AD-A156 898 A METHODOLOGY FOR THE DESIGN OF TESTABLE CUSTOM /4
LARGE-SCALE INTEGRATED CI.. (U> REROSPACE CORP EL
SEGUNDO CA ENGINEERING GROUP 31 JAN 85

UNCLASSIFIED TR-0884A(59082-84)>-1 SD-TR-85-33 F/G 9/5 NL

-y
- o

20

V.. b

_
| EEEE!
r m.—mm—m_uw_u._._.m

=F

———
—
=

16

————
———
e
—_—

|
Il

I

—_—
_—

14

s

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

\

LI I 4 L §
~,-~.f

REPORT SD-TR-85-33

AD-A156 098

o
PSPPI L L W N S

I T e B e S i i AR G e —y— —————— . — -

&

A Methodology for the Design
of Testable Custom Large-Scale Integrated Circuits

M. A. BREUER, CONSULTANT
Systems Support Office
Engincering Group
The Aerospace Corporation
El Segundo, California 90245

31 January 1985

Final Report

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Prepared for

SPACE DIVISION

AIR FORCE SYSTEMS CONMMAND

Los Angeles Air Force Station

2.0. Box 92960, Worldway Postal Center

Loy Angeles, CA 90009-2¢

______ T s S e B s e aoe s e aee o e o, T ————

|
r
b
This final report was submitted by The Aerospace Corporation, El Segundo,
CA 90245, under Contract No. F04701-83-C-~0084 with the Space Division, Deputy
: for Logistics and Acquisition, P.0. Box 92960, Worldway Postal Center, Los
i Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace
Corporation by C. J. Leontis, Electronics and Optics Division. The project
officer was Mr. Akira Murakami, SD/ALT.
’ This report has been reviewed by the Public Affairs Office (PAS) and is
B releasable to the National Technical Information Service (NTIS). At NTIS, it
will be available to the general public, including foreign nations.
This technical report has been reviewed and 1s approved for publication.
b Publication of this report does not constitute Air Force approval of the

report's findings or conclusions. It is published only for the exchange and

stimulation of ideas.

FOR THE COMMANDER

Sl ok DA emrbne

@ Richard D. Benton, Major, USAF
Director, Specialty Engineering and Test

& 2
S - et - ol I O

el DIt L et - - - . S ey T P gl 5 O P Y TR T R e o S T oy
PUCNPN, AL UL AP P R, AP,) [V N, LI, LIPS I L Sl G G WL . U 2P 6 I S O, UL P WL 0. IS WA S W WY LAY TR GG S S0 HCN WA W Y Bt e S p Sg S o N g .= .t o = o % g S g = o __ o =

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dere Zntered)

REPORT DOCUMENTATION PAGE BEF%%‘EDC‘SS,T,E%%‘;}Q",?ORM :
I. REPORT NUMBER 2. GOVYT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
SD-TR-85-33
A. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Final
A METHODOLOGY FOR THE DESIGN OF TESTABLE 1 Jan 1983 - 30 July 1984
CUSTOM LARGE-SCALE INTEGRATED CIRCUITS 6. PERFORMING ORG. REPORT NUMBER
TR-0084A(5902-04)- /
7. AUTHOR(s) 8. CONTRACTY OR GRANT NUMBER(s)
M. A. Breuer, Breuer and Associates F04701-83-Cc-0084
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. Pnoanm.uzu:ur.-aouc*. TASK

AREA & WORK UNIT NUMBERS

The Aerogpace Corporation
El Segundo, Calif. 90245

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Space Division 31 January 1985
Alr Force Systems Command 15. NUMBER OF PAGES
Los Angeles, Calif. 90009 63 P

4 MONITORING AGENCY NAME & ADDRESS(!! diiferent from Controliing Oflice) 15. SECURITY CLASS. (of thie report)

Unclasgsified
1Se. DECLASSIFICATION/DOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of this Repors)

17. DISTRIBUTION STATEMENT (of the abetract entered Iin Block 20, Il ditierent from Report)

—

Approved for public release; distribution unlimited

18. SUPPLEMENTARY NOTES

9. KEY WORDS (Contfnue on reverse aide il necessary and identily by diock number)

CLSIC Design Style
VLSI Test Strategles
j Testability Test Strategy Measures
- Pest Structures Testable Design Methodology

20. ABSTRACT (Continue an reverse eide If necescary and identily by biock aumber)

This report summarizes the main concepts in the design for testability of

) custom large-scale integrated circuits (CLSICs) and concepts involved in

’ testing for physical faults in actual hardware. Important problems and issues
] which should be considered in designing a testable CLSIC, including test
structures and design style, test strategles, test strategy measures, and
testable design methodologies are introduced. A general methodology for

designing a testable CLSIC is presented, which includes partitioning a chip

FORM
J DDCIACDIMILCI 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

-
. . ; s e e Lt e SULEEY SEN AT A k = el bR s gt SR - .
o RS ., b OE " D w7 T PN e O T e TR It e o oo Tathes R R S TuPac s ARG R i T S
LIS U) RO E ~ i . L -, ' . . PRI, T auscl ot . - S gk Tiai e R .

e S S LA et 2 = T N Y N R A A TR I S T T N N IR S T N W S

R S e e i e P W WY T T e v

T R
A 5 e T e e e s el b e~

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered]
'9 KEY wWORDS (Continued)

20. ABSTAACT (Centinued)

into circuit structures, and imbedding each circuit structure into a
suitable testable design structure. Measures are introduced so that
different test methodologies can be quantitatively compared.

o2 o oo

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIL PAGE(When Dats Zntered)

3 o . S ROR=Cr Al a8 Do W, O O O o) SRR o Ot
'y

. o sah ot L Ay e CRROECIE O BTORT0 B tae
P TR A LA S T A T T T S N P O L M AL U N U N D B VU I W WL L A Ty D L e 1oty SN e Ty

i i i A e e e e e i S e e S S e S S S S S S Sl T S ST
S A e Yk T a See My - - " - . Sy g . . - . - - - '

ACKNOWLEDGMENT

The author wishes to acknowledge the many helpful discussions with
M. Abadir, Xi-An Zhu, and N. Nanda in developing the concepts presented. Also
acknowledged are the critical reviews and comments of C. Guwyn,
L. H. Goldstein, and J. P. Hayes, the sponsorship of this work by A. Carlan,

and the extensive editorial services of E. Wade and his staff.

as o™ Lol e e Te e e 15 e O RO e
R s G, ey Ve A ol o T o O o L L)

“ e
-~ et

Ll W i) P
PR Tl e I B R e RS

G N0 Ol)
ate o LR N N)
Shats L)

. T vy & p .
3 PRI RN BT U SO Wl T8 0. B

Dkl MO N) .
PP anisadlciasiiasiiaras it

........

CONTENTS

1 . INTRODUCTION @ 0 0 € @ 00 ¢ 0 0 00 O 0O O OO OO0 OO 00 e OO OO0 e 000 e e 7
2. STRUCTURES AND DESIGN STYLES .ccseececcccssceassccacsscananss 9
3 L) TESTING TAXONOMY ® 0 @ @ ¢ 00 0000 0000 OO B0 EO O OO0 OO0 OO e e 0 13

Test Program Generation .ccececceccccccocesssssesccccccssssss 13
Fault Modeling scccccecesosessccacccccccccccccsossassssscccccese 13
TeSt GeNeration ccececescsssccccacscsscsccesccacsssassaccccssss 14
Response Evaluation seececeescscccccccccccccccsossescsscssccscaas 15
Fault Simulation eeeccecescescecsoscassoccsscosssscsscsccssceecs 16
FemIlE oA 000 0b 006006 6000003000000006060000330A0300000000 | L&
Design for Testabilityeceecooeccsccecscscecscsccssscccssseces 16
Ad Hoc Design MethodS ccecececsscccssscsccsscsccscccscssssssaas 16
Structural Built=-in Test Methods .c..cceceeccsccccocnceccsaae 17
Designing with Easily Testable Components eececececececoccsces 19
Analysis TOOLS cceeesscscccesooctsccccssccccssccosscscssscce 20
Structure and TesSting eeecccccccccccosesosssoscccssccssssass 20

* o © o o o
® o © o o
Vo~ W=

L]
e o
Pl e N

WwWwLwWwwwwwwww
.
WMNDNPNNN

TEST STRATEGIES © @ 0 0 Q0 0008 0O OO G OO0 OO OO 00O OO OO PO N Cer e e 0 23

&~

Off-Line Test Generation €0 000 0000000000000 00c00cesscecsccc 23
Run‘Time‘TeSt Hardware €0 0000000000000 0000000000000 0 00000000 25
Test ACCeSSibility ©0000000000000000000000000000000000000 000 26

f‘l-‘«l-‘

wN -

w
.

TEST STRATEGY MEASURES .ceccccccccccccccccocsasssssscccaccess 29

o
.

TESTABLE DESIGNMETHODOLOGY @ 0 0 0 00 0 00000 QOO OO OO OO et 33

Example: Level-Sensitive Scan Design (LSSD) ...cceceeeeees 33
Design Problem ceeeecesscessssscessscsscsssscsssscssssssans 36

oo
L [
N

CHIP BUILT-IN TEST CIRCUITRY ¢cccecococcoosccoccccoosccsasce 37

~
.

©o
.

EXAMPLES OF TESTABLE DESIGN METHODOLOGIES .¢eccceecocscssses 39

Level-Sensitive Scan DeSign cececoccecccscccosssscsscsccsscces 39
Scan Path DeSign cecececccecccscsscscceceasasossccssaccosscces 39
SeaAN=SE HDESHIGNN (o101 oXe1 shs)eNsrelsle)lol s¥at st sl ekstolsfoleTorsloNeloraNetoNe SYororalel sretorets o'el 39
Random Access Scan DeSign sseescecesscccssscccccccscscccssas 39
Built-in Logic Block Observation DesSign .ccecccceccccccsccse 42
Syndrome DEeSIiZN cccecesccccccsssssccsssscossssosssssscssccces 42
Easily Testable Bit=Sliced DesSign secececscecccccccsscacccacee 45

Sumary © 0 00 000 00000000 C0COCEQCEEECEC0QCEQCEECEOO0OO0QCEO0O0CO0O0CO0COCO0OCOCCEECEONOOIOSEOIEOSEOE TS 47

00 00 OO0 00 00 00 OO O
]
VAN WN =

ot T O e) T . - . e . . e e o™ " K% ; o R M GRS RO O

'~.' ORI R O On I .-.'-‘-. o -‘-”-.‘- ST .,._.L.\.;. g8 ;. e s PON Y S -.‘,-.';..',-. e - Toote,

L e e o e e U s L

CONTENTS (Continued)

9. TESTABLE DESIGN METHODOLOGIES FOR PROGRAMMABLE
LOGIC ARRAYS LU BB B I B B B BB BB BB B B B R B B BE B B B B B R B BB B BB A B R I BB B Y) 51

Programmable Logic Array with Universal Test Set ccecesseess 51
Autonomously Testable Programmable Logic ATrrays eccececceceesss 57
Programmable Logic Arrays with Concurrent Error

Detection and TeSEINZ ccececscccsrsvscccasssssncsnssscssssscsce I8

O O O
e o

w o =

10' SlmARY-----------.--tccccc'tooo'ooo'tt'o'oo.tt'o'oto'tt'oct 59

REFERBNCES"""'o"'ooo'occoccocccco"'o"'""""'o'oo""""oo"o R-1

ST S RS 5 2%
..... <,
S5 R s % Joggl
DX WP RNl SO WP WP G Wy Ty o o 2 s 2

et g . et L i A AT A R A AR T i e AR T i T T
o o O o i, T, . i A T S o i o i oo GRS Canie

