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1Introduction

The goal of this project was the development of formal methods for the specifi-
cation and verification of concurrent programs to help avoid software errors in
concurrent systems. This involved research in three areas:

" Specification.

" Verification.

" Semantics.

We feel that previous work provides an adequate formal foundation for verifica-
tion [5,6,71, so we have concentrated on specification and semantics. Our work
in these two areas is summarized in the following two sections.

2 Specification

A formal specification should describe precisely what it means for an implemen-
tation to be correct. This requires a precise definition of what it means for a
program to satisfy a specification. Without such a definition, a formal specifi-
cation is at best incomplete, and may be little better than an informal one for
producing correct software.

The precise connection between a specification and its implementation is
subtle. The specification is generally given in terms of large, high-level opera-
tions, which the program implements as a series of lower-level operations. Most
research on specification has ignored the question of what it means for a series
of low-level operations to implement a single high-level one. As a result, the
specifications written with most formalisms are incomplete. The specification
of a FIFO queue is one of the standard toy examples. However, in very few of
the specifications can one decide if the specification is supposed to be satisfied
by writing a program or building a piece of hardware. It can be argued that this
is a lower-level question that these specification are not attempting to address.
However, it is disturbing that the question of how this could be specified is not
addressed. A specification that does not specify whether an implementation 
should consist of a program or a piece of hardware cannot help the designer
avoid the more subtle interface problems that plague real systems.

The reason for the incompleteness is that a specification of a module in a
concurrent system must have two components: an internal part that describes
the invisible, internal behavior, and an interface part that specifies precisely
how the module interacts with its environment. While the internal part is ,
independent of the implementation details, the interface specification must be
given in terms of implementation-level concepts. Most specification methods
consider only the internal specification and ignore the interface specification. It

sholdcosit f aprgrm r piceofhadwre anothep he esgnr "
avidte oe ubl itrfcepobes ha lau ra sytm..

Th- esnfrteicmltns sta pcfcto famdl na-

conuren sste msthae to omonnts a itena patta-ecrbsi 
.

the nviibl, iteral bhavorandan nteracepar tht secifes recsel --

how he odue iterctswithitsenvronent Whle te iteral artis

independent ofthe.implementaion.details,.he.inter.a...secification.mut.be..-.-.'..



-- . U 'rrrx...- .

is the interface specification that determines if a queue is implemented in code
or silicon.

Ignoring the interface specification can lead to misleading specifications-
ones that are either meaningless or incapable of being implemented. This is
indicated by the surprising result that no current method seems capable of
providing a formal specification of first-come-first-served priority. Thus, for
example, the informal requirement in the Ada programming language that re-
quests for interprocess communication obey such priority seems incapable of
being made formal.

A detailed discussion of the problem of the formal connection between a spec-
ification and its implementation is given in 131, which is attached as Appendix A .
of this report. This work also explains our assertion that first-come-first-served
priority cannot be adequately specified by current methods.

3 Semantics

Just as a specification method should define what it means for a program to
implement a specification, we believe that a formal semantics should define what
it means for the "machine-language" program generated by a compiler to be a
correct implementation of a program. Thus, we regard a program formally to
be a specification of a lower-level, compiled version. Our work on semantics
has thus been driven by the need to establish a formal connection between
the programming language's operations and the lower-level machine-language
operations with which they are implemented.

We have developed a general method for specifying the semantics of concur-
rent programming languages. Our approach of viewing a program as a spec-
ification of its compiled version led to a semantics in which the meaning of a
program is a temporal logic specification similar to the ones described in 121. 5
Our method can be used to define a formal semantics for all concurrent program-
ming constructs that we have been able to think of. The method is described
in il, which is included as Appendix B of this report.

Since the semantics of a language consists not of a single specification but -

of an algorithm for generating a specification for every program, several logical
concepts not present in [21 had to be introduced. One of these concepts was a S
new way of reasoning about aliasing.

An important goal of our method was compoitionality---obtaining the mean-
ing of a program from the meaning of its components. Combining components
of a program leads to implicit aliasing; for example, when two processes are
"hooked up" to a unidirectional communication channel, there is an implicit
aliasing between the sender's output buffer and the receiver's input buffer. Such 5
aliasing is of a more general nature than the identification of program variables
usually understood as aliasing. To handle it, we (in collaboration with Fred
Schneider) developed a method of reasoning about invariant relations-ordinary
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aliasing being an invariant re1~tion of equality between the values of two vari-
ables. This method provides an elegant new method for handling aliasing and
typing relations in ordinary sequential programs that is described in 14), which
is included as Appendix C of this report.
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What It Means for a Concurrent Program to Satisfy a Specification:

Why No One Has Specified Priority

Leslie Lamport

Computer Science Laboratory
SRI International*

Abstract are not enough; one must also define the correspondence
between the two semantics.

The formal correspondence between an implementation As a trivial example, consider a program to compute the S
and its specification is examined. It is shown that exist- square of an integer. The specification might be given in
ing specifications that claim to describe priority are either terms of mathematical integers, while the program's seman-
vacuous or else too restrictive to be implemented in some tics might be defined in terms of bit strings. To determine
reasonable situations. This is illustrated with a precisely if the program meets its specification, we must define the
formulated problem of specifying a first-come-first-served correspondence between the implementation-level semantic
mutual exclusios. algorithm, which it is claimed cannot be concept of bit string and the specification-level concept of
solved by existing methods. integer. Although this is easy to do, it is important that it

be done; a program that expects input values to be in two's-
complement representation may produce an incorrect an-
swer when given an input value encoded in sign-magnitude

pri.or'i.ty (prT.6r'.tT), n.: pl. -TIES(-tTz). 3. Order of representation.

preference based on urgency, importance, or merit. [I] For sequential programs, specified in terms of input and
output values, the correspondence between implementation
and specification concepts is, in principle, simple: it is just

I Introduction a mapping between two domains of values. However, this
is not the case for concurrent programs, where the specifi- . -

Specification and Implementation cation involves the program's behavior. The granularity of
operations can be very different at the two levels; an atomic

A formal specification method should reduce the question operation at the specification level may correspond to a
of whether a program satisfies its specification to a pre- large number of atomic program operations. The formal
cisely formulated mathematical problem. This reduction is correspondence between the two semantic levels requires
what distinguishes a formal method from an informal one. careful examination. In this paper, I consider the implica-
Most researchers developing specification formalisms have tions of this correspondence for the particular problem of
concentrated upon the formal semantics of the specifica- specifying priority.
tion language, apparently believing that such a semantics,
together with a formal semantics for the programming lan- P
guage, provides the necessary reduction. However, formal Priority
semantics for the specification and programming languages In concurrent systems, priority denotes the order of pref-

erence in which processes obtain service. It may be based
'This work was supported in part by the National Science Foundation
under grant number MCS-8104459, and the Army Research Omce upon the nature of the service being requested, the im-
under grant number DAAG29-83-K-0119. portance of the requesting process, or the order in which

requests are issued. All popular methods for specifying •
concurrent systems allow one to write simple specifications
that appear to describe priority. However, I will show that.

depending upon how they are interpreted, these specifica-
tions are either too restrictive to be implementable in all - "
situations or else they are vacuous, being satisfied by any
program.

I will concentrate upon a particular example of prior-
ity: first-come-first-served (FCFS). There is nothing special ."."-
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about FCFS-the same problem arises in specifying other have been studied for years [3], and there is a general agree-
types of priority; FCFS just provides a simple, well-studied ment that certain algorithms are FCFS and others are not.
case. It is also an important case; the Ada language re- It is less clear what it means for a Tony program to be
quires an FCFS queuing discipline in the implementation FCFS, but it is easy to write Tony programs that are obvi-
of the rendezvous mechanism, and problems in formally ously not FCFS-for example, an algorithm with a central S
specifying this requirement may be of some interest to the scheduling process that does not always grant requests in
Ada community. the order it receives them.

My claim that current methods cannot specify priority The challenge is to specify program statements entryp
is a controversial one, and provokes arguments when pre- and exit, for p = I,..., 17, such that if the statement
sented to computer scientists. I have therefore formulated
a challenge to those who feel that they know how to specify entryp"; critical section; exitp (1)
priority: the specification of a precisely-defined FCFS mu-
tual exclusion algorithm. I believe that anyone claiming to is embedded in the sequential process ir, then
have a general method for specifying concurrent programs
should be able to write the required specification. By a
.general" method, I mean one that permits implementa- Cobegin ir, . rt coend

tions in a reasonably broad class of programming languages.
Given some particular programming language having an is an FCFS mutual exclusion algorithm in which ir, requests 0
FCFS synchronization primitive, it is easy to specify FCFS entry to its critical section by initiating the execution of (1).

priority for programs written in that language by requiring (There may also be declarations of the shared variables in

the implementation to use the FCFS primitive. To prevent a Blaise program and extra processes in a Tony program.)

this kind of "cheating", the challenge specifies two simple The specification, and the specification method, must have

programming languages that must be handled. the following properties.

The challenge is presented first, before any explanation 0
of what makes specifying priority difficult. [ urge the reader 1. For any Blaise or Tony implementations of the entry,
to study it and decide if it is reasonable before reading the and exit, statements, the method defines a mathemat-
rest of the paper. There are no tricks in the challenge; ical formula C and a formal system L such that the
the problem that arises in trying to specify priority is a implementation satisfies the specification if and only if
fundamental one. For a cry of "foul" to be taken seriously, C is a valid formula of L.
it should be issued on the basis of the challenge alone, not
on the ensuing discussion. [This is a precise statement of the requirement that a 0

formal method reduce the question of whether a partic-
ular program satisfies the specification to a well-defined

2 The Challenge mathematical problem.]

Let Blaise be a simple concurrent programming language -
with an atomic assignment statement, concatenation ( ; ), 2. (a) Any Blaise implementation that is generally re-

if and while statements with atomic tests, a cobegin, and garded to be an FCFS mutual exclusion algorithm S
integer and boolean shared variables, but with no explicit must satisfy the specification.

synchronization or communication commands. The cobe- (b) A Tony simulation of such a Blaise program must
gin is assumed to be fair, meaning that a nonterminated also satisfy the specification.
process will eventually execute its next atomic operation,
but no bound is assumed on the relative execution speeds of 3. Any Blaise or Tony program that is generally regarded
the different processes. All c'assical shared-variable multi- n
process algorithms can easily be written as Blaise programs. not satisfy the specification.

Let the language Tony be the same as Blaise except with

no shared variables, instead using CSP-style communica-
tion primitives. Moreover, assume an appropriate fairness I will attempt to answer all serious responses to this chal-
re.uirement on communication so that a Blaise program lenge. To meet the challenge, you must provide the spec-
can be simulated in the obvious way by a Tony program ification and indicate how one constructs the C and L of 0
in which shared variables are replaced by extra processes.' condition I for any Blaise or Tony program. I will then
Reading the value of a Blaise shared variable is simulated attempt to present one or more programs that violate con-
by a "?" operation in the Tony program, and writing its dition 2 o" 3, in which case you must show that these condi-
value is simulated by a "!". tions are not violated. The construction of C and L and the

Mutual exclusion algorithms that can be written in Blaise refutation of my counterexamples need not be given in full

'Without some fairness constraint on communication, a Tony program mathematical detail, but they must be rigorous enough to
cannot guarantee the fairness condition for a Blaise process that ac- convince a competent computer scientist that a completely
cesses a shared variable, formal exposition is, in principle, possib!e.

A-2 0



3 What's So Hard About The cannot be satisfied by any implementation. There is no
way for two entry statements to determine in which order

Challenge? they were entered. Hence, no algorithm can ensure that
the critical section operations occur in the order required

Why Current Methods Don't Work by condition (*).

Let us now consider how one might specify the FCFS It might seem unfair not to make enteri part of the the

condition of the challenge. Intuitively, FCFS means that entry, statement, and one might define enteri to be the

requests to enter the critical section are serviced in the first atomic action of entry,. However, this does not solve

order in which they are issued. To specify this more pre- the problem because an atomic action of a Blaise program .-

cisely, one must recognize two kinds of operations-a re- can either read or write a shared variable, but cannot do

qutst operation and a critical-section operation. To each both. Thus, if requests is the atomic action enters, then
critical. section operation there corresponds a request oper- the request, operation cannot both announce the process's
ation, issued before it by the same process. We identify op- desire to enter its critical section and check for the presence

erations by subscripts, letting requestj and critical-section, of other processes waiting to enter their critical sections.2

denote corresponding operations. The FCFS priority con- If the two operations requestj and request1 occur too close
dition is usually expressed as follows: together, no algorithm can determine which one happened

first, even though the semantics of Blaise specifies that they
(.) For any distinct operations critical section, and occur in some definite order. Hence, a Blaise implementa- 0

critical.section, if request, precedes request, then tion still cannot satisfy condition (*).
critical section, must precede critical.sectioni. Now consider the second case. If enter, is only the first

The operations requestj and requestj need not be atomic action of the requests operation, when does the operation
atens. operat itio eq e and cedes request eemnt ea c end? This question is not answered by the specification.actions. The condition "request, precedes request 1" means Since the end of the request, operation happens while ax-

that requesto finishes before request beins. If these ea ecuting the entry, statement, which is provided by imple-
that neither precedes the other. In this c ondition ai mentor, he must be the one who decides where the request"
does not specify the order of the operations critiecalsectioni operation ends. In order to prove that his implementa-

de notaspeifyheorder Alofin the rees operations ction be tion meets condition (,), the implementor may define the
and criticalsectioni. Allowing the request operations to be end of the request, operation to be anywhere he wishes. In
nonatomic means that the order of service does not mat-
ter (is not specified) if the requests are issued "too close particular, he can define request, to include the entire ex-
together , ecution of the statement entryp. With this definition, any

All the formal specification methods I know of-including algorithm that enforces mutual exclusion of critical-section
All he orma spcifcatin mthod I nowof-icluing operations trivially satisfies condition (a.Thus, in this --

(41, (.51, (81. fill, (13[, (141, [151, (161, (171, and [18-specify
FCFS with condition (*), although the formal expression case, the condition is vacuous.
of this condition differs with the different methods. These " -

differences are irrelevant to the fundamental problem with What Does Priority Really Mean?
condition (a). What do we mean when we say that something is an 0

To verify that a Blaise program satisfies (*), one must FCFS algorithm? FCFS was defined in 110] by condi-
state what Blaise operations correspond to the operations fion (*), under the interpretation in which request is a
requestj and critical-sectioni. The critical-section, opera- nonatomic operation, with the following additional con-
tion clearly corresponds to an execution of the critical sec- straint:
tion, but what about the requests operation? Let enter.
denote the operation by which a process initiates execu- (t) The requestj operation does not involve any waiting for
tion of its entry, statement, so enter, is an execution of other processes.
the atomic action that puts the process's control at the be-
ginning of that statement-in other words, the last atomic To prove that his program is FCFS, the implementor is free
action before the process executes entry.. What is the re- to define requestj any way he likes so long as condition (1)
lation between the atomic action enter, and the operation is satisfied. For a Blaise program, in which "busy waiting"
request,? There are two possibilities: is the only kind of waiting possible, (t) is satisfied if the

execution of requestj takes a bounded number of program 0

1. enter, equals requesti, making request, an atomic ac- steps.3
tion. There is no obvious way to define absence of waiting

2. enter, is the first action of the nonatomic operation for a Tony program, which can make it difficult to decide

request,. 2Tbs appears to be a folk theorem, having been known to a number
of people but never published.

I will examine each of them in turn. 'Note that this does not mean that the execution takes a bounded S

In the first case, where request, is the atomic action length of time: Blaise does not guarantee any bound on how long a
putting the process at its entry, statement, condition (a) process may wait before executing one step.
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0

whether or not a Tony program is an FCFS algorithm. This are initiated by calling a subroutine or by raising a volt-
is the reason the challenge requires that a Tony simulation age on a wire. A program and a piece of hardware cannot
of an FCFS Blaise program be regarded as FCFS. The sim- both interact properly with the same environment. Only
ulation can be viewed as a "compiled version" of the Blaise in [111 is the interface specified, being defined as a simple
program. and it is reasonable to expect the compiled ver- subroutine-calling mechanism, but there was no explana- 0
sion of an FCFS program also to be an FCFS program. tion of why this implementation-level detail was introduced

To specify FCFS, one needs both (*) and (t), so one must into a paper on specification.
be able to define what waiting means. Moreover, the defini- A complete specification must have two parts: a spec-
tion of waiting should be independent of the programming ification of the module's interface and a specification of
language, since the specification of the requesti operation its internal behavior. The internal behavior can be spec-
should not depend upon how entry, and ezit, are imple- ified in terms of high-level abstractions like queues and
mented. For example, entryp and ezit, might call subrou- write operations. However, since the interface determines
tines that invoke special-purpose hardware to perform the whether an operation is initiated by calling a Pascal sub-
necessary synchronization, routine named put or by raising the voltage on line num-

Specifying other kinds of priority poses exactly the same ber 7 to 4.5 ± I volts, it must be specified in terms of
difficulty as specifying FCFS. Consider the classical read- implementation-level concepts like subroutine names and
ers/writers problem with writer priority [2]. In this prob- voltages. We want to make the interface specification as
lem. a process that has issued a request to write has prece- small as possible, specifying as much as we can in terms
dence over a reader that has not yet begun to read. Letting of the internal behavior, which can be described with nice,
start. rdi denote the operation of starting to read, this is ex- high-level concepts; but the interface specification is neces-
pressed as follows. sary. Most specification methods ignore the interface and

consider only the internal behavior.
(s') For any operations writei and readj, if request, pre- The implementor should have complete freedom in im-

cedes start.rdi then write, must precede read i . plementing the objects and operations that describe the S

Condition (*') has the same trouble as condition (*). If internal behavior. If the specification contains an internal

request, is the operation enteri that begins the request, then operation that puts an object on a queue, then the imple-

no Blaise program can meet this specification. On the other mentor can define that operation to be the act of storing an

hand. if the implementor is allowed to define the endpoint item in an array, of adding it to a linked list, or of setting the

of this operation, then condition (,') is vacuous because voltage levels on the wires leading to some special device.

request, can be defined to extend until the beginning of On the other hand, the interface must be completely spec-

writei,. ified at the implementation level. The need to partition a
specification into an internal part, which is implementation-
independent, and an interface specification, which depends

4 A Closer Look at Specification upon the implementation, was recognized in 161, and is em-
bedded in the Larch system [7].

