

MAIN

```
Jeb No. 1345-072 Sheet /1 of 27
     OF ENGINEERS
                                     T. OTOVA
      BROOK
              RESERVOIR
espondina Discharae
                                  NEW STOLAME.= ( OLD STO AVE.
                                  T093 > 2
QF1*(1-STOR1/R)
                                  MEW STO AVE. = 1.13 (in.)
: 15761 (cfs)
                                  gp4 = Qp1 # ( 1 - NEW STO.AVE.
E P 3
                                  Qp4 = 15842 (cfs)
                                  Surcharse Height
range Height.
a 本 原中2 へ b
                                   H4 = a * @P4 ^ 5
                                  H4 = 4.02 (+t.)
harge Wolume, STORS,
                                   52 = 44 + H2
                                   ĒŽ = 641.62 (ft.)
= ELV2 + H
# 641.6 K+t./
ne = 5833,158 (ac-ft)
                                   CHEKING:
wolume = Volume - Volume2
                                   E3 - E2 = 0 (ft.)
Molume = 1189.066 (ac-ft/
2 = 1.11 \text{ (in.)}
                                   P E S U L T S
RTOR AUE = ( STOR1 + STOR2 )
STOR AWE = 1.15 (in.)
                                   AMERAGED DISCHARGE≈ 15829 (cts.
=0≥1%0 1 - OLD STO.AVE. / R
                                   MATER SURFACE ELEV = 641.61
                                   14+,)
= 15817 (cfs)
                                  SURCHARGE HEIGHT = 4.01 (ft.)
                                   CREST ELEV. OF THE DAM:
E = 4
                                   Ec= 645 (ft.)
                                   VOLUME AT DAM CREST ELEV.
                                   U_{C} = 7874.387 (ac+ft)
harge Height
                                   MOLUME AT MAX WATER SURFACE ELE
 当 床 原料子 へ 姫
 4 81 (41)
                                   Uы = 5836.935 (ac+ft)
 volume STORE:
          ≘+ ≢ ;
ne = E, po El-mo M
     -5535 222 /ac-+--
  = volume = Volume2
= 1132 17 vac=+**
                            D-16
```

MAIN

•	
PS OF ENG	INEERS
REYO BROOK	RESERVOIR
OD ROUTIN	'6
an or or substitution of	
ESTIMATING CT OF SUPCHARG	E STORAGE
AMIMUM PROBABL	
re calculations ormed accordin rs of Engineers Telines	is to the
FO BROOK DAM	
A T A:	
PINAGE APEA. 20.03 (sq.mi.)	
₹K INFLOW. = 19803 (cfs)	
[NCIPAL SPILLWF!= 629.5 (ft.)	AY CREST ELEW.
ERGENCY SPILLWE E= 537.5 (ft.)	AY CREST ÉLEV.
raenc: Spillwax derined as /	r Rating Curve
= a * 0 ^ b .	
9968 66	
Caeacity - Ely detined as:	v curvě
= m + n * Log	(Volume)
489 149 17,582	:
AL PME RUNCES'	·

```
Jeb No. 1345-072 Sheet 10 of 27

By 1070/A Date 2-7-81
```

CALCULATIONS.

STEP 1

Reduction of the QP1 due to starting elevation at Principal Spillway crest elev.

Polume at $629.5 \, (ft.)$

Unlume1 =Exp((ELV1-m)/n)
Volume1 = 2929.692 (ac+it)

Volumé at 637.6 (ft.)

Volume2 =Exp((ELV2-m)/m) (Volume2 = 4644,092 (ac+ft)

Diff of Volumes,

Diff Volume = 1714.399 (ac-fr) or. Diff Volume, D= 1.6 (in.)

NEW Ge1=Qe1*(1-0/R) NEW Qe1 = 17358 (cfs)

STEP2

Surcharge Height,

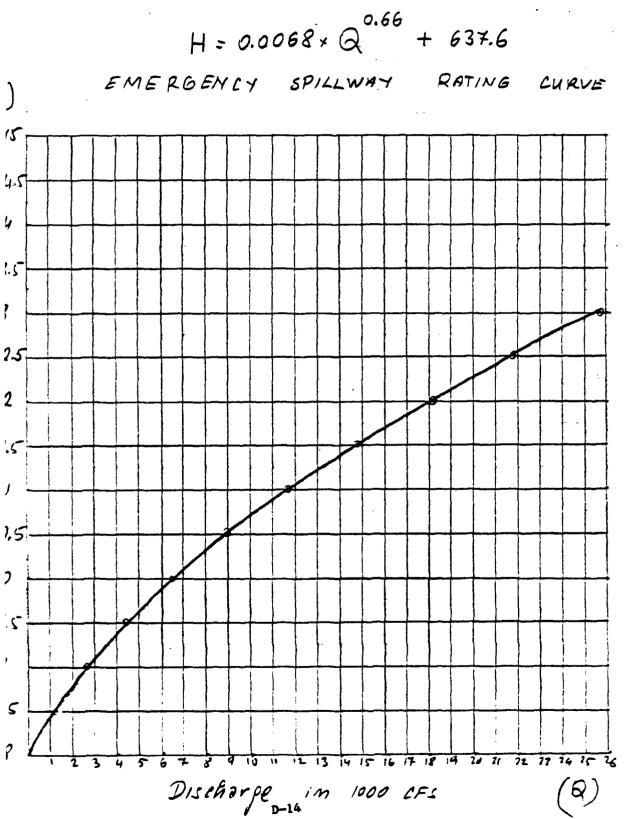
H = a * QP1 ~ b H = 4 27 (ft)

Surcharge Volume,

ELW=ELW2 + H ELW= 641.87 (++.)

Molume = 5931,236 (ac-ft)

STORI =Wolume - Wolume2

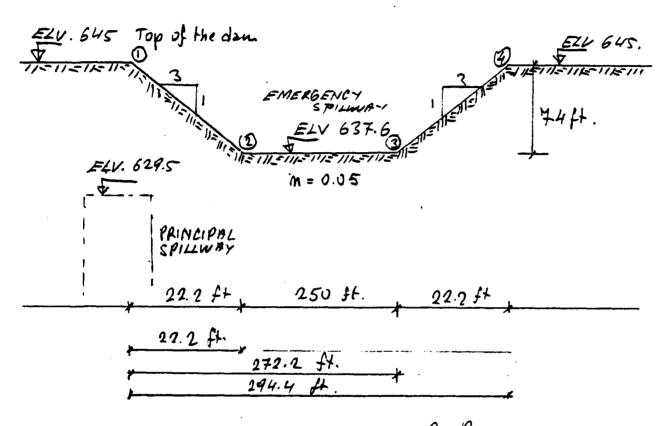

97091 = 1277,144 (ac+ft/

97091 = 1,13 kin

D-15-

DUREPO BROOK DAM

BY TOTOKA Date 2-2-81 FLOOD ROUTING



IRPS OF ENGINEERS	Job No. 1345-077 Shoot 8 of 27
AREDO BROOK DAM	By T. 070VA Date 2-2-81
DUD ROUTING	Ckd: Rev

