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1.0 Introduction

~

———v With the continued improvement in coding technizias
and the implementation of these techniques; and the growing
acceptance2 of error control coding, increasingly many sys-

tems engineers are incorporating error control ccdes into

communication systems. However, due to the ragid changes

in this field and the fact that much of the information
needed tc decide whether ersror control coding should se

usad is in widely scattered or unpublished sources, it

has been difficult for the systems engineer to weigh the
advantages versus the costs of various coding systems ancd to
specify the paramaters of a coding system when error control
. coding is selected. The purpose of this report is to grovide
a reference which can be used by systems engineers tc aid in
salecting and specityinq error control codes.
The effort described hers emphasizes tle coding
techniques most likely to be used plications. The
) methéf:’gg,gsaiuatiﬁé’zi;—;::tctmance of various coding tech-
g}gués and Qumerous performance curves and tables are pre-
sented. In addition other system considerations such as syn-
/ chtoni;ation. automatic gain control (AGC), and implemen-

| tation complaexity, are discussed.

Chapter 2 introduces the advantages_and costs cf error

Y
Sl 4

control coding and presents a brief summary of the perfor-

mance that can be achieved with several represgsentative

e et —
PN

coding techniques and of other factors that should be cecn~

sidered in selectzng and specifving error control codes.
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The remaining chapters present a more detailed
description of error control coding. Chapter 3 begins
with a descripticn of the performance which can be achieved
without coding and with some theoretical results on the
limits of coding. The uncoded perfcrmance is included to
acquaint the reader, who may be unfamiliar with error
control systems, with the usual ways of specifying the
error rate performance of 2 system and to provide a con-~
vanient reference for determining the coding gain of coded
communication systems.

The two fundzmental coding limits discussed are the
cs;nncl capacity and the computational cutoff rate. The
absolute upper limit on the rate of a code (defined ad the
ratio of the number of encoder input bits to the number
of encoder output bits) is the channel capacity and the
upper liiit for practically implementable systems is the
computational cutoff rate. Thesa limits are presented in
a form which shows the minimum signal-to-nocise ratio for
which coding is useful versus the code bandwidth expansion
{defined as the inverse of the code rate) for several
modulation and channel types. If these rasults show that
the signal-to-noise ratio for a particular modulation and
channel is_insufticient for any code rate, then what is .
required is a better modulation technigque or system

changes that will increase the received signal-to-noise:

&
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there is no need to hopelessly search for a coding tech-
nique to achieve some impossible goal.

Chapter 4 through 7 discuss and give the per-
formance of specific coding techniques. Chapter 4 covers
block codes and Chapter S convolutiongl codes which
are decoded using Viterbi, sequential, and feedback deco-
ding algorithms.

Chapter 6 describes nonbinary symbol convolutional
codes and, in particular, the dual-k convolutional coding
system which is useful for fading and non-Gaussian noise
channals with 2k-signal MFSK modulation.

Chapter 7 describes and gives performance results
for several concatenated coding systems.

A giossazy of coding terminology is provided in
Appendix A.
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2.0 Summary of the Procedures for Specifying Error

Control Ccdes

The digital communication svstem engineer, who must
weigh the advantages of error control coding against its
costs, will form a decision based on the naturs and qua-
lity of the channel and other terminal equipment already
available. But with the dramatic improvements in errcr
control techniques in recent years and the greater reliance
on satellite and terresirial microwave links for broadband
data transmission, decisjions in favor of error ci¢ntrol are

becoming ever more frequent.

For .satellita communication .channels the most effactive

forward error correction techniguys can redyce the recei-ad

signal-to-noise required for a given desired bit error rate

by 5 to 6 4B, or more, compared to a system without error

control. This translates directly into an equivalent reduc-
tion in required satellite effective radiated power, with
consequently reduced satellite weight and potentially remark-
able reductions in satellite booster costs. For a satellice
systam with many ground stations an even greater cost savings
may be possible by reducing the receiving antenna area by a
factor of 4 which is compensated for by the error control
savings of 6 dB. The cost of error control is two-fold: the
equipnent which may be more than compensated by savings which
it makes possible in other terminal equipment; and the redun-

dancy required by the error control code. This redundancy
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need not, howeve;, reduce throughput if additional band-
width is availablh;én the channel. Satellite channels,
in particular, ars okten not nearly as much bandwidth
limited as they are power limited. An error control
technique which employs a rate 1/2 code (100% redundancy)
will require double the bandwidth of an uncoded system;
on the other hand if a rate 3/4 code is used, the redun-
dancy is 33% and the §andwidth expansion only f/3.
Terrestrial channels such as microwave links, HF
and tropospheric propagation links can aiso be improved
by error control tec?niqu.s. For these channels which
are subject to fading and gultigath phenomena, the errors
tend to occur in bu:;i;, and thus corrupt long strings of
data, rather than a; single randomly distributed bit errors.
A very effective error control technique for these channels
is forward error correction cdupled with data interleaving
before transmission and after reception, which causes the
bursts of channel érrors to be spread out and thus to be
handled by the decoder as.if they were r:ndom errors.
In the remainder of this section the .main factors
which nust be considered in specifying errcr contrél codes
are summarized.

2.1. Error Correction Versus Error Detection

One question.that must be addressed in weighing the
advantages of error ccntrol coding against its costs is
whether error correction or error detection coding is best

for the application.
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Error detection techniques are much simpler than

forward error correction (FEC). Considerably less redun-

dancy is required to detect up 0o a given number of errors

than to correct the same errors. The weaknesses of error
detection, however, are several. First, error detaction
presupposes the existence of an automatic repeat ragquest
(ARQ) feature which provides for the rstransmission of
those blocks, segments or packets in which errors have been
deteciad. This assumes some protocol for reserving time
for the retransmission of such erroneous blocks and for
reinserting the corregted version in proper sequence. It
also assumes sufficient overall delay and corresponding buf-
fering that will permit such reinsertion. The latter becomes
particularly difficult in synchronous satellite communication
where the transmission delay in each direction is already a
quarter second.

A further drawback of error detection with ARQ is its
inctficigncy at or near the system noise threshold. For,
as the error rate approaches the inverse block (or packet)
length, the majority of blocks will contain detected errors
and hence require retransmission, even several times, re-
ducing the throughput drastically. In such cases, forward
error correction, in addition to error detection with ARQ,
may considerably improve throughput. One technique, con-

volutional coding with sequential decoding is basically

a forward error correcting approach but with an inherent

L* .
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error Getecting feature provided without additional

cogglexitx.

In summary, forward error correction may be desir-

able in place of, or in addition to, error detection for any
of the following reasons: .
(1) When a reverse channel is not available or the
delay with ARQ would be excessive;
(2) The retransmission strategy is not conveniently
implemented;

(3) The expected number of errors, without cor-

A,

(

rections, would require excessive retransmission.

2.2 Block Vbisus Convolutional Codes

The two basic types of error control codes are block
and convolutional. .

Early attempts at designing error control techniques
were based on block codes. In the binary case for every
block of k information bits, n-k redundant parity-check bits
are generated as linear (modulo-2) combinations of the in-
formation bits and transmitted along with the information
bits as a code of rate k/n bits/ binary channel symbol.

The code rate is the ratio of information bits to total bits
transmitted - this is also the inverse of the bandwidth
expansion factor. The more successful block coding tech-
niques have centered about finite-field algebraic concepts,

culminating in various classes of codes which can be
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generated by means of a linear feedback shift register

encoder.

Emphasis in the last decade has turned to convolu-
tional codes, for which the encoder may be viewed as a di-
gital filter, whose outgué is the convolution* of the
input data and the filter impulse response. Several decoding
techniques have been developed, which unlike those generally
used with block codes, reply more on channel characteristics
than on the algebraic structure of the code.

In almost every appplication, convolutional ccdes
outperform block codes for the same implementation <omplexity
of the encoder~deccder. 1In addition, convolutional codes
have several other advantageous features which further tip
the scales in their favor:

(a) Code synchrcnization is much simpler; for rate

1/2 codes only a 2-fold ambiquity needs to be
resolved, and for rate 3/4 a 4-fold ambiguity:
in contrast for block codes the ambijuity is
n~fold where n is the total number of data
plus redundant bits in a block.

(b) Channel quality information can easily be

utilized with two of the three main convolu-

tional decoding algorithms - on a channel

e e

* Performed with binary field arithmetic, rather than
real numbers asz for ordinary digital filters.
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with BPSK or QPSK modulation disturbed pri-
marily by wideband (e.g., thermal) noise, soft

decision decoding, as this is generally called

permits the same performance at a signal-to-
noise ratic of approximately 2 d8 less than
hard decision decoding, in which the infor-
mation fed to ths decoder is only the demod-
ulator decision on each bit. Similar improve-
ments are possible with other types of mod-
ulation and channel interference (see Sec-

tion 3.).

-

Associa~ed with \b) is the decoder's ability
to monitor channel guality and to display

or output this information in real time while
decodiny data.

Applications where block codes may be preferable
are for error detection or in a few cases for a system with
a blocked data format and in which only hard guantized demo-
dulator outputs ares available.

Surmary of the Performance of FPorward Error Cor~

recting Coding Systems

The efficiency of a communication system in the pre-
sence of wideband noise with a single sided noise spectral
density of No is commonly measured by the received infor-

mation bit energy-to-noise ratio (Eb/No) required to achieve

—y——— n ——
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a specified error rate. This ratio can be expressed in

terms of the received modulated signal power (P) by

(2.1)
No Mo iE;ps

where Rbps is the information data rate in bits per second
{bps). So for a specified error rate a system that requires
a smaller Eb/No coculd have a higher data rate or a smaller
received power. Note that for a rate k/n code (i.e., n
channel bits/k information bits) the channel symbol energv-
to-noise ratio is k/n less than the information bit energy-
to-noise ratio.

With or without coding an ctficie;t modulation
technique should be chosen. For example, a coherent biphase
(0° or 180°) BPSK system requires an Bb/N° of 9.6 dB for a
bit exror probability of 10-5 whereas a DBPSK system requires
10.3 ds.

Table 2.1 shows the coding gain that can be achieved
with several coding syst:ams with cohereat BPSK or QPSK modu-
lation on a channel with wideband Gaussian noise. With the
perfect phase coherence assumed, QPSK performs the same as
BPSK.

Table 2.2 shows the required Eb/so and the coding
gain which can be achieved with a constraint length
K=7, (see definition in Table 2.1) rate R= 1/2 Viterbi-

decoded convolutional coding system with several

-l0-

B B o o S S A BCY "R IR BRI, A w




Section i {uwtoer

here of bitsf Codince

coding |, re- Jain 12
Coding Tvpe cype ceiver [ d8
I iis des- :uanuJ
lcribed | zation

:
21

Ka?, Rwl/2 Viterbi-decoded Convolutional
Ka?7, R®l/2 vitarbi-dacoded Convolutional
k=7, Rel/3 Viterbi-Zecoded Convolutional
X»?7, Rel/3 Vitsrdi-decoded Convolucicnal
Ked, 2=3/4 Viterbdi-decoded Convolutional
K=d, Rel/4 Vicardi-dacoded Convolutional
Xw24,2wl/2 Sequential-decoded Convolutional
20Kdpst, 1000-bi= blocks
Kald,Ral/2 Sequential-decoded Convolutional
0Khps*, 10J0-bit Slocks
. Kal0,Lell,Rel/2 Feedback-decoded Convolu-
cional

Xel,Lns8,Rel/] Peedback-decoded Convolutional
Ks8,lLa9,2w})/4 Peedback-decoded Convoluc:onal
Ke3,L=l,Rel/4 Pgadback-iecoded Convalusicnal

(24.12) Solay
(24,12) Golay

(127,92) CX
(127,64) X
(127,36; <X

(7.4), Sasming
(18,11 Sasming
(11, 26) Ramming
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* 9. € 4B requized for uncoded svstem
* The samo systam at & data cacs 2f 100 Ybps aas .3 48 less soding gaia.
Sotacion

Kk @ Constraint length of & convol.oticnal sode defined as =i
aumber of binary register stages 13 the encuder for such
4 cods. With the Vitsrdi decoding aljorithm, ilcreasiay
the constraint leangth incrTeaszes She coding gaiz Suz alio
the implemsatazion cospluxyzy of the systam. To a much
lesser extent the same is 8l30 tfue with sequential and
feedback iscoding algoritims.

L = Lock-shead langth 2f a fsedback-desoded sonwvolutional ‘
coding systen defined as tie aumber of recsived symbols,
expressed in terns 5f the corzesponding aumper 3¢ encodar
faput biets, zhat are used to decode an :nformacion dis.
Increasing the look-shead length Lacreases zhe coding
gain but also the decoder implemencation somplexisy.

(n, k) denotes a block code (Golay, 3CE or Tarming “are) wazh
a decoder output bits 2or each dlock of X encsder tapuc
bits.

Receiver Quantization describas the degree 9f quantizac:ion of she
demodulator outpuss. Jitlout coding and Siphase (0° or
180°) modulation the .smodulator sutput {cr ia=esdediace
qutput 12 the quaitizer is considered as parts of the
desodulator) i3 qiantizad o one bit (i.e., the sign 1s
Provided) . With cecding, a decadiag decision 1s Sased
on saveral demodulator outputs and the Dperformancs zan
Ee improved 1f in addition =0 the sign tne desodulatar
provides some magaisude information.

TABLEZ 2.1 Summary of =he £, /N zequiraments of several coded
communication :;icnﬂs for a oit erzor rats of

10™5 with 8PSX modulation.
-u-
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.

Number of bits

of receiver Eb/N° in dB x
Modulgtzon quantization required_for Coding Gain -
- per binary P a lo..5 in 4B
channel s ol b
(see Table 2.1
note)
Coherent biphase ]
BPSK or QPSK 3 4.4 5.2
BPSK or ‘QPSK 2 4.8 4.8
BPSK or QPSK 1 6.5 .1
Octal - PSK* b 9.3 3.7
DBPSK* 3 6.7 3.6
DBPSK* 1 8.2 2.1
Differentially *
Coherent QPSK 1 9.0 3.0
Noncoherently .
Demodulated
Binary FSK 1 11.2 2.1 :
. 1
*Interleaving/deinterleaving assumed .
“PABLE 2.2 - Summary of the Ep/N, requirements and coding gains of
K=7, R=l/2 Viterpi-aecoded convolutional coding systems with
several modulation types at a bit error rate of 10-5, .
-12-
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types of modulation on a channel with wideband Gaussian
noise. Here coding gain is defined as the reduction in
the Eb/No ratio required to achieve a specified error rate
(1075 bit error rate here) of the coded system over an
uncoded systém with the sam» modulation.

More extensive performance results are given in
later sections. The results in these later sections are
presented in several formats for the more common modulation

and channel types. Descriptions of the coding techniques

are also given.

2.4 Code Specification

The following factors should be considersd in

selecting and specifying srror control codes.

(1) Performance required for a particular modu-
lation/demodulation, channel, and, if known,
coding technique. For oxamplo,.the error prob=-
ability (bit, block, stc.) for several Eb/N°
ratios could be specified.

(2) Modem interface requirements.

(3) Synchronization requirements. That is, the
method of determining the start of a block
or other code grouping.

(4) Data rate requirements.

(5) Modem phase ambiguity requirements. Some
decoders can'inte:nally compensate for the

effects of a 90 or 180 degree phase ambiguity

-l3-
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(6)

(7
(8)
(9)

present in BPSX or QPSK modems which obtain

a carrier phase referenced from the data modu-
lated signals.

