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1. INTRODUCTION

This report presents some of the major concepts related to the design
of a testable custom large-scale integrated circuit (CLSIC). The partitioning
of a CLSiC into testable circuit structures, the basic criteria and techniques
used in testing, and the addition of built-in test features to facilitate
testing are discussed. Built-in test features for CLSICs include the built-in
test circultry, other special built-in test structures, and the embedded firm-
ware and software used to implement built-in testing. For example, built-in
test features may include on-chip functional circuit structures, such as signa-
ture generators, comparators, parity trees, counters, encoders, and decoders;
or they may be nonfunctional, such as structures used for process monitoring
or to enable external testing. Nonfunctional built=-in test structures are

usually process-peculiar and will not be discussed in any detail.

A testable circuit structure refers to a logical organization or
architecture of a CLSIC subcircuit consisting of the functional circuitry to
be tested, and associated built-in test circuitry. The circuitry to be tested
is called the kernel. Built-in test circuitry consists of additional cir-
cuitry, peripheral to the functional nature of the CLSIC, which is added to
the chip specifically to aid in testing the functional circuitry. .The built-
in test circuitry may be functional in nature. Examples of testable circuit
structures are level-sensitive scan designs (LSSD), built-in logic block

observation designs (BILBO), and syndrome testable designs.
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2. STRUCTURES AND DESIGN STYLES

Four fundamental units of logic circuitry are used to implement digital
systems: busses, random access memories, registers, and combinational logic.
These fundamental logic units are referred to as basic circuit structures.

The simplest case of a bus is a wire, of a random access memory is a one-bit
addressable storage element, of a register is a lateh or flip~flop, and of a
combinational logic circuit is a gate. More complicated circuitry, such as
decoders and multiplexers, also are often implemented as basic structures.

The interconnection of two or more of these basic structures (either different
or identical units) results in a circuit structure. The difference between a
basic circuit structure and a circuit structure is subtle. Arithmetic logic
units, counters, and shift registers are é&xamples of simple circuit structures.
Circuit structures éften have architectural styles associated with them, such

as pipeline, bus-oriented, or bit-sliced.

There are numerous ways of implémenting a basic structure in a single
silicon chip. Circuit design considerations differ in: (a) how transistors
are constructed, (b) how transistors are interconnected to form logic func-
tions, (¢) how logic functions are. interconnectec’, and (d) what technology
is used. Variations in circuit design and logic function lead to different
design styles, such as read only memories (ROM), programmable logic arrays
(PLA), and gate combinational networks, e.g., a NAND gate network. Hence, the
use of a basic structure often defines a circuit's design style. For example,
a combinational logic basic structure implementing some Boolean function, such
as an arithmetic logic unit, may have as a-design style ROM, PLA, or gate

combinational network.

The importance of identifying design styles is that different design
styles can lead to unique failure mechanisms; hence, the corresponding basic
structures are often tested differently. This is not necessarily true when
exhaustive testing is employed, in which case the design style is usually

ignored.
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As an example, consider the PLA design style. Because of the high
fan-in often found in the AND array, PLAs are usually not tested very com-
pletely by random test vectors. Also, PLAs are susceptible to unique failure
mechanisms, such as extra or missing crosspoint connections. Hence, a test
methodology for a PLA may be quite different from that for a ROM or gate

combinational network.

Often, circuit structures are specially designed to enhance test-

ability, such as in the LSSD methodology.l’2

In this case, a combi-

national logic basic structure C and a shift register structure S are inter-
connected to enhance the testing of C, which normally has the design style of
a gate combinational network. The architecture consisting of the combination
of the level-sensitive scan register connected to C is said to constitute the
LSSD testable structural style; the combinational logic network C which is to

be tested is the kernel of the style.

In general, a CLSIC can be partitioned into functional blocks, such as
control, input/output, arithmetic logic unit, and memory. For testing pur-
poses, a CLSIC can also be partitioned into ''testable' subcircuits, each sub-
circuit being tested in its own unique way. These subcircuits may correspond
to functional blocks. By definition, they are circuit structures. Often, one
of the first steps to be taken in the design of a testable CLSIC is to .parti-
tion it into subcircuits. The subcircuits, in turn, define circuit structures
whose fault characteristics are well-defined and for which one or more testing
strategies are known. Each such structure may be modified by the inclusion of
specified built-in test circuitry in order to enhance its testability. The
subcircuits so defined by the partition process need not be disjoint; in fact,

they often have built-in test circuits in common.

1Eichelberger, E. B. and T. W. Williams, "A Logic Design Structure for LSI
Testing,” Proceedings of the l4th Design Automation Conference, June 1977,
pp. 462-468,

inchelberger, E. B. and T. W. Williams, "A Logic Design Structure for LSI
Testability," J. Design Automation and Fault-Tolerant Computing, Vol. 2,
May 1978, pp. 165-178. -
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A maximal basic circuit structure is a basic structure not contained
within a larger basic structure. Often, a chip is tested by identifying maxi-
mal basic circuit structures and testing them individually. If a circuit
structure is not too complex, such as a counter, it can be tested as an entity.
For complex circuit structures, such as a microprocessor, testing it as one

entity becomes extremely complex.
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3. TESTING TAXONOMY

The process of testing a circuit structure in order to detect or locate
hardware faults can be carried out in one of two modes, known as external
testing and self-testing. The former deals with the use of automatic test
equipment to test the circuit structure; the latter relies on the chip itself
to carry out the testing process. A circuit structure is often tested using
precomputed test programs which are created via the process of test program
generation. Two major aspects of testing, therefore, are test program

generation and design for testability. H

3.1 TEST PROGRAM GENERATION

The major concepts related to test program generation are: fault
modeling, test generation, response evaluation, fault simulation, and fault

location.