	والمراجعة والمستهمة بالمراجع المراجع المؤلف الأراز والمستبيعة المعالموالي	بسارة متنيسة مستورا والماحات المحاج يهما	-	بالربيع بقاستهاني يستنب
	e de la composição de la La composição de la compo	en e		
JPE-AREA METHO			استعمرت بسلام بينشب	ter a las demonstrativos (1921). Terra las demonstrativos (1921).
O' I WILL HE HO				
•				
.05 CR089-8EC	POINTS = . 4			
		7 541 5		14867.5
ûb2 = 04		542		
1)= A4F				18169.1
		642 5		
2 '= 637 6 3 '= 637 6				Z1915.9
4 = 545		643		25741 3
			- 74	
1 () = 평		543.5		29939 8
1)= 0 2)= 22 2 7 (= 272 2		544		The state of the s
7 (= 272 8 4 (= 294 4		4		34485 4
		544 =		
1)= .05				39138: 7
2 = 85		645		44131 6
2 /= 05 3 = 05				
•		645.50		49484
3		646		
3 ELEV	DISCHARGE			558 83 4
78		646 5	in a see see the see that the see	68938
2.0	324 5			P6233
78 T	1258 2	547		67839.3
	- 2.30 · 2	- 4	. 7	
79	2637.2	547.5	- 1	73355 8
19 5		548		
· 루 교	4463			79915 2
ia .		648 5	**	86788 6
•	6522 4			ବ୍ରବ୍ୟୟର ହ
·원·토	8973.1	649		93709 5
		649.5		
, <u>1</u>	11738 9	E Maria	>	100938,9
		530		
		₹ •		199384.3
	and the second s	•		
	3000			1,00

CORPS	OF ENGINEERS	Job No. 345- UT2 Sheet 7 of 27	7
• • •	BRECK DEM	Job No. 345- 372 Sheet 7 of 27 By 7.070/A Date 2-2-	 6
FLOOD	ROUTING	Chd. Rev.	

EMERGENCY SPILLWAY

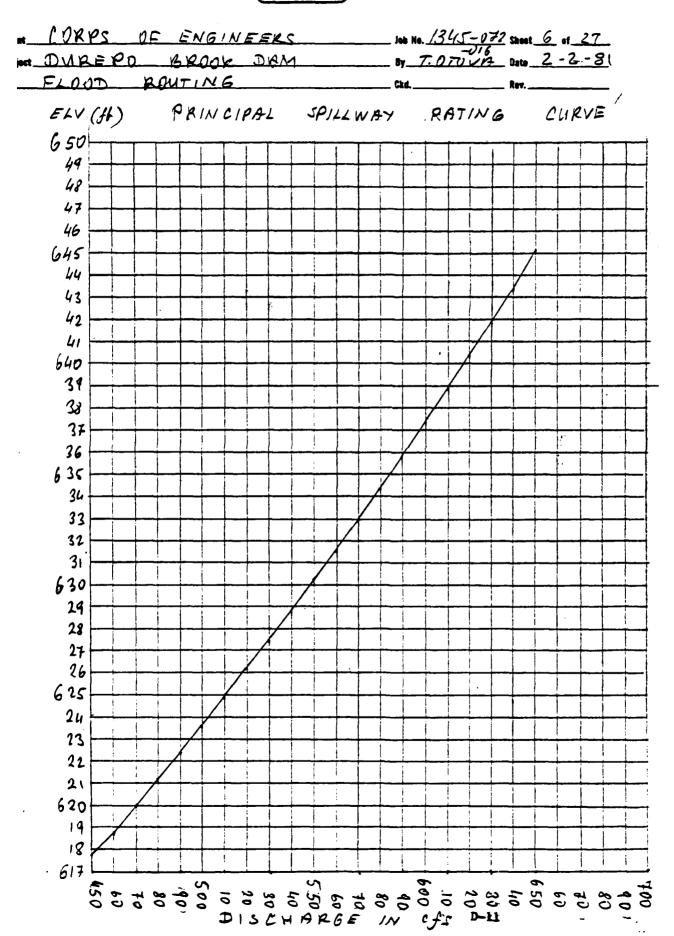
$$Q = \frac{1.40 \times A \times R^{3/3} \times S^{2/2}}{m}$$

$$R = Hydraulie Radius$$

$$S = Slopo$$

$$m = Runghmens Coeff.$$

The stope of the channel is 0.04


The reating table is presented in page 5.

The reating curve is illustrated in page 6.

A curve pitting cateulation in payformed and the following relationship is derived

H= 0.0068 Q 0.66 + 637-6 D-12

(MAIN)

HOLL DUREPO BROOK DAM	8y T. 0TOV	- 0 72 Sheet 5 ef	
FLOOD POUTING	Ct.4	Rev	
FE SPILLWAYS	3 Ye = 12 D = 4.5 (9t)		
THOIPAL SPILLWAY	n = .012 L = 230 (ft)		
e formula used in these calcultons is presented in the "Sure" of Reclamation"s (SIGN OF SMALL CAMS (## 567, Figure 8-10)	ENTRANCE ELV = 5 OUTLET ELV = 5 ELEVATION (++)	592 5 (ft)	(cfs)
=[2 5204*(1+Ke)/D/4+466 19*n~ _ S/(16/3)] * (Q/10)^2 ere, = Head in feet = Entrance loss coefficient = Diameter of Piperin feet = Mannings roughness coefficie = Length of culvert in feet = Design discharge rate in cts	. 97877 6450433649 19867 988477 6450433649 9884888849 789138445798434579849	99999999999999999999999999999999999999	
		and the second s	