Encoder-decoder delay requirements. That is,

the delay in bit times from ths time an infor-
matiocn bit is first put into the encoder to the
time it is provided as an output from the decoder.
Decoder start-up delay.

Built-in test requirements.

Package requirements. The decoder could be on
a card for insertion in an existing modem or
a separate decoder could be provided. Power

and thermal requirements should also be spec-
ified.
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3.0 Potential Advantages «f Coding

Before proceeding to the analysis and error rate
performance evaluation of specific error control codes, it
is helpful to briefly review the performance of several
common uncoded communication systems and to determine the
maximum possible coding gain with several modulation
techniques and channel types.

3.1 Uncoded System Error Rats Performance

Many types of channels, modulation types, and per-
formance criteria have been studied. Here, for reference,
we present the bit error probability performance of several
uncoded communications systami on an additive white Gaussian

noise channel and on a2 Rayleigh fading channel.

3.1.1 Additive White Gaussian Noise Channel

The additive white Gaussian noise channel model is
a widely used channel model which is valid for channels
where the primary disturbance is due to receiver thermal
noise or wideband noise jamming. This model is a good ra-
presentation of the disturbance in many space and satellite

communication links.

3.1.%.1 Coherent Phase~Shift Keyed Systems

With a phase~shift keyed (PSK) system one of

M (usually M = 2™) different phases is transmitted on each

-15=

- ——— -

TN S ST OUPIUE P AT R S

L iR b R 3e

PSP

et e cantal R

Lhnk Seundan tba




channel use., Fiqure 3.1 gives the bit error rate versus
Eb/N° performance of BPSK, QPSK, and octal-PSK [18] systems.
The QPSK and octal-PSK results are based on a Gray coding
for the m=-bit modem input symbol~to-M-ary channel phase
mapping as shown in Pigure 3.2. This mapping gquarantees
that when the received signal is hard-decision demodulated
to a phase next to the correct phase (the most comwon type

of error), only one bit error results.

FPigure 3.1 shows that with the perfect pliase re-
ference assumed here the BPSX and QPSK bit error probability
performances are identical. This is because the in-phase
and quidratu:e demodulator components with QPSK are inde-~
pendent Gaussian random variables and therefore they can be

treatad separately. The bit error probability of the BPSK

and QPSK systems are

Es
(Pb)BPSK = Q , (3.1)

and
Es
where - X
2
o(y) =/ X exp (-%) dx (3.3)
v /2n

and ES/N° is the channel symbol energy-to-noise ratio.
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Sinrce with QPSK each channel represents two information
bits whereas with BPSK a channel symbol only represents
one information bit, (3.1) and (3.2) reduce to

=
(Pb)BPSK = (Pb)opsx = Q , (3.4)

where Eb/No is ‘he information bit energy-to-noise
ratio.

The octal-pPSX bit error probability expression (18]

is more complicated than (3.4) and is not given here. In

this report error probability expressions are given only

when they are particularly simple or when they provide in-

sight into certain analysis techniques.

which more readily show the error érobability versus systen

parameter relationships are given.

The main advantage of using a phase-shift keyed
system with a larger rumber of phases is that the
bandwidth which is required for a given data rate is
raduced. The main disadvantages are the degraded
performance (for more than 4 phases) and the i.creased

sensitivity to phase errors.

3.1.1.2 Differentially Coherent Phase-~Shift Keyed Systems

Otherwise, graphs

Differentially coherent phase-~shift keying is a

method of obtaining a phase reference by using the pre-

viously received -hannel symbol. A reference channel

~1Ca
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symbol is sent first. Then the remaining channel symbols

are based on the bit-by-bit modulo-2 sum of the previous and
present modem input symbols. Again for Zm-phases a Gray co-
ding is used to map the m-bit symbol differences to channel
phases. The demodulator makes its decision based on the
changa in phase from the previous to the present received

channel symbol.

The bit error probability of a binary differentially

coheront phase-shift keying system (DBPSK) is given
by [1]

Pb = %‘- exp(- - (3.5)
Qr

Figure 3.3 gives a graph of the performance of this
binary system and that of a 4-phase (DNPSR) system [17].

The primary advantage of this type of system is
the ease with which a phase reference can be obtained.
However, comparing the coherently demodulated results of
figqure 3.1 with the corresponding results in Figure 3.3
shows that for the higher arror rates the differentially
coherent systems require a significantly larger energy-to-
noise ratio to achieve a specified error rate. For small

error rates the energy-to-noise ratio required for DBPSX
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approaches that required for coherent BPSK. Another char-

acteristic of differentially coherent systems is that synm-
bol errors tend to occur in pairs, since an error in one
symbol decision indicates a high probability of a bad phaza

reference, and thus an error, for the next symbol decision.

3.1.1.3 Noncoherently Demodulated Orthogonal Signal
Modulated (MPSK) Systems

Another class of modulaéion systems employs a set

of orthogonal signals, For example, for every m modulator
input bits cne of 2% frequencies could be sent, with spacing
chosen such as to make the signals orthogonal [1]. This
type of modulation is raferred to ;z

frequency-shift keying
(FSK)

vhen only two frequencies are used, or MFSK when

more than two fragquencies are used.

This type of demodulation is used when the initial

phase raference for each channel symbol is unknown or
difficult to determins.
is

A common application of MFSK
in jamming environmenta where the modulator output is
frequency hopped.

Orthogonal signal modulation can be viewed as a

type of error correcting coding with a bandwidth expansion

~22~
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of Zm/m. That is, each set of m information bits could te
encoded (mapped) into one of m, 2"-bit orthogonal sequences.,

As the bandwidth expansion approaches infinity this modulation/
demodulation technique achiaeves the maximum possible coding
gain on an additive white Gaussian noise channel (l]. However,
the large bandwidth expansion required by this technique makes
it impractial for large m.

The m=bit symbol error probability for this modu-
lation/demodulation technique is (1]

E ' E
P’--%;-exp(- &-5-) {: _(-'1)j 1™ exp (—s-) (3.6)
o a2 b iNg .
where ¥ = 2™ and E’/N° is the channel symbol eneray-to-noise

ratio which is related to the information bit energy-to-noise
ratio by

RN
S e nm
NJ Ny~
The bit error probability is related to the sym501 error

probability of (3.6) by [2]

2m—l

P = = P (3.7)
b PLISY s

Note that for m = 1, the bit error probability

expression reduces to

Palex-gb (3.8)
b ~Z P TN'O' .
-23-
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Figure 3.4 gives the bit error probability per-

formance of this modulation/demodulation technique for

m=1 and 3.

3.1.2 Independent Rayleigh Fading Channel

In some applications fading due to ionosvheric var-
iations causes phase and amplitude fluctuations from channel
symbol to channel symbol that can severely degrade the error
rate performance. The received amplitude ¢. such a channel czn

marny times be acrurately modeled by the Rayleigh probability
distribution.

The performance of 2 system with this tyze of a

channel can be greatly improved by providing‘somc type of
diversity; that is, by providing several independent tranc-
missions for each information symbol. Time, spatial,

and frequency diversity have been used. Here we will
restrict our attention to time diversity ghich can be
achieved by repeating each information symbol several

times and using interleawving/deinterleaving for the

channel symbols. The result is a channel for which the am-
plitude and phasa of the resceived channel symbols can be
treated as independent random variables with Rayleigh

and uniform distributions, respectively. Such a channel

is called an independent Rayleigh fading channel.
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Since the received ampIitudé aqd phase- are random
variables, we will only consiéaé,squére-law nonccherehtly
demodulated orthogonal signal modulated MFSK. The closed
form expression for the bit error probability of binary

FSK on a Rayleigh fading channel is (4]

L-1
L L-1+i) fi_.  \L
P, = Prsx 2 ( i ) (1 Ppsx)

=0 . (3.9)

where
1

N J

° . \
E;?xo iz the mean bit energy-to7$oise ratio, and L is the
Oorder of the diversity. That‘ié; L channel syrbols are
transmitted for each information symbol. The order of the

diversity (L) corresponds to the bandwidth expansion of
a coded system.

Figure 3.5 gives this binary bit error drobability
for several orders of diversicy (L). This figure shows that

for a particular error rate, there is an optimun amount of

diversity.

For noncoherently demcdulated 2k ~-signal ¥FSX a

union upper bound on the bit error pProbability can be

=26~
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L = Order of Diversity
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obtained (19] as 2k°l tines the binary error probability

of (3.9) with the channel symbol energy-to-noise ratio in-

creased by the factor k. The result is

L-1
P k-1 L L=l+i} (s i
(b) z";;égnu 2 T g ( i )(1 pursx)

i=Q
{3.11)
where
- 1
Pupsx N (3.12)
' 2+ k
2 N

In (3.11) and (3.12) the diversity, L, is the number of
2k-ary channel symbols per k~bit information symbol.

3.1.3 Sammary of Uncoded System Performances

Table 3.1 summar:izes the Eb/N° ratios required to
ocbtain a 10~ bit error probability with the modulation azd

and channel types discussed in the previous sections,
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3.2 Channel Capacity and Other Fundamental Limits

to Coding Performance

Error control coding is a means of adding redundancy
to the transmitted symbol stream in such a manner that at
the decoder the redundancy can be used to provide a more
reliable information transfer. Generally speaking, Shannon
[3] has shown that for any input discrete, finite memory

channel it is possible to find a code which achieves any
arbitrarily small probability of error if the rate of

the code is lesg than the channel capacity (C) and conversely

it is not possible to f£ind such a codc when the rate is

greater than the channel capacity. Unfortunately this re-

sult is based on considering the cncemble of all possible
codes and thus is only an existence thecorem. Systems en-
gineers ars faced with the task of finding a code with a
reasonable implementation complexity that satisfies their
error probability requirements. While Shannon's result
is an existence theorem, it is helpful to compare the
coding gain of particular coding techniques with the maxi-
mum possible coding gain that could be achieved for that
code rate.

Another quantity which frequently arises in des-
cribing the performance of coded communication systeas

is the computational cutoff rate R_. Sequentially decoded

«30=-
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‘corivolutional coéés are only useful at rates iess than Ro'
Moreover, for RﬁRo mbsflgood convolutional codes exhibit
a bit error rat&iéxépdftional to 27K Re/R (29] uhere X is
the constraint length and R the code rate. Of course,

R, is less than the channel capacity (C).

In general, closed-form expression Zor &y «td C are
difficult to obtain, but numerical evaluation is straight-
forward. Discuisions.on the computation and intexpretation
of these quantities are given in (4] and {S5]. In the re-

mainder of this section we present some of these results.

3.2.1 Binary Symmetric Channels

The simplest ;ype‘ot ghannel is that of the-binary
symmetric channel_f#SC). Such a channel has two inputs ard
two outputs and tﬁe probability of the channel causing an
error is the same Qegardless of which channel symbol was
sent., This channel is commonly represented by the channel
transition diagram of Figqure 3.6. The transitione in this
diagram represené the probabilities of receiving the output

symbol given the indicated input was transmitted.

The computational cutoff rate and capacity for this

channel are [4}.

R, = - log, {%- +‘/p(1-p)] (3.13)

C =1 +p 1oq2 p + <l- ) log2 (L-p) (3.14)

and

~-3]l-




Input 1-p Qutput
0 0
B
1 1-p 1

Tigqure 3.6 Binary symmetric channel transition
diagram.

-32-




where p is the probability of an error in either channel
input symbol and the units of both are bits per channal
use.

In later sections where nonbinary channel inputs
are considered, the Ro and C quantities will be appro-
priately defined and computed. With these units and
defining the error control code rate R to be the ratio
of the number of encoder input bits to the number of en-
coder output bits, we have that channel coding will be of
no help unless R < C and for practical operatior R < Ro
will usually be required.

FPigure 3.7 gives curves of the channel arror pro-
bability, p, required to cperate at rates of Ro and
C versus the cocde bandwidth expansion. The bandwidth ex-
pansion is defined as one over the code rate. For example,
Figure 3.7 shows that a rate 1/2 (bandwidth expansion 2) code
is only use’ul when the channel error probability is less than
.11 (i.e., R < C) and most coding techniques wogld require
P L .045 (i.e., R < Ro) for small output error rates.

Any memoryless channel is converted into a BSC if
hard decisions are performed on each received symbol.

The channel error rate can be determined from the results
of Section 3.1 or from similar error probability curves for

other channels. It the channel is not memoryless, inter-
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leaving can be used to make the channel appear to be memo~
ryless to the encoder/decoder. The block diagram of Figure
3.8 shows where the interleaving would be added. At the
zeceiver, deinterleaviny is used prior to decoding to recover
the sequence corresponding to the encoder output.

When the channel error rate with this binary syme
metric channel is not low enough to make coding useful, coding
may still be helpful if the modem output is not hard quan-
tized, i.e., not quantized to l-bit. The demodulator outputs
used in this report are defined on a continuum. Before these
demodulator outputs can be processed with digital circuits
some form of amplitude quantization must be introduced.uzn
fact, such a quantizer is many times considered as part of
the demodulator. The demodulator output quantization, re-
ceiver quantization, or just quantization discussed in this
report all refer to this process of converting a demodulator
output defined on a continuum to one of a set of discrete
numbers.

With biphase (0°® or 180°) modulation and no coeding
the demodulator produces one output defined over a continuum,
for each information bit that was transmitted. A hard (ir-

ravocable) decision as to which information bit_was transmitted

g
9
T

i« made by determining the polarity of the demodulator output.

That is, a one bit gquantizer is used. This l-bit quantization
is also referred to as hard quantization., Without coding,

providing additional amplitude information about the demodulator
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output is of no help (other than for tracking loop purposes)
in determining the phase (0® or 180°) of the transmitted
signal.

With coding a decoding decision on a particular
information bit is based on several demodular outputs and
retaining some amplitude information, rather than just
the sign of the demodulator outputs, is helpful. For ex-~
ample, if a particular demcdulator output is very large, we
can be confident that a polarity decision on that demcdulator
output is correct; whereas if the demodulator output is almost
zero there is a high probability that a polarity decision on
that demodulator output would be in error. A decoder that
uses this amplitude information to, in effect, weigh tae
contributions of the demodulator outputs to the decoding de-
cisions can perform better than a similar decoder that only
uses the polarity information. A quantizer that ratains some
amplitude information (i.e., more than one bit is retained) is
called a soft quantizer.

No quantization refers to the ideal situation whera
no quantizer is used at the demcdulator output. That is, all
of the amplitude information is retained.

In the remainder of this section the effects of
demodulator ocutput quantization on coded systems with several

modulation/demodulation techniques are discussed.
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3.2.2 Additive White Gaussian Noise Channel

3.2.2.1 BPSK or QPSK Modulation

As mentioned in the previous section, using a finer

e rh . ece— o v v P o

' quantization for the demodulator outputs can improve the

' performance of coded systems. The potential gain in using
sc{t varsus hard quantizsd demodulator outputs can be
detarmined by comparing the Bb/No ratios required to

[ .operate at R = R or R = C for the channels with and

: without fine quantization.

In the limiting case with no quantization of
!

the demodulator outputs.Rb and C for BPSK modulation on

an additive white Gaussian noise channel are [4]

| Rb = 1—1092 [1 + exp (:R ;E)] {(3.1%)
a o
and
C = %-loqz (1+2R ;’9-) (3.16)
o

where Eb/N° is the
and the units

information bit energy~to-noisa ratio

of R, and C are bits per binary channel use.