FIGURES
1. Level-Sensitive Scan Design Testable
Design MethodologY .eceeeeesccccccccncsssscescsscsssccccccccsss 3b

720 Testable Structure with a Level-Sensitive Scan Design
Testable Structural Style seeceecccscccseccccscccscosccscsnscces 35

3. Testable Structural Style Used in the
Scan-Set Testable Design MethodologY ceceeevveescoccsoeroscosee 40

4. Random Access Scan Testable Structural Style ..ccccevscecescese &1

5. Built-in Logic Block Observation Testable
Stmctural Style ® 6 0 0 0 00 00000000 O OO SO OO OO P OO 00O PPN 43

6. Syndrome Testable Structural Style .ccececereccccececescsccosees &b
7. Bit-Sliced Testable Structural Style ..cccesecccccrsccecooncess 46
8. General Form for a Fully Built-in Testable

Structural Style © 00060 06000060600000 000000000 0COCOIOCOCO0COGOCOIOGROIOOIEOGOOEOSOEOTES 48

9. Testable Design Methodologies for Programmable
.Mgic Arrays ® 6 9 00 O O 09 00 OO0 OGSO OO 0SS OSSO S SO SO OSSO0 0SS SN OO e PSS 0 52

10. Programmable Logic Array with Universal Test Set cccccecesecees 53
11, Autonomously Testable Programmable Logic Arrays eecececesceccees 54
12. Programmable Logic Array with Concurrent

Error Detection and Testing © 0000000 0000000000000 060000000000000 55

TABLES

_Some Options in the Design of a Fully Built-in

T T T T T T

T N T N W W T W T 3o

Run-Time TesSt Hardware e.cceccececcecseccscsscsccsssssascnscnsss 25
Test AccesSibllity ceececenrnceseosossccssssssssossssnscecoscesss 26

Measures Associated with a Test Strategy sesececccccocscacsesse 30

Testable Structural Style cccceccecccsssessscessnscscssonssenses 49

- - - ‘- - . - - - - -

e aVaTa - A0S B S O O S ¢, D O - . - -
PRSI T Tk GRS i S T Y S -.‘_._.'.’-.._\-.\--,_..-‘..... .-_........_. sl o e e e . E ‘~.\.. - 3
LR PRL PNL IS LIPS, P VA G ST S R TV S ST LA AT Yol Sl YO TR SN T AT W Solll SH Solll S el Tl SR Wt T TR O R L P e)

1. INTRODUCTION

This report presents some of the major concepts related to the design
of a testable custom large-scale integrated circuit (CLSIC). The partitioning
of a CLSiC into testable circuit structures, the basic criteria and techniques
used in testing, and the addition of built-in test features to facilitate
testing are discussed. Built-in test features for CLSICs include the built-in
test circultry, other special built-in test structures, and the embedded firm-
ware and software used to implement built-in testing. For example, built-in
test features may include on-chip functional circuit structures, such as signa-
ture generators, comparators, parity trees, counters, encoders, and decoders;
or they may be nonfunctional, such as structures used for process monitoring
or to enable external testing. Nonfunctional built=-in test structures are

usually process-peculiar and will not be discussed in any detail.

A testable circuit structure refers to a logical organization or
architecture of a CLSIC subcircuit consisting of the functional circuitry to
be tested, and associated built-in test circuitry. The circuitry to be tested
is called the kernel. Built-in test circuitry consists of additional cir-
cuitry, peripheral to the functional nature of the CLSIC, which is added to
the chip specifically to aid in testing the functional circuitry. .The built-
in test circuitry may be functional in nature. Examples of testable circuit
structures are level-sensitive scan designs (LSSD), built-in logic block

observation designs (BILBO), and syndrome testable designs.

S Te St et et ettt s Ml R RO O S S - -
LG OO)
)

.
oA Do DALY

SR it i st b i e e e e S

Ol TSSO ol o P GRS
. Oty W

-t e - LY - . . .
LY R L YT LR L e

g

2. STRUCTURES AND DESIGN STYLES

Four fundamental units of logic circuitry are used to implement digital
systems: busses, random access memories, registers, and combinational logic.
These fundamental logic units are referred to as basic circuit structures.

The simplest case of a bus is a wire, of a random access memory is a one-bit
addressable storage element, of a register is a lateh or flip~flop, and of a
combinational logic circuit is a gate. More complicated circuitry, such as
decoders and multiplexers, also are often implemented as basic structures.

The interconnection of two or more of these basic structures (either different
or identical units) results in a circuit structure. The difference between a
basic circuit structure and a circuit structure is subtle. Arithmetic logic
units, counters, and shift registers are é&xamples of simple circuit structures.
Circuit structures éften have architectural styles associated with them, such

as pipeline, bus-oriented, or bit-sliced.

There are numerous ways of implémenting a basic structure in a single
silicon chip. Circuit design considerations differ in: (a) how transistors
are constructed, (b) how transistors are interconnected to form logic func-
tions, (¢) how logic functions are. interconnectec’, and (d) what technology
is used. Variations in circuit design and logic function lead to different
design styles, such as read only memories (ROM), programmable logic arrays
(PLA), and gate combinational networks, e.g., a NAND gate network. Hence, the
use of a basic structure often defines a circuit's design style. For example,
a combinational logic basic structure implementing some Boolean function, such
as an arithmetic logic unit, may have as a-design style ROM, PLA, or gate

combinational network.

The importance of identifying design styles is that different design
styles can lead to unique failure mechanisms; hence, the corresponding basic
structures are often tested differently. This is not necessarily true when
exhaustive testing is employed, in which case the design style is usually

ignored.

- - - . - - - ., - . . e - - - - . P e) . P&

= e B0 0 SRS -
Slc PP A Ry Poila 2 K S

. . LN PN & g8 P SOMIO [e o ¥ SO

o o2 igic] S iRy 5 oot AT SORSE

C ik S s
Acad o t

n‘:'thm

FEIBPOL VRO Y W

e

ol

Py -l

ettt B

P S

T e

- [
o e e

- s - «®e® o - * e e ®. - .l o - - n h'_\.
DREYS W PEPE LN RGN G NN GG LY G GEINE RE G DG kT Gl G O Ry

b e e o e e e i i S S B e B e e B R e T T e o e o e e o S

As an example, consider the PLA design style. Because of the high
fan-in often found in the AND array, PLAs are usually not tested very com-
pletely by random test vectors. Also, PLAs are susceptible to unique failure
mechanisms, such as extra or missing crosspoint connections. Hence, a test
methodology for a PLA may be quite different from that for a ROM or gate

combinational network.

Often, circuit structures are specially designed to enhance test-

ability, such as in the LSSD methodology.l’2

In this case, a combi-

national logic basic structure C and a shift register structure S are inter-
connected to enhance the testing of C, which normally has the design style of
a gate combinational network. The architecture consisting of the combination
of the level-sensitive scan register connected to C is said to constitute the
LSSD testable structural style; the combinational logic network C which is to

be tested is the kernel of the style.

In general, a CLSIC can be partitioned into functional blocks, such as
control, input/output, arithmetic logic unit, and memory. For testing pur-
poses, a CLSIC can also be partitioned into ''testable' subcircuits, each sub-
circuit being tested in its own unique way. These subcircuits may correspond
to functional blocks. By definition, they are circuit structures. Often, one
of the first steps to be taken in the design of a testable CLSIC is to .parti-
tion it into subcircuits. The subcircuits, in turn, define circuit structures
whose fault characteristics are well-defined and for which one or more testing
strategies are known. Each such structure may be modified by the inclusion of
specified built-in test circuitry in order to enhance its testability. The
subcircuits so defined by the partition process need not be disjoint; in fact,

they often have built-in test circuits in common.

1Eichelberger, E. B. and T. W. Williams, "A Logic Design Structure for LSI
Testing,” Proceedings of the l4th Design Automation Conference, June 1977,
pp. 462-468,

inchelberger, E. B. and T. W. Williams, "A Logic Design Structure for LSI
Testability," J. Design Automation and Fault-Tolerant Computing, Vol. 2,
May 1978, pp. 165-178. -

= 1oh=

. - . . e 5 - . SO0 oo O

- ofhas S CROSPSSCIES

o ® em s - A e e . oesoko O W O
i - -

S o BLt 0 "t.'f"r-'- o * s a . . - Ol . N i e L > S o i Sna el Tas
Set IS I Sull T Sl W & Bl S T W WY VLIT VAPT UL BP VY S LI U S NP VI U, SV W DN WD W SOy SORE WOy Wil DS o & e

A maximal basic circuit structure is a basic structure not contained
within a larger basic structure. Often, a chip is tested by identifying maxi-
mal basic circuit structures and testing them individually. If a circuit
structure is not too complex, such as a counter, it can be tested as an entity.
For complex circuit structures, such as a microprocessor, testing it as one

entity becomes extremely complex.

-

R T O D SRR B e e Y AN S G
g B g g st 2 pEon X AR Rt s g b S g ’.'A‘_‘I).'\'.h}l o\

- . . e, = w . . ol e, o .
OIS I ol S0 SR RN e i PN OT 3O N g e e - ERREY

— i St Sk e o

3. TESTING TAXONOMY

The process of testing a circuit structure in order to detect or locate
hardware faults can be carried out in one of two modes, known as external
testing and self-testing. The former deals with the use of automatic test
equipment to test the circuit structure; the latter relies on the chip itself
to carry out the testing process. A circuit structure is often tested using
precomputed test programs which are created via the process of test program
generation. Two major aspects of testing, therefore, are test program

generation and design for testability. H

3.1 TEST PROGRAM GENERATION

The major concepts related to test program generation are: fault
modeling, test generation, response evaluation, fault simulation, and fault

location.

3.1.1 Fault Modeling I

Fault modeling deals with the process of representing the actual physi-
cal faults in the circuit (structure) under test by some type of abstract

34

model. It is these modeled faults which are actually processaed by most

test synthesis and analysis tools. Examples of commonly used fault models are

listed below:

a. Single stuck-at faults
b. Multiple stuck=-at faults

c. Shorts and bridging faults

3Hayes, J. P., "Modeling Faults in Digital Logic Circuits,"' Rational Fault
Analysis, R. Saeks and S. R. Liberty (eds.), Marcel Dekker, NY, 1977,

pp. 78-95. L

“Nickel, V. V., "VLSI - The Inadequacy of the Stuck at Fault Model," Pro-

ceedings IEEE International Test Conference, November 1930, pp. 373-331.

—13_

- K
. i A ACiolo GRCONDR NG o L DN IO
ool Sl o - - ~ o St N 5 A - . s

.’ e
e G O Pl R R O e, b B O Sise; Sus= > ar lpar Tog Sual S TR O S S et
LS I SV R A R AT S O AN S G RS Nl G S P VO S R S L P W0 . S 1P e.)

BaE R e i s 40 e n 00 Ao 0 A M B i B S e e A A i A e e gt e il g

.,

Functional faults
Coupling faults
Pattern-sensitive faults
Delay faults

Parametric faults

Nonclassical MOS faults, such as opens

3.1.2 Test Generation

S

Tests for a circuit can be determined in several ways.> The most

common are listed below:

a. Manual

b. Algorithmic
Bo Pseudorandom
d. Exhaustive

e. Standard test patterns

The method used to generate the test must be compatible with tae level
of description available for the circuit structure under consideration. For
example, employing a path sensitization algorithm may require a gate level
description of a circuit structure; employing a test generation algorithm for
PLAs may require only the truth table of the functions being implemented;
employing a functional/behavioral approach may require a high level lanzuage
description of the circuit structure, such as the Instruction Set Processor

(ISP) notation.