An Informal Look In the challenge, the interface is described by requiring

The difficulty in specifying priority should convince the the implementation to consist of Blaise or Tony entry, and

reader that we need to examine more closely what it means exit, statements that are used in a particular way. Because

for a program to implement a specification. To write a I ignored the problem of how shared variables and extra

specification, there must be an object to be specified and processes are declared, I could pretend that the Blaise and
a well-defined interface between the object and its envi- Tony implementations had the same interface specification.

ronment. We can ask for a specification of a telephone In a more formal approach, the interface would have to be

exchange because we know both the object to be speci- specified somewhat differently for the two languages. 0

fled (the exchange) and its interface with the environment
(the wires leading to the telephones on the exchange and to A Formal View
other exchanges). It is meaningless to ask for a specifica-
tion of the solar system because we have no idea what the As described in condition I of the challenge, a formal
interface is between the solar system and its environment, method for proving that an implementation meets its spec-

I will call the object being specified a "module". A com- ification must convert the specification and its implementa- 0
plete specification of a module must contain all the infor- tion into a mathematical formula C in some formal system
mation needed to determine if a particular implementation L such that the implementation is correct if and only if C
is correct, where correctness means that the module in- is a valid formula of L. I now give a very vague, high-level
teracts properly with its environment. An examination of discussion of how this is done.
the specifications presented to illustrate most methods- A formal specification is written in a language having a
for example, the specification of a queue (bounded buffer) formal semantics, which means that the specification can 0
in 18. 117), or 1181-reveals that they are incomplete. From be translated to a mathematical object S in some formal
these specifications. one cannot tell whether the operations system S. Similarly, a formal semantics for the implemen- " -
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tation language describes the implementation as a semantic described by the specification.
object I in a formal system I. To be able to speak formally There are other possibilities-for example, an axiomatic
about the correctness of the implementation, there must semantics for the specification and a behavioral semantirs
be a mapping 7 from objects in the system S to objects for the implementation. In any case, the definition of cor-
in the system I. so that T(S) is an object of I. The object rectness of the implementation involves the mapping 7. For
7r(S) is the formal representation of the specification in the the specification of FCFS, the mapping 7 is what deter-
semantic domain of the implementation. mines which operations at the implementation level corre-

The formal system L of the challenge is the system I, spond to the specification's requesti operation. A complete
and the formula M that expresses the correctness of the specification must include not only 5, but also the part of
implementation is the formula of I that means "I satisfies 7 that determines the interface. For the queue example, it
7(S)". Exactly how )4 is constructed from 7(S) and 1 is this part of 7" that specifies whether one puts an element a
depends upon the specification method. I will illustrate in the queue by calling a subroutine or raising a voltage
with two examples: a pure axiomatic approach and a pure level. Correctness means that there exists some 7r. part of
behavioral approach. which is determined by the specification, such that 7(S)

In a pure axiomatic approach, an axiomatic semantics satisfies 1. The implementor is free to define the rest of
is given for both the specification and the implementation. 7, specifying the correspondence between the implementa-
An axiomatic semantics defines S to be a formula of the tion and the internal part of the specification any way he S
logical system S-the conjunction of all the "axioms" com- wishes in order to prove the correctness of his implementa-
prising the specification-and I to be a formula of I. The tion. The specification places no constraint on any part of
mapping 7 is a function from the formulas of S to those the implementation other than the interface.
of I. For example, suppose the specification is in terms of
the value of a queue q, which is implemented with an array
a. To talk about the correctness of the implementation, 5 Conclusion
for every possible value a of the array a we must know the it
value Q(a) of q that it represents. 4 For any formula R of would be nice if I could either explain how it can be done

S. the formula 7( ) of I is obtained by substituting Q(a) or else prove that it is impossible. Unfortunately, I can
for q in R. Thus T(R) is obtained by translating the state- w a
ment R, which is an assertion about the specification-level 7
object q, into an assertion about the implementation-level general specification of priority-one that works for a vari-

ety of implementation domains. The difficultyo in expressing boethis approach, 4 is the formula I D 7($). In other priority arises from the requirement that the equest opera-
tion should involve no waiting for other processes. Waitingwords, the implementation is correct if and only if the ax- is an implementation-level concept that I feel cannot -be

ioms comprising the semantics of the implementation imply expressed in a general way. However, this conjecture, like
the axioms of the specification, after the latter are trans- e
lated by jr into assertions about the implementation. This Church's thesis, is not susceptible to formal proof. At best.

one can prove only that some particular formalism cannot
is discussed at greater length in [121 for one particular ax- expan prioly t

iomatic method. express priority.
If priority is not expressible by current formal specifica-

Intion techniques, how should we specify concurrent systems?
the implementation and specification are sets of behaviors: " -

Priority is generall% regarded to be a fundamental concept •.-
S is the set of all behaviors allowed by the specification, Pit s ge egred t e a ne ntal coept

I i th se ofallbehvios tat oul beprouce b that must be specilfed. Must we add new primitives to ex-t is the set of all behaviors that could be produced by press it? My tentative answer is no. I believe that priority
the implementation, and S and I are formal systems for
reasoning about sets of behaviors. For a behavior b in the cannot be expressed precisely in those situations when it is I

specification domain, 7r(b) is the corresponding behavior not a fundamental properLy.
in the implementation domain. In the mutual exclusion Remember that condition () does express FCFS priority
inempleentration nif the request, operation is interpreted to be the interface
example. the oporation critical .sectioni is a single action in
the behavior b: it corresponds to a set of actions in 7(b)- operation enter,. The atomicity of enteri is irrelevant; what

matters is that request, be the interface operation. Priority
namely, the set of all the Blaise program steps in a single is a basic system requirement only when its effect is directly
execution of the critical section. is i c t eu e nt only when t e rectes%

One can define the formula M to be I C 7(S), where visible to the user, which is the case only when the rquest
operation is externally visible-that is, when it is part of

T(S) = (7r(b) : b E S). In other words, the implementa- the interface. For example, suppose we want transactions
tion is correct if and only if every possible behavior of the e bnterain ur tomeceive h e pit the -e-i-ied byv certain users to receive higher priority.• The re- "
implementation is allowed by the specification. Some spec- quest operation can then be defined as the entire sequence

iqcesio methodso defin the to befne as th entire requringthaification methods define to be I = T(S), requiring that of actions performed by the user in issuing the request, from"
the implementation be able to produce all the behaviors the first keystroke to his notification that the request ha.s 0
'The mapping Q may be partial, since Q(a) need only be defined for been accept,,d by the system.

values a of a that can arise luring the program's execution. When the request operation is not externally visible, then
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must also do the same for other language constructs besides the ";". We
will see that there is a standard prescription for doing this.

The axioms in XM IS] define a set of behaviors for S-namely, the set of all
behaviors satisfying the temporal logic axioms starting in states that satisfy
the axioms for the starting state. Although this defines a set of behaviors for 0

every statement, it is different from a semantics in which )JMIS] is taken to
be a set of behaviors because the meaning of S is obtained from the meaning
of its components by "composing" axioms, not by composing behaviors.

2.3 Is This Fair? S

It can be argued that the semantics of a programming language should be
defined in terms of constructive operations rather than with axioms. One
should give a procedure for constructing the set of behaviors of a program
rather than a set of axioms to describe it.

While a purely constructive approach would be nice, it seems to be
impossible to deal with fairness constructively. Even a behavioral semantics,
which looks constructive, really includes axioms for fairness. A behavioral
semantics defines the meaning of a fair cobegin in terms of fair interleaving.
The definition of a fair interleaving of two behaviors goes something like this:

Construct all interleavings and then throw away the ones that
do not satisfy the fairness condition.

This is remarkably similar to the definition of the set of behaviors obtained
from a set of actions and a set of constraints, which can be expressed as:

Construct all behaviors generated by the set of actions and then
throw away those that do not satisfy the constraints.

One might argue that fair interleaving is a simple, basic concept, and
I have given a particularly jaundiced expression of it. However, there are
many different fairness constraints one might want to define, each of which
would require a different definition of fair interleaving. For example, consider
two coin-flipping processes, one with the single action head and the other
with two actions: tail and coin lost. The first process generates only the
sequence of all heads, the second process generates either a sequence of all
tails or a finite string of tails followed by a sequence of coin lost actions.
The behaviors resulting from executing the two processes concurrently are
defined to consist of all possible fair sequences of heads and tails plus all
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cobegin irl 0 7r2 coend

is just the union of the sets of possible actions of ;rl and 7r2. Action seman-

tics have long been favorites of theoretical computer scientists [15] because

they lead to mathematically well-behaved formalisms. Unfortunately, these 0

semantics are unsatisfactory because they cannot express fairness. Consider

a coin-flipping program with two possible actions: toss a head and toss a

tail. It can be viewed as the parallel comr osition of two processes: one that

generates only heads and the other that generates only tails. An unfair coin

flipper can generate any infinite sequence of heads and tails, while a fair l
one can generate only sequences containing infinite numbers of both heads
and tails. Both the fair and the unfair coin flipper have the same set of ac-
tions (toss a head and toss a tail), so an action semantics cannot distinguish
between the two.

2.2.3 Action-Axiom Semantics

The problem of fairness is solved by using an action-aziom semantics in
which the meaning of a statement consists of a set of actions together with
- set of temporal logic axioms that state conditions under which an ac-
tion must eventually occur. For example, the fair coin flipper requires two S

axioms:

" At any time, a head must eventually occur.

* At any time, a tail must eventually occur.

The meaning of

assign processor to S

consists of the meaning of S plus the following additional axiom:

* If S is being executed-more precisely, if control is in S-then an
action of S must eventually occur.

Ve are thus led to let MIS] consist of a set of actions, a set of temporal

logic axioms, and a set of starting states. But how do we specify the actions?
Instead of introducing some new method for specifying actions, I will specify
the actions as well as the fairness properties with temporal logic axioms. 6

Starting states will be specified by ordinary, nontemporal axioms.
To give a compositional action semantics, we must define the axioms of
[s,: S i in terms of the axioms of A ISI and AMS:]; and, of course, we
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are obtained by forming interleavings of behaviors from S1 and S2, and inter-
leavings are rather awkward mathematically-especially for a fair cobegin,
where only fair interleavings are allowed. 0

A more serious problem is raised by the language construct

assign processor to S

Intuitively, this statement causes the compiler to assign a physical (or vir-
tual) processor to execute S. In terms of behaviors, it means that any
behavior that reaches S must either subsequently reach the end of S or else
include an infinite number of actions of S. In other words, a process can-
not be "starved" while it is executing this statement. This is a perfectly
reasonable-and compilable-statement. It can be used to construct a fair
cobegin from an unfair one as follows: S

unfair cobegin assign processor to S, U
assign processor to S2 coend

More complicated uses of the assign processor statement are also possible.
Considered completely by themselves, the statements S and

assign processor to S

have the same sets of behaviors, so it is not clear how one could apply to
the assign processor statement the same approach used above to defineA ISi; S21.

2.2.2 Action Semantics

Instead of defining MI]S to be the set of behaviors itself, one can define it
to be something that can be used to construct the set of behaviors. Since 0

a behavior is generated by a sequence of actions starting in some state, an
obvious approach is to let MIS] be the set of all possible actions together
with the set of all possible starting states. I will call such a semantics an
action semantics. Given an action semantics, one can define the behaviors
of S to be the set of all behaviors that can be obtained from these actions S
starting from the specified starting states.

An action semantics is well-suited to expressing parallelism, since the set
of possible actions of
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the ai are actions of that process. I will explain later exactly what states
and actions are.

The semantics that I am aiming for is an axiomatic one, in which the
meaning of a program is a set of axioms in a formal system. An important
advantage of an axiomatic semantics is that it is very formal. A formal 0
mathematical system is one in ,ahich reasoning can be reduced to a strict
application of axioms and inference rules. Automated deduction systems
can usually be applied only to a formal system. A semantics in which MIJSI
is defined to be a set of sequences is really semi-formal, based upon the in-
formal mathematical concepts of sets and sequences. Formalizing it requires 0
formalizing these mathematical concepts. With an axiomatic semantics, this
extra step is unnecessary; JMISI is already a set of axioms in a formal system.

The problem with an axiomatic semantics is that one can understand the
meaning of a formal logical system only by constructing a semantic model
for it in terms of concepts that we already understand. Having constructed S
a semantics in which M[SJ is a set of-axioms in some formal system is only
half the job; we also have to define a semantics for the formal system in
terms of well-understood mathematical concepts.

I will give a temporal logic semantics-one in which the axioms are tem-
poral logic formulas. I will rely upon the usual semantic model of temporal
logic, described later, to provide a basis for an intuitive understanding of
the axioms.

2.2 Different Kinds of Semantics

2.2.1 Behavioral Semantics *

An obvious method of defining a semantics for concurrent programs is to let
the meaning of a statement be its set of possible behaviors, and to explicitly
construct the behaviors in 4 IS] from the behaviors of its components. For
example, the set of behaviors MIS, ; S21 consists of all infinite behaviors in
,MIS,] together with all concatenations of finite behaviors in .MIS,] with
behaviors in MIS.]. This can be expressed formally by:

MISI; = (a E MISl o infinite}
U {(r :, a EA ISi1, r E A JS2!, and o finite}

I will call such a semantics a behavioral semantics. S
Behavioral semantics have their problems. While they work well for

sequential programming constructs, they are less satisfactory for concurrent
languages. The behaviors of
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to reason about things like the control state that are internal to the pro-
gram. However, years of experience reasoning about concurrent programs
has led me to conclude that one should think about them in terms of the .
complete state, including externally invisible compents of the state. I will
not attempt to justify this conclusion here, and will simply adopt the second •
approach, defining the meaning of a program in terms of complete behaviors
that describe the internal as well as the externally-visible effects of program
operations.

Having decided that the meaning of a program is its set of possible
behaviors, we must decide what a behavior is. The simplest notion of a 5
behavior is a sequence of states. Each action of the program transforms the
state. Nondeterminism, leading to sets of behaviors, appears when there are
several choices of a possibile next state from the same current state.

It is sometimes argued that a sequence of states cannot adequately model
the execution of a concurrent program because it has no notion of concurrent 0
activity, and that one should instead use a partially ordered set of actions.
However, a partially ordered set contains exactly the same information as
the set of all total orderings consistent with the partial order. Since the
meaning of a statement is the set of behaviors, which includes all possible
sequences that represent the real, partially ordered set of actions, nothing ,
has been lost by considering sequences. The basic assumptions being made
are that the execution of a program consists of discrete atomic actions, and . -

the possible effect of an atomic action depends only upon the current state.
It appears that any digital system can be accurately modeled in this way by
making the atomic actions small enough and including enough information ..
in the current state.

It turns out that to define the semantics of concurrent languages, one
needs more information about a behavior than just the sequence of states;
one must also know "who" performed the actions. For example, the natu-
ral definition of a fair cobegin states that in each infinite behavior, every
nonterminating process performs infinitely many actions. Formalizing this
definition requires the ability to decide which process performs each action.
I will therefore define a behavior to be a sequence of the form:

-0 -.. l3 . ... "

where the si are states and the ai are actions. Fairness of a cobegin can be
expressed by stating that for every process and every n: if there is no state .

si with 1 > n in which the process has terminated, then infinitely many of
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of S. For example, XM[S,; S21 should be defined in terms of X ISI I and
~MIS..]. I will say that a semantics with this property is compositionaL1

When defining a formal semantics, the first thing one has to decide is
what kind of object MIS] should be. The execution of a statement in a
sequential program is usually considered to start in some input state and
produce an output state, and MISI is defined to be a mathemtical object
that describes the relation between the input and the output states. One
way of doing this is to define XI~S1 to be a set of ordered pairs of states.

Concurrent programs cannot be described with such a simple input/out-
put semantics. Consider the following two program statements, where angle
brackets denote indivisible atomic operations.

1. ( := +I)

2. begin (x z + y);
(z X - Y +10

end

These statements both have the same relation between input and output
states-they both increment the value of x by one. However, they are not
equivalent when used as part of a concurrent program. Executing the first
always has the effect of adding one to x, but executing the second can have
a very different effect if the value of y is changed by some other process
between the two assignments to z.

A semantics for a concurrent programming language must define the
meaning of a statement in terms of its behavior. There are two fundamen-
tally different approaches to doing this. The first approach is to define the
meaning of a statement S in terms of the effects it produces that are "vlsie
ble" outside S. For example, in a shared-variable language, the only visible
effects of executing a statement are changes to shared variables. The alter-
native approach to defining the semantics of concurrent languages defines
the meaning of a statement in terms of complete behaviors, which include
all the effects of a statement's actions, whether externally visible or not. In
most languages, these invisible effects include changes to the control state
(the values of "program counters").

An approach that mentions only visible effects is very appealing, and
it has been taken by a number of researchers [3,111. For many years, I re-
gardled it as the proper way to think about programs, and found it unnatural

'The terms denotationl, synt az-directed, and modular have also been used to denote this
property.
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2 An Introduction to Semantics

2.1 What Are Semantics?

The syntax of a programming language defines the set of syntactically well-
formed programs of that language. However, a program is more than just
a string of characters; there should be a well-defined set of possible results
of executing the program. The purpose of a semantics is to assign a math-
ematical meaning to each syntactically correct program that describes the
effect of executing it.

I will regard a program 11 to be a syntactic object, and denote by .MI[Hi
the mathematical object denoting its meaning. To define a formal semantics,
one must specify the mapping 11 -, A11.

What is the purpose of a formal semantics? One purpose is to help us to
understand the language. However, "understanding is too vague to usefully
characterize a formalism. I propose that a formal semantics should provide 0
a formal basis for the following:

1. Deducing properties of a program written in the language.

2. Deciding if a compiler is correct, given a formal semantics for the
target language into which the programs are compiled.

A semantics should provide a formal foundation, but not necessarily aprac-
tical method, for doing these things. A method for deducing properties of
a program is called a proof system. A proof system is used to decide if a
program works properly; a semantics is used to decide if a programming S
language is defined properly. One wants to reason about programs at a high
level, hiding as much detail of the language as possible; a semantics should
expose the language details. Although a semantics allows one, in principle,
to verify properties of programs, its real purpose is to explain the language.
A semantics should be used to verify the correctness of a proof system; it
need not provide a practical method for reasoning about programs.

Programs can be very large and complicated. We want to reduce the
problem of understanding a complex program to that of understanding its
components. The meaning of a program should therefore be defined in
terms of the meanings of its components. We must therefore define the
meaning not just of an entire program, but of individual components-
usually individual program statements. So, M IS] must be defined for any
program statement S, and it must be defined in terms of the substatements
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The first idea was developed by Susan Owicki and myself in the late
1970's, and was published in [61. (It was developed independently, in dif-
ferent contexts, by other researchers [1].) The second and third ideas were
developed by me shortly afterwards. The second was also used in [6], though
not featured prominently there. The third idea has never appeared in print,
though I have talked about it in lectures starting in 1981. The fourth idea
was discovered by Fred Schneider and myself in the spring of 1984 [10]. The
fifth idea has been present in all of my work on temporal logic, starting
with [5]. I was originally led to it by my philosophical objections to the
"next time" operator; only later did I recognize its practical significance [8].

The first two ideas were used in [14], but they are not enough to permit
a compositional semantics based upon a simple temporal logic. Combined
with the third idea, they do permit a compositional semantics, but a se-
mantics that I did not find satisfying. It seemed like a large, complicated
structure had to be erected solely to reason about program control, mak-
ing the enterprise of dubious merit. It was the fourth idea that gelled the
method into a coherent form. The apparatus for handling program control
was no longer an ad hoc "Kludge". Rather, it was the appropriate structure
to deal with aliasing. Aliasing was not considered in other approaches, but
it is a problem that must be dealt with in any realistic language, if only
to handle procedure calls. The fifth idea is not needed for the semantics
itself; in fact the semantics would be somewhat easier to understand had I
abandoned it and employed the next-time operator favored in most other
temporal logic approaches. However, allowing stuttering actions enables the
semantics to address the practical issue of what it means for a compiler to
be correct.

In this paper, I develop these five ideas, and show how they lead to a
method for defining the semantics of concurrent programming languages.
A complete semantics is given only for a simple language. However, the
approach is "meta-compositional" in the sense that the meaning of each
language construct is defined independently of the other constructs in the
language. The semantics of a richer language can be given by defining the
meanings of its additional constructs, without changing the meanings of the
constructs from the simple language. (This is not the case in [14] where,
for example, the axioms for the assignment statement would be invalid if
an unfair cobegin were added to the language.) I will indicate the power
of my method by informally describing how the meanings of some more
complicated language constructs can be defined.
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0

1 An Introduction to this Paper

A large body of research on the logic of concurrent programs may be char-
acterized as the "axiomatic" school. Members of this school reason about
safety properties ("something bad never happens") in terms of invariance, 0
and liveness properties ("something good eventually does happen") using
temporal logic.

While they are quite successful at proving properties of a given program,
axiomatic methods have not provided a satisfactory semantics for concurrent
programming languages. Axiomatic methods usually reason about the entire S
program, while a semantics should be compositional-deriving the meaning
of a program from the meanings of its components. Even the Generalized
Hoare Logic described in [4] and [9], which looks compositional, actually
assumes a context of a complete program. The only attempt we know of
at a truly compositional axiomatic semantics for concurrent programs that
handles both safety and liveness properties is given in [14]. However, while
it is axiomatic in a strict logical sense, that approach is not in the spirit
of the axiomatic school because it essentially defines a new temporal logic
operator for every programming-language construct.