CORPS !	F ENGINEERS		Job No. 1345 - V2	2 sheet 4 of 27	_
DUREPO	BROOK DAM		AAT	Date 2-2-8	
F400	ROUTING		Ckd	Rev	_
esijimak.	5 -		e ≈ 1		
		C	= 2.5 (ft)		
PVOIF ORA	INAGE	*7	= 012		<u> </u>
		; 1	≈ 52.5 (+t	>	
	sed in these calcusented in the 'Bur		MTRANCE ELV =	595 (++)	
GR SF SMA SAT Figu	LL DAMS	; 01	STLET ELW = 5	95 (ft)	
r 1977)	· 등 합도되었.				
್ ಎ ಹಾಗುವ ೯೬೭	SINGNOPORE CONTRACTOR	· 5!	C++> MOITAWE	BISCHARGE	(cfs)
00(16/3)	1+Ke)/D^4+466.19*n] ≭ (Q/10)^2	· .	597.43		
			777.43 198 51 199 78	50 50	
-æ.; 		· · · · · · · · · · · · · · · · · · ·	501.24	70 :- 86 ::	
: Head in : Entrance	loss coefficient		02.9 04.75	98 180	
Time and the second	of pipe in feet		inat o		
	roughness coeffici	ۇ : چ	905 ଓ 109.84	11 0 120	
Mannings		.e 6	509.04 311.48 514.12		
Mannings Length of	roughness coeffici	.e	(09.84 11.48	120 130	
Mannings Langth of	roughness coeffici culvert in feet	.e	509.04 311.48 514.12	120 130 140	
Mannings Length of Design di	roughness coeffici culvert in feet	.e	509.04 311.48 514.12	120 130 140	190
Mannings Length of Design di	roughness coeffici culvert in feet	.e	509.04 311.48 514.12	120 130 140	180
Mannings Length of Design di	roughness coeffici culvert in feet	.e	509.04 311.48 514.12	120 130 140	180
Mannings Length of Design di	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160
Mannings Length of Design di	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150
Mannings Length of Design di	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150
Mannings Length of Design di	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150
Mannings Length of Design di	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150 140 (St.) 120 (St.)
Mannings Length of Design di	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150 140 (St.) 120 (St.)
PIPE RATING CURVE Section of the sign of t	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150 140 (St.) 120 (St.)
PIPE RATING CURVE Section of the sign of t	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150 140 (St.) 120 (St.)
PIPE RATING CURVE Section of the sign of t	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150 140 130 120 100 90 100 90 100 70
PIPE RATING CURVE Section of the sign of t	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150 140 130 100 90 80 70 60
Mannings Length of Design di	roughness coeffici culvert in feet		509.04 311.48 514.12	120 130 140	180 170 160 150 140 130 120 100 90 100 90 100 70

CHOOL CORPS OF ENGINEERS 100 Ho. 1345-072 Shoot 3 of

Subject DULE DO BROOK DAM

FLOOD ROUTING

Chal Rev.

DRAINAGE AREA = 20.03 sq:mi.

For rolling terrain PMF Curves (Corps of Empimers Guidelines, March 1978), yield 1445 Cfs/sq.mi. peak discharge.

The total peak discharge = 1445 * 2003 = 28943 efs

The Juide Rine Curves are derived for 19" rumoff.

In this part of New Empland, Maine, Depth-Area

- Donation curves show a 13" of rumoff and

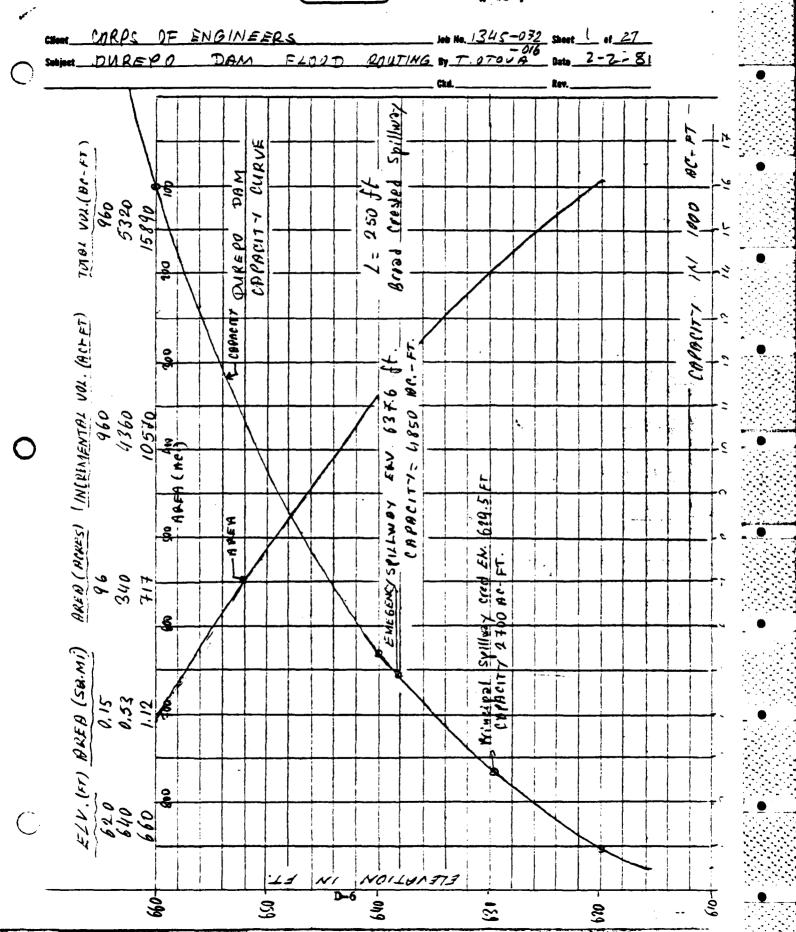
this is confirmed by Corps of Engineers.

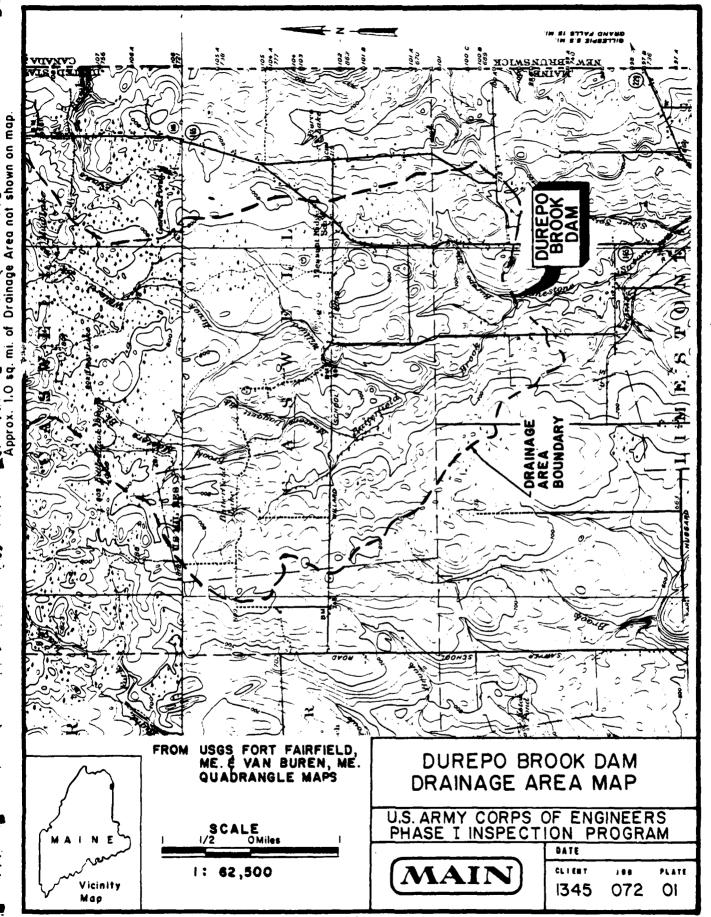
Then, test flood is assumed to be equal

to PMF which is

 $R_{Tot} = 28943 \times \frac{13''}{19''} = 19803 \text{ efs.}$

The invergency spillway is assumed to be an open chammel. The rough ness coefficient is estimated to be 0.05. (This assumption was considered more conservative than a broad crested weir. Manning's Formula is used to derive the discharge nature curve.

