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.•0 Introduction
�.�-, With the continued improvement in coding techniques

and the implementation of these techniquesi and the growing

acceptzncs of error control coding, increasingly many sys-

tems engineers are incorporating error control codes into

communication systems. However, due to the rapid changes

in this field and the tact that much of the information

needed to decide whether e:ror control coding should be

used is in widely scattered or unpublished sources, it

has been difficult for the systems engineer to weigh the

advantages versus the costs of various coding systems and to

specify the parameters of a coding system when error control

coding is selected. The purpose of this report is to provide

a reference which can be used by systems engineers to aid in

selecting and specifying error control codes.

The effort described here emphasizes ~the coding

techniques most likely to b* used plications. The

methods of ii-g the performance of various coding tech-

ni 6s and numerous performance curves and tables are pre-

sented. In addition other system considerations such as syn-

chronization, automatic gain control (AGC), and implemen-

7 tation complexity, are discussed.

Chapter 2 introduces the advantages and costs of error

control coding and presents a brief summary of the perfor-

mance that can be achieved with several representative

coding techniques and of other factors that should be con-

sidered in selecting and specifying error control codes.

t - ,
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The remaining chapters present a more detailed

description of error control c.oding. Chapter 3 begins

with a descriFtion of thi performance which can be achieved

without coding and with some theoretical results on the

limits of coding. The uncoded performance is included to

acquaint the reader, who may be unfamiliar with error

control systems, with the usual ways of specifying the

error rate performance of a system and to provide a con-

venient reference for determining the coding gain of coded

commurication systems.

The two fund-wntal coding limits discussed are the

channel capacity and the computational cutoff rate. The

absolute-upper limit on the rate of a code (defined at the

ratio of the number of encoder input bits to the number

of encoder output bits) is the channel capacity and the

upper li-it for practically implementable systems is the

computational cutoff rate. These limits are presented in

a form which shows the minimum signal-to-noise ratio for

which coding is useful versus the code bandwidth expansion

(defined as the inverse of the code rate) for several

modulation and channel types. If these results show that

the signal-to-noise ratio for a particular modulation and

channel is insufficient for any code rate, then what is

required is a better modulation technique or system

changes that will increase the received signal-to-noise;

"-2-
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there is no need to hopelessly search for a coding tech-

nique to a'hieve some impossible goal.

Chapter 4 through 7 discuss and give the per-

formance of specific coding techniques. Chapter 4 covers

block codes and Chapter 5 convolutlonal codes which

are decoded using Viterbi, sequential, and feedback deco-

ding algorithms,

Chapter 6 describes nonbinary symbol convolutional

codes and, in particular, the dual-k convolutional coding

system which is useful for fading and non-Gaussian noise

channels with 2 -signal MFSK modulation.

Chapter 7 describes and gives performance results

for several concatenated coding systems. • @
A glossary of coding terminology is provided in

Appendix A.

-.3-
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2.0 Summary of the Procedures for Specifying Error

Control Ccdes

The digital communication system engineer, who must

weigh the advantages of error control coding against its

costs, will form a decision based on the nature and qua-

lity of the channel and other terminal equipment already

available. But with the dramatic improvermnts in error

control techniques in recent years and the greater reliance

on satellite and terres'.rial microwave links for broadband

data transmission, decisions in favor of error cc.:-ttrol are

becoming ever more frequent.

For satellite communication .channels the most effective

forward error correction technigugs can reduce the received

signal-to-noise required for a given desired bit error rate

by 5 to 6 dD, or more, compared to a system without error

control. This translates directly into an au.ivalent reduc-

tion in required satellite effective radiated power, with

consequently reduced satellite weight and potentially remark-

able reductions in satellite booster costs. For a satell.:e

system with many ground stations an even greater cost savings

may be possible by reducing the receiving antenna area by a

factor of 4 which is compensated for by the error control

savings of 6 dB. The cost of error control is two-fold: the

equipment which may be more than compensated by savings which

it makes possible in ,)ther terminal equipment; and the redun-

dancy required by tha e::ror control code. This redundancy

-4-
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41need not, howeveri reduce throughput if additional iband-
width is availabliL:on the channel. Satellite channels,

in particular, ax& often not nearly as much bandwidth

limited as they are power limited. An error control

technique which employs a rate 1/2 code (1001 redundancy)

will require double the bandwidth of an uncoded system;

on the other hand if a rate 3/4 code is used, the redun-

dancy is 331 and the bandwidth expansion only 4/3.

'p.Terrestrial channels such as microwave links, H[F

and tropospheric Propagation links can also be Improved

by error control techniques. For these channels which

are subject to fsding and multipath phenomena, the errors

I tend to occur in burst's, and thus corrupt long strings of

- O

"data,,rather than as single randomly distributed bit errors.

A very effective error control technique for these channels

A ~is forward- error correction coupled with data interleaving

before transmission and after reception, which causes the

.1*.

burst nof, channelver;rorsc thoubghpraout i andithusna o ban-e

wid n the reminder• ofti eton theane. atl ite fchaones,

which must be considered in specifying error control codes

are suzmirized.
. 2.1. Error Correction Versus Error Detection

One question that must be addressed in weighing the

advantages of error chntrol coding against its costs is

whether error correction or error detection coding is best

f t
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C1 Error detection techniques are much simpler than

* forward error correction (FEC). Considerably less redun-

• dancy is required to detect up to a given number of errors

than to correct the same errors. The weaknesses of error

detection, however, are several. First, error detection

presupposes the existence of an automatic repeat request

fl(ARQ) feature which provides for the retransmission of

- ., those blocks, segments or packets in which errors have been

"deteced. This assumes some protocol for reserving time

for the retransmission of such erroneous blocks and for

reinserting the corrected version in proper sequence. It

also assumes sufficient overall delay and corresponding buf-

"fering that will permit such reinsertion. The latter becomes

particularly difficult in synchronous satellite communication •

- where the transmission delay in each direction is already a

quarter second.

A further drawback ol error detection with ARQ is its

inefficiency at or near the system noise threshold. For,

as the error rate approaches the inverse block (or packet)

"length, the majority of blocks will contain detected errors

and hence require retransmission, even several times, re-

ducing the throughput drastically. In such cases, forwardS
error correction, in addition to error detection with ARQ,

"may considerably improve throughput. One technique, con-

"-.- volutional coding with sequential decoding is basically
3

a forward error correcting approach but with an inherent

0p
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error detecting feature provided without additional

"complexity.

In summary, forward error correction may be desir-

able in place of, or in addition to, error detection for any

of the following reasons:

(1) When a reverse channel is not available or the

delay with ARQ would be excessive;

(2) The retransmission strategy is not conveniently

implemented;

1(3) The expected number of errors, without cor-

"rections, would require excessive retransmission.

2.2 Block Versus Convolutional Codes

i i The two basic types of error control codes are block
I 0

and convolutional.

Early attempts at designing error control techniques

were based on block codes. In the binary case for every

block of k information bits, n-k redundant parity-check bits

are generated as linear (modulo-2) combinations of the in-

formation bits and transmitted along with the information

bits as a code of rate k/n bits/ binary channel symbol. .1
The code rate is the ratio of information bits to total bits

transmitted - this is also the inverse of the bandwidth

expansion factor. The more successful block coding tech-

niques have centered about finite-field algebraic concepts,

culminating in various classes of codes which can be

-7-
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generated by means of a linear feedback shift register

encoder.

"Emphasis in the last decade has turned to convolu-

tional codes, for which the encoder may be viewed as a di-

gital filter, whose output is the convolution* of the

input data and the filter impulse response. Several decoding

techniques have been developed, which unlike those generally

used with block codes, reply more on channel characteristics

than on the algebraic structure of the code.

In almost every appplication, convolutional codes
M

- outperform block codes for the same implementation complexity

- of the encoder-decoder. In addition, convolutional codes

have several other advantageous features which further tip

the scales in their favor:
(a) Code synchronization is much simpler; for rate

"1/2 codes only a 2-fold ambiguity needs to be

resolved, and for rate 3/4 a 4-fold ambiguity;

in contrast for block codes the ambiguity is

n-fold where n is the total number of data

plus redundant bits in a block.

(b) Channel quality information can easily be

utilized with two of the three main convolu-

tional decoding algorithms - on a channel

. Performed with binary field arithmetic, rather than
real numbers as for ordinary digital filters.

"1W
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with BPSK or QPSK modulation disturbed pri-

marily by wideband (e.g., thermal) noise, soft

decision decoding, as this is generally called

•I permits the same performance at a signal-to-

noise ratio of approximately 2 dB less than

* I hard decision decoding, in which the infor-

mation fed to the decoder is only the demod-

ulator decision on each bit. Similar improve-

ments are possible with other types of mod-

ulation and channel interference (see Sec-

tion 3.).

(c) Associated with (b) is the decoder's ability

to monitor channel quality and to display

or output this Information in real time while

decodinq data.

Applications where block codes may be preferable

are for error detection or in a few cases for a system with

a blocked data format and in which only hard quantized demo-

dulator outputs are available.

2.3 Summary of the Performance of Forward Error Cor-

recting Coding Systems

The efficiency of a conmunication system in the pre-

sence of wideband noise with a single sided noise spectral

density of N is commonly measured by the received infor-

mation bit energy-to-noise ratio (Eb/NO) required to achieve

Iq



a specified error rate. This ratio can be expressed in

terms of the received modulated signal power (P) by

o N 0  ~(2.1)

where Rb~ is the information data rate in bits per second

(bps). So for a specified error rate a system that requires

a smaller L,/NIN could have a higher data rate or a smaller

received power. Note that for a rate k/n code (i.e., n

channel oits/k information bits) the channel symbol energy.-

to-noise ratio is k/n less than the information bit energy-

to-noise ratio.

With or without' coding an efficient modulation

technique should be chosen. For example, a coherent biphase

(00 or 1800) BPSK system requires an "oof 9.6 dB for a 0

bit error probability of 10-5 whereas a DBPSX system requires

10.3 dB.

Table 2.*1 shows the coding gain that can be achieved

with several coding systmms with coherent BPSX or QPSK rnodu-

lation on a channel with wideband Gaussian noise * With ths,

perfect phase coherence assumed, QPSK performs the same as

BPSK. 0

Table 2.2 shows the required Eb/.4 0 and the coding

gain which can be achieved with a constraint length

K=7, (see definition in Table 2.1) rate R- 1/2 Viterbi-

decoded convolutional coding system with several



•ri I <:~L5 odli=-

~inq r*- in -%
Cod4nq Tyrpe type cive dB

a d.t? des- 'uant .- 
Jr

-bed 2za.on

-7. "-L/2 Vtterbi-d*cod•d Convolutional 5.1. 1. 3.1
K,7, ,.-/2 Viterbi-decoded Convolutional 5.1 3 5.2

W,?, R-1/3 7V 1-- ecoded Convoluti.onal 1.:1S 3.5
X-7., Ral/3 ViterhL-decodei Convolutional 5.1 3 5.5

*,,, 1-3/4 ViL-ert.-devoded Convolutional 5.1. 1 2.4
i,9, R=3/4 Vite•r!L-dcoded Convolutional 5.1 3 4.3
K-24 ,1l/2 Seq.ential-dscoded Convoluti.onal ,

2019p1t, 1000-bit blocM 3.2 1 I 4.2
Ks24, R,,l/2 Se.qunt.al-decoded Convolutional .

200Vp,. 1030-bit blocks 5.2 3 4.2
Kl0,r.wll,,,L/2 feedback-decoded Convolu-

tionaL .. 3 1 2.1 S
1C.6 ,z.-I *lt2/3 Feedback-ieeoded Conlvolutional 3.3 1. 1..
94,L.-9,2-3/4 Feedback-decoded ConvoLuc-onal 5.3 L. 2.0
Ke3,L-3,3.3/4 Ftedback--ecoded Convolutional S.3 1. 1.1

(24.12) Golay 4.2 3 4.0
(24.12) Golay 4.2 L 2.1

(127, H) S2 4.3 3.3
(127.84) 3KM 4.3 2.1.5
(127,3E 3= 4.3 1 2.3

(7. 4), ieMI~aq 14.11.1 -3.6(.13. LJl: Raummi~nq 4.1 ,I 1 3(.11. 21) Kmnuq 4.1 1 1.6

'3.6 dB reqUied for -ncoded system

* 'he sam system at a data race of 0., Xbps aas .3 dl -as@ c--o •q-a-q . . 0
Notation

£ I Co:strant lmeaqth of A convol-.Mlonal -ode defined as tae
auner of binary re~qlst& staqee in the enc-ider for such
a code. Xith the Vtterbi decodinq allorithin, increasing
the constraint 'Anqt incrvaise. the cadi; laic but a.so
tbe LUVLemitAtion coaplwu ty of the system. To a much
Lesser extant the same is also true With sequet.ial and
feedback decodinq alqoriLt~hs.

L L Laok-shse lan.qth of a !eed.ack-dercoded convolutional
codinq system defined as the number of rece-,-ed sy•bol2,
expressed iA taeMs of the cor.-espondinq numeer of en-odar
input bi~ts, that ame used to decode an informatz.on ob.t.
ncre-"•nq the look-a-head len.th increases --he codJiq

galn but also the d4coder implementat.on :omplex*.:y.

(t. I0 denotes a block code (Golay, SC! or •m.s.nq here) with
a decoder output bits for each block of k anctder i.put
bits.

leCeiver Quantization describes the degree of quant•zat:.on of the
demodu.lator outputs. Without cod.nq and bh.phase (00 or
180') modulation the .. e odulator output %or .n:e-"edae.
Output 1! the quaitizer .s considered as part of the
demodu.Lator ,.s q-anti'oed to on. bit (i.e., the sign s
provided). With coding, a decodirq decision is ased e.
on several. demodulator outputs and the perfomance can e.
be improved if in addition to the siqn t•e demodul.ator ,
provides some ma•nitude information.

"•ABZ 2.1 sum-arl of -:%e £1/,4 I -equIrements of several roded
cmunication syltis f.or a oi• error -a&t of4"
.0-5 with SPSX modulati.on.
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Number of bits
of receiver Eb/NO in dB

Modulation quantization euid C
required for Coding GainSper binary 5ind

channel symbol Pb 10
see Table 2.1

note) 1

Coherent biphase

BPSK or QPSK 3 4.4 5.2

BPSK or QPSK 2 4.8 4.8

BPSK or QPSK 1 6.5 3.1

Octal - PSK* 1 9.3 3.7 S

DBPSK* 3 6.7 3.6

DBPSK* 1 8.2 2.1

Differentially *
Coherent QPSK 1 9.0 3.0

Noncoherently
Demodulated
Binary FSK 1 11.2 2.1

* Interleaving/deinterleaving assumed .

TABLE 2.2 -Suxmary of the Eb/No requirements and coding gains of
K=7, R-1/2 Viteroi-aecoded convolutional coding systems with
several modulation types at a bit error rate of 10-5.

-12-
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types of modulation on a channel with wideband Gaussian

noise. Here coding gain is defined as the reduction in

theb/No ratio required to achieve a specified error rate

(10-5 bit error rate here) of the coded system over an

uncoded system with the same modulation.

More extensive performance results are given in

later sections. The results in these later sections are

presented in several formats for the more common modulation

and channel types. Description3 of the coding techniques

are also given.

2.4 Code Specification

The following factors should be considered in

selecting and specifying error control codes.

(1) Performance required for a particular modu-

lation/demodulation, channel, and, if known,

coding technique. For example, the error prob-

ability (bit, block, etc.) for several /

ratios could be specified.

(2) Modem interface requirements.

(3) Synchronization requirements. That is, the

method of determining the start of a block

or other code grouping.

(4) Data rate requirements.

(5) Modem phase ambiguity requirements. Some

decoders can internally compensate for the

effects of a 90 or 180 degree phase ambiguity

-13-
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*0
present in BPSK or QPSK modems which obtain

a carrier phase referenced from the data modu-

lated signals.

(6) Encoder-decoder delay requirements. That is,

the delay in bit times from ths time an infor-

mation bit is first put into the encoder to the

time it is provided as an output from the decoder.

(7) Decoder start-up delay.

(8) Built-in test requirements.

(9) Package requiremconts. The decoder could be on

"a card for insertion in an existing modem or

"a separate dei'toder could be provided. Power

and thermal requirements should also be spec- * .
ified.

S

-14-
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3.0 Potential Advantages cf Coding

Before proceeding to the analysis and error rate

performance evaluation of specific error control codes, it

is helpful to briefly review the performance of several

common uncoded communication systems and to determine the

maximum possible coding gain with several modulation

techniques and channel types.

3.1 Uncoded System Error Rate Performance
S

Many types of channels, modulation types, and per-

formance criteria have been studied. Here, for reference,

we present the bit error probability performance of several

uncoded comuunications systems on an additive white Gaussian S 0

noise channel and on a Rayleigh fading channel.

3.1.1 Additive White Gaussian Noise Channel

The additive white Gaussian noise channel model is P

a widely used channel model which is valid for channels

where the primary disturbance is due to receiver thermal

noise or wideband noise Jamming. This model is a good re-

presentation of the disturbance in many space Lnd satellite

communication links.

3.1.1..1 Coherent Phase-Shift Keyed Systems

With a phase-shift keyed (PSK) system one of

M (usually M - 2m) different phases is transmitted on each

-15 - ,I
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channel use. Figure 3.1 gives the bit error rate mersus

b/No performance of BPSK, QPSK, and octal-PSK [18] systems.

The QPSK and octal-PSK results are based on a Gray coding

for the m-bit modem input symbol-to-M-ary channel phase

mapping as shown in Figure 3.2. This mapping guar&ntees

that when the received signal is hard-decision demodulated

to a phase next to the correct phase (the most common type

of error), only one bit error results.