The restrictions R <C and R X R, correspond to
D, 22 for R < C (3.17)
N 2R
and
. _1 {1-r _
N, > g & \2 1) for R 2R, (3.18)
~38~
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In the limit as the rate approaches zero, the restrictions

of (3.17) and (3.18) become

;E > tnd = &~ 1,59 dB for R < C (3.19)
o

and
;E > 2 tn2 = 1.42 4B for R < R (3.20)
5 -~ - 0o

So on an additive white Gaussian noise channel any
coding technique will require an Eb/No of greater than
=1.59 dB and for small error rates and a reasonable im-
plementation complsxity 1.42 4B will be resquired regardless
of the ctle rats or of how fine a quantization is uscq on
the demcdulator outputs.

Now consider the more realistic channel where the
demodulator output is quantized to several bits. Consider
an N-bit linear quantizer which has levels of quantization at

0, £ 7T 227, «ou, (ZN.1 =~ 1) T where T is a guantization
parametar to be chosen.

Such a channel can be represented by
a channel transition probability diagram similar to that fcr
the binary symmetric channel of Figure 3.6. Figure 3.9

shows such a diagram for the 2-bit quantized channel.

The l!.° and C values for this symmetric N-bit quan-

tized channel are [5].
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Figure 3.9 Channel transition diagram for a 2-bit output
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2Ny
= - 1 P
Ry log, =x [1 +Z ‘/Poj Plj] (3.21)
j=0
and
Ny 2 By
c = jzo Poy 199, pov; (3.22)

where ij is the probability of the output being in bin j
given the input was k. Of coursae, for N = 1, (3.21) and
(3.22) reduce to the hard quantized values of (3.13) and
(3.14).

For the hard quantized case the probability of a
channel error is

p= 901 - PlO = Q (%R ﬁ-—) (3.23)
) °

The usual procedure for selecting the quantization
parameter T is to ?hoose it to miniﬁize the Bb/No required
to operate at a code rate of Ro. arhe justification for
this is that by this choice we are, in some sense, maxi-
mizing the possible coding gain for codes that operate
near R,. When computer simulations of the coding system
are possible, this parameter can be determined based on
minimizing the Eb/No required for the desired output error
rate. Such simulations have sh. .. -xcellent agreament

with the theoretically chosen va

-
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For 3-bit gquantization and channel symbol enercy-
to-noise ratios around 1.5 dB this theoretical criterion
Yields a quantization parameter, T, of .5 to .6 times the stan-~
dard deviation of the unquantized demodulator outputs. Larger
energy-to-noise ratios yield slightly larger T values and
smaller energy-to-noise ratios yield slightly smaller T values.
In practice, a fixed quantization parameter is usually used for
all sb/uo ratios. However, an automatic gain control (AGC) is
required to estimate the noise varianca. Fortunately, we
will show that good coding systems exist that are insan-
sitive to small fluctuations in this AGC outpuz.

Pigure 3.10 gives curves of the Eb/N° ratio
required to operate at capacity, C, on this BPSX modulated
additive-white-Gaussian-noise channel with 1-, 2-, and
3= bits of quantization and no quantization of the demo-
dulator outrputs versus tho_codc bandwidth expansion (i.e.,
one over the rate). Figure 3.1l gives corresponding curves
for operaticn at R = R,. These curves show that 3-bit
soft quantization is almost equivalent to no quantization
and hard quantization is about 2 dB inferior to no quan-
tization. Comparing the two figures, it can he seen that
for the small symbol energy~to-noise ratios, which cor-
respond to the larger bandwidth expansions, about 3 d&B

more is required to operate at R = R, than is recuired to

Ooperate at R = C,

-4 2=
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The Eb/No required to achieve a 10-5 bit error prob-
ability with no coding is 9.6 dB. The difference between
this value and the curves represents the potential or maxi-

mum possible coding gain for that set of conditions.

As with the uncoded perfact phase and time reference
case, the QPSX modulated system can be treated as two inde-
pendent BPSK mocdulated channels. Thus all t:he results of

this section also apply with perfect raferance QPSK modu-
lation.

3. 2 - 2 . 2 M-ary PSX mdulation

M-ary PSK modulation (i >4) is sometimes used to
reduce the bandwidth required for a given data rate relative
to the bandwidth required with QPSK modulation. At first
glance it may sesem a contradiction to consider bandwidgh
expanding error control coding in such.a situation, but
we will show that for a small bandwidth expansion relative
to the bandwidth required for uncoded QPSK, the Eb/N°
required to operate at R = Ro for a M-ary PSK system can
be less than that required for a QPSK system.

With no quantization Ro in units of bits per

binary channel use is given by (4]

IX’

hcA

exp [- mR ;9 sin? :

-] (3.24)
o J

4SS~
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where M = 2™, since the bandwidth of a PSK system i3 appro-
ximately equal to one cver the channel symbol period, the
octal- PSK system only requires 2/3 the bandwidth of a

QPSX system for the same data rate and a lé-ary PSK system
only requires % the bandwidth of a QPSKX system. Figure

3.12 comparxes the Eb/N° ratios required to operate at R = R°
versus the bandwidth expansion relative to an uncoded QPSX
system for M ='4, 8, and 16 PSK systems. The larger alphabet
sizo systems are seen to have an I-:b/N° advantage for small
bandwidth expansions.

Several methods of zuantization have been used for
the octal-PSK demodulator cutputs. One method is to quan-
tize the in-phase and quadrature outputs so that the signal
space, consisting of signal components cvery 45° on a circle
of radius /E;, is divided into small squares (see Figure
3.13a). Another method is to divide the receivad signal scace

into pie-shaped wedges depending on the angle of the rece:--ad
signal component (see Figure 3.13b). The particular quansi-

‘7ation technique will depend on implementation consiceraticas.

The same comparisons ;‘resented heres for ogeration
at R = R° can be performed to compare the minimum possible

Eb/No ratios based on operation at channel cagacity.
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However, it is usually more difficult to obtain closed form
axpressions for C than for Rb' Also for small channel

symbol energy-to-noise ratios we have (5]

C
3
R, )

(3.25)

S0 the comparisons based on operation at channel capacity
prcduce approximately the same results as those based

on operation at R = Ro'

2,2.2.3 DBPSX Modulation

As mantioned previously, differentially ccherent
phase~-shift keying produces a channeli with memory. While
some codes have boen-desiqned aspecially for channels with
memory [7-10], the performance of most of the more powerlul
coding systems are degraded when they axe usad on such
channels. To remedy this situation (i.e., to make the
channel appear to be memoryless) simpl; interleavers
can be used as illustrated in Figure 3.8. The potential
coding gain of such an interleaved/deinterleaved DBPSK.
channel is discussed here. The size of the interleavers
will depend on the type of coding and will be discussed

in later sections.

With no quantization the computational cutoff rate

for this channel is [S]

|
(3.26)

Ry = = log, %3 ' +f \/P(x/e = 0) P(x/8 =m)dx|
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where P(x/0 = Go) is the probability density functicn of

the demodulator output random variable given that the phase
change of the transmitted symbol from the last to the present
symbol is 90. For DBPSK the transmitted symbol rhase

changes are 0 or v radiang. These density functions are

given in Reference 6. Substituting these density functions
in (3.26) yields.

Ro - logz % {14- %- exp ('R ;E—) £ (R (3-27)

oz' ! )m
S—

wheres

- - m
£(a) -f Je“z oY B (3.28)
m=90

The Eb/N° ratio required to operats at R = R° can be

determined by numeri -ally integrating the integral in

(3.28). Of more interest is this Eb/N° value with im=-
Plementable quantization techniques.

Figure 3.14 shows this Eb/No value versus bandwidt:

expansion for 1~ and 3~ bit receiver quantization.
The hard quantization results were obtainegd using
(3.13) with a channel symbol

1
5= Fexp (-a %) (3.29)

error probability of
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The soft quantigatioix results were obtained using

~

e

t t "\
R
e’ "

.
T EY R ST R .
NN ORI FER
f) . s FUNCIN
N . ERER0

o Al A A

(x

*@@®

g 8%
(3.21) with N = 3 and Pyy = Py 4_ 4. The P,y transition __ij
probabilities are the probabilities of being in the dif- e
ferent quantization intervals given the transmitted symbol :'.f-:'

"-.:,\
phase change is zero. These can be determined - from the e
n"_l
probability distribution function defined by .; r
. (K9
P, (x) = Probability that the demodulator output '__f.;
random variable is less than or equal to '.":
x given that the transmitted symbol
phase change from the last to the present
symbol is 0.
Integrating the den;'ity function of (6] gives this
distribution function ' - ]
Eym
. ( E, ) - m (ZR ﬁ;) (Zx)j
1- exp | =2R - 2x
Y go §o m! i
. a By \m
ar—
1 By - ( "o) (4x)3
P(x)’ﬁﬁsfexp(-zngg 2x)2 3. — vl
0 ./ om0 j=0
l’.'b . for x > 0
%-exp(—Ra;‘*Zx) ' for x < 0
\
(3.30)
%
o
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Then the probability of the demodulator output random

variable being in the guantization interval betwen T

T, (T1< T,) is just PO(Tz) - Po(Tl)‘ The quantization

~and

parameter T was varied to determine the optimum (i.e., the
I-:b/N° required to operate at R = Rb was minimized) value
and in the reéions of primary intsrest T sz .7 was best.

As with the coherent PSK case, ab is relatively insgen-

sitive to small changes in this parameter.

Figure 3.14 shows that lower rata (R < % ) codes
will not necessarily improve the coding performance with
this typs of channel. This scmewhat unexpected result
can be explaincd~by noting that as the code rate is de-
creased the channe; symbol energy is decreased and thus
the phase refersnce becomas noisier. With the coherant
PSK channel a perfect phase reference was assured. In
practice, the non-ideal phase reference will contribute
an E, /N, loss which will increase as the code rate is

decreased.

Pigqure 3.14 again illustrates the gain which
can be achieved with 3o0ft quantization of the demodulator

outputs. For a rate 1/2 code hard quantization is 1.3 &B

inferior to 3-bit soft quantization.

=53~




Comparing the DBPSK results of Figure 3.14 with the
coherent BPSK results of Figure 3.1l it can be seen th-~ the
potential coding gain of the DBPSK system is significantly
less than that of the BPSK system. Figure 3.15 shows the
potentisl coding gain based on operation at R = R, = 1/2
for BPSK and DBPSK systems.

The minimum possible r-:b/N° ratio determired based
on R < C can also be obtained for the hard and 3-bit soft
quantization cases using (3.14) and (3.22), respectively.
The results are plotted in Pigure 3.16.

3.2.2.4 Nencoherently Demodulated MFSK

The most common application of this type of
modulation/demodulation is in anti-jamming frequency-hopped
systems and time~diversity Rayleigh fading channels ina

which one of 2@ different, properly spaced, frequencies

are used,

With a demodulator consisting of M = 2% square~law
envelope detectors and no quantization the computational
cutoff rate for this modulation/demodulation with additive

white Gaussian noise can be computed. The result shows
that the zb/N° ratio required to operate at R = Ro is

a2 monotonically increasing function of the code bandwidth

expansion. So such a channel is not an attractive can-
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didate for error control coding with additive white Gaussian

‘noise.. However, this system is very useful in jamming or

fading environments.

’

:EJ'To implement such a system the matched filter
outputs would be quaﬁtized. If each matched filter output
is quantized to N bits, a total of N2™ bits per received
symbol are required. For large m such a system becomes
difficult to implement. However, systems with 8 matched
tiltgr outputs and 2 bits of quantization per filter have
been used effectively in ncn-Gaussian noise environments
with dual-3 convolutional codes. These results will be

discuséd in Section 6.

-

3.2.3 Independent Rayleigh Fading Channel

-As noted in Section 3.1l.2, divé:sity can greatly
improQé the performance of communication systems on a
Rayleigh fading channel. Coding can reduce the diversity
requirements (i;c., the order of the diversity) and provide

an energy-to-noise ratio coding gain.

The computational cutoff rate for this channel with
noncoherently demodulated 2m~ary MFSK and no guantization
is [4] '

m
1l 1 2 (3.31)
R = = log .
o m 2 1+4 (2™-1) p (1-p)
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where

p.

(3.32)

2emn 2

S

&)

The units of R, are bits per binary channel use and

E;VNO is the mean information bit energy-to-noise ratio.

Curves of the E;VNO ratio required to operate at
R= R.o versus the bandwidth expansion are given in Figure
3.17 for binary and octal MPSK. This figure also gives
this E;VNQ ratio for a hard-quantized binary FSK system. This
ratio was obtained using (2.13) with a channel error pro-
bability given by (3.32). This figure shows thag the
difference between the potential performances of soft and
hard quantized coding systems on this channel is «ven
larjer than on the additive white Gaussian noise (AWGN)
channel. On the AWGN channel fo:: a code rate of 1/2 the
energy-to-noise ratio difference was 2 dB while here it

is 4.9 da.
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4.0. Block Codes

For this class of codes the data is tr2aismitted
in blocks o7 symbols. For every k encoder input symbols,
n~k paritye-check symbols are added to produce a total
of n symbols to transmit. The code rate is k/n.

The more successful block ccding techniques have cen-

tered about finite-=field algeora’ ~ concepts.

Linear block codes can be described by a k x n
generator matrix G. If the i-symbol encoder input is
represented as a k-dimensional column vector, x, and the
encoder output by an n-dimansional column vector, y, the

encoder input-output relationship is given by

¥r= xG (4.1)
So the n~symbol encoder outpuﬁ blocks ar~ linear al-
gebraic combinations of the rows of the generator matrix.
In the binary symbol case, the output blocks are bit-bhy-

bit modulo-2 sums of the appropriate rows of G.

Usually block codes are decoded using algebraic
techniques which require the demodulator to make a hard
decision on each received symbol. 1In Section 3 it was
shown that such hard quantization unnecessarily reduces
the pote;xtial performance of the coding system. For the.
additive white Gaussian noise channel with BPSK or QPSK

modulation the potential coding gain of a finely quantized

=6Q-
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®
coding system is about 2 dB more than that of hard quan-
tized system. Recently severazl soft decision coding
technigques have been propnsed for block codes [(11,12] .
which, at least for some particular codes, seem to recover
most of this 2 dB8 loas. However, the implementation come-
plexity of such systems is usually much greater than
that of t.ue corresponding hard quantized system. iIn ®
general, when soft decisions are available a convolutional
coding %technique which easily adapts to soft decisions is
preferzalble. »
Another disadvantage of block codes as compared to
convolutional codes is that with block codes the receivaer
must resolve an n-way ambiguity to determine the start of
]
a block whereas with Viterbi-or feedback-decoded con-
volutional codes a much smaller ambiquity needs to be
resolved (zee Section 5.1.12).
In spite of these disadvantages, block cndes are ’
somstimes useful on channels where only hard decisions
are available and the data is presented in blocked format,
Another common application of ¥lock codes is »
for error detection. That is, instead o/ c¢rying to correct
errors the decoder performs the simpler task of just da-.
tecting if one or more errors have occurrec in the block. »
d
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Such error detection systems have been used in appli-
cationy where a feedback channel is available to tell
the transmitter to retransmit the blocks where errors

have been detectad.