SBrever, M. A. and A. D. Friedman, Diaznosis and Reliable Desizn of Dizital

Systems, Computer Science Press, Rockville, MD, 1975,

e S N - T . et -l ol W iai T Tl Al

0 (ORI

| % BN

3.1.3 Response Evaluation
i Once tests are generated, they can be translated into a test program
. which can then be applied either by the automatic test equipment or by built-
. in test features to the circuit under test. Based upon the response measured,
the circuit under test can be characterized as beiﬁg faulty or not. If it is
faulty, diagnosis or fault location can be carried out. Methods for process-
E ing the response are listed below:

: a. Direct comparison

(1) Stored response
(2) Gold unit (standard hardware)

b. Comparison with data compression (compact testing)
S S6
(1) Transition counting

(2) One's counting or syndrome testing’~
. (3) Signature analysis!®’!!

9

®Hayes, J. P., "Testing Logic Circuit by Transition Counting," Digest of
Papers 5th International Symposium on Fault-Tolerant Computing, June 1975,
pp. 215-222.

Savir, J., "Syndrome-Testable Design of Combinational Circuits," Digest of
Papers 9th International Symposium on Fault-Toleraant Computing, June 1379,
pp. 137-140.

8Savir, J. "Syndrome-Testable Design of Combinational Circuits," LEEE
Trans. on Computers, Vol. C-29, June 1980, pp. 442-451 (corrections:

- Nov. 1980).

A %savir, J., "Syndrome-Testing of 'Syndrome-Untestable' Combinational

- Circuits," IEZE Trans. on Computers, Vol. C-30, August 1931, pp. 506-508.

101y Designer’s Guide to Signature Analysis,' Hewlett-Packard Aoplication
Note 222, Hewlett Packard, 5301 Stevens Creek Blvd., Santa Clara, CA 95050,
April 1977. .

'1¥adigz, H. J., "Signature Analysis~Concepts, Examples and Guidelines,"

- dewlett-Packard Journal, May 1977, pp. 15-21.

P P — R - e S e s i R Ty

3.1.4 Fault Simulation

Normally, the fault coverage of a test can be determined by using a
fault simulator.> Fault simulation can be carried out either in software or

I in hardware.

3.1.5 Fault Location

Fault location can be carried out by using either fault dictionaries,5
12

o

diagnostic routines,’ or effect-cause analysis.

3.2 DESIGN FOR TESTABILITY

Design for testabilily is performed for several reasons; e.g., to
reducé the complexity of test generation or to make the chip partially or
fully self-testable. The complexity of test generation may be reduced by
i enhancing controllability and observability. The chip may be made partially 2
or fully self-testable by employing built-in test structures or other built-in
test features. The major concepts in this field fall into ad hoc design
methods, structural built-in test methods, designing with easily testable com-

I ponents, and analysis tools.

3.2.1 Ad Hoc Design Methods

Numerous ad hoc designs for testability techniques have evolved over
the years. Most have dealt with small-scale or medium-scale integrated
circuits on printed circuit boards. Included in these techniques are concepts
such as resettable flip-flops, test points to increase observability, logical

cutting of feedback lines, and inhibiting internal clocks. Extensions to

12 bramevici, M. and 4. Breuer, "Multiple Fault Diagnosis in Combinatiomnal
Circuits Based on an Effect-Cause Analysis,'" IEEZ Trans. on Computers,
) Vol. C-29, June 1980, pp. 451-460. . G

) - 16 -

SR e e A R 2 T = -
. 4 .) COk

GO O
DR . Lt i RN
e T SO N S O O MR S

-.-Q o -* ° - - . - - - - - - -
[P P AP P PR oy M 00, PP L L IPE O, I S P P e SR e,

e e i e O S e B i s e ot —p i i i i e A e

these early techniques have led to many of the bHuilt-in test metnodis currently

used extensively in VLSI circuits.
Ad hoc design methods include:

a. Degating13

b. "Addition of test points
c. Bus architecture

d. Partitioning'®

e. Self-comparison

e Self-oscillation®’

la 15

3.2.2 Structural Built-in Test Methods

Structural built=-in test methods fall into two major categories, namely,
semi built-in and fully built-in techniques. Semi built-in test methods employ
nardware structures, such as set/scan registers. to increase controllability

and observability. Off-line test generation is usually still required.

Both on~line and off-line fully built-in test techniques exist. The
on-line methods are examples of concurrent testing. The off-line methods,
such as built=-in logic block observation, are gaining in popularity. These
methods eliminate the need for off-line test generation and thus minimize the
need for automatic test equipment. These techniques often require minor or no

changes to the kernel structure being tested.

13Williams, T. W. and K. P. Parker, ''Design for Testability=--A Survey,"
Proceedings IEEE, Vol. 71, January 1933, pp. 93-112.

'*Hayes, J. P. and A. D. Friedman, "Test Point Placement to Simplify Ffault
Detection," Digest of Papers 10th International Symposium on Fault-Tolerant
Computing, June 1973, pp. 73-78.

1%4ayes, J. P., "On Modifying Logic Networks to Improve their Diagnosahil-
ity," IEEE frans. on Computers, Vol. C-21, January 1974, pp. 56-52.

16Akers, S. B. "Partitioning for Testability," J. Design Automation and
Fault-Tolerant Computing, Vol. l, February 1977, pp. 133-14%5.

173ueh1e;, M. G. and M. W. Sievers, "Off-line, Built-in Test Techniques
VLSI Circuits," Computer, June 1932, pp. 59-32.)

rr,
@]
(b]

- 17 -

e o e o e G i 6l € S S Tl S A A S S B el i Aad Aaih A e Sani el Bet Aagh A ey

3ome popular structural built-in test methods include:

ale Semi built-in

(L Level-sensxt.ve scan design'’?
(2) Scan path!®

(3) Random—access scan
(4) Scan/set logic?®
(5) Partitioning

19

b. Fully built-in

(1) On-Line

o Error detection and correction codes??
o Totally self-checking circuits
o Self-verification?*

(2) Off-Line

o BILBO?2S, 26

o Store and generat:e27

'8runatsu, S., N. Wakatsuki, and T. Arima, "Test Generation Systems in
Japan," Proceedings of the 12th Design Automation Conference, June 1975,
PPe 114-122..

Ando, H., "Testing VLSI with Random Access Scan,'" Digest of Papers COMPCON
80, February 1980, pp. 50-52.

205 tewart, J. H., "Future Testing of Large LSI Circuit Cards," Digest of
Papers IEEE Semxconductor Test Symposium, October 1977, pp. 5-17.
WcCluskey, E. J. and S. Bozorgui-Nesbat, 'Design for Autonomous Test,
IEEE Trans. on Computers, Vol. C-30, November 1931, pp. 8656-875.
‘Peterson, W. W. and E, J. Weldon, Error-Correcting Codes, 2nd Edition,
MIT Press, Cambridge, MA, 1972.

Wa<er1y, J., Error Detecting Codes, Self-checking Circuits and Applica-
tions, American-Elsevier, NY, 1978.

2%3edmak, R. M., "Design for Self-Verification: An Approach for Dealing
with Testability Problems in VLSI-Based Designs,' Proceedings IEEE [lest
Conference, 1979, pp. 112-120.

Konemann, B., J. Mucha and G. Zwiehoff, "Built-in Logic Block Observa-
tional Techniques," Digest of Papers 1979 Test Conference, October 1979,
pp. 37-41.

sﬂucha, J., "Hardware Techniques for Testing VLSI Circuits Based on

__Built-in Tests,” Digest of Papers COMPCON 381, February 1931, pp. 3556-359,

“75zarwal, V. K. and E. Ceruy, "Store and Generate Built-in Testing
Approach," Digest of Papers llth International Symposxum on rault-Tolerant
Computing, June 1981, pp. 35-40.

- 13 -

q 0n 0 o
LRI T R o IO S) LIS i F Al T ¥

! e 5 . O ORI ROt Gt O O A ey I R It BRI A AT

AP IR .‘th._. pln pte gb otm yls giete gie i e gt e o - IR PN S R P PE SO WP

R R A T S Ak i A 2l A A i i S R A i i s i A A e i T i il

o Verification of Wa%sh goefficients26
o Autonomous testing

.9
o Syndrome testing »9

3.2.3 Designing with Easily Testable Components

Designing with easily testable components is a methodology which deals
primarily with the design of the kernel itself, and where the main objective
is to make the kernel easy to test. A simple example would be those techniques
whicn rely heavily on the use of exclusive-or gates. For such circuits, a
single error on an input always produces an output error, making the coacept

of path sensitization particularly easy to achieve.

This methodology includes:
a. EOR trees’!
b. Canonic Reed~Muller circuits
c. Easily testable PLAs??

d. Easily testable iterative logic arrays
e. Bit-slice systems3s

32

2%3usskind, A. K., "Testing by Verifying Walsh Coefficients," Digest of
Papers llth International Symposium on Fault- Tolerant Computing, June 1981,
pp. 206-208.
McCluskey, E. J. and S. Bozorgui-Neshat, '"Design for Autonomous Test,"
Proceedings IEEE International Test Conference, November 1980, op. 15-21.
& Bozorgui-Nesbat, S. and E. J. McCluskey, "Structured Design for Testa-
bility to Eliminate Test Pattern Generation,' Digest of Papers 10th Inter-
nat10na1 Symposium on Fault-Tolerant Computing, June 1980, pp. 153-1A3.
3lseth, S. C. and K. L. Kodandapani, "Diagnosis of Faults in Linear Tree
Networks," IEEE Trans. on Computers, Vol. C-26, January 1977, pp. 29-33.
Salu]a, K. K. and R.M. Reddy, "Fault Detecting fest Sets for Reed-Muller
Canonic Networks,' IEEE Trans. on Computers, Vol. C-24, October 19753,
pp. 995-998.
Fujiwara, H. and XK. Kinoshita, "A Design of Programmable Logic Arravs with
Universal Tests," IEEE Trans. on Computers, Vol. C-30, November 1981,
pP- 823-828.
3%Friedman, A. D., "Easily Testable Iterative Systems,' LEEE Trans. on
Computers, Vol. C-22, December 1973, pp. 1061-106%.
sSrldhar, T. and J. P. Hayes, "A Functional Approach to Testing 3it-Slicel
Microprocessors," IEEE Trans. on Computers, Vol. C-39), August 1331,
pp. 553-571.

-19_

o - ¢ s e
O™ Om. O 0 o e P oSS O O O . O Oh B e
. - .’ . AN BT G R i O 3 s ‘e 0 % e “ 4wt o N
o e T O e gl PN S R Ol N R PEOREO) I S NG 570 50 Ol

'L- S e e e g e e e e ot et it

3.2.4 Analysis Tools

Several analysis tools have been proposed for aiding design for
testability. These analysis tools usually estimate the degree of control-
lability and observability of the various signal lines in a circuit. Based on

these results, the circuit design should be modified, if necessary, in order

to enhance testability.