3.1.1 Fault Modeling I

Fault modeling deals with the process of representing the actual physi-
cal faults in the circuit (structure) under test by some type of abstract

34

model. It is these modeled faults which are actually processaed by most

test synthesis and analysis tools. Examples of commonly used fault models are

listed below:

a. Single stuck-at faults
b. Multiple stuck=-at faults

c. Shorts and bridging faults

3Hayes, J. P., "Modeling Faults in Digital Logic Circuits,"' Rational Fault
Analysis, R. Saeks and S. R. Liberty (eds.), Marcel Dekker, NY, 1977,

pp. 78-95. L

“Nickel, V. V., "VLSI - The Inadequacy of the Stuck at Fault Model," Pro-

ceedings IEEE International Test Conference, November 1930, pp. 373-331.
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Functional faults
Coupling faults
Pattern-sensitive faults
Delay faults

Parametric faults

Nonclassical MOS faults, such as opens

3.1.2 Test Generation

S

Tests for a circuit can be determined in several ways.> The most

common are listed below:

a. Manual

b. Algorithmic
Bo Pseudorandom
d. Exhaustive

e. Standard test patterns

The method used to generate the test must be compatible with tae level
of description available for the circuit structure under consideration. For
example, employing a path sensitization algorithm may require a gate level
description of a circuit structure; employing a test generation algorithm for
PLAs may require only the truth table of the functions being implemented;
employing a functional/behavioral approach may require a high level lanzuage
description of the circuit structure, such as the Instruction Set Processor

(ISP) notation.

SBrever, M. A. and A. D. Friedman, Diaznosis and Reliable Desizn of Dizital

Systems, Computer Science Press, Rockville, MD, 1975,
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3.1.3 Response Evaluation
i Once tests are generated, they can be translated into a test program
. which can then be applied either by the automatic test equipment or by built-
. in test features to the circuit under test. Based upon the response measured,
the circuit under test can be characterized as beiﬁg faulty or not. If it is
faulty, diagnosis or fault location can be carried out. Methods for process-
E ing the response are listed below:

: a. Direct comparison

(1) Stored response
(2) Gold unit (standard hardware)

b. Comparison with data compression (compact testing)
S S6
(1) Transition counting

(2) One's counting or syndrome testing’~
. (3) Signature analysis!®’!!

9

®Hayes, J. P., "Testing Logic Circuit by Transition Counting," Digest of
Papers 5th International Symposium on Fault-Tolerant Computing, June 1975,
pp. 215-222.

Savir, J., "Syndrome-Testable Design of Combinational Circuits," Digest of
Papers 9th International Symposium on Fault-Toleraant Computing, June 1379,
pp. 137-140.

8Savir, J. "Syndrome-Testable Design of Combinational Circuits," LEEE
Trans. on Computers, Vol. C-29, June 1980, pp. 442-451 (corrections:

- Nov. 1980).

A %savir, J., "Syndrome-Testing of 'Syndrome-Untestable' Combinational

- Circuits," IEZE Trans. on Computers, Vol. C-30, August 1931, pp. 506-508.

101y Designer’s Guide to Signature Analysis,' Hewlett-Packard Aoplication
Note 222, Hewlett Packard, 5301 Stevens Creek Blvd., Santa Clara, CA 95050,
April 1977. .

'1¥adigz, H. J., "Signature Analysis~Concepts, Examples and Guidelines,"

- dewlett-Packard Journal, May 1977, pp. 15-21.
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3.1.4 Fault Simulation

Normally, the fault coverage of a test can be determined by using a
fault simulator.> Fault simulation can be carried out either in software or

I in hardware.

3.1.5 Fault Location

Fault location can be carried out by using either fault dictionaries,5
12

o

diagnostic routines,’ or effect-cause analysis.

3.2 DESIGN FOR TESTABILITY

Design for testabilily is performed for several reasons; e.g., to
reducé the complexity of test generation or to make the chip partially or
fully self-testable. The complexity of test generation may be reduced by
i enhancing controllability and observability. The chip may be made partially 2
or fully self-testable by employing built-in test structures or other built-in
test features. The major concepts in this field fall into ad hoc design
methods, structural built-in test methods, designing with easily testable com-

I ponents, and analysis tools.

3.2.1 Ad Hoc Design Methods

Numerous ad hoc designs for testability techniques have evolved over
the years. Most have dealt with small-scale or medium-scale integrated
circuits on printed circuit boards. Included in these techniques are concepts
such as resettable flip-flops, test points to increase observability, logical

cutting of feedback lines, and inhibiting internal clocks. Extensions to

12 bramevici, M. and 4. Breuer, "Multiple Fault Diagnosis in Combinatiomnal
Circuits Based on an Effect-Cause Analysis,'" IEEZ Trans. on Computers,
) Vol. C-29, June 1980, pp. 451-460. . G
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these early techniques have led to many of the bHuilt-in test metnodis currently

used extensively in VLSI circuits.
Ad hoc design methods include:

a. Degating13

b. "Addition of test points
c. Bus architecture

d. Partitioning'®

e. Self-comparison

e Self-oscillation®’

la 15

3.2.2 Structural Built-in Test Methods

Structural built=-in test methods fall into two major categories, namely,
semi built-in and fully built-in techniques. Semi built-in test methods employ
nardware structures, such as set/scan registers. to increase controllability

and observability. Off-line test generation is usually still required.

Both on~line and off-line fully built-in test techniques exist. The
on-line methods are examples of concurrent testing. The off-line methods,
such as built=-in logic block observation, are gaining in popularity. These
methods eliminate the need for off-line test generation and thus minimize the
need for automatic test equipment. These techniques often require minor or no

changes to the kernel structure being tested.