The selection znd estimated performance of
block codaes are usually based on the block distance
properties of the code. The distance (sometimes called
Hamming distance) between two code words or sequences
with an equal number of symhols is defined as the number
of positicns in which the symbols differ. The minimum
distance of the code is defined as the minimu? distance
between any two different encoder output words (or se-~
quences or blocks). Also the performance and distance
propcxtics of linear block codes are independent of the
encoder input sequence, so for analysis purpose without
loss of generality the all zero sequence is usually as-

sumed to have been transmitted.

For a fixed code rate and block length the goal
is to choose a code with a large minimum distance. Then
the Jdacoder can more reliably detect or coxrect channel
ervors in the received block. & block code with a minimum

distance of dmin is capable of correcting any combination

of [(dmin'l)/z] or fewer channel errors or detecting
I
any combination of d-1 or fewer channel errors, where

-§2-

B T DEGN, P NRPREOT0 TG J6 08 t 1 7, 37, 39 TS AL 30 56 T ¥ TR IS A TS Ve ML S SR VAV PR PART AR L TR IR I E SR SR L A TR AL R L LR

*




'{3'.‘\ »

Sl

Py

LI T A/
[ I A

f'd

(4

o v, e,
@ .
)
.

. » & ln'l

et
(AR

Iz T,
7

T
AL

PR NS
5"." AR '.-".r“:")i .

W

A S|
AN 7 A

s e
2800, L N

. v . »
e
. PPy
B R S
) P
Bt LRy

D
M T G

»
.
AR

Id
Pd

d

[x]I is the integer part of x. However, while the mini-
mum distance of the code may be sufficient to gquaz»ntee
the detection or corraction of a certain number of errors,
the particular decoding algorithm may not be czpable

of such operation.

The performance of block codes with hard receiver
quantization is usually determined by assuming that the
decoder can correct any combinination of E, E < (d-l)/z]x,
or fewer channel errors and no combination of more than
E errors. Such a decoder is called a "bounded distance
decoder”. Then on a binary symmetric channel t%o block
error probability, Pblock' is the probability that more
than E errors occured. Since there are (g) different
ways of having i errors in n symbols, the block error
probability is .

Polock = 2 (n) gt (1-p) ™t (4.2)

i=E+l

The bit exror probability dcpends on the particular
code and dscoder. Usually block codes ars selected to
have given block weight properties and codes are called
equivalent if they ha'e the same set of block distances
(or weigkts, i.e., number of nonzero encoded block
symbols when the all zero input is assumed)., However,
the bit error probabilities of these so-called equivalent

codes may vary. To determine this error probability,

-G3=-
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o
S assume that the decoder can correct up to E channel errors.
X
-.jf: These arrors are then corrected in the received sequence. X
.f—:'. The final step is to determine the encoder input block
a corresponding to the corrected received sequence. This
l:::' step can be simplified by using a systematic code. Such
‘ a code has the property that all the k information symbols
. are sant unchanged along with n-k parity symbols. 1In
j._: general, every output could depend on every input. It
has been shown (5] that for every linear block code there
-\:s: E:
é;: exists a linear systematic block code with the same distancs
" properties. Therefore, systematic block codes are commonly
:'.:(: used. We wiil assume systematic block codes in the
i remainder of this report.
o The bit error probability for this type of decoder o
;:f;_ with a systematic code can be estimated by assuming that
i the error rate of the corrected received sequence is equal
2 to the arror rate of the encoder input information symbol *
W . 7
> ]
::: sequence. Then the bit error probability can be expressed j
. '] f
:Q-j; as 4]
=3 n
" 1 n i,y_.y0=i
i L 3D DA (1) P~ (1-p) (4.3) j
- i=E+]l i
L. where 8, is the average num-ber of symbol errors remaining
~. in the corrected received sequence given that the channel
2 i
-\ i
., ;
i- -64-
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caused i symbol errors. Of course, 8, = 0 for i <E.
When i > E, Bi can be bounded by noting that when more
than E errors occur a decoder which can correct at most
E errors would at best correct E of the errors and at

worst add E errors. So

i-B <8, <i+E ,i>E (4.4)

The decoder performunce can be slightly improved by
passing the received sequence unchanged when the corrected
received sequence'is not a valid code word. In either case
for the majority of codes for which Bi has not been

determined, Bi = i is a good approximation.

When a block code is used for error detsction only,

the decoder fails to detect an error in the block only when
the error sequence transforms the encoded sequence into
another valid encoded sequence. By the linearity of the
code this implies that thie arror sequence is aqual to a
valid code word. This probability of an undetected error

can be axpressed as
n
. . i n-i
P, = Z A, p(1-p) (4.5)
i=E+l

where Ai is the number of encoded words of weight i (i.e.,
the number of encoded words with i nonzero symbols). Some-

times it is also of inte.est to determine the probability
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of not detecting an error under any channel conditions. On
a binary symmetric channel the worst channel is when the
channel error probability is 1/2. .Substituting p= 1/2 in
(4.5) and using the fact that there are 2k-1 codewords of

weight E+1 to n and one codeword of weight zero gives

- k _ -n = (n-k)
P, p = 1/2 (2 1)2 <2

This bound is sometimes used as an upper bound on the
undetected error probability for any channel ;:ror rate.
While this is valid for Hamming codes, it is not true in
general [13]. Nevertheless, the P < 2= (™=K pouna gives

a first approximation to tais worst case undetected error
probability.'

When the information and encoded symbols of a
block code are from scme nonbinary alphabet and the pro-
bability of any channoi input gsymbol being changed to any
other symbol is the same for any nonidentical input-cutput
symbol combination and p is taken to be the channel symbol
error probability, then (4.2) and (4.5) still apply and the

bit error probability of (4.3) becomes the symbol error
probability.

The block code error probability foriulas presented
thus far have been for hard receiver quantization. Decoders
capable of using soft quantized inputs are possible, but

they are more difficult to implement. The simplest type

~66-
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of soft quantization is one in which three, rather than two,
quantization intervals are used. This additional interval
could be used to erase unrsliable symbols. Forney [16]
shows how the hard quantization block decoding techniques
can ba extended to take advantage of such a receiver quui-
tization scheme. This type oZ decoding is sometimes called

erasure-and-errors decoding.

If the decoder does crasurs-and-errors dsccding,
the code minimum distances is 4, and the maximum numoer of
errors that the decoder can correct is E, then a decoded
error occurs when the number ¢of errors t and the number of
erasures s satisfy 2t+s > d or t > E+l. So if the pro-
bability of an erasure is Py and the probability of a

channel error is Py’ then the block exror probability is

[16]
E n-%t
n t s Ne=g~t
Pblock-z Z (s,t) Pp Py (1°pE-px)
tw( g=d-2t
n t n-t
> (e) Pg ("'95) (4.8)
t=E+1
where

ln '_nl
s,t Sit! (n-s=~t) !

\

In tha following subsections the structure and

parformance of several specific block codes are examined.
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4.1. Hamming Codes

Hamming codes are the simplest nontrival class
of codes with n = 2%-1 (m= 2,3, ...) encoder output
symbols for each block of ¥ =» n-m input symbols. These
codes have a minimum distance of 3 and thus are capable
of correcting all single errors or detecting all com-
binations of 2 or fewer errors. Although Hamming codes
are not very powerful they belong to a vory limited
class of block codes called perfect coles. An e~error=-
correcting, e = [(d-l)/Z]I. code is called a perfect code
if every n-symbol sequence is at a distanc; of at most

¢ from some n-symbol encoder output sequencs.

Hamuing codes are usually described in terms of
an n x (n-k) dimensional parity check matrix [(S], H,
with the property that for each n-dimensional encoded
output word y

YE=0 (4.7)

For Hamming codes the n rows of the parity check matrix
are equal to all positive nonzero m~bit sequences. Given
2 parity check matrix, a generator matrix can be determined

{s]. ‘ B

If the binary additive noise sequence is represcnted

by 2n n-dimensional vector z, then the received signal is

y=xGez (4.8)
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where @ denotes bit-by-bit modulo-2 addition.

Decoding is accomplished by multiplying this binary
vector by the parity chsck matrix to form an n-k = m di-

mensional syndrome vector S. Using (4.7) we have

S5=yBe-xGHezH=2zH (4.9)
Because of the form of H, this m-bit syndrome specifies
the locations of any single error which can then be cor-

racted. If the syndrome is zero, the decoder assumes

no errors occurred.

The weight distribution of Hamming codes have been
determined. Expressed as a polynomial this distribution
for the binary case is [14] .

A(z) -i A, gt

im0
n n=-1 n+l
- 571_1. {(1.4-:) +n (1+z)T(l-z)T] (4.10)

where Ai is the numnber of code words of weight i. This
weight enumerator polynomial makes the computation of the

undetected error probability possible.

FProm (4.2), (4.3) and (4.35) the block, bit, and

undetected error probabilities are

B o i
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»
P n) 4 n-i x|
block { i p (1 p) ¥/ |
- 1-(1-9)“ -np (1- )“‘1 (4.11)
[
n
- 1 n i f_.ln=1
we g ()
= p- p(l-p)“"‘ (4.12) ’
and
2 i n-i
Py ™ Z AP l-p)
i=]
»
n
- () [A(I%) - IJ O way
where (4.12) uses the Bi = { approximation for i > 1. ’ o
Pigures 4.1, 4.2, and 4.3 show thesa probabilities
versus the channel error rate form = 3, 4, ard S. The
channel error rates can be determined from Sec:ion 3.1 >
for the binary memoryless channel case. With interleaving
the bit error probability versus Bb/No results for fading
channels or for differentially cocherent or nonbinary meodu-
»
lation can also be used. Just interprst the bit error
probability versus :b/N° results of Section 3.1 as the chan- .
nel error rate versus the channel symbol energy-to-noise ‘ratio,
Vf:"',‘ ) »
r
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Figure 4.2 Bit error probability versus channel
error probability for block length
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Probability of an Undetected Error
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Pigure 4.3 Probability of an undetected error versus
channel error probability for block length

n=2"-1 Hamming codes with m=3, 4, and 5.

-7 3=




| o

ES/HO. To obtain the coded system information bit energy-

to-noise ratio use

E
1 Cs (4.14)
R N

o4

For Eamming codes (4.14) becomes

B, 221 B
E: 2%-1-m No

(4.15)

With these changes the probabilities of Figures 4.1, 4.2, and
4.3 can be plotted versus Bb/No. The bit error probability

resu:t for an additive white Gaussian noise channel is
given in Pigure 4.4. The coding gain can be determined
as the reduction in the Eb/N; required to aéhieva a spec-
ified error probability with the coded system as compaved

to the uncoded systenm.

Table 4.1 summarizes che Eb/N° ratios required to
achisve a 10”° bit error probability with Hamming coding
for several modulation/demodulation tachniques with ad-
ditive white Gaussian noise (AWGN) and Rayleigh fading.

4.2 Extended Golay Code

One of the more useful block codes is tho'binary
n=24, k=12, i.e, (24,12) extended Golay code formed
by adding an overall parity bit to the perfect (23,12)

Golay code. This parity bit increases the minimum distance

"y
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for
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m=3, 4, and S on an AWGN channel.
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of the code from 7 to 8 and produces a rate 1/2 code
which is easier to work with than the rate 12/23 of the
(23,12) code.

Extended Golay codes ars considerably more
powerful than the Hamming codes of the previous section.
The prics for the improved performance is a more complex
decoder and a lower rate, and hence a larger bandwidth
expansion. Decoding algorithms which make use of soft
decision demodulator outputs have also been proposed
for these codes [11,12]. When such soft decision decoding
algorithms are used the performance of the extended Golay
code is similar to that of a2 simple Viterbi-decoded con-
volutional coding system of constraint length about $ (see
Section 5.1.10). While it is difficult to compare the im-
plemsntaticn complexity of two different coding systems, it
can be concluded that when only hard decision demodulator
outputs are available, extended Golay coding systems ars
of the same approximate complexity as similar performance
convolutional coding systems. However, when soft decisions

are available convolutional coding is suporior.'

The hard-~decision block and bit error probability
expressions of Section 4.0 assumed that the decoder was
capable of correcting any combination of E or fewer errors
and no combination of more than E errors. With perfect

codes, such as the Hamming codes, with E = [(d-l)/Z]I
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this is always the case. Howaver, with an extezded Solay
code the decoder could be designed to correct some bus
not all 4-error patterns. Usually, in order to simplify
the decoder implementation the decoder is implemented

in such a way that these 4-error patterns cannet be cor-
rected. Since for extended Golay codes only 19% of the

4-error patterns car. be corracted we will assume the

decoder cannot correct these 4-error patterns. Then the

block, bit, and undetected error prcbabilities for hard~

decision decoding can be determined from (4.2), (4.3) and
(4.5). The results are

pblock - 2 1] P (J.- ) (4.16)
i=g
24
24 24~1
1 . 4
P = 8 ( ) P (_ )
b I §4 g P (4.17)

and

P = (1-p) 2 [A (I:%) - ] (4.18)

whera the Bi coefficients and the coafficients of the

weight enumerator polynomial, A, are given in Table 4.2. -

Figure 4.5 gives these pProbabilities versus the

Channel error rate. As in the previous section the channel
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| 3. &
. :
. ) Ai = Number of.Code Words of
: i Weight i Bi 3
| i
v} 1l 0 :
1-3 0 0
| 4 0 4 i
' 5 0 8 \
6 0 120/19 :
7 0 8 3
8 759 8 '
9 0 2637/323 ;
10 0 3256/323
11 0 3656/323 i o
12 2576 12 2
13 0 4096/323 &
14 0 4496/323 i
15 0 5115/323
15 759 16
17 0 16 ]
18 0 336/19
19 0 16 ’
20 0 20 .
21-23 0 24 g
24 1 24 é
Table 4.2 Weight enumerator and R. coefficients ¥
for the extended Golay dode [12]. 4
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error rate can be determined from the results of Section
3.1. Using these results the hard-decision coding perfor-
mance for cohsrently demodulated BPSX or QPSX on an AWGN
channel are given in Figure 4.6. Pigure 4.6 also shows the
bit error probability obtained with a gsoft-decision decoding
algorithm proposad in (1ll]. The soft-decision algorithm

is seen to recover most of the 2 dB hard quantization loss

determined in Section 3.2.2.

Table 4.3 gives the l-:b/N° ratios required to obtain
a 10°° bit error rate with the axtended Golay codiag and
several 3ifferent .wodulation/demcdulation techniques for

AWGN and Rayleigh fading channels.

4.3 BCH Codes

Bose-Chaudhuri-Hocguenghem (BCH) codes are a powerful
class of codes which havs well defined decoding algorithms.
A large selection of block lengths, code rates, alphabet
sizes, and code minimum distances are possible. The most
common codes use a binary alphabet, an encoder output
block length of n = 2®-1 (n a positive integer), and, of

course, the largest possible code minimum distance.

A de*ailed description of BCH codes requires ela-
borate algebraic developments and is beyond the scove of
this report, The main point is that while a description

of these codes and their decodirqg algoritnms is somewhat
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Figure 4.6 Block, bit, and undetected error probabilities
versus Eb/No for BPSK or QPSK modulation, an
AWGN channel, and extended Golay coding.
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complicated, the actual decoder can be readily imple-

mented. Here we will just outline the decoding procedure
and indicate the techniques for determining their error

rate perfo:mance.

Referance 14 gives tables of the BCH code mini-
mum distance, daca, for a wide varity cf encoder input and
output block lengths. The actual minimum distance of the
code may be slightly larger than the BCH minimum di;tance,
but the algebraic decoding algorithms treat the code as
if it had the BCH minimum distance.