Several analysis tools are:
a. Measurements

(1) coMET?3®
§2), seoap?’ >
(3) TMEAs®?®
(4) caMELoT*®
(S b. Design: Automatic design for testabili.ty"l

3.3 STRUCTURE AND TESTING

Four important factors to be considered in testing a kernel are:

a. Fault modes

b. Whether or not a single vector or a sequence of vectors are
required to detect a fault

3%Chang, H. Y. and S. W. Heimbigner, "LAMP: Controllability, Observability
and Maintenance Engineering Technique (COMET)," Bell System Tech. J.,
Vol. 53, October 1974, pp. 1505-1534.
Goldstexn, L. H. and E. L. Thigpen, '"SCOAP: Sandia Controllability
Observability Analysis Program,'" Proceedings of the 17th Design Automation
Conferonce, June 1980, pp. 190-195.
%Goldstein, L. H., "Controllability/Observability Analysis of Digital
Circuits,'" IEEE Trans. Circuits and Systems, Vol. CAS-26, September 1979,
pp. 685-693.
Grason, J., "TMEAS, A Testability Measurement Program,' Proceedings of the
16th Design Automation Conference, June 1979, pp. 156-161.
“%Bennetts, R. G., et al., "CAMELOT: A Computer-Aided Measure for Logical
Testability," IEE Proceedings, Vol. 128, Part E (Comp. & Digital Techiniques),
London, September 1981, pp. 177-189.
“'Chen, T-H. and M. A. Breuer, "Automatic Design for Testability via Test-
ability Measures," IEEE Transactions on Computer-Aided Design, Vol. CAD-%,
January 1985, pp. 3-11.

- 20 -

PO N B) '--".'_'.- AL N LI

[-C. .'. .\' ..!.. .Dv .'
pr SR TRV B I Balv

cfs Complexity of test generation

d. Timing

These factors are primarily influenced by the structure of a kernel and its

design style.

Fault modes are often a function of design style. RAMs exhibit the
phenomenon of adjacent pattern interference; PLAs are susceptible to cross-
point failures (extra or missing connections); and gate combinational networks

are often tested for stuck—at faults, shorts, and sometimes memory retention.

For a combinational circuit, only one vector is usually required to
detect a fault, while for sequential circuits a sequence of test vectors is
often necessary. Faults in combinational circuits which induce memory reten-

tion may require a sequence of two vectors to detect.

The complexity of test generation is strongly related to design style
as well as circuit structure. For RAMs, standard test sequences usually
exist. Automatic test generation is usually a difficult if not impossible
task for complex random sequential circuits. For PLAs, special algorithms

exist which make test generation a fairly effective and efficient process.

Finally, timing issues related to factors such as races, hazards, and
static and dynamic logic are a function of both design style and circuit
structure. For example, asynchronous circuits are circuit structures and are
susceptible to races. A RAM design style may be susceptible to pattern inter-

ference faults which are both timing- and data-sensitive.

In summary, different design styles and circuit structures have unique
testing characteristics and are thus amenable to unique testing approaches and
built-in test strategies. As an example, a PLA can be built suca that the
signal values on the row (product) and column (word) lines have odd
parity;33 this concept is not directly applicable to a gate combinational

network implementation of the same functions. A unique logic structure for

21

. . Tl -
o A SR g Sy TR as, AT S
i Ya o

. . «'e® G
PRI [P S Wi g WS W Y P I Sy W

the testing of internal arrays, and the testing for pattern-sensitive faults

in RAMs are discussed in the literatura.*?’"*?

“%gichelberger, E. B., et al., "A Logic Design Structure for Testing Internal
Arrays,' Proceedings of the 3rd USA-Japan Computer Conference, October 1973,
pp. 266-272. :

& dayes, J. P., "Detection of Pattern Sensitive Faults in Random Access
Memories,' IEEE Trans. on Computers, Vol. C-24, February 1975, pp. 150-157.

_22-

—y

L LI0 S e R R S |
P DL WL PPN L L)

R s Sl SR e et B R e T e B S e o e e e B i i S e i e i R At Bade Bnae
. oF b " oL e, T TR . o T -0 . r i~ e

4. TEST STRATEGIES

A test strategy for a kernel structure is the complete process involved

in testing the structure. This includes the following three main attribdutes:

a. Off-line test generation

b. Run-time test hardware

Automatic test equipment (external)
Built-in test (internal)

c. Test accessibility
Controllability

Observability

4.1 OFF-LINE TEST GENERATION

Off-line test generation is the method used to derive test vectors and

sequences. This process is necessary for some types of test strategies, e.g.,

in the LSSD methodology, but not for others, e.g., when a circuit is tested

using the BILBO methodology. There are several ways to carry out off-line

test generation, some of which are summarized below:

a. Manual

Circuit-oriented, e.g., process—sensitized paths
Functional, e.g., execute every instruction

b. Algoritnmic/heuristic

PODEM*"
D-algorithm"®

““Goel, P., "An Implicit Enumeration Algorithm to Generate Tasts for Combi-
national Logzic Circuits,' Digest of Papers l0th Ilnternational Symposium on
Fault-Tolerant Computing, October 1980, pp. l45-150.

“3otn, J. P., "Diagnosis of Automata Failures: A Calculus and a Method,"
I8 J. Research and Development, Vol. 10, July 1360, pp. 273-291.

- . i ranger fo e E . C RO . . . o e " .
9 L ehdet W, el B O M o i I T OIPL NOT SO RO RO OH (FoRS F ST Bl
DRt OO O, EORA0 SOT AL 08 K RO SR ot (TR Sl . i i 3P € PR R S MR R, VAN M RS 0 o O o sy O RIOTELS i o
PULIP R SIS I ISP SIS B B G Tall i G WO S Gt Wil st Lo GOV S Tove 1o Dou | ‘JA.‘,AJ_‘;‘A—.AJ‘_‘J‘-“

T

e e ELisane i e S o

PLA ctest generation fe

Delay test oeneratlon
LASAR (D-LASAR LASAR 5.6)*8
Functional®

C. Pseudo-random®?%s 3!

d. Exhaustive (not normally done off-line)
e. Standard test sets

GALPAT for RAMs®»3?
Universal test sets for PLAs

33,53
Except for exhaustive and standard test sets, tests once generatad are

usually processed through a fault simulator to determine fault coverage.

Note that the process of off-line test generation can involve tha
overhead of a complex and sophisticated suite of software modules, including
design capture, testability analysis, test generation, and fault simulation

routines. The resulting tests are often processed via additional software

l'Gl-:i.chelberger, E. B. and E. Lindbloom, "A Heuristic Test-Pattern Generator
for Programmable Logic Array," IBM J. Research and Development, Vol. 2%,
January 1980, pp. 15-22.
Lesser, J. D. and J. J. Shedletsky, "An Experimental Delay Test Generator
Eor LSI Logic,'" IEEE Trans. on Computers, Vol. 29, March 1930, pp. 235-248.
“8fhomas, J. J., "Automated Diagnostic Test Programs for Digital Networks,"
Computer Design, Vol. 10, August 1971, pp. 63-67.

“IThatte, S. M. and J. A. Abraham, "Test Generation for Microprocessors,"
[EEE Trans. on Computers, Vol. C-29, June 1980, pp. 429-441.

5%8astin, D., et al., "Probabilistic Test Generation Methods," Digest of
Papers 3rd International Symposium on Fault-Tolerant Computing, June 1973,
,pr 171
S'parker, K. P., "Adaptive Random Test Generation,'" J. Design Automation and

Fault Tolerant Computing, Vol. 1, October 1976, pp.- 62-83.

5‘Hnatek, E. R., A User's Handbook of Semiconductor Memories, Wiley-
Interscience, NY, 1977.

53Hong, S. J. and D. L. Ostapko, "FI[PLA: A Programmable Logic Arrav for
functional Independent Testing,' Digest of Papers 10th I[aternational
Symposium on Fault-Tolerant Computing, October 1930, pp. 131-135.

‘-

B - . J e TR0, OO R SO P T X R S) gd ey ‘v °
S LA L L - PR AL S SU R T S R 3) B R I O AR S OO LI NI w2 B

,.Iw

S5

ALJ_I"

to create a fault dictionary, if required, and via a translator in order to
obtain a test program that runs on a specified piece of automatic test

equipment.

4.2 RUN-TIME TEST HARDWARE

Run=-time test hardware is the hardware used during the actual testing
process of the structure. This hardware is used towproduce the test vectors
required to test the circuit structure as well as process the responses ob-
tained. Table 1 summarizes some of the hardware used in this process. Two
main categories of hardware are used: external automatic test equipment and

internal built-in test circuitry.

Table 1. Run~-Time Test Hardware

o Off-chip automatic test equipment
o On-chip built=-in test circuitry
Generation of test stimuli

BILBO register

Linear feedback shift register
Counter (exhaustive testing)
ROM (stored test patterns)
General sequential circuit
Gray code generator

Processing of test responses

Signature generator

BILBO register

Syndrome generator/one's counter

Transition counter

Comparator

RAM (store responses)

Parity detector

Single error correction-double error
detect lon

General sequential circuit

- 25 =

Rr— ——. e L iy S R S B i

Vorl 1 oRen

v

s e
0B

Wy

3 TEST ACCESSIBILITY

SU3 :‘. “
&

T
.

During the testing process, one needs a hardware mechanism in order to

v
500

—
v
2

actually apply the test vectors to the inputs of the kernel structure under

.
‘y et

test, as well as observe the response data produgced at the outputs of thnis

e o

structure. Since this structure is often deeply buried within a chip, built-in
test features are often added to the circuit to implement these controllability
and observability functions. Table 2 indicates some examples of how that ac-

cessibility is achieved.

{ Table 2. Test Accessibility

¢
F“ o Input .

- Primary inputs

3 Scan-in registers
- LSSD registers
BILBO register
Multiplexers

o Output

Primary outputs/test points
Scan-out registers

LSSD registers

BILBO registers
Multiplexers

In some cases, such as with a BILBO register, the run-time test hard-
ware and the test accessibility registers are one and the same. For the LSSD
methodology, this is not the case. Tests are first generated off-~line, usually
using some type of test algorithm; external hardware (automatic test equipment)
1s then used at test run time to generate and process the tests. LSSD rezis- :
ters are then used only to achieve input and output access to the structure

under test.

- 26 =

o e
- -
= 2, o

G RO R RO P WAL .
[IPGE TP SN TP LIPS IV DNy TV X

i

i Bl h AR S R

- i i L e 2 e s e e e e 4

In summary, a test strategy involves taree key concepts; namely, a
means for generating input test data, the hardware required to produce the
test vectors and process responses during the testing cycle, and a means for
applying the input test data to the input lines and observing the response
data at the output lines of the circuit structure under test. In some cases,
the kernel itself is modified in order to enhance its testability.?®

00000 50, ..t ._.‘.-q._._...- o8 O Lol S 0
o k- - ofo o ™ . - o SR S (SR I T - .

PRI SRR RO S PR RO A i 2SR O oh) 07 350 0 S Dl O S o0
L NP AP W) W PG IR W Y. WL) tatalalNat P, LIPS TV N

‘ 5. TEST STRATEGY MEASURES

|'t'

k-

ii Numerous test strategies exist. With each test strategy one can asso-
ciate several measures dealing with performance criteria, constraints, and

9 goal: An example of a performance criterion is the length of time it takes
to test a circuit structure; an example of a constraint is that the input and
i output pin requirements for the built-in test circuitry be less than some given
!2 quantity; finally, an example of a goal is that the test strategy achieve at

least 98 percent fault coverage of the single detectable stuck-at faults.