Figure 3.1 shows that with the perfect phase re-

ference assumed here the BPSK and QPSK bit error probability

performances are identical. This is because the in-phdse

and quadrature demodulator components with QPSK are inde-

pendent Gaussian random variables and therefore they can be * 0
treated separately. The bit error probability of the BPSK

and QPSK systems are

Pb) BPSK - (3.1) I

and

(Pb)QPSK Q( ) (4.2)

where

Q()f..L exp ( x 3.3

and E /IN is the channel symbol energy-to-noise ratio.

-16-
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Figure 3.2 Modem input symbol-to-channel phase
mapping for QPSK and octal-PSK.
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Since with QPSK each channel represents two information

bits whereas with BPSK a channel symbol only represents

one information bit, (3.1) and (3.2) reduce to

(Pb)BPSK -(Pb)QPSK Q(4-.N.)

where Eb/NO is 'he information bit energy-to-noise

ratio.

The octal-PSX bit error probability expression (181

Ls mor,* complicated than (3.4) and is not given here. In

thiz report error probability expressions are given only

when they are particularly simple or when they provide in-

"sight into certain analysis techniques. Otherwise, graphs

which more readily show the error probability versus system

parameter relationships are given. -

The main advantage of using a phase-shift keyed

A system with a larger number of phases is that the

bandwidth which is required for a given data rate is

raduced. The main disadvantages are the degraded

performance (for more than 4 phases) and the i:,creased

sensitivity to phase errors.

3.1.1.2 Differentially Coherent Phase-Shift Keyed Systems

Differentially coherent phase-shift keying is a

method of obtaining a phase reference by using the pro-

viously receivee 'hannel symbol. A reference channel

/.

J
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symbol is sent first. Then the remaining channel symbols
.-.. are based on the bit-by-bit modulo-2 sum of the previous and

" present modem input symbols. Again for 2-phases a Gray co-

ding is used to map the m-bit symbol differences to channel

* '.i phases. The demodulator makes its decision based on the

. change in phase from the previous to the present received

channel symbol.

The bit error probability of a binary differentially

coherant phase-shift keying system {ODPSK) is given

by [1)

* PbmexP(..~)(3.5)

"- Figure 3.3 gives a graph of the performance of this

*' '*. binary system and that of a 4-phase (DfPsw) system [17].

"o The primary advantage of this type of system is

the ease with which a phase reference can be obtained.

However, comparing the coherently demodulated results of
Figure 3.1 with the corresponding results in Figure 3.3

-;- shows that for the higher error rates the differentially

"'. coherent systems require a significantly larger energy-to-

noise ratio to achieve a specified error rate. For small

error rates the energy-to-noise ratio required for DBPSK'

5%. -20-
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approaches that required for coherent BPSK. Another char-

acteristic of differentially coherent systems is that syrn-
"bol errors tend to occur in pairs, since an error in one

i symbol decision indicates a high probability of a bad pha3•
reference, and thus an error, for the next symbol decision.

3.1.1.3 Noncoherently Demodulated Orthogonal Signal

Modulated (MFSK) Systems S

Another class of modulation systems employs a set
of orthogonal signals. For example, for every m modulator

input bits one of 2m frequencies could be sent, with spacing
chosen such as to make the signals orthogonal (1]. This
type of modulation is refer=ed to as ftequency-shift keying

(FSK) when only two frequencies are used, or HFSX when
more tha"n tvwo fraquGncies are used. • 0

This type of demodulation is used when the initial
phase reference for each charnel symbol is unknown or

difficult to determine. A co nori application of MFSK
is in Jamming environments where the modulator output is
frequancy hopped.

Orthogonal signal modulation can be viewed as a
type of error correcting coding with a bandwidth expansion

-22-
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of 2m/m. That is, each set of m information bits could be

* encoded (mapped) into one of m, 2m-bit orthogonal sequences.

As the bandwidth expansion approaches infinity this modulation/

demodulation technique achieves the maximum possible coding

gain on an additive white Gaussian noise channel (i]. However,

the large bandwidth expansion required by this technique makes

it impractial for large m.

The a-bit symbol error probability for this modu-

lation/demodulation technique is [Il

where M - 2m and ErmO is the channel symbol energy-to-noise

ratio which is related to the information bit energy-to-noise

ratio by
E s

2- ir
0 0

The bit error probability is related to the symbol error

probability of (3.6) by (21

21"b P (3.7)

Note that for m - 1, the bit error probability

expression reduces to

P exmi p (3.8)b YN' _ i~

-23-
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Figure 3.4 gives the bit error probability per-

formance of this modulation/demodulation technique for JVt

m- 1 and 3.

3.1.2 Independent Rayleigh- Fading Channel

In some applications fading due to ionospheric var-

iations causes phase and amplitude fluctuations from channel

symbol to channel symbol that can severely degrade the error

rate performance. The received amplitude c. such a channel czn

many times be accurately modeled by the Rayleigh probability

distribution.

The performance of a system with this type of a

channel can be greatly improved by providing some type of

diversity; that is, by providing several indepe-ndent t-ranz-

missions for each information symbol. Time, spatial,

and frequency diversity have been used. Here we will

restrict our attention to time diversity which can be

achieved by repeating each information symbol several

times and using interleaving/deinterleaving for the

channel symbols. The result is a channel for which the am-

plitude and phase of the received channel symbols can be

treated as independent random variables with Rayleigh

and uniform distributions, respectively. Such a channel

is called an independent Rayleigh fading channel.

-24-
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Since the received amplitude and phase- ae random,

variables, we will only considear square-law noncoherently
demodulated orthogonal signal modulated USK. The closed

form expression for the bit error probability of binary

FSK on a Rayleigh fading channel is [4)

LFS ~ L-l+i) ( P sKiP' b PK IPS (3.9)1-o

where
1

PFSK " (3.10) p

2+

LOM is the mean. bit energy-to-noise ratio, and L is theD' 0-
order of the diversity. That is, L channel symbols are •
transmitted for each information symbol. The order of the

diversity (L) corresponds to the bandwidth expansion of
k coded system.

Figure 3.5 gives this binary bit error probability

for several orders of diversizi (L).. This figure shows that
for a particular error rate, there is an optimu= amount of

diversity.

For noncoherently demodulated 2 k -sianal -!FSK a
union upper bound on the bit error probability can be

-26-
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obtained (191 as 2 k-1 times the binary error probability

of (3.9) with the channel symbol energy-to-noise ratio in-

creased by the factor k. The result is

L-1

PM i-k-i0

(3.11) I

where

PMFSK 3.12) I
2+ ri

Zn (3.11) and (3.12) the diversity, L, is the number of

2k-ary channel symbols per k-bit information symbol.

3.1.3 Summary of Uncoded System Performances

Table 3.1 sumar:".zes the ratios required to

obtain a 10- bit error probability with the modulation and
I

and channel types discussed in the previous sections.

-8
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3.2 Channel Capacity and Other Fundamental Limits

to Coding Performance
* .-

Error control coding is a means of adding redundancy

to the transmitted symbol stream in such a manner that at

the decoder the redundancy can be used to provide a more

reliable information transfer. Generally speaking, Shannon

(3] has shown that for any input discrete, finite memoryr

channel it is possible to find a code which achieves any

arbitrarily small probability of error if the rate of

the code is less than the channel capacity (C) and conversely

it is not possible to find such a coda when the rate is

geater than the channel capacity. Unfortunately this re-

sult is based on considering the enremble of all possible

codes and thus is only an existence theorem. Systems an-

gineoer are faced with the task of finding a code with a

reasonable implementation complexity that satisfies their

error probability requirements. While Shannon's result

is an existence theorem, it is helpful to compare the

coding gain of particular coding techniques with t-he maxi-

mum possible coding gain that could be achieved for that

code rate.

Another quantity which frequently arises in des-

cribing the performance of coded communication systems

is the computational cutoff rate Ro. Sequentially decoded

-30-
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con:volutional codes are only useful at rates less than Ro.

Moreover, for GRo most good convolutional codes exhibit

a bit error rate'proportional to 2- Ro/R (291 where K is

the constraint length and R the code rate. Of course,

Ro is less than the channel capacity (C).

In general, closed-form expression for a• ".d C are

difficult to obtain, but numerical evaluation is straight-

forward. Discussions on the computation and interpretation

of these quantities are given in (4] and (5S. In the re-

mainder of this section we present some of these results. 0

3.2 .1 Binary Szyrnetric Channels

The simplest type of channel is that of the binary

symmotric channel (BSC). Such a channel has two inputs anSi *
two outputs and the probability of the channel causing an

error is the same regardless of which channel symbol was

sent. This channel is comonly represented by the channel

transition diagram of Figure 3.6. The transitions in this

diagram represent the probabilities of receiving the output

symbol given the indicated input was transmitted.

The computational cutoff rate and capacity for this

channel are [41.

Ro- - log2  +I (-)(3.13)

and
C -1 + p log2 p + (1-P) log2  1- (3.14)

-31-
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where p is the probability of an error in either channel

input symbol and the units of both are bits per channel

Use.

In later sections where nonbinary channel inputs

are considered, the R and C quantities will be appro-

%1 priately defined and computed. With these units and

defining the error control code rate R to be the ratio P

of the number of encoder input bits to the number of en-

coder output bits, we have that channel coding will be of

no help unless R < C and for practical operation R < R0

"will usually be required.

Figure 3.7 gives curves of the channel error pro-

bability, p, required to operate at rates of Ro, and

C versus the code bandwidth expansion. The bandwidth ex- 0
, pension is defined as one over the code rate. For example,

Figure 3.7 shows that a rate 1/2 (bandwidth expansion 2) code

is only useful when the channel error probability is less than.

.11 (i.e, R < C) and most coding techniques would require

p .1 .045 ii.e., Rt < R0 ) for small output error rates.

* ; Any memoryless channel is converted into a 2SC if

hard decisions are performed on each received symbol.

The channel error rate can be determined from the results
U

of Section 3.1 or from similar error probability curves for

other channels. It the channel is not memoryless, inter-

-33-
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leaving can be used to make the channel appear to be memo-

- ryless to the encoder/decoder. The block diagram of Figure
3.8 shows where the interleaving would be added. At the

receiver, deintserleavin4 is used prior to decoding to recover

the sequence corresponding to the encoder output.

When the channel error rate with this binary sym-

metric channel is not low enough to make coding useful, coding

,, may still be helpful if the modem output is not hard quan-

,,'I tized, i.e., not quantized to 1-bit. The demodulator outputs

used in this report are defined on a continuum. Before these

"K'. demodulator outputs can be processed with digital circuits

some form of amplitude quantization must be introduced. In

fact, such a quantizer is many times considered as part ofII,. the demodulator. The demodulator output quantization, re-

ceiver quantization, or just quantization discussed in this

report all refer to this process of converting a demodulator

output defined on a continuum to one of a set of discrete

numbers.

With biphase (00 or 1800) modulation and no coding

the demodulator produces one output defined over a continuum,

for each information bit that was transmitted. A hard (ir-

revocable) decision as to which information bit was transmitted

it made by determining the polarity of the demodulator output.

That is, a one bit quantizer is used. This 1-bit quantization

is also referred to as hard quantization. Without coding,

providing additional amplitude information about the demodulator

-35
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0 0

output is of no help (other than for tracking loop purposes)

in determining the phase (0° or 180*) of the transmitted

signal.
0

With coding a decoding decision on a particular

information bit is based on several demodular outputs and

retaining some amplitude information, rather than just

the sign of the demodulator outputs, is helpful. For ex- 0

ample, if a particular demodulator output is very large, we

can be confident that a polarity decision on that demodulator

output is correct; whereas if the demodulator output is almost

zero there is a high probability that a polariLty decision on

that demodulator output would be in error. A decoder that

uses this amplitude information to, in effect, weigh the

contributions of the demodulator outputs to the decoding de-'*' 0
cisions can perform better than a similar decoder that only

uses the polarity information. A quantizer that roxtains some

amplitude information (i.e., more than one bit is retained) is
0

called a soft quantizer.

No quantization refers to the ideal situation where

no quantizer is used at the demodulator output. That is, all

of the amplitude information is retained.

In the remainder of this section the effects of "' I
demodulator output quantization on coded systems with several

modulation/demodulation techniques are discussed. I"

-37-
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3.2.2 Additive White Gaussian Noise Channel

3.2.2.1 BPSK or QPSK Modulation

As mentioned in the previous section, using a finer
quantization for Lhe demodulator outputs can improve the
Performance of coded systems. The potential gain in using
sort vursuas hard qua-ntized demodulator outputs can be
determined by comparing the E,/NO ratios required to
operate at R = Re or R - C for the channels with and 5
without fine quantization.

In the limiting case with no quantization of
the demodulator outputs,% and C for SPSK modulation on S
an additive white Gaussian noise channel are (43

Ro- i-iog2  1 + (JV R ) (3.15)
and

C. W I 10o2 1+2R Lp (3.16)

where Eb/NO is the information bit energy-to-noise ratio

and the units of % and C are bits per binary channel use..
The restrictions R -C and R -_ Ro correspond to

> j-o

9o R for R < C (3.17)0

and

n (2 1-R _ for R R (3.18)
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In the limit as the rate approaches zero, the restrictions

of (3.17) and (3.18) become

Eo > tn2 1.59 dB for R < C (3.19) 0

and

o-- 2 In2 - 1.42 dB tor R < Ro (3.20)

So on an additive white Gaussian noise channel any

coding technique will require an Eb/NO of greater than

-1.59 dB and for small error rates and a reasonable im-

plementation complexity 1.42 dB will be required regardless

of the cLIe rate or of how fine a quantization is used on

the demodulator outputs.

3ow consider the more realistic channel where the

demodulator output is quantized to several bits. Consider 0
an N-bit linear quantizer which has levels of quantization at

0, + T, + 2T, ... , + (2N-1 - 1) T where T is a Suantization
parameter to be chosen. Such a channel can be represented by

a channel transition probability diagram similar to that for

the binary symmetric channel of Figure 3.6. Figure 3.9

shows such a diagram for the 2-bit quantized channel.

The Ro and C values for this symmetric N-bit quan-

tized channel are (S].
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R- - og2~#I +) ./P P.1 (3.21)

and j-O !
N_2N-1 2 Pj

(3.22C P0 j 1g 2  j+j(3.22)

where P is the probability of the output being in bin j

given the input was k. Of course, for N - 1, (3.21) and

(3.22) reduce to the hard quantized values of (3.13) and

(3.14).

For the hard quantized case the probability of a

channel error is

p P0 P (3.23)

00

The usual procedure for selecting the quantization

parameter T is to choose it to minimize the F/No required

to operate at a code rate of Ro. °The justification for

this is that by t.his choice we are, in some sense, maxi-

mizing the possible coding gain for codes that operate

near Ro. When computer simulations of the coding system

are possible, this parameter can be determined based on

minimizing the Eb/No required for the desired output error

rate. Such simulations have sh, , xcellent agreement

with the theoretically chosen va

-41-
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For 3-bit quantization and channel symbol energy-

to-noise ratios around 1.5 dB this theoretical criterion

yields a quantization parameter, T, of .5 to .6 times the stan-

dard deviation of the unquantized demodulator outputs. Larger

energy-to-noise ratios yield slightly larger T values and

smaller energy-to-noise ratios yield slightly smaller T values.

In practice,.a fixed quantization parameter is usually used for

all E/1o ratios. However, an automatic gain control (AGC) is

required to estimate the noise variance. Fortunately, we

will show that good coding systems exist that are insen-

sitive to small fluctuations in this AGC output.

Figure 3.10 gives curves of the Eb/No ratio

required to operate at capacity, C, on this BPSK modulated

additive-white-Gaussian-noise channel with l-, 2-, and

3- bits of quantization and no quantization of the demo-

dulator outputs versus the code bandwidth expan3ion (i.e., 0

one over the rate). Figure 3.11 gives corresponding curves

for operaticn at R a Ro. These curves show that 3-bit

soft quantization is almost equivalent to no quantization 0

and hard quantization is about 2 dB inferior to no quan-

tization. Comparing the two figures, it can be seen that

for the small symbol energy-to-noise ratios, which cor-

respond to the larger bandwidth expansions, about 3 dB 6

more is required to operate at R - RO than is recuired to

operate at R - C.

-42-
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The E/NO required to achieve a 10-5 bit error prob-

ability with no coding is 9.6 dB. The difference between I
this value and the curves represents the potential or maxi-

mum possible coding gain for that set of conditions.

As with the uncoded perfect phase and time reference

case, the QPSK modulated system can be treated as two inde-

pendent BPSK modulated channels. Thus all the results of

this section also apply with perfect reference QPSK modu-

lation.

3.2.2.2 M-ary PSK Modulation 6

M-ary PSK modulation (04 4) is sometimes used to

reduce the bandwidth required for a. given data rate relative

to the bandwidth required with QP5*K modulation. At first ' •

glance it may seem a contradiction to consider bandwidth

expanding error control coding in such a situation, but

we will show that for a small bandwidth expansion relative

to the bandwidth required for uncoded QPSK, the Eb/No

required to operate at R a R for a M-ary PSK system can
0

be less than that required for a QPSK system.
I

With no quantization R in units of bits per

binary channel use is given by (41

M
R- - l exp mR -- sin2 - (3.24)10o ! E N,

k-l V
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where - 2 m Since the bandwidth of a PSK system is appro-

ximately equal to one cQver the channel symbol period, the

octal- PSK system only requires 2/3 the bandwidth of a

QPSK system for the same data rate and a 16-ary PSK system

1.only requires I the bandwidth of a QPSK system. Figure

3.12 compares the Eb/No ratios required to operate at R - Ro

versus the bandwidth expansion relative to an uncoded QPSK

system for M -*4, 8, and 16 PSK systems. The larger alphabet

sizo systems are seen to have an Eb/No advantage for small

bandwidth expansions.