13Williams, T. W. and K. P. Parker, ''Design for Testability=--A Survey,"
Proceedings IEEE, Vol. 71, January 1933, pp. 93-112.

'*Hayes, J. P. and A. D. Friedman, "Test Point Placement to Simplify Ffault
Detection," Digest of Papers 10th International Symposium on Fault-Tolerant
Computing, June 1973, pp. 73-78.

1%4ayes, J. P., "On Modifying Logic Networks to Improve their Diagnosahil-
ity," IEEE frans. on Computers, Vol. C-21, January 1974, pp. 56-52.

16Akers, S. B. "Partitioning for Testability," J. Design Automation and
Fault-Tolerant Computing, Vol. l, February 1977, pp. 133-14%5.

173ueh1e;, M. G. and M. W. Sievers, "Off-line, Built-in Test Techniques
VLSI Circuits," Computer, June 1932, pp. 59-32. )

rr,
@]
(b ]
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3ome popular structural built-in test methods include:

ale Semi built-in

(L Level-sensxt.ve scan design'’?
(2) Scan path!®

(3) Random—access scan
(4) Scan/set logic?®
(5) Partitioning

19

b. Fully built-in

(1) On-Line

o Error detection and correction codes??
o Totally self-checking circuits
o Self-verification?*

(2) Off-Line

o BILBO?2S, 26

o Store and generat:e27

'8runatsu, S., N. Wakatsuki, and T. Arima, "Test Generation Systems in
Japan," Proceedings of the 12th Design Automation Conference, June 1975,
PPe 114-122..

Ando, H., "Testing VLSI with Random Access Scan,'" Digest of Papers COMPCON
80, February 1980, pp. 50-52.

205 tewart, J. H., "Future Testing of Large LSI Circuit Cards," Digest of
Papers IEEE Semxconductor Test Symposium, October 1977, pp. 5-17.
WcCluskey, E. J. and S. Bozorgui-Nesbat, 'Design for Autonomous Test,
IEEE Trans. on Computers, Vol. C-30, November 1931, pp. 8656-875.
‘Peterson, W. W. and E, J. Weldon, Error-Correcting Codes, 2nd Edition,
MIT Press, Cambridge, MA, 1972.

Wa<er1y, J., Error Detecting Codes, Self-checking Circuits and Applica-
tions, American-Elsevier, NY, 1978.

2%3edmak, R. M., "Design for Self-Verification: An Approach for Dealing
with Testability Problems in VLSI-Based Designs,' Proceedings IEEE [lest
Conference, 1979, pp. 112-120.

Konemann, B., J. Mucha and G. Zwiehoff, "Built-in Logic Block Observa-
tional Techniques," Digest of Papers 1979 Test Conference, October 1979,
pp. 37-41.

sﬂucha, J., "Hardware Techniques for Testing VLSI Circuits Based on

__Built-in Tests,” Digest of Papers COMPCON 381, February 1931, pp. 3556-359,

“75zarwal, V. K. and E. Ceruy, "Store and Generate Built-in Testing
Approach," Digest of Papers llth International Symposxum on rault-Tolerant
Computing, June 1981, pp. 35-40.
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o Verification of Wa%sh goefficients26
o Autonomous testing

.9
o Syndrome testing »9

3.2.3 Designing with Easily Testable Components

Designing with easily testable components is a methodology which deals
primarily with the design of the kernel itself, and where the main objective
is to make the kernel easy to test. A simple example would be those techniques
whicn rely heavily on the use of exclusive-or gates. For such circuits, a
single error on an input always produces an output error, making the coacept

of path sensitization particularly easy to achieve.

This methodology includes:
a. EOR trees’!
b. Canonic Reed~Muller circuits
c. Easily testable PLAs??

d. Easily testable iterative logic arrays
e. Bit-slice systems3s

32

2%3usskind, A. K., "Testing by Verifying Walsh Coefficients," Digest of
Papers llth International Symposium on Fault- Tolerant Computing, June 1981,
pp. 206-208.
McCluskey, E. J. and S. Bozorgui-Neshat, '"Design for Autonomous Test,"
Proceedings IEEE International Test Conference, November 1980, op. 15-21.
& Bozorgui-Nesbat, S. and E. J. McCluskey, "Structured Design for Testa-
bility to Eliminate Test Pattern Generation,' Digest of Papers 10th Inter-
nat10na1 Symposium on Fault-Tolerant Computing, June 1980, pp. 153-1A3.
3lseth, S. C. and K. L. Kodandapani, "Diagnosis of Faults in Linear Tree
Networks," IEEE Trans. on Computers, Vol. C-26, January 1977, pp. 29-33.
Salu]a, K. K. and R.M. Reddy, "Fault Detecting fest Sets for Reed-Muller
Canonic Networks,' IEEE Trans. on Computers, Vol. C-24, October 19753,
pp. 995-998.
Fujiwara, H. and XK. Kinoshita, "A Design of Programmable Logic Arravs with
Universal Tests," IEEE Trans. on Computers, Vol. C-30, November 1981,
pP- 823-828.
3%Friedman, A. D., "Easily Testable Iterative Systems,' LEEE Trans. on
Computers, Vol. C-22, December 1973, pp. 1061-106%.
sSrldhar, T. and J. P. Hayes, "A Functional Approach to Testing 3it-Slicel
Microprocessors," IEEE Trans. on Computers, Vol. C-39), August 1331,
pp. 553-571.
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3.2.4 Analysis Tools

Several analysis tools have been proposed for aiding design for
testability. These analysis tools usually estimate the degree of control-
lability and observability of the various signal lines in a circuit. Based on

these results, the circuit design should be modified, if necessary, in order

to enhance testability.