In this paper, I present a new compositional, truly axiomatic semantics
for concurrent programming languages. It is based upon temporal logic, but
employs five fundamental ideas beyond those found in most temporal logic
methods:

1. The addition of action predicates to describe "who" performs an ac-
tion.

2. Defining an assertion to be true of a statement only if it is true of
every program containing that statement.

3. The introduction of renaming operations that map an assertion about
a statement S into an assertion about a larger statement containing 5
S as a substatement.

4. Defining the relations between control points, described in [41 as state
predicates, to be aliasing relations among variables.

5. Allowing "stuttering" actions, so an atomic operation is represented
by a finite sequence of actions, only the last one having any effect.
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sequences consisting of a finite number of heads and tails followed by nothing
but coin lost actions.

This is a perfectly reasonable example, which the reader may find more
familiar if he replaces coin lost by abort program. A behavioral semantics for
this way of combining processes would require a more complicated definition
of fair interleaving, and a formal statement of this definition would look a
lot like a temporal logic axiom. Fair interleaving is not a simple concept.
One particular type of fair interleaving has been used so commonly that we
tend to take it for granted and forget that we have never seen a constructive
definition of it.

Fairness does not appear to be a constructive concept. One specifies
fairness by adding axioms to exclude unfair behaviors rather than by explic-
itly constructing only the fair ones. Infinite objects, such as behaviors, are
constructed as limits of finite approximations-a method often described as
"denotational". This does not work with fairness because there exist se-
quences of fair behaviors whose limits are unfair-for example, let a1, a2,...
be the sequence of coint-flipping behaviors in which all actions of o,. are
heads, except for every 2" th action, which is a tail. Each o,, is fair, but the
limit as n goes to infinity is the behavior having only heads, which is unfair.

The topologital approach of [2] solves this problem by considering only
convergent sequences and defining a topology in which sequences like the
above diverge. However, one might view this approach as:

Construct all sequences obtainable from the actions and throw
away those that do not converge.

This looks suspiciously like the more overtly axiomatic approach. The whole
distinction between constructive and axiomatic methods is probably illusory,
disappearing when methods are examined closely enough.

2.4 Programs and Implementations

2.4.1 Correctness of an Implementation

One question that a semantics of a programming language should answer is:
What does it mean for a compiler to be correct? Given a program I in the
high-level language, the compiler transforms it into a program ir in some
lower-level language. Correctness of the compiler means that ir is a correct
implementation of 11, but what does that mean? To speak of correctness,
we must have formal semantics for both the high-level and the low-level
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languages, so MII and MilrtI are defined. However, this is not enough to
determine what it means for .M[irl to represent a correct implementation of

Consider the case of sequential programs, in which the semantics of a
program is a relation on the set of program states, the pair (s, t) being in
the relation JH I if and only if it is possible for program H to start in state

9 and terminate in state t. In this case, MIin] and Mj[ir] are relations on
two different sets of states. The states of 1I specify the values of program
variables like z and y; the states of ir might specify the values of machine

registers like memory location 3124 or the program counter. Correct imple-
mentation means that there is a correspondence between the sets of states
of n and ir such that, under this correspondence, every possible execution

of ir is a possible execution of H.
More formally, to establish a correspondence between the semantics of

the two sequential programs, we must define a mapping F from the states 0

of ir to the states of H. For example, suppose the variable z in H of type
integer is implemented in ir as a two-byte integer stored in bytes 3124 and

3125 of memory. If, in a state a of t, bytes 3124 and 3125 have the values

12 and 97, then the value of z in the state F(s) of H is 12 x 256 + 97. In
general, correctness of the implementation means that for each pair (s, t) in

N jr], the pair (F(s),F(t)) must be in MIII].
What about concurrent programs? As we have seen, the meaning of

a concurrent program must be expressed in terms of its behavior-either

directly, with a behavioral semantics, or indirectly with axioms about its
behavior. Let us therefore consider first a behavioral semantics, in which "

M[HJ and MI] are sets of behaviors. Intuitively, ir is a correct implemen-

tation of HI if every possible behavior of ir reresents a possible behavior of
H. We therefore need some way of interpreting behaviors of t as possible

behaviors of H1-that is a mapping F such that for any behavior o' in MI[iI,
F(a) is a sequence of states and actions of Hl. We can then say that r" is a
correct implementation of H if, for every a in Mila', F(o) is in M[1I.

In defining this mapping F, we are faced by the problem that I and ir
may have different grains of atomicity. An atomic operation of n may be
implemented by a sequence of 42 atomic operations of 7r. For example, the
atomic operation

(x := X+ 1

of H might be implemented in ir by 42 machine-language operations. More-
over, interleaved among these 42 atomic operations of ir might be other
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machine-language operations that belong to the implementation of an oper-
ation from a different process of IT. It would therefore seem that the mapping
F must be quite complicated, taking sets of actions into single actions.

There is very simple solution to this problem-we require that to every
action of x there correspond a single action of I. The execution of a single 0

atomic operation of II might therefore be represented by 42 actions in a
behavior in Milli. The first 41 of these actions will be "stuttering" actions
that do not change the state of I; the 4 2 nd will do all the work. This makes
it conceptually very easy to define the mapping F from behaviors of i" to
behaviors of 17. As in the sequential case, there must be a mapping F from S
states of i" to states of 11. We also assume that F maps actions of 7r to

actions of fl-for example, every machine-language instruction executed by
if corresponds to the execution of some atomic operation of B.2 To extend
F to a mapping on behaviors, if a is the behavior

so -* 81 - ""

of if, we define F(a) to be the behavior

F(s0o%) F(si) r -.) -

The implementation is correct if, for every behavior a of M[irl, F(o) is a
behavior in MIfIr].

This seems nice in theory, but how can it be achieved in practice? The
first 41 machine-language operations in the implementation of the atomic
assignment must change the state in such a way that they these changes are
invisible when viewed at the higher level. More precisely, the 41 intermediate
states of the computation must all be mapped by F into the same state as
the starting state. How is this possible?

A complete answer to this question is beyond the scope of this paper. The
trick lies in the definition of F, which must "unscramble" the intermediate
states in the appropriate way. I will not explain here how it is done. I 0

will only mention that, while it sounds like magic, it in fact is a simple
extension of the basic idea of invariance that underlies most concurrent

'A single machine-language instruction could actually be used in the implementation of
several atomic actions of 11-for example, if it were part of a subroutine called during
the execution of several different statements of It. The mapping F should therefore S
take state, action pairs into actions, so the action aj of ir is mapped into the action
F(egi-,-,a) of 11. In other words, the state of r determines which atomic statement of
11 is being executed by the execution of a machine-language statement.
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program verification. An explanation and examples can be found in [6] and[8j. -::-

I won't consider the problem of compiler correctness. The purpose of
this discussion is to point out that in order to permit a simple definition
of correctness of an implementation, I cannot define a semantics in which
the execution of an atomic program statement is always represented as a
single atomic action. I must allow "stuttering" actions. In the action-axiom
semantics, the specification of an action a must allow a finite series of null
transitions a s as well as the final action a -2.4 t that "does the work".

I have described correctness of an implementation in terms of a be- S
havioral semantics, where X1II] is a set of behaviors. In an action-axiom
semantics, the meaning Minli of a program II is a set of axioms that deter-
mines the set of possible behaviors. Section 5.7 explains how this concept
of correctness is translated into a relation between the sets of axioms .Mi[n']
and A MIr l . The only observation I will make here is that the axioms of .MIII
must permit stuttering actions. More precisely, these axioms should not be
able to distinguish stuttering; if an axiom is true for a behavior c, then it
should also be true for the behavior obtained from a by adding stuttering
actions. This will be guaranteed by using a temporal logic in which no
formula can distinguish stuttering-a temporal logic with no "next-time"
operator.

2.4.2 The Interface

The semantics of a program is traditionally defined by describing how it
affects the values of variables. However, program variables are internal to
the program; all that a user sees is what he types into the program and what
the program types out to him. A semantics of a program should describe
its input and output, not just how it affects internal objects like variables.

Given the machine-dependence of most input and output, an explicit
semantics for input and output seems like a useless exercise. Instead, ob-
serve that input and output can be representend by variables. A terminal
screen can be represented as a Boolean array, each element representing the
presence or absence of light at one point on the screen. Keyboard input
can be simulated through a variable whose value represents the sequence of
characters that have been typed but not yet processed. I will use the term P
interface variables to describe variables that represent input and output.

In general, an interface variable describes the interaction between the
program and its environment. They are global or free variables, in contrast
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to the local or bound variables that are declared in ordinary program dec-
larations. For example, variables declared in a Pascal var declaration are
local.

Let us again .consider the mapping F, introduced above to define what
it means for a lower-level program ir to be correct implementation of a
higher-level program H. Recall that F describes how the variables of 1T are
implemented in terms of the "variables" of r-the machine registers, if 2T is
a machine-language program. We really don't care how the local variables
of I1 are implemented, since they are not externally visible. The compiler is
free to implement local variables any way it wishes. 6

The compiler does not have such freedom in its implementation of in-
terface variables. The implementation of the interface variables must be
defined a priori if the program is to interact with its environment in a use-
ful way. For example, suppose that the terminal screen is represented by
a Boolean array. The semantics of the program 1H would provide no infor- S
mation about real output if the compiler could define the array elements to
represent completely arbitrarily points on the screen-or to represent the
values of arbitrary one-bit registers in the machine.

I have considered the implementation of the states of II in terms of states
of ir, but what about the implementation of actions? Just as there are local
and interface state functions, there are internal and external actions. Most
actions in a program behavior are internal, being caused by program execu-
tion. However, some actions represent operations external to the program-
for example, the actions that represent the entering of an input character.
The semantics of 11 does not distinguish this operation, which changes the
value of the interface variable representing the input buffer, from program
operations that change the value of variables-for example, the program op-
eration that removes a character from the input buffer. The compiler is free
to implement internal actions of H by any internal actions of 7r. However,
the external actions of 11 must be implemented by fixed actions of ir, which 0
may be internal or external. For example, the sequence of actions of 1" that
add a character to the input buffer may be implemented by a sequence of
actions external to ;r, representing external operations that put the charac-
ter into an input register and actions of 7" that move the character from the
input register into the memory registers that implement the input buffer.
The compiler would be of little use if it could implement the operation of S
typing a character, defined in the semantics of Hl simply as an operation that
changes the variable representing the input buffer, as an internal operation
of ir that adds a randomly chosen character to the buffer.

S
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C~ 7.

Thus, the representation of local variables and internal actions of IT"
by F may be arbitrary, but the representation of interface variables and
external actions must be fixed. The meaning .11f1 of II can be defined in a
completely machine-independent fashion. The machine dependency, which
exists for any real compiler, is contained in the details of how interface 0
variables and external actions are to be implemented.

Thus far, I have been talking only about implementing a complete pro-
gram 11. We should consider the problem of implementing a single statement
S. In this case, all the global (undeclared) variables of S must be regarded
as interface variables, and their implementations must be fixed a priori. For
example, if statements S and T were to be implemented independently, their
implementations could be combined to implement S; T only if a variable z
common to both were implemented as the same set of machine registers.

Of rourse, one is seldom interested in implementing a single statement
of a program. These considerations would apply to a language that allows S
separate compilation of components such as subroutines. I will not consider
the problem of separate compilation. My purpose in discussing implemen-
tation of individual statements is to point out that the concept of global . -

and local variables occurs at all levels of a program. Variables global to a
statement S may be local to a larger statement containing S.

S
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3 The Programming Language

The goal of this paper is to explain how the semantics of any programming
language can be defined, and not to give a complete semantics for aparticular
language. However, to show how the formalism works, it is helpful to define 5

rigorously the semantics of some language. I will therefore formally define
the semantics of a simple language called L, and will indicate informally how
the semantics of language primitives other than those in L can defined.

The language L contains an atomic assignment statement-one whose
execution is an indivisible, atomic action. L has the usual sequential control S
structures: concatenation (;), if and while statements, plus a fair cobegin.
The tests in while and if statements are also taken to be atomic. L has a
new statement that declares a local variable, so

new z: Integer in S ni

declares x to be a local variable of type Integer whose scope consists of the
statement S. The new statement has an optional init clause to specify the
initial value, so

new x: Integer lnit 2 z In S ni

declares that the initial value of z in S is twice the value of the variable
z whose scope includes the new statement. The assignment of the initial
value to z is assumed to be an atomic action. The new statement also has

an optional alias clause that is used to declare that the new variable is the
alias for something else. For example,

new x: integer alias y In S ni

declares z to be an alias for y.
It may seem strange to introduce aliasing-a concept usually ignored

in simple examples-in the language L. Aliasing is an important concept
because it underlies the semantics of procedure calls. If proc is a procedure
defined with single integer-valued a call-by-name parameter param, then the
call proc(arg) can be simulated by the statement

new param : integer alias arg in S ni

where S is the body of proc. (Call by value and call by reference can be .
simulated with call by name through the use of auxiliary variables.)

For reasons that will be clear later, the concept of aliasing is central
to our semantics, and we will need to understand a more general kind of
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aliasing than real programming languages usually allow. In particular, L
will allow a variable to be aliased to an expression. To understand what
that means, consider the declaration

newf: real alias 9*c/5+32 inS n!

In this case, we can think of f and c as representing a single temperature,
where f is its value in degrees Farenheit and c is its value in degrees Celsius.
The two assignment statements f := 32 and c := 0 have exactly the same
effect; executing either one changes the value of f to 32 and the value of c
to zero.

As another example, assume a type gausslan which represents a Gaus-
sian integer-a number of the form m + nm/F-, where m and n are integers.
If x and y are variables of type integer, then

new z: gaussian alias z+v Y,'ZT in Sni

defines z to be a variable of type gaussian whose real part is aliased to x
and whose imaginary part is aliased to y. Assigning a value to z in S also
assigns values to x and y so that the relation

z - + y* /•

holds throughout the execution of S. Similarly, changing the value of x in
S also changes the value of z.

In the examples of alias clauses given so far, assigning a value to any
variable produces a well-defined result. However, this need not be the case. S

Inside the body S of the statement

new c : integer alias a + b in S ni

assigning a value to a or b changes the value of c in the obvious way, but
what is the result of assigning a value to c? I define an assignment to c to 5
be a nondeterministic statement that can change the values of a and 6 in
any way such that a + b equals the new value of c.

However, I will assume that the aliasing relations are such that they
can always be maintained by the proper choice of values. More precisely, a
program is considered illegal if its execution would force the aliasing relations S
to be violated. For example, the statement

new 6: integer alias V/a in S n!
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is illegal if, at any time during its execution, the value of a is not a perfect
square.

This approach to aliasing is similar to the one I will take for type
constraints-namely, a program is illegal if its execution would force a type
violation. For example, the statement

new b : boolean Init -,c In ...

is illegal in any context in which c is not declared to be of type boolean.
While typing consistency is easy for a compiler to enforce in language

L, the consistency of aliasing relations can be determined at compile time 0
only if the kind of expression that can appear in an alias is restricted in
some way. In fact, some restriction is obviously necessary if the compiler is
to have any chance at compiling the code. Those restrictions are irrelevant
to our semantics, so they are not discussed.

The basic syntax of L *; given by the syntax diagrams in Figure 1. I 
will not bother to give a formal syntax for identifiers. The only types that I
will use in L are integer and boolean. Expressions are assumed to be the
usual ones constructed from variable names and the ordinary operations on
integers and booleans-for example, an expression like

(z*y+z = 17) (z> yV-,b) 5

I will enclose if and while tests, assignment statements, and the it clause
of a new statement in angle brackets to emphasize their atomicity.

In addition to the usual information, the syntax diagrams of Figure I
also have labels attached to the nonterminal components. These labels are
called primitive selectors. A primitive selector identifies a component of a
compound statement-for example, the primitive selector then identifies the
"then-clause" of an if statement. The "..." label in the specifications of the

cobegin indicates that the primitive selectors for the clauses of a cobegin
are integers, and likewise for a list of statements.

In more formal terms, the primitive selectors label the edges in the parse
tree of a statement or program.3 A selector for a statement S is a sequence
of primitive selectors that represents a path starting from the root in S's
parse tree. A selector identifies a component of a program or statement. For
example, the selector else, body, 2 identifies the substatement (x := x + 4 )
in the following statement:

3Trivial nodes that have only a single son are eliminated from the parse tree, which is
why there is no primitive selector associated with the first box in the syntax diagram
defining a statement.

B
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if (x > 0)
then (x :=z + 1)
else while (y > 0)

do (y y- 1);
(z z+4)

od;
(y := 17)

More formally, given a program or statement S, a substatement of S consists
of a pair S, '1, where Iy is a selector for S. A substatement of S is, when
viewed by itself, a statement. I will often write something like: "T is the
substatement S, -f of S." This means that the substatement, when viewed
alone, is the same as the statement T. However, T and S, -y are formally
two different kinds of objects-one is a complete statement and the other is
part of a statement.

The null selector selects the entire statement, so "S," denotes S viewed
as a substatement of itself. Since "S," looks rather strange, I will simply
write S to denote both the entire statement S and that statement viewed
as a substatement of itself.
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4 States and Actions

The meaning .M ISI of a statement S will be a set of temporal logic axioms
defining the behaviors of S and a set of nontemporal axioms defining its set
of initial states. To give a semantics for these axioms, I must define the the
set S(S) of all possible states of S and the set A(S) of all possible actions
of S. The initial-state axioms then define a set of states-namely, the set of
all states in S(S) that satisfy those axioms; and the temporal axioms define
a set of behaviors-namely, the set of all sequences

80 - 0 81 """

with si E S(S) and Ck, E A(S) that satisfy those axioms.
Intuitively, the state of a statement at some time during its execution

contains all the information needed to describe its possible behavior at future
times. To define the set S(S), we must consider what information must be
in the state of S.

4.1 Program Variables

The future behavior of a program certainly depends upon the current values
of its variauoes, so a state must specify the values of all program variables.
More precisely, a state in S(S) must include a mapping val from the set of
variables of S to a set of values. For the simple language L, in which all
variables are of type integer or boolean, the set of values consists of the
set Z U {true,false}, where Z denotes the set of all integers.

Let S be the statement

cobegin S 0 S.. coend

and suppose that S1 and S2 both contain new x statements. Each of these
statements declares a different variable, but both variables have the same
name z. Both of the variables named x may be defined at the same time,
and may have different values. To facilitate the discussion, I will use the
term identifier to denote the syntactic object constituting the name of a
variable, and the term variable to denote the variable itself. Thus, S has
two different variables having the same identifier x. This situation does not
arise in a sequential program because, at any instant during its execution,
there is at most one currently active variable for any identifier. However, it
does arise in concurrent programs and must be considered.
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To define vat, we must define the value it assigns to each of the variables
of S, which requires giving different names to different variables. Assigning
unique names to variables is a nontrivial problem, since different variables
may be represented in the program by the same identifier. It is solved with
selectors. I let x(S, -1) be the name of the variable with identifier x that
is declared in a new statement whose selector in S is -y-in other words,
where -y is the path in the parse tree of S leading to the new statement.
A "global" variable with identifier z-that is, the variable denoted by an
occurrence of the identifier x outside the scope of any new x statement-is
given the name xO.

I consider z() to be a variable of any statement S, even if the identifier
x never appears in S. For example, suppose S is the statement:

(Y :=:,+l )I
new z : in (z :=y ) n!

Then the variables of S consist of the single "bound" variable .-(S, 2) plus
the infinite set of "free" variables xO, yo, zo, , only one of which actually
appears in S. Even though the variable x() does not appear in S, it may
appear in other statements in the complete program. The correctness of a
program containing

cobegin S 0 T coend

may depend upon the obvious fact that S does not change the value of xO.
The value of x() is included as part of S's state so we can say formally that
S does not change that value.

To summarize, defining the set of states S(S) of S requires defining the
set of variables of S. The variables of S consist of the following:

" For any new x statement of S with selector -y, the variable named

" For any identifier x, the variable named C' X.