Several methods of quantization have been used for
the octal-PSK demodulator outputs. One method is to quan-

tize the in-phase and quadrature outputs so that the signal 0 0
space, consisting of signal components every 45 on a circle

of radius /EI, is divided into small squares (see Figure

3.13a). Another method is to divide the received signal space

into pie-shaped wedges depending on the angle of the received

signal component (see Figure 3.13b). The particular quanti-

zation technique will depend on implementation considerations.

The same comparisons ;-resented here for operation
at R u R can be performed to compare the minimum possible

Eb/No ratios based on operation at channel capacity.
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However, it is usually more difficult to obtain closed form

expressions for C than for R0 . Also for small channel

"symbol energy-to-noise ratios we have (5]

CS

-'o (3.2S)

So the comparisons based on operation at channel capacity

produce approximately the same results as those based

on operation at R - Ro.

3.2.2.3 DBPSK Modulation

As mentioned previously, differentially coherent

phase-shift keying produces a channel with memory. While

some codes have been designed especially for channels with

memory [7-10], the performance of most of the more powerful

coding systems are degraded when they are used on such

channels. To remedy this situation (i.e., to make the

channel appear to be memoryless) simple interleavers

can ne used as illustrated in Figure 3.8. The potential

coding gain of such an interleaved/deinterleaved DBPSK

channel is discussed here. The size of the interleavers

will depend on the type of coding and will be discussed

in later sections.

With no quantization the computational cutoff rate

"for this channel is I5]

R - log 2  11 + PlWe - 0) P(x/e =-l)dx

.a (3.26)
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where P(x/e - e ) is the probability density functicn of
the demodulator output random variable given that the phase
change of the transmitted symbol from the last to the present

symbol is 9 For DBPSX the transmitted symbol phase
changes are 0 or r radians. These density functions are
"given in Reference 6. Substituting these density functions
"in (3.26) yields.

R i~lo 1 ex(-R..)f (R i) (3.27)

. where

.f a) 1 a h dic (3.28)
m-O k-0

The Eb/NO ratio required to operate at R - can be
determined by numeri-ally integrating the integral in

(3.28). Of more interest is this Eb/No value with im- p *
plementable quantization techniques.

Figure 3.14 shows this Eb/NO value versus bandwidt-i
expansion for 1- and 3- bit receiver quantization.

i The hard quantization results were obtained using
(3.13) with a channel symbol error probability of

•.: 
9 " e xpe... 9 (3.29)

3-.[

i..
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(3.1)wit N- an ,trasiio

The soft rjuantization results were obtained using '.1
(3. 21) with N - 3 and P'" P07" The PJ transition •'

probabilities are the probabilities of being in the dif-

ferent quantization intervals given the transmitted symbol

phase change is zero. These can be determined from the

probability distribution function defined by

P x) - Probability that the demodulator output

random variable is less than or equal to

x given that the transmitted symbol

phase change from the last to the present

symbol is 0

Integrating the density function of (61 gives' this

distribution function 5 0

F b

0- -mR __ 2-R -

1-(x~u . exp, ( E -2x) t

-5 b forx>0' rNo foI

(3.30)
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,hen the probability of the demodulator output random

variable being in the quantization interval betwen T1 and
T2 (TI< T2) is just P (T - .(Tl) The quantization

parameter T was varied to determine the optimum (i.e., the

Eb/No required to operate at R - RO was minimized) value

and in the regions of primary interest T = .7 was best.

As with the coherent PSK case, R0 is relatively insen-

sitive to small changes in this parameter.

Figure 3.14 shows that lower rate (R ) codes

will not necessarily improve the coding performance with

this type of channel. This somewhat unexpected result

can be explained by noting that as the code rate is de- e.

creased the channel symbol energy is decreased and thus

the phase reference becomes noisier. With the coherent

PSX channel a perfect phase reference was assumed. In

practice, the non-ideal phase reference will contribute

a:i Z/No loss which will increase as the code rate is

decreased.

Figure 3.14 again illustrates the gain which

can be achieved with soft quantization of the demodulator

outputs. For a rate 1/2 code hard quantization is 1.3 dB

inferior to 3-bit soft quantization.

5 -3
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Comparing the DBPSK results of Figure 3.14 with the
coherent BPSK results of Figure 3.11 it can be seen t-1' the

potential coding gain of the DBPSK system is significantly

less than that of the BPSK system. Figure 3.15 shows the
potent"al coding gain based on operation at R R - 1/2 S

for BPSK and DBPSK systems.

The minimum possible Eb/No ratio determined based
on R < C can also be obtained for the hard and 3-bit soft S
quantization cases using (3.14) and (3.22), respectively.

The results are plotted in Figure 3.16.

3.2.2.4 Ncncoherently Demodulated MFSK

The most common application of this type of
modulation/demodulation is in anti-jamming frequency-hopped

systems and time-diversity Rayleigh fading channels in
which one of 22 different, properly spaced, frequencies • O
are used.

With a demodulator consisting of M - 2m square-law
envelope detectors and no quantization the computational 0

cutoff rate for this modulation/demodulation with additive
white Gaussian noise can be computed. The result shows
that the "b /N0 ratio required to operate at R - Ro is
a monotonically increasing function of the code bandwidth

expansion. So such a channel is not an attractive can-

I
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didate for error control coding with additive white Gaussian

'noise.: However, this system is very useful in jamming or

fading environments.

"-To implement such a system the matched filter

outputs would be quantized. If each matched filter output

is quantized to N bits, a total of N2m bits per received

symbol are required. For large m such a system becomes

difficult to implement. However, systems with 8 matched

filter outputs and 2 bits of quantization per filter have

been used effectively in non-Gaussian noise environments

with dual-3 convolutional codes. These results will be

discused in Section 6.

3.2.3 Independent Rayleigh Fading Channel

.As noted in Section 3.1.2, diversity can greatly

improve the performance of communication systems on a

Rayleigh fading chaunel. Coding can reduce the diversity

requirements (i.e., the order of the diversity) and provide

an energy-to-noise ratio coding gain.

The computational cutoff rate for this channel with

noncohererntly demodulated 2m-ary MFSK and no quantization

is [4]

Ro r 2 log1 (3. 31)
o 2  1+4 (2 m-1 ) p (l-p)
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where O

p- (3.32)

2+mR ,H A

The units of R. are bits per binary channel use and

E;/No is the mean information bit energy-to-noise ratio.

Curves of the i/NO ratio required to operate at

R - Ro versus the bandwidth expansion are givren in Figure

3.17 for binary and octal MFSK. This figure also gives

this 2/No ratio for a hard-quantized binary FSK system. This

ratio was obtained using (3.13) with a channel error pro-

bability given by (3.32). This figure shows that the

difference between the potential performances of soft and

hard quantized coding systems on this channel is even

larger than on the additive white Gaussian noise (AWGN)

channel. On the AWGN channel fo:? a code rate of 1/2 the

energy-to-noise ratio difference was 2 dB while here it

is 4.9 dB.
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4.0. Block Codes O

For this class of codes the data is traji5mitted

in blocks o' symbols. For every k encoder input symbols,

n-k parity-check symbols are added to produce a total S
of n symbols to transmit. The code rate is k/n.

The more successful block coding tiaW hiques have cen-

tered about finite-field algebra- concepts.

Linear block codes can be described by a k x n

generator matrix G. If thw A-symbol encoder input is

represented as a k-dimensional column vector, x, and the

encoder output by an n-dimensional column vector, y, the S

encoder input-output relationship is given by

y- xG (4.1)

So the n-symbol encoder output blocks arv linear al-

gebraic combinations of the rows of the generator matrix.

In the binary symbol case, the output blocks are bit-by-

bit modulo-2 sums of the appropriate rows of G.
S

Usually block codes are decoded using algebraic

techniques which require the deodullator to make a hard

decision on each received symbol. In 3ection 3 it was

shown that such hard quantization unnecessarily reduces

the potential performance of the coding system. For the

additive white Gaussian noise channel with BPSK or QPSK

modulation the potential coding gain of a finely quantized
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coding system is about 2 more than that of hard quan-

tized system. Recently several soft decision coding

"techniques have been proposed for block codes (11,12]

which, at least for some particular codes, seem to recover

most of this 2 dB loss. However, the implementation corm-

plexity of such systems is usually much greater than

that of Lie corresponding hard quantized system. In D

"general, when soft decisions are available a convolutional

coding technique which easily adapts to soft decisions is

preferable.

Another disadvantage of block codes as compared to

convolutional cods.z is that with block codes the receiver

must resolve an n-way ambiguity to determine the start of * .
a block whereas with Viterbi-or feedback-decoded con-

volutional codes a much smaller ambiguity needs to be

resolved (see Section S.i.12).ip
In spite of these disadvantages, block codes are

sometimes useful on channels where only hard decisions

S are available and the data is presented in blocked format.

Another ccmmon application of Ylock codes is 0

for error detect.on. That is, instead o' crying to correct

3 errors the decoder performs the simpler task of just da-.

tecting if one or more errors have occurred in the block.

AL 1 -61-
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Such erroi detection systems have been used in appli-

catinis where a feedback channel is available to tell

the transmitter to retransmit the blocks where errors

have been detected.

The selection and estimated performance of

blo.,k codes are usually based on the block distance

properties of the code. The distance (sometimes called

Ramming distance) between two code words or sequences

with an equal number of symkols is defined as the number

of positicnu in which the symbols differ. The minimum

"distance of the code is defined as the minimum distance

between any two different encoder output words (or se-

quences or blocks). Also the performance and distarnce

properties of linear block codes are independent of the • 0
encoder input sequence, so for analysis purpose without

loss of generality the all zero sequence is usually as-

sumed to have been transmitted.

For a fixed code rate and block length the goal

is to choose a code with a large minimum distance. Then

the dacoeer can more reliably detect or correct channel

errors in the received block. A block code with a minimum

distance of dmi is capable of correcting any combination

of (dmin-l)/2 or fewer channel errors or detecting

any combination of d-l or fewer channel errors, where

.'A
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[x]I is the integer part of x. However, while the .mini- 4

"mum distance of the code may' be sufficient to gua.;vntee

the detection or correction of a certain number of errors,

the particular decoding algorithm may not be capable

of such operation.

The performance of block codes with hard receiver

quantization is usually determined by assuming that the

~ ' decoder can correct any combinination of E, E < (d-l)/2

'. or fewer channel errors and no combination of more than

E errors. Such a decoder is called a *bounded distance

decoder 3 . Then on a binary symmetric channel the bloch

*':" error probability, Pblock' is the probability that more

than E errors occured. Since there are ()different
ways of having i errors in n symbols, the block error

probability is

P M (n p i i(1..P) ni (4.2)
block E )

i-E+l

WN' The bit error probability dcpends on the particular

code and decoder. Usually block codes are selected to

have given block weight properties and codes are called

equivalent if they hawe the same set of block distances

"(or weigkbts, i.e., number of nonzero encoded block

".V symbols when the all zero input is assumed). However,

the bit error probabilities of these so-called equivalent

"-.• codes may vary. To determine this error probability,

-.?
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assume that the decoder can correct up to E channel errors.

These errors are then corrected in the received sequence.

The final step is to determine the encoder input block

corresponding to the corrected received sequence. This

step can be simplified by using a systematic code. Such

a code has the property that all the k information symbols

are sent unchanged along with n-k parity symbols. In

general, every output could depend on every input. It

"has been shown (5] that for every linear block code there

exists a linear systematic block code with the same distance

. properties. Therefore, systematic block codes are commonly

used. We wiLl assume systematic block codes in the

remainder of this report.

P
The bit error probability for this type of decoder I 0

, with a systematic code can be estimated by assuming that

the error rate of the corrected received sequence is equal

.b to the error rate of the encoder input information symbol

sequence. Then the bit error probability can be expressed

as

°'b n

"" b n (1-BeP )l'l' (4.3)

"i-E+l

S where a is the average number of symbol errors remaining

in the corrected received sequence given that the channel

L
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caused i symbol errors. Of course, 6 0 for i < E.

When i > E, Si can be bounded by noting that when more

than E errors occur a decoder which can correct at most

E errors would at best correct E of the errors and at

worst add E errors. So

Si -E< Ai ! i + E ,i > E (4.4)

The decoder performance can be slightly improved by

passing the received sequence unchanged when the corrected

*. received sequence is not a valid code word. In either case

for the majority of codes for which B0 has not been

determined, B£ - i is a good approximation.

When a block code is used for error detection only,

the decoder fails to detect an error in the block only when

the error sequence transforms the encoded sequence into

another valid encoded sequence. By the linearity of the

code this implies that the error sequence is equal to a

valid code word. This probability of an undetected error

can be expressed as

n
p- Ai Pi(1-P)n-i (4.5)

i-E÷1

where Ai is the number of encoded words of weight i (i.e., D

the number of encoded words with i nonzero symbols). Some-

times it is also of inteý.ast to determine the probability

II
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of r•ot detecting an error under any channel conditions. On I.
a binary symmetric channel the worst channel is when the

channel error probability is 1/2. Substituting p- 1/2 in

(4.5) and using the fact that there are 2k- 1 codewords of

weight E+l to n and one codeword of weight zero gives 9

P / (2 k _ 1 )2-n < 2 - (n-k)

This bound is sometimes used as an upper bound on the

undetected error probability for any channel error rate.

While this is valid for Hamming codes, it is not true in

general (131. Nevertheless, the P 2 -(n-k) bound gives

a first approximation to tiis worst case undetected error

probability.

When the information and encoded symbols of a

block code are from some nonbinary alphabet and the pro- •

bability of any channel input symbol being changed to any

other symbol is the same for any nonidentical input-output

symbol combination and p is taken to be the channel symbol

error probability, then (4.2) and (4.5) still apply and the

bit error probability of (4.3) becomes the symbol error

probability.
I

The block code error probability formulas presented

thus far have been for hard receiver quantization. Decoders

capable of using soft quantized input, are possible, but

they are more difficult to implement. The simplest type

I
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of soft quantization is one in which three, rather than two,

quantization intervals are used. This additional interval

could be used to erase unreliable symbols. Forney [161

shows how the hard quantization block decoding technique-s

can ba extended to take advantage of such a recei,rer quiui-

tization scheme. This type oZ decoding is sometimes called

erasure-and-errors decoding. S

If the decoder doe•s erasure-and-errors dacoding,

the code minimum distance is d, and the maximum numver of

errors that the decoder can correct is E, then a decoded s

error occurs when the number of errors t and the number of

erasures s satisfy 2t+s > d or t > E+l. So if the pro-

bability of an erasure is p x and the probability of a

channel error is PE' then the block e..-or probability is

[161

P 2 nt (St t •x (-e"PE'Pz -
PblockE Z, PE

t-0 s-d-2t

where

n• ltt(n-s-t)!

In ths following subsections the structure and

performance of several specific block codes are examined.
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4.1. Hamming_ Codes

Hamming codes are the simplest nontrival class

of codes with n - 2*-i (m - 2,3, ... ) encoder output

symbols for each block of .k - n-m input symbols. These

codes have a minimum distance of 3 and thus are capable

of correcting all single errors or detecting all com-

binations of 2 or feaer errors. Although Hamming codes

are not very powerful they belong to a very limited

class of block codes called perfect cod-s. An e-error-

correcting, e - t(d-l)/21], code is called a perfect code

if every n-symbol sequence is at a distance of at mst

e from some n-symbol encoder output sequence.

Hawing codes are usually described in terms of

an n x (n-k) dimensional parity check matzix 151, H, 0 0

with the property that for each n-dimensional encoded

output word y

I

X a - o_ (4.7)

For Hamming codes the n rows of the parity check matrix

are equal to all positive nonzero m-bit sequences. Given

ai parity check matrix, a generator matrix can be determined
(5].

If the binary additive noise sequence is represonted

by an n-dimensional vector z, then the received signal is

.x G_ z (4.8)
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where 0 denotes bit-by-bit modulo-2 addition. -,

Decoding is accomplished by multiplying this binary

vector by the parity chack matrix to form an n-k - m di- 0

mensional syndrome vector S. Using (4.7) we have

S_ G H 0 z H_ H (4.9)

Because of the form of l, this m-bit syndrome specifies

the locations of Any single error which can then be cor-

rected. If the syndrome is zero, the decoder assumes

no errors occurred. P

The weight distribution of Hamming codes have been

determined. Expressed as a polynomial this distribution

for the binary case is (141

'40

A(zl) ~ A~ 3Z
i-0

-~ +i~ no 1+ I 4.10)

where Ai is the number of code words of weight i. This

weight enumerator polynomial makes the computation of the

undetected error probability possible. 0

From (4.2), (4.3) and (4.i) the block, bit, and

undetected error probabilities are
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nI

P 4 (n) i
block j _i) n-i

"- p - p(1-p)n-l (4.12)

and

-D

1-(ip)n [A(-P1 ) 1 (4.13)

where (4.12) uses the 8 ± 1 approximation for i > 1. 0

Figures 4.1, 4.2, and 4.3 show thess probabilities

versus the channel error rate for a - 3, 4, azd 5. The

channel error rates can be determined from Sec-.:ion 3.1

for the binary zemoryless channel case. With interleaving

the bit error probability versus lb/No results for fading

channels or for differentially coherent or nonbinary modu-
I

lation can also be used. Just £nterprst the bit error

probability versus Fb/No results of Section 3.1 as the chan-

nel error rate versus the channel symbol energy-to-noise 'ratio,

7
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Figure 4.1 Block error probability versus
channel error probability for
block length n-2m-1 Hamminga
codes with m-3, 4, and 5.
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Figure 4.3 Probability of an undetected error versus
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E/ 3 . To obtain the coded system information bit energy-

to-noise ratio use

~~- rE I Es (4.14)"'

0 0

For Hamming codes (4.14) becomer'

Eb 2m- Es (4.15)

0 223 -l-m N0

With these changes the probabilities of Figures 4.1, 4.2, and

4.3 can be plotted versus Eb/No. The bit error probability

result for an additive white Gaussian noise channel is

given in Figure 4.4. The coding gain can be determined

as the reduction in the Eb/No required to achieve a spec-

ified error probability with the coded system as compared

to the uncoded system.