Several analysis tools are:
a. Measurements

(1) coMET?3®
§2), seoap?’ >
(3) TMEAs®?®
(4) caMELoT*®
(S b. Design: Automatic design for testabili.ty"l

3.3 STRUCTURE AND TESTING

Four important factors to be considered in testing a kernel are:

a. Fault modes

b. Whether or not a single vector or a sequence of vectors are
required to detect a fault

3%Chang, H. Y. and S. W. Heimbigner, "LAMP: Controllability, Observability
and Maintenance Engineering Technique (COMET)," Bell System Tech. J.,
Vol. 53, October 1974, pp. 1505-1534.
Goldstexn, L. H. and E. L. Thigpen, '"SCOAP: Sandia Controllability
Observability Analysis Program,'" Proceedings of the 17th Design Automation
Conferonce, June 1980, pp. 190-195.
%Goldstein, L. H., "Controllability/Observability Analysis of Digital
Circuits,'" IEEE Trans. Circuits and Systems, Vol. CAS-26, September 1979,
pp. 685-693.
Grason, J., "TMEAS, A Testability Measurement Program,' Proceedings of the
16th Design Automation Conference, June 1979, pp. 156-161.
“%Bennetts, R. G., et al., "CAMELOT: A Computer-Aided Measure for Logical
Testability," IEE Proceedings, Vol. 128, Part E (Comp. & Digital Techiniques),
London, September 1981, pp. 177-189.
“'Chen, T-H. and M. A. Breuer, "Automatic Design for Testability via Test-
ability Measures," IEEE Transactions on Computer-Aided Design, Vol. CAD-%,
January 1985, pp. 3-11.
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cfs Complexity of test generation

d. Timing

These factors are primarily influenced by the structure of a kernel and its

design style.

Fault modes are often a function of design style. RAMs exhibit the
phenomenon of adjacent pattern interference; PLAs are susceptible to cross-
point failures (extra or missing connections); and gate combinational networks

are often tested for stuck—at faults, shorts, and sometimes memory retention.

For a combinational circuit, only one vector is usually required to
detect a fault, while for sequential circuits a sequence of test vectors is
often necessary. Faults in combinational circuits which induce memory reten-

tion may require a sequence of two vectors to detect.

The complexity of test generation is strongly related to design style
as well as circuit structure. For RAMs, standard test sequences usually
exist. Automatic test generation is usually a difficult if not impossible
task for complex random sequential circuits. For PLAs, special algorithms

exist which make test generation a fairly effective and efficient process.

Finally, timing issues related to factors such as races, hazards, and
static and dynamic logic are a function of both design style and circuit
structure. For example, asynchronous circuits are circuit structures and are
susceptible to races. A RAM design style may be susceptible to pattern inter-

ference faults which are both timing- and data-sensitive.

In summary, different design styles and circuit structures have unique
testing characteristics and are thus amenable to unique testing approaches and
built-in test strategies. As an example, a PLA can be built suca that the
signal values on the row (product) and column (word) lines have odd
parity;33 this concept is not directly applicable to a gate combinational

network implementation of the same functions. A unique logic structure for

_21_
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the testing of internal arrays, and the testing for pattern-sensitive faults

in RAMs are discussed in the literatura.*?’"*?

“%gichelberger, E. B., et al., "A Logic Design Structure for Testing Internal
Arrays,' Proceedings of the 3rd USA-Japan Computer Conference, October 1973,
pp. 266-272. :

& dayes, J. P., "Detection of Pattern Sensitive Faults in Random Access
Memories,' IEEE Trans. on Computers, Vol. C-24, February 1975, pp. 150-157.
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4. TEST STRATEGIES

A test strategy for a kernel structure is the complete process involved

in testing the structure. This includes the following three main attribdutes:

a. Off-line test generation

b. Run-time test hardware

Automatic test equipment (external)
Built-in test (internal)

c. Test accessibility
Controllability

Observability

4.1 OFF-LINE TEST GENERATION

Off-line test generation is the method used to derive test vectors and

sequences. This process is necessary for some types of test strategies, e.g.,

in the LSSD methodology, but not for others, e.g., when a circuit is tested

using the BILBO methodology. There are several ways to carry out off-line

test generation, some of which are summarized below:

a. Manual

Circuit-oriented, e.g., process—sensitized paths
Functional, e.g., execute every instruction

b. Algoritnmic/heuristic

PODEM*"
D-algorithm"®

““Goel, P., "An Implicit Enumeration Algorithm to Generate Tasts for Combi-
national Logzic Circuits,' Digest of Papers l0th Ilnternational Symposium on
Fault-Tolerant Computing, October 1980, pp. l45-150.

“3otn, J. P., "Diagnosis of Automata Failures: A Calculus and a Method,"
I8 J. Research and Development, Vol. 10, July 1360, pp. 273-291.
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PLA ctest generation fe

Delay test oeneratlon
LASAR (D-LASAR LASAR 5.6)*8
Functional®

C. Pseudo-random®?%s 3!

d. Exhaustive (not normally done off-line)
e. Standard test sets

GALPAT for RAMs®»3?
Universal test sets for PLAs

33,53
Except for exhaustive and standard test sets, tests once generatad are

usually processed through a fault simulator to determine fault coverage.

Note that the process of off-line test generation can involve tha
overhead of a complex and sophisticated suite of software modules, including
design capture, testability analysis, test generation, and fault simulation

routines. The resulting tests are often processed via additional software

l'Gl-:i.chelberger, E. B. and E. Lindbloom, "A Heuristic Test-Pattern Generator
for Programmable Logic Array," IBM J. Research and Development, Vol. 2%,
January 1980, pp. 15-22.
Lesser, J. D. and J. J. Shedletsky, "An Experimental Delay Test Generator
Eor LSI Logic,'" IEEE Trans. on Computers, Vol. 29, March 1930, pp. 235-248.
“8fhomas, J. J., "Automated Diagnostic Test Programs for Digital Networks,"
Computer Design, Vol. 10, August 1971, pp. 63-67.