The mapping val assigns a value to each of these variables.
The names of variables come up quite often when talking about pro-

grams. If S is a hundred page program, then the name x(S, -) takes up
one hundred pages. Writing even the simplest statements about S would
therefore require quite a bit of paper. Such a practical consideration is as
irrelevant for the semantics of a programming language as is the cost of
tape for the theory of Turing-machine computability. H-owever, it does pose
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a problem in writing examples, since a simple assertion about a five-line
program might take one or two pages. The solution is, of course, to give
names to statements and substatements. I will use the ordinary labeling
convention to do this. For example, consider the program.

s: if(z>O)
then (z:= x+l)
else t: new y

in (y :=x);
(x y +2) 0

ni;
(z := 17)

ft

The variable y declared by the new y statement will be called simply
y(t of s). However, you should remember that its complete formal name

then..., else,
Y else... ' 1

ft

4.2 Control Variables

There is more to a state than the values of program variables. To determine
the future behavior at some point during the execution of the statement

u: begin s: (x := x+1)
t: (y:= y+)

end

we need to know whether control is at the beginning of statement s, at
the beginning of statement t, or at the end of statment t. Since the state
must determine the statement's possible future behavior, it must contain
this control information.

I will describe this control information in terms of the boolean-valued
control variables at, in, and after. For any substatement S, 7, there are 0
control variables at(S, -f), in(S, -7), and after(S, -1), where the values of these
variables equal true when

at(S, ,): control is at the beginning of substatement S, -1

B2
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Section 2.4 of the dual mapping F applies equally well to F', and I will not
discuss further how F* is actually constructed.

Since temporal logic formulas are constructed from predicates and tem-
poral operators, there is an obvious extension of F' to a mapping from
T (Hl) to 7(;r). For example,

F'(sn(n,p) < (H,-)> 0) = F'(in(fl,p)) < F'(x(fl,-)> 0)

It follows from these definitions that for any behavior a of 7r and any formula
A in TC -():

a 1= F*(A) = F(o) f A

In terms of behaviors, ;" correctly implements HT if, for every possible
behavior o, of ir, F(a) is a possible behavior of Ht. For simplicity, let us ignore
the initial-state specification, so the meaning M[ll of 11 in an action-axiom
semantics is a set of temporal logic axioms, and F(a) is a possible behavior
of 1 if and only if F(a) A is true for all A E .M II. But F(o') 1= A
is true if and only if o , F'(A) is, so ;" correctly implements 11 if and
only if o = F'(A) is true for all A E .M[I'J and all behaviors a of ir. The
behaviors of 7r consist of the sequences satisfying all the axioms of .M[ri.
It follows from this that if correctly implements H1 if, for every axiom A in
.M[Il, F'(A) is implied by the axioms in .M[I;t. Thus, proving correctness
of the implementation involves deducing, from the axioms for 7r, the truth
of F'(A)-the translation of A into an assertion about 7-for every axiom
-4 in J .-4111.

As explained in Section 2.4, a compiler is free to implement local vari-
ables and internal actions in any fashion, but interface (global) variables
and external actions have a fixed implementation. The mapping F' is de-
fined on state predicates by defining F*(v) in terms of the variables of if, "-
for every variable v of f1. The definition of F'(v) is arbitrary for a local
variable v, but is fixed for an interface variable. To prove the correctness of
an implementation, we are allowed to define F'(v) any way we like if t' is a
local variable, but must use the predetermined definition if v is an interface
variable. Similar comments apply to actions.

I find it helpful to think of the semantics .M[HI of H as the specifica-
tion of a lower-level implementation. When viewed this way, there is an S
implicit existential quantification over the names of all local variables and
internal actions. More precisely, the specification consists of the conjunction
of all the axioms in J11H-1, with existential quantification over these variable
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It is the inability to distinguish stuttering that makes it easy to talk about
a lower-level program implementing a higher-level one.

5.7 Implementation Mappings

I can now continue the discussion, begun in Section 2.4, of what it means for
a lower-level program to correctly implement a higher-level one. Let I be
the higher-level program and a be its lower-level implementation. From the
point of view of behaviors, we saw that there should be mappings F from
the states and actions of ;r to the states and actions of 11 so that if a is the
behavior

11 a2
Q0  ......-

of ;r, then F(u), which is defined to be

F(so) F(a__) F(s 1 ) F(-2)...

is a behavior of 11.
How are the mappings F defined? In action-axiom semantics, one never

mentions states, just state predicates-mappings from the state into a set
of Booleans. A state is determined by the values of all state predicates. To
define a mapping F : S(r) -- $(H), one defines a mapping F* that maps
state predicates of IT into state predicates of 7r. Intuitively, F' defines the
state predicates of H' in terms of the state predicates of 7r. For example,
F'(x(rl,-) > 0) is the state predicate of 7r that "implements" the state
predicate z(fl,y ) > 0 of H; in other words, it is the translation of the high-
level statement that the value of the variable x(lH,-y) is positive into a lower-
level statement involving the values of memory registers, program counters,
etc. Defining the mapping F' requires describing how the variables (both 0
program and control variables) of I are implemented by the "variables"
(machine registers) of ir. The mappings F and F' are related by

s F'(P) E F(s) 1 P

for any state s in S(ir) and state predicate P in PP(H). S
In a similar way, F is defined to map action predicates of I into action

predicates of ir, so F" : PR(I) -. PR(ir). Finding the mapping F' is
the heart of the proof that 7r correctly implements 1. The discussion in
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a A " true for all o E E. The valid formulas for a program S are those
that are valid for the set of all behaviors of S.

Note that 1= E false is true if and only if E is the empty set. The semantics
I give can produce contradictory sets of axioms for a program-axioms from
which one can deduce the formula false. This is not an inconsistency in the
system; rather it is an indication that there are no legal behaviors of the
program, so the program is illegal. This will be the case, for example, if a
program assigns a boolean value to a variable of type integer.

I consider the notion I=E of semantic validity only for sets E having the
property that for any a E E and any n > 0: a+ n E E. Intuitively, this 0
means that the temporal logic does not assume any preferred starting state.
Formally, this means that the truth of H A implies the truth of 0 A-a
rule of inference known to logicians as the Necessitation Rule. This rule
implies that whenever we give a predicate P as a temporal-logic axiom, we
are really asserting that OP is true. 0

The validity of the Necessitation Rule means that it is impossible to write
a temporal logic formula which asserts that the program is executed only
in certain starting states. Thus, one should define the semantics .MISI of S
to consist of both a set of temporal logic axioms that constrain the allowed
behaviors of S and a set of nontemporal axioms-that is, predicates-that
constrain the starting state. The semantic meaning XMSI defines the set of
behaviors of S to be the set of all behaviors o' such that:

0 o = A for every temporal axiom A E .M[S], and

o 30 A for every nontemporal axiom A E .MISI, where so is the .
starting state of a.

However, as I will show, it is not necessary to specify any initial states for a
substatement S of a program. The only initial-state specification that must
be added is that a complete program starts at its entry point.

5.6 There Won't Be a Next Time

An important "feature' of the temporal logic I am using is that there is no
"next time" operator. There is no way in this logic to express the concept
of the next state in the behavior. In fact, no formula in the logic ca. distin- 0
guish between two behaviors that differ only in the addition of "stuttering'
actions-that is, where an action s- t in the behavior is replaced by the
finite sequence of actions
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5.4 Renaming

Having already extended the renaming mappings to predicates, it is easy to
extend them to temporal logic formulas constructed from predicates. For
example, for any variable names v and w, we have 0

Ps,- o ( v V<>w)) = o (ps,-(v)V >pSa(V))

Thus, if T is the substatement S, -1 of S,

ps., : "rC(T) - "r(S)

The renaming mappings do not induce any mappings on behaviors. This
is because they map states and atomic-action names in opposite directions:

p .,: S(S)--. S(T)
ps, : A(T) -A(S)

Since a behavior consists of an alternating sequence of states and action
names, the renaming mappings do not work on behaviors. This may be
the source of the difficulties encountered in trying to give a behavioral
semantics-one in which .MISI is a set of behaviors-to concurrent pro-
gramming languages

5.5 Temporal Logic as Semantics

For each statement S of the programming language, I have defined a set
%'(S) of temporal logic formulas, and a notion of semantic validity = for
these formulas. In an action-axiom semantics, the meaning of S includes a
set of temporal logic formulas that must be satisfied by the behaviors of S.
This set of formulas is specified by giving axioms and inference rules, which
means that we have a logical system and a notion of a provable formula. I
will not discuss provability, and will restrict myself to validity.

I have defined a Jz A for a behavior a and a temporal logic formula A, S
but I have not defined the concept = A-validity of a formula. For any
formula A E Ta(S), one usually defines A to equal true if and only if
a .4 equals true for all behaviors or in B(S).

The formulas A for which = A is true are those that are true for all
sequences of states and actions from S, so their truth rests only on the 0
properties of S's sets of states and actions, not on properties of S's dynamic
behavior-for example, the formula r3 (x() E Z D (x2 > x)). A formula A
is said to valid for all behaviors in some subset E of B(S), written = A, if
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Intuitively, A <2 B means that B holds for at least as long as A does-that
is, A holds for a length of time < the length of time that B holds, so it
represents a "temporal <'.

I will extend the definition of TC(S) to include temporal formulas con-
structed with the operator < as well as 3 and <>. The unary operators can
be defined in terms of _<; for example, 13 A S true <2 A. Thus, the single
operator !g is all we need.

The operator <2 is defined in terms of :9 by
def

A< B --- (AV-,B)_<0 B

A little thought shows that

o1 =(A < B) df Vn : (Vm < n : o+m A) D O+I B
so A < B means that A holds for a length of time < the length of time that
B holds. The operators < and !q obey the same transitivity relations that
< and < do. For example,

(A_<9 B) A (B<-dC) D (A<-dC)-'+""-

I will use < to define a new type of temporal formula that is useful for
specifying actions. For any action name a E A(S) and any predicates P and
Q, I define {P)(a){Q} to be the temporal logic formula that means that 0
executing a starting in a state in which P is true can produce a state in
which Q is true. (It is just the ordinary Hoare triple for the atomic action a,
viewed as a temporal formula.) However, we must allow stuttering actions
of a which do nothing, and hence leave P true. The formal definition is

{P}(a){Q} deL P D (Act(a) < PVQ) .

Intuitively, o {P)(a){Q) asserts that if, P is true in the initial state of
or and the first one or more actions of o are a actions, then P V Q remains
true through the first state before the first action that is not an a action.
If Q D -,Act(a) holds, which is the only case in which this is formula will
be used, then Q will be true only after the last of these initial a actions.
Hence, it asserts that a can perform a series of stuttering actions leaving P
true, and can also "finish" by making Q true.

The formula {P}(a){Q} is used to describe how an action can change the
state. It is also necessary to state that an action does not change something.

I therefore introduce the formula e -/, which asserts that the action a does
not change the value of the expression e. It is defined by

def-
e = V:(e=q) D Act(a)< (e=r)
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C'+ On+2
n Sn+t ..'

unless a is finite and n is less than the length m of a, in which case a + n

is defined to be the sequence consisting of the single state 8m* We define
a = A inductively as follows. 0

def "

" If A is a state predicate, then or A - so A. (The value of a
state predicate is its value in the starting state.)

" If A is an action predicate, then o A ef a,1  = A. (The value of an S
action predicate is its value for the first action.) However, if a consists

of the single state so with no actions, then o = A def false.

" The logical connectives "distribute" in the obvious way. For example,

o (A V B) def (o, A) V(a B)

" The temporal operators are defined by

a C30A dLY Vn o,+" A
def + n  A -3 n :o A i.

Note that < is the dual of 03 -that is, 12 A -"-',A for any A. The
operator i'-. is defined by

det S
A B- L B = O(ADOB)

Note also that 0 -A has the intuitive meaning that A is true infinitely
often.

5.3 The Binary Temporal Operators

While the unary temporal operator 03. and the operators derivable from
it, are quite natural and easy to understand, they are not sufficiently ex-
pressive. We need an additional binary temporal operator. There are many
binary operators that are equivalent in the sense that one can be represented .
by another. My favorite one, introduced in [6], is the operator :, whose
semantics is defined as follows.

a=(A B) d__ Vn:(Vm n:a+ma A) D or B
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is a predicate containing the free logical value variable X, the bound logical
value variable q, and the two program variabies x() and y(S, -j) in "V (S).
For any predicate P and state s of S (S), s H P is a formula involving values
and value variables.

An action predicate of S is an expression of the form Act(S, -y), where B
S, -y is a substatement of S. The action predicate Act(S, -y) defines a boolean-
valued function on the set A(S) that has the value true on an action-name
a if and only if a is the name of an atomic action of the substatement S, -1.
I write a H Act(S,-y) to denote the value of Act(S,-y) on a. Remembering
that atomic-action names are just components S, i of S, we see that S, p
Act(S, -y) equals true if and only if p = y , v for some v.

Let PR(S) denote the set of all state and action predicates of S. Since
state predicates are built out of variable names and action predicates are all
of the form Act(S, -y), the renaming mappings induce mappings on predicates
in the obvious way. If T is the substatement S, -y of S, then

Ps,.: P (T) -. PR(S)

These renaming mappings satisfy the expected relation (2). Moreover, if P
is a tautotology of PR(T), then ps,, is a tautology of PR(S).

5.2 The Unary Temporal Operators

I will begin with the simpler form of temporal logic, using only unary tern-
poral operators. The formulas of this logic are constructed from predicates,
the usual logical operations, and the two unary temporal operators 0 and "
[I. More precisely, for any statement S, the set T7C(S) of temporal logic for-
mulas of S consists of all formulas constructed from PR(S) with the logical
operators and the unary operators 0 and o3.

Just as predicates are true or false for states, temporal logic formulas are
true or false for behaviors. Let B (S) denote the set of all finite and infinite
sequences of the form

S0 - 8 . (5)

where the si are states in S(S) and the ai are atomic-action names in A(S).
We give a semantics for temporal logic formulas by defining a H A for any
behavior a in B(S) and any temporal logic formula A in T(S).

If o is the sequence (5), for any nonnegative integer n let o,+ be the
sequence
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5 Temporal Logic

In the action-axiom semantics, I use temporal logic to express the con-
straints describing when an action must eventually occur. Temporal logic,
introduced into the study of concurrent programs by Pnueli [131, is now S

quite familiar. I will therefore only sketch the logic that I will need, and
refer the reader to [51 and the appendix of [6] for more details.

5.1 Predicates

The building-blocks of our temporal logic are predicates. For any program
statement S, I define a set of predicates. There are two kinds of predicates:
state predicates and action predicates.

A state predicate of S is just an expression constructed from variable
names in V (S), including control variable names. For example,

at(S,) v -,b() D (S,)= y() + 1

I will also include as predicates such expressions as v E Z, where v is a
variable name and Z denotes the set of integers.

Since a state in S(S) assigns a value to all variable names in "V(S), it
assigns a value to a predicate. For any state s of S(S), I denote by a = P
the value assigned to the state predicate P by the state s.

A predicate is normally a boolean-valued expression, but I have not
restricted predicates in this way; y() + 17 is just as much a predicate as -40.
The reason is that there is no way of knowing whether an expression has a
boolean value without knowing the types of all its variables, and the types
of undeclared variables are not known. We must have rules for computing
the value of y() + 17 even when the value of yo is true. I will handle this
problem by adding an additional undefined value, and define true + 17 to
equal undefined.

The presence of an undefined value means that we must be careful when S

manipulating expressions, since the usual rules of arithmetic and logic don't
hold. For example, x + 1 > x does not equal true if x is a boolean. However,
x E Z D (x + 1 > z) should always have the value true,

It is necessary to allow predicates to have logical value variables (not to
be confused with program and control variables) and quantifiers. Thus, S

V" :X +x > y(S, -) +q
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These renaming mappings satisfy (2) and (4).
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Since action names are just the names of substatements, the renaming
mappings can be applied to them in the usual way. Thus, if T is the sub-
statement S, -y of S, then

ps,. : .A(T) A- .(S)

is defined in the obvious way-namely, ps,-1(T, p) = , A p.

4.6 States and Actions: A Formal Summary

For every statement S in the language L, I have defined the following:

e A set 'V(S) of variable names, consisting of:

- all program-variable names of the form x() for every identifier x
and of the form z(S, -y), where -y is the selector in S of a new z
statement.

- all control-variable names of the form at(S,-y), in(S,-y), and
after(S, -y), for all substatements S, -y of S.

* The set S(S) of states of S, which is defined defined to be the set of
all mappings

vat: V(S) -- Z U (true, falve}

e The set A(S) of atomic-action names of S, defined to be the set of all
components of the form S, -y where S, -y is a while or if test, an atomic
assignment, or an mit clause of a new statement.

e If T is the substatement S, -y of S, the renaming mappings

ps, : ~V (T) -) V(S)
p S: S(S) S (T)ps,-, : .(T) -A A(S)

of program 11, and consider the 42 steps in the machine-language implementation ir of
TI that execute statement S. As mentioned earlier, 41 of them will be stuttering actions
that leave the value of z unchanged. Before the first 41 steps have been executed, ir's

state may no longer have the information needed to deduce the initial value of z. For
example, after 20 steps, the state of ir may show that z will wind up with the value
4, but may not show whether it started equal to 2 or -2. This means that the single
nonstuttering action must be among the first 20 steps, and the remaining steps must
be stuttering actions of the statement following S. If S is the last statement of 1, then
these remaining steps are A actions.
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, , = 0 PT,6 (2)

By taking this equality to be a definition, we can formally define ps,-, for any
selector -y by defining it for all primitive selectors. This formal definition
should be obvious and is omitted.

Let T be the substatement S,y of S. A state val of S(S) is a mapping
from '(S) to values, and ps,-7 is a mapping from 1V(T) to V(S). The com-
position val a ps,-, is therefore a mapping from from V (T) to values, which
is a state in S(T). Thus, the mapping ps,-y induces a mapping

s (S) - S(T) S

from states of S to states of T, defined by

e.1(Val) :Lef o Ps,Y (3)

for any val E S(S).4

It follows easily from (2) that the mappings p,, satisfy the following 0
"adjoint" form of (2).

Ps,,6 = PT1,6 0 , (4)

4.5 Actions

The states of S are defined using the set *V(5) of variable names. The
actions of S will be defined in terms of a set A(S) of atomic-action names
of S.

The atomic actions of S are the components written in angle brackets.
In the language L, there are just four kinds of atomic actions: assignment
statements, if tests, while tests, and it clauses (of new statements). (I
assume that the initial-value assignment of the new statement is performed
as a single atomic action.) The set A (S) of atomic-action names of S consists
of the set of all components S, -y of S such that -y is a selector for one of the
following: an assignment statement, the test component of an if statement,
the test component of a while statement, or the init component of a new
statement. For reasons having to do with defining compiler correctness that
are irrelevant to the remainder of this paper, if H is a complete program,
then A(HI) is defined to contain one additional action name: the name A,
which is the name of a null action.5

4The renaming mapping p-,, has no connection with the mapping F discussed in Sec-
tion 2.4.1 between the states of an implementation and the states of a higher-level
program.

SThe following example shows why the A action is needed. Let S be the statfnent

B
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It would therefore seem that we should add types and aliasing informa-
tion to the state. In fact, we needn't. The reason is that, in language L,
types and aliasing relations are static properties; they do not change during
execution of the program. Executing an action of L does not change the type
of a variable or any aliasing relations. (We sometimes think of executing a
new statement by first executing its declarations, but that makes no sense
because declarations are not actions.)

In a more complex language, types and aliasing relations can be dy-
namic. For example, in Pascal, if z is a variable of type pointer, then the
aliasing relation "XT is aliased to y" is dynamic, since its truth is changed
by assigning a new value to z. In these cases, it may be necessary to add
types and aliasing information to the state. However, in most languages,
aliasing relations among control variables will be static, and can be handled
the same way as in language L.