The block, bit, and undetectad error probabilities
can be determined from (4.2), (4.3), and (4.5) with

Eacy * [(daca '1) / 2] . (4.19)

For most codes the weight enumerator polynomial coefficients
of (4.5) are not known. So small channel errcr rate ap-
proximations to it are usually obtained using only the

tirst one or two terms of the surmation. The weight
enunmerator cocefficients for these first few terms can

usuallf be determined or estimated.

The decoding of these codes involves basically

four steps [5].

(1) Calculate dy.. . syndromes. These syndromes
are computed using the same genceral approach

as described in Section 4.1.
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(2)

{3)

(4)

FPind the coefficients for an e~degree error
locator polynomial where e, a< EBCH’ is

the number of channel errors. The technique

for doing this is referred to as the Berlekamp
Algorithm. This polynomial has the significance
that its roots give the locations of the channel

errors in the received block of symbols.

Find the roots, and thus the locations of the

errors, of the error locator polynomial. The

usual technique for doing this is referred

to as the Chien Search (5].

It involves checking each of the n code symbol
locations to see if that locaticn corresponds

to a root of the error locator polynomial.

Find the values of the errors. With binary
codes the errors can be corrected by comple-
menting the present symbol. With nonbinary
symbols a simple formula is available [5].

This algebraic decoding procedure uses hard quantized

demodulator outputs and thus gives up some potential coding

gain on channels where soft decisions are available., While

extension to soft decision is possible, with the same tech-

niques used for Colay codes, the complexity increases sub-

stantially.
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Figure 4.7 illustrates the bit error probability
versus channel bit error rate performances that can be
achieved with block length n = 127 codes capable of cor-
recting 5, 10,.and 1S channel errors. The results were
obtained using (4.3) with By = i. The largest possible
number of information bits per block for the 5, 10, and
15 error-correcting BCH codes of Figures 4.7 are k = 92,
64, and 36, respectively [(41].

One special type of BCH code worthy of further

note is the class of Reed-Solomon codes discussed in the

next section.

4.4, Reed-Solomon Codes

Reed-Solomon Codes are a particularly interesting
and useful class of nonbinary BCH codes which achieve the
largest posisible code minimum distance for any linezr code
with the same encoder input and output block lengths. For
nonbinary codes the distance between two codea words is
defined as the number of nonbinary symbols in which the
sequences differ. For Reed-Solomon codes the code minimum

distance is given by (5]

d = n+l-k {4.20)
An E-error-correcting Reed~Solomon code with an alphabet

ot 2B symbols has

m
no=2°-1 (4.21)
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and
k = 20-1-2E ‘ (4.22) ¥
These codes are particularly good as ocuter codes
in concatenated coding systems (see Section 7.0). In such »
a system the inner code provides scme error control by
operating on soft-decision democdulator outputs and then
presents hard-decision data to the outer decoder which . »
reduces the error rate to the desired level. Binary inner
code symbols are grouped to form the zm—ary Reed-Solomon
code symbols. These codes ars also sometimes used on jamming
or fading channels with noncoherent demodulation and 2% - »
orthogonal-signal modulation.
The performance of a systsm with this type of coding
on a memoryless channel can be specified in terms of the » ®
channel symbcl error probability Pg* If tha channel is not
memoryless, it is usually best to provide some interleaving
to break up any nursts. 1In genorfl, the performance of a »
coding system not specificially designed for channels with
v memory is degraded by channel memory. Even channels spec-
iﬁ ifically designed for a channel with memory will be degraded
?§ if the memory is different than expacted. Usually since ’
%&E the characteristics of channels with memory are difficult
E;; to measure, interleaving is a wise approach. Only a rough
gﬁg idea of the channel memory length and any periodic proper- »
E;; ties of the channel are required to build the interleaver.
.
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Also a system with interleaving is very effec‘.t"ivfe with
random errors. ; :

A code which achieves the minimum dist:.tj?\t’:‘e'of"‘@'.zo)
is called a maximum distance spearable code [l5] and the
weight enumerator polynomial coefficients for these coﬁes
have been determined {l6].. The result is

R [ I Ty e

i=¢

for k > 2E+1 (4.23)
0f course,’ .Q = 1 and Ak = ) for 1 < k< ZE.
Prom (4.2), (4.3) and (4.S) the block, symbol,

and undetscted error pxobabilities are .j-, .

2 -1 - -
Pplock = 2, ( 1) ol (l-p,) (4.24)

i=E+l
m )
1 2 a1\ i ~1-i
P - , i -
sym 22y i=Erl ( i | Pg (1. P
(4.25)
and P} . _
E i 27-1-i )
A, p 1=~
i *s ( pf)
iapel (4.26)

where (4.25) uses the Bi = i approximation for i > E.
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The bit error probabiiity can be upper bouvnded
by the symbol error probability or for specific channels
expressions relating the two probabilities can be nbtained.
For 2%- orthogonal-signal modulation, the ralationship is
(1]
m=1
b zm_l Psym

(4.27)

figure 4.8 shows the bit error probability versus
channel symbol errcr probability obtained using (4.25)
and (4.27) for a n = 31 code capabla of correcting various
nunbers of channel errors. Pigure 4.9 shows the bit error
prebability performances of the same codes versus Eb/No for
a system with 32-ary MFSK modulation and noncoherent demo-
dulation. Results on the performance of concatenated coding

systems vhich use a Reed-Solomon outer code ars given in

Section 7.0.
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5.0. Binary Convolutional Codes

A rate b/v, constraint length K, binary convolutional

encoder is a b-input v-output linear finite-state device

which can be implemented with K binary register stages_and

linear logic as shown in Fiqure 5.1. Each set of v outputs

depends on K variables of which b are the current inputs and

K-b are state variables. So there are 2% 0 different states.

The constraint length K is defined as the total number of

binary register stages in the encoder. Sometimes the con-

straint length is also defined as the number of state vari-

able v where

v = K-b (5.1)
Here the first constraint length K definition will be
used.

To make some of the convolutional coding concepts
easier to understand we will describe some of their pro-
perties for the rate R=1/2 constraint length K=3 encoder of
Figure 5.2 and then extend the results to the more general
encoder of Figure 5.1. Figure 5.2 indicates the outputs
for a particular binary input sequence assuming the state
(i.e., the previous two data bits into the shift register)
were zero. Modulo~2 addition (i.=., 0 8 0 =0, 0 & 1 =_l,

18@0=1,18%1=0) is used. With the input and output

sequences defined from right-to-left the first three input bits

0, 1, and 1, generate the code outputs 00, 11, and 01, res-

pectively.
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The outputs are shown demultiplexed into a single code
sequence. Of course, the code sequenc» has twice the bis
rate as the data sequence. We shall pursue this example

to develop various representations of convolutional_codes '
and their properties. The techniques thus daveloped will
then be shown to generzlize directly to any convolutional
code.

It is traditional and instructive to exhibit a
convolutional code by means of a tree dizgram as shown in
Figure 5.3.

If the first input bit is a zero, the code symbols
are those shown on the first upper branch, while if it is
a one, the output code symbols are those shown on the firs:
lower branch. Similarly, if the second input bit is a zero, B )
we trace the tree diagram to the next upper branch, while
if iz is a one, we trace the diagram deownward. In this manner
all thirty-two possible outputs for the first five inputs
may be traced. .

From the diagram it also becomes clear that after
the first three branches the structure becomes repetitive.

In fact, we readily recngnize that beyond the third branch

the code symbols on branches emanating from the two nodes
labelled "a" are identical, and similarly for all the
similarly labeled pairs of nodes The reason for this is )
obvious from examination of the encoder. As the fcurth

input bit enters the coder at the right, the first data bit
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Figure 5.3 Tree code representation for coder of

00

10

01

1l

00

00
11
| 10

11
01l

00

01

Figure 5.2.
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'tilis‘off on the left end and no longer influences the

%ﬁ;pgt cade symbols. Consequently, the data sequences
i86§y..; and 000xy... generate the same code symbols
after the third branch and, as is shown in the tree
diagram, bcth nodes labelad "a” can be joined together.
Thiﬁ leads to redfawinq the tree diagram as shown
in‘Figu:o S.4. This has been called a trellis diagram
g;nce a trellis is a tres-like structure with remerging
branches. We adopt the convention here that code branches
produced by a "zero" input bit are shown as soclid lines
and code bra:. nes produced by a "one" input bit are shown
daségd. : )
- Th; ccépletely repetitive structure of the trellis
dii§tam suggests a further reduction in the representation
of éhe code to the state diagram of Figure 5.5. The "states”
of the state diagram are labeled according to the nodes
of the trellis diagram. However, since the states correspond
mérely to the last two input bits to the coder we may use
these bits to denote the nodes or states of this diagram.

" We observe finally that the state diagram can bs
drawn directly observing the finite-state machine properties
of the encoder and particularly the fact that a four-state
directed graph can be used to represent unicuely the input-

ouiput relation of the finite-state machine. For the nodes

~9§-

T A L A.L.4 BAEEMR. 4"

-

.7




S5tate

0l

10

Figure 5.4

Tine
__A
1 2 3 4
‘LpO !30 200 a 00 .
u\\ 11
N
N \\\
~ AN
10
R
\

\ \

-l \ ”1 oL

A VAR VAN
10 T "~ ©

0

Trellis code representation for coder
of Figure 5.2

-99-

;
!
d
]
]
4
!




£

00
11 1

- a=00

20

Ficure 5.5 State-diagram representation for coder of

Figure 5.2

~-100-

PSR

PN § R

®
°
-
®
®
X
®
®
[
» o
»
]
)
)
)
o ol



represent the previocus two bits while the present bit

is indicated by the transition branch; for example, if

the encoder (machine) contains 01ll, this is represented

in the diagram by the transition from state b=0l to

state d=ll and the corresponding branch indicates the code
symbol outputs 0l.

In the following sections we will use these
representations to dascribe the three main types of deco-
ders for convolutional codes: Viterbi, sequential and
feedback.

S.1 Viterbi Decoded Convolutional Codes

The Viterbi dacoding algorithm [26] is a path
maximem-likelihocod decoding algorithm whigp takes advantage
of the remerging path structure (see Pigure 5.4) of con-
volutional codes. By pat! maximum-likelihood decoding
algorithm we mean that of all the possible paths tnrough
the trellis, a Viterbi decoder chooses the path, or one
of the paths, most likely in the probabilistic sens.: to have
been transmitted. To simplify the Viterbi decoder cescrip-
tion we will describe it first for & hard quantized channel
and then generalize the description to a soft-quantized

channel.

5.1.1 The Viterbi Decoding Algorithm for the Binary Sym-

metric Channel

On a binary symmetric channel, errors which trans-

-101l=-




form a channel code symbcl 0 to 1 or 1 to 0 are assumed

to occur independently from symbol tc symbcel with prob-

ability p. If all input (message) sequences are equally

likely, the decoder which minimizas the overall path

error probability for any code, block or convoluticnal,

is ona which examines the error-corrupted received sequence

Y1 yz....yj .+.and chocses the data sequence corresponding

to the transmitted code sequence Xy xz....xj... which is

closest to the received sequence in the sense of Hamming

distance; that is the transmitted sequence which differs

from the received sequence in the minimum numbaer of symbols.
Referring first to the tree diagram, this implies

that we should choose that path in the tree whossa code se-

quence differs in the minimum number of symbols from the

received sequence. However, recognizing that the transmitted

code branches remerge continually, we may equally limit our

choice tc the possible paths in the trellis diagram of Figqure

S.4. Examination of this diagram indicates that it is un=~-

necessary to consider the entire received sequence (which

conceivably could be thousands or millions of symbols in

length) at ore time in deciding upon the most likely (mini-

mum distance) transmitted sequence. In particular, irmediately

after the third branch we may determine which of the two

paths leading to node or state "a" is more likely to have

been sent. For example, if 010001 is received, it is clear

that this is at distance 2 from 000000 while it is at dis-

X

-
()

L "




L

NP “ -

“
S

A
»

Y PR

i
<4

v
-
w2

.
b4

tance 3 from 1110l1i and consequently we may exclude the
lower path into node "a", For, no matter what the sub-
sequent received symbols will be, they will affect the dis-
tances only over subseguent branches after these two paths
have remerged and consequently in exactly the same way.
The same can be said for pairs of paths merging at the other
three nodes after the third branch. We shall refer to the
minimum distance path of the two paths merging at a given
node as the *"survivor”. Thus it is necsssary only to
ramember which was the minimum distance path from the re-
ceived sequence (or survivor! at each node, as wall as the
value of that minimum distance. This is necessary becauge
at the next node level we must compars the two branches
merging at each node level, which were survivors at the pre-
vious level for different nodes; &.g., the comparison at
ncde "a" after the fourth branch is among the survivors

of comparison at nodes "a" and “"c" after the third branch.
For example, if the received sequence over the first four
branches is 01000111, the survivor at the third node level
for node "a" is 000000 with distance 2 and at node "c” it
is 110101, also with distance 2. In going from the third
node level to the fourth the received sequence agrees pre-
cisely with the survivor from "c” but has distance 2 from
the survivor from "a”"., Hence the survivor at node "a® of

the fourth level is the data saquence 1100 which produced
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the code sequence 11010111 which is at (minimum) distance
2 from the received sequence.

In this way, we may proceed through the received
sequence and at each step preserve one surviving path and
its distance from the received saquence, which is more
generally called metric. The only difficulty which may
arise is the possibility that in a given comparison between
merging paths, the distances or metrics are identical. Then
we may simply flip a coin as is done for block code words
at equal distances from the received sequence. For even
if we preserved both of the equally valid contenders, Iurther
raceived symools would affect both metrics in exactly the
same way and thus not further influsnce our choice.

This decoding algorithm was first proposed by Viterbi
{20] in the more general context of arbitrary memoryless
channels. Another description of the algorithm can be ob-
tained from the state diagram representation of Pigure 5.5.
Suppose we sought that path around the directed state diagram,
arriving at node "a" after the kth trangition, whose code
symbols are at a minimum distance from the received sequence.
But clearly this minimum distance path to node "a" at time
k can be only one of two candidates: the minimum distance path
to node “"a“ at time k-1 and the minimum distance path to. ncde
"c” at time ~~l. The comparison is performed by adding the

new distance accumulated in the kth trangition by each of

=-104-




6L

Padad st et SA RS
E

e T R T
ARV P O A
S e Wt :..‘..‘..'.":.'-_-

roveT

»*
v

.,
"

g
Sl

m‘
:

A,

g 1%

AR
* e

»“

-,

et e
" '-":"

.
P i

A

7%

FFnr L Lt

v

RAFT T LI DTENN  forr ot ataitel - P

these paths to their minimum distances (metrics) at time
k-1.

It appears thus th-~t the state-diagram also re-
presents a system diagram for this decoder. With each
node or stats, we associate a storage register which
remembers the minimum distance path into the state after
each transition as well as a metric register which remembers
its (minimum) distance from the received sequence. Further-
more, comparisons are made at each step batween the two
paths which lead into each node. Thus four comparators
must also be provided.

We derer tha question of truncating the trellis and
thereby ﬁaking a final decision on all bits beyond L branches

prior to the given branch until we have socme additional pro-~
perties of convolutional codes.

5.1.2 Distance Properties of Convoluticnal Codes

We continue to pursue the example of Figure 5.2
for the sake of clarity; in the next section, we shall
easily generalize resilts. As with linear block codes
there is no loss in generality in computing the distance
from the all zeros code word to all the other code words,
for this set of distancas is the same as the set of distances
from any specific codeword to all the others.