Table 4.1 summarizes che Eb/NO ratios required to

achieve a 10-5 bit error probability with Hamming coding

for several modulation/demodulation tachniques with ad-

ditive white Gaussian noise (AWGN) and Rayleigh fading.

4.2 Extended Golay Code P

One of the more useful block codes is the binary

n - 24, k - 12, i.e, (24,12) extended Golay code formed

by adding an overall parity bit to the perfect (23,12)

Golay code. This parity bit increases the minimum distance

-74-
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of the code from 7 to 8 and produces a rate 1/2 code

"which is easier to work with than the rate 12/23 of the

(23,12) code.

k Extended Golay codes are considerably more

powcrful than the Hamming codes of the previous section.

The price for the improved performance is a more complex

decoder and a lower zate, and hence a larger bandwidth

expansion. Decoding algorithm which make use of soft

decision demodulator outputs have also been proposed

for these codes (11,12). When such soft decision decoding

* algorithms are used the performance of the extended Golay

code is similar to that of a simple Viterbi-decoded con-

p volutional coding system of constraint length about 5 (see

Section 5.1.10). While it is difficult to compare the im-

plementation complexity of two different coding systems, it

can be concluded that when only hard decision demodulator

outputs are available, extended Golay coding systems are

of the same approximate complexity as similar performance

convolutional coding systems. However, when soft decisions

are available convolutional coding is superior.

The hard-decision block and bit error probability

expressions of Section 4.0 assumed that the decoder was

capable of correcting any combination of E or fewer errors

and no combination of more than E errors. With perfect

codes, such as the Hamming codes, with E - [(d-l)/'21]
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A

this is always the case. However, with an extended lolay I
1 code the decoder could be designed to correct some but

"not all 4-error patterns. Usually, in order to simplify
the decoder implementation the decoder is imp:emented 

0
in such a way that these 4-error patterns cannert be cor-
rocted. Since for extended Golay codes only 19% of týe
4-error patterns car. be corrected we will assume the

decoder cannot correct these 4-error patterns. Then the
block, bit, and undetected error probabilities for hard-
"decision decoding can be determined from (4.2), (4.3) and

S(4.5). The results are 
0

24

P E a4 (24). pi/_PZ4 -i
24J "P~lP (4.17)

"" Pu " ( - 4 p
and

u) (4.18)

where the B0 coefficients and the coefficients of the
weight enumerator polynomial, A, are given in Table 4.2.

"Figure 4.5 gives tJese probabilities versus the
channel error rate. As in the previous section the channel
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A- Number of Code Words of

0 0

1-3 0 0

4 0 4S

50

6 120/19

7 0 8

8 759 8

9 0 2637/323

10 0 3256/323

11 0 3656/323 1s

.1

12 2576 12

13 0 4096/323

14 0 4496/323

15 0 5115/323

i5 759 16

17 a 16

18 0 336/19

19 0 16

20 0 20 .

21-23 0 24

24 1 24

Table 4.2 Weight enumerator and B. coefficients
for the extended Golay 6ode (12).
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Figure 4.5 Block, bit, and undeCected error prob-
abilities versus channel error rate
with extended Golay coding.
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error rate can be determined from the results of Section

3.1. Using these results the hard-decision coding perfor-

mance for coherently demodulated BPSK or QPSK on an AWGN

channel are given in Figure 4.6. Figu:e 4.6 also shows the

bit error probability obtained with a soft-decision decoding

algorithm proposed in (111. The soft-decision algorithm j
is seen to recover most of the 2 dB hard quantization loss

* determined in Section 3.2.2.

Table 4.3 gives the Eb/NO ratios required to obtain

a 10- bit error rate with the extended Golay coding and N
several alfferent .odulation/demodulation techniques for

AWGN and Rayleigh fading channels.

4.3 BCH Codes

Bose-Chaudhuri-Hocquenghem (BCH) codes are a powerful

class of codes which havy well defined decoding algorithms.

A large selection of block lengths, code rates, alphabet

sizes, and code minimum distances are possible. The most

common codes use a binary alphabet, an encoder output

block length of n - 2m-1 (m a positive integer), and, of

course, the largest possible code minimum distance.

A detailed description of BCH codes requires ela- N
borate algebraic developments and is beyond the scope of

this report. The main point is that while a description

of these codes and their decodirg algoritnms is somewhat

-81-1
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complicated, the actual decoder can be readily imple- .:' "

mented. Here we will just outline the decoding procedure

and indicate the techniques for determining their error S

rate perfo.-mance.

Reference 14 gives tables of the BCH code mini-

mum distance, dcs, for a wide varity of encoder input and

output block lengths. The actual minimum distance of the

code may be slightly larger than the BCH minimum distance,

but the algebraic decoding algorithms treat the code as

if it had the BCH minimum distance.

The block, bit, and undetected error probabilities

can be determined from (4.2), (4.3), and (4.5) with

E . [(d.CH 1i 2j (4.19)

For most codes the weight enumerator po!ynomial coefficients

of (4.5) are not known. So small channel error rate ap- S

proximations to it are usually obtained using only the

first one or two terms of the suunation. The weight

enumerator coefficients for these first few terms can I
usually be determined or estimated.

The decoding of these codes involves basically

four steps (5].
I

(1) Calculate dBCH-1 syndromes. These syndromes

are computed using the same general approach

as described in Section 4.1.
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(2) Find the coefficients for an e-degree error

locator polynomial where e, < E~ is

the number of channel errors. The technique

for doing this is referred to as the Berlekamp

Algorithm. This polynomial has the significance

that its roots give the locations of the channel

errors in the received block of symbols.

(3) Find the roots, and thus the locations of the

errors, of the error locator polynomial. The

usual technLque for doing this is referred

to as the Chien Search (5].

It involves checking each of the a code symbol

locations to see if that location corresponds • 0
to a root of the error locator polynomial. -.

(4) Find the values of the errors. With binary

codes the errors can be corrected by comple- -

menting the present symbol. With nonbinary

symbols a simple formula is available [5].

This algebraic decoding procedure uses hard quantized

demodulator outputs and thus gives up some potential coding

gain on channels where soft decisions are available. While

extension to soft decision is possible, with the same tech-

niques used for Golay codes, the complexity increases sub- '

stantially.
.8..
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Figure 4.7 illustrates the bit error probability

versus channel bit error rate performances that can be

achieved trith block length n1 127 codes capable of cor-

recting 5, 10, and 15 channel errors. The results were

obtained using (4.3) with - i. The largest possible

number of information bits per block for the 5, 10, and

15 error-correcting BCH codes of Figure 4.7 are k - 92,

64, and 36, respectively (411.

One special type of BCH code worthy of further

note is the class of Reed-Solomon codes discussed in the

next section.

4.4. Reed-Solomon Codes

Reed-Solomon Codes are a particularly interesting

and useful class of nonbinary BCH codes which achieve the

largest pos:sible codet minimum distance for any linear code

with the same encoder input and output block lengths. For

nonbinary codes the distance between two code words is

defined as the number of nonbinary symbols in which the

sequences differ. For Reed-Solomon codes the code minimum

distance is given by (5)

d = n+l-k (4.20)

An E-error-correcting Reed-Solomon code with an alphabet

of 2m symbols has

n - 2 m-i (4.21)

All
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and

k 2m-l-2E (4.22)

These codes are particularly good as outer codes

in concatenated coding systems (see Section 7.0). In such

a system the inner code provides some error control by

operating on soft-decision demodulator outputs and then

presents hard-decision data to the outer decoder which

"reduces the error rate to the desired level. Binary inner

code symbols are grouped to form the 2m-ary Reed-Solomon

code symbols. These codes are also sometimes used on jamming

or Wding channels with nonroherent demodulation and 2m -

orthogonal-signal modulation.

The performance of a system with this type of coding

on a memoryless channel can be specified in terms of the *
channel symbol error probability ps. If the channel is not

memoryless, it is usually best to provide some interleaving

to break up any bursts. In general, the performance of a

coding system not specificially designed for channels with

"memory is degraded by channel memory. Even channels spec-

-' ifically designed for a channel with memory will be degraded
"•-•" if the memory is different than expected. Usually since

the characteristics of channels with memory are difficult

.. to measure, interleaving is a wise approach. Only a rough

•. .idea of the channel memory length and any periodic proper-

"ties of the channel are required to build the interleaver.

3%
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0*
"Also a system with interleaving is very effective with

random errors.

A code which achieven the minimum distace of (4.20)

is called a maximum distance spearable code (151 and the

weight enumerator polynomial coefficients for these codes

"have been determined [161.. The result is
21•, k-22-1

-(2m kk-) (2m - 1)1 (limk i ..2E

"for k - 2E+1 (4.23)

of courseA -1 and A - 0 for I < k < E.

"From (4.2), (4.3) and (4.5) the block, symbol,

and undetected a@ror pxzbabilitieu are
S2k-i -.1  1 m..±

' Pblock " (z P.'p (4.24)

[•1 -E+1
P~ (2*-)i Ps P --

-2-l1 i-E+l

(4425)

and 2 M-1

P A -P 2m-l-i
iu " Ai P (4.26)

w e ( )uE+l a

j where (4.25) uses the Bi - i approximation for i ) E.
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The bit error probability can be upper bounded

"by the symbol error probability or for specific channels

expressions relating the two probabilities can be obtained.

"For 2m- orthogonal-signal modulation, the relationmhip is

.-'. [1]

P 2 P (4.27) 9.. b• 2M_ sym

Figure 4.8 shows the bit error probability versus

channel symbol error probability obtained using (4.25)

and (4.27) for a n - 31 code capable of correcting various

numbers of channel errors. Figure 4.9 shows the bit error

probability performances of the same codes versus E/No for

.'..* a system with 32-ary MFSK modulation and noncoherent demo- p
•--•.O dulation. Results on the performance of concatenated coding

systems which use a Reed-Solomon outer code are given in

Section 7.0.
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Figure 4.8 Bit error probability versus channel
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Figure 4.9 P~it error probability versus Eb/INO0 perform-

ance of several n= 31, E-er-or-correcting
Reed-Solcmon coding systems with 32-ary
MFSK modulation on an AWGN channel.
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m 5.0. Binary Convolutional Codes

p A rate b/v, constraint length K, binary convolutional

encoder is a b-input v-output linear finite-state device

which can be implemented with K binary register stages and

linear logic as shown in Fiqure 5.1. Each set of v Outputs

depends on K variables of which b are the current inputs and

K-b are state variables. So there are 2K-b different states.

N The constraint length K is defined as the total number of

binary register stages in the encoder. Sometimes the con-

straint length is also defined as the number of state vari-

n able v where

V = K-b (5.1)

Here the first constraint length K definition will be

used.

To make some of the convolutional coding concepts

easier to understand we will describe some of their pro-

perties for the rate R=1/2 constraint length K=3 encoder of

Figure 5.2 and then extend the results to the more general

encoder of Figure 5.1. Figure 5.2 indicates the outputs

for a particular binary input sequence assuming the state

(i.e., the previous two data bits into the shift register)

were zero. Modulo-2 addition (i.e., 0 * 0 = 0, 0 * 1 = 1,

m 1 * 0 = 1, 10 1 = 0) is used. with the input and output

sequences defined from right-to-left the first three input bits

0, 1, and i, generate the code outputs 00, 11, and 01, res-

pectively.

mUm -93- S

S 0 _ .. . 0 9 0 0 _b 0



•J

®
Kl-stac. • fe•!s•er 0.: I : i J

:I [ t... €

"..

K 2-stage . "-." "e lS•e. 4 i i I J
"" h L•ne •r

:•.:-• < ! '- , Ou•uts 0
• i, oc•.€ •

"°t •

:-: °

4

• , i i , i

2- - 1•"

.%' •i .
e.

m_

": D
2' Constraint Length : K - KI * K2 +...+Kb
t

.i

,%

%

,• Figure 5.1 Rate b/v, constraint length K
,• convolutional encoder.

|

-94-

S......................... .t ....... ...... ............... ._t .....



p 010001 ...

*~Modu1o-2 addi-tion

p 301O10O1001o*- IV\

C o9- Data Seouaenci
SSeq3eflce

Register-

<-ozl- ad,-it-*on

011100"-

Figure 51.2 Rate 1/2 constraint lengthl 3 convolutional
encoder.
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The outputs are shown demultip3.exed into a single code

sequence. Of course, the code sequence has twice the bit 71

rate as the data sequence. We shall pursue this example

to develop various representations of convolutional codes

and the~r properties. The techniques thus developed will

ithen be shown to generalize directly to any convolutional

code.

it is taditional and instruictive to exhibit a

convolutional code by means of a tret di&gram as shown in

Figure 5.3.

If the first input bit is a zero,tho code symbols

a--* those shown on the first upper branch, while if it is

a one, the output code symbols are those shown on the first

lower branch. Similarly, if the second input bit is a zero,

we trace the tree diagram to the nxt upper branch, while

if it is a one, we trace the diagram downward. In this manner

all thirty-two possibles outputs for the first five inputs

may be traced.

From the diagram it also becomes clear that after

the first three branches the structure becomes repetitive.

"In fact, we readily recsgnize that beyond the third branch

the code symbols on branches emanating from the two nodes

labelled an are identical, and similarly for all the

similarly labeled pairs of nodei The reason for this is

obvious from examination of the encoder. As the fiurth

input bit enters the coder at the right, the first data bitlablld a"ar ienicl, ndsiilrl fr llth

siial*aeldpiso od*Terao for _hi 0is-*
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Figure 5.3 Tree code representation for coder of
Figure 5.2.
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falis off on the left end and no longer influences the

Oustput code symbols. Consequently, the data sequences

106xy... and 000xy... generate the same code symbols4

after the third branch and, as is shown in the tree

diagram, both nodes labeltd *a" can be joined together.

This leads to redrawing the tree diagram as shown a

in Figure 5.4. This has been called a trellis diagramI

since a trellis is a tree-i~ke structure with remerging

branches. We adopt the convention here that code branches

produced by a "zero" input bit are shown as solid lines

and code bra.. nes produced by a "one" input bit are shown

dashed.

The completely repetitive structure of the trellis

diagram suggests a further reduction in the representation I0

of the code to the state diagram of Figure 5.5. The "states"

of the state diagram are labeled according to the nodes

of the trellis diagram. However, since the states correspond

merely to the last two input bits to the coder we may use

these bits to denote the nodes or states of this diagram.

We ob_.'rve finally that the 5tate diagram can be

drawn directly observing the finite-state machine properties 0

of the encoder and particularly the fact that a four-state

directed graph can be used to represent uniquely the input-

output relation of the finite-state machine. For the nodes

-98-
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Figure 5.5 State-diagram representation for coder of
Figure 5.2
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represent the previous two bits while the present bit

is indicated by the transitioa branch; for example, if

the encoder (machine) contains 011, this is represented

in the diagram by the transition from state b-01 to

state d-11 and the corresponding branch indicates the code

symbol outputs 01.

In the following sections we will use these

representations to describe the three main types of deco-

ders for convolutional codes: Viterbi, sequential and

feedback.

5.1 Viterbi Decoded Convolutional Codes

The Viterbi decoding algorithm (20] is a path

maxim,'=-likelihood decoding algorithm which takes advantage

of the remerging path structure (see Figure 5.4) of con-

volutional codes. By pati- maximum-likelihood decoding

algorithm, we mean that of all the possible paths tnrough

the trellis, a Viterbi decoder chooses the path, or one

of the pAths, most likely in the probabilistic senso to have

been transmitted. To simplify the Viterbi decoder descrip-

tion we will describe it first for a hard quantized channel

and then generalize the description to a soft-quantizeO

channel.

5.1.1 The Viterbi Decoding Algorithm for the Binary Sym-

metric Channel

On a binary symmetric channel, errors which trans-

-101-
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form a channel code symbol 0 to 1 or I to 0 are assumed

to occur independently from symbol to symb..! with prob-

ability p. If all input (message) sequences are equally

likely, the decoder which minimizes the overall path N'

error probability for any code, block or convolutional,

is one which examines the error-corrupted received sequence

yj y2 .... yj ... and chooses the data sequence corresponding

to the transmitted code sequence x1 x2 .... x j... which is

closest to the received sequence in the sense of Namming

distance; that is the transmitted sequence which differs

from the received sequence in the minimum number of symbols.

Referring first to the tree diagram, this implies

that we should choose that path in the tree whose code se-

quence differs in the minimum number of symbols from the

received sequence. However, recognizing that the transmitted

code branches remerge continually, we may equally limit our

choice to the possible paths in the trellis diagram of Figure

5.4. Examination of this diagram indicates that it is un.-

necessary to consider the entire received sequence (which

conceivably could be thousands or millions of symbols in

length) at one time in deciding upon the most likely (mini-

mum distance) transmitted sequence. In particular, immediately

after the third branch we may determine which of the two-

paths leading to node or state "a" is more likely to have

been sent. For example, if 010001 is received, it is clear

that this is at distance 2 from 000000 while it is at dis-

0 0 0 0 _ ... 0



tance 3 from lll01i and consequently we may exclude the l
V: lower path into node "a". For, no matter what the sub-

. seq.uant received symbols will be, they will affect the dCs-

tances only over subsequent branches after these two paths

".-. have remerged and consequently in exactly the same way.

The same can be said for pairs of paths merging at the other

three nodes after the third branch. We shall refer to the

minimum distance path of the two paths merging at a given

"node as the "survivvr". Thus it is necessary only to

remember which was the minimum distance path from the re-

ceived sequence (or survivor) at each node, as well as the

value of that minimum distance. This is necessary because

*:• at the next node level we must compare the two branches

merging at each node level, which were survivors at the pre-

vious level for different nodes; e.g., the comparison at

node 'a" after the fourth branch is among the survivors

of compar'tson at nodes "a" and *c* after the third branch.