4.4 Renaming

For any statement S, let V(S) denote the set of names of variables of S.
A state vat of $(S) is a mapping that assigns a value to each variable
name in V (S). For a compositional semantics, we must be able to derive
information about the states of S from information about the states of
its component substatements. This requires the fundamental concept of a
renaming mapping.

Let statement T be the substatement S, -y of S. Every variable of T is a
variable of S, except that it may be known by a different name. I will define
Ps,-, to be the mapping on names such that if v is the name of a variable in
T, then ps,.(v) is the name of the corresponding variable in S. Hence,

Ps, (T) V(S)
The variable x(T,i), which is the variable of T with identifier x that is

declared in the new statement T, A, is called by the name z(S, y, p) when 5
it is regarded as a variable of S. Thus,

Ps, (x(T, I)) = x(S,y , p)

A variable that has the name x() as a variable in T is undeclared in T.
If it is undeclared in S, then it has the same name as a variable of S, so
ps,-(xO) = zO. However, if it is declared in the new x statement S, V, so
v is a prefix of -y, then ps,.(xO) = x(S, v).

The renaming mappings compose in the natural way. If T is the sub-
statement S, -f of S, then for any substatement T A of T, we have
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I therefore prefer to use the term implicit variables for variables other
than ordinary program variables. Some languages employ other implicit
variables besides control variables. For example, a language that provides
a buffered message-passing primitive will contain implicit variables whose
values describe the set of messages in the queues.

Ordinary program variables may be free (undeclared), like x0, or bound
(declared), like x(S, -y). I have written all control variables as bound vari-
ables, but are they really bound? Remember that the free variables are
interface variables and bound variables are internal ones. In order to use a
compiled version of a statement S, one must know where its starting and
ending control points are, but need know nothing of its internal control
points. This suggests that at(S), in(S), and after(S) are interface variables
for statement S, while, for any non-null selector y, at(S, -y), in(S, -y), and
after(S, -y) are internal variables. The control variables at(S), in(S), and
after(S) are best viewed as undeclared and might better be written as ato,
ino, and after 0. (They are not written that way both for historical reasons
and because it would tend to be confusing.) These variables are implicitly
declared, and aliased to other control variables, when S is written as part
of a larger statement.

4.3 Are There Other State Components?

Does a mapping val from variable names of S values tell us everything we
need to know about the current state of S in order to determine its future
behavior? At first glance, it might seem that it doesn't. For example, what
is the effect of executing

8: X := y + I

when the value of y is 17? The answer depends upon the type of x. If x is
of type integer, then the execution sets z to 18. However, if : is of type
boolean, then executing s produces an error.

Moreover, suppose z is of type integer and y = 17, so executing 3 changes
the value of z to 18. What does this execution do to the value of y? If y
is not aliased to z, then its value is left unchanged. However, if s appears
inside the statement

new y : integer alias x in ... n!

then the value of y is also changed to 18.

0
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in(S, -y): control is at the beginning of or inside S, y, but not at its exit
point. Note that at(S, -y) D in(S, -1) is always true.

after(S, -y): control is at the exit point of S, -y-that is, at the point just
after its execution is completed.

In addition to complete substatements, the at, in, and after variables are
also defined for certain parts of statements that denote atomic operations-
namely, the test of an if or while statement and the init clause of a new
statement (if it has one). Also, the control variables at(fl), in([]), and
after(H) are defined for a complete program in.

The statement u above thus has eight control variables: at(u), in(u),
after(u), at(s of u), in(s of u), after(s of u), at(t of u), in(t of u), and
after(t of u). They are not all independent, however, since we have

at(u) = at(s of u)

after(u) = after(t of u)
in(u) = in(sofu) A in(tofu)

after(s of u) = at(t of u) (1)

These equations represent aliasing relations between the control variables.
The study of these aliasing relations is deferred until later.

The mapping val that assigns values to variables must assign values to
the control variables as well as the ordinary program variables. Of course,
we must assume that at, in, and after are not identifiers, so they cannot be
used for ordinary program variables.

Variables like at, in, and after are sometimes called "dummy" or "ghost'
variables. This seems to imply that they are not as real as ordinary pro-
gram variables. Indeed, I have found that many computer scientists regard
their use as somewhat distasteful-perhaps even immoral. Control vari-
ables are every bit as real as ordinary program variables. They differ from
program variables only in that the programmer does not explicitly write
them. Every programmer knows that he can often simplify a program's
control structure-that is, eliminate control variables-by adding program
variables; and, conversely, he can eliminate program variables by using a
more complex control structure-that is, by adding control variables. A
compiler handles both kinds of variables in very much the same way; in the
compiled version of a program, the values of program variables and control
variables are both encoded in terms of the contents of memory registers and
program-location counters.
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and action names. The names of interface variables and external actions
represent fixed, externally defined objects.

B
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6 The Semantics of Language L

With these preliminaries out of the way, I can now give the semantics of
language L. This is done by defining the meaning A ISI of S, where S is any
statement or complete program. I define MIS] to consist of a set of temporal S
logic axioms that specify the set of behaviors of S. As discussed below, for
a complete program II, I will also need one nontemporal axiom-that is, a
predicate-to specify the starting, state.

The basic idea behind achieving a compositional semantics is the re-
quirement that any axiom asserted about a statement T must be valid for a
any statement containing T as a substatement. Of course, an axiom about
T must be renamed to become an axiom about a statement containing T.
The formal statement of this idea is:

Composition Principle: If T is substatement S, - of S, then for .
any formula A: if A E M[T) then ps,-,A E MIS, 1.,

6.1 Syntactic Predicates

I observed in Section 4.3 that there is information we need in order to define
MISI that is not in the state of S-namely, type and aliasing information. .
This information is not in the state because it is determined syntactically and
does not change during execution of S. Unfortunately, it may be determined
not by the syntax of S, but by the syntax of the complete program containing
S. For example, the aliasing relations defined by a new statement are not
known when defining MIS] for a statement S in its body. 6

For our simple language L, typing information can be handled by ordi-
nary axioms; the fact that a variable v is of type integer is expressed by the
requirement that the value of v always be an integer. Aliasing relations can
also be expressed by similar requirements-for example the aliasing relation
defined by 0

new z : gauslan alias z + yvlCT in ...

is expressed by requiring that the value of -(S) always equals the value of
x() + yV()/-_1. However, the fact that z(S) is not aliased to the variable a()
cannot be expressed in this way. 0

The absence of aliasing relations is expressed with a new relation 1,
where v I w means intuitively that assigning a value to the variable named
v does not change the value of the variable named w, and vice-versa. An
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ordinary state predicate such as v = w, which asserts that the values of v
and wv are equal, is true or false for a particular state. However, the truth
of the expression v -L w depends only upon the syntactic structure of the
program; it is true for one state of S if and only if it is true for all states of
S. S

An expression like v I w, whose value is a boolean that depends only
on the program syntax, is called a syntactic predicate. Unfortunately, if v
and w are undeclared variables of S, then the value of v .. w depends upon
the syntax of the program that contains S, and its value is not determined
when we are defining MIS]. Thus, a syntactic predicate either has a definite 6
boolean value, or else has an undetermined value.

I will allow syntactic predicates to appear in a temporal logic formula
of TC(S) anywhere that an ordinary state predicate can. However, there is
no reason to write 0(v I w), since if v .I w, is ever true, then it is always
true for every state of S. Formally, a syntactic predicate in a temporal logic 0
formula of ',C(S) is viewed as a boolean constant if its value is determined
by S, and as a logical variable if its value is undetermined.

Formally, a syntactic predicate appearing in an axiom of M[S] is a con-
stant if its value is determined by S, and it is a logical variable if its value is
not determined. Thus, writing the syntactic predicate x(S,'-) I y(S,14) is
simply an "abbreviation" for either true or false, since the aliasing relations
of variables declared in S are determined. On the other hand, a syntactic"--
predicate such as x() - y() represents a logical variable, since aliasing rela-
tions between undeclared variables are undetermined. Because there is an
implicit universal quantification over all free logical variables in an axiom,
an axiom containing a syntactic predicate is asserted to be true whatever
value is assigned to it.

We can apply renaming mappings to syntactic predicates in the obvious
way. Thus, if P is a syntactic predicate for T, and T is the substatement
S, I of S, then ps,.,(P) is a syntactic predicate for S. When the predicate
P occurs in an axiom A of .MITI, the expression ps,-,(P) occurs in ps-(A),
which, by the Composition Principle, is an axiom of JM[S]. A little thought
reveals that. to ensure the validity of the Composition Principle, we want
the following property to hold:

Syntactic Composition Property: For any syntactic predicate P:
if the value of P is defined for T, then the value of ps,.(P) is.
also defined for S and equals the value of P.

The use of syntactic predicates is not really necessary. I could include
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the information that they express in the state. Had I done so, a syntactic
predicate having an undetermined value would become a component of the
state, and S(S) would include states having all possible values of that pred- - . -

icate. A syntactic predicate whose value is determined in a statement S
could be represented either as a state component constrained to have only B
one possible value, or as a constant.

6.1.1 Aliasing

The absence of aliasing will be expressed by the relation I between variable
names in V (S). This will be done axiomatically by defining a logical system
for deriving I relations To do this, I must first introduce a relation -<,

where v -• {wi, ... ,w,j means that the variable name v is not directly
aliased to any variable names other than wt,..., Wn. It is convenient to
extend this relation to a relation between sets of variable names, where
{vI, ... , V.) - (wI,. . . , wn} means that each of the variable names vi is not
directly aliased to any variable names other than the wi. We then have the
obvious inference rule:

For any sets V,W E ")(S): if V' C V, W _ W', and V • W,
then V' -<W1.

The relation I on *(S) is defined so that v I tw means that neither v
nor w is aliased, directly or indirectly, to the other. In other words, it means
that v 6 w and there do not exist both a chain of • relations from v and
a chain of -< relations from w that lead to a common variable name. This
leads to the following rules for deriving I relations. .. .

" If v • 0, w 0 0, and v w u, then v I w.

" If v ± w then w. ±v.

0 Ifv -< (t,...,W }, w I w, ... ,wn I , and v # w, then v I w. S

I extend I to a relation on finite sets by letting (vl,... ,vn} I (w,....,Wn

denote Vij : v i .I w.
Having given general rules for reasoning about -<, I must define the

relation for variables names in S(S) for an arbitrary statement S. The value
of a syntactic predicate V -• W or V I W will be undetermined if V and W 
both contain the names of undeclared variables of S. To define the values of
the ones that are determined, I will take the Syntactic Composition Property
as an axiom, and give a recursive definition based upon the structure of S.
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The first observation is that a program variable cannot be aliased to a
control variable, and vice-versa. [ therefore require that v I w equal true
whenever v is a program variable and w is a control variable.

Since the only dependency relations on program variables are introduced
by the alias clauses of new statements, all dependency relations among
program variables are obtained from the Syntactic Composition Property
and the following axiom:

If S is the statement new x ... alias exp ... and yi, ... , yn are
all the variable names in exp, then x(S) -< {IY0,... Yn()}.

I must now define the dependency relations on control variable names. I
will do this by assuming the Syntactic Composition Property and defining
the relations introduced by each language construct. There are a number of
aliasing relations that are similar to the ones introduced by an alias clause,
except that the aliasing relations for the control variables are implicit in
the program structure rather stated explicitly in a new statement. To
define the -< relations, I will write down these aliasing equations, where the
control variable comprising the left-hand side of an equation is considered
to depend upon each of the variables on the right-hand side. There is one
set of equations for each programming language construct.

Besides these aliasing equalities, some other aliasing relations are given
as boolean expressions-that is, asserting that the boolean expressions are
true. No dependency relations are implied by these expressions, but they
are listed here for future reference.

There is only one axiom that explicitly defines _L relations; it is given
for the cobegin statement.

assignment in(S) = at(S)
-i(at(S) A after(S))

if in(S, test) = at(S, test)
after(S, test) = at(S, then) V at(S, else)
at(s) = at(S, test)
in(S) = in(S, test) V on(S, then) V in(S, else)
after(S) = after(S, then) V after(S, else)
-' (at(S, test) A (in(S, then) V in(S, else) V after(S)))
-,(in(S, then) A in(S, else))
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while at(S) = at(S, test)
in(S, test) = at(S, test)
after(S, test) = at(S, body) V after(S)
after(S, body) = at(S, test)
in(S) = at(S, test) V in(S, body)

-(at(S, test) A (after(S) v in(S, body)))

new There are two cases. If there is no Wit clause, then:

at(S) = at(S, body)
after(S) = after(S, body)

in (S) = n(S,body)

If there is an Wit clause, then:

at(S) = at(S, init)
in(S, init) = at(S, init)

after(S,minit) = at(S, body)
in(S) in(S, meit) V in(S, body)

after(S) = after(S, body)
-i(at(S, mnht) A in(S, body))

cobegin If there are n clauses in the cobegin, then

at(S) = at(S, 1) A ... A at(S, n)
after(S) = after(S, 1) A... Aafter(S, n)

in(S) = in(S,1)A...Ain(S,n)
I(in(S, i), after(S,i)) _L {in(S, j), after(S, j)) for i 9 j

sequence If S is S1; ... S,, then for all s ,.. n:

after(S, i- 1) = at(S, i) if i > 0
in (S) = in (S, i)

-i(in (S, i) A in (S, j)) for # 76

program If S is the complete program, then

at(S) = at(S, body)
in (S) = in (S, body)

after(S) =after(S, body)
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A close study of these aliasing relations reveals that we can prove a
relation such as in(S, -1) 1 at(S, p) if and only if the substatements S, -y and
S, p lie in different clauses of a cobegin.

The I relations among program variables and the aliasing and I rela-
tions among control variables are regarded as axioms in a separate system
for reasoning about syntactic expressions. However, they play the same
function as axioms of M[S. For example, if S,y is an assignment state-
ment, then the aliasing relation -,(at(S, y) A after(S,-y)) allows us to deduce

"(-at(S, -)) from Oafter(S, -).

6.1.2 Syntactic Typing Relations

Because the type structure of our language L is so simple, no explicit ref-
erence to types need appear in its semantics. However, this is not the case
for a language in which the action of an assignment statement is affected S
by the types of its left- and right-hand sides-for example, if coercion was
performed. We would also have to introduce explicit reference to types if a
type mismatch in an assignment statement produced a run-time error or an
indeterminate result, or if it halted the process executing the assignment.

Explicit reference to types is done by introducing predicates such as
type(x) = integer. If the types of variables are determined syntactically
by the program text, then these predicates would be syntactic predicates.
Otherwise, they would have to be ordinary state predicates, and the state
would have to include components that determine their values.

.0
6.1.3 Reasoning About Syntactic Expressions

Although a syntactic predicate like v I w resembles an ordinary state predi-
cate like v = 7, it is logically quite different. The variable name "v" denotes
the value of the variable in the expression v = 7, while it denotes the name
itself in v .I w. For example, from the expressions v = 7 and v = v we S
can deduce w = 7. However, from the syntactic expression u I v and the
ordinary expression w = v we cannot in general deduce u I w; just because
the values of two variables happen to be equal in some state does not im-
ply that the variables have the same aliasing relations. We can only make
that conclusion if w = v is a syntactic equality of names, rather than an
expression denoting equality of values.

By introducing syntactic predicates as a class of entities separate from
ordinary state predicates, with their own logical system for reasoning about

O
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them, I have circumvented the need to distinguish between the use of a
variable name as a name and as a value. In a syntactic predicate, a variable
name represents itself. In a state predicate, it represents the value of the
variable. Using two different logical systems avoids confusion. One cannot
make invalid deductions, like deducing a I relation from the equality of the
values of v and wv, because inferences about I can be made only in the logic
for reasoning about syntactic predicates, whereas equality of values can be
expressed only with state predicates, and one reasons about them with a
separate logic.

For languages in which types and aliasing relations are dynamic prop-
erties, so they must be reflected in the state, we cannot use this trick for
separating tbe two different uses of variable names. We must then write
value(v) rather than the variable name v to denote the value of v. Equal-
ity of values is denoted by the predicate value(tv) = value(v), and wv = v
denotes equality of names.

6.1.4 Logical Name Variables

Just as I introduced logical value variables in state predicates, I will also
introduce logical name variables for syntactic predicates. A logical value
variable is a logical variable with an implicit range in the set of values that
a variable may have. Similarly, a logical name variable is a logical variable
with an implicit range in the set of names that a variable may have. I will
use the letter v to denote a logical name variable.

The use of logical name variables has an important implication with re-
spect to renaming. Consider an axiom of the form Vv :A(L/). Viewed as
a formula in TZ(S), it is equivalent to an infinite conjunction of the form
A(vl1) A A(v-2 ) A .. ,where the vi are all the names in 'V(S). However, the
two formulas behave differently under a renaming mapping p. In particu-
lar. p(Vv :A(LA)) equals Vv :p(A(v)), so the renamed formula includes a
quantification over variable names not present in p(A(vl) A ... )

6.2 Starting States

One might expect that the meaning .MIS] of a statement S should include
a set of axioms that determine the set of starting states. However, consider
what the initial value of a program variable should be. The user has no way
of specifying it, since an init clause of a new statement is interpreted as an
executable action that replaces the initial value with the specified one. One
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might want to specify that the initial value of a variable v of type integer
should be an integer. However, MIS] will contain an axiom asserting that
this is true for every state during the execution of S, so it is therefore true of
the initial state. Similarly, the axioms in MIS] will assert that the aliasing
relations specified by new statements are true throughouit the execution, so
they are also constrained to hold in the initial state.

What about the initial values of control variables? Surely we should
require that a statement S should start in a state in which at(S) is true.
However, this would be a mistake because it would violate the Composition
Principle, since pT;, 2(at(S)) should not be true of the starting state of the
sequence of statements T; S, and our whole approach is based upon the
Composition Principle.

Remember that the only reason for specifying the starting state is to
be able to obtain from our semantics a set of behaviors. However, we are
really interested only in the set of behaviors of a complete program, not
of its substatements. There is no reason to constrain the starting states
of substatements; we need only constrain the starting state of a complete
program, which we do by simply assuming that at(f) is true of the initial
state of a complete program H. We can do this without violating the Com-
position Principle because a complete program cannot be part of any larger
statement.

6.3 Behavior Axioms

I now define the set .M[S] of behavioral axioms for any statement and com-
plete program S. This will, of course, be done compositionally, giving a
set axioms for each language construct. Remember that in addition to the
axioms given explicitly below, .M[S] also contains all the axioms implied by
the Composition Principle.

I will include in J4ISI axioms to assert that the appropriate aliasing
relations hold throughout the execution of S. For control variables, those
aliasing relations were already described in Section 6.1.1. Rather than write
them over again, I will simply assume that the aliasing relations described
there appear as axioms in Mv[IS] for the appropriate construct describing S.
For example, the list of axioms for the assignment given below are assumed
implicitly to include the axioms in(S) = at(S) and -,at(S) A after(S) from
Section 6.1.1. (However, the I relations given for the cobegin, being syn-
tactic predicates, are not axioms in MIS].)

In addition to the aliasing relations for control variables, we should also
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assert their types. Therefore, we implicitly add the axiom v E {true, false}
to XI S] for every control variable v in 1;(S).

There are also axioms relating the action predicate Act(S) to the action
predicates of its components. For example, the axioms for a while statement
S would include the following:

" Act(S) Act(S, test) V Act(S, body)

" -(Act(S, test) A Act(S, body))

The first asserts that the only actions of S are the test action and the S
actions of its body; the second asserts that the test action is not an action
of the body. These and similar axioms are assumed for all the constructs
and are not included. Note that these axioms are given only for compound
statements; there is no such axiom for the assignment statement.

In the following description of the axioms, formal axioms are followed S
by their informal explanations. For any programming-language expression
exp, I let exp() denote the expression obtained by replacing every identifier
y in exp by the variable name yo.

6.3.1 Assignment ,o

If S is the statement (x := exp), then XIfS] contains the following axioms:

1. Act(S) D at(S)
The atomic statement S can be executed only when control is at S.

S
2. Vrj : (at(S) A exp() = q}(S)(after(S) A x() = q}

Executing S sets the value of z to exp and changes control from at(S)
to after(S).