For this purpose, we may again use either the trellis

diagram or the state diagram. We first of all redraw the

-10§-
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trellis diagram in Figure 5.4 labelling the branches ac-

cording to their distances from the ail zeros path. Now
consider all the paths that merge with the all zercs path
for the first time at gsome arbitrary node "j"., From the
diagram of Figqure 5.6 it can be seen that of these paths,
there will be just one path at distance 5 from the all
Zeros path and this diverged from it three branches back.
Similarly there are two at distance 6 from it; one which
diverged 4 branches Sack and the other which diverged 5
branches back, and so forth. We nots also that the input
bits for the distance S path are 00...01000 and thus differ
in only one input bit from the all zexoc path. The miniaum
distance, sometimes called the minimum "free” éistance,

among all paths is thus seen to be 5. This implies that

any pair of channel errors can be corrected, for two errcrs
will cause the received sequernce to be at distance 2 froam the
transmitted (corract) sequence but it will be at least at
distance 3 from any other possible code sequence. In this
matter the digtances of all paths from the all zeros (or any

arbitrary) path can be daetzrmined from the trellis diagra=.

5.1.3 Generalization of Viterbi Dacoding to Arbitrary

Rate Convolutional Codes

The generalization of these techniques to arbitrary
rate 1/v convolutional codes is immediate. That is, an
encoder with a K stage shift register and linear logic will

R-1

produce a trellis or state diagram with 2 nodes or states
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Qnd each branch will contain v code symbols. The rate
of this code is then
1 bits

Rs 2 e
v code symbol

The example pursued in the previous sections had rate
R=1/2., The primary characteristic of rate l/v codes is that
only two branches exit from and enter each node.

IZ rates other than 1/v are desired, we must make b
greater than 1 where b-is the number of bits shifted into the
encoder at one time. An example for K=4 and rats R=2/3 is shown
in FPiqure 5.7. 1Its state diagfam is shown in Figure 5.8.

It differs from the binary-tree (b=l) representation
only in that each node is coinnected to four other nodes,
and for general "b", it will be connected uwc P nodes. Still
all the preceding techniques including the trellis and stace
diagram analysis are still applicable. It must be noted,
however, that the minimum distance decoder must make conm-
parisons ;mong all the paths entering each node at each
level of the trellis and select one survivor out of 2b.

An interasting class of, in general, nonbinary-tree
(b¥1l) convolutional codes is the unit-memory codes of Lee
[21]. The memory of a convolutional code is defined as the
number of b-bit input groups from the last input group to

the oldest group that contributes to the present v outputs.
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With unit-memory codes the v outputs only depend on the -ﬂD
present and the previous sets of b inputs. Any memory M,

rate b/v convolutional code can be converted to this form

by grouping symbols to form a rate (Md)/(Mv) code. The

only problem with this form is tbat the Viterbi decoder

would have to make ZMb-way rather than Zb-way comparisons.

HBowever, for a fixed number of binary states and rate, the

additional linear logic possibilities of the unit-memory

codes compared to non-unit-memory coces makes it pnssible to

slightly improve the distance properties of such a code.

The tarm svstematic convolutional code refers to
a code on each of whose branches the uncoded information
bits are included in the encoder ocutput bits generated
by that branch. Figure 5.9 shows an R=l/2 systematic coder
for Xa3.

Por linear bleock codes, any nonsystematic code
c;n be transformed into a systematic cnde with the same
block distance properties. This is not the case for con-
volutionzl codes. The reason for tﬁis is that the pez-
performance of a code ¢on any channel depends layo:s'y upon
the relative distance between codewords ané particvlarly
on the minimun free distance. Making the code systematic:;
in general, reduces the maximum possible free distance for
a given constraint length and rate. For example, the

maximum minimum free distance systematic code for K=3

' $S.1.4 Svstenatic and Nonsvstematic Conveolutional Codes
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Figure 5.9 Systematic convolutional encoder
for K = 3, R = 1/72.
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is that of Figure 5.9 and this has d=4, while the ronsys-
tematic K=3 code of Figure 5.2 has minimum free distance
d=x5. Table 5.1 shows the maximum, minimum free distance for
R=1/2 systematic and nonsystematic codes for K=2 through
S.

-Por large constraint 1eng£hs the results are
even more widely separated.

5.1.5 Catastrophic Error Propagation

A catastrophic error is defined as the event that a
finite number of channel symbol errors causes an infinite

number of data bit errors to be decoded. Massey and Sain
[22] have derived a necassary and sufficient condition for

convolutional codes to display catastrophic error prupagaticn.
For rate 1l/v codes with the big register tap multipliers ‘
(0 or 1) represented as polynomials in a delay operator D,
this condition reduces to the statement that a convolutional
code can display catastrophic error propagation if, and only
if, the it register tap multiplier polynomials (sometimes
called subgenerator polynomials) have a common factor with
modulo-2 arithmetic.

In terms of the state diagram for any rate code,
catastrophic errors caa occur if, and only if, any closed

loop path in the diagram has a zero weight. To illastrate

this, consider the example of Figure S.10. Assuming that

the all zeros is the cérrect path, the incorrect path

=-113-

[* s« RWWE | JOILIOILLNS & A g

X,

R




Maximum, Minimum Free Distance

K Systematic Nonsystematic
2 3 3
3 4 L]
4 4 6
S - 7

Table S.1. Comparison of systematic and
nonsystematic R=1l/2 code distances.
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Pigure $5.10 Coder displaying catastrophic
error propagation.
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abdd... dc ahas exactiy-ﬁ ones, no matter how many

times we go around the selfgioop’dﬁ“-rhus, for a binary X/
symmetric channel, for examéf;i four channel errors may

cause us to choose this incorrect path or consequently make

an arbitrarily large number of bit errors (ecual to two
plus the number of times the self loop is traversed).

The necessary and sufficient condition of Massey and
Sain can also be used to show that the code of Figure 5.10°
displays' catastrophac czror:ptopagation. The subgeneratcr
polyromials for this code are D+l and Dz+l. .Since
Dz+1 = (D+l) (D+l) with modulo=2 arithinetic, both subgenerator
polynomials have a common factor of D+l. Therefors thé coda

displays catastrophic arror propagation. -

We observe also that for binary-tree (Rwl/v) codes, o
if each adder of the coder has an even number of connections,
then the self loop corresponding to the all ones (data)
state will have zero weight and consequently the code will
be catastrophic. )
The only advantage of a systematic code is that it
can never be catastropinic, since each closed loop must
contain at least one branch generated by a nonzero data bic

and thus have a nonzero code symbol. Still, it can be
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shown that only a small fraction of nonsystematic codes

are catastrophic ([23]. We note further that if catastrophic
errors are ignored, nonsystematic codes with even larger
free distance than those of Table 5.1 exist.

5.1.6 Generalization of Viterbi ﬁecoding to Soft Quan-

tized Channels.

To describa how the Viterbi decoding algorithm
operates with soft quantization consider the biphase (J3° or
180°) modulated additive white Gaussian noise channel.

Then in additicon to the sign of the demodulator output an
indication of its magnitude is provided. The firs: steo
is tc assign metris values to each of the possibla outpnt
intervals under the hypothesis that the 0° phase was used
and that the 180° phase was used. A common choice is to

use integer metrics which for a positive (0°) .hypothasis
assigns a "0" symbol metric value to the most negative

demodulator output interval and unity increasing metric
values to the progressively more positive demodulator intec-
vals. For 3-bit quantization the metrics would go from
0 to 7. wWith the negative (180°) hypothesis metrics
decreasing from 7 to 0 are used.

The metrics for any branch or path are computed by
summing the corresponding symbol metrics with the set or

metrics to use (positive or negative hypothesis) determined

-117-
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by the polarity of the test channel symbol. Then the metrics
of remerging paths are compared and the path with the small-
est metric is eliminated.

Note that the path metrics as described hese would
continually increase. However, since the metrics are used
in comparison, only their ralative differences are required.
So some amount can be occasionally subtracted from all of

the path metrics to keep them within a certain range.

Computer simulations and measursments of hardware
systems for a wide variety of codes and channels have
shown that the differences in the Bb/No ratios raquired to
achieve a given error rate for various numbers of quan=-
tization intervals with the integer metrics describad here
(and in fact most reasonable metric choices) are almost
exactly as estimatel ip Section 3.2 basad on operation at
R-Ro.

S.1.7 Path Memory Truncation

Another problem which arises in the implementation
of a Viterbi deccder is the length of the path history
which must be stored. In our previous discussion we
ignorad this important point and therefors implicitly
assumed that all past data would be stored. A final

decision can be made by forcing the coder into a known
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(all zeros) state, but this is totally impractical for

long data sequences, for it requires storage of the entire
trellis memory for each state. Suppo3e we truncate the
path memories after L bits (branches). have been accumulated,
by comparing all 2‘ metrics for a maximum and deciding

on the bit corresponding to that path (out of 23) with the
highest metric L branches forward., If L is several times

as large as K, the additional bit errors introduced in this
way are very few. It can be shown that the additional error
probability due cvo path truncation, based on the largest
path metric L branches beyond whers the decision is to be

made, is of the order of a block coding error fcr a code of

block length L bits. Both theory and simvliation have shcwn

that by making L four to five times as large as the code
constraint length K, we can ensurs that such additional
errors have only a slight affect on the overall bhit error
probability.

0f course. basing the decision upon the maximum
metric L branches forward may require a costly implemen~
tation to compare-sll 2x state metrics. Other decision
techniques, based on majority polling and metric overflow
monitcring, are much less costly and yield the same or

ketter performance when L is increased siightly.

@
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S.1.8 Code Selection

The linear logic for z convolutioral code is
usually selected based on the code distance properties
as discussed in Section 5.1.2. The first criterion is to
select a code (linear logic) that does not have catastro-
phic error propagation (see Section S.1.5) and that has
the maximum possibile frae distance for the given rate and
constraint length. Then the number of paths or dver-
saries at the free distance or if the bit error prob-
ability is the performance measure, the total number of
information bit errors represented by the adversaries at
the free distance should be minimized. This selaction pro-
cedurs can be further refined by considering the number cf
adversaries or information bit errors at the free distance
plus 1, plus 2, etc., until only one code or class of codes
remains. A listing of R=1/2 K=3 to 9 and R=l/3 K=3, to &
codes selected based on this criterion is given in Table
S.2, (Reference 24, but note X=7, R=s 1/3 correction)..
The R=l/v coustraint length ¥ codes in this table are
specified in terms of v K-digit sequences. The i th

digit (0 or 1) in the j th sequance specifies the tap
multiplier in determining the contribution to the j th

branch output due to the symbol in the i th encoder re-
Sister stage. The total j th output is the modulo-2 sum

of the v individual contributions.
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¥
Rate Constraint Length Code
3 x
= 1/2 3 111
T 101
b 1/2 4 1111
) 1101
- 1/2 5 11101
T 10011
- 1/2 6 111101
'i 101011
o 172 7 1111001
N 1011011
T 1/2 8 11111001
K 10100111
2 1/2 9 ‘ 111101011
. 101110001
N 1/3 3 111
i 111
‘ 101 ®
4
: 1/3 4 1111
b 1101
: 1011
i 1/3 s 11111
. 11011
: 10101
{
a i/3 6 111101 "
l 101011
g 100111
X 1/3 7 1111001
X 111010l
1011C11
1/3 3 11110111
11011001
10010101
Table 5.2 Optimum short constraint length
R=1/2 and 1/3 convolutienal cndes.
~121.
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Other codes which achieve the maximum free distance

but do not necessarily have the minimum number of ktit errors

as described above, are given in Reference 25 for R=l/2, 1/3

and 1/4 ccdes and in Reference 26 for R=2/3 and 3/4 codes.

5.1.9 Computer Simulation Parformance Results

One of the main methods of determining the per-~
formance of convolutional coding systems is by computer
simulation. Such simulations are espacially helpful in
determining the error rate performancs at higher error rates

whers analytical bounding techniques are not very tight aad

where the error probabilities can be estimated with a reason-

-

able amount of computer time.
Sometimes the all zero information input sequence

is assumed, but when. only a few quantization intervals

are used it is best to use random data to avoid biasing the

results due to the method of resolving metric comparison

ties. The advantage of using the all zuro sequence is that

no encoder is necessary since the encoded saquence will

still be all zeros and determining the error rate reduces

to detarmining the fraction of nonzero decoder outputs.

The quantized received data sequence is generated by
modifying the enccded sequence according to cthe channel

transition probability diagram (see Pigure 3.6 and 3.9).

Once the quantized received sequence is generated a Viterbi
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deé;der identical to a haraware implementation can be

. programed. The error rate is determined by comparing
qné.Vitersi decoder output witih the delayed information
sequence.

Figures 5.11, 5.12, and 5.13 show the bit error
probability performance of K=7 R= 1/2, K=7 R= 1/3, and
K=9 R= 3/4 convolutional coding systems cn an additive
white Gaussian noise channel with hard and 3-bit soft
quantization. These simulation results have also been
verified by measuremcnés on hardware systems. The upper
bounds shown in these fiqures are discussed in the next
two sections. PFiguras 5.11 through 5.13 again illustrate

the advantages of soft quantization discussed in Section

' 3.2. The K=7 Re 1/2 code used for Figure 5.1 is the

optimum code given in Table 5.2 and the K=7 R= 1/3

code used for Figure S5.12, while not optimum in th; dis-
tance sanse used in Table 5.2, achieves a bit error prob-
akility virtually equivalent to (in fact slightly better
than) the code of [2S] in the range of error probabilities
shown. '

- The R= 3/4 code used for Figure 5.13 is not the best

possible code. At a bit error probability of 10”3 ocher

codes superior (i.e., with smaller bit error prebability)
to this code and the code of [26] can achieve abou: .4 dB

Eb/Nc improvement over that shown in Figure 5.13. The
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performance of a X=7, R= 1/2 con-
voluticnal coding system with BPSK
modulation and an AWGN channel.
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Figure 5.12 Bit error probability versus E /N
performance of a K=7, Re 1/3 c€n-
volutional coding system with BPSK
modulation and an AWGN channel.
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reason for giving the performance of'this particular code
is thz: the encoder/decoder for this K=9 R» 3/4 code
and the K=7 Re 1/2 code have been implemented as a switch-
selectable option in A single unit with only a few more
standard integrated circuit chips than are required for
the single R=7 R= 1/2 encoder/decoder.

Simulation results have also been obtainec
many other codes on the additive white Gaussian noise
chaanel (27]. The results show that for rate 1/2 codes
each increment increase in the constraint length in the
range K=3 to 8 provides an approximate .4 to .5 dB Eb/N°
improvement at a bit error rate of 1073,

The coding gain is just the difference between
the Eb/Nc :eqﬁired for a particular error rate without
coding and with coding. Figure 5.14 shows the 3-bit guan-~-
tization coding gain for the codes of Figurs 5.11. 5.12,

and 5.13.

The hard quantization curves of Figure 5.11, 5.12,
and 5.13 can also be expressed in terms of the channel
error rate. The results are given in Pigure 5.15. <This

figqure can be used to obtain the parformance of these hard
quantized coding systems for different memoryless modu-

lation and channel types using the bit error precbability.

curves of Section 3.1l. Just treat the curves of Section
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Figure 5.15 Bit error probability versus -
channel error rate performance
of several convolutional coding
systems,
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3.1 as the channel symbol error probability versus the
channel symbol energy-to-noise ratio. The coded system

information bit energy-to-noise ratio is then

Bb 1 Es

o (5.2)
NO R No

As mentioned previously, interleaving can be used =0 make

the channel appear to be memoryless.