For example, if the received sequence over the first four

branches is 01000111, the survivor at the third node level

for node "a" is 000000 with distance 2 and at node "c" it

is 110101, also with distance 2. In going from the third

node level to the fourth the received sequence agrees pre-

cisely with the survivor from "c" but has distance 2 from

the survivor from "a". Hence the survivor at node "a" of

the fourth level is the data sequence 1100 which produced

( -103-
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i' the code sequence 11010111 which is at (minimum) distance

2 from the received sequence.

In this way, we may proceed through the received
sequence and at each step preserve one surviving path and

its distance from the received sequence, which is more

generally called metric. The only difficulty which may

arise is the possibility that in a given comparison between

merging paths, the distances or metrics are identical. Then

we may simply flip a coin as is done for block code words

at equal distances from the received sequence. For even

if we preserved both of the equally valid contenders, further

received symools would affect both metrics in exactly the

same way and thus not further influence our choice.

This decoding algorithm was first proposed by Viterbi

""20] in the more general context of arbitrary memoryless

channels. Another description of the algorithm can be ob-

tained from the state diagram representation of Figure 5.

SuFpose we sought that path around the directed stat&o diagram,

arriving at node *a* after the kth transition, whose code

symbols are at a minimum distance from the received sequence.

But clearly this minimum distance path to node "a" at time

- ~ k can be only one of two candidates: the minimum distance path

to node *a' at time k-i and the minimum distance path to. node

*c* at time ý-1. The comparison is performed by adding the

r.'. new distance accumulated in the kth transition by each of

-104-
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these paths to their minimum distances (metrics) at time

k-i.

It appears thus th--t the state-diagram also re-

presents a system diagram for this decoder. With each

"node or state, we associate a storage register which

remembers the minimum distance path into the state after

each transition as well as a metric register which remembers

its (minimum) distance from the received sequence. Further-

more, comparisons are made at each step between the two

paths which lead into each node. Thus four comparators

must also be provided.

We deaer tho question of truncating the trellis and

thereby making a final decision on all bits beyond L branches

prior to the given branch until we have some additional pro-

porties of convolutional codes.

5.1.2 Distance Properties of Convolutional Codes

We continue to pursue the example of Fig•ure 5.2

for the sake of clarity; in the next section, we shall

Seasily generalize res-alts. As with linear block codes

there is no loss in generality in computing the distance

from the all zeros code word to all the other code words,

for this set of distances is the same as the set of distances

from any specific codeword to all the others.

Si For this purpose, we umay again use either the trellis

diagram or the state diagram. We first of all redraw the

71
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4 tr el elis diagram in Figure 5.4 labelling the branches ac-

cording to their distances from the all zeros path. Now

consider all the paths that merge with the all zeros path V

for the first time at some arbitrary node "j". From the

diagram of Figure 5.6 it can be seen that of these paths,

there will be just one path at distance 5 from the all

"zeros path and this diverged from it three branches back.

Similarly there are two at distance 6 from it; one which

diverged 4 branches back and the other which diverged 5

branches back, and so forth. We note also that the input

bits Zor the distance 5 path are 00...01000 and thus differ

in only one input bit from the all zero path. The min.imum

"distance, sometimes called the minimum *free* distance,

"among all paths is thus seen to be 5. This imptles that

any pair of channel errors can be corrected, for two errors

will cause the- received sequernce to be at distance 2 from the

"transmitted (correct) sequence but it will be at least at

distance 3 from any other possible code sequence. In this

matter the distances of all paths from the all zeros (or any

arbitrary) path can be detarmined from the trellis diagra=.

5.1.3 Generalization of Viterbi Decoding to Arbitrary

Rate Convolutional Codes

The generalization of these techniques to arbitrary

.• .rate 1/v convolutional codes is immediate. That is, an

encoder with a K stage shift register and linear logic will

produce a trellis or state diagram with 2 K- nodes or states

S""1-106-
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and each branch will contain v code symbols. The rate

of this code is then

•" 1 bits,�v code symbol

The example pursued in the previous sections had rate

"R-1/2. The primary characteristic of rate 1/v codes is that

I only two branches exit from and enter each node.

-If rates other than I/v are desired, we must make b

greater than 1 where b is the number of bits shifted Lnto the

encoder at one time. An example for R-4 and rate R-2/3 is Shown

in Fiqure 5.7. its state diagram is shown in Figure 5.8.

It difiers from the binary-tree (b-1) representation

I. only in that each node is coign-cted to four other nodes,

and for general Ob, it will be connected r-c 2b nodes. Stilt

all the preceding techniques including the trellis and state

* diagram analysis are still applicable. it must be noted,

however, that the minimum distance decoder must make com-

parisons among all the paths entering each node at each

Slevel of the trellis and select one survivor out of 2

An interesting class of, in general, nonbLnary-tree

1 (b#l) convolutional codes is the unit-memory codes of Lee
(21]. The memory of a convolutional code is defined as the

number of b-bit input groups from the last input group to

the oldest group that contributes to the present v outputs.
S
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With unit-memory codes the v outputs only depend on the

present and the previous sets of b inputs. Any memory M,

rate b/v convolutional code can be converted to this form

j by grouping symbols to form a rate (b)/(Mv) code. The

only problem with this form is that the Viterbi decoder

would have to make 2Mb-way rather than 2b-way comparisons.

However, for a fixed number of binary states and rate, the

I additional linear logic possibilities of the unit-memory

codes compared to non-unit-memory codes makes it possible to

slightly improve the distance properties of such a code.

1 5.1.4 Systematic and Nonsystematic Convolutional Codes

The term systematic convolutional code refers to

I a code on each of whose branches the uncoded information

bits are included in the encoder output bits generated

I by that branch. Figure 5.9 shows an R-1/2 systematic coder

I for K-3.

For linear block codes, any nonsystematic code

can be transformed into a systematic code with the same

block distance properties. This is not the case for con-

volutional codes. The reason for this is that the per-

performance of a code on any channel depends i-y upon

Sthe relative distance between codewords and paticvlarly

on the e.nimu- free distance. Making the code systematic>

in gene.al, reduces the maximum possible free distance for

a given constraint length and rate. For example, the

maximum minimum free distance systematic code for K-3I
1 -111-
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is that of Figure 5.9 and this has d-4, while the ronsys-

tematic K-3 code of Figure 5.2 has minimum free distance

d-5. Table 5.1 shows the maximum,minimum free distance for

R-1/2 systematic and nonsystematic codes for K-2 through

5.

For large constraint lengths the results are

even more widely separated.

5.1.5 Catastrophic Error Propagation

A catastrophic error is defined as the event that a

finite numbier of channel symbol errors causes an infinite

number of data bit errors to be decoded. Massey and Sain
[22] have derived a necessary and sufficient condition for

convolutional codes to display catastrophic e*or propagaticn.

For rate 1/v codes with the bit register tap multipliers

(0 or 1) represented as polynomials in a delay operator D,

this condition reduces to the statement that a convolutional

code can display catastrophic error propagation if, and only

if, the bit register tap multiplier polynomials (sometimes

called subgenerator polynomials) have a common factor with

modulo-2 arithmetic.

In terms of the state diagram for any rate code,

catastrophic errors caa occur if, and only if, any closed

loop path in the diagram has a zero weight. To illustrate

this, consider the example of Figure 5.10. Assuming that

the all zeros is the correct path, the incorrect path

-113-
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Maximum, Minimum Free Distance 1

K Systematic Nonsystematic

2 3 3

3 4 5

4 4 6

5 5 7

.able 5.1. Comparison of systematic and 5 0
nonsystematic R-1/2 code distances.
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a b d d d c a has exactly 6 ones, no matter how many

times we go around the self.dioop d.• Thus, for a binary

"symmetric channel, for exampl*:",. four channel errors may

"cause us to choose this incorrect path or consequently make

an arbitrarily large number of bit errors (equal to two
*-.• plus the number of times the self loop is traversed).

The necessary and sufficient condition of Massey and

Sain can also be used to show that the codA of Figure 5.10"

displays' catastrophxc error *propagation. The subgenerator

polynomials for this code are 0+1 and D2+1. Since

D2+1 - (D+l) (D+L) with modulo-2 arithmetic, both subgenerator

- polynomials have a comn factor of D+1. Therefore the code

displays catastrophic error propagation.

We observe also that for binary-tree (R-l/v) codes, 0

if each adder of the coder has an even number of connections,
"then the self loop corresponding to the -all ones (data)

state will have zero weight and consequently the code will

be catastrophic.

The only advantage of.a systematic code is that it

can never be catastropaic, since each closed loop must

A,. contain at least one branch generated by a nonzero data bit

*5.* and thus have a nonzero code symbol. Still, it can be

"-116-
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S shown that only a small fraction of nonsystematic codes

are catastrophic (231. We note further that if catastrophic *rj

- errors are ignored, nonsystematic codes with even larger

free distance than those of Table 5.1 exist.

5.1.6 Generalization of Viterbi Decoding to Soft Quan-

"Ky• tized Channels.

To describ3 how the Viterbi decoding algorithm

operates with soft quantization consider the biphase (00 or

180") modulated additive white Gaussian noise channel.

Then in addition to the sign of the demodulator output an

indication of its magnitude is provided. The first step

"is to assign metri(. values to each of the possible outpit

"intervals under the hypothesis that the 0 phase was used

and that the 1800 phase was used. A comn choice is to

use integer metric* which for a positive (0").hypothesis
assigns a 00 symbol metric value to the most negative

demodulator output interval and unity increasing metric

values to the progressively more positive demodulator inter-
vals. For 3-bit quantization the metrics would go from

0 to 7. With the negative (180*) hypothesis metrics

decreasing from 7 to 0 are used.

The metrics for any branch or path are computed by

summing the corresponding symbol metrics with the set of'

"metrics to use (positive or negative hypothesis) det.ermined

-117-
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by the polarity of the test channel symbol. Then the metrics

of remerging paths are compared and the path with the small-

est metric is eliminated.

Note that the path metrics as described he:e would 0

"-- continually increase. Hbwever, since the metrics are used

in comparison, only their relative differences are required.

So some amount can be occasionally subtracted from all of

the path metrics to keep them within a certain range.

"Computer simulations and measurements of hardware

systems for a wide variety of codes and channels have

shown that the differences in the-Eb/No ratios required to
"achieve a given error rate for various numbers of quan-

tization intervals with the integer metrics described here

(and in fact most reasonable metric choices) are almost S 0

exactly as estimateA in Section 3.2 based on operation at
,-.-.R

5.1.7 Path Mowry Truncation
"Another problem which arises in the implementation

oZ a Viterbi decoder is the length of the path history

which must be stored. In our previous discussion we

ignored this important point and therefore Lmplicitly

assumed that all past data would be stored. A final

decision can be made by forcing the coder into a known

IFI
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(all zeros) state, but this is totally impractical for

long data sequences, for it requires storage of the entire

trellis memory for each state. Suppose we truncate the

path memories after L bits (branches) have been accumulated,

by comparing all 2 metrics for a maximum and deciding

"on the bit corresponding to that path (out of 2) with the

highest metric L branches forward. If L is several times

as large as K, the additional bit errors introduced in this

way are very few. It can be shown that the additional error

"probability due to path truncation, based on the largest

"path metric L branches beyond where the decision is to be

made, is of the order of a block coding error for a code of

w block length L bits. Both theory and simulation have shown

that by making L four to five times as large as the codt

constraint length K, we can ensure that such additional

errors have only a slight affect on the overall bit error

probability.

Of course, basing the decision upon the maximum

metric L branches forward may require a costly im-plemen-

tation to compare all 2 state metrics. Other decision

techniques, based on majority polling and metric overflow

monitoring, are much less costly and yield the same or

better performance when L is increased slightly.

0-119-
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5.1.8 Code Selection

The linear logic for a convolutional code is
I0

usually selected based on the code distance properties

as discussed in Section 5.1.2. The first criterion is to

select a code (linear logic) that does not have catastro-

phic error propagation (see Section 5.1.5) and that has

t-he maximum possible free distance for the given rate and

constraint length. Then the number of paths or dyer- S

saries at the free distance or if the bit error prob-

ability in the performance measure, the total number of

information bit errors represented by the adversaries at 0

the free distance should be minimized. This selection pro-

cedure can be further refined by considering the number of

adversaries or information bit errors at the free distance

plus 1, plus 2, etc. until only one code or class of codes

remains. A listing of R-1/2 1-3 to 9 and R-1/3 K-3, to 8
codes selected based on this criterion is given in Table

5.2, (Reference 24, but note K-7, R- 1/3 correction).. 0

The R-l/v constraint length T codes in this table are

specified in terms of v K-digit sequences. The i th

digit (0 or 1) in the j th sequlance specifies the tap
multiplier in determining the contribution to the j th

branch output due to the symbol in the i th encoder re-

gister stage. The total j th output is the modulo-2 sum

of the v individual contributions. P
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I 'A

"Rate Constraint Length Code

1/2 3 111
101

S1/2 4 1111
1/21101

1/2 5 11101
10011

1/2 6 111101
101011

1/2 7 1111001
1011011

1/2 8 11111001
10100111

"91/ 9 111101011
"101110001

1/3 3 1il
111

S~1101
• 1011

1/3 11111
11011
10010101

1/3 a 111101.[ 101011
! 100111

1I/3 7 1111001
1110101

1/3 11110111
11011001

S~10010101

Table S.2 Optimum short constraint length
R-II/-2 and 1/3 convolutional codes.
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Other codes which achieve the maximum free distance

but do not necessarily have the minimum number of bit errors

as described above, are given in Reference 25 for R-1/2, 1/3

and 1/4 ccdes and in Reference 26 for R-2/3 and 3/4 codes.

5.1.9 Computer Simulation Performance Results

One of the main methods of determining the per-

formance of convolutional coding systems is by computer

simulation. Such simulations are especially helpful in

determining the error rate performance at higher error rates

where analytical bounding techniques are not very tight and

where the error probabilities can be estimated with a reason-

"able amounu of computer time.

Sometimes the all zero information input sequence

is assumed, but when only a few quantization intervals ) •

are used it is best to use random data to avoid biasing the

results due to the method of resolving metric comparison

ties. The advantage of using the all zuro sequence is that

no encoder is necessary since the encoded sequence will

still be all zeros and determining the error rate reduces
to determining the fraction of nonzero decoder outputs.

The quantized received data sequence is generated by
modifying the enccded sequence according to the channel

S~transition probability diagram (see Figure 3.6 and 3.9).

Once the quantized received sequence is generated a Viterbi

-122-
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". decoder identical to a hardware implementation can be

programed. The error rate is determined by comparing

-' tb. Viterbi decoder output with the delayed information

sequence.

Figures 5.11, 5.12, and 5.13 show the bit error

probability performance of K-7 R- 1/2, K-7 R- 1/3, and

K-9 R- 3/4 convolutional coding systems on an additive

white Gaussian noise channel with hard and 3-bit soft

quantization. These simulation results have also been

verified by measurements on hardware systems. The upper

bounds shown in these figures are discussed in the next

two sections. Figures 5.11 through 5.13 again illustrate

the advantages of soft quantization discussed in Section

3.2. The K-7 R- 1/2 code used for Figure 5.11. is the

optimum code given in Table 5.2 and the K-7 R- 1/3 •

code used for Figure 5.12, while not optimum in the dis-

tance sense used in Table 5.2, achieves a bit error prob-

ability virtually equivalent to (in fact slightly better

than) the code of [25] in the range of error probabilities

shown.

The R- 3/4 code used for Figure 5.13 is not the best

possible code. At a bit error probability of 10-5 ocher

codes superior (i.e., with smaller bit error probability)

to this code and the code of (261 can achieve about .4 dB

E./No improvement over that shown in Figure 5.13. The 0
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Figure 5.11 Bit error probability versus E /N
performance of a K=7, R- 1/2 cn-
volutional coding system with BPSK
modulation and an AWGN channel.
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reason for giving the performance of this particular code as

is th5 . the encoder/decoder for this K-9 R- 3/4 code

and the K-7 R- 1/2 code have been implemented as a switch-

selectable, option in A single unit with only a few more

standard integrated circuit chips than are required for

the single KX7 R- 1/2 encoder/decoder.

Simulation results have also been obtainer

many other codes on the additive white Gaussian noise

chaanel [271. The results show that for rate 1/2 codes Cl

each increment increase in the constraint length in the

range K-3 to 8 provides an approximate .4 to .5 dB E /%

improvement at a bit error rate of 10.

The coding gain is just the difference between

the Eb/NO required for a particular error rate without I.

coding and with coding. Figure 5.14 shows the 3-bit quan-

tization coding gain for the codes of Figure 5.11. 5.12,

and 5.13.

The hard quantization curves of Figure 5.11, 5.12,

and 5.13 can also be expressed in terms of the channel

error rate. The results are given in Figure 5.15. This

figure can be used to obtain the performance of these hard K
quantized coding systems for different memoryless modu- LV

lation and channel types using the bit error prcbabtlity.

curves of Section 3.1. Just treat the curves of Section

r.1
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3.1 as the channel symbol error probability versus the

channel symbol energy-to-noise ratio. The coded system

information bit energy-to-noise ratio is then

(5.2)
N R N

0 0

As mentioned previously, interleaving can be used to make

the channel appear to be memoryless.

For example, on an independent Rayleigh fading

channel with binary FSI a X-7, R- 1/2, L-4 diversity sys-

tem with hard quantization requires %/NO - 15.1 dB for

l ab 10"5. This is 2.8 d.B better than the optimi-m di--.

versity (L=16) uncoded system (see Figure 3.5)

for this channel and 3.8 dB better than an uncoded system

with the same 8 channel bits per information bit.