“IThatte, S. M. and J. A. Abraham, "Test Generation for Microprocessors,"
[EEE Trans. on Computers, Vol. C-29, June 1980, pp. 429-441.

5%8astin, D., et al., "Probabilistic Test Generation Methods," Digest of
Papers 3rd International Symposium on Fault-Tolerant Computing, June 1973,
,pr 171
S'parker, K. P., "Adaptive Random Test Generation,'" J. Design Automation and

Fault Tolerant Computing, Vol. 1, October 1976, pp.- 62-83.

5‘Hnatek, E. R., A User's Handbook of Semiconductor Memories, Wiley-
Interscience, NY, 1977.

53Hong, S. J. and D. L. Ostapko, "FI[PLA: A Programmable Logic Arrav for
functional Independent Testing,' Digest of Papers 10th I[aternational
Symposium on Fault-Tolerant Computing, October 1930, pp. 131-135.
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to create a fault dictionary, if required, and via a translator in order to
obtain a test program that runs on a specified piece of automatic test

equipment.

4.2 RUN-TIME TEST HARDWARE

Run=-time test hardware is the hardware used during the actual testing
process of the structure. This hardware is used towproduce the test vectors
required to test the circuit structure as well as process the responses ob-
tained. Table 1 summarizes some of the hardware used in this process. Two
main categories of hardware are used: external automatic test equipment and

internal built-in test circuitry.

Table 1. Run~-Time Test Hardware

o Off-chip automatic test equipment
o On-chip built=-in test circuitry
Generation of test stimuli

BILBO register

Linear feedback shift register
Counter (exhaustive testing)
ROM (stored test patterns)
General sequential circuit
Gray code generator

Processing of test responses

Signature generator

BILBO register

Syndrome generator/one's counter

Transition counter

Comparator

RAM (store responses)

Parity detector

Single error correction-double error
detect lon

General sequential circuit
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3 TEST ACCESSIBILITY

SU3 :‘. “
&

T
.

During the testing process, one needs a hardware mechanism in order to

v
500

—
v
2

actually apply the test vectors to the inputs of the kernel structure under

.
‘y et

test, as well as observe the response data produgced at the outputs of thnis

e o

structure. Since this structure is often deeply buried within a chip, built-in
test features are often added to the circuit to implement these controllability
and observability functions. Table 2 indicates some examples of how that ac-

cessibility is achieved.

{ Table 2. Test Accessibility

¢
F“ o Input .

- Primary inputs

3 Scan-in registers
- LSSD registers
BILBO register
Multiplexers

o Output

Primary outputs/test points
Scan-out registers

LSSD registers

BILBO registers
Multiplexers

In some cases, such as with a BILBO register, the run-time test hard-
ware and the test accessibility registers are one and the same. For the LSSD
methodology, this is not the case. Tests are first generated off-~line, usually
using some type of test algorithm; external hardware (automatic test equipment)
1s then used at test run time to generate and process the tests. LSSD rezis- :
ters are then used only to achieve input and output access to the structure

under test.
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In summary, a test strategy involves taree key concepts; namely, a
means for generating input test data, the hardware required to produce the
test vectors and process responses during the testing cycle, and a means for
applying the input test data to the input lines and observing the response
data at the output lines of the circuit structure under test. In some cases,
the kernel itself is modified in order to enhance its testability.?®
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‘ 5. TEST STRATEGY MEASURES

|'t'

k-

ii Numerous test strategies exist. With each test strategy one can asso-
ciate several measures dealing with performance criteria, constraints, and

9 goal: An example of a performance criterion is the length of time it takes
to test a circuit structure; an example of a constraint is that the input and
i output pin requirements for the built-in test circuitry be less than some given
!2 quantity; finally, an example of a goal is that the test strategy achieve at

least 98 percent fault coverage of the single detectable stuck-at faults.

The three concepts of performance, constraints, and goals have been
lumped together because they are usually highly interrelated, and often
tradeoffs are made between them. For example, achieved fault coveragze is
often a function of the expense one is willing to incur in test generation.
The incremental increase in fault coverage as a function of cost may he

- extremely high as one approaches 100 percent coverage. Also, for sequential
circuits, the incremental increase in test length for each 1 percent addi-

tional fault coverage may become extremely large. Hence, all goals may not be

Q~ feasible. Unfortunately, the quantitative prediction of performance measures
is a difficult task. One cannot, for example, predict a priori the cost of

test generation versus fault coverage for a given circuit.

Because of these dichotomies, the concepts of performance, constraints,

and goals have been combined into the general category of measures. In
Table 3, several important measures are listed which may need to be considered

in selecting a test strategy for a circuit structure.

The tradeoff between more area for built-in test circuitry and decreased
cnip functionality leads to a classic battle between chip designers and users.
Hence, the driving force for using built-in test circuitry comes from destign
specifications where the testability and functionality of the chip are made

equally iwmportant design criteria.
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Table 3. Measures Associated with a Test Strategy

g 0D

M1

- M4

M6

M7

4 s

M3

Yield and area effect due to built-in test circuitry

Example: o LSSD often requires a 5 to 20 percent area
overhead

Test Application Time

Example: o In LSSD, each test vector is shifted sequentially,
slowing down the test process

Input and output pin demand
Example: o LSSD requires four additional pins

Fault coverage and fault types

Examples: o For LSSD, coverage of the single stuck-at fault can
be arbitrarily high and can be measured via fault
simulation

o For BILBO testing, coverage is difficult to
determine
o) For autonomous testing, coverage is essentially

complete for all fault modes

Test input or output storage volume (on chips)

Examples: o For microdiagnostics, test volume is high.
o) For signature generation, volume is low.
o For LSSD, no on-chip storage is required.