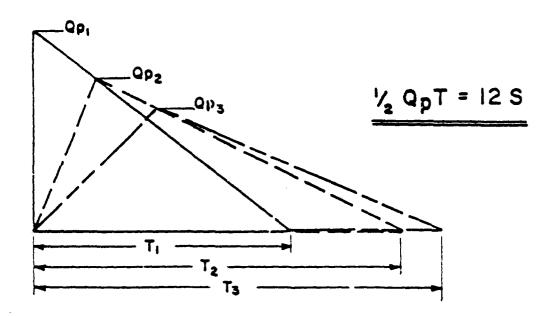

	•	MAIN		
Cilent COR		V 6 INEERS	jab No. 1345 By	- U/2 sheet 2 of 27
Subject DURE	PO BROOM	K RESER VOIR	By	Rev
		,		
	; 1	1	Y() ይይ ይይ መደ መደ	
	•	ଓ କ୍ରିମ ଜଣ୍ଡ କ୍ରେମ୍ବର କ୍ରେମ୍ବର	180 637.6 186 641.3	1999
				'ଶ୍ଞିତ
	:	8 10000.00 3 11000.00	100 651.6 100 652.6	9000
	:	10 12000 00 11 - 13000 00 12 14000 00	99 555.7	1999 1999
	;	13 15000.00 14 15000.00	180 538.8 188 668.9	200
	i	AOV: LOG REGIOS		معي بسيده شايده بالمائه المائد


PEG 1 PESID 12 R SQUAPE = 7 0.4 8 996

17 582LOG X

្តី ២៤៤៤៤៤% ១៩២២២២

. 2700 a 16993-



SURCHARGE STORAGE ROUTING SUPPLEMENT

- STEP 3: a. Determine Surcharge Height and "STOR2" To Pass "Qp2"
 - b. Avg ''STOR1'' and ''STOR2'' and Compute ''Qp3''.
 - c. If Surcharge Height for Qp3 and "STORAVG" agree O.K. If Not:
- STEP 4: a. Determine Surcharge Height and ''STOR3'' To Pass ''Qp3''
 - b. Avg. "Old STORAVG" and "STOR3" and Compute "Qp4"
 - c. Surcharge Height for Qp4 and "New STOR Avg" should Agree closely

"RULE OF THUMB" GUIDANCE FOR ESTIMATING DOWNSTREAM DAM FAILURE HYDROGRAPHS

STEP 1: DETERMINE OR ESTIMATE RESERVOIR STORAGE (S) IN AC-FT AT TIME OF FAILURE.

STEP 2: DETERMINE PEAK FAILURE OUTFLOW (Qp1).

Wb= BREACH WIDTH - SUGGEST VALUE NOT GREATER THAN 4JT OF DIM LENGTH ACROSS RIVER AT MID HEIGHT.

Yo = TOTAL HEIGHT FROM RIVER BED TO POOL LEVEL AT FAILURE.

STEP 3: USING USGS TOPO OR OTHER DATA, DEVELOP REPRESENTATIVE STAGE-DISCHARGE RATING FOR SELECTED DOWNSTREAM RIVER REACH.

STEP 4: ESTIMATE REACH OUTFLOW (Q_{p2}) USING FOLLOWING ITERATION.

- A. APPLY Q_{p1} TO STAGE RATING, DETERMINE STAGE AND ACCOPMANYING VOLUME (V_1) IN REACH IN AC-FT. (NOTE: IF V_1 EXCEEDS 1/2 OF S, SELECT SHORTER REACH.)
- B. DETERMINE TRIAL Qu2.

Qp (TRIAL) = Qp (1 - 4)

- C. COMPUTE V2 USING Qp2 (TRIAL).
- D. AVERAGE V_1 AND V_2 AND COMPUTE Q_{p2} . $Q_{p2} = Q_{p1} (1 \frac{V_{p2}}{2})$

STEP 5: FOR SUCCEEDING REACHES REPEAT STEPS 3 AND 4.

APRIL 1978

Client	COR PS 01	ENGINEERS	Job No. 12/15 -) 72 By 7. 0TO//-	Sheet 2 of 1
Subject .			By T. OTOYr	Date 2.2-81
	FAI/ 112E	ANIALYCES	Ckd	Rev

DERIVATION OF STAGE - DISCHARGE RELATIONSHIP

Area,
$$\theta = \frac{h \cdot b}{2} + 2$$
 $A = h \cdot b$

water surface

 $A = \frac{h^2}{4 a n a} \cdot (I)$
 $A = \frac{h^2}{4 a n a} \cdot (I)$
 $A = \frac{h^2}{4 a n a} \cdot (I)$

Netted Brameter, W,

$$W = 2\ell \qquad \frac{b}{\ell} = \ln \alpha \qquad \ell = \frac{b}{\ell v s \alpha} \qquad W = 2 \frac{b}{\ell s s \alpha}$$

$$L_{1-y} \text{ or earlie } Radius, R,$$

$$R = \frac{p}{\ell} = \frac{b f}{\ell} = \frac{f}{\ell} \cdot \ln \alpha \qquad R^{2/3} \cdot \left(\frac{f_{1} \cdot \ln \alpha}{2}\right)^{2/3}$$

$$P = \frac{p}{N} = \frac{bh}{2\frac{c}{kn\lambda}} = \frac{h}{2} \cdot (h \times kn\lambda)^{n/2}$$

Memining = Formula,
$$Q = \frac{1.49 \times A \times R^{2/3}}{m} \cdot S^{1/2}$$
 $S = \frac{1.49}{m} \times \frac{1.49}{4} \times \frac{R^{2}}{4} \times \frac{1.49}{m} \times \frac{1.49}{4} \times \frac$

$$\int_{0}^{\pi} - \left[\frac{1.068 + m + tond}{(Cod)^{3/3} + 5''^{2}} + Q \right]^{3/8} - \dots I$$

CHAN CORPS OF ENGINEERS Job No. 1345-072 Sheet 12 of 27 Subject DUREPO BROOK DAM FAILURE ANALYSES