The three concepts of performance, constraints, and goals have been
lumped together because they are usually highly interrelated, and often
tradeoffs are made between them. For example, achieved fault coveragze is
often a function of the expense one is willing to incur in test generation.
The incremental increase in fault coverage as a function of cost may he

- extremely high as one approaches 100 percent coverage. Also, for sequential
circuits, the incremental increase in test length for each 1 percent addi-

tional fault coverage may become extremely large. Hence, all goals may not be

Q~ feasible. Unfortunately, the quantitative prediction of performance measures
is a difficult task. One cannot, for example, predict a priori the cost of

test generation versus fault coverage for a given circuit.

Because of these dichotomies, the concepts of performance, constraints,

and goals have been combined into the general category of measures. In
Table 3, several important measures are listed which may need to be considered

in selecting a test strategy for a circuit structure.

The tradeoff between more area for built-in test circuitry and decreased
cnip functionality leads to a classic battle between chip designers and users.
Hence, the driving force for using built-in test circuitry comes from destign
specifications where the testability and functionality of the chip are made

equally iwmportant design criteria.

N3

LV I IR

T T S T
c o

Table 3. Measures Associated with a Test Strategy

g 0D

M1

- M4

M6

M7

4 s

M3

Yield and area effect due to built-in test circuitry

Example: o LSSD often requires a 5 to 20 percent area
overhead

Test Application Time

Example: o In LSSD, each test vector is shifted sequentially,
slowing down the test process

Input and output pin demand
Example: o LSSD requires four additional pins

Fault coverage and fault types

Examples: o For LSSD, coverage of the single stuck-at fault can
be arbitrarily high and can be measured via fault
simulation

o For BILBO testing, coverage is difficult to
determine
o) For autonomous testing, coverage is essentially

complete for all fault modes

Test input or output storage volume (on chips)

Examples: o For microdiagnostics, test volume is high.
o) For signature generation, volume is low.
o For LSSD, no on-chip storage is required.

Performance degradation
Preprocessing (off-line) costs
Cost of off-line automatic test equipment

Cost of accommodating engineering changes

A L

30

- SCTRR R - ® . . - - . ® . - . . » <
a < RS RO LS oR .t (0 L AL P .t ot s v Sy -

L

Lindd . . g ~ E B i) * Ll i) R S i 4 . T AU e T R VUG SR S U (I SR . R S
. T W, LT 5 o = e T i O et e e 5 B e e T L i e

MR e e o oy |

Test application time is usually critical when expensive automatic tast
equipment is employed. When a chip is part of a large system, such as a spac:
satellite which employs off-line self-test procedures, testinz time may be im-
portant because it may significantly affect the time the system is not avail-

able for normal use.

Performance degradation deals with the effect on a circuit's operating
characteristics during its functional operation due to built-in test hardware.
For example, using a pair of level-sensitive latches in a feedback path (as
found in LSSD) instead of some other form of flip-flop may reduce the system

clock rate by a small amount.

Preprocessing cost deals with the process of off-line test generation

and the associated costs of acquiring and executing the required software.

Finally, the cost of processing engineering changes varies widely for
different test strategies. When off-line test generation is employed, pro-

cessing an engineering change can be quite costly.

CIONC O SRRSO T RN oo I S IO RGO 700 D
| .
R ,~.'-"’-.' o"q‘..'~‘t.'- wi® L oe T =l - i
MR Sl e WS VSRR IN Wie 51 WuTS W00 P Qi N i O T A0 (W LY W 0 NP

6.

P Ty

TESTABLE DESIGN METHODOLOGY

The combination of a kernel structure S and a test strategy (test

generation, run-time test hardware, and hardware for accessibility) consti-

tutes a testable design methodology.

If the structure S has a design style D,

then it can be said that the testable design methodology is for design style D.

The general form for a testable design methodology is represented as

follows:
Al.
A2,
A2.1
A2.2
i A2.3
6.1 EXAMPLE:

A kernel structure to be tested
(optional:

A basic circuit structure and its
design style)

A test strategy

An off-line test generation strategy
A run~-time testing environment
Hardware for test accessibility

LEVEL~SENSITIVE SCAN DESIGN (LSSD))

As an example, an LSSD is associated with a testable design methodologv

having the following attributes:

Al

A2.1

A2.2
A2.3

Gate combinational network

Test generation algorithm/fault
simulator/translator

Automatic test equipment
Level-sensitive scan dasign registers

Figure 1 indicates the major components associated with the LSSD test-

able design methodology.

In Figure 2 a specific example of a testable circuit

structure having an LSSD testable structural style is shown.

3 F; s, e ¢ 1T . g
bl LR OS ON RE O slnTe &N PR sl e
oo B o

.
o

. .. b = Q. -
imtanademintdnacenintdinndnasimutndntsiad

A e

O .d i K . e . . e .
O O i o el b O o 1O O a0 WO e O %y O e ey ..
OO SOl RS RO O aCl L W

T TN Ty ey~ » e

Al A A i ST i A S ik it A e e e s b i - St e i B S R SR T

The LSSD methodology consists of the
kernel & test strategy indicated

/ CIRCUIT
DESCRIPTION

OFF-LINE TEST
GENERATION SOFTWARE
INCLUDING: D-ALGORITHM,
FAULT SIMULATION, TRANSLATOR

.) The three components of the
TEST test strategy are as shown:
Kernel TAPE 1. Off-lina test generagtion
of the LSSD/TSS- 2. Run time test hardware
AT

Basic structureis 3. 1/0 accessability to kernel
combinational and

its style 1s GCN

| K CHIP
\
= R Sl =
]
' :
: - C i
\.'T"-'- (GCN) :
! i s a6 |
! L LSSD register-
) = i " a BIT structure
| e —— I
| I
' L)
\ ! The LSSD Testable
e e e e e e m e mm === = T SIuctural Style
(TSS)

Fig. 1. Level-Sensitive Scan Design Testable
Design Methodology

_34-

A BASIC STRUCTURE S (combinational
logic) OF DESIGN STYLE GCN

[R ' i —————— "i
| — T
I SO (W I
- o
5! : } s I SCAN-OUTI _
: :] |
| ! |
| : " :
l l I 0o e——
| ' : |
' b e e = 4 sse '
| - |
' LA L] p— '
|
l I
| |
! I
| |
I - I
I 1 I
__________ Bt o o)
TI<=scan-IN

A BIT
STRUCTURE (LSSD register)

A TESTABLE STRUCTURE T
HAVING AN LSSD/TSS

Fig. 2. Testable Structure with a Level-Sensitive
Scan Design Testable Structural Styla

— i - A o T S Y B e T e T T L Sy Ty ey y =y =y

The space of testable design methodologies can be thougnt of as a multi-

dimensional space having the following three main components:

a. The structure of the circuit to be tested and possibly its
basic structure and design style

b. The test strategy selected to test the circuit

c. The value of the measures, such as Ml through M9, associated
with the above two items

Given this space, some testable design methodologies can be judged to
be good, others to be poor. For example, replacing the gate combination net-
work by a RAM in the LSSD methodology would not lead to a useful testable

design methodology. 3

6.2 DESIGN PROBLEM

The main tasks in designing a testable CLSIC chip can be stated as

follows:

a. Partition a design into circuit structures. Depending on the
testing strategy to be used, some or all of these structures
5 may be basic circuit structures having well-defined design
styles.

b. Select an appropriate test strategy for each structure.
c. Modify the design as necessary to implement the selected

testable design methodologies which satisfy all measures
associated with the chip.

< 3 =

RS L., . . - Gl P e, B0 S h O . S= Sy A
o e Pl Yo e . . e S S ORI OO~ SO T O M- 107 SRR I ok e e e o O Bl
-'.-' °«® . " Las e . ailie fa- S T R P R i oy I g T S S Tl I aaler o o fed T SlE S L S WL B e on R s e e
O N, A A AL AP M PP AT v T DI NP AP NP RPUE AP SR, NP RPN LML IV 1 WL AP UL I NP UL BPEL. NG RO S WG T i W e e

TR

Ly

7. CHIP BUILT~-IN TZST CIRCUITRY

In making a chip testable, several standard hardware structures are
often added to the chip in order to enhance its testability. Examples of such

built~in test circuilts are:

a. Set/scan registers, e.g., LSSD registers
b. Counters (generates 20 test vectors)

c. BILBO registers

d. Comparators

e. Linear feedback shift registers

135 Parity generators

Over the last several years, increased levels of observability and
controllability in VLSI circuits have been obtained by replacing normal flip-~
flops in a circuit by dual mode registers which, in normal mode, act as normal
flip-flops. In the test mode, they act as shift registers, enabling test vec~
tors to be scanned into the circuit and test responses to be scanned out. To
achieve exhaustive testing, counters can be added to a circuit so that all
possible test pattarns can be generated. To carry out ones or traansition
count testing, a count register can be used. Between these two extremes, one
can employ linear feedback shift registers, such as in the B3ILBO methodology,
to either generate pseudorandom test vectors or to generate a signature.
Finally, a comparator can be used to compare a generated signature with a
stored correct signature. When these test circuits and others are used,

powerful testable structural styles can be created.

Except for the parity generator, the test circuits listed previously
are used for off-line testing. When on~line testing is used, then other
built-in test circuits are employed. They are usually used to implement some

coding or decoding scheme. Other examples of such test circuits are salf-

checking checkers.®

RIS i T el il i il i i Sl Sl it

— b i i S il e e s i S i pan S i b ki

8. EXAMPLES OF TESTABLE DESIGN METHODOLOGIES

Tnis section briefly illustrates a few popular testable design

methodologies.

8.1 LEVEL-SENSITIVE SCAN DESIGN'®?

Probably the most well-known testable design methodology is the LSSD
testable design methodology introduced by IBM. This methodology has bheen

depicted in Figures 1 and 2.

8.2 SCAN PATH DESIGN!®

This methodology is similar to the LSSD testable design methodology.
The main differences lie in the type of flip-flops used in the registers and

the clocking scheme employed.

8.3 SCAN-SET DESIGNZ2®

The scan-set testable structural style is shown in Figure 3. Note that
the kernel structure is now a sequential circuit; hence, the off-line test
generation process for this methodology can be significantly more complex than
that for the previous two methodologies. The register can either load data
(observability) in parallel from test points in the kernel structure and shift
these data out (scan-out), or else scan-in new data (controllability) and apply

these data to test points in the kernel.

8.4 RANDOM ACCESS SCAN DESIGN !?

The testable structural style for the random access scan testable design
methodology 1s shown in Figure 4. Again, off-line test generation is required
along with automatic test equipment, and the kernel is combinational. For this

testable structural style, the flip-flops in the original sequential circuits l

ST S oM O -, o

0, 5 e SOk i T R Y A
lomsd ai P Bl MR T BN e G A R M N NN

—— - Py T T—— Bl S e i i T e Y ek Dk it iai Thadh Seil oo foci e sl Sindil S Neeie Sancs
A Ay B . - o el T esiops ey S L o L ee d

SCAN-SET
/ REGISTER
SCAN IN E — SCAN
- controLs [T ouT
AND CLOCKS =
\ 4
SEQUENTIAL CIRCUIT STRUCTURE
Com—— prm—

(kernel)

Fig. 3. Testable Structural Style Used in the
Scan-Set Testable Design Methodology

- 40 -

.........

L Batedh . stend P w o (i Jaiade s o L Rt =

R R B S A G e e A i

: COMB INATIONAL LOGIC -
(kernel)
CONTROLS ﬁT z
AND CLOCKS
ADDRESSABLE
Y STORAGE
D ELEMENTS
Y-SCAN E SCAN
—_— —> e
ADDRESS | 0 ouTt
D
E
R

‘[

X-DECODER

Fig. 4.