3. Vv: fxO, at(S), after(S)} I , D v
(Note that v is a logical name variable.) The statement S does not
modify any variable not aliased to x, at(S), or after(S).

4. 00,4ct(s) D -,at(S)

There cannot be infinitely many actions of S while control remains
forever at S. (The reader may find this easier to understand if he S
replaces the implication by a disjunction.) In other words, there can
be only finitely many stuttering actions of S before the assignment is
executed.
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An understanding of these axioms for assignment is crucial to an ap-
preciation of how action-axiom semantics works, so some further discussion
of them is in order. The four axioms are indeed action axioms, since they
describe the behavior of the assignment action S. The four axioms assert
the following:

1. When the action may occur.

2. What changes to the state components executing the action may per-
form.

3. What state components the action may not change.

4. When the action must change the state.

Every atomic program action is described by four similar axioms.
Note that axioms 1-3 assert safety properties, while axiom 4 states a

liveness property. From the axioms for the other statements, it will follow
that in language L, if at(S) ever becomes true, it can be made false only
by executing action S. Axiom 2 asserts that at(S) can then become false
only when after(S) becomes true and the assignment of exp to x occurs.
In a richer language, executing another statement might make at(S) be-
come false-for example, by aborting the process containing statement S.
However, Axioms 1-4 would still be valid.

Observe that Axiom 2 determines the value of z immediately after exe- -

cution of S. However, it asserts nothing about x's value after the execution
of any other action.

For language L, Axiom 4 implies that if at(S) is true then eventually
it will become false (thereby making after(S) true). However, this depends
upon the fact that that L does not have any form of unfair cobegin. The
axiom is valid for more general languages that do have these features.

It is instructive to consider what these axioms imply in case statement S
appears inside declarations that produce a type mismatch-say in which x is
of type integer and exp of type boolean. The axioms for those declarations
will imply that the value of x is always an integer and the value of exp is
always a boolean. It then follows from Axiom 2 that executing an S action
can never make at(S) false, since doing so would require setting the value
of z to a boolean, contradicting the axioms for the declarations. However, I
have already observed that, for language L, at(S) must eventually become
false. Thus, the set of axioms for the incorrect program-the one producing
a type mismatch in statement S-are contradictory, implying that only
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the empty set of behaviors satisfy them. However, in a richer language, ' -

if S were contained inside an unfair cobegin, then the axioms might not
be contradictory, and might be satisfied by a behavior in which a process " -

remained stalled forever with at(S) true. In this case, the type mismatch
would force that process to "die", allowing other processes to proceed.

6.3.2 The if Statement

If S is the statement if (ezp) then ... ,then the following axioms are in
.MIS]. They are the standard four action axioms-in this case, for the test
action. Note their similarity to the corresponding axioms for the assignment
statement.

1. Act(S, test) D at(S, test)
The test can be executed only when control resides at it.

2. (at(S, test))(S, test){J[at(S, then) A expOl V [at(S, else) A -,expol}
Control remains at the beginning of the test until it either reaches the
entry point of the then clause with exp true, or else it reaches the
entry point of the else clause with ezp false.

3. Vt : {at(S, test), after(S, test)) I v D v, .
The test does not modify any variable it shouldn't. (Again, v is a
logical name variable.)

4. C3<>Act(S, test) D )-at(S, test) ..

There can be only finitely many stuttering actions of the test before it
is really executed. This is the only liveness axiom for the if statement.

6.3.3 The while Statement

The axioms for the statement while (exp) do ... are analogous to the ones
for the if statement, and are given without comment.

1. Act(S, test) D at(S, test)

2. {at(S, test)}(S, test)((at(S, bodyI) A expo) V (after(S) A -'expo)}
S, test

3. Vv, (at(S, test), after(S, test)) . v, D v.

4. 00,Act(S, test) D O-'at(S, test)
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6.3.4 The new Statement

The new statement is a declaration. If it has no inlt clause, then it performs
no new action. The axioms describing this statement therefore do not follow
the pattern for action axioms followed by the preceding statements. Instead,
they assert relations that hold throughout the execution.

If S is the statement

new x : type in ...

then the following axiom is in M[S], where we identify integer with the set
Z and boolean with the set {true,false}.

I. x(S) E type
The value of x is always consistent with the type declaration.

If S is the statement

new z : type alias exp in ...

then AM [S] contains the above axiom plus the following:

2. x(S) = exp()
The aliasing relation always holds.

If S is the statement

new x : type inlt ezp in ...

then the following axioms hold. The first is, of course, the same as for the
other versions of the new statement. The last four are the action axioms
for the initial-assignment action, following the standard pattern. They are
almost identical to the corresponding axioms for the assignment statement,
the only difference (in axiom 3 below) indicating that the it clause per-
forms an assignment to the variable x(S) declared in the new statement
rather than to the undeclared variable xO.

1. x(S) E type

2. Act(S, mu) D at(S, init)

3. Vq : (at(S, init) A exp() = rj}(S){after(S, init) A x(S) rj}

4. Vv: {x(S), at(S), after(S)} I v D v /.

5. 0O<Act(S,,nit) D <-at(S,,nit)
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6.3.5 The cobegin Statement

If S is the statement

cobegin S, 0 ... 0 S. coend

then the following axiom is in MIS].

1. Vi s.t. 1 <i < n: (1>Act(S)) D (OoAct(S,i))
If S performs infinitely many actions, then each process of S performs
infinitely many actions. In other words, if S is never starved, then no p
subprocess of S is starved. This is the fairness axiom.

6.3.6 Sequences of Statements

No new axioms are needed for the sequence of statements S1 ; ... ; Sn. All
necessary properties are obtained from the aliasing relations among its con-
trol variables, the relations among its action predicates, and the Composition
Principle.

6.3.7 A Complete Program

If H is a complete program, then the only additional axiom in .v. IHJ is:
i. in(n) D Act(n, body) ".

The complete program never stops executing until it reaches the end,
whereupon in(H) becomes false.

This axiom asserts the absence of any external actions while control is in
progam H, reflecting the absence of any explicit input or output in language

L.51
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from the axioms for the corresponding construct given here in Section 6.3,
together with the Composition Principle.

As described in [9], other logical systems for proving safety properties of
concurrent programs can be described in terms of GHL, so the soundness
of GHL can be used to prove the soundness of the other systems. GHL is
manifestly not a complete system for reasoning about concurrent programs,
since it does not address questions of liveness. It is not clear how to use our
semantics to prove completeness of GHL for the class of properties it can
express.

A method for proving liveness properties of programs is given in [12]. It
considers a simple language that is essentially the same as language L except
without the new statement. The method explicitly assumes a complete
program 1I, and is based upon temporal logic plus the following single axiom:

Atomic Action Aziom: For any atomic action I, -y of Hf:

at(rl,7) Oafter(II,7) IO

To prove the soundness of this axiom, we must show that

C3(in(ll,'y) D *Act(rl,'y))

holds for every substatement and atomic action 1I, - of 11. This is intu-
itively clear, since the language contains only fair cobegin statements, and
is derivable from our axioms by induction on the size of If. The above
Atomic Action Axiom then follows easily from our liveness axiom for com- P
plete programs, the liveness axioms for the individual statements, plus the
Composition Principle. The additional axioms given in [12] for weakly and
strongly fair semaphore operations can similarly be derived from the ones I
gave earlier.
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8Conclusion

I have given an axiomatic semantics for a simple concurrent programming
language L, and have indicated how the same method can be applied to
more complicated language constructs. Most of this paper has been devoted
to developing the fundamental ideas upon which the method is based. The
axioms themselves are reasonably simple-simple enough so I feel that they
do provide an understanding of the language constructs. For example, the
difference between a weakly fair and a strongly fair semaphore is described
quite concisely and precisely by their respective axioms.

A programming language semantics provides a logical basis for a proof
system for reasoning about programs in the language. One can talk about
the soundness and completeness of the proof system in terms of the seman-
tics. Note that it makes no sense to talk about soundness and completeness
of the semantics. Indeed, the semantics X[S] of a program can include con-
tradictory axioms; this simply means that there are no valid behaviors for

Sso there is something wrong with the program, not with the semantics.
The obvious task now is to investigate existing proof systems in terms

of this semantics. Unfortunately, such an undertaking is beyond the scope
of this paper. However, some brief remarks are in order. The Generalized
Hoare Logic (GHL) presented in [4] and [1] introduced at, in, and after
as predicates rather than variables. The relation 11 used in [4] is just the
relation I.

The semantics of GilL formulas was not stated with sufficient precision
in [4], since the relation between the statement S and its name, denoted 'S',
was never made clear. A close examination of G HL reveals that there is an
implicit complete program Hl, and that if S is the substatement 1, -Y of H1,
then a formula written in terms of S should really be written in terms of

To verify the soundness of GilL, one must express the GilL formula
(P) S (Q}I as a temporal logic formula. As explained in [9), it suffices to
consider the case P =Q, for which the definition is simply:

wvhere S is the substatement H1, -f of the implied complete program Hl. The
soundness nf the general rules for reasoning about GHiL formulas follows
easily from their interpretation as temporal logic formulas. The soundness of
the axioms and rules given in [4] for each language construct can be deduced
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VYIj (in(S) A [S](x() q)) (S) {after(S) A xO ui}

Note that the rules for reasoning about these generalized dynamic logic
predicates imply that

at(S) D ([S](z() = q) (exp = 0)

The liveness axiom for a nonatomic assignment is simply
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liveness requirements one could make in this case, since the value of the
expression exp could change. One reasonable possibility is the following:

riO(Act(S) A typevalid(x),exp()) D O.-at(S)

Allowing a more general form of aliasing, such as the one defined in [10],
presents a similar problem if one requires that an assignment which would
violate an aliasing constraint cause the rrocess to hang up. One approach
to this is to put the aliasing constraints in the state, just as I did with type
constraints. The new state components would correspond to the "location" 0
values often used to handle aliasing.

7.5 Nonatomic Operations

Every construct that I have mentioned specifies the atomic actions. For
example, I have defined the semantics only of an atomic assignment state-
ment. It is easy to give the semantics of an assignment statement with
smaller atomic operations. For example, an assignment

(x) := (exp)

in which the evaluation of exp and the changing of z are distinct atomic
operations can be represented by

(t:=exp); (Z:=t)

where t is an implicit variable. A similar translation is possible when the
evaluation of the right-hand side is broken into smaller atomic operations;
it is described in (4].

The situation changes when no atomicity is specified. For example, con-
sider an assignment statement x := y + 1 that has the expected effect only
if x and y are not modified by any other operation during the course of
its execution. If any such modification does take place, then x may be set
to any value consistent with its type. We can think of this assignment as a
compound statement for which we know nothing about its internal structure -.

except its partial correctness property (when executed alone) and the fact
that it always terminates (unless the process executing it is starved).

Handling such nonatomic operations requires a new class of state pred- •

icate-the "generalized dynamic logic" predicates [SIP introduced in [7].
The second assignment axiom for an atomic assignment is replaced by the
following one for a nonatomic assignment x := exp:
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While this method of handling procedure calls works only for nonrecur-
sive procedures, the basic idea applies to recursive ones as well. Replacing
a procedure call by the body of the procedure produces an infinite program
text for recursive procedures; but nowhere have I made use of the assump-

tion that the program text is finite. Of course, the compositional method of
rec-rsively defining M[S] no longer terminates with a finite set of axioms.

However, the definition can be viewed as an algorithm for enumerating an
infinite collection of axioms.

Thus, adding recursion means that I[S consists of an infinite set of
axioms. It is in this case that the distinction between a semantics and a
proof system becomes evident. An infinite set of axioms is unsatisfactory
as a proof system, because ordinary logic provides no way of deducing a

conclision whose correctness is based upon an infinite set of assumptions.
Such deductions are required to prove nontrivial properties of recursive pro-
grams. Thus, I have not provided a proof system for programs with recursive
procedures.

On the other hand, a semantics is concerned with validity, not proof.
The meaning of a program Hl is the set of behaviors that satisfy the axioms
in AMI1], and this is well-defined even for an infinite set of axioms. The
problem of proof systems is discussed in the conclusion. .

7.4 More General Types and Aliasing

Let us now consider a language in which a type mismatch does not pro-
duce an illegal program, but generates "incorrect" behavior. As mentioned
earlier, this requires adding predicates of the form type(x) = ..., which
are syntactic predicates if types can be determined syntactically and state
predicates if types are dynamic.

First, suppose that a type mismatch in the assignment x exp causes
x to be set nondeterministically to any value in its range. This is easily
represented by changing axiom 2 of the assignment to the following, where
typetaid(x, rq) is true if and only if the type of x permits it to be assigned
the value qt.

Vj: (at(S) A ezp() = q) (S)
(after(S) A (z() = rl V -type valid(x(,q))}

Next, suppose that a type mismatch causes the assignment to "hang up",
effectively deadlocking the process. This requires that axiom 4 be changed
so it does not demand termination in this case. There are several different
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Note that ps,j,.y(S,i, y, left0) is the exp of exp!f, with all component vari-
ables appropriately renamed, and similarly for psjM (S,j, p, left()).

It is straightforward to extend this approach to guarded communication
commands such as (ezp -- z?t), which means that the communication
action may be carried out only if exp has the value true. The new safety
axiom is obtained from the above in much the same way that the safety
axiom for the P(s) semaphore operation is obtained from the corresponding
axiom for the assignment statement-the guards here playing the part of
the enabling condition s > 0 for the P(s) operation.

There are several different choices of liveness properties that one can
require of these channels. They are all basically simple to express with
temporal logic formulas. However, their formal statement requires some
careful manipulation of syntactic predicates, which I won't bother doing.

The safety properties of CSP-like communication primitives are expressed
more easily with a formal semantics based only upon externally observable
actions, such as [111. When shared variables are not allowed, such a seman-
tics can define the meaning of a process as the set of possible communications
it can engage in. However, this kind cf semantics does not seem capable of
handling liveness properties easily. i

7.3 Procedures

Although language L does not have procedures, its new statement contains
the basic mechanism needed for procedure calls. A call of a nonrecursive
procedure can be simulated by replacing the procedure call by new state-
ments plus the body of the procedure. For example, let proc be a procedure
with a declaration

procedure proc(a integer, var b: boolean ) body

in which its first argument is call by value and its second is call by name.
The call proc(z + y, z) can be translated to

newa initz+y in new b aliasz
in body ni ni

To handle call by reference parameters, one needs to introduce pointer vari-
ables into the language. Of course, aliasing and procedure calls become more
interesting when pointers and arrays are introduced, but a discussion of the
problems raised by pointers and arrays is beyond the scope of this paper.
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occur when s has the value zero. Several liveness axioms have been proposed
for the semaphore. Probably the most common are weak liveness, expressed
by

(C(.> 0) A EO3Act(P(s))) [ at(fls))

and strong liveness, expressed by

(0<>(a > 0) A O Act(P(s))) D O-at(P(s))

(They are discussed in [12].) In both these cases, the V(s) operation is just
an ordinary atomic assignment.

More complicated versions of the semaphore impose a specific queueing
discipline, like first-come-first-served, on the execution of competing P(s)
operations. They may require adding a queue of waiting processes to the
state, plus predicates to describe the state of the queue.

7.2.2 CSP-Like Communication Primitives

The easiest way to model the CSP "!" and "?" operations is in terms of
channels. We include the operations (x? ) and (exp!t) for any variable x
and expression exp. They denote CSP-like synchronous communication over
a channel named . We modify the cobegin statement by adding a clause
of the form channels ,., m, which declares the channel names ,.

As explained in [9], we consider communication actions to be actions of
the channel, so Act(S) is identically false if S is a ! or ? operation. A
channel t has a separate atomic action for every pair of statements (W),
(ezp!t) contained in different clauses of the cobegin in which t is de-
clared. This atomic action is axiomatized much like the assignment state-
ment (z := exp), except that its execution changes the values of the four
control variables at(x?t), after(x?%), at(exp!t), and after(exp!t).

To do this formally, we must extend our variable-naming convention
in the obvious way to channel variables and add new syntactic predicates
S, - E!v and S, - E?v to assert that the substatement S, y is a ! or ?
operation of the channel named v. The safety axiom for the declaration of
channel t will be something like:

V-,tp,i, js.t. i j: S,i,-yE!(S) A S,j,pE? (S) D
V,1 : {at(S, i-y) A at(S,j, y) A ps,i,-(S,i,'y, left() = 0

(t(S) {after(S, i-y) A after(S,j, -y) A ps,,(S,j,i, left() = q)
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7.1.S Write Protection

Imagine a situation in which one wants the variable x to be modified only
in a particular statement, but to be accessible elsewhere. This might be
expessed by the following statement S:

encapsulate x in S'

The semantics of this statement are described formally by:

Vq : x() = q D (-,Act(S)) <2 (x() = q)

which asserts that the value of x remains unchanged while any action not
in S is executed.

7.2 Synchronization and Communication

The bread and butter of concurrent programming language constructs are
the synchronization and interprocess communication mechanisms. I will
discuss only two.

7.2.1 Semaphores

The usual semaphore P and V operations are variants of the atomic assign-
ment statement: P(s) looking much like the assignment (s := 3 - 1 ) and
V(s) looking like (,9 := 9 + 1 ). There are two basic differences. First of all,
the P(s) operation may be performed only when s is positive. One way of
expressing this is to change the first axiom of the assignment statement to:

Act(P(s)) D (at(P(s)) A 3 > 0)

However, this would require changing other axioms, since deadlock is rep-
resented by the absence of any possible actions, and the axiom given above

.t for the complete program asserts that this is impossible.
The other way of handling this is to allow only stuttering actions of P(3)

to occur when 3 <0 0. This is achieved by replacing the second axiom of the
assignment statement with the following:

Vr{: {at(P(s)) A (x() = q/)} (P(3)) (after(P(s)) A (z() = !- 1 0)}

The second change that must be made to the assignment axioms is in
the liveness condition. We can no longer require that an infinite number of
actions of P(s) cause the operation to be completed, since they might all
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7 Other Language Features

While I have given a formal semantics only for the simple language L, action-
axiom semantics can be used to describe a wider variety of concurrent pro-
gramming language constructs than any other method I know of. In this
section, I will consider a few interesting constructs. In doing so, I will not
bother to give the usual axioms that describe the relations among control
variables and among action predicates.

7.1 Constructs That Constrain Their Environment

Most language constructs constrain the behavior of their components. For
example, an if statement determines when its then and else clauses can be
executed. The following three language constructs constrain the behavior of
a larger program containing them. They are therefore impossible to spec-
ify in a compositional, purely behavioral semantics. It is the Composition
Principle that makes them expressible with action-axiom semantics.

7.1.1 The assign processor Command

As described above, the statement

assign processor to .

directs the compiler to guarantee that the body of the statement gets its
share of computing cycles, so it is not starved. This is expressed by the
axiom:

tn(S) D <>Act(S)

7.1.2 Atomic Actions

* One might want to introduce "angle brackets' as a language construct, so
(5) denotes that S is to be executed as an indivisible atomic action. This is

done by requiring that no other actions are interleaved with the executions
of S, expressed formally by:

* A4ct((S)) D in((S)) :9 Act((S))
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Constraints:
A Uniform Approach to Aliasing and Typing

Leslie Lamport" Fred B. Schneidert
SRI International Cornell University

Abstract between the values of variables, with no implication about
storage allocation, allows more general kinds of aliasing and

A constraint is a relation among program variables that is leads to a simple method for reasoning about aliasing.
maintained throughout execution. Type declarations and To express a more general form of aliasing, we introduce
a very general form of aliasing can be expressed as con- the var statement. To illustrate its use, suppose a pro-
straints. A proof system based upon the interpretation of gra:a computes a temperature, and that some times it is
Hoare triples as temporal logic formulas is given for rea- convenient to refer to that temperature in degrees Fahren-
soning about programs with constraints. The proof system heit and other times in degrees Celsius. We will write the
is shown to be sound and relatively complete, and example statement
program proofs are given.