DUREED BROOK DAM FRILURE ANALYSES

These calculations are performed according to the RULE OF THUMB procedures of the Cores of Ensineers

The breach discharge: 0e; = 8/27 * Wb * 900.5 * Yon3/2

Mo is the height of the breach (From river bed to the max. Pool level)

Wh is 35% of the length of the d or Wb = .35 * Wa

a is the acceleration of the ara 91+7 (32.2 ht/sec^2)

56.61 (11)

2550 0 + 10

332

From Escape equation: ានរ នាក់នៅទីនៅនៅនៅប្រឹក្សា

The natural channel cross section ns are simplyfied as triansular cross sections

The stage-discharge relationshi becomes as:

 $h = [1.068 * n * Tan(a) * 0 / 6 os(a)^2/3 / S^,5]^3/3/8, ...(1)$

Whare,

9 = Discharge (cfs)

a = Side slope anale (dea)

S = Channel slope

The cross section Area:

 $A = F^2 \times Tan(a) \dots (II)$

The Volume of the Reservoir: V = 5837 (ac+ft) 11 =

254259720 (cup-ft)

MARK OF ENGINEERS Jeb No. 1345 - 172 Sheet 13 of 27 By T. 05016 Date 9-2-81 Subject DUREPO BROOK DAM FAILURE ANALYSES 0p2 = 0p1 * (1 - 01 / 0)9p2 = 497582 (cts)From Formula (1), 9≃Qp2+Qt $\Omega = 514036 \text{ (cfs)}$ 59 (ft) 역 를 A C H (1) CALCULATIONS (Particulations) From Formula (II). 9 = 50082 (+t)Test flood discharge: Pesidual Area, = 16454 (cfs)AB = A - A12.86 (dee) 9932 92 = 46292 (41)97 1000 (ft) ₩2 = 83 * L V2 = 46292457 (cub-ft)From Formula (I)/ Prefailure height, Vave = (V1 + V2) / 261 = 13.7 (ft)Wave = 51304426 (cub-ft) From Formula (II) > QP2 = QP1 * (1 - Vave / V)A1 = 3790 (sq.ft.)(QP2 = 510181 (cfs) 0 = 0p1 + 0t From Formula (I), From Formula (I). Total Height. h = 54.7 (ft) |0| = 0 + 0 + 0 + 0 $\ln 2 = 50.4 \text{ (ft)}$ From Formula (II). Total Area, A = 60106 (sq-ft) RESULTS : Residual Area, 92 = 3 - 6192 = 56316 (sq-+t) - Pretailure Heisht = 13 € Pesidual Volume: 2 / Posttailure Helaht = 50 4 어느 보는 그 않는 음일 Breach Discharte =

D-19

4) Reach Length = 1900 /----

56316396 (cup-ft)

CORPS OF ENGINEERS	Jeb No. 1345-072 Sheet 14 of 27 By 7.070v4 Date 2-2-81
FAILURE ANALYCES	Chd. Rev.
	9p2 = 0p1 * (1 - V1 / V)
	માનું સ્થાપ્ત માનું સ્થાપ્ત માનું સ્થાપ્ત સ્થાપ્ત સ્થાપ્ત સ્થાપ્ત માનું સ્થાપ્ત સ્થાપ્ત સ્થાપ્ત સ્થાપ્ત સ્થાપ્ત સ્થાપ્ત સ્થાપ
	From Formula (I)
	0=0=2+Q+
	Q = 427152 (cfs)
E A C H (2) CALCULATIONS	
	h = 43 (ft)
est flood discharse: t = 16454 (cts/	From Formula (II),
: = 2,35 (deg.)	A = 45776 (ft)
= 2.39 (GBB) / = 3032 = 97	Residual Area.
= 1999 (ft)	A2 = A - A1
·	A2 = 41796 (ft)
rom Formula (I).	W2 = A2 * L
refailure height.	V2 = 41796343 (cub-ft)
1 = 12.7 (++)	
rom Formula (II) ,	Nava = (AT + A5 > \ 5
1 = 3980 (sq ft.)	Vave = 45687951 (cub-ft)
	0-0 - 0-1 - 1
= @P1 + @t	Qp2 = Qp1 * (1 - Vava / V)
rom Formula (I). otal Heisht,	QP2 = 418507 (cfs)
= 46 S (ft)	From Formula (I).
rom Formula (II), otal Area,	ር = QP2 + Ot
= 53559 (sq-ft)	h2 = 43.6 (ft)
esidual Area. 2 = A - Ai	
2 = 49579 (sa-ft)	RESULTS :
esidual Volume, .	
1 = L * A2	<pre>(1) Prefailure Height = 12.7 (6ft)</pre>
1 ≈ 49579558 (dub+ft)	2) Postfailure Height = 43.6
	(76)

Client CORPS OF ENGINEERS	 lob No. 1345-072 Sheet 15 of 27
Subject DUREPO BRANK DAM	 By T. 0 70 1/2 Date 2-2-81
FAILURE ANALYSES	 Chd. Rev.
	0e2 = 0e1 * (1 - V1 / V)

P E A C H (3) CALCULATIONS

0t = 16454 (cfs)2.18 (des) *00*32 -97 1000 (ft)

Test flood discharge:

From Formula (I), Prefailure height,

h1 = 12.4 (ft).

From Formula (II) ,

91 = 4055 (sq.ft.)

⑤ = ◎₱1 + ◎む

From Formula (I), Total Height, h = 42.4 (ft)

From Formula (II), Total Area. $\theta = 47280 (sq-+t)$

Pesidual Area, 92 = A - A162 = 43224 (sq-+t)

Residual Volume,

V1 = L * 82

91 = 43224755 (cub-ft)

9p2 = 347359 (cts)

From Formula (I),

Q=Q+2+Q+

0 = 363813 (cfs)

h = 39 (ft)

From Formula (II),

 $\theta = -41352 (+t)$

Residual Area,

A2 = A - A1

'A2 = 37296 (ft)

V2 = A2 * L

37296969 (cub-ft)

Vave = (V1 + V2) / 2

40260862 (cub-ft)

0-2 = 0-1 * (1 - Vave /

9e2 = 352238 (c+s)

From Formula (I),

Ø = 0e2 + 0t

52 = 39.8 (ft)

RESULTS :