For example, on an independent Rayleigh fading
channel with binary FSX a X=7, R= 1/2, L=4 diversity sys-
tem with hard quantization requires Eb/uo = 15.1 dB for
?, = 107>, This is 2.8 dB better than the optimum di-
versity (L=16) uncoded system (see Figure 3.5)
fcr this channel and 3.8 dB better than an uncoded systen
with the same 8 chaznnel bits per information bit.

Figqure 5.16 shows the zimulated additive white Gaus-
sian noise channel performance of a Viterbi-decoded con-
volutional codiny system ideally suited for bandlimited
situations [36]. This system consists of a K=8, Re 2/3
convolutional code with an octal-PSK modem. This system
has the same bandwidth requiremsnts for a given data rate
as an unccded QPSK system. Such a system i3 sometimess

referred to as a "unity bandwidth expansior ccding svstem”.

Pigure 5.16 also shows the effects of Viterbi decoder

path memory truncation for this system.
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modem for several path length memories.
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§~Ih Figure 5.17 gives the simulation bit error probability
§‘1§ performance of a K=7 R= 1/2 convolational coding system »
§‘§l with DBPSK modulation on an additive white Gaussian noise X
Ehki channel. As expected from the results of Section 3.2.2.3
;géi the performance of this system is considerably inferior »
%;l- to the same coding system and channel with BPSK modulation.
2}; Scmetimes the message rather than thas bit error
X probability is the performance measure. A simple upper
bound on the message error probability for an M-bit message ’
is just M times the bit error probability. However, since
the output errors in an Viterbi-decoded convolutional coding
system tend to occur in bursts, this bound is somewhat »
pessimistic. To characterize thg bursts out of a Viterbi-
decoder, define an error burst tc be the sequence of in-
formation symbols from the first error to tha last error » °
during which the path choosen by the Viterbi deccder through
the trellis is not merged with the correct path. During
this burst some of the symbols may be correct, buz for R« L/v
codes the correct subsequeuces in the burst are less thar »
K-1 bits in length because iconger sequence would cause
the path to remerge with the correct path. Note that since
the last K-1 bits of the unmerged span must be correct >
for the path to remerge with the correct path, the burst
»
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length is K-l lusas than the length of the unmerged span.
Tables 5.3 and 5.4 give error burst statistics for the
K=7 R= 1/2 system with 3-bit and hard quantization, res-
pectively. The event error probabglity (i.2., the event
of the start of an error burst) is the bit erzor prob-
ab:ilicy divided by the average number of bit srrors per
burst. Then a better upper bound on the M-bit message
errsT probability is M times the event error probability
5.1.10 Analytical Performance Techniques with No Quan-

tization

The basic method of analytically determining the
performance of noncatastrophic Viterbi-decoded convolutional
coding systems is with the generating function appreoach of
Viterbi (28]. With this technique the first step is to
determine a generating function T(D,N,L) which describes
all the differant paths which could be compared with the
correct path assuming the all zercs message is used. In the
infinite expansion c; T(D,N,L) the power of D in the terms
reprasents the number of channel symbols in which the path
differs from the corract (all zern) path, the power of N

represents the number of information bit errors in the path,
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1}

N Average Error Burst | Avarage Number of
zb/ o Length in Bits Errors per Burst

1.0 17.3 12.1
2.0 10.9 5.9
3.0 7.6 4.3
4.0 6.2 3.8

Table 5.3 Error burst statistics for Xs7 R= 1/2
system with 3-bit quantization.
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Average Error Burst Average Number of
Bb/“o Length in Bits Errors per Burst
4.0 13.3 7.8
5.0 9.9 5.5
6.0 7.9 4.5
Table S.4 Error burst statistics for a K=7 R=s 1/2

sy. tem with hard quantization.
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and the power of L represents the length in kranches (b-bit)

information segments for Rw b/v) of the path%”;et

e
o e

-r(o.n,.r.) =3 pt (5.3)
N=1 i-dt
L=l
4T @,N,L) - 2 b, Di S (8.4)
4N N=1 i=d ) .
L=l £ ’

and
P, = Probability of an error in comparing two
paths that differ in i'positions (channel
symbols) | : (5.5)°

where d, is the free distance of the code. The. s@tions
in (5.3) and (5.4) could also have been taken from 0 to =
since a and bi ara, by the definition of free distance, .
zero for i <d,. Then for a rate R= b/v code and an

M~bit mc‘ssage,thc message and bit error probabilities are

bounded by (28]

M .
Pmsug- ‘b Z a Py (5.6)
i-df

and -
4 l ay
P, < g Z b, Py (5.7)

i-dz
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To illustrate this technique and ¢c¢ provide some

rational for (5.6) and (S.7) consider the K=3, R= 1/2 code

of Figure 5.2. The first step is to determine the generating

function. To do this refer to the modified state diagram
of Figure 5.18. This modified state diagram was obtained
from the state diagram of Pigure 5.5 with the all zero
state split into an initial and final state, the all zero
statec self loop omitted, and the branches marked with the
branch generating functions. The path generating functions
of all the paths that can be compared with the corract
(zearo) path are represented in this diagram by all the
possible paths from the initial all zero state to the final
all zero state. These paths can be exprsssed as the trans-
fer function of the diagram. PFor this example the result
is

5.3
r(o,n,n‘- - 2 NL

i
1-ONL-ORL (5.8)

« o%nz3+0Sn? (r.‘+r.5) +D7N3ILS+2L6+L7) s..
Equation 5.8 shows that among the adversaries to the
correct (all zero) path there is one path of weight 5, and
it is three branches long and results in one bit error.
There are two paths of weight 6, one of length 4 and one cf
length 5, and both result in two bit errors, etc. The

message error probability can then be bounded by the prob-

baility of an error in any set of ccmparisons times the
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Figure 5.18 Modified state diagram for the K=3,
Re=l/2 convolutional code of Pigure 5.2.
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number of comparisons per message. For a R= b/v code
comparisons are made every b information bits (i.e.,
every branch). So for an M~bit message there are M/b
comparisons. The union bound of (5.6) follows.

To determine the bit error probability the number
of information bit errors in an incorrect path must be ac-
counced fne. In the example, an error in comparisons with
either one of the 2istance 6 paths produces 2 bit errors
while an error in the comparison with the distance 5 path
only produces one error. The number of bit errors per in-
correct path can be accounted for by taking the derivative
of (5.8) with respect to N. The bound of (5.7) results.
Again the l/b factor accounts for the fact that comparisons
are only made every branch (i.e., every b information bits).
For the exampla, the transfer function derivative of (5.4)

is

! ’ ]
dT D,N’ L - D - (5.9)

a2
dN -y «1 2o)
L=l

The Pi probabilities depend on the particular modu-
lation, channel, and quantization. For BPSK modulation,

additive white Gaussian noise, and no quantization

P = Q 2iR —
()

= ql4i 2 (5.10)
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£r this Rs= 1/2 example where

Q(x) -_[ ‘/-lz_;_: exp (- g-z)dy (5.11)

Using the bound

5 e,
Pi b Q 2d£ R i; axXp ‘(i’d£> R ﬁ;
124, (5.12)

the message and bit error prcbability bounds for this
example become

R 2

message

{¥3)

Py < — (5.14)
[1'2 "‘P(‘ m‘)l

=]

) (5.13)

for Eb/N° ratios large encugh so that the denominator of
{5.12) is positive.

This example illustrates the two main probiems
with this technique: that of detarmining the generating
function and that of computing or bounding Pi. For small
error rates only the first few terms in the summations
of (5.6) and (5.7) contribute significantly to the bounds.

So a good method of using this technique is to use exact
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expresaions or tight bounds for the P, of the first

few terms and then to b&qﬁd_thauremainiﬁg P, by bounds

of the form

s '
P, < C, D, (5.15)

where c° and Do are quantities which do not depehd on

i. In the example above we used

Co " Q de R = exp df R ;E (5.16)
o ()

and

D.= exp(-R

o (5.17)

oo™

for i > dg + 1.

with bounds of %zhe form of (5.15) the transfar
function only has to be evaluated for a particular D~D, .
This can be accomplished yith a computer using the state

equations [(29].

S=as5+

(5.18)

where S is a column vector whose components are equal
to the branch transfer functions from the all zers-atate

to each of the nonzero states, 5 is a matrix whose com-

e]lAl-

.




ponents aij are :zhe bhranch transfer functions frecm the
j th to the i th nonzero state, B is a column vector
whose components are the branch transfer functions from
the initial zero state to the i th nonzero state, and
C is & row vector whose components are the branch transfer
Zunctions from the i th nonzero state to the finali zero
state.,

A computar program has baen written [29] to compute
(5.7) for specific D values. This no-quantization bound
is compared with simulation results in Figures S.11, S5.12,
and 5.13.

Figures 5.19, 5.20, 5.21, 5.22 and 5.23 give this bit
errur probability bound versus Eb/N° for Re 172, 1/3, 1/4, 2/3
and 3/4 codes, respectively, of (25], and [26] with biphcse
BPSK modulation, additive white Gaussian noise and no
quantization. With 3-bit quantization an additional .25 d3
is required and with hard quantization an additional 2 dB
is required.

The somewhat poor peformance of the K=7, R=l1/4
code of Pigure S.21 is due to the large leading bi coef-
ficient (i.e., bdt in Equation $.4) of that code. A
K=7, K=1/4 code with a smaller leading coefficient and

the same maximum free distance can probably be found.

5.1.11 Analytical Performance Techniques with Quantization

The bounding technique of Section 5.1.10 can als> be
used on quantized channels. Let D(2Z) be a polynomial des-

cribing the metric differences that could occur in com-

" paring an incorrect gath with the correct (zero) path.
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metric is M{l) and the corrsct channel symbol metric is M(O)

In particular let the powers of 2 represent the possible
branch metric differences between tha incorrect and the
correct branch metrics and the coefficient of that term

the probability of that metric diffe:ence. With n quan-

tization intervals

(At et (1) (0]
D ( z) DD Py MMy (5.20)
im0 =0

where pij is the probability that the incorrect channel symbol

3
If two paths differed in only one channel symbol,
a Viterbi Cecoder would make an error in comparing the
two if the incorrect path metric exceed the correct path
metric. So
Py, = {D(zq (5.21)
/
<+
where
{ ( \ Sum of the coefficients of the
{2 -
1 d+ positive powar terms of D(2)
+ % Coefficient of the zero power
term of D(32) (5.22)

The 1/2 factor for the coefficient of the zero power term

- i3 to resolve ties randomly. If the paths being compared
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by the Viterbi decoder differ in i changel symbols, it
chooses thg wrong path when the sum of the differences
of the irncorrect and correct metrics corresponding to

the channel symbols where the paths differ is pesitivae,

For the memoryless channel we have assumed hera this

probability can be expressed as

P, = { oi( z)}+ (5.23)

wheres the definition of (5.22) applies hers with Di(:)

instead of D(Z). For moderata valuas of 4, (5.23)

can easily be computed a&specially for the integar
netric case which is used in practics.

To bound the tail terms (l.e., the infinita
sequence of terms remaining in (5.6) and (5.7) after the
first few terms hav- been factored out) a Chernoff bound

of the form of (5.15) is usad [29]

{
i1 | min - i
Py = 7 [15 2 D(Z)] € D (5.24)

With hard receivar quantization and branch mestrics
of 0 and 1 for the 0 hypothesis and the zomplement metrics

for the corresponding intervals with the 1 hypothesis,

D(2) is simply
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D(z) = (l-p) z‘l + p2 (5.25)
where p is the probability of a channel symbol arror.

The hound of (5.24) becomes

1 L
P, < =% ‘-/49(1-95 (5.26)

This bound is compared with simulated resultg with
3-bit quantization in Figures S5.1l1, 5.12, and 5.13.

These figqures show that, as expected, at hich error rates
this union bounding technique is not useful, but for small

error rates it is vary tight. Similar results have been

cbserved for other codes.
The first few coefficients of the bounds of (5.6) and

(S.7) for the codas of Figures S.11, 5.12 and 5.13 are
given in Table 5.5 [24].

5.1.12 Node Synchronization and Phase Ambigquity Resoluticn

~ecause of the inhersnt continuity involved in
cenvolutional coding, code synchronization at the recaiver
is usually much simpler than in the case of block codes.
For convolutional decoding techniques involving a fixed
aumber of computations per bit decocded, such as Viterbi
decoding, the decoder initially makes an arbitrary guess
of the encoder state to start decoding. If the guess is’
incorrect, the deccder will output several bits or, at

most, tens of bits of unreliable data before assuming
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Kan7,

R= 1/2

df= 10 code of

K=7, R» 1/3

d:* 14 code of

R=9, Re 3/4
df'S code of

Distance Figure 5.11 Figure 35,12 Figure 5.13

3 by a; ' by a; b;

5 0 0 0 0 8 2

¢ o 0 0 0 201
7 0 0 0 o
8 0 0 0 0
9 0 0 0 0
10 11 36 0 0
.ll 0 0 0 0
12 38 |21 0 0
13 0 0 0 0
14 193 R404 1 1
15 0 0 0 0
16 1331 Q1633 7 20
17 0 0 0 0
18 11 53
19 0 0
20 35 184
2l 0 0

<

Table 5.5 Upper bourd coefficients of (S.6) and
(5.7).
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steady state reliable operation. Thus, the block syn-
chronization problem does not really exist. There remains
the problem of node synchronization and, depending upon
the modulation-demodulation technique used, the proklen
of phase ambiquity resolution. For a rate b/v code, theras
are v code symbols on each branch in the code tree. Node

synchronization is obtained when the decoder has knowledge

of which sats of v symbols in the receaived symbcl stream
belonqg to the same branch. In a purely serial recaived
streaam, this is a 1 in v ambiguity.

In addition, modems using biphase or quadrighase
PSK with suppressed carriers derive a phase referenca for
coherent demcdulation f£from a squaring or fourth power
phase lock loop or its equivalent. This introduces am-
biguities in that the squaring loop is stable 7a the
in-phage and 180° ocut of phase positions, and the 4th
power loop is, in addition, stable at + 20° from the
in-phase position.

Viterbi decoders have been implemented which
maintain node and biphase or quadriphase PSK phase syn-
chronization completely within the decoder. One way to
resolve 130° phase ambiguities is to use a code which is
transparent to 130° phases £lips, precode the data dif-
ferentially and use differential decoding. A transparent

ccde has the property that the bit-by-bit complement of
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a codeword is also a codeword. Such a code must have an
odd number of taps on exach of its encoder mod-2 adders.
This insures that if a given data sequance jenecates a
certain codeword, its complement will generate the comple-~
mentary code word.

If the received data is complemented due to a 180°
phase reversal, it will still locok like a codeword to the

decoder, and will likely be decoded into the complement
of the correct data sequance. Now decoding to the com-

plemant of the sequence input to tha encoder is no pro-
blem if the data was precoded differentially. This
means tha. information is contained in the occuzrence
or non~occurrence of transitions in the encoded output
sequance rather than the absolute sequance itself. These
transitions occur in the same places even if the decodad
seGuence is complemented.