* var f, c : real constraints f i 9 * c15 + 32 In S

1 Introduction which declares variables f and c within statement S to be
of type real and to be aliased, so that if the value of f is

Type declarations and aliasing relations have traditionally a temperature in degrees Fahrenheit, then the value of c
been thought of as unrelated concepts. However, both is that temperature in degrees Celsius. Changing f causes
can be viewed as specifying properties that do not change a corresponding change to c, and vice-versa. Notice that
during program execution. This view leads to a uniform this more general form of aliasing cannot be implemented
method for reasoning about types and aliasing in which simply by allocating overlapping memory locations to f and
the usual Hoare logic triples are regarded as temporal logic C.
formulas. The constraints clause of a var statement is a directive

Aliasing two variables z and y means they always have that a specified predicate-in our example, the aliasing re-
the same value. This is usually implemented by allocating lation f = 9*c/5+32-be maintained as an invariant, which
the same memory location to z and y, thereby ensuring means that execution is &borted if the predicate becomes
that both variables are changed whenever either is assigned false.
a new value. However, they could be allocated separate A type declaration can also be viewed as an invariant, so
memory locations and both updated on an assignment to it can be specified in a constraints clause. If we take the
either. Viewing aliasing as defining certain relationships view that the type of a variable defines the set of values

'Work supported in part by the National Science Foundation under that variable can have, then declaring a variable f to be of
grant number MCS-8104459 and by the Army Research Office under type real is the same as requiring that the predicate f E R
grant number DAAG29-83-K-0119. Current address: SRI Interna. be true throughout execution, where R is the set of real
tional, 333 Ravenswood Ave., Menlo Park, CA 94025. numbers.' Thus, we could eliminate the ": real' from the
Resarch supported in part by NSF grant DCR-8320274 and by a above var statement and add the constraint z, y E R. Since
Faculty Development Award from IBM Corp. Current address: De-
partment of Compute- 'citnce, Cornell University, Ithaca, NY 14853. doing so would make the statement less readable, we will

retain the customary syntax for type declarations.
H* Aliasing and typing can be viewed in terms of constraints

because they are static properties. While dynamic proper-
ties, such as the values of variables, can be changed by
execution of a program statement, static properties can-
not. (In most languages, like the one conside.ed here, a

'For simplicity, we assume P is the infinite set that mathematicians
call the real numbers, thereby avoiding the problems that round-off
errors would introduce for reasoning about equality of expressions.
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declaration is not a complete statement but rather part of programming language with primitives to perform buffered
a statement.) The methods we develop for reasoning about message-passing, messages sent but not yet delivered are
aliasing and types can be used to reason about any static part of the state that must be described by implicit vari-
property. ables. (The p and o multisets of [IS] are such variables.)

Returning to aliasing, consider a more complicated ex- Implicit variables often involve complex aliasing relations.
ample in which a program refers a point in terms of both For some message-passing schemes, a channel is modelled
its Cartesian coordinates z, y and its polar coordinates r, 9. by having an implicit variable in a sender aliased to an im-
Variables z, y, r, and 9 are declared as follows. plicit variable in the receiver. Even more complex aliasing

occurs when a channel emanating from a network is aliased
to the union of the channels emanating from its compo-

constraints z ---- r * cos(9) and i r * sin(9) nents. The CSP language [10] supports such a hierarchical
In S channel-naming scheme.

(The type declaration for 9 states that it is a real in the In the Generalized Hoare Logic (GHL) [12,14], a logic for
range 0 0 9 < 2r.) We would like this declaration to mean concurrent programs, one must reason about state compo-
that when x is changed, r and 9 are changed according nents that describe the control state. In the original pre-
to the constraints, but y is not. However, the fact that y sentation of GHL, the control state was modelled by at, in,
should not change is based upon the knowledge that z and and after predicates, where at(S) is true when control is
y are independent coordinates, which is not something dis- at the entry point of statement S, after(S) is true when
cernible in the above statement. An additional constraint control is at the exit point of statement S, and in(S) is
is needed to specify that assigning to z should not change true when at(S) is true or control is at a component of S.
the value of y and vice-versa; we write this constraint as Axioms were given to describe the relations among these
: . y. Similarly, r and 9 should be independent, so as- predicates. Thus, if S is the statement S; S:, the axioms
signing a value to either r or 9 does not change the other. of GHL state:
Hence, the additional constraint r .1 9 is needed. The fol-
lowing declaration of z, y, r, and 9 gives the desired aliasing at(S) at(S)

relations. after(S) after(S2)

var z,y,r: real, 9 : [0,2*r) in(S) S at(S) V in(SI) v i(S.)

constraints z = r * cos(9).and y = r * sin() after(S) =- at(S 2)

and z .. y and r -. P GHL included ad hoc rules for reasoning about these control
in S predicates. However, by viewing the control predicates as

Finally, observe that the var statement-can express forms implicit variables, and considering the above relations not

of aliasing traditionally implemented by overlapping stor. as equality of predicates but as aliasing relations among
age. The statement variables, we can reason about the control state with ex-

actly the same rules used to reason about the values of ordi-
var full, right-4 : natural nary program variables. This is described in detail in 1151.

constraints right.4 = full mod 16
in S

2 Primitives for Constrained
aliases variable righL4 to the right-most four bits of full,
where natural denotes the nonnegative integers. Moreover, Execution
the decloration ensures the desired semantics even on a
computer where integers are not stored in binary. A vat statement, like the one for the Cartesian/polar co-

It is probably impossible for a compiler to handle our ordinate example, specifies three things:

form of aliasing in all its generality. While the Fahren- o The names of new variables-z, y, r, and 0 in the
heit/Celsius and full/right.4 examples do not pose difficult example.
compiling problems, consider what happens if the follow-
ing statements appear in the body of the above var z, y, r, 0 * Constraints the new variables must satisfy. including
statement: those given explicitly by the constraints clause and

r ythose implicit in the type declarations. In the example,
read(z, y) ; write(9) the constraints are:

Input values a,b with a 6 0 produce the output value z E R z = r cos(e)
arctan(b/a)---something no present-day compiler is likely y 4E y = r • sin(&)
to figure out. r E .Y

We are interested in our general form of aliasing in order 9 E R A 0 < 0 < 21r r .1. 0
to reason about implicit variables--variables representing
portions of the program state that are not directly vis- o Other independence constraints invol ing the ne% 'ari-
ible to the programmer. For example, in a concurrent ables. In the example. there is the implicit assulptielr
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that z, y, r, and 9 are not aliased to any other vari- z= r cos() and y= r sin(6)
ables, except perhaps variables declared in the body and z .L V and r .L 8
of the var statement. Thus, there are implicit con- in S
straints z .. q for all variables q declared outside the
var statement, and similarly for y, r, and 0. In general, let Z,, ... , Z,, y ... , 7/rn be n + m dis-

tinct variable names, and let C be a predicate constructed ...

Instead of reasoning directly about the vna statement, from the m variables yj plus zero or more of the zi. The 0
three primitive statements are introduced, each of which statement

performs one of the above functions. These statements can
be used to model the var statement and the aliasing of v z 1 : T, ... , z": T. constraints C in S

implicit variables described above. is modeled by
The new statement is used to define new variable names,

where new zt, z,...,z,, in
zt may alias zs, ... , zt, yi, .... y,, in

new z , Z 2, ... , zin S ... z. may alias z, ... , z, y y,. in
declare C and z, E T and

defines z5 , x2. z" to be new variable names for use ... and zx, E T
within S. These variable names, plus any defined in a in S
new statement containing this one, can be referenced from
within S. The usual scoping rules apply, so that a variable
zi defined by this new statement is different from any other 3 Reasoning About Constraints
variables with the same name defined by a different new
statement. Our goal is to prove partial correctness formulas of the

The declare statement is used to specify constraints, form (P} S (Q}, as first proposed by Hoare [8]. To reason
The statement about constrained execution, we interpret such a formula

as a temporal assertion about the executions of S-namely,
declare C i S {P) S {Q} is equivalent to the assertion that any terminat-

where C is a predicate, indicates that C is to be maintained ing execution of S beginning with a state in which P is true

during execution of S and that abortion is to occur if this ends in a state in which Q is true. Thus, we are viewing

becomes impossible. If S contains a nondeterministic step, {P) S (Q} as a temporal formula, which is not how it is

such as a nondeterministic assignment statement, then the usually viewed in Hoare's logic.

choice must be made (if possible) so that the truth of C is One reasons about such temporal assertions with tempo-

maintained. ral logic.2 The only knowledge of temporal logic needed to

Finally, the may alias statement is used to specify inde- understand this paper is that the temporal formula [3 A is

pendence relations implicit in a var statement. The state- true of a statement S if and only if A remains true through-
ment out every possible execution of S. The only formal rules

for reasoning about temporal logic formulas that we need

z may alias z,, z 2, ... , z n S are the following, which are immediate consequences of the
definition of 0. 5

specifies that, during execution of S, the value of z is inde-
pendent of all variables, other than z,, z2, ... ,x, declared Strong Necessitation Rule:
in the context of this statement. Thus, this statement spec- p = Q
ifies constraints z 1. q for all variables q not in the list zj,

S:....z,,. Although may alias specifies constraints, it OP rnQ
cannot be modeled with a declare statement because that Multipliecative Aziom: 0
would require explicitly writing relations z .L p for every
variable name p different from the z,, and there could be r (A A B) = o A0 B
an infinite number of such names.

The new, declare, and may alias statements can be To apply temporal logic to program executions, we needused to model a var statement. The var z, y, r, 0 example to know what actions are atomic. For example. the formula
ud to melre s teme n T a A asserts that A is true before and after each atomic ac-

tion. In general, an atomic action represents the execution . 0

new z, y, r, 0 in of a primitive statement that can change the value of a vari-
z may alias z, y, r, 0 in able. Execution of an assignment statement is the only kind
y may alias z, y, r, 0 in of atomic action needed to describe the C'-ss of languages . -

7 may alias z, y, r, 9 in considered in this paper.
0 may alias r, y, r, 0 in See 1161 for an elementary discussion of temporal logic and the ap-

declare x E R and y E 2 and pendix of 1131 for the more advanced temporal logic needed to formal-

rE R and 0 E [0, 2r) and ize our method.
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A program execution is a sequence of atomic actions. It should now be clear why the hypothesis implies the con-

The possible executions of the statement clusion.
The expression z I y, introduced above for stating in-

declare C In S dependence, can be given a precise meaning as a temporal
formula. The formal definition is given in the Appendix.

are all those executions of S for which C is true through- Intuitively, z . V is the temporal formula asserting that if
out the execution-that is, those executions for which roC thSetaoi cino h rga sa sinett

is true. This leads immediately to an inference rule for the next atomic action of the program is an assignment to
declre:t z, then the assignment does not change the value of y, and
declare: if the next atomic action is an assignment to y, then it does

declare Ride: not change the value of :.The most general kind of temporal formula we write is
3C= {P} S {Q} of tbe form

(P} declare C in S (Q} 3C SP}S (Q}.

In this rule, the hypothesis states that the predicate Because temporal formulas cannot appear in pre- and post-

{P) S IQ} is true or that C does not hold throughout all conditions, . relations can appear only in C, which means

executions of S. they appear only in the form D (z . y). The temporal

Note that in our temporal logic interpretation of partial formula 0 (z .1. y) asserts that no assignment to z during

correctness formulas, the pre- and postconditions are asser- execution causes the value of y to change, and vice-versa.

tions about the program state, so they must be Boolean- Rules for reasoning about . could be deduced from its

valued functions on the state. In particular, they cannot formal definition. Instead, we state as axioms two proper-

contain temporal operators like 0. ties that seem to be sufficient for reasoning about programs.

All the usual inference rules for partial correctness for- An obvious axiom is:
mulas (see 18]) still bold under this new interpretation. For Commutaliity Axiom:
example, 0

Rule of Consequence: 
z"V y VIz

P5 - P, {P} S {Q}, Q I- Q' Another obvious axiom states that if z is always equal to

{W} S {Q'} y, then [(y . z) implies D(z . z). While this rule is
sufficient for our examples, the following generalization is

This rule allows the precondition of a partial correct- sometimes needed.

ness formula to be weakened and the postcondition to be Substitution Aio: For any (single-valued) func-
strengthened. tion argum : for any va les f, yl,

The only new general rule needed for reasoning about tion f of n arguments and for any variables r, y',

constraints is the

Constraint Strengthening Rule: 01 (z = f(yl,... ,) A yj I z A ... A y, I z)
C D(z I z)

{PAC} S {Qv-C}-
0C {P} s {Q} 4 Axioms For a Toy Language

To show the validity of this rule, observe that the hypothe- In the preceding section, certain general rules for reasoning
sis asserts that every terminating execution of S that begins about temporal logic formulas were given. We now give
with PAC true terminates with Qv-',C true. Another way language-specific rules and axioms for a toy language. The 0
of saying this is: language contains the usual skip, assignment (:=), con-

For any terminating execution of S: C true of the catenation (;), and while constructs, in addition to the .?
aforementioned new, declare, and may alias statements.

initial state implies that if P is true of the initial As usual, there is one rule or axiom for each language con-
state then Q is true of the final state or -'C is true struct. The rule for declare was already given.

of the final state.

The conclusion asserts the following: 4.1 Assignment

For any execution of S: C true throughout the Consider the standard way of reasoning about assignment
e.xecution implies that if P is true of the initial statements in Hoare's logic. Assuming there is no aliasing,
state and the execution terminates, then Q is true one deduces
of the final state.

{true} z:=y+l {z=y+l}.
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This formula is not valid when aliasing is allowed, because may alias Rule:
the assignment might appear in the body of a var statement
that aliases z to equal y, in which case the postcondition O(z .L y A ... A z . y.) .

z = y+I would be false. However, this postcondition would {P) S {Q}, Vi, j Y: $ zi
be satisfied if z and y were not aliased, which means that it (P} z may allas z, ... , z, In S {Q}
would be satisfied if we constrained execution of z :-= + 1
by requiring that z .L y hold. Hence, the rule to use when
aliasing is possible is where a $ b means that a and b are syntactically different

variable names.
rzly =_ (truelz:"y+ I -(z--+}

(Remember that z .1. y cannot appear in the precondition 4.3 New

because temporal formulas may not appear in pre- or post- The rule for the new statement is essentially the same as
conditions.) the one for ordinary Hoare triples-see Rule 16 of [1]. The

More generally, the Assignment Axiom in Hoare's logic statement
is new z,,...,zn InS

{Q(ezp, y, ... ,)) z := ezp (Q(z, Y1, .... )} declares that the variables zi are different from all vari-
ables declared outside the statement. It is equivalent to

where Q(z, y,,. .... y) is any predicate involving only the substituting for all free (undeclared) occurrences of zi in S
program variables z, yl, ..- , p.' and ep is an expression. another variable Vi that is not used anywhere in the entire

Again, this axiom is valid only if z, the target of the as- program. Of course, when reasoning about S in isolation,
signment, is not aliased to any of the y.'s. Therefore, when we do not know what the entire program is. However, since,
aliasing is allowed, the correct formula is we are concerned only with a particular pre- and postcon-

dition, it suffices to choose the yi so that they don't appear
Assignment Aziom: in that pre- or postcondition or in S. This leads to the

0 (z 1 y, A ... A z .1. y.) following rule, where $[y1/z1,...,y,,/z, is the statement

{Q(ezp, y1....,)} z := ezp {Q(z, yi,..., y.)} obtained by substituting yj for every free occurrence of r
in S, for i= 1,...,n.

4.2 May alias new Rule: For any distinct variable names yt,

Recall that the statement ... y. not occurring free in P, S, or Q:

z may alias Z1, Z2, .... ,Z. In S {} S[y,/zi, .. y/:,j {Q)
(P} new z, r. in S {Q}

is really equivalent to
Note that, unlike [1], initial values for the variables z, in

declare A fin S S are not assumed; executions containing arbitrary initial

where A is a conjunction of terms of the form z . y, for values are permitted.

an infinite number of variables p-namely, every y that is
not among the zi. Therefore, the declare rule gives the 4.4 Remaining Statements
following: The axioms for the remaining statements are just the or-

o3 A = {P} S {q} dinary Hoare logic partial correctness rules. For example. -"'

(P) z may alias zi, ... , z. in s Q} (1) Hoare's rule for statement concatenation is:

Now, let y,. y2.. y, be a finite number of variables, all Statement Concatenation:
different from any of the z,. Then, (P) S {Q'} {Q'} S' {Q}

A - (z± y, A ... A z±ym). (2) {P) S;S' {Q}

Given 5 Examples

O(zIy, A... Az.Ly.) o (P)S{Q) 5.1 No Allasing

we use (2) to deduce We first consider an example in which there is no aliasing-

- (P) S that is, there are no constraints. Let S be the statement
var z: real in p:=y+l;

which is the hypothesis of (1). Therefore, we get the fol- := y+3

lowing inference rule.
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We will prove the obvious relation The proof of this is as follows. From the Assignment Axiom.we have
ly = 1) S (y = 21 (3) 0 true -0 (Y=0}Y:=y+l y=2)

From the Assignment Axiom, we get 0 true =I {V = 2) e y +3 (z? = 5}

r true (y = I) y := y + I {y -2) Combining these, using the Statement Concatenation Rule,
Dz'.Ly (y =2)z :=--y+3(y 2) yields

Dirge =$- (Y=l1}S, '=51
Using ordinary propositional logic and the Strong Necessi.
tation Rule, the antecedents of these implications can be where 5' is the statement
strengthened to get y:y+1; z':-,+3

D(z' .. 3 Z' E R) = {y-l) y:-y+l y=2) (4) Applying the Rule of Consequence to this, using the tau-
0(Z' . y Az'E R) {y=2} z :=y+3 {y=2) (5) tologies

Combining (4) and (5) gives (z = 5) ( =5 V Z' 0 At)
(y 1 A z = y) (p=)

D(z' I y A z' E R) - we conclude
{ )=l}y:=y + {y=2) A (y=2)z':=y+3(y=2) Dtre , {f=IA'=} S' {=SVz'$y)

Application of the Statement Ccncatenation Rule to the

consequent of this yields The Constraint Strengthening Rule now allows us to deduce

D (z'J. yAz' R) 1 3z'=y =- y=I)S'(v=5)
{y=l}y:=y+l;z':=y+3{y=2)

Using propositional logic and the Strong Necessitation
The declare Rule now allows us to conclude Rule, we can strengthen the antecedent of the implication

0(z'.±y) => {3il} to obtain

declare z' 6 R in D (z' y AzC-) {y 1) S' (y 51
y:=y+1; ':=y+3 {y=2) -)

Applying the may alias rule yields The declare Rule now yields
{y=l} ' may(alias V',y In {I I) declare z'=yandz'E R In S' (=5 5

declare x' E P in from which the may alias Rule allows us to deduce
y:=y+;z':=y+3 (=2}

(y=II z' may alias z',y InFinally, the new Rule allows us to deduce declare z'=andx'eR in

{y=l) new In S {p 5 )
z may alias :, p in Finally, the new Rule allows the conclusion

declare z e 2
in y:='y+1; z:=y+ 3  {y=2) (Y=i} new z in

z may alias z, y in
The statement in this formula is equivalent to our origi- declare z = y and x E R in
nal statement S, according to the method of modeling vat = Y +
statements described in Section 2, so the desired result is : + 3 (
proved.