1.) Pretailure Height = 12.4

2) Postfailure Height = 39.8

3.) Breach Discharae ≃

Reach Length # 1000 Petic

	101
M CORPS OF ENGINEERS	lab No. 1345-032 Shoot 16 of 27
pet DUREPO BROOK DAM	By T. 0T 0V 0 Date 2-2-8/
FAILURE ANALYSES	Ckd Rev
	Re3 = Qe1 ≭ (1 - V1 / V) → → 3
	0e2 = 310667 (cfs)
A Committee of the Comm	From Formula (I)
	@≈Q≈2+Q†
REACH(4) CALCULATIONS	9 = 327121 (cfs)
	N = 34 (ft)
Test flood discharse: St = 16454 (cfs)	From Formula (II)
s = 1.72 (deg.)	A = 40510 (++)
5 = 0032 6 = 07	Residual, Area
ପ୍ରିକ୍ଟର୍ଡ ୧୫୬୬	A2 = A - A1
•	92 = 36207 (ft)
From Formula (I).	
Pretailure heisht,	V2 = A2 * L
ht = 11.3 (ff)	V2 = 27155754 (cub-ft)
From Formula (II)	Wave = (V1 + V2) / 2
A1 = 4302 (sq.ft.)	
	Wave = 28581810 (cub-ft)
© = Q P1 + Q↑	Qp2 = Qp1 * (1 - Vave / V)
From Formula (I), Total Height, h = 36.4 (ft)	QP2 = 312642 (c+s)
From Formula (II).	From Formula (I).
Total Area, A = 44313 (sa-ft)	Q = Qp2 + Q+
Residual Area	h2 = 34.9 (ft)
42 = A - A1 A2 = 40010 (sq-ft)	RESULTS
Pesidual Volume,	
V1 = L * A2	1 / Pretailure Height = 11.3
v: = 30007866 (cub-ft)	(f +)
AT - SMOKEGOD COMBERTY	2) Postfailure Heisht = 34 9 (無論)
	- (JE) -7 - Breach Discharge = - 31264)
	· · · · · · · · · · · · · · · · · · ·

CARDS OF ENGINEERS DUREPO BROOK DAM Job No. 1345-172 Sheet 17 of 27 T. 0 TOVA Date 2.2= 81

FAILURE ANALYSES

P E A C H (5) CALCULATIONS

Test flood discharge: ್ರಿ = 18454 (⊈+≲) 1 년 (선수명.)

9032 07 1999 (**)

From Formula (I),

Prefailure height,

51 = 11 (ff)

From Formula (II) ,

91 = 4381 (sq. ft.)

 $Q = Q_{P} \mathbf{1} + Q_{T}$

From Formula (I). Total Height. h = 34 (+t)

From Formula (II), Total Area. $\theta = 41435 (sa-ft)$

Residual Area, A2 = A - A1A2 = 37054 (sq-ft)

Residual Volume,

#1 = L # A2

V1 = 37054215 (cub-ft)

982 = 981 * (1 - 91 : 9)

0P2 = 267080 (cfs)

From Formula (I),

Q≃Qp2+Qt

283534 (cfs)

32 (ft)

From Formula (II),

37053 (++)

Residual Area,

A2 = A - A1

92 = 32672 (ft)

M2 = A2 * L

V2 = 32672637 (cub-ft)

 $Vave = (V1 + V2) \times 2$

 $\Psi_{avg} = -34863426 \text{ (cub-ft)}$

Op2 = Qp1 * (1 - Vave 2 V)

- Qp2 = - 269773 (cfs)

From Formula (I),

Q = Q + Q t

h2 = 32.2 (ft)

RESULTS /

Prefailure Height

3.3 PostfailureHeight =

) Breach Discharge # 269773

1999 (++) - 1

CORP. OF ENGINEERS	Job No. 1345-072 Sheet	
DUREPO BROOK DOM	By <i>T. OTO V</i> 86 Date	2-2-81
FAILURE ANALYSES	Ckd Rev	
	9p2 = 0p1 * (1 -)	V1 / V)
	0p2 = 203790 (cts)
	From Formula (I),	
	@≖Qp2+Qt	
. •	0 = 220244 (cfs)	
E A C H (6) CALCULATIONS		
	h = 34 (ft)	
est flood discharge:	From Formula (II),	
f = 16454 (cfs)	9 ≈ 27565 (+t)	
= 2.45 (deg) = .0032	Pesidual Area,	
0032 07 - 2100 (ft)	A2 = A - A1	
- 2100 (717	A2 = 23626 (ft)	
rom Formula (I),	NS = 85 * F	
rafailure heisht,	12 = 49616248 (cul	e-ft)
1 = 12.9 (ft)		
om Formula (II)	Vave = (V1 + V2)	/ 2
= 3939 (sq.ff.)	Wave = 55902316 (cub-ft)
	0p2 = 0p1	o Usos / U
= Qe1 + Qt	QP2 = 210460 (cts	
rom Formula (I), Hal Heisht.	WF2 - 210400 (CTS.	
= 37.8 (ft)	From Formula (I),	
rom Formula (II), otal Area,	Q = 0p2 + Q+	
(a) area; = 33552 (sq-ft)	h2 = 34.7 (ft)	•
esidual Area.		
! = A - A1 ! = 29613 (sa-+t)	RESULTS	
	•	
esidual Volume,	[]) Prefailure Hei	#hit = 1;
1 = L # A2	(ft)	
1 = 62188385 (cub-ft)	2.) Postfailure Her (ft)	iant =)
5-24	3.) Breach Dischar- (c+s)	9e = 21
and the second second	5 일 # 3 년	

2100

Job No. 1345-172 Sheet 19 of 27 CORPS OF ENGINEERS DUREPO BROOK DAM FALLURE ANALYSES Q = 2 = 0 = 1 * (1 - V1 / V)9P2 = 201406 (cfs)From Formula (I), 0=0p2+01 Q = 217860 (cfs)REACH(7) CALCULATIONS h = -32 (++3)From Formula (II), Test -lood discharge: $\theta = -15416 (ft)$ 9° = 16454 (cfs) 3.81 (des) Residual Area, .011 A2 = A - A1. 97 800 (++) A2 = 13195 (ft)M2 = 62 # L From Formula (I), M2 = 10556296 (cub-ft) Prefailure height, hi = 12.1 (++)Vave = (V1 + V2) / 2From Formula (II) Vav $\theta = -10747529 \text{ (cub-fr)}$ A1 = 2221 (sq. ft.) \mathbb{Q} P2 = \mathbb{Q} P1 * (1 - \mathbb{Q} ave / \mathbb{Q}) g = 0 = 1 + 0 t0 = 201564 (cfs)From Formula (I), Total Height: h = 32.5 (ft) From Formula (I), 0 = Qp2 + Qt From Formula (II), Total Areas = 15894 (sq-ft)h2 = -32 (ft)Pesidual Area, PESULTS : $\theta \hat{2} = -13673 (sq-ft)$ Pesidual Wolume, .) Prefailure Height = 12.1 71 = L * A2 2.2 Postfailure Height = (] (] () 91 = 10938763 (cub-ft)) Breach Discharge =

ୟ । Peach Lemath = ରୁମୁଣ୍ (++)