Figure 5.16 shows the 2imulated additive white Gaus-

sian noise channel performance of a Viterbi-decoded con-

volutional codin. 3ystem ideally suited for bandlimited

"situations (36]. This system consists of a K-8, R- 2/3

convolutional code with an octal-PSI modem. This system

'-- has the same bandwidth requirements for a given data rate

as an uncoded QPSK system. Such a 3ystam is sometim:

referred to as a *unity bandwidth expansion. ceding system".

Figure 5.16 also shows the effects of Viterbi decoder

path memory truncation for this system.
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D

Figure 5.17 gives the simulation bit error probability

performance of a K-7 R- 1/2 convolutional coding system

with DBPSK modulation on an additive white Gaussian noise 4

channel. As expected from the results of Section 3.2.2.3

•i. ~ the performance of this system is considerably inferior

"to the same coding system and channel with BPSK modulation.

Sometimes the message rather than thi bit error

- probability is the performance measure. A simple upper
SI

"bound on the message error probability for an M-bit message

e-? is Just N times the bit error probability. However, since

the output errors in an Viterbi-decoded convolutional coding

system tend to occur in bursts, this bound is somewhat

pessimistic. To characterize the bursts out of a Viterbi-

decoder, define an error burst to be the sequence of in-

formation symbols from the first error to the last error

"during which the path choosen by the Viterbi decoder through

"- the trellis is not merged with the correct path. During

this burst some of the symbols may be correct, but for R- 1/v

codes the correct subsequeiices in the burst are less than
K-i bits in length because longer sequence would cause

.1 the path to remerge with the correct path. Note that since

the last K-i bits of the unmerged span must be correct

for the path to remerge with the correct path, the burst
"",3.

'.-,- 32
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length is K-I luss than the length of the unmerged span.

"Tables 5.3 and 5.4 give error burst statistics for the

K-7 R- 1/2 system with 3-bit and hard quantization, res-

pectively. The event error probability (i.e., the event

of the start of an error burst) is the bit error prob-

abi-lity divided by the average number of bit errors per

bust. Then a better upper bound on the 1-bit message

error. probability is 4 times the event error probability
5.1.10 Analytical Performance TechniqugRi with No Quan-

tization

"The basic method of analytically determining the

performance of noncatastrophic Viterbi-decoded convolutional

coding systems is with the generating function approach of

Viterbi [281. With this technique the first step is to

determine a generating function T(D,N,L) which d'escribes

all the different paths which could be compared with the

correct path assuming the all zeros message is used. In the 0

infinite expansion o! T(D,N,L) the power of D in the terms

represents the number of channel symbols in which the path

differs from the correct (all zero) path, the power of N

represents the number of information bit errors in the path,

-134-
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/

Uw

Average Error Burst Average Number of

"Eb/No Length in Bits Errors per Burst

1.0 17.3 12.1

2.0 10.9 5.9

3.0 7.6 4.3

4.0 6.2 3.8

Table 5,3 Error burst statistics for K-7 R- 1/2
system with 3-bit quantization.
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E"/No Average Error Burst Average Number of

b o Length in Bits Errors per Burst

4.0 13.3 7.8

5.0 9.9 5.5

6.0 7.9 4.5

Table 5.4 Error burst statistics for a --7 R- 1/2
sy. .em with hard quantiation.
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and the power of L reprosents the length in branches (b-bit) 0

information segments for R- b/v) of the path'-' Let ..

N-i i-drL-1

VdT(D,NeL) - b Di (3.4) K
10- i-df

and

P i Probability of an error in comparing two

paths that differ in i positions (channel

symbols) (5.5)'

where df is the free distance of the code. The. summations

in (5.3) and (5.4) could also have been taken from 0 to *

since ai and bi ara, by the definition of free distance,.

zero for i < d . Then for a rate R- b/v code and an

1-bit message,tht message and bit error probabilities are

bounded by [281

Pmessage < a Pi (5.6)
imdf

and

P b bi Pi(S7

i-df
f

D
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To illustrate this technique and to provide some

rational for (5.6) and (5.7) consider te K-3, R- 1/2 codea

of Figure 5.2. The first step is to determine the generating

function. To do this refer to the modified state diagram

of Figure 5.18. This modified state diagram was obtained

from the state diagram of Figure 5.5 with the all zero

state split into an initial and final state, the all zero

state self loop omitted, and the branches marked with the

branch generating functions. The path generating functions

of all the paths that can be compared with the correct

(zero) path are represented in this diagram by all the

possible paths from the initial all zero state to the final

all zero state. These paths can be expressed as the trans-

fer function of the diagram. For this example the result

is

D5N 3

T(D,N,L - NL3
l"-1NLDNLZ (5.8)

D 5 NL 3+06 2(45) +07N31 L542L 6 +L 7) +..

Equation 5.8 shows that among the adversaries to the

correct (all zero) path there is one path of weight 5, and

it is three branches long and results in one bit error.

There are two paths of weight 6, one of length 4 and one of

length 5, and both result in two bit errors, etc. The

message error probability can then be bounded by the prob-

baility of an error in any set of ccmparisons times the

-13I
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Figure 5.18 Modified state diagram for the K-3,
R-1/2 convolutional code of Figure 5.2.
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number of comparisons per message. For a R- b/v code q
compax-ions are made every b information bits (i.e.,

every branch). So for ai M-bit message there are M/b

comparisons. The union bound of (5.6) follows.

To determine the bit error probability the number

of information bit errors in an incorrect path must be ac-

countra fnr. In the example, an error in comparisons with

either one of the t.istance 6 pzthq produces 2 bit errors

while an error in the comparison with the distance 5 pcL

only produces one error. The number of bit errors per in-

correct path can be accounted for by taking the derivative

of (5.8) with respect to N. The bound of (5.7) results.

Again the 1/b factor accounts for the fact that comparisons

are only made every branch (i.e., every b information bits). * *
For the example, the transfer function derivative of (5.4)

is

dT(D,N, L) D-
dN N_ " '2DI 2(5.9)

The Pi probabilities depend on the particular modu-

lation, channel, and quantization. For BPSK modulation, P

additive white Gaussian noise, and no quantization

p-i-140-

(5.10)
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I
f~r this R- 1/2 example where

2L

x)p f')dy (5.11)

Using the bound

, i > df (5.12)

the message and bit error probability bounds for this

example become

P MQ 0~Pmessage 1- x (5. 13)

and

P - 2(5.14)

for Zb/No ratios large enough so that the denominator of

(5.13) is positive.

This example illustrates the two main problems

with this technique: that of determining the generating

function and that of computing or bounding Pi. For small

error rates only the first few terms in the summations

of (5.6) and (5.7) contribute significantly to the bounds.

So a good method of using this technique is to use exact

14
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00

expresaions or tight bounds for the P of the first ,)

few terms and then to b6und th., remaining Pi by bounds

of the form

Pi CODoi (5.15)

where C0 and Da re quantities which do not depend on

i. In the ezample above we used

C0- dfR 17- (5.1d)

and

for i '_df + .1.

With bounds of the form of (5.15) the transfer

function only has to be evaluated for a particular D-D0 .

This can be accomplished with a computer using the state

equations [291.

S- A S +_ (B.18)

T (DI,,L) - C S (5.19)

where S is a column vector whose components are equal

to the branch transfer functions from the all zero-state

to each of the nonzero states, A is a matrix whose com-

-142-
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ponenta aij are :he branch transfer functions from the

j th to the i th nonzero state, B is a column vector

whose components are the branch transfer functions from
the initial zero state to the i th nonzero state, and

C is a row vector whose components are the branch transfer

Eunctions from the i th nonzero state to the final zero

state.

A computer program has bee3n written (29] to compute

(5.7) for specific D values. This no-quantization bound

is compared with simulation results in Figures 5.11, 5.12,

izd 5.13.

Figures 5.19, 5.20, 5.21, 5.22 and 5.23 give this bit

error probability bound verss Eb/No for R- 1/2, 1/3, 1/4, 2/3

and 3/4 codes, respectively, of (251, and [26] with biphase

BPSK modulation, additive white Gaussian noise and no

quantization. With 3-bit quantization an additional .25 d3

is required and with hard quantization an additional 2 dB

is required.

The somewhat poor peformance of the K-7, R-1/4

code of Figure 5.21 is due to the large leading b, coef-

ficient (i.e., bd in Equation 5.4) of that code. A

K-7, R-1/4 code with a smaller leading coefficient and

the same maximum free distance can probably be found.

5.1.11 Analytical Performance Techniques with Quantization

The bounding technique of Section 5.1.10 can als:ý be

used on quantized channels. Let D(Z) be a polynomial des-
I-

crJbing the metric differences that could occur in com-

paring an incorrect path with the correct (zero) path.
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K-3 to 9 codes Irom
Table 5.2

10 b10 code from Refe-

10 -4 ,-,dw Ir6, d f UL

10\

I.\ P4

S10

0

K-7, d f 10

I-I

K0ing, d flO 10

K=9, df=12

AX-10, df-42

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Eb/No in dB;

Figure 5.19 Bit *rr-.r probability versus EF/N
perform.once bat'nds for several 1N
R-'1/2 Vitirbi-decoded convolutional
cc;ding systems with no quantization.
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Figure 5.20 Bit error probability versus Eb/No
performance bounds for several
"R-1/3 Viterbi-decoded convolutional
'-oding systems with no quantization.
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Figure 5.21 Bit error probability versus Eb/No
performance bounds for several
R-1/4 Viterbi-decoded convolutional
coding systems with no quantization.
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Reference 26
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Figure 5.22 Bit error probability versus ,/N_
performance bounds for several
R-2/3 Viterbi-decoded convolutional
coding systems with no quantization.
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performance bounds for several R-'3/4
Vitecbi-decoded convolutional coding
systems with no quantization.
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In particular let the powers of Z represent the possible

branch metric differences between the incorrect and the

correct branch metrics and the coefficient of that term

the probability of that metric diffe:ence. With n quan-

tization Jntervals

D(Z) -PiJ zMPj Mj (5. 20)
i=O j-0

where pLj is the probability that the incorrect channel symbol

mettric is M~)and the correct channel symbol mnetric is M

If two paths differsed in only one channel symbol,

a Viterbi decoder would make an error in compariag the

two if the incorrect path metric exceed the correct path

metric. So

P1 " (15.21

where

S=m of the coefficients of the

tU(z)1t (positive power terms of OIWZ)

+ 1 (oefficient of the zero power)
term of D(Z) (5.22)

The 1/2 factor for the coefficient of the zero power term

i is to resolve ties randomly. If the paths being compared
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4 I
by the Viterbi decoder differ in i channel symbols, it

chooses the wrong path when the sum of the differences

of the incorrect and correct metrics corresponding to

the channel symbols where the paths differ is pcsitive.
For the memoryless channel we have assumed here this

probability can be expreised as

P f iZ)}4 (5.23)

where the definition of (5.22) applies here with D()

instead of D(Z). For moderate values ofti, (5.23)

can easily be computed especially for the i.teger

metric case which is used iA practice.

To bound the tail terms (i.e., the infinite •

sequence of terms remaining in (5.6) and (5.7) after the

first few terms hav-- been factored out) a Chernoff bound

of the form of (5.15) is used 1291

P I [ ra~~in \1i - C
-- O (5.24)

With hard receiver quantization and branch metrics

of 0 and 1 for the 0 hypothesis and the complement metrics

for the corresponding intervals with the 1 hypothesis,

D(Z) is simply
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A
(z) -(l-P) Z- pZ (5.25)

"" where p is the probability of a channel symbol error.

* The bound of (5.24) becomes

Ii
Pi -- (5.26)

This bound is compa.ve; with simulated results with

" 3-bit quantization in Figures 5.11 5.12, and 5.13.

These figures show that, as expected, at high error rates

this union bounding technique is not useful, but for small

error rates it is vary tight. Similar Fesults have been

observed for 6thee codes.

The first few coefficients of the bounds of (5.6) and

(5.7) for the codes of Figures 5.11, 5.12 and 5.13 are

given in Table 5.5 [24].

5.1.12 Node Synchronization and Phase Ambiguity Resolution

-ecause of the inherent continuity involved in

convolutional coding, code synchronization at the receiver

is usual17' much simpler than in the case of block codes.

For convolutional decoding techniques involving a fixed

number of computations per bit decoded, such as Viterbi

decoding, the decoder initially makes an arbitrary guess

of the encoder state to start decoding. If the guess is

incorrect, the decoder will output several bits or, at

most, tens of bits of unreliable data before assuming
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K-7, R- 1/2 K-7, R- 1/3 K-9, R- 3/4df- 10 code of dr- 14 code of d US code ofFigure 5.11 Figure 3.12 Figure 5.1J3Distance

ai bi ai . bi ai bi

5 0 0 0 0 8 42
6 0 0 0 0 201

7 0 0 0 0

8 0 0o0 0

9 0 0 0 0

10 11 36 0 0

11 0 0 0 0

12 38 211 0 0

13 0 0 0 0

14 193 1404 1 1

15 0 0 0 0

16 1331 L1633 7 20

17 0 0 0 0

18 11 53
19 0 0

20 3S 184

21 0 0

.II
Table 5.5 Upper bound coefficients of (5.6) and

(5.7).
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steady state reliable operation. Thus, the block syn-

chronization problem does not really exist. There remains j
the problem of node synchronization and, depending upon

the mod'ilation-demodulation technique used, the problem

of phase ambiguity resolution. For a rate b/v code, there

are v code symbols on each branch in the code tree. Node

synchronization is obtained when the decoder has knowledge

of which sets of v symbols in the received symbol st:eam

belonq to the same branch. In a purely serial received

stream, this is a I in v ambiguity.

In addition, modems using biphase or quadriphase

PSK with suppressed carriers derive a phase reference for

coherent demodulation from a squaring or fourth power

phase lock loop or its equivalent. This Litroduces am- -

biguities in that the squaring loop is stable .-n the

in-phase and 1800 out of phase positions, and the 4th

power lomp is, in addition, stable at + 901 from the

in-phase position.

Viterbi decoders have been implemented which

maintain node and biphase or quadriphase PSK phase syn-

chronization completely within the decoder. One way to

resolve 1800 phase ambiguities is to use a code which is

transparent to 1800 phase flips, precode the data dif-

ferentially and lise differential decoding. A transparent

code has the property that the bit-by-bit complem-ent of

-153-



0*

a codeword is also a codeword. Such a code must have an

odd number of taps on each of its encoder rnod-2 adders.

This insures that if a given data sequence genezates a

certain codeword, its complement will generate the comple-

mentary code word.

If the received data is complemented due to a 1800

phase reversal, it will still look like a codeword to the

decoder, and will likely be decoded into the complement

of the correct data sequence. Now decoding to the com-

plement of the sequence input to the encoder is no pro-

blem if the data was precoded differentially. This

means thaý. information is contained in the occurrence *
or non-occurrence of transitions in the encoded output

sequence rather than the absolute sequence itself. These

transitions occur in the same places even if the decodad

sequence is complemented.

The major fault with this scheme is that when

an isolated bit error occurs in the decoder output, it

causes two differentially deco'ed errors, since two trans-

itions are changed. At first glance, this would seem to

indicate a doubling of the output bit error rate. In fact,

I
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this doubling does not occur because errors typically oc-

cut in shdrt bursts. Two adjacent bit errors, for instance

cause only two differentially decoded bit errors. This

indicates the possibility of only a small increase in bit

exror rate with diffarential encoding-decoding.

In practice this is the case. For the K-7, R-1/2

transparent code of Figure 5.11, using differential encoding-

decoding causes an Eb/NO loss of less than .1 dB for bit

error probabilities in the range from 10- to 10-6.

Another method of resolving node or phase ambiguities

is to monitor the metrics and to change the node or phase

reference when unsatisfactory (very noisy channel) operation

is detected. This and the preceeding technique have been N 0
implemented in hardware systems.

5.1.13 Quantization Threshold Levels

With soft receiver quantization the receiver must

have an automatic gain control (AGC) circuit to maintain

the best quantization threshold levels. Throughout this

report we use a uniform quantization. With 0° or 180*

biphase modulation and N-bit quantization the quantization 0

threshold levels are at 0, + T, :t 2T, ... , # (2 l-l)T. 0-

With additive white Gaussian noise, rate 1/2 coding,

and 3-bit quantization (N-3) the best choice of T is about

.5 times the standard deviation of the random variable to

¶0
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be quantized, i.e., .5 Ni,/2. So an estimate of the

noise level is required.

Figure 5.24 shows the decradation resulting

from an error in-the measureiaent of N for the XQ-7, R- 1/2

convolutional code at a bit error 'ate oZ 2X10 5 . This

figure shows that this system is not every sensitive to

small AGC variations. For bit err-... rates of from 10"1

to 10-5 less than a .1 dB larger Eb/No ratio is required

to maintain the error rate performance due to up to + 3 dB

errors in the measurement of N0 for this code. Similar re-

sults have also been obtained for other Viterbi-decoded

convolutional coding systems.

5.1.14 Implementation Considerations

The main factors governing the implementation

complexity of a Viterbi decoder are the number of state

variables (i.e., K-b for R- b/v) and the speed. The

K-7, Ra 1/2 encoder/dacoder with internal node and phase

ambiguity synchronization has been implemented with 55 T.L

IC chips. This implementation performs the Viterbi decoder

comparisons mostly in serial and is capable of operating

at any information bit rate up to 100 Kbps. Eigher data

rates can be obtained by performing the comparisons in

parallel. Using such a parallel implementation the same

K-7, R- 1/2 encoder/decoder with synchronization capable D

of operating at information bit rates of up to 10 Mbps

has been implemented with about 250 IC chips.

-
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Figure S.24 Increa._ in Eb/N 0 .required to maintain a
2 X 10 bit error rate versu.v error in AGC
measurement of Eb/"o for a i0h7, R-1/2 code.
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In -T.neral, increasing the number of state variables

by one ap~roximately doubles the implementation complexity

of a Viterbi decoder that purforms comparisons in parallel

and increases the implementation complexity of a serial

type decoder by somewhat less than a factor of two.