This is just what is required to prove (6).
5.2 Simple Allasing
Next. let S be the same as above except with z and y 5 Cartesian/Polar Coordinates
aliased: As a final example, let S be the following statement.

var z: real constraint z =y In y := + 1; var z, y :real
z:= Y + 3 constraints z = r a cos(O) and y = r * sin(0)

and z .1. in z:=2*Formula (3) is no longer valid for this program. Instead, : 2 * y
we have

(Y =l} S{ = } (6)
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A little trigonometry shows that if r is initially positive, 6 Discussion
then executing S should double the value of r and leave 0
unchanged. Thus, the following should hold: We have introduced the idea of describing types and alias-

ing in terms of constraints and given general rules for rea-
(r = r0 A 8 =fi 00) S (r = 2ro A 0 = O) soning about constrained execution. Our approach involves

However, further reflection indicates that this is not quite embedding the usual Hoare partial correctness formalism in

valid because executing S can add any even multiple of r temporal logic. One reasons about static properties with

to 0 or can negate r and add any odd multiple of x to 0. constraints and about dynamic properties with pre. and

Thus, we stipulate that r 2: 0 and 0 8 9 < 2x remain true postconditions.

throughout execution, and prove Having applied our method to a simple language, we now
consider some of the problems in extending it to more com-

0 (r > 0 A 0: 0 < 21r) plex languages. We also discuss the relation of our approach
(r=ro A9= 0 S {r=2to A 0=00) (7) to previous work.

Let ' be the statement 6.1 Types

z := 2* z'; :-- 2 * .In our toy language, we were able to handle a type dec-

From the Statement Concatenation Rule and two applica- laration simply by translating it to a constraint about
tions of the Assignment Axiom, we deduce the values that the variable can assume. This does not

work for languages that make more extensive use of type
03 z' .' {z' = cos $o A y = rosin 0o) S' information-for example, by performing coercions in the

{z' = 2ro cos Oo A S( = 2ro sin Oo) event of a type mismatch; nor does it work for languages
in which a type mismatch in an assignment generates an

Now, note that the following are tautologies: indeterminate result rather than abortion. (Our semantics

(z' = rocos~o A rcos = rocos0o A e" = rcos8) causes abortion if executing an assignment would violate a

o (.' = r0 cos O0) type constraint.)
Reasoning about these more complex languages requires

(z' = 2r0 cos o) = (rcos9 = 2rocos 0 V z' i rcos9) adding state predicates that characterize the type of a vari-

Similar tautologies apply to y. Therefore, by the Rule of able and modifying our Axiom of Assignment. However, -

Consequence we conclude care must be employed when reasoning about predicates
like type(z) = 'integer' because z = y, which means A

[]z'.g' - that the values of z and y ate equal, does not imply
z' = r0cos90o A rcosO =rocos9o A z' = rcosf A type(z) = type(y).

= ro sint8o A rsinP = r0 sinf 0 A 1 = • sinG J If a type mismatch can abort execution, reasoning about
$t type correctness requires proving total correctness proper-

(rcos8 = 2r0 cosS0 V' iA rcosO) A ties. While we have not yet considered this problem, we
(r•sin 0= 2ro sin 0o V' ir sin 8) feel that our approach should be ideal for proving termi-

nation properties because it is based upon temporal logic,
From this, the Constraint Strengthening Rule and Rule of and temporal logic is effective for proving liveness proper-
Consequence allow us to derive ties like termination 1161.

r3(z'.Ly' A z' =rcos# A 'frsinj 8)
frcosV=r0CosG0 A S, I r rcos 0 2ro cosG90 A 6.2 Generalized Assignments:

rsinG =rosin f rsin= 2rosin8o Expressions as Targets

By the Rule of Consequence, using some trigonometry and In the Cartesian/polar coordinate example, x is aliased to
the previous theorem we can now deduce rcosG. Thus, assigning to z is the same as assigning to

rcosG. The obvious next step is to try writing rcosg on
( 'osthe left-hand side of an assignment statement, even if there

r = 0 A0 = 00 A S, (r = 2ro A0 = 0) V is no variable aliased to this expression. For arbitrary ex-
r>O AO<<2 { - AO:5<2 pressions ezpi and ezp:, the statement

We now use the Constraint Strengthening Rule to derive
expi := erp:

[](z' .L y A z' = rcosO A y' = rsin GA
r > ( A 0 5 9 < 27r) =b, causes the value of ezpl after execution to be the same as

{r = r A 9 = 8o} S' {r = 2r0 A 0 = 0o} the value of exp2 before execution. To reason about this
form of generalized assignment, we extend I to be a rela-

It is now a simple matter to use the declare Rule, the may tion on expressions rather than just on variable names. The
alias Rule, and finally the new Rule to obtain (7). temporal formula exp, .I erp now means that assigning to
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expl does not change the value of ezp2 , and vice-versa. The with pointers, type relations might also be dynamic-for S
axiom for generalized assignment is the same as the Assign- example, if a pointer can point to variables of type real
meat Axiom given above, except that z and the yg can be and of type [0, 2 * r). In this case, type relations would
arbitrary expressions. The commutativity and substitution have to appear in pre. and postconditions.
axioms given above are also valid for these more general These extensions will be described in a future paper.
. relations. However, additional axioms are needed for
deriving 1 relations between expressions from 1 relations 6.4 Procedures S
between their components-axioms such as

The most general form of parameter passing is call by name,
(ezp 1 ezp-) A (expi 2- ezp 3 ) - ezpl 1 (ezpi + ezp3) since it can be used to simulate call by reference and call

by value-result. With call by name, a formal parameter is
We do not give a formal semantics for this here. essentially aliased to the corresponding argument. Thus,

our approach can be used for reasoning about procedures.
6.3 Arrays and Pointers Traditionally, programming languages with procedures S

do not allow an arbitrary expression as the argument cor-
Our approach can handle arrays by regarding assignment to responding to a formal parameter that appears on the left.
an element of an array as an assignment to the entire array, hand side of an assignment, since assignment to an expres-
as described in (Ill. Array assignment cannot be handled sion is not defined by these languages. We have defined
using our generalized assignment statement, where an ex- what it means to assign a value to a variable that is aliased
pression like A[i] appears on the left-hand side, because this to an expression, so there is no semantic reason for this 0
does not give the usual semantics for prohibition. However, some restriction is needed to ensure

A[exp] := exp'. that the language can be compiled.

Letting the subscripts old and new denote values be- 6.5 Related Work
fore and after the assignment, the semantics of general- Previous work on aliasing, 11,3,4,5,6,7,9], has been moti- 0
ized assignment defines the above statement to mean that vated by shared storage among arguments of a procedure"" -
assignmeti,, -- eZxp, while the usual meaning of array call. We are aware of no work that can handle the rich
assignmentaliasing structures that concern us. However, program-
explain why the ordinary assignment axiom is not easily nlanguges whr coputtios arevrtilyoram-
extended to arrays. This also indicates why our more gen- -
eral assignment statement is not easily compiled, since it pletely specified in terms of constraints have been investi-requires computing the value of an expression in a (new) gated [2,19,20,21,22].statere wtomutkoingw theat satesio iIn most previous work on aliasing, the program states t a t e w it h o u t k n o w in g w h a t t h a t s t a t e is .c o s s s o a m p i n f r m v i b l n m e t o a p c e f

By regarding an array as a single variable, our formalism c onsissuo a map from laes to ae of
can handle aliasing relations between entire arrays. How- (We feel that if the language itself has no pointers, thenever, our current formalism does not handle simple aliasing the semantics should not be given in terms of pointers,
of array elements. For example, if r is not aliased to any ele- t

even if the values of these pointers are abstract locationsmeat of the array A, then we can easily prove that assigning instead of real memory addresses. Moreover, the existence
of semantic pointers unnecessarily complicates reasoning .-. -

Eaz.A = z =7) All] :1 x=71 about programs. Also, approaches based on locations are
rarely fully abstract [3]. Finally, and most importantly. the

However, we cannot do this just knowing that r is not use of locations does not support reasoning about the more
aliased to .A11], because our rules are not strong enough general form of aliasing that is not based on shared storage.
to prove Our work resembles Reynolds' 1171 handling of call by

name in many ways. Reynolds defines a formal system,
Ox _L All] = {z = 7) A[l1] := I{z = 7) called Specification Logic, that contains a relation # very

similar to 1 and an assignment rule much like ours. The
The required generalization must replace _L with a non- effects of aliasing are described in terms of interference,

commutative relation, since the assertion that assigning to which can be seen as the dual of our viewing aliasing in
Ali does not change i is not equivalent to the assertion that terms of invariants. (See [14] for a discussion of the relation
assigning to i does not change A[i]. Moreover, aliasing re- between interference and invariance.)
lations are no longer static, since whether Afi( and z are The meaning of a formula in Specification Logic is based
aliased may depend upon the value of i. Being dynamic, on an entironment in addition to a state. The en ironient
aliasing relations like . have to appear in pre- and post- is a mapping from variable names to a space of locations
conditions, which is prohibited by the current formalism, and brings with it the difficulties mentioned above. In ad-

Similar extensions are needed for reasoning about alias- dition, in Specification Logic. assertions about the environ-
ing in programs that use pointers. Moreover, in a language ment are made using a completely new logic, distinct from
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Lppendix together with the action predicate halt. A Boolean expres-
:he Formal Semantics sion is true of a behavior if it is true of the first state in the

behavior. An action predicate o(z) is true if z is the first
action in the behavior; action predicate halt is true only

.1 The Language if there is no next action. The semantics of this temporal

"e now give a formal semantics for our toy language con- logic assigns a truth value to a F for every behavior a .
dning skip, assignment, concatenation, and while, plus and every formula F. We write F to denote that a F
ie three statements new, declare, and may alias intro- is true for all behaviors a.
aced to model the var statement. The class of expres- We will define a behavioral semantics for our language
ons and variable types is not specified. We assume only where ,MIS] is a set of behaviors representing all possible • -

kat expressions are built from some set Var of variable terminating executions of S. Semantic validity of a tempo-
ames. that variables assume values in some set Val, and ral logic formula F for a program S is defined by
iat expressions are built from operators on those values. 0
owever, in the statement s F =, Yo e MISI : a F

declare c ha s To define the temporal operator ., we first define the
operator J1 by letting o = z.Jy mean that if the first action

can involve . in addition to Boolean expressions. of a is an assignment to z, then that assignment does not

Finally, we require the value of an expression to be de- change the value of y. In other words, letting a be the

ned for any values of its component variables. Thus, the sequence of (8), we have

Kpression z + 10 must be assigned a value, even when - .(
= true. This can be done by including a special value a nzly = (z% z) (80(y) = i(y))

ndefined in Val; the precise details for doing this are ir- In the temporal logic of [131,
flevant.

XJY =VO7 : (Y = ,9 ) W(z() .4 Y R )
k.2 Temporal Logic We definez . yto be (zJy) A (yJz). Note that a = z ' y

state is defined to be a mapping from Vat to Val, so a is true if u is a sequence with no actions.
tate s assigns a value s(z) to every variable name z - Var. The formulas deduced by our method for reasoning about
,et S denote the set of states. A state a is extended to a programs are of the form D'C z {P} S {Q}, where C is *. '.
iapping from ordinary (nontemporal) expressions to values a temporal logic formula. However, {P} S {Q} is not a .. -

the obvious way-for example, s(z + y) is defined to temporal logic formula because it refers to the statement •
qual s(z) + s(y). Let a P-= ezp denote the assertion that S-a concept with no counterpart in the temporal logic.
(ezp) = true. (9 z > 10 is false if s(z) has a nonnumeric To make semantic sense out of this formula, first define
alue.) (P) - {Q} to be true for the behavior (8) if and only if

An action is defined to be an element of Var U(r}, where so - P , s. = Q. This is defined in terms of temporal
is a symbol not in Var. For z E Var, action z represents logic operators by

n assignment to z. Action r represents an assignment to a S
ariable declared in some new statement inside the current {p} - (Q} E P =o(a t (hl Q)
tatement; thus r, models a variable that is "invisible" in AprgmSsaife C-{}S{)fanolyfhe urrnt ontxt.A program S satisfie-- c3C (, P) S {}if and only if
he current context.

A beharior is defined to be a sequence a of the form =s 'C - {P} - {Q}.

80 .. - a,, (8) A.3 The Behavioral Semantics

,-here the s, are states and the z are actions. This behavior For any statement S in our language, we define MI[S] to
enotes an execution starting in state So and terminating be a set of behaviors. The definition is by induction on the
i state s,, where the i" action changes the state from structure of S.
,-1 to 8. Since partial correctness does not distinguish skip MqskipI '  " "
,etween aborting and infinite looping, we consider only fi- Th skip s {sog: no a S}
,ite (terminating) behaviors, although our definitions are The skip statement generates no actions.
asily extended to include infinite (nonterminating) ones. assignment z := epi -' {s -' t : t(z) = s(erp)}
V'e allow the case n = 0, where so is the behavior starting An assignment generates a single action that sets the
o state So that performs no actions, value of the left-hand side to the original value of the

In the temporal logic of [131, a formula is composed of right-hand side. Note that )AIS] contains behaviors
tate predicates. action predicates, and temporal operators. that make arbitrary changes to other variabl's. since
'he set of Boolean expressions is taken to be our state any such change could be caused by an appropriate S
iredirates. Action predicates are those of the form o(r), aliasing.
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tenation MIS,; S:J is defined to equal A.4 Soundness and Completeness -

(so In the main body of this paper, we gave a set of rules for - o

so .. e MiSt deriving formulas of the form EC =* {P} S {Q}. Having
and -- ... +,, E MSJ} defined the set of behaviors MISI, we have given a semanticmeaning to these formulas, namely:

Note that we are including only finite (terminating) m

behaviors. MlEC =-{P} S {Q)J E3 C => (P) - Q)

We define M[while B do SI inductively by We can now discuss the soundness and completeness of our .*
system.

Mlwhileo B do SJ W (so E S : eo(B) =false) Soundness means that for any formula F derived by our

M lwhilei+ B do S3 4e- system, )MIFI equals true. The proof of this involves check-

(so .±!.- " a ,,E MIS; whilei B do SI: ing the validity of all our axioms and proof rules. This S

8o(B) = true) involves a straightforward formalization of the informal ar-
re B d0UB oS guments given in section 4.

NIwhile B do 53 =. U'- ~while B do 8| Completeness means that every semantically correct for-

Intuitively, Mj1while ...I contains the behaviors in mula is derivable using our rules. Since completeness is

which the body of the while statement is executed impossible, one usually proves relative completeness in the

exactly i times. sense of Cook, which, as explained in [1), means that the •
system is complete if we assume that:re Mjdeclare C7 In 53 1& {u 6 MJt/ :u ¢ f DC)

The declare acts as a 'filter" to eliminate any be- CI. All valid state predicates are given.

haviors of S in which C does not always hold. C2. The set of state predicates is sufficiently expressive,

If o is the sequence (8), let o[zt/y ..... z./y.,] de- meaning that for any state predicate P and statement

note the sequence 5, posts(P), the strongest postcondition of P with re- S
spect to S, is a state predicate.

8o  ... These assumptions are not enough to guarantee com-

where pleteness in our system. In ordinary Hoare logic, one as-
sumes the ability to reason about state predicates. Since

si(v) if 'Vi: v zj and V Y 1/ formulas in our logic contain temporal operators, like E3
s(v) = So(Zj) if v W- zi (9) and 1, we need to reason about temporal logic formulas.

so(yj) if v V Yj We therefore assume that3

= z, if Vj : e 7 Yj (10) Cl'. All valid temporal logic formulas constructed from the
r otherwise state predicates are given.

Then a E Minew zi, ... ., in S] if and only if where a valid temporal logic formula is one that is true "1
there exist variable names yl, ... , , not free in for any behavior. Thus, just as assumption C1 for or-
S and a' 4E MSlyt/zi, ... ,p./z.J such that or = dinary Hoare Logic contains only information about the

state space-not information about the program-so C'-

This formal definition captures the intuitive notion gives information about state functions and temporal

that to execute the new statement, one first exe- operators-not about the program. Since state predicates
cutes its body with new variables yi substituted for are temporal formulas, Cl' subsumes CI.

the zi. The resulting execution is then modified by In addition to strengthening Cl, we must also strengthen B
hiding all references to the variables y--replacing C2. To see why, suppose our set of state predicates did not

assignments to the yi by r actions and letting y. contain the predicate true, but required that we use the

refer once more to its external declaration-and re- semantically equivalent predicate z = z. Our Assignment

quiring that the externally declared values of the zi Axiom does not allow us to deduce (z = z) y:= 1 z =z

remain unchanged. we can only deduce it under the irrelevant hypothesis
0(y .L z). In general, we need to assume that if a state 0

alias A Nx may alias zt,.. z, In 5 is defined to predicate does not depend upon the value of a variable r,
equal then we can write that predicate as an expression that does

sys not involve x. We therefore require the following additional
(o e MIS] : Vy: (Vi: g $ z) o' k D(z 1. y)} expressiveness condition:

This is the formal definition of our intuitive idea that Actually, this assumption is .trongr than necessary. -in,-' we 0
the may alias is equivalent to a declaration of an are concerned only with temporal logic formulas of 0 form
an infinite number of .I relations. (3C (P) S{Q)-

C-li



r any expression ezp, mathematical function I, and To finish the completeness proof, we must show that for
riables yl,..-, y.: if the relation ezp = f(y,-.-, y,) every compound statement S, we can prove every valid
valid, then f(yi,..., y.) is an expression. formula 1 C =* (P) S (Q} under the assumption that we

can prove every such formula for the components of S.
ng made these extra assumptions, we now con- This involves a separate proof for every type of compound
)mpleteness. Completeness for ordinary Hoare logic statement. The proofs for concatenation, while, and new
that every valid formula is provable. In our system, are similar to the ones for the ordinary Hoare logic given
re formulas of the form a C (P) S (Q}, where in [11. The only difference in the proofs arises because of the
he form C'A (z .I y) A...A (z . y.) and C is an or- *CC =". The proofs in [l rely on the fact that {P} S {Q)
(nontemporal) expression. Completeness therefore is valid iff posts(P) Q. The formula C C =, (FPs{Q "
that every valid formula of this form is provable, is valid if {P} declare C In S {Q} is valid, by the seman-
proof is by induction on the structure of S. I S is tic equivalence mentioned above. This, in turn, is valid iff
statement, then 0 C =: (P) S {Q} is semantically P~stdeela-e C In s(P) is expressable, and implies Q. How- 0
lent to (C' A P) =- Q. By assumption Cl', this is ever, expressability follows from our assumptions C2 and
le, and we can use it, the ordinary axiom for skip C2a. With this observation, the completeness proofs of [I]
kip (P}), the Rule of Consequence, and the Con- are now easily extended to our more general class of asser-
Strengthening Rule to deduce DC C {P}S (Q}. tion.

letails are left to the reader.)
t, let S be the assignment statement z := ezp. A
uence of CI' is a complete system for deriving . 0
as. Thus, we can assume that C includes all relations
r, that are derivable from it. It is easy to see that
o. (P) S {Q} is semantically equivalent to, and, by
,nstraint Strengthening Rule, derivable from

.I , A ... A z.l y.) = {P A C') S (Q V-C')

D therefore restrict consideration to the case in which
ists only of the conjunction of th? constraints zr .I. -
e (P) S {Q) is semantically equivalent to post,(P) =
the Rule of Consequence and C2, we can let Q -

P).
Q = Q(,, z,. .. , z,), where the z, are different from
C2a, we can assume that the value of Q depends
ach of the zi . Since Q = points(P), this means that

is a behavior a I . in M[IS] such that a [= P ,
0 Q for some state I' that differs from t only in the
of z,. However, since the semantics of S does not
ain the ending values of any variable other than z,

I' is in MSI. Therefore, if z .I zi were not one
constraints in C, then CC = (P) S {Q) would be
I. Hence, the constraint C contains all the .1 relations
I to apply our Assignment Axiom, and completeness

by the same argument as in vie ordinary Hoare

f .il
proof for the declare is immediate, since if S is the

ient
declare C' in S'

CC (P)S(Q} is semantically equivalent to
, C') {P} S' {Q}. Similarly, if S is the statement

z may alias z 1, z, in S'

sult follows from the fact that C =s {P} S (Q} is
tically equivalent to CC A C % (P} )' {Q}, where
(z . y,) A ... A (z . ) and the yj are all the

le names other than the z, that appear in P, C, and S
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