1805 AF INGINEERS DUREPO BROOK DAM ANALYSES E A C H (8) CALCULATIONS est flood discharge: - 15454 (cfs) 3.2 (dea.) .0077 . 97 1100 (ft) rom Formula (1). refailure height, 1 = 12.1 (+t)rom Formula (II) , 1 = 2651 (sq.ft.)= QP1 + Qt rom Formula (I). otal Height, = 32 (+t)rom Formula (II), otal Area, = 18414 (sq-ft)esidual Area, 2 = A - A1= 15762 (sa-ft) esidual Volume, 1 = L * A2

-= 17339168 (cub-ft)

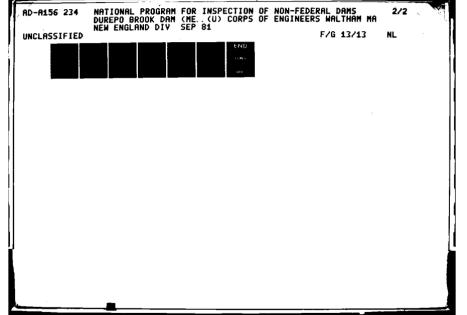
```
Date 2.2.81
0 = 2 = 0 = 1 * (1 - 01 / 0)
QP2 = 187818 (cfs)
From Formula (I),
Q=Qp2+Qt
Q = 204272 \text{ (cfs)}
     31 (ft)
From Formula (II),
\Re = 17536 \text{ (ft)}
Residual Area,
A2 = A - A1
A2 = 14885 (ft)
M2 = A2 * L
M2 = 16373597 (cub-ft)
Nava = ( V1 + V2 ) / 2<sup>™</sup>
Nava =
        16856382 (cub-+t)
Qp2 = Qp1 * ( 1 - Vave /
DP2 = 188201 (cfs)
From Formula (I),
D = 0P2 + Q+
h2 = 31.3 (41)
RESULTS :
1.) Prefailure Height = 12 t
くききり
2 > Postfailure Height = 31.3
7.)Breach Discharge =
くせんまり
```

4) Reach Length $= 1100 \, \mathrm{GeV}_{\odot}$

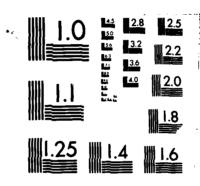
_ Job Ma. <u>1345-072</u> Sheet <u>20</u> of <u>27</u>

D-26

RPS OF ANGINEERS Job No. 1345-072 Sheet 2 for 27 BROOK DAM ANALYSES FILLURE 184082 (cfs) From Formula (I), 0-Qp2+Qt 9 = 200536 (cfs)A C H (9) CALCULATIONS 34 (+t) flood discharse. From Formula (II), 16454 (cfs) P = 21518.(+t)3.2 (deal) . 9943 Residual Area, . 27 300 (+1) 92 = 8 - 81 A2 = 18219 (ft)m Formula (I), V2 = A2 * L failure height, 5465915 (cub-ft) 13.5 (ft) m Formula (II) . 3298 (sq. ft.)Vava = | 5515515 (cub-ft) Qp1 + Qt 9P2 = 9P1 * (1 - Wave 2)m Formula (I), 184119 (cfs) al Heighta 34.9 (ft) From Formula (I). m Formula (II), al Area 12 = Qp2 + Qt 21849 (sq-ft) h2 = 34.6 (+t)idual Area, 1855@ (sq-ft) RESULTS : didual Wolume, = L * A2 -5565116 (cub-+t) -


1 0 Prefailure Height = 43.5 (ft) 2) Postfailure Height = -34.6 Breach Discharge = 184119

RE OF ENGINEERS Job No. 1345-072 Sheet 22 of 27 T. OTDUR Date 2 - 2 - 81 BROOK A REPO DAM BNBLYSES ALLURE $Q_P2 = Q_P1 * (1 - V1 / V)$ QP2 = 180160 (c+s)From Formula (I), 0=0p2+0t0 = 196614 (cfs)A C H (10) CALCULATIONS h = 34 (ft)From Formula (II), lood discharge -16454 (cfs) 21202 (++) 3.2 (deg.) Residual Area, 2043 A2 = A - A1300 (++) iA2 = 17903 (ft) n Formula (I); W2 = A2 * L Failure height, W2 = 5370989 (cub-++) 13.5 (ft) Wave = (V1 + V2) / 2n Formula (II) , |Vave = 5418895 (cub-ft) 3298 (sq. ft.)0p2 = 0p1 * (1 - Vava / @el + Qt i€=2 = 180194 (c+s) . n Formula (I). 31 Height, 34.6 (ft) From Formula (I). n Formula (II), iΩ = Q⊳2 + Qτ al Area, 21521 (sq-ft)h2 = 34.4.(ft)idual Area, = A - A1 RESULTS : 18222 (sa-ft) idual Volume. i.) Prefailure Height = 13.5 = L * A2 2) Postfailure Height = 3a a 5466801 (cub-++) 💚 Breach Discharae = 189194 D-28 icts),


Reach Length = 300 (+t)

OF ENGINEERS	Jeb No. 1345-072 Sheet 2 3 of 27
EPO BRIOK DAM	By T. 07014 Date 2-2=81
URE ANALYSES	Ckd Rev
मृ <i>स</i> ा १	0e2 = 0e1 * 0 1 ~ V1 / .
	0e2 = 176387 (cfs)
	From Formula (I).
لأد فقه مدينتم	0=0p2+0t
	0 = 192841 kcfs/
C H (11) CAECULATIONS	h = 74 (4t)
	From Formula (II),
flood discharge	.: - P = 20896 (+t)
16454 (c+s)	
3.2 (dea.) - 3043	82 = 9 - 4:
97 300 (++)	A2 = 17597 (++)
Formula (I),	V2 = A2 * ∟
vilure height,	₩2 = 5279239 (cub+++)
13.5 (ft)	 Vave = (V1 + V2)
Formula (II) ,	Vave = 5325535 toub
7298 (sq.ft.)	Ada - Gozooso (Edb
Same Kak Fil.	0e2 = 0e1 * 0 1 + Vave
lei + Qt	ØP2 = 176420 (c+s)
Formula (I). Height. 34,4 (4t)	From Formula (I).
	Q = Qp2 + Q+
Formula (II). Area 21205 (sa-ft)	h2 = 34.1 (++)
fual Area: A - A1 17906 (sq-ft)	PESULTS :
tual Wolume)	1 % Prefailure Height = 17 (+t)
L * A2	2) Postfailure Helant = 34
5371931 (cub-++)	(a). (3.) Breach Discharge = 1764. (cfs)

```
Joh No. 1345-077 Sheet 2 4 of 27
S OF ENGINEERS
                                      T. 07044 Date 2-2-81
EPO BROOK
                 DAM
           ANALYSES
LLURG
                                9e2 = 9e1 * (1 - 91 / 9)
                                QP2 = 172757 (cts)
                                From Formula (I),
                                Ծ=0⊳2+0t
                                9 = 189211 (cfs)
C H / 12 ) CALCULATIONS
                                h = 33 (ft)
                                From Formula (II),
lood discharse
16454 (cfs)
                                A = 20600 (ft)
                                Residual Area,
 (2 (선송명))
                                A2 = A - A1
3043
38 FFFF
                                A2 = 17301 (ft)
                                W2 = 82 * L
ormula (I).
                                V2 = 5190506 (cub-++)
lure heights
13.5 (ft) .
                                Vave = (V1 + V2) \times
formula (II) .
                                Vave = 5235272 (cub-ft)
3298 (sq. +t.)
                                \mathbb{Q}_{P}2 = \mathbb{Q}_{P}1 * (1 - \mathbb{Q}_{P} \mathsf{var}_{P})
1 + 0+
                                QP2 = 172788 (cfs)
formula (I),
                                From Formula (I).
14 (1 (++)
                                <u>0</u> = 0⊳2 + 0+
Formula (II)»
                                h2 = 33.9 (ft)
10899 (sq-ft)
:al Area.
                                RESULTS :
1 - A1
17600 (51-11)
                                1.) Prefailure Height = 1275
                                8.800
sal Volume,
                                  🗅 Postfailure Height = 23.9
. * AC
5280078 (cub-++)
                                  Breach Discharge = 172788
                          D-30
                                ೯೬೯)
                               94 ) Reach Length = 300 (+t)
```