O BT M e SR e ST L o Ty i o
[P I W R I \PRE S W WD W SPE. W R I o WY P DL

T

X-SCAN ADDRESS

Random Access Scan Testable Structural Style

B T

e W e e e e T e o G o T e S R ™ v - W ———r—

are made individually addressable during the testing mode, and their contents
are set and read via the automatic test equipment. During the normal mode of
operation, the kernel and flip-flops in the addressable storage array operate

as a normal sequential circuit.

8.5 BUILT-IN LOGIC BLOCK OBSERVATION DESIGNZ?3%°2°®

_This testable structural style is an example of a fully built-in test
approach; hence, no off-line test generation is used, and only minimal auto-
matic test equipment is required. The BILBO registers carry out four functions
for testing: controllability, test vector generation, observability, and test

response processing (signature generation).

Figure 5 shows the testable structural style used in the BILBO testable
design methodology. The kernel is again combinational logic and usually of the
gate combination network design style. Since this approach is based upon
pseudorandom test patterns, a ROM or PLA design style is not suitable. The
circuit C1 is tested by configuring the BILBC register on the left as a
pseudorandom pattern generator and the BILBO on the right as a signature

generator.

8.6 SYNDROME DESIGN’®%*?®

The testable structural style for the syndrome testable design method-
ology is shown in Figure 6. Again, the kernel is combinational, hut this
approach is applicable to gate combinational network, PLA, or ROM desiga
styles. Only a single output is indicated. Testing is accomplished by having
the counter produce all 2% input vectors, while the count register counts the
number of 1's on the output. The correct number of 1's is the number of min-
terms in the function realized by C and is denoted by X. Then S = Rl iy
said to be the syndrome. Fault detection is achieved by comparing the final
state of the count register with S. In this built-in self-test methodolozy,
no off-line test generation is required, and the automnatic test 2quipment
requirements are minimal. Often, the design of the cireuit C (for zate combi-

national network and PLA design styles) i1s modified to enhance taestabilitv;

e o e 0 . - . , -
= - RO 40 s . - = o
-, ..4 I O -.‘. Lt . ot . A -.'.

£ - FG S o ROREORT -
Lo I FR . VNSO ol Yl ol WA Wl WLl WA WL s U A L

RAG(M A

—

Owr —w
Y

Owr — W

Fig. 5.

......
R Q
..........

CONTROLS
AND CLOCKS

Built-in Logic Block Observation Testabdle
Structural Style

= 03l =

.......
.........
......

e A i i

T

1

i St Sl bt Sahl . o o i

o

-

P e i W g d e

Tl

a—

ek

3 o’ d
Eaa e d

1
.,
s a

31438 [eaN3ION1lg I[QRISS] dWOIPUAS

JolvyvdWOoI

S

‘9 *814

T04INOJ

JWOYANAS INNOJ j¢—F— I

a

T

=o X

43INNOJ

SiNdNI
| g

TYWYON

= 44 =

e.g., a syndrome testable circuit is one for which every single stuck-at fault

is detectable by this testing approach.

There are several variations to this form of testing. For autonomous

testing,“’ 29,30

the output of the kernel is directly observed by an automatic
test equipment, rather than compacted into a signature (syndrome). This form
of testing thus guarantees detection of all faults which are not sequential in
nature. Alternatively, the response can be processed via a linear feedback

shift register, and again a signature can be generated.

8.7 EASILY TESTABLE BIT-SLICED DESIGN®®

While bit-sliced architectures are usually implehented via intercon-

necting chips, as the .level of integration increases these architectural
styles will be used more extensively at the chip level. One reason for this
is regularity in layout and testing. A testable structural style ideal for
bit-sliced architectures has been developed. One version of this architecture
is for CI-testable arrays. To introduce this concept, a few definitions are
needed. An iterative logic array is a one-dimensional cascade of identical
cells (see Fig. 7). The cells can be either combinational or sequential
circuits. An iterative logic array is said to be C-testable if it can be
tested with a constant number of test patterns, independent of the array size
N. Let T be a test set that tests an iterative logic array D completely under
the assumption that only one cell in the array is faulty. Then D is I-testable
with respect to T if the expected responses to T appearing at the vertical
outputs of every cell L.1 of D are identical. A Cl-testable iterative logic
array is both C-testable and I-testable with respect to some test set T. The
necessary and sufficient conditions for an iterative logic array to be

CI-testable have been determined.3"

In Figure 7, Ll’ LZ""'LN represents the CI-testable iterative
logic array to be tested. The normal inputs and outputs are shown. The test
T can be stored off-chip and applied via automatic test equipment or on-chip

and stored in a ROM. The equality checker determines if the responses trom

_45-

PP e v —— e N T e e L
ROM
NORMAL VERTICAL INPUTS TETST
). o . n

- n LT L) ’

; He
' Y Yy) R
X C MUX MUX== see MUX ven MUX
| IR
- iy Rt Al s

5 HORIZONTAL —:—— L ™ o —— L —] [E—

.: |/O <l ‘ e L2 esse LJ e LN :

i e ettt KERNEL_ _ _|_ _ ____ _ _ LA} .
~ NORMAL VERTICAL
-+ o g —~———p —+——¢) OUTPUTS
i e lfoz St orata g e e A S [ISy
¥ ! :

: % 1 L LN} l' LR :
q :
] t
: %-—‘-uoo %‘h\-ooo : 6
I EQUALITY CHECKER LA
b e o T R e R e R e i e =)
b .
Fig. 7. Bit=-Sliced Testable Structural Scyle

CRA S e e e i e b T e B e s i CEE S B e Mt st i e s -

each Li are identical. The case of a single output line from each Li Ls
shown, but the concept can be easily generalized to the case of multiple

output lines.

Off-line test generation is required for this methodology; for complex
cells, this process may be quite difficult and require the use of checking
sequences.S“ Real-time test-hardware can be either on-line or off~line.

Test application to the kernel is achieved via the multiplexers, while observ-
ability of the responses is not required due to the equality checker and the

concept of I-testability.
8.8 SUMMARY

In summary, fully built-in testing deals with those test strategies
where the role of the external test equipment is minimal. BILBO and syndrome
testing are examples of methodologies which employ fully built-in testable
structural styles. The general architecture for such a style is shown in
Figure 8. Table 4 summarizes the various options for each block in Figure 8.
When built-in test structures are added to a circuit, care must be taken to
ensure that the test structures are themselves tested, either implicitly or
explicitly. Also, when several different testable structures exist on a chip,

some additional hardware overhead may be required to control the test process.

5%Friedman, A. D., and P. Menon, Fault Detection in Digital Circuits,
Prentice Hall, NJ, 1971.

- . - - . - o LY » - . " . - - - - "
Lo . - o) i T gn G %0 Clpc & oo RO .o s

L R L R O o S TR, S R T S . i M BN R N B o o O, o g e 8 S S

PSR WP LA SOUP S R G SRy W JOUY oy LD VG S R WP VI R R U /R R AR WP R TR R G S Y R R Y R W

STIMULUS i FUNCTIONAL ' RESPONSE
GENERATOR CIRCUIT ~ ANALYZER
CONTROLLER
Fig. 8. General Form for a Fully Built-in
festable Structural Style -
- 48 - 1
|

e R e e T "~ . v v - - v T - .
] R e S Sl i) Bl s e T T S S S e =

Table 4. Some Options in the Design of a Fully
Built-in Testable Structural Style

o Stimulus Generator
o Hardware test generation

o random patterns using a linear feedback shift register

o all input combinations using a linear feedback shift register
or a counter (exhaustive)

o some specified patterns using a nonlinear feedback shift

register

o Stored test patterns

o Store and generate-~store some pre-calculated
patterns as initial values for a linear feedback
shift register

o Functional circuit

o Sequential circuit--can be partitioned into combinational

parts using set/scan registers
o Combinational circuit--partition into manageable subcircuits

o Response analyzer
o Use compressed responses

o syndrome (one's counting)
o signature using linear feedback shift register
o transition counting

o Store the correct responses

Generate the correct response
o Compare responses with correct ones and generate

go or no-go signal

(<]

o Controller

o Control transition between test mode and normal
mode
o Control testing process

e e ——— p—

R e T e o e 2 il S i T e i i i i B BN S) - e

9. TESTABLE DESIGN METHODOLOGIES FOR PROGRAMMABLE LOGIC ARRAYS

Numerous techniques for testing the PLA design style have been sug-
gested. Figure 9 indicates several testable design methodologies for PLAs
according to certain attributes, such as whether or not they support con-
current testing, produce a self-testing PLA, require off-line test generation,
and are based upon a special design approach. Naturally, these techniques
could have been classified and grouped differently, such as by fault coverage

area overhead.

Figures 10 through 12 indicate the testable structural styles corres-

ponding to just three of the techniques listed in Figure 9.

9.1 PROGRAMMABLE LOGIC ARRAY WITH UNIVERSAL TEST SET

Figure 10 indicates a testable structural style for a PLA which employs
a universal test set, hence no test pattern generation is required.33 The
normal design of the PLA is shown in heavy lines.. The medium lines indicate
added built-in test structures, and the thin lines indicate wires. The product
term selector is a shift register; the data in this register enable and disable
the product lines in the array. The AND array is extended by one product line,
such that each input row has an odd parity; a word parity line is also added
to the OR array. The inputs Yo» Yp» ¥, are used to control the circuit
during the normal and test modes. An error is indicated by testing the two
lines (Zl’ ZZ)' This test can be done on-chip or off-chip. The Din is
a new input used to supply data to the product term selector register. Nor-
mally, the universal test set is stored off-chip and is applied via the auto-

matic test equipment.

If the PLA has n inputs and m product lines, then tne number of tests
in the universal test set is 2n + 3m. These tests detect all single stuck-at
faults in the decoder blocks f and the PLA, all crosspoint faults in the PLA,

and all stuck-at faults in the parity chain #1.-

-51_

. on i ol . 0 e Ooc
o ® o SR = o e S B e RN MO 30T S T e . Ot e e T O s £ S P T To i Cr
G SN N sl oL o ’ ' . o ‘e Ol)l e mes -ty RIS aBea e 5 P we e e s

¢ M R R T -

o e

A o 0 Ry 07, QR MR U LS . st o) O S b Ol e e W
. T B . s - - s B’ ran’iag- o oo o, o'z’ mtals o

T T I N L DN N T LI L e L r e pr PR e e T e e T I Py ye R YR abce PR R T PE- R L.

v

-

v

v

e

o

- ageht ol

b P e

sde11y 97807 afqewwe1do1g 103 saj3oTopoylsl udyssag aTqeIsdl ‘6 °S8¥d

ubise() 8)qoIse] swDipuig
ubise) 9(qoyse} nog e|diiny
gs V1d 114

g 195 159] josienun) yum vy

89

wyi1108(y uorjoseueD) (s9(B3N

‘€6 98ed uo paISTT S9dul1aIIY :93I0N

®
[]
L]
»9 $i|no4 BuiBpug
o|qoisejur) Buyoutwiiy sof ubiseq
£9 inoAo1 joidedg

29 V1d o1qoiseL Aoy

[£9 ‘99 *S9 ‘o]

ON NOIS3d WVID3dS SIA

ON

[
[
2
o VU m
9|qoyse] Ajsnowouoiny (Betrvew el WL
w 09 S1s|ouy 9j001dnQ
(NoUYaIN3D 1531)z eI S sep2ey) 071
08118 Yim v1d 42 :
6s /< $191994D jo seug
9V S4S
ONI1S31-4135 ¢g V1d st