Performance degradation
Preprocessing (off-line) costs
Cost of off-line automatic test equipment

Cost of accommodating engineering changes

A L
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Test application time is usually critical when expensive automatic tast
equipment is employed. When a chip is part of a large system, such as a spac:
satellite which employs off-line self-test procedures, testinz time may be im-
portant because it may significantly affect the time the system is not avail-

able for normal use.

Performance degradation deals with the effect on a circuit's operating
characteristics during its functional operation due to built-in test hardware.
For example, using a pair of level-sensitive latches in a feedback path (as
found in LSSD) instead of some other form of flip-flop may reduce the system

clock rate by a small amount.

Preprocessing cost deals with the process of off-line test generation

and the associated costs of acquiring and executing the required software.

Finally, the cost of processing engineering changes varies widely for
different test strategies. When off-line test generation is employed, pro-

cessing an engineering change can be quite costly.
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6.

P Ty

TESTABLE DESIGN METHODOLOGY

The combination of a kernel structure S and a test strategy (test

generation, run-time test hardware, and hardware for accessibility) consti-

tutes a testable design methodology.

If the structure S has a design style D,

then it can be said that the testable design methodology is for design style D.

The general form for a testable design methodology is represented as

follows:
Al.
A2,
A2.1
A2.2
i A2.3
6.1 EXAMPLE:

A kernel structure to be tested
(optional:

A basic circuit structure and its
design style)

A test strategy

An off-line test generation strategy
A run~-time testing environment
Hardware for test accessibility

LEVEL~SENSITIVE SCAN DESIGN (LSSD) )

As an example, an LSSD is associated with a testable design methodologv

having the following attributes:

Al

A2.1

A2.2
A2.3

Gate combinational network

Test generation algorithm/fault
simulator/translator

Automatic test equipment
Level-sensitive scan dasign registers

Figure 1 indicates the major components associated with the LSSD test-

able design methodology.

In Figure 2 a specific example of a testable circuit

structure having an LSSD testable structural style is shown.
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The LSSD methodology consists of the
kernel & test strategy indicated

/ CIRCUIT
DESCRIPTION

OFF-LINE TEST
GENERATION SOFTWARE
INCLUDING: D-ALGORITHM,
FAULT SIMULATION, TRANSLATOR

. ) The three components of the
TEST test strategy are as shown:
Kernel TAPE 1. Off-lina test generagtion
of the LSSD/TSS- 2. Run time test hardware
AT

Basic structureis 3. 1/0 accessability to kernel
combinational and

its style 1s GCN

| K CHIP
\
= R Sl =
]
' :
: - C i
\.'T"-'- (GCN) :
! i s a6 |
! L LSSD register-
) = i " a BIT structure
| e —— I
| I
' L)
\ ! The LSSD Testable
e e e e e e m e mm === = T SIuctural Style
(TSS)

Fig. 1. Level-Sensitive Scan Design Testable
Design Methodology
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A BASIC STRUCTURE S (combinational
logic) OF DESIGN STYLE GCN
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TI<=scan-IN

A BIT
STRUCTURE (LSSD register)

A TESTABLE STRUCTURE T
HAVING AN LSSD/TSS

Fig. 2. Testable Structure with a Level-Sensitive
Scan Design Testable Structural Styla
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The space of testable design methodologies can be thougnt of as a multi-

dimensional space having the following three main components:

a. The structure of the circuit to be tested and possibly its
basic structure and design style

b. The test strategy selected to test the circuit

c. The value of the measures, such as Ml through M9, associated
with the above two items

Given this space, some testable design methodologies can be judged to
be good, others to be poor. For example, replacing the gate combination net-
work by a RAM in the LSSD methodology would not lead to a useful testable

design methodology. 3

6.2 DESIGN PROBLEM

The main tasks in designing a testable CLSIC chip can be stated as

follows:

a. Partition a design into circuit structures. Depending on the
testing strategy to be used, some or all of these structures
5 may be basic circuit structures having well-defined design
styles.

b. Select an appropriate test strategy for each structure.
c. Modify the design as necessary to implement the selected

testable design methodologies which satisfy all measures
associated with the chip.
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7. CHIP BUILT~-IN TZST CIRCUITRY

In making a chip testable, several standard hardware structures are
often added to the chip in order to enhance its testability. Examples of such

built~in test circuilts are:

a. Set/scan registers, e.g., LSSD registers
b. Counters (generates 20 test vectors)

c. BILBO registers

d. Comparators

e. Linear feedback shift registers

135 Parity generators

Over the last several years, increased levels of observability and
controllability in VLSI circuits have been obtained by replacing normal flip-~
flops in a circuit by dual mode registers which, in normal mode, act as normal
flip-flops. In the test mode, they act as shift registers, enabling test vec~
tors to be scanned into the circuit and test responses to be scanned out. To
achieve exhaustive testing, counters can be added to a circuit so that all
possible test pattarns can be generated. To carry out ones or traansition
count testing, a count register can be used. Between these two extremes, one
can employ linear feedback shift registers, such as in the B3ILBO methodology,
to either generate pseudorandom test vectors or to generate a signature.
Finally, a comparator can be used to compare a generated signature with a
stored correct signature. When these test circuits and others are used,

powerful testable structural styles can be created.