2/2 .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

DURERO	BROOK DAM	By 7.072.0 Date
• • • • • •	ANALYSES	Ckd Rev.
		0p2 = 0p1 * (1 −
	and the second s	0e2 = 169260 (cfs
	en e	From Formula (14)
	e de la companya de La companya de la co	
		9 = 185714 (cts)
PEACH (1	3) CALCULATIONS	h = 33 (ft)
		From Formula (II),
Test flood discharge: Ot = 16454 (cfs)		9 = 20314 (ft)
		Pesidual Area,
s = 3.2 (des	()	92 = A - A1
= 0043 = 07		
. ≈ 300 (f+)	•	HE - 11910 (11)
		V2 = A2 * L
From Formula	•	V2 = 5104645 (cub
Prefailure he	isht,	
ni = 13.5 Cf	t)	Vave = (V1 + V2)
From Formula	(II)	Wave = 5147956 (d
91 = 3298 (s	recete D	Qp2 = Qp1 * (1 -
0 = 0p1 + Qt		0e2 = 169289 (cts
From Formula Total Height,		From Formula (I),
n = 33.9 (ft -	• .	Q = QP2 + Qt
From Formula Total Area,	4	h2 = 33.7 (ft)
9 = 20603 (s	(q-f+)	
Residual Area 92 = A - Ai		RESULTS :
92 = 17304 (59-+t)	
Pesicual Volu	ıma.	<pre>i.) Prefailure Hei (ft)</pre>
/1 = L * A2	rars ·	2.) Postfailure He
· L * MG	*	

13.5

33.7

169239

CORPS OF ENGINEERS	Job No. 1345-72 Sheet 6 of 27
DUREDO BROOK DAM	By T. OTOVA Bate 2 . 1-31
FAILURE BNALYCES	Chd Rev
1	0e2 = Qe1 * (1 - V1 / V)
	Qp2 = 165890 (cfs)
	From Formula (I)
	Q=Qp2+Qt
· · · · · · · · · · · · · · · · · · ·	0 = 182344 (cfs)
P E A C H < 14 > CALCULATIONS	h = 33 (ft)
	From Formula (II)
Test flood discharge	. A ≈ 20037 (ft)
2+ = 16454 (cfs)	Residual Area.
a = 3.2 (dem.) S = .0043	A2 = A - A1
n = 07 L = 300 (ft)	A2 = 16738 (ft)
From Formula (I).	W2 = A2 * L
	02 = 5021519 (cub-ft)
Prefailure height/	Wave = (W1 + W2) / 2
hi = 13.5 (ft)	
From Formula (II)	Vava = 5063444 (cub-ff)
A1 = 3298 (sq.ftv) 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	QP2 = QP1 * (1 - Vava A 4)
Q = Q + 1 + Q + Q + Q	QP2 = 165918 (cts) (2016) (cts)
From Formula (I)	
Total Height, h = 33.7 (ft)	From Formula (I)
From Formula (II)	Q = QP2 + Qt
Total Area, A = 20316 (sq-ft)	h2 = 33.4 (ft)
Residual Area,	RESULTS
92 = 9 - 81	
A2 = 17017 (sq-+t)	1.) Prefailure Height = 13.5
Residual Volume.	Cft)
V1 = L * A2	2) Postfailure Height = 33.4
71 = 5105369 (cub-++)	
10 - 1 20 - 20 - 1	3) Breach Discharge = 165918 (cfs)
y−32	. : A_{\bullet} Reach Length = 300 (ft) $^{-\infty}$

CORPS OF ENGINEERS 100 No. 134 5-072 Sheet 7-01 27 BROOK DAM DIARERO BY T. OTOVIA FAILURE ANALYSES 9P2 = 9P1 * (1 - V1 / V)@p2 = 162641 (cfs) From Formula (I), Q=Qp2+Qt 0 = 179095 (cfs)REACH(15) CALCULATIONS 33 (ft) From Formula (II), Test flood discharge: $A = 19768 \cdot (ft) \cdots$ 0: = 16454 (cfs)Pesidual Area, 3.2 (des.) 0043 A2 = A - A1300 (ft) 92 = 15478 (44)V2 = A2 * L From Formula (I). V2 = 4941000 (cub-ft)Prefailure height, 61 = 13.5 (4t)Vave = (V1 + V2) / x 2 From Formula (II) > Vave = 4981604 (cub-ft)91 = 3298 (sq.fit.)QP2 = QP1 * (1 - Vavy / V) 9 = Qpi + 0+ 162667 (cfs) From Formula (I); From Formula (I), Total Height, = 33.4 (ft)0 = 0 + 2 + 0 +From Formula (II), Total Area, h2 = 33.2 (ft) P = 20039 (sq-ft)Residual Area RESULTS " A2 = 16740 (sq-ft)-> Pretailure Height = - 13.5 Pesidual Volume, W: = L * A2 2.) Postfailure Height = 01 = 5022209 (cub-ft)→ Breach Discharge # 162667

33.2

4 3 Reach Length =

APPENDIX E

INFORMATION AS CONTAINED IN THE "NATIONAL INVENTURY OF DAMS IN THE UNITED STATES"

NOT AVAILABLE AT THIS TIME

END

FILMED

8-85

DTIC