INIJINDONOD

S3A

= &0 =

References from Figure 9:

55Wang, S. L. and A. Avizienis, "The Design of Totally Self-Checking Circuits
Using Programmable Logic Arrays,' Digest of Papers 9th Internati nal
Symposrum on Fault-Tolerant Computing, June 1979, pp. 173-180.
®Mak, G. P., J. A. Abraham, and E. S. Davidson, "The Design of PLAs with
Concurrent Error Detection," Digest of Papers 12th International Symposium
on Fault-Tolerant Computing, June 1982, pp. 303-310.
57khakbaz, J. and E. J. McCluskey, "Concurrent Error Detection and Testing
for Large Programmable Logic Arrays," CRC Report No. 81-14, Stanford
Un1versrty, Stanford, CA, September 1981.
*%pong, H. and E. J. McCluskey, '"Concurrent Testing of Programmable Logic
Arrays, CRC Report No. 82~11, Stanford University, Stanford, CA, June 1982.
5%Daehn, W. and J. Mucha, "A Hardware Approach to Self-Testing of Large
Programmable Logic Arrays,' IEEE Trans. on Computers, Vol. C-30, No. 11,
November 1981, pp. 829-833.
%Hassan, S. Z., "Testing PLAs Using Multiple Parallel Signature Analyzers,'
CRC Report No. 82-9, Stanford University, Stanford, CA, June 1982.
Yajima, S. and T. Aramaki, "Autonomously Testable Programmable Logic
Arrays," Digest of Papers llth International Symposium on Fault-Tolerant
Computlng, June 1981, pp. 41-43.
$2pong, H. and E. J. McCluskey, "Design of Fully Testable Programmable Logic
Arrays, CRC Report No. 82-20, Stanford University, Stanford, CA, June 1982.
®330n, K. and D. K. Pradhan, "Desxgn of Programmable Logic Arrays for Test-
ability," Proceedings IEEE International Test Conference, November 1980, pp.
163-166.
6"Pradhan, D. K. and K. Son, "The Effect of Untestable Faults in PLAs and a
Design for Testability," Proceedings IEEE International Test Conference,
Vovember 1980, pp. 359-367.
83Cha, C. W., "A Testing Strategy for PLAs," Proceedings 15th Design Auto-
matton Conference, June 1978, pp. 326-331.
6¢0stapko, D. L. and S. J. Hong, "Fault Analysis and Test Generation for
Programmable Logic Arrays,' Digest of Papers 8th International Symposium on
Fault-Tolerant Computing, June 1978, pp. 33-89.
’Smith, J. E., "Detection of Faults in Programmable Logic Arrays," IEEE
Trans. on Computers, Vol. C-28, No. 11, November 1979, pp. 248- -853.
85aluji, K. K., K. Kinoshita, and H. Fujiwara, "A Multiple Fault Testalle
Design of Programmable Logic Arrays,' Digest of Papers llth International
Symposium on Fault-Tolerant Computing, June 1981, pp. 44-45.

61

DG

>

PRODUCT
Dip TERM SELECTOR

|

y]. y2 yo-_.. 'YX
L‘ ...J—v
| o
INPUTS ¢ AND
X\ w—t " e z
t‘"_— C
<uesmpenenem—"g : R H
ouTPUTS | ¢ OR Tl
an—— G I
! * 1Y\
L
Y X hkm 2
B Y ‘
Z PARITY CHAIN
1= No. 1 Z,

fig. 10. Programmable Logic Array with
Universal Test Set

- 54 -

S T T e i e e Bl i e TR e S 3 il L i St end - e e -
A s . . Al . O o - . . - B g _ " TN

C%NOTDREO'- FLAG CiRCUIT |
(decoder)
CIRCUIT
“l L X X] “
FEEDBACK 1 Din
VALUE - o PRODUCT
GENERATOR T | TERM SELECTOR
s4 4 4 j 1
ofi, 1
N
Pl
R
u M
INPUTS | U ¢ AlD
Ul
I
el T
OUTPUTS LI F i
i : PARITY
TREE
Y R A A |

AND PARITY TREE

Fig. 1l. Autonomously Testable Programmable
Logic Arrays -

= 95" =

BT i L NSRS .‘"-"”,'-’ i, e :' ‘.'u."-‘(\..'-}'.:‘ i e i T R NS

---------- ., PR, ai

o
- ateetn’lala e naal ATt 0.0,

................

ERROR INDICATORS

|

TSC TWO-RAIL CHECKER

(Cz)

i

[X K J

AND

L TP L S i o e At s i URas SR SR s e e - L

PRODUCT
LINES

OR

(,) 1 OUT OF m

o]

INPUTS

NORMAL
OUTPUTS

Fig. 12.

PARITY TREE
(C,)

ERROR INDICATOR

Programmable Logic Array witn Concurcant

CHECKER

TSC

(Cl)

l

ERROR

Zrror Detection and Testing

= 56! =

......

........

|

INDICATORS

DT M T Sl T T T T T mea———— N e R AT AR
o .) T i . o~ ARl s T e T 1oL T)

B) .

9.2 AUTONOMOUSLY [ESTABLE PROGRAMMABLE LOGIC ARRAYS

Figure 11 indicates what is referred to as an autonomously testable
structural PLA style.61 This form of testing is very similar to the univer-
sal test set approach, except that rather than store the universal test set
and have them applied via an automatic test equipment, the autonomous test

approach generates the test patterns on-chip.

For this design, a product term selector register, several additional
parity word and product term lines, and the parity chains have again been re-

placed by parity trees to enhance their testability.

The control for normal and test modes may still be external; however,
the input test data and the data for Din are now all generated on-chip by
the feedback value generator which is a simple sequential circuit. At the end
of the test process, the product term selector register contains a signature;
it is decoded by the flag circuit which produces an error flag if a fault has

been detected.

This approach employs n + 2m + 8 tests and detects all cross-point
faults in the PLA as well as all single stuck—-at faults in the entire circuit,
except for parts of the feedback value generator and flag circuit. These can

be duplicated if necessarv.

9.3 PROGRAMMABLE LOGIC ARRAYS WITH CONCURRENT ERROR
DETECTION AND TESTING

Figure 12 indicates a PLA tastable structural style whici supports con-

current error detection. >’

The PLA must be designed so that it has concur-
rent product lines, i.e., exactly one product term is true for every input
vector. This condition usually increases the size of the PLA. Since the PLA
inputs exist as a two-rail circuit (xi, x'i), a totally self-checkinz two-rail
checker C2 is used to detect stuck-at faults on input lines. A parity out-

put word is added to the OR array, and a parity tree Cq is used to detect

-

- 57 -

.t e Ol e b o
- O P i O i)

PRI IR
S

. *a
).

G o5 - R SR
I LCC RSN S, PR Ry CORCR O TS s RSN

o ii

T SN t . - - - - « ‘e " a e o e =& -
PRV PR S V0 WG I, WL I G G S S S U WL W0 U I Wiy S U W

| iy e o b P o b i — L s e i i s i S ™ P e S e T) 1

errors on the outputs. Since concurrent testing is employed, a totally self-
checking 1 out of m checker C1 can be used to detect errors on the product

lines.

During normal operation, this testable structural style will detect any
of the following faults which produce output errors: single stuck-at faults,
shorts between adjacent lines, and crosspoint faults. Most transient faulcs
are also detected. Since it 1s possible that the normal inputs may not com-
pletely test C1 and C3, it may be necessary to carry out off-line testing

so that these circuits can be completely tested.

v.v“rv
e e
P~ il \ e
.

i adl el

S 53 =

=g
° b
¢

4

g

’
4
f'
Pt
L
"‘
8
3
¥
A
1

i
1
.'1
,.1
A
o

2
4

¢
4

i’

L
]
Fl
!
|
q
|
of
7|

YWY YV T ARAY
b abiediorc Jih

10. SUMMARY

~

\a - -
B <. i
R A A R

This report has presented a survey of some of the important concepts

s

related to the design of a testable CLSIC. Both testing and design for test-
ability have been discussed. Several design for testability concepts have been

presented, with emphasis on structures for semi and fully built-in testing.

In addition, an approach to achieve testable designs has been suggested.
In this approach, it is necessary to first partition a CLSIC into structures
to be tested as separate entities. Some of these structures may be basic
structures and have design styles. Often the characteristics inherent in a
structure or its design style dictate a testing approach. The concept of a
test strategy, cousisting of off-line test generation, run-time test hardware,
.- and built-in test structures for input and output accessibility, was intro-
duced. Given a selected test strategy for a structure to be tested, a test-
able structural style is created. A testable chip thus counsists of instances

of testable structures, each of which corresponds to some testable structural

style. The result of using these concepts in an orderly and effective way,
satisfying the goals and constraints imposed by the design specifications,

constitutes a testable design methodology.

i iR e

10.

11.

12.

L i et i e i i he cincs THny s aie Seie ieie et e e S e dhees
C R I TS e) O e oD 0 - - Pt

R R TR T S e e 8 W S
PO SN AT S

-t X o - o Ve et et e A Rt
J‘AJM !"'Jn~_-_nJ_J -)\'J'.LA.Q_ILI-‘.‘AA.A.'- R D - i i At cht e e

e i e e i i s

‘REFERENCES

Eichelberger, E. B. and T. W. Williams, "A Logic Design Structure for
LSI Testing,' Proceedings of the l4th Design Automation Conference,
June 1977, pp. 462-468.

Eichelberger, E. B. and T. W. Williams, "A Logic Design Structure for
LSI Testability,'" J. Design Automation and Fault-Tolerant Computing,
Vol. 2, May 1978, pp. 165-178.

Hayes, J. P., '"Modeling Faults in Digital Logic Circuits,' Rational
Fault Analysis, R. Saeks and S. R. Liberty (eds.), Marcel Dekker, NY,
1977, pp. 78-95.

Nickel, V. V., "VLSI - The Inadequacy of the Stuck at Fault Model,"
Proceedings IEEE International Test Conference, November 1980,
pp. 378-381.

Breuer, M. A. and A. D. Friedman, Diagnosis and Reliable Design of
Digital Systems, Computer Science Press, Rockville, MD, 1976.

Hayes, J. P., Testing Logic Circuit by Transition Counting,' Digest of
Papers 5th International Symposium on Fault-Tolerant Computing, June
1975, pp. 215-222.

Savir, J., "Syndrome-Testable Design of Combinational Circuits,' Digest
of Papers 9th International Symposium on Fault-Tolerant Computing,
June 1979, pp. 137-140.

Savir, J. "Syndrome-Testable Design of Combinational Circuits," IEEE
Trans. on Computers, Vol. C~29, June 1980, pp. 442-451 (corrections:
Nov. 1980).

Savir, J., "Syndrome-Testing of 'Syndrome-Untestable' Combinational
Circuits,'" IEEE Trans. on Computers, Vol. C-30, August 1981,
ppo 606-6080

"A Designer's Guide to Signature Analysis,' Hewlett-Packard Application
Note 222, Hewlett Packard, 5301 Stevens Creek Blvd., Santa Clara, CA
95050, April 1977.

dadig, H. J., "Signature Analysis-Concepts, Examples and Guidelines,"
Hewlett-Packard Journal, May 1977, pp. 15-21.