Except for the parity generator, the test circuits listed previously
are used for off-line testing. When on~line testing is used, then other
built-in test circuits are employed. They are usually used to implement some

coding or decoding scheme. Other examples of such test circuits are salf-

checking checkers.®
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8. EXAMPLES OF TESTABLE DESIGN METHODOLOGIES

Tnis section briefly illustrates a few popular testable design

methodologies.

8.1 LEVEL-SENSITIVE SCAN DESIGN'®?

Probably the most well-known testable design methodology is the LSSD
testable design methodology introduced by IBM. This methodology has bheen

depicted in Figures 1 and 2.

8.2 SCAN PATH DESIGN!®

This methodology is similar to the LSSD testable design methodology.
The main differences lie in the type of flip-flops used in the registers and

the clocking scheme employed.

8.3 SCAN-SET DESIGNZ2®

The scan-set testable structural style is shown in Figure 3. Note that
the kernel structure is now a sequential circuit; hence, the off-line test
generation process for this methodology can be significantly more complex than
that for the previous two methodologies. The register can either load data
(observability) in parallel from test points in the kernel structure and shift
these data out (scan-out), or else scan-in new data (controllability) and apply

these data to test points in the kernel.

8.4 RANDOM ACCESS SCAN DESIGN !?

The testable structural style for the random access scan testable design
methodology 1s shown in Figure 4. Again, off-line test generation is required
along with automatic test equipment, and the kernel is combinational. For this

testable structural style, the flip-flops in the original sequential circuits l
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are made individually addressable during the testing mode, and their contents
are set and read via the automatic test equipment. During the normal mode of
operation, the kernel and flip-flops in the addressable storage array operate

as a normal sequential circuit.

8.5 BUILT-IN LOGIC BLOCK OBSERVATION DESIGNZ?3%°2°®

_This testable structural style is an example of a fully built-in test
approach; hence, no off-line test generation is used, and only minimal auto-
matic test equipment is required. The BILBO registers carry out four functions
for testing: controllability, test vector generation, observability, and test

response processing (signature generation).

Figure 5 shows the testable structural style used in the BILBO testable
design methodology. The kernel is again combinational logic and usually of the
gate combination network design style. Since this approach is based upon
pseudorandom test patterns, a ROM or PLA design style is not suitable. The
circuit C1 is tested by configuring the BILBC register on the left as a
pseudorandom pattern generator and the BILBO on the right as a signature

generator.

8.6 SYNDROME DESIGN’®%*?®

The testable structural style for the syndrome testable design method-
ology is shown in Figure 6. Again, the kernel is combinational, hut this
approach is applicable to gate combinational network, PLA, or ROM desiga
styles. Only a single output is indicated. Testing is accomplished by having
the counter produce all 2% input vectors, while the count register counts the
number of 1's on the output. The correct number of 1's is the number of min-
terms in the function realized by C and is denoted by X. Then S = Rl iy
said to be the syndrome. Fault detection is achieved by comparing the final
state of the count register with S. In this built-in self-test methodolozy,
no off-line test generation is required, and the automnatic test 2quipment
requirements are minimal. Often, the design of the cireuit C (for zate combi-

national network and PLA design styles) i1s modified to enhance taestabilitv;
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e.g., a syndrome testable circuit is one for which every single stuck-at fault

is detectable by this testing approach.

There are several variations to this form of testing. For autonomous

testing,“’ 29,30

the output of the kernel is directly observed by an automatic
test equipment, rather than compacted into a signature (syndrome). This form
of testing thus guarantees detection of all faults which are not sequential in
nature. Alternatively, the response can be processed via a linear feedback

shift register, and again a signature can be generated.

8.7 EASILY TESTABLE BIT-SLICED DESIGN®®

While bit-sliced architectures are usually implehented via intercon-

necting chips, as the .level of integration increases these architectural
styles will be used more extensively at the chip level. One reason for this
is regularity in layout and testing. A testable structural style ideal for
bit-sliced architectures has been developed. One version of this architecture
is for CI-testable arrays. To introduce this concept, a few definitions are
needed. An iterative logic array is a one-dimensional cascade of identical
cells (see Fig. 7). The cells can be either combinational or sequential
circuits. An iterative logic array is said to be C-testable if it can be
tested with a constant number of test patterns, independent of the array size
N. Let T be a test set that tests an iterative logic array D completely under
the assumption that only one cell in the array is faulty. Then D is I-testable
with respect to T if the expected responses to T appearing at the vertical
outputs of every cell L.1 of D are identical. A Cl-testable iterative logic
array is both C-testable and I-testable with respect to some test set T. The
necessary and sufficient conditions for an iterative logic array to be

CI-testable have been determined.3"

In Figure 7, Ll’ LZ""'LN represents the CI-testable iterative
logic array to be tested. The normal inputs and outputs are shown. The test
T can be stored off-chip and applied via automatic test equipment or on-chip

and stored in a ROM. The equality checker determines if the responses trom
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each Li are identical. The case of a single output line from each Li Ls
shown, but the concept can be easily generalized to the case of multiple

output lines.

Off-line test generation is required for this methodology; for complex
cells, this process may be quite difficult and require the use of checking
sequences.S“ Real-time test-hardware can be either on-line or off~line.

Test application to the kernel is achieved via the multiplexers, while observ-
ability of the responses is not required due to the equality checker and the

concept of I-testability.
8.8 SUMMARY

In summary, fully built-in testing deals with those test strategies
where the role of the external test equipment is minimal. BILBO and syndrome
testing are examples of methodologies which employ fully built-in testable
structural styles. The general architecture for such a style is shown in
Figure 8. Table 4 summarizes the various options for each block in Figure 8.
When built-in test structures are added to a circuit, care must be taken to
ensure that the test structures are themselves tested, either implicitly or
explicitly. Also, when several different testable structures exist on a chip,

some additional hardware overhead may be required to control the test process.

5%Friedman, A. D., and P. Menon, Fault Detection in Digital Circuits,
Prentice Hall, NJ, 1971.
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Table 4. Some Options in the Design of a Fully
Built-in Testable Structural Style

o Stimulus Generator
o Hardware test generation

o random patterns using a linear feedback shift register

o all input combinations using a linear feedback shift register
or a counter (exhaustive)

o some specified patterns using a nonlinear feedback shift

register

o Stored test patterns

o Store and generate-~store some pre-calculated
patterns as initial values for a linear feedback
shift register

o Functional circuit

o Sequential circuit--can be partitioned into combinational

parts using set/scan registers
o Combinational circuit--partition into manageable subcircuits

o Response analyzer
o Use compressed responses

o syndrome (one's counting)
o signature using linear feedback shift register
o transition counting

o Store the correct responses

Generate the correct response
o Compare responses with correct ones and generate

go or no-go signal

(<]

o Controller

o Control transition between test mode and normal
mode
o Control testing process
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9. TESTABLE DESIGN METHODOLOGIES FOR PROGRAMMABLE LOGIC ARRAYS

Numerous techniques for testing the PLA design style have been sug-
gested. Figure 9 indicates several testable design methodologies for PLAs
according to certain attributes, such as whether or not they support con-
current testing, produce a self-testing PLA, require off-line test generation,
and are based upon a special design approach. Naturally, these techniques
could have been classified and grouped differently, such as by fault coverage

area overhead.

Figures 10 through 12 indicate the testable structural styles corres-

ponding to just three of the techniques listed in Figure 9.

9.1 PROGRAMMABLE LOGIC ARRAY WITH UNIVERSAL TEST SET

Figure 10 indicates a testable structural style for a PLA which employs
a universal test set, hence no test pattern generation is required.33 The
normal design of the PLA is shown in heavy lines.. The medium lines indicate
added built-in test structures, and the thin lines indicate wires. The product
term selector is a shift register; the data in this register enable and disable
the product lines in the array. The AND array is extended by one product line,
such that each input row has an odd parity; a word parity line is also added
to the OR array. The inputs Yo» Yp» ¥, are used to control the circuit
during the normal and test modes. An error is indicated by testing the two
lines (Zl’ ZZ)' This test can be done on-chip or off-chip. The Din is
a new input used to supply data to the product term selector register. Nor-
mally, the universal test set is stored off-chip and is applied via the auto-

matic test equipment.

If the PLA has n inputs and m product lines, then tne number of tests
in the universal test set is 2n + 3m. These tests detect all single stuck-at
faults in the decoder blocks f and the PLA, all crosspoint faults in the PLA,

and all stuck-at faults in the parity chain #1.-
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9.2 AUTONOMOUSLY [ESTABLE PROGRAMMABLE LOGIC ARRAYS

Figure 11 indicates what is referred to as an autonomously testable
structural PLA style.61 This form of testing is very similar to the univer-
sal test set approach, except that rather than store the universal test set
and have them applied via an automatic test equipment, the autonomous test

approach generates the test patterns on-chip.

For this design, a product term selector register, several additional
parity word and product term lines, and the parity chains have again been re-

placed by parity trees to enhance their testability.

The control for normal and test modes may still be external; however,
the input test data and the data for Din are now all generated on-chip by
the feedback value generator which is a simple sequential circuit. At the end
of the test process, the product term selector register contains a signature;
it is decoded by the flag circuit which produces an error flag if a fault has

been detected.

This approach employs n + 2m + 8 tests and detects all cross-point
faults in the PLA as well as all single stuck—-at faults in the entire circuit,
except for parts of the feedback value generator and flag circuit. These can

be duplicated if necessarv.

9.3 PROGRAMMABLE LOGIC ARRAYS WITH CONCURRENT ERROR
DETECTION AND TESTING

Figure 12 indicates a PLA tastable structural style whici supports con-

current error detection. >’

The PLA must be designed so that it has concur-
rent product lines, i.e., exactly one product term is true for every input
vector. This condition usually increases the size of the PLA. Since the PLA
inputs exist as a two-rail circuit (xi, x'i), a totally self-checkinz two-rail
checker C2 is used to detect stuck-at faults on input lines. A parity out-

put word is added to the OR array, and a parity tree Cq is used to detect

-
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errors on the outputs. Since concurrent testing is employed, a totally self-
checking 1 out of m checker C1 can be used to detect errors on the product

lines.

During normal operation, this testable structural style will detect any
of the following faults which produce output errors: single stuck-at faults,
shorts between adjacent lines, and crosspoint faults. Most transient faulcs
are also detected. Since it 1s possible that the normal inputs may not com-
pletely test C1 and C3, it may be necessary to carry out off-line testing

so that these circuits can be completely tested.
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10. SUMMARY

~
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This report has presented a survey of some of the important concepts

s

related to the design of a testable CLSIC. Both testing and design for test-
ability have been discussed. Several design for testability concepts have been

presented, with emphasis on structures for semi and fully built-in testing.

In addition, an approach to achieve testable designs has been suggested.
In this approach, it is necessary to first partition a CLSIC into structures
to be tested as separate entities. Some of these structures may be basic
structures and have design styles. Often the characteristics inherent in a
structure or its design style dictate a testing approach. The concept of a
test strategy, cousisting of off-line test generation, run-time test hardware,
.- and built-in test structures for input and output accessibility, was intro-
duced. Given a selected test strategy for a structure to be tested, a test-
able structural style is created. A testable chip thus counsists of instances

of testable structures, each of which corresponds to some testable structural

style. The result of using these concepts in an orderly and effective way,
satisfying the goals and constraints imposed by the design specifications,

constitutes a testable design methodology.
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