At low data rates Viterbi decoders can be implemented

"with microprocessors. However, unless the microprocessor

is also required for other funct..ons, a single decoder of

the comoiex~ty of a K-7, R- 1/2 code can presently be

implemented morn economically in hardiare. One application

• .'where a microprocessor irplementation may be preferable tc

"a hardware implementation is where several slow speed, short

constraint length deccders are r"qui'ed, such as in some

multiple acceas systems.

Other factors that effect Viterbi decoder implemen-

tation complexity are:

(1) The choice of metrics

(2) The method of storing state metrics

(3) The design of the path memory and the selecticn

of the :utput bit

(4) The mathod cf sharing the state metric calcu-

-' lation

(5) The choice of log4.c family

(6) The code rate

5158
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Comparing the implementation complexity of diff.-rtnt

coding techniques is difficult. However, when soft d,ac "•.oni

are available the implementacion. complexity of a convolutional

coding system is,in general, less than that of a block coding

system that achieves the same error rate performance, The

main advantages of Viterbi-decoded convolutional coding

systems are that they can easily take advantage of soft de-

cision data and that node ana phase ambiguity resolution

can be resolved internal to the decoder.

The performance of a 3-b-.t soft decision extended

"Golay code (see Figure 4.8) is comparable to that of a K-5,

R- 1/2 convolutional coding system at bit error rates of

about 10-5. While we do not have an accurate chip count

for a soft decision Golay decoder implementation, the

complete encoder/decoder with synchronization would certainly

require more than the 55 chips of the more powerful K-7,

R- 1/2, en-oder/decoder with synchronization for data rates

up to 100 Kbps. In fact, the 100 Kbps, K-7, R- 1/2 imple-

mentation has been refined and the chip count reduced to

the point that there seems little sense in settl.ng for a

shorter constraint length, poorer perfonnance, system

just to save a few chips.

When interleavers are used with ViterbL-decoded

convolutional coding systems to break up channel noise P

•-.
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bursuts, it is usually sufficient for the interleavers to
be large enough such that any cwo symbols in the same
channel noise burzt are separated by about 5 constraint

lengths of information bits, i.e., SK v channel bits.

AA
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5.2 Sequential Decoded Convolutional Codes

"Sequential decoding is a procedure for systematically

searching through a code tree, using received information

as a guide, with the objective of eventually tracing out

"th" path representing the actually Lransmitted information

sequence.

?most sequential decoder implementations to data have

used some modification of the Pano algorithm. Briefly,

Sthe operation of the Fano algorithm is as follows. Star-

ting at the first node in the code tree, a path is traced P

through the tree by moving ahead one node 2t a time. At

each node encountered, the decoder evaluates a branch metric

for each branch stemming from that node. The branch metric

is a function of the transition probabilities between the

received symbols and the transmitted symbols along the

hypothesized branch.

KI The decoder will initally choose the branch with

the largest metric value (correspor.ding to the closest

fit to the received symbols). The metric is than added

Sto a path metric, which is the running sum of branch

metrics along the path presently being followed. Along

with the path metric, the decoder keeps track of the

running threshold T. As long as the path. metric keeps

increasing, the decoder assumes it is on the right track

*.and keeps moving forward, 4sing T to lie within a fixed

-161-
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constant, S,. below the path metric. If, on the other

hi-ad, the path metric decreases at a particular node,

such that it becomes less than T, the decoder assumes it

may have made a mistake and backs up. It will then sys-

tematically search nodes at which the path metric is

greater than T until it finds a path th.at starts increasing

again, or until it exhausts all nodes lying above T. At

this point it in forced to loer T, and search again.

Eventually it will find a path that appears to have an

increasing path metric.

Even when the data is not segmented into blocks,

the decoder will eventually penetzate sufficiently deep

into the tree, that with high probability Zhe first few •

Vbranches followed are correct, and will not be returned to

by the decoder in a backward search. At this point, the

information bits corresponding to these branches can be

considered decoded and the decoder may erase received data

pertaining to these branches.

A major problem with sequential decoding is the vari-

ability in the number of computations required per infor- 0

mation digit decoded. The number of computations is a

measure of the time required to decode, for a fixed

7-.. decoding speed in computations per second. A computation

is defined, as either looking forward or backward ore

S""branch ana blaluating and testing the metric involved.

-162-
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Upper and lower bounds on the pebbability that the number

of computations performed per digit decoded exceeds a vari-

able L have been derived (4]. For large constraint length.,,%

these bounds show that for the average number of computatiorno

per digit decoded to remain finite the code rate must be

less than the computational cutoff rate of Section 3.2,

i.e., R < RO. Actually for finite constraint lengths the

average amount of computation remains finite but large for
R > RO•

Because of the variability of the amount of computation 9

required, there is a non-zero probability that incoming

received data will fill up the decoder menoory faster than

old outgoing data can be processed., If the decoder trias to * *
search a node for which received data has passed out of buf-

fer memory, ar. overflow is said to occur. When an overflow

occurs, the decoder must have some mechanism for moving

forward to new data, reacquiring code synchronization, and

starting to dacode again. There are presently two techniques

for doing this. One involves segmentinrg the data into blocks.

After each block, a fixed constraint length loig sequence

is inserted. Should the decoder buffer overflow while

decoding a given block, it can sirqply give up decoding that

block and jump to the beginning of the next block to resume

decoding. Code sync is immediately attained through know- 0

ledge of the fixed data sequence preceding a block..

I
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Another overflow recovery technique does away

with data blocking. When an overflow occurs, the decodi:

jumps ahead to new data, and guesses the coder state at that

point based upon received data.

For the blocked data case, the probability of

failure to decode an L-branch (Lb-data bits for R-b/v) •

can be expreseed as (4)

P D - U (1uTc) (5.27)

where k is a constant usually in the range 1 l k d 10,c

m is the computational rate in branches/second, and

a is the so-called Pareto exponent determined by the re-

lationship. - ' *
R (5.28

Here 2o (a) is a convex function of a which is determined

by the channel transition probabilities (5]. This func-

tion has the properties that Eo(0) - 0 and Zo(1) - Ro.

Figures S.25 and 5.26 show this Pareto exponent versus E/NO

for several code rates for 3-bit (Ts .58) soft quantized

and hard quantized additive white Gaussian noise channels, P

respectively.

The undetected error probability with sequential

decoding (as opposed to the failure to decode discussed P

above) cin be made as small as desired by increasing the

code constraint length. Long constraint lengths are prac-

tical for sequ•ntlal decoding becauue decoder complexity
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is only a weak function of the constraint length, unlike

Viterbi decoding. This undetected error probability

can be determined using the simulation and analysis tech-

niques discussed in the previous section for Viterbi-

decoded convolutional codes.

5.2.1 Code Selection

Choosing codes is not as critical for sequential

as it is for Viterbi decoding. Decoder complexity is not

a strong function of code constraint length; so, the unde-

tected error performance of a code can be improved by

incriasing K rather than trying to optimize a code for

a given value of A. Still there are several reasons for

having as 7ood a code as possible. D

(1) The constant, k, in (5.27) is somewhat sensitive

to the code. Good code distance properties will

result in smaller k values.

(2) The encoder replicas in the decoder do grow

linearly with K, resultIng in some additional

cost and complexity.

(3) The guess and restart overflow technique per-

formanct, degrades with increasing constraint

length.

Good long constraint length codes for sequential de-

coding are given in [30,31).

5.2.2 Performance Results

To illustrate the performance which can be achieved
1
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with � sequandtial-decoded convolutional coding system,

this section gives some performance curves for the

comercially available LINKABIT LS4816 decoder with

BPSK modulation and an additive white Gaussian noise

channel. The LS4816 is a high speed, flexible decoder

based on the Fano sequential decoding algorithm. The

unit operates.v'wth rate 1/2 systematic or non-systertatic

convolutional codes of constraint length selectable between

8 and 48. Hard-or soft-(3 bit) quantized date formatted

into frames of from 512 to 4096 code symbols can be pro-

cessed.

Figures 5.27 and 5S. 28 show the measured probability of

a failure to decode a block (or frame) versus the maximim

tioi allowed for decoding for soft and hard quantization,

respectively. The curves in these figures are Zor the

constraint length 24 ncn-systomatic code and a frame length

of 1000 information bits. The coded frame format consists

of 2000 code symbols plus a terminating sequence o2 one

constraint length of branches (48 code symbols for K=24)

The Eb/NO values given here include the .1 dB loss encountered

in adding this terminating sequence. For large maximum

allowed decoding times (Tc) the curves in these figures are

approximately straight lines with a slope equal in magnitude

to the Pareto exponent (a) of (5.27). The information bit

rate is the number of information bits per fraxW (1000 here)

divided by Tc-

"When the decoder failz to decode a frame and no means
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I •
of telling the transmitter to retransmit that frame is

available, it may be desirable to have some estimate of the

data in that frame. For the systematic code choice the p I
LS 4816 decoder usos the-raw undecoded received data bits

as the decoder output. For the non-sl.stematic code choice

a *quick-lookO code (321 is used. The *quick-look"

codes have the property that the information sequence can

be easily derived from the undecoded received data bits with

an error rata which is increased by a minimum amount

(^bout a factor of 2) over the channel error rate. P

FiguLe 5.29 shows the measured bit error probability

due to deco=ding failures versus E/N for the LS 4816 decoder

wit' the non-systematic, K-24, R- 1/2, 1000-JIformat.ion-bit

frame cnoice on an Piditive white Gaussian noise channel

at a 20 Kbps information bit rate (i.e., Tc- 50 m sec). Bit

errors result from the alternate *quick-look" decoding of

data when a frame fails to decode in 50 m see. Since the

probability of &n undetected error is small, the curves

of Figure 5.29 also give the total bit error rate versus

Eb/NO performance.

One poasible application of sequential decoded con-

volutional. codes is in a packet satellite communication sys--

teem. Packet covuunication involves the transmission of

blocks or packets of bits (usually on the order of 1000 bits)

over a network withl automatic store-anc 'orward and repeat

request (AR0) -apabilities. Table 5.6 shows the pt formance
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5

PROBABILITY OF NOT DECODING PACKET
flFORMATION BIT ENERGY- WITH N-PACKET CODING DELAY AND BtJF-

TO-NOISE RATIO FER SIZE

Eb/NOPROBABILITY OF NOT
N DECODING

32d;0.5 7.4 X 103
1. 2.9 X 1-

2 1

3 4.5 X 1-

3.7 dB 0.5 7.4 X 10-4'

12.4 X 10-4
S7.4 

X1 
5

3 ~ 2.5 X 10 5

4.2 dB; 0.5 6.2 X 10 7

1 1.8 /o 10-. 5,

2 5.0 x 10"3

3 1.4 X 10-'

Table 5.6 Meastxed performance of LS 4816 con-
volutional encoder-sequential decoder with
data rate - 50 ps, packet size - 1000-"
bits, constraint and tail length - 48, .

code rate 1/2, and undetected error rate

< 10

14

0

dat rte 5 K0s pake sie,00 0.',0



of the LS 4816 decoder for this purpose at a 50 Kbps

data rate.

5.2.3 Implementation and Application Considerations

Sequential decoded convolutional coding systems

"are characterized by the fact that their performance is

dependent on the data rate and that the error probability..,

vesusb/No curves tend to be very steep. For this

"reason such a system is especially useful in slow to mo-

"derate speed applications where very small error rates

are required. Another characteristic of sequential decoded.

systems which influences their application is that the errors

tend to occur in long bursts and an indication of the oc-

curence of these bursts can be provided if desired. This R

characteristic makes this type of system good for applica-

"tions where the data is blocked and retransmission of un-

reliable blocks is possible. The large buffers, and thus .

large decoding delay, required by sequential decoders must

also be considered. While Viterbi decoders only have a

n ,.decoding delay in information bits of about five constraint

lengths, sequential decoders will usually have a delay of

over 200 bits.

Unlike a Viterbi decoder the implementation complexity

,6 of a sequential decoder is only weakly dependent on the

constraint length. However, since a sequential decoder must

store many branches of received data, the amount of storage

required for these branches is a significant factor in the

: p
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implementation of such a system. Since low data rate

codes and soft quantization require more storage per

branch these choices increase the implementation complexity S

of a sequential decoding system.

The LS4816 convolutional encoder-sequential decoder

whose performance was given in the previous section is im-

plemented with about 75 standard TTL integrated circuits

exclussiva of the buffer. For a buffer size of N K bits

the buffer requires in addition approximately 5N 2K-bit

RAMOS.

* .@

!
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5.3 Feedback Decoded Convolutional Codes

The Viterbi and sequential decoding methods of the

previous two sections are effective ways of achieving I
small error rates for a variety of channels especially

when soft receiver quantization is used. Feedback decoding

is a means of achieving more modest coding gains using

hard quantized received symbol data. The main advantages

of feedback decoding are that the decoder is simple to

implement and that interleaving/deinterleaving can easily

be included as part of the encoder/decoder. 5

A feedback decoder traces its way through the

code tree by examining a few, say L, branches of data at

a time. Initially the decoder examines all possible * *
L-branch-long paths from the initial node end selects as

the first branch of decoded data the information symbols

corresponding to the first branch on the path most nearly

the same as the bard quantized receive- sequence. Then the

decoder shifts one branch, examines all the L-branch-long

paths from the terminal node cf the first decoded branch,

and makes a decision on the second branch of data. This

procedure is continued shifting one branch at a time until

the received sequence is decoded.

This decoding procedure is called *feedbac-k decoding"

because decoding decisions at any given time affect decisions

in the future. No feedback channel is used with this type

-176-
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of decoding.

In practice a more algebraic approach to the

description given above is usally implemented. An outline 0

of this approach for a systematic rate 1/2 convolutional

code is a follows (331:

(1) Use the hard quantized received symbols to

compute a syndrome sequence. This syndrome

sequence is similar to the syndrome for block

codes except that here it is an arbitrarily

long sequence [331.

(2) After each new syndrome bit is computed (i.e.,

one syndrome bit per branch in this case), a

fixed n'jmber of syndrome bits (say L) are used *
to decide if the oldest symbol in the received

L-bit information symbol register is correct or

not. This decision is performed with a table

look-up (i.e., a read only memory integrated

circuit chip). If an error is determined, the

oldest stored information symbol is corrected

(complemented) and provided as the decoder output. 9

Also when an error is determined its effect on

the stored syndrome bits is removed by comple-

menting the appropriate syndrome symbols.
p

Ftedback decoding can conceptually be applied to any

convolutional code of any rate, systematic or nonsy.tematic.

The main limitation on the implementation complexity is the
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dacisicn device. For efficient long constraint length

codes, it is desirable to make the look-ahead (L) large.

However, as L gets large the complexity of the decision

device (i.e., the size of the read only memory) soon

becomes unreasonable. Threshold decoding (34] is a form

of feedback decoding which uses a particularly simple

decision mechanism that is practical for large L. Un-

fortunately, the performance of these codes is quite

poor for large constraint lengths and L.

5.3.1 Code Selection

Since the implementation complexity of a feedback

decoder is strongly dependent on L, convolutional codes

for feedback decoding are choosen to have the best possible S 0
distance properties over L branches for a fixed value of

L. Bussgang [351 has tabulated rate 1/2 convolutional

codes with the largest possible minimum Hamming distance

between L-branch paths for L up to 16.

5.3.2 Performance Results

7igure 5.30 shows the binary symmetric channel

decoder output bit error rate versus channel error rate 5

performance of four convolutional encoder-feedback

decoders marketed by LINKABIT Corporation.

Notice that the performance curves of Figure 5.30.

are very near linear on the log-log plot for the range shown.

For example, the curve of the R- 1/2 distance 7 code can be

closely approximately by
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Pb '2000 p4  (5.29)

Figure 5.31 gives the 375-bit message error prob-

ability versus channel error rate performarce of the LINKABIT

R- 1/2 distance 7 code. As expected, since the output

errors tend to occur in bursts, Figure 5. 31 3hows that

the M-bit message error probability bound of MPb is •

somewhat pessimistic.

5.3.3 Implementation and Application Considerations

One advantage of feedback-decoded convolutional

coding is that interleaving/deinterleaving can be easily

implemented within the encoder/decoder. N-level inter-

leaving can be implemented by inserting N-bit shift

registers between every pair of register stages in the 5

encoder and in the syndrome generator of the decoder.

Then the decoder actually decodes N data streams inde-

pendently. This internal interleaving feature makes

feedback decoding attractive for burst error channels such

as the HP, troposcatter, and some telephone channels.

As with any rate b/v convolutional code, there

exists at the decoder a v-way ambiguity for serial input

sequences (i.e., node synchronization is required). This

ambiguity can be resolved by observing the rate at which

the decoder makes corrections and changing the synchro- S

nization position if too many errors seem to be occurring.

The encoder/decoders with node synchronization and

256-way internal interleaving/deinterleaving for the codes

S
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of Figure 5.30 have all been implemented with less than 40

TTL integrated circuit chips.
p
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6.0 Nonbinary Modulation Convolutional Codes

While Section 5 was concerned with binary con-

volutional codes, nonbinary convolutional codes can easily

be defined by replacing the binary symbols and modulo-2

arithmetic by symbols and arithmetic over a nonbinary

finite field. Such nonbinary coding systems are especially

useful with nonbinary modulation systems in which the mod-

ulation symbols are matched to the code symbols. For

example, a system with 2-ary orthogonal signal modulation

is ideally suited to a coding system with 2k-ary symbols.

One class of nonbinary convolutional codes which

has proved effective in obtaining small error rates on

channels with fading and non-Gaussian interference is that

of Viterbi-decoded dual-k convolutional codes. These codes

operate with 2k-ary symbols and are for channels with 2 k-ary

orthogonal signal modulation (e.g., MFSK).