Abramovici, M. and M. Breuer, "Multiple Fault Diagnosis in Combina-
tional Circuits Based on an Effect-Cause Analysis,' [EEE Trans. on
Computers, Vol. C-29, June 19380, pp. 451-460.

a T Ty = O
'c'.‘v-\n o foe S e u ~'t'n‘.‘s‘

i e S g St e - R R Ve W e e w Vo g W TR = T

REFERENCES (Continued)

13. Williams, T. W. and K. P. Parker, 'Design for Testability--A Survey,"
Proceedings IEEE, Vol. 71, January 1933, pp. 98-112.

14. Hayes, J. P. and A. D, Friedman, "Test Point Placement to Simplify
Fault Detection,"” Digest of Papers 10th International Symposium on
Fault-Tolerant Computing, June 1973, pp. 73-78.

15. Hayes, J. P., '"On Modifying Logic Networks to Improve their
Diagnosability,' IEEE Trans. on Computers, Vol. C-23, January 1974,
pp. 56-62.

15. Akers, S. B., "Partitioning for Testability," J. Design Automation and

Fault-Tolerant Computing, Vol. 1, February 1977, pp. 133-146.

17. Buehler, M. G. and M. W. Sievers, "0ff-line, Built-in Test Techniques
for VLSI Circuits," Computer, June 1982, pp. 69-82.

18. Funatsu S., N. Wakatsuki, and T. Arima, "Test Generation Systems in
Japan," Proceedings of the l2th Design Automation Conference, June

19. Ando, H., "Testing VLSI with Random Access Scan,' Digest of Papars
COMPCON 80, February 1980, pp. 50-52.

20. Stewart, J. H., "Future Testing of Large LSI Circuit Cards," Digest of
Papers IEEE Semiconductor Teast Symposium, October 1977, pp. 6-17.

21. McCluskey, E. J. and S. Bozorgui-Nesbat, "Design for Autonomous Test,"
IEEE Trans. on Computers, Vol. C-30, November 1981, pp. 366-875.

22, Peterson, W. W. and £. J. Weldon, Error-Correctin3y Codes, 2nd g£dition,
MIT Press, Cambridge, MA, 1972.

23. Wakerly, J., Error Detectinz Coda2s, Self-checkinz Circuits aand
Applications, American-Elsevier, NY, 1978.

24, Sedmak, R. M., "Design for Self-Verification: An Approach for Dealing
with Testability Problems in VLSI-Based Designs," Proceedings IEEE Test
Conference, 1979, pp. 112-120.

25. Konemann, B., J. Mucha, and G. Zwiehoff, '"Built-in Logic Block
Observational Techniques,' Digest of Papers 1979 Test Conference,
October 1979, pp. 37-41.

235, Mucha, J., "Hardware Techniques for Testing VLSI Circuits Based on
Built-in Tests,' Digest of Papers COMPCON 31, Fabruary 1981,
pp. 366-369. "

———

27.

28.

29.

30.

31.

32.

33.

36.

37.

38.

AR A A Gl i e e e i e s e e e e e
. - Pen- E5 o e e S H T . o G g 0 i S

REFERENCES (Continued)

Agarwal, V. K. and E. Ceruy, "Store and Generate Built-in Tlesting
Approach," Digest of Papers llth International Symposium on
Fault-Tolerant Computing, June 1981, pp. 35-40.

Susskind, A. K., "Testing by Verifying Walsh Coefficients,'" Digest of
Papers llth International Symposium on Fault-Tolerant Computing,
June 1981, pp. 206-208.

McCluskey, E. J. and S. Bozorgui-Nesbat, "Design for Autonomous Test,"
Proceedings IEEE International Test Conference, November 1980,
pp. 15-21.

Bozorgui-Nesbat, S. and E. J. McCluskey, "Structured Design for
Testability to Eliminate Test Pattern Generation,'” Digest of Papers
10th International Symposium on Fault-Tolerant Computing, June 1930,
pp. 158-163.

Seth, S. C. and K. L. Kodandapani, "Diagnosis of Faults in Linear Tree
Networks,' IEEE Trans. on Computers, Vol. C-26, January 1977, pp. 29-33.

Saluja, K. K. and R.M. Reddy, "Fault Detecting Test Sets for
Reed-Muller Canonic Networks,' IEEE Trans. on Computers, Vol. C-24,
October 1975, pp. 995-993.

Fujiwara, H. and K..Kinoshita, "A Design of Programmable Logic Arrays
with Universal Tests,'" IEEE Trans. on Computers, Vol. C-30, November
1981, pp. 823-828.

Friedman, A. D., "Easily Testable Iterative Systems,' IEEE Trans. on
Computers, Vol. C-22, December 1973, pp. L061-1064%.

Sridhar, T. and J. P. Hayes, "A Functional Approach to Testing

‘Bit-Sliced Microprocessors,' IEEE Trans. on Computers, Vol. C-30,

August 1931, pp. 563-571.

Chang, H. Y. and S. W, Heimbigner, "LAMP: Controllability,
Observability and Maintenance Engineering Technique (COMET)," Bell
System Tech. J., Vol. 53, October 1974, pp. 1505-1534,

Goldstein, L. H. and E. L. Thigpen, ''SCOAP: Sandia Controllability
Observability Analysis Program,'" Proceedings of the 17th Design
Automation Conference, June 1980, pp. 190-195.

Goldstein, L. H., "Controllability/Observability Analysis of Digital
Circuits," IEEE Trans. Circuits and Systems, Vol. CAS-26, September

I""!l!.!.'"-"'!q“'.."'m - e e R i B iy o o o T i e LS e R S Bl B i S R R el e

REFERENCES (Continued)

39. Grason, J., "TMEAS, A Testability Measurement Program,'' Proceedings of
the 16th Design Automation Conference, June 1979, pp. 156-161.

40. Bennetts, R. G., et al., "CAMELOT: A Computer—-Aided Measure for
Logical Testability," IEE Proceedings, Vol. 128, Part E (Comp. &
Digital Techniques), London, September 1981, pp. 177-189.

41. Chen, T-H. and M. A. Breuer, "Automatic Design for Testability via
Testability Measures,' IEEE Transactions on Computer-Aided Design,
Vol. CAD-4, January 1985, pp. 3-1l.

42, Eichelberger, E. B., et al., "A Logic Design Structure for Testing
Internal Arrays," Proceedings of the 3rd USA-Japan Computer Conference,
October 1978, pp. 266-272.

43, Hayes, J. P., "Detection of Pattern Sensitive Faults in Random Access
Memories,'" IEEE Trans. on Computers, Vol. C=24, February 1975,
pp. 150-157.

44, Goel, P., "An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logiec Circuits," Digest of Papers 1l0th International
Symposium on Fault-Tolerant Computing, October 1980, pp. 145-150.

45, Roth, J. P., "Diagnosis of Automata Failures: A Calculus and a
Method," IBM J. Research and Development, Vol. 10, July 1966,
pPP. 278-291.

46, Eichelberger, E. B. and E. Lindbloom, "A Heuristic Test-Pattern
Generator for Programmable Logic Array,'" IBM J. Research and
Development, Vol. 24, January 1980, pp. 15-22.

47. Lesser, J. D, and J. J. Shedletsky, "An Experimental Delay Test
Generator for LSI Logic," IEEE Trans. on Computers, Vol. 29, March
1980, pp. 235-248.

48, Thomas, J. J., "Automated Diagnostic Test Programs for Digital
Networks,' Computer Design, Vol. 10, August 1971, pp. 63-67.

49, Thatte, S. M. and J. A. Abraham, "Test Generation for Microprocessors,"
IEEE Trans. on Computers, Vol. C-29, June 1980, pp. 429-441.

50. Bastin, D., et al., '"Probabilistic Test Generation Methods," Digest of
Papers 3rd International Symposium on Fault-Tolerant Computing, June
1973, p- 171.

51. Parker, K. P., "Adaptive Random Test Generation,'" J. Design Automation
and Fault Tolerant Computing, Vol. 1, October 1976, pp. 62-383.

52. Hnatek, E. R., A User's Handbook of Semiconductotr HMemories, Wiley-

Interscience, NY, 1977.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64,

650

Peap— e D S i e W W T P S e I

REFERENCES (Contirfued)

Hong, S. J. and D. L. Ostapko, "FITPLA: A Programmable Logic.Array for
Functional Independent Testing,'" Digest of Papers 10th International
Symposium on Fault-Tolerant Computing, October 1980, pp. 131-136.

Friedman, A. D. and P. Menon, Fault Detection-in Digital Circuits,
Prentice Hall, NJ, 1971.

Wang, S. L. and A. Avizienis, '"The Design of Totally Self-Checking
Circuits Using Programmable Logic Arrays,' Digest of Papers 9th
International Symposium on Fault-Tolerant Computing, June 1979, pp.
173-180.

Mak, G. P., J. A. Abraham, and E. S. Davidson, "The Design of PLAs with
Concurrent Error Detection," Digest of Papers 12th International
Symposium on Fault-Tolerant Computing, June 1932, pp. 303-310.

Khakbaz, J. and E. J. McCluskey, "Concurrent Error Detection and
Testing for Large Programmable Logic Arrays,” CRC Report No. 81-14,
Stanford University, Stanford, CA, September 1981.

Dong, H. and E. J. McCluskey, "Concurrent Testing of Programmable Logic
Arrays,' CRC Report No. 82-11, Stanford University, Stanford, CA, June
1982.

Daehn, W. and J. Mucha, "A Hardware Approach to Self-Testing of Large
Programmable Logic Arrays,'" IEEE Trans. on Computers, Vol. C-30, No. 11,
November 1981, pp. 829-833.

Hassan, S. Z., "Testing PLAs Using Multiple Parallel Signature
Analyzers,” CRC Report No. 82-9, Stanford University, Stanford, CA,
June 1982.

Yajima, S. and T. Aramaki, "Autonomously Testable Programmable Logic
Arrays,'" Digest of Papers llth Internaticnal Symposium on Fault-
Tolerant Computing, June 1981, pp. 41-43.

Dong, H. and E. J. McCluskey, '"Design of Fully Testable Programmable
Logic Arrays," CRC Report No. 82-20, Stanford University, Stanford, CA,
June 1982.

Son, K. and D. K. Pradhan, "Design of Programmable Logic Arrays for
Testability," Proceedings IEEE International Test Conference, November
1980, pp. 163-166.

Pradhan, D. K. and K. Son, '"The Effect of Untestable Faults in PLAs and
a Design for Testability," Proceedings LEEE International Test Confsr-

ance, November 1980, pp. 359-367.

Cha, C. W., "A Testing Strategy for PLAs," Proceadings 15th Desizn
Automation Conference, June 1978, pp. 3256-331.

R-5

66.

67.

68.

P - P— T S
. Gl e 4 . S R O W i W

REFERENCES (Concluded)

Ostapko, D. L. and S. J. Hong, "Fault Analysis and Test Generation for
Programmable Logic Arrays,'" Digest of Papers 8th International Symposium
on Fault-Tolerant Computing, June 1978, pp. 83-89.

Smith, J. E., "Detection of Faults in Programmable Logic Arrays," IEEE
Trans. on Computers, Vol. C-28, No. 11, November 1979, pp. 848-853.

Saluji, K. K., K. Kinoshita, and H. Fujiwara, "A Multiple Fault
Testable Design of Programmable Logic Arrays," Digest of Papers llth

International Symposium on Fault-Tolerant Computing, June 1981, pp.
44-46. ; i

b AR =Y S RO e A MO
§ RS , ety
: \
m— e ong oo - o are - e o 88 e ecm be e W ST e e i ———— - - — e e o o -
~ .

3803 L

2 Y
'Qn'!\‘ .