The major fault with this scheme is that when
an isolated bit error occurs in the deccder output, it
causes two differentially decofad errors, since two trans-~
itions are changed. At first glance, this would seem to

indicate a doubling of the output bit error rate. 1In fact,
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this doubling dces not occur because errors tvpically oc-
cur in short bursts. Two adjacent bit errurs, for instance
cause only two differentially decoded bit errors. This
indicates the possibility of only a small increase in bit
error rate with diffarential encoding-decoding.

In practicc this is the case. For the R=7, R=1l/2
transparent code of Pigurs S5.l11, using differential encoding=~
decoding causes an Eb/No loss of less than .l dB for bit
error probabilities in the range from 1072 o 1078,

Another method of resolving node or phase ambiguities
is Po monitor the metrics and to change the nocce or phase

reference when unsatisfactory (very noisy channel) operation
is detected. This and the preceeding technique have been

impiementad in hardware systems.

5.1.13 Quantization Threshold Levels

With soft receiver quantization the receiver must
have an automatic gain control (AGC) circuit to maintain
the best quantization threshold levels. Throughout this
report we use a uniform quantization. With 0°® or 180°
biphase modulation and N-bit quantization the quantization

threshold lavels are at 0, + T, + 2T, ..., + (¥ t-nT,
With additive white Gaussian noise, rate 1/2 coding,

and 3-bit quantization (N=3) the best choice of T is about

.5 times the standard deviation of the random variable to
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be quantized, i.e., .5 NO/Z. So an estimate of the
noise level is required.

Figuré $5.24 shows the decradation resulting
from an erxror in -the measﬁreuent of N, for the %27, R= 1,/2
ccnvolutional code at a bit error vate of 2X10 °. This
figure shows that this system is not eavery sensitive to
small AGC variations. For bit err - rates of from 10-1
to 10-5 less than a .1l dB larger Eb/N° ratio i{s required
to maintain the error rate performance due to up to + 3 dB
errcrs in the measurament of No for this code. Similar re~
sults have also been obtained for other Viterbi-decoded

convolutional coding systems.

$.1.14 I@plementétion Considarations

The main factors governing the implementation

complexity of a Vitarbi decoder are the number of state
variables (i.s., K-b for Re b/v) and the sgeed. The

K=7, Rw 1/2 cncoécx/dacoder with internal node and phase
ambiquity synchronization has been implemented with 55 TTL
IC chips. This implementation performs the Viterbi decocdsr
comparisons mostly in serial and is capable of operating
at any information bit rate up to 100 Xbps. Figher data
rates can be obtain;d by pexrforming the comparicsons in
parallel. Using such a parallel implementation ths same
K=7, R= 1/2 encoder/decoder with synchronization capable-
of operating at information bit rates of up to 10 Mbps

has been implemented with about 250 IC chips.
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In genexal, increasing the number of state variables
by one agoyroximately doubles the implementation complexity
of a Viterbi decoder that purforms comparisons in parallel
and increases the implementation complexity of a serial

type decoder by somewhat less than a-factor of two.

At low dzta rates Viterbi decoders can be implemented

with microprocessors. Howaver, unless the microprocessor

is also required for other functl!ons, a single decodar of
the compiaxaty of a K=7, Re 1/2 code can presently be

implemented more economically in hardware. One application

where a microprocessor inplementation may be preferabla to
& hardware implementation is where several sicw spe;d, short
constraint length deccders are required, such a= in scnme
multipie access systems.

0thu£ factors that effuct Viterbi decoder implemen-
tation compiexity are:

(1) The choice of metrics
(2) The method of storing state metrics

(3) The design of the path memory and the selecticn
of the sutput bit

(4) The mathod ¢f sharing the stats metric calcu-
laticn

(5) The choice of logic family

(6) The code rate

-158-

- aante

%

L%

w @ =




"3

g

e rperrye gy

ﬁ'l'}

A S ST
ARSI P J.

H

LRI

= W
R

Comparing the irplementation complexity of diffzrant
coding techniques is difficult. However, when soft daci-ions
are available the implemsantacion complexity of a convolutional
coding system is,in general, less than that of & block coding
system that achiaeaves the same arror rate performance. The
main advantages of Viterbi-decoded convolutional coding
systems are that they can easily take advantage of soft de-
cision data and that node ana phase ambigquity resolution
can be resolved internal to the deccder.

The performance of a 3-b.t soft decision extended
Golay code (see Figure 4.8) is comparable to that of a X=3,
Re 1/2 convolutional codi;g systam at bit error rates of
about 10”7, While we do not have an accurate chip count
for a soft decision Golay decocder implemeantation, the
conmplete encoder/deccder with synchronization would certainly

require mora than the 55 chips of the more powerful K=7,

R= 1/2, ensoder/decader with synchronization for data rates
up to 100 Kbps. In fact, the 100 Kbps, K=7, R= 1/2 imple-
mentation has been rafined and the chip count reduced to
the point that there scems little sense in settling for a
shorter constraint length, poorar performnance, system
just to save a few chips.

When interleavers are used with Viterbi-decoded

convolutional coding systems to break up chaurel noise
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bursts, it is usually sufficient for the interleavers to
be large enough such that any cwo symbols in the same
channel noise burst are separated by about 5 constraint

lengths of information bits, i.e., SK v channel bits.
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5.2 Sequentiai Decoded Convolutional Codes

Sequential decoding is a procedure for systematically
searching through a code tres, using received information
as a guide, with tha objective of eventually tracing out
the path representing the actuailly transmitted information
sequence.

Most sequential decoder implementations to data have
used some modification of the Pano algorithm. Briefly,
the operation of the Fano algorithm is as follows. Star-
ting at the first node in the code tres, a path is traced
through the tree by moving ahead one node at a time. At
each node encountered, the decoder evaluates a br;nch metric
for each branch stemming from that node. The btanch.matric
is a function of the transition probabilities between the
rcceivu& symbols and the tranamitted symtols along the
hypothesized branch.

The decoder will initally choose the branch with
the largest metric value (correspording to the closest
fit to the received symbols)., The metric is than added
to a path matric, which is the runniag sum of branch
metrics along the path presently being followed. Along
with the path metric, the decoder keseps track of the
running threshold T. As long as the path metric keeps
increasing, the decoder assumes it is on the right track

-and keeps moving forward, . ‘sing T to lie within a fixed
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conat;nt, 4, below the path metric. If, on the other

hiad, the path metric decreases at a particular node,

such that it becomes less than T, the decoder assumes it
may have made a mistaks and backs up. It will then sys-
tamatically search nodes at which the path metric is
greatar than T until it finds a path that starts increasing
again, or until it exhausts all nodes lying above T. At
this point it is forced to lower T, and search again.
Eventually it will find a path that appears to have an
increasing path metric.

Even when the data is not scqm.ntcd~into blocks,
the decoder will eventually penetrate sufficiantly daep
into the tree, that with high probability the £irst few

ranches followed are correct, and will not be returned to
by the decoder in a backward search. At this point, the
information bits corresponding to these branches can be
considered decoded and the deccder may erase recaived data
pertaining to these branches.

A major problem with sequential decoding is the vari-
ability in the number of computations required per infor-
mation digit decoded. The number of computations is a
measurs of the time required to decode, for a fixed
decoding speed in computations per second. A computation
is defined, as either looking forward or backward ore

branch ana «valvating and testing the metric involved.
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Upper and lower bounds on the ptébgb;lity that the number

of computations performed per diéié'decoded exceeds a vari;
able L have been derived (4]. For large constraint lengtha
these bounds show that for the average numper of computationsi
per digit decoded to remain finite the code rate must be
less than the computational cutoff rate of Section 3.2,

i.e., R < R,. Actually for finite constraiat lengths the
average amount of computation :aﬁ;ini finite but large for

R > Ro. .

Because of the variability of the amount of computaticon
required, thers iy a non-zero probability that incoming
received data will £ill up the decoder memory faster than
old outgoing data can be processed. If the decoder trias to
search a node for which received data has passed ocut of buf-
fer memory, ar overflow is said to oécu:. When an overflow
occurs, the decoder must have some machanism for moving
forward to new data, reacquiring code synchronization, and
starting to decode again. There are presently two techniques
for doing this. One involves sagmenting the data iato blocks.
After each block, a f£ixed ccnstraint length loig sequence .
is inserted. Should the dacoder buffer overflow while
decoding a given block, it can siwply give up decoding that
block and jump to the beginning of the next block to resume
decoding. Code sync is immediately attained through know-

ledge of the fixed data sequence preceding a block..
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Another overflow recovery techniun does away
with data blocking. When an overflow occurs, the decods:
jumps ahead to new data, and guessas the coder state at that
point based upon received data.

For the blocked data case, the probability of
failure t> decode an L-branch (Lb-data bits for R=b/v)

can be expraseed as (4]

Pep = K- (“"c) (5.27)
where k is a constant usually in therangel < k < 10,
m is the computational rate in branches/second, and

a is the so-called Parato exponent doterdined by the re-

lationship. .
: E (a

Here zo(a) is 2 convex function of a which is determined
by the channel transition probabilities [5]. This func-
tion has the properties that 20(0) = 0 and Z2,(1) = R,.
Figures 5.25 and 5.26 show this Pareto expcnent varsus Bb/N°
for saveral code rates for 3-bit (T= .58) soft quantized
and hard quantized additive white Gaussian noise channels,
respactivaly.

The undetected error probability with seguential
decoding (as oppcsed to the failure to decode discussed
above) cin be made as small as desired by increasing the
code constraint length. Long constraint lengths are prac-

tical for sequeatial decodinyg becaure decoder complexity
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Figure 5.25 Pareto exponent versus Eb/N

for an AWGN channel with®3-Bit
(T=.58) quantization.
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is only a weak function of the constraint length, unlike
Viterbi decoding. This undetected error probability

can be determined using the simulation and analysis tech-
niques discussed in the previous section for Viterbi~
decoded convolutional codes.

5.2.1 Ccde Saelection

Choosing codes is not as vritical for sequential
as it is for Viterbi decoding. Decoder complexity is not
a strong function of code constraint length; so, the unde-
tected error performance of a code can be improved by
increasing K rather than trying to optimize a code for
a given valua of R. Still there acre sevaral reasons for
having &% 700d a code as possible.

(1) The constant, k, in (5.27) is somawhat aengitive
to the caode. Good code distance properties will
result in smaller k values.

(2) The encoder replicas in the decoder do grow
linearly with K, resulting in some additional
cost and complexity.

(3) The guess and restart overflow technique per-
forman~» degrades with increasing constraint
length.

Good long constraint length codes for sequentiai de-

coding are given in [30,31].

$.2.2 Performance Results

To illustrate the performance which can be achieved
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with 2 sequcniigl-degoaed conbolutiongl coding system,
this section éigas sﬁmn performance cﬁrQas for the
commercially available LINKABIT LS4816 decoder with
BFSK modulation and an gdditiv‘ white Gaussian noise
channel. The LS4816 is a high speed, flexible decoder
based on the Pano seguential decoding algorithm. The
unit opcrat.sfvith rats 1/2 systematic or non-systematic
coavolutfonal-codds of constraint length selectable bhetwaen
8 and 48. Hard-or soft-(3 bit) quantized dats formatted
into frames of from 512 to 4096 code symbols can be pro-
cessad. '

Pigures $.27 and $.28 show the measured probability of
a failure to decoda a block (or frame) versus the maximum
tine allowed for decoding for soft and hard quantization,
respectively. The curves in thegse figures sre Ifor the
constraint length 24 ncn-systematic code and a frame length
of 1000 informaticn bits. The coded frame format consists
of 2000 code symbols plus a terminating sequence ol one
constraint length af branches (48 code iymbols for K=24)
The Eb/NO values given hers include thell dB loss encountered
in adding this terminating sequence. FPor largs maximum
allowed decoding times (Tc) the curves in these figures are
approzimately st:aight linass with a slops equal in magnipude
to the Parsto exponent (¢} of (5.27). The information bit
rate is the number of information bits per frams (1000 here)
divided by Tc.

When the deccder fails to decnde a frame and no means
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of telling the transmitter to retransmit that frame is
available, it may be desirable to have some estimate of the
data in that frare. For the systematic code choice the
LS 4816 decoder usgs the raw undecocded received data bits
as the dacoder output. For the non-syitematic code choice
a "quick=look" code (32} is used. The "quick-look”
codes have the property that the information sequence can
be easily derived from the undecoded received data bits with
an error rata which is increszsed by a minizum amount
(sbout a factor of 2) over the channel error rate.

Figuie 5.29 shows the measured bit error prcbability
due to decoding failures versus Eb/N° for the LS 4816 decoder
wit™ the non-systematic, K=24, R= 1/2, 100Q-‘uformation-bit

frame cnoice on an rdditive white Gaussian noise channel

at a 20 Kbps information bit rate (i.s., Tc- 50 m sec). Bit
errors result froem the alternate "quick-look" decoding of
data when a frame fails to decode in 50 m sec. Since the
probability of zn undetected error is small, the curves
of Figqure 5.29 also give the total bit error rate versus
Eb/u° performance.

One poasihle application of sequential decoded con-~
velutional codes is in a packet satellite communicaticn sys-

tem. Packet communicaiisn invoives the transmigssion of .

blocks or packats of bits (usuvally on the order of 1000 bits;
cvar a netwcrk with automatic store-ancd “orward and repeat

request (AR); ~apabilities. Tabie 5.6 shows the pt formance

¢ ke Ak oTa ke — meabhnin
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Ch N VS

INFORMATION BIT ENERGY-~

PROBABILITY OF NOT DECODING PACKET
WITH N~PACKET CODING DELAY AND BUF-

TO-NOISE RATIO FER SIZE
E /N, PROBABILITY OF NOT
¥ DECODING
3.2 48 0.5 7.4 X 1073
1 2.9 x 1073
2 1.1 x 1073
3 4.5 x 10”4
3.7 dB 0.5 7.4 x 1074
1 2.4 x 1074
2 7.4 X 1073
3 2.5 x 1072
4.2 dB 0.5 6.2 X 10™°
1 1.8 X 107°
2 5.0 x 10°°
3 1.4 x 107°
Table 5.6 Measured performance of LS 4816 con-
volutional encoder-sequential decoder with
data rate = 50 Kbps, packet size = 1000
bits, constraint and tail length = 48,
code rate = 1/2, and undetected error rate
< 1078,
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of the LS 4816 decoder for this purpose at a 50 Kbps

data rate.

5.2.3 Implemantation and Application Considerations

Seguential decoded convolutional coding systems
are characterized by the fact that their performance is
dependent on the data rate and that the error probability
wn:usZ%/No curves tend to be very steep. For this .
reason such a system is especially useful in slow to mo-
derate speed applications where very small error rates
are required. Another characteristic of sequential decodedl
systems which influences their application'is that the errors
tend to occur in long bursts and an indication of the oc- _:
curence of these bursts can be provided if desired. This -
characteristic makes this type of system good for applica-
tions where the data is blocked and retransmissiorn of un-
reliable blocks is possible. The large buffers, and thus .
large decoding delay, required oy sequential decoders must
also be considered. While Viterbi decoders only have a
decoding delay in information bits of about five constraint
lengths, sequential decoders will usually have a delay of
over 200 bits.

Unlike a Viterbi decoder the implementation complexity
of & sequential decoder is only weakly dependent on the . -
constraint length. However, since a sequential decoder must
store many branches of received data, the amount of storage

required for these branches is a significant factor in the
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implementation of such & system. Since low data rate
codes and soft quantization require more storage per
branch these choices increase the implementation complexity
of a sequential decoding system. )

The LS4816 conwvolutional encoder-sequential decoder
whose po