Figure 6.1 shows the encoder for a R - 1/2, dual-3

code which has been implemented. The encoder shifts in one

k-bit (kM3 here) information symbol at a time and for each

k-bit input, two 2 -ary output symbols are generated. Each

2 k-ary output is used to select an orthogonal modulator

signal. A rate i/v encoder would, in general, use different

linear combinations of the present and past information sym-

bols to produce v, 2 k-ary outputs. Fiqure 6.2 shows a general

2 k-element finite field representation of a rate l/v, dual-k

convolutional encoder.

0 0 •• .wq. 0
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* The demodulator consists of 2filters matched to

the0 orthogonal signals. So for each channel symbol,

quantized demodulator outputs are generated.

The Viterbi decoder for these codes must make 2

2 -way comparisons every v channel symbols. That is, after

each new branch of data is received the decoder compares
k*Uthe metrics of the 2paths entering each node (state)

k
and eliminates all but the best. These 2 -way comparisons

are more difficult to implement than the binary comparisons

of rate 1/v codes, but for moderate values of kc reasonable

* implementations are possible. For example, a R - 1/2, dual-3

encoder/decoder with node synchronization and capable of
Aoperating at i'formation bit rates of up to 100 Kbps has

* 0

been implemented by LINKABIT Corporation with about SO stand-

ard TTL integrated circuit chips. These codes have also

"I,"." ..

been implemented in software with a microprocessor.

The error rate performance of these codes can be

.. 2-,

determined using the simulation or analysis techniques des-

NIcribd in Sections S.1.9 and 5.1.10. The basic simulation

79 procedure is a straightforward modification of the binary

codes are usually used on channels with fading and non-Gaus-

S sian interference which are harder to model than the additi.ve

It ahite Gaussian noise channel commonly used with binary codes.

wh The transfer function error rate analysis technique

0o -1r6-
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for this class of codes is simplified by the fact that

the code transfer function for the codes in this class

with the best distance properties has been determined in

~ a closed form [37, 381. For a R - 1/v dual-k code the

"result is

T (INL T ( 2 1 ) D2 2Dv 61

In this nonbinary case the distance between two code

words is the numker of symbols in which the code words

I are different and the powers of D and N refer to the number

"of channel and infQrmation symbol, rather than bit, errors.

As in Section 5.1.10 let

N i.i-2v

r. - r
e.( kv)DV 2k V D

( 1  (6.2)

B Then the bit error probability can be upper bounded by

2k-1"' ~Pb a. Pi 6

21 i-2v

where P. is the probability of an error in comparint two

k-i ksequences which differ in i symbols. The 2 /(2 -1)

factor converts the k-bit symbol error probability to bit

-137-
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T~o ilutat h application of this bounding

technique for dual-k codes, consider a R - 1/2, dual-3

code with 8-ary orthogonal signal modulation (MFSX) and

noncoherent (square-law) demodulation on an independent

Rayleigh fading channel with no quant~ization. Then from

I Section 3.2.3

.- +J (1 '( .

oi -

where

p1-2u k (6) o

Using (6.4) for tho first two terms of (6.3) and the

bound [38]

P 1_< p4 (1-p)] + > 6 (6.6)
I52I1-2p1 L '

for higher order terms (i !. 6) yields the results of

Figure 6.3. Figure 6.3 also shows the uncoded bound of

(3.11) for L-2 and 4 way diversity.

Comparing the curves in Figure 6.3 it can be seen

that the coded system is much better than the uncoded L-2

system with the same number of channel symbols per information
st

S~symbol and about 3 dB better than the uncoded L=4 system

"* __ 0-
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Figure 6.3 Performance of a R-i/2, dual-3 convolutional
coding system with noncoherently demodulated
8-ary MFSK on an independent Rayleigh fading
channel with no quantization.
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1

which has twice as many channel symbols per information

Symbol.

i 
I

* I
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7.0 Concatenated Codes I
Concatenated coding is a technique which uses

two levels of coding as shown in Figure 7.1. Typically,

the inner code, i.e., the code that interfaces with

the channel, corrects most of the channel errors and

then a higher rate (lower redmudancy) outsr code reduces

the error rate to the desired level. The purpose of

concatenated coding is either to obtain a small error

rate with an overall encoder/decoder implementation com-

plexi-y which is less than that which would be required

by a single coding operation or to improve the error rate

performance of an existing coding system. Figure 7.1

also shows interleaving between the coding operations. * *
This is usually required to breakup the error bursts out

of the inner coding operation.

7.1 Viterbi-Decoded Convolutional Inner Code and Reed-

Solo---t 01t.- M"

One of the most successful concatenated coding

systems is a system with a Viterbi-decoded conrolutional

inner code and a Reed-Solomon outer code with interleaving

(24,39,401. The Viterbi decoder in such a system takes

maximum advantage of soft quantized demodulator outputs to

improve the channel seen by the outer code by as much as
p

possible. The outer code ~sees a channel, sometimes called

I

-121-
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0

"- a superchannel, consisting of the inner encoder, the

true -.hannel, and the inner decoder which presents hard

quantized bursty data with a bit error rate typically

around 10" 2 . While an outer convolutional code could be

used, the bursty nature of the errors, the fact that only

hard quantized data is available, and the desirability of

a high rate code make a Reed-Solomon code, whose symbols

are formed from m-bit segments of the binary stream, a good

choice for the outer code. Since the performance of a Reed-

Solomon code only depends on the number of symbol errors in

the block, such a code is undisturbed by burst errors within

a it-bit symbol. But the concatenated system performance is

severely degraded by highly correlated errors among several

successive symbols. Hence the need for symbol (not bit)

interleaving between coding operations.

The performance of this concatenated coding system

can be determined by measuring the symbol error probability

out of the Viterbi decoder by simulation and then, assuming

the interleaving makes the symbol errors independent of each

other, using binomial type expressions to determine the

overall error probability. For example, given the symbol

error probability, p , versus inner code Eb/No for the inner

coding system alone, the overall symbol error probability

versus total Eb/No can be determined from (4.3) with

-193-
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otal - nner _) (7.1)Router

where Router is the outer code rate. The bit error prob-

ability can be upper bounded by the symbol error prob-

ability (i.e., by assuming that any symbol in error has

all the bits in that symbol in error). If in addition, the 0

Bi of (4.3) are upper bounded by (4.4), then the total bit

error probability for the concatencated coding system ,ith

an m-bit per symbol Reed-Solomon outer code is bounded by
I

i 2m1lk

2b < k-+ " ) (7.2)
kZE+l 2m--

where E is the number of symbol errors the Reed-Solomon

decoder is capable of correcting and 2m-1 is the Reed-Solomon

symbol block length. The total code rate is the rate of the

inner code times the (2 -l-2E)/(2 -1) rate of the outer Reed-

Solomon code.

Figure 7.2 shows the bit errqr probability bound of

(7.2) versus I/No performance of this concatenated coding

system with a K-7, R-1/2 inner code and an m-8 bit/symbol

Reed-Solomon (R-S) outer code with various error correcting

capabilities. Additive white Gaussian noise and BPSK or QPSK

modulation are assumed. These curves show that for any error

rate there is an optimum number of errors that the R-S de-

coder should be designed to correct. This results

--I CIA
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in dB
Figure 7.2 Concatenated code bit error probability perform~ance

with a K=7, R-1/2 convolutional inner code and an
8-bit/sYmbol R-S outer code.

S ____ *eof ore•.tn



from the fact that the more powerful (larger error cor-

recting capability) R-S codss correct more errors but the

'/Router' E./NO loss of (7.1) for these more powerful,

lower rate, codes is larger. So at some point the l/Router,

b/No loss of (7.1) offsets the Eb/NO gain obtained by the

increased error correcting capability of the code and 9

further reductions in the outer code rate increase the

total Eb/No required for a given error rate.

Figure 7.3 summarizes the performance at this con-

catenated system for a K-7, R=1/2 inner code and various

R-S outer codes. The optimum number of correctable errors

for the m-bit per symbol codas of Figure 7.3 at a bit error

rate of 10- is about 2 for Lw7,8 and 9 and E-6 for m=6. S 0
The R-S block error probability, where a block

consists of m(2m-l-2E) information bits, can be determined

from (4.24). Figure 7.4 shows this block error probability

versus E/Nc performance for the X-7, R-1/2 inner code and

8 bit/symbol outer codes with various error correcting ca-

pabilities.

References 24,39, and 40 give the performance of this 5

concatenated coding system for other constraint length and

rate convolutional inner codes. A quick estimate of the

performance of this system with a different convolutional

code can be obtained by adjusting the Eb/No required with

the K-7, R-1/2 code by the difference in the Eb/No ratios

required by the new code and the K-7, R-1/2 codes to achieve

1
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A

some small inner code, nonconcaienated, error rntd,,r -2• . ~say Pb " 10"2

"The implementation and synchronization of tnis

concatenated coding system are discussed in (S9ý401. Re-

"ference 40 also investigates the sensitivity of this system

to nonideal receiver operating conditions such as pha e

and AGC errors and shows that it is not overly sensitive

"to these nonideal operating conditions. In [393 it is

estimated that a system with an mwS, E-l( R-S encoder/decoder

an inter!eae-er/4einterleaver suitable for operation with a

K-7, Ral/2 couvoltitional inner .-ode, And a block synchronizer

.! •all capable of operating at up to 100 Kbps could be imple-

ment*d with a total of about 220 integrated circuit chips.

-" 7.2 Viterbi-Decoded Convolutional Inner Code and Feedback-

Decoded Convolutional Outer Code

Another concatenated coding system which achieves a

more modest coding gain is a system with a Viterbi-decoded

convolutional inner code and a feedback-decoded convolutional

outer code with internal interleaving/deinterleaving. The

nice feature of this system is that the interleaving and de-

coding are simple to implemer.
Figure 7.5 shows the bit error probability performance

of such a system with a K-7, R-1/3 inner code and the K-8,

V.h R-3/4, distance 5 code of Figure 5.30 as the outer code.

" This figure also shows the performance of the K-7, R-1/3 code

-199-
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by itself. This concatenated coding system is seen to

improve the bit error rate versus Eb/NX performance of

the inner code when the bit error rate is less than about
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Appendix A. Glossary of Coding Terminoloy

1. Addition Modulo-2

Addition defined for a field with two elements
(0 and 1) where 0+0 -0, 0+1 - 1, 1+0 - 1, and
1+1 - 0. Somnetimzs denoted by 0.

2. AWGN

Additive White Gaussian Noise. Noise with a Gaussian
.U Zplitude-proba~ility distribution and a constant

. power spectral density for all frequency ranges
.- which is added to the received signal. In practice

as long as the noise power spectral density is
constant over the passband of the system, it is
considered to be white noise. If the power spectral p
density of the noise is not constant, the noise is
called colored noise.

3. AGC

Automatic Gain Control.

4. Alphabet

The set of all possible distinct symbols that a
source can generate.

Automatic Repeat Request. A feature which allows
for requesting the retransmission of blocks, segments,
or packets of data in which errors ray have been de-
tected.

6. Bandwidth Expansion

The ratio of the bandwidth required by a system
"relative to the bandwidth of some reference system.
With coding the bandwidth expansion relative to an
"uncoded system with the same modulation is the inverse
of the code rate.

7. Binary CodeV..

A code in which the code symbols are from an alphabat-
with two symbols.

k7.
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"8. Bit

A binary digit and a unit of information in
,. ,Cinformation theory.
9.• BSC

Binary Symetric Channel. A binary input and binary
.output channel in-which the probability of an error
is constant independent of the transmitted symbol.

10. BPSK

Binary Phase-Shift Keying. A type of modulation in
gnich t;wo phaies (usually 00 and 1800) are used to
convey information.

11. QPSK

Quaternary Phase-Shift Keying. A type of modulation
1 In which four phases are used to convey information.

.. 12. PSK

.1 Phase-Shift Keying. A modulation technique that uses
phase shifts-of a carrier to convey information.

a13. FSK

Frequency-Shift Keying. A modulation technique that
uses frequency shifts of a carrier to convey infor-

P imaticn.

14. Block Code

A code in which blockA of information or data
symbols uniquely specify blocks of encoded symbols.
An (n,k) block code refers to a code with n code
symbols for every k information symbols.

15. Branch

In a convolutional code, the set of coded symbols
generated for a set of information or data symbols.
For a rate R- b/v code a branch has v symbols. A
branch also describes the transitions for each set
of data symbols in the tree, trellis, and state
diagram representations of a convolutional code.

16. Bursts of Errors

In general terms, a sequence of data symbols with
a higher than average error rate.

-203-
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* 17. Channel

The media over which data are transmitted. With
coding the channel can be viewed as a device that
"transforms the encoded symbols at the transmitting
"station into the decoder inputs at the receiving
station.

18. Encoder

A device that maps information or data symbols
into coded symbols.

19. Decoder

A device that attempts to recover the transmitting
station information or data symbols from noisy

* receiving station data.

20. Channel Capacity (C)

The maximum rate at which information can be trans-
mitted over a channel (in bits per binary channel
symbol) with an arbitrarily small probability of
error. •

21. Computational Cutoff Rate (RM)

With arbitrarily large constraint length sequential-
decoded convolutional codes, the maximum rate for
which the average amount of computation required to
decode one bit of data is finite. Also a good limit
on the rate of practical coding systems.

22. Code Rate (R)

The ratio of the number of information symbols to

the number of encoded symbols.

23. Codeword

An encoded sequence or block of symbols.

24. Codeword Weight

The number of nonzero symbols in a codeword.

25. Coherent Detection

A demodulation technique that requires knowledge of
the phase and frequency of the received signal.
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26. Con-traint Length (K)

With convolutional codes, the total number of
binary register stages in the encoder.

27. Convolutional Code 0

A coding technique in which the encoded sequence
is the convolution of the information sequence
and the code impulse response.

28. Free Dist&nce (df) •

r For a convolutional code, the minimum number of
encoded symbols in which any two arbitrarily
long encoded sequences differ.

29. Code Distance (d)

For block codes, the minimum number of symbols
in which any two codewords differ.

30. Diversity.

A technique in which two or more independent
realizations of a signal are obtained. It is used 0
to combat fading and non-Gaussian interference.

31. Eb

Received energy per information bit.

32. S

Ratio of information bit energy to white noise
single-sided (positive frequence only) power
spectral density.

33. FEC

Forward Error Correcting. A type of coding where
Zhe decoder obtains an estimate of the information
sequence without the aid of a feedback channel.

34. Generator Matrix (G)

A matrix mapping of information symbols into encoded 0
symbols in which the codewords are linear combinations
of the rows of the matrix.

35. Golay Code

A (23,12) block code with a code distance of 7.
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36. Extended Golay Code

A (24,12) block code with a code distance of 8.

37. lazmming Codes

- m -

A class of single-error-correcting (2 m-1 , 2m-l-m)
block codes.

38. Interleaving

The technique ol scrambling or changing the time
sequence of codeword symbols. 5

39. Metric.

A goodness measure used in decoding algorit.hms.

40. Modem

Modulator and Demodulator
41. Node.

For convoiutional codes, the junction of branches
in the tree or trellis representations. * •

42. Moncoherent Demodulation

A type of demodulation in which knowledge of the
carrier phase is not required.

43. Orthogonal Signals 0

Two signals s (t) and si(t) of duration T are
defined as or&ogonal i T~S i•jTS(t) sl(t) dt -0.

44. Soft Quantization
I

A technique of quantizing a demodulator output, defined
over a continuum, such that in addition to a decision
as to which symbol was transmitted some quality infor-
mation concerning the confidence we have in that de-
cision is also provided.

45. Systematic Code 0
A code in which the information symbols appear in the
codeword or encoded sequence in unaltered form.

46. Transparent Code
A code for which the complement of any codeword is

-
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also a codeword. ;*

47. Tree Diagram

A representation of convolutional codes, useful
with sequential or feedback decoding.

48. Trellis Diagram

A representatior of convolutional codes useful
with Viterbi decoding.

49. Viterbi Decoding

A maximum-likelihood decoding tecrhniaue used for short
constraint length convolutional codes.

50. Reed-Solomon CR-S) Codes

A class of (2m-l, 2m-l-2) E-erroi-correcting
block codes with symbolz from a 2 -ary alphabet.

51. DCI

Bose, _Chaudhuri, and Hodquengham Codes. A class
3f blo~k codes with well-defined algebraic decoding | *
algorithms.

52. Concatenated Coding

A technique of coding which uses more than one level
of coding. For eramle, with two levels of coding
the inner encoder and decoder operate over the true
channel while the outer encoder and decoder operate
over a channel consisting of the inner encoder, the
true channel and the inner decoder.

53. Catastrophic Error Propagation.

With cenvolutional codes, the oracerty of some codes
that with an arbitrarily lonc c.2!ýca sequence a finite
number of channel errors can cause an arbitxaril,
large number of decoded bit errors. This con-
dition can be avoided by proper code selection.

54. Secuential Decoding

A decoding technique for convolutional codes which
involves searching through the code tree represen-
tation. The search or computation time is a random
variable depending on the noise statistics.
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55. Feedback Decoding

A decoding technique for convolutional codes in
which decoding decisions at any given time affect
decisions in the future. No feedback channel
is used.

56. Differentially Coherent

A type of demodulation ia which the reference signal
for demodulation is derived from the receiver input
over the previous input symbol.

57. DBPSK or DPSK

Differentially Coherent Binary Phase-Shift Keying.

sq. DQPS

Differentially Coherent uatoernary Phase-Shift
leying.

* .
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APPENDIX B. GLOSSARY OF SYMBOLS

C Channel capacity

d Code distance

df Free distance

Eb/NO Information bit energy-to-noise ratio

E INO Channel symbol energy-to-noise ratio

G Generator matrix of a linear block code

K Convolutional code constraint length

L Order of diversity or look-ahead distance of

a feedback-decoded convolutional decoder.

R Code rate •

RO Computational cutoff rate

0 Modulo-2 